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PREFACE 

In undertaking to  review the Monte Carlo method as applied to  particle transport, it is 
inevitable that we spend more time on topics of interest to us in our work at Los 
Alamos Scientific Laboratory. However, we have endeavored to present a variety of 
material which will be of general use in solving neutron- and photon-transport 
problems, regardless of their origin. 

Although one may argue that our remarks are directed to an audience having 
widely differing backgrounds and interests, we hope that this review, in addition io 
providing a summary of Monte Carlo methods in transport theory, will assist the 
uninitiated reader in using the techniques descri6ed to solve his own problems. The 
knowledgeable practitioner of the Monte Carlo method can skip the more elementary 
exposition. 

We wish to express our appreciation to various people who have helped in the 
preparation of this manuscript. We extend our thanks to Robert F. Pigeon, Office of 
Information Services, U S .  Atomic Energy Commission, for his cooperation during the 
time this work was being prepared and for obtaining reviews of the manuscript. We are 
grateful to  Professor Norman McCormick for suggesting that the project be undertaken 
and for offering his comments on parts of the original draft. Our special thanks are 
offered to our colleagues, W. L. “Buck” Thompson, who suggested countless 
improvements in the manuscript, and to  C. J .  Everett, whose hand is evident in much 
of the material presented here. 

L. L. Carter 
and 

E. D. Cashwell 
Los Alamos Scientific Laboratory 
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1 INTRODUCTION 

The computational speed and fast memory capacity of the modern digital computer 
have made practical the simulation of difficult mathematical problems with the Monte 
Carlo method of statistical trials. Although the Monte Carlo method is typically used 
to  simulate a random process, it frequently is applied to problems that do not have an 
immediate probabilistic interpretation. Thus it has become a useful computational tool 
in all major areas of scientific endeavor. 

Since complete treatment of the Monte Carlo method is beyond the scope of this 
review, we have focused attention on its application to particle-transport problems, 
with major emphasis on neutron and photon transport. Historically Monte Carlo has 
been a useful computational tool for particle-transport problems, and this is still its 
area of most extensive use. However, a sampling of references in other areas has been 
included in Chap. 7 to  provide a starting point for the interested reader. 

In Chap. 2 sampling techniques and the basic mathematics used in a Monte Carlo 
calculation are discussed. Chapters 3 to 6 present a bird’s-eye view of the theory and 
use of Monte Carlo in solving neutron- and photon-transport problems. References are 
cited to  enable a deeper study of each topic. 

1 



2 SAMPLING METHODS 

I N T R O  D U C T I  0 N 

The Monte Carlo method is distinguished from other techniques in numerical analysis 
by the use of random sampling to  construct the solution of a physical or mathematical 
problem. A stochastic model, which may or may not be immediately obvious from the 
problem, is set up, and, by sampling from appropriate probability distributions, we 
estimate the required numerical answers to  the problem by statistical means. In the 
treatment of particle-transport problems, which we are primarily interested in here, 
the probabilistic methods used may require rather sophisticated mathematical tools to 
justify them rigorously. The interested reader is referred to  the report by Spanier' and 
the book by Spanier and Gelbard.* However, much of Monte Carlo is intuitive in 
nature and requires only a knowledge of elementary probability theory. In this 
chapter, we shall review basic sampling techniques essential to  the treatment of 
transport problems as well as remark on the estimation of errors in these problems. 

T H E  BASIC PRINCIPLE 

Throughout our discussion we assume that we have at our disposal a supply of 
random numbers E, which are uniformly distributed on the interval [0,1).* There are 

*We use the common mathematical definitions for real intervals; the open interval (0, 1) 
refers to the set of real numbers l such that 0 < [ < 1, and the closed interval [0, 11 is the 
set of real numbers [ such that 0 < t f 1. Similarly, [0, 1) is the set of real numbers such 
that 0 f t < 1, and (0, 11  denotes the set of real numbers such that 0 < t f 1. 

2 

. .... . "  .. _ _ _  .. -~ . . .-.. . ....... ... - -~ .  ... . . . .... _. .. . 



THE BASIC PRINCIPLE 

many schemes for generating such numbers. The most practical for machine use is to 
generate these “pseudorandom” numbers by some arithmetical subroutine as they are 
needed. The sequence of numbers used must satisfy certain properties of randomness. 
In addition t o  being uniformly distributed, an obvious requirement is that they be 
uncorrelated; for example, the size of the (n t 1)st number should be independent of 
the size of the nth or, for that matter, of any of the preceding numbers. Since 
arithmetical schemes are almost universally used in present-day codes, it is not obvious 
that these requirements can be met. A very popular method for generating sequences 
of pseudorandom numbers is the congruential scheme of Lehmer.3 An informative 
discussion of the generation and testing of random numbers is given in Chap. 111 of a 
book by Knuth? which also includes a set of six ‘‘rules’’ to  follow in choosing a good 
random-number generator. Additional references are contained in Knuth’s discussion. 
The literature on the generation of random numbers before 1962 is summarized by 
Hull and D ~ b e l l , ~  and a more comprehensive treatment is given by Jansson.6 In regard 
t o  the question of the reliability of random numbers, MacLaren and Marsaglia’~~ point 
out difficulties that can arise with congruential schemes in certain high-resolution 
applications. The work of Beyer9.10 is also concerned with the deficiencies of the 
linear congruential generators, discussing in more detail the lattice structure of 
n-dimensional vectors obtained from such generators. An interesting discussion of the 
lattice structure of ihese vectors is also contained in a paper by Coveyou.” 

Suppose E , ,  . . . , E, are n independent, mutually exclusive events with prob- 
abilities p , ,  . . . , p,, respectively, p1 t . . . t p, = 1. Clearly, if a random number l ,  
0 < [ < 1, is such that 

then determines the event Ei. For example, E , ,  E,, and E, may refer to  capture, 
elastic scattering, and inelastic scattering when a neutron collides with an atom. The 
probabilities are defined by p ,  = uc/ut,  pz = u:/ut, p3 = usi/ut, with ut  = uc t u,” + 0:. 

This case of discrete probabilities can be illustrated graphically by assigning a 
variable x on the interval 0 < x < n to  the events E, , . . . , E, with the agreement that 
i - 1 < x < i represents the event Ei. Let us construct a probability density function 
p(x) by the definition 

where i - 1 < x < i for i = 1 , 2 ,  . . . , n.lla Thus p(x) is a step function similar to  that 
s h o w n  in  Fig. 2.1. The sum of the rectangular areas depicted is clearly 
p1 + . . . t p, = 1. Now suppose we define the probability distribution function 

P(x) = I,” p(t) d t  (0 d x < n) (2.3) 

3 



4 SAMPLING METHODS 

whose graph is shown in Fig. 2.2, a monotone increasing broken-line function such 
that P(0) = 0, P(n) = 1. Since P(i) = p, + . . . + pi, we may interpret P(x) to  
mean the probability of the inequality x’ < x  for x = i, i = 1 , 2  , . . . , n. Moreover 
the equation 

= P(x) = Jox p(t) dt (2.4) 

determines x uniquely as a function of [ in such a way that, if 0 < ( < 1 and if ( is 
distributed uniformly on the unit interval, then x falls on the interval i - 1 < x < i 
with frequency pi, thereby determining the event Ei. 

Fig. 2.1 Density function for the discrete case. 

W 

.1 2 . . .  n - i  n 

Fig. 2.2 Cumulative probability distribution function for the discrete case. 
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THE BASIC PRINCIPLE 

For a continuous density function Ax), a < x < b, as shown in Fig. 2.3, clearly 
we could approximate p(x) arbitrarily closely by a step function defined on equal 
subdivisions of [a,b) and repeat the reasoning above to  determine x, a < x < b, by 
throwing a random number i uniformly on [0,1), except the x is now a continuous 
variable. This argument leads us to  state the fundamental principle for the continuous 
case: If p(x) is a probability density function on the interval a S x < b, then 

[ = P(x) = Jax p(t) dt  (2-5) 

determines x uniquely as a function of .$ (Fig. 2.4). Moreover, if is uniformly 
distributed on 0 < ,$ < 1, then x falls with frequency p(x) dx in the interval 
( x , x  + dx). 

Let us give a couple of examples to  illustrate the basic principle. Suppose we want 
to sample the distance to collision of a particle. The probability of a first collision 
between I and 1 + dl along its line of flight is given by 

(2.6) 
-Et [  

p(1)dl = e C, d l  

a 
.. 

b 

Fig. 2.3 Density function for the continuous case. 

Fig. 2.4 Distribution function for the continuous case. 

5 



SAMPLING METHODS 6 

where Et is the macroscopic total cross section of the medium and is interpreted as the 
probability per unit length of a collision. Setting 

it follows that 

1 z = -- In (1 - t )  
=t 

(2.7) 

But, since 1 - 
E, we obtain the well-known expression for the distance to  collision, 

is distributed in the same manner as and hence may be replaced by 

1 Z = - - l n t  
=t 

Another quite different example is obtained if we wish to sample from an 
isotropic (spherically symmetric) distribution. That is, each element of solid angle 
receives the same contribution, dR/47~. One way of sampling from this function is to 
write it in spherical coordinates, 

dS1 - sin 0 dB dcp 
47T 2 27T 
_- - -  (2.10) 

where we have written the density function in the form p(0,p) = pl(e)  p,(p). Thus 8 
and cp are independent random variables and can be sampled separately. Setting 

1 
2 

= - & +  1) 

( p  = cos e )  

(2.1 1) 

. .  . -  

n 



THE BASIC PRINCIPLE 

we obtain 

cos0 f p = 2t;, - 1 

(2.12) 

Using sin 8 = (1 - cos2 Q)yz,  

Qx = sin 8 cos 9 

Q, = sin 8 sin cp 

a, = case (2.13) 

are the direction cosines of the new direction. Later we will show how to sample 
directly for sin cp and cos cp, rather than to  evaluate the sine and cosine of the angle 9. 

In many applications the solution of Eq. 2.5, 

t = P(x) = sax p(t) dt 

for x in terms of t; involves difficult implicit problems. An iteration method, such as 
the Newton-Raphson scheme, may be used to  invert the re!ation t = P(x), when P(x) 
is obtained in closed analytic form. 

A simple but fast method, applicable in all cases, involves subdividing the interval 
[a,b] and storing accurate values of €‘(xi) E Pi at the points of subdivision 
xo = a < x1 < . . . < x, = b. Using the method described above for discrete 
probabilities to determine the subinterval (xi- xi) on which x falls, we obtain the 
sample value of x on this interval by interpolation. If i is the first value of the index 
for which { - Pi is negative and if we use linear interpolation to determine x, then 

(2.14) 

In some applications the values of Pi will have to be obtained by numerical integration. 
Owing to  its speed and versatility, this method is used extensively in transport codes. 
Equation 2.14, which fits the curve of [x, P(x)] with straight lines between successive 
points (xi- 1 ,  Pi- xi) and 
is strictly valid only when p(x) is a step function. Greater accuracy may sometimes be 
obtained by passing through successive pairs of points on the curve of the distribution 
function polynominals of second or higher degree. (See Chap. 1 of Ref. 1 la.) 

and (xi, Pi), distributes x uniformly on the interval (xi- 

7 
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THE REJECTION TECHNIQUE 

SAMPLING METHODS 

A method often convenient for sampling from a density function p(x), 
a < x < b, is the rejection method shown in Fig. 2.5. It is frequently favored when 
p(x) is readily computable and storage space is at a premium. Suppose p(x) is 
bounded, and let us define 

P ( 4  
p*(x) = Supp(x) 

Jab p(x) dx = 1 (2.15) 

where a < x < b. Let us select a pair of random numbers ( E ,  q)  and define x’ = a + 
$(b - a). If p*(x’) > 77, we accept x’ as our sample value of x; otherwise we reject x’ 
and repeat the procedure. The points (x’, .ri) are uniformly distributed in the area 
below the curve and above the x axis. Hence it is geometrically obvious that in many 
trials the fraction of points x’ retained between x and x + dx will be approximately 
the ratio of the areas 

This may also be seen in a more formal and rigorous manner. The probability density 
function of x is the conditional density of x ,  given that q < p*(x), and is denoted by 
q [x  I 77 < p*(x)] . If we denote the joint density of x and q by q(x, Q), where 
q(x, 7) = l /(b - a) in the rectangle and is 0 elsewhere, then 

I t  I 
01 I 1 I 

a X ’  b x  

Fig. 2.5 The rejection technique. 



THE REJECTION TECHNIQUE 
d, 

(2.17) 
Jab P*(x) dx 

The efficiency of a rejection method is defined as the ratio of the number of 
values of x’ accepted to the total number selected, and this is clearly the ratio of the 
area under the curve to the total area of the rectangle. That is, if Sup p(x) = A, then 

- - P * W  = p(x) 

(2.18) 

This number, which is obviously less than 1, determines to a large extent whether a 
given rejection method may be feasible. Although usually convenient to use, the 
rejection technique may prove to be costly of machine time if the efficiency is low. 
Many commonly used routines that use a rejection have an efficiency considerably 
above 1/2. 

Let us consider a generalization of this method which is in common use. In fact, 
we shall use this device in discussing photon transport in Chap. 6. Suppose we have a 
probability density function p(x) on the interval [a, b] which has the form 

1 - -- r,b P*(X) dx  J,” P(X) dx  - Efficiency = - 
b - a  A(b - a)  A(b - a) 

Here f(x) is itself a density function on [a, b] ;without loss of generality, g(x) may be 
bounded, 0 < d x )  S 1 ; and C is a normalization constant. Now we choose a sample 
x’ from the density f(x), a < x’ < b. If a random number g is less than g(x’), x’ is 
retained as our sample from qx);  otherwise x’ is rejected, and we repeat the procedure. 
The conditional density of x, given that < g(x), is 

(2.20) 



10 SAMPLING METHODS 

We can show that this rejection scheme yields values with density p(x) in a 
different manner, one which is patterned after the procedure actually followed in 
sampling with this method. Let us first compute the probability that the first trial in 
the process is successful, i.e., the value of x is not rejected. The probability that x is 
chosen between x and x t dx is f(x) dx, and then the probability that the assignment 
is ratified is g(x), leading to the probability of x in the interval (x, x + dx) on the 
first trial given by g(x) f(x) dx. However, the probability of rejection on the first trial 
is easily seen to be 

Thus the probability that x will be chosen in the interval (x, x t dx) on the second 
trial is ( 1  - C-1) g(x) f(x) dx. Continuing the argument through the countable 
sequence of trials, we obtain for the probability that x will be chosen in the interval 
(x, x t dx) the expression 

g(x) f(x) dx(1 - C - l ) k  = C g(x) f(x) dx  = p(x) dx  (2.21) 
k=O 

(It is observed that 

since 

Jab g(x) f(x) dx  < Jab f(x) d x  = 1 

therefore 11 - C-' I < 1 .) 

Various other generalizations of this method appear in the Let us 
return to an application used widely in computer codes, evaluation of cos cp and sin cp, 
where cp = 2nt is a uniformly distributed angle on (0 ,  2n). As seen earlier, these 
functions arise in determining an isotropic distribution of particles, and, more 
generally, they appear in the process of computing a new direction of motion from an 
arbitrary scattering function. One can justify the rejection procedure used by 
appealing to a multidimensional generalization2 of the one-dimensional process 
described above. However, a geometric argument makes the sampling procedure 
transparent. 

Consider Fig. 2.6, which portrays the unit circle inscribed in a square of side 
l e n g t h  2 .  C h o o s i n g  p a i r s  o f  r a n d o m  n u m b e r s  ( g l ,  g 2 )  wi th  
0 < E l  < 1, 0 < l2 < 1 and computing x I  =2l,  - 1, x2 = 2g2 - 1, we see 
that the points ( x l ,  x2) are uniformly distributed in the square. If we retain those 
points inside the circle and reject those outside, it follows that each element of angle 

- -  . . , . . ., . . . .. . . . . ..-. .- -. . . ._ -. . ..- .... ~~ -...... .... .. __ .- ~ . ~- . .  . - I ...... 



THE REJECTION TECHNIQUE 

-1 

Fig. 2.6 Rejection for cos cp and sin cp. 

Acp will receive the same number of admissible points. Thus, if each retained point 
( x l ,  x2) determines a value of cp, then cp is sampled uniformly between 0 and 2n. 
Further, each point that is retained determines the functions 

X I  cos cp = (x: -+ x ; p  

sin cp = (x: + x2 x;p 

Use of the double-angle formulas from trigonometry leads to  the relations 

x2 - 2 
1 x2 cos cp = 2 x, + x ;  

(2.22) 

which avoids the use of the square root. 
The efficiency of this process is the ratio of the area of the circle to that of the 

square, and hence is n/4. An acceptable value of the efficiency accounts for the 
extensive use of the above device for sampling these functions. 



12 SAMPLING METHODS 

TABLES OF SAMPLING SCHEMES 

Many of t h e  commonly  occurring density functions in neturon- and 
photon-transport problems have simple and elegant schemes for sampling from them. 
For example, a very important density function in neutron transport is the normalized 
fission spectrum, which may be approximated by 

2 1 % -E/T X(E) =- - E e 
7r% ~ 3 1 2  

(2.23) 

Let ti represent a random number on the unit interval. Then this function may be 
sampled' by choosing three random numbers go, E l ,  and g 2 ,  and then 

(2.24) 

Similarly, suppose we want to sample for the frequency v from the normalized 
blackbody distribution 

15 x3 
7r4 ex - I 

b, = - -  

where u = (kT/h)x. Set 

then 

and 

X 
kT 
h 

v = -  

(2.25) 

(2.26) 

(2.27) 

(The notation {x; F(x){ means the set of all x satisfying the condition F(x).) 
At this point in the development of Monte Carlo methods, many other examples 

of commonly occurring density functions can be sampled by clever and efficient 
schemes. The earliest compilation of such devices was made by Kahnt4 and numerous 
examples appear throughout the later literature. A more recent collection of many of 
the known cases has been made by Everett and C a ~ h w e l l . ' ~ . ' ~ ~  

. . . - . ._I . . . - . .. . -. . . .  . - - . . . . . . . . .. 
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Another example of a simple device, one that is described in Ref. 13, which we 
single out for mention here since we refer to  it in Chap. 5 in connection with the 
discussion of elastic scattering, is the following: Suppose we wish to  sample from the 
probability density function p(x), defined on the interval (a, b), where 

with aj(x) > 0 and J fmite or infinite. 

If we define 
b Aj = Sa aj(x)dx 

It follows that 
J 
EAj= 1 

Set 

(2.28) 

13 

where ( is a random number on the unit interval. Then sample the density function 
aK(x)/AK for x. It is clear that the density function aj(x)/Aj is sampled with 
probability Aj, and hence that a sample is chosen between x and x + dx with 
probability p(x) dx. 

If pl(x) and p2(x) are two density functions, this scheme provides an efficient 
way of sampling for the interpolated density p(x), where 

IMPORTANCE SAMPLING 

When, in the course of obtaining an estimate of a given quantity by a Monte Carlo 
calculation, one samples from fictitious density functions, then one is using biasing. 
This distortion must be corrected for by using a weight factor to alter the contribution 
to the quantity being estimated. Another name applied to biasing in certain instances 
is “importance sampling.” Importance sampling refers to sampling the most important 
regions of a problem-in an integral, sampling well that portion of the domain which 
contributes most to the value, and, in a transport problem, sampling adequately those 
trajectories which are likely to contribute to  the functional being evaluated. 
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Let us assume that we have a probability density function p(x) defined on [a, b] 
and that we wish to  evaluate the mean value of a function f(x) when x is sampled from 
P ( 4  > 

(2.30) 

Suppose that, for convenience or from need to  reduce the error, we choose x from a 
different density function,F(x). If for each point xi so chosen we assign a weight 
w(xi) = p(xi) /?(xi) and if th,e score of the game is calculated as w(xi) f(xi), we are 
computing the mean value of f(x) = f(x) w(x) = f(x) p(x) /p(x) ,  

E(f) = Jab f(x) P(X> d x  

E(?) = Jab ?(x)F(x) dx  = Jab f(x) p(x) dx  = E(f) (2.3 1) 

Thus the mean of T(x) is naturally unchanged from the mean of f(x). This is not true, 
in general, for the variances of the two functions, since 

E(fz) = Jab f2(x) p(x) dx  (2.32) 

b 
E(7’) = 1 Tz(x) E(x) dx 

b 
= f2(x)e2(x) F(x)dx 

P ’ (4 

= ib [*I f’(x) p(x) dx  
2 x 1  (2.33) 

N 

The variance is given by E( f ’) - E2(T) = E(?’) - E2 (0. Since this is a 
positive quantity, if we can chooseT(x) such that [p(x) /T(x)] < 1 over a portion of 
the interval (an important portion) which contribut2 extensively to  the second 
moment E(f?), then it appears from the relation for E( f ’) that the variance has been 
reduced. [Note that p(x) / 2 x )  cannot be less than 1 over the entire interval, because 
p(x) andT(x) are density functions and hence are normalized to  unity.] The perfect 
densityT(x) is given by f(x) p(x) / E(f) since then 

a I’ b 
E(?’) - EZ(Q =I [f(x)$ - E(f) F(x)dx = 0 

P (4 
(2.34) 

n 
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and hence the variance is zero. Of course, if we knew E(f), we would not need to 
sample for it. We cannot choosevtx) such that Y(x) = f(x) p(x) /F \x )  is constant 
since the constant will be E(f). However, the sample mean is found as the arithmetic 
mean of trial values of T(x), and hence the sample variance will be small if one 
chooses y(x) so that f(x) p(x) / 3 x )  is approximately constant. To accomplish this, 
the function T(x) may determine many more sample values in some parts of the 
interval than in others. In a simple case we are led naturally to the idea of importance 
sampling by attempting to reduce the variance. 

In a similar way one is led to the idea of importance sampling in treating transport 
problems by the Monte Carlo method. Here we sample trajectories or random walks in 
phase space. Along each of these random walks, it may be desirable to sample from 
fictitious density functions for points in phase space, correcting by altering the 
statistical weight that may be assigned to the particle in this case. One attempts to 
emphasize the choice of points in phase space which will lead to significant 
contributions to the function of interest. 

Consider the integral form of the transport equation 

F(R) = J” K(R;R’) F(R’) dR’ + Sf(R) (2.35) 

where R denotes the kinetic energy, direction of flight, and position of the particle; 
F(R) is the density of particles entering collision at R; Sf(R) is the first-flight collision 
density due to  extraneous sources; and K(R;R’) is the next-flight collision density at R 
due to a collision occuiring at R’. This equation is discussed in more detail in Chap. 3. 
Suppose we wish to estimate the functional 

J = I F ( R ) h ( R ) d R  (2.36) 

where h(R) is the contribution to the desired quantity of interest due to a collision at 
R. 

In attempting to bias the random-walk process in favor of trajectories more likely 
to contribute to  the above functional, we might make an estimate of the expected 
contribution to J from a particle at R. If such an importance function, I(R), is 
available, it can be used as a weighting function to modify the density functions that 
yield, at each step of the random walk, the next pGnt R in pkase space. The weighting 
function I(R) can be used to define new functions SXR) and K(R;R’) as follows: 

K(R; R’) I(R) 
W’) 

K(R;R’) = (2.37) 

These functions are used to define the random-walk process, the weight of the particle 
being modified accordingly at each step. A source particle at R has its weight modified 
by the factor SkR)  / Q R ) ,  and each particle that enters collision at R from a previous 

15 



16 SAMPLING METHODS 

collision at R’, has its weight multiplied by the factor K(R; R’)/g(R; R’). For further 
discussion of this, the reader is referred to a review article by Goertzel and Kales;'* in 
Chap. 3 ,  however, the special case where 1(R) is the solution of the adjoint equation 
is considered in detail. There the ideal weighting function is shown t o  be given by the 
solution to  the adjoint equation 

F+(R) = .f K(R’; R) F+(R’) dR‘ + h(R) (2.38) 

When this function is used for l(R), each sample trajectory yields J as the score. Of 
course, finding F+(R) is, in general, as difficult as obtaining F(R), but these 
considerations indicate that an approximate solution of the adjoint equation may 
prove to be of real value as a weighting function. 

SPLITTING AND RUSSIAN ROULETTE 

One of the oldest and most successful biasing techniques, and one which is 
commonly used in deep-penetration problems, is that of splitting accompanied by 
Russian roulette. To illustrate its use, suppose we have an optically thick slab of 
material, say a semi-infinite slab of thickness T ,  0 < z < T, with a source of particles 
prescribed either at or near the plane z = 0. At specified plane boundaries z = z j  in 
the increasing z direction, assume that the particle splits into v identical particles, each 
of weight W/v, where W is the incoming weight. Clearly, weight is preserved, and we 
process more (v times as many) particles with smaller weights. The statistics should be 
improved since in many shielding problems the sample size diminishes t o  almost 
nothing in the far reaches of the shield. Although v may frequently be an integer, it 
need not be. All that is necessary is that the expected number of split particles be Y ;  
e.g., if n < v < n + 1 ,  a common recipe is to  choose n particles with probability 
n + 1 - v and n + 1 particles with probability v - n. Obviously many other 
recipes are available. If v is not an integer, it may be preferable not t o  split into v 
particles on the average but to  split into n + 1 particles with weights W/(n + 1). 
However, splitting is most often provided in combination with Russian roulette, and 
then there are advantages in preserving the value v by which the weight is divided. 

If it is desirable t o  split particles when they penetrate deeper into a shield, or, in 
general, when they enter a more important region of the problem, then it is usually 
sound practice to decrease the number of particles followed when they enter a less 
desirable region.’ This can be achieved by Russian roulette. In our example, if a particle 
proceeds across the boundary z = zi in the direction of decreasing z, Russian roulette 
allows the particle to  survive with probability v-’ and its weight to  be increased by a 
factor v. The particle is killed with probability 1 - v-’. 

In complex geometries each cell or geometric region of the problem can be 
assigned an importance I .  Then, when a particle enters cell n + 1 from cell n, the ratio 
I,+ / I ,  is examined. If I,, / I ,  2 1 ,  so that the particle is entering a cell of greater 
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importance, then the particle is split into v = I n + ] / I n  identical particles, each of 
weight Wv-I ,  where W is the incoming weight. If v = In+ l / In  < 1, then Russian 
roulette is played, and the particle survives with probability v with weight W v - l .  Some 
variation of this scheme is built into most Monte Carlo codesl’in general use. 

When splitting and Russian roulette are combined as we have described, then the 
particles that are in a region of importance I will tend to  have the same weights-if 
these are the only processes modifying the weight of a particle, the weights will be 
identical-and this is usually advantageous in computing the variance of a scored 
quantity. 

The device of assigning an importance to a cell in the problem can be generalized 
to make this quantity a function of other variables in the problem. For example, by 
this means the splitting and Russian roulette can be made to depend on the energy of 
the particle. 

Spl i t t ing ,  with Russian roulette, is undoubtedly the most widely used 
variance-reduction technique. Simple to use, it is also hard to abuse-it usually saves 
machine time. With a shielding problem, we find it efficient to maintain roughly the 
same sample size (by splitting) as the shield is penetrated. Although the recipe depends 
on the material composition, this means that the particles should be split 
approximately 2 for 1 at boundaries spaced a distance of h (mean free path) apart. 
Sample calculations may be advisable in setting up the splitting parameters for 
maximum efficiency, although rough estimates usually pay dividends in reducing the 
amount of machine time necessary for a given error. In calculations on the penetration 
of thick shields (% 10 to  20 A), savings in time of several orders of magnitude have 
been obtained by efficient use of splitting and Russian roulette. 

In the slab problem considered above, the process of splitting, accompanied by 
Russian roulette, may be thought of as an example of importance sampling where the 
transport kernel is modified. In the limit of infinitely many splitting boundaries, it 
is a special case of the exponential transformation,2,12 which we consider next. 

THE EXPONENTIAL TRANSFORMATION 

In attempting to improve on straight model sampling when applied to 
deep-penetration problems, we find that the devices of splitting and Russian roulette, 
discussed in the previous section, appeal t o  the intuition. It appears obvious that one 
should artificially increase the number of particle histories in important regions (with 
suitable modification of weights, of course) while decreasing the sample size in 
unimportant regions. Another way in which this might be accomplished would be to  
artificially increase the distance between collisions in the desired direction, say, that of 
increasing penetration of a shield, while at  the same time decrease the collision 
distance in the opposite direction. Such a method of importance sampling is effected 
by the exponential transformation. 

In order to discuss the exponential transformation, suppose we again consider the 
semi-infinite shield of thickness T, 0 < z < T, with a source confined to small z. 
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Since the flux of particles will fall off approximately exponentially in the positive z 
direction, it appears that a good guess for the importance function discussed earlier 
will be given by 

I(z) = ea’ (2.39) 

The transformation l 2  of the transport equation which results from the modifications 
of the source and kernel through the use of this importance function is called the 
exponential transformation. Omitting the mathematical details in transforming the 
transport equation, the net effect of using this importance function is to modify the 
transport kernel, in that the macroscopic total cross section, C,, is replaced by 
C, - QW, where w is the direction cosine of the line of flight of the particle with the 
z-axis. Thus in the transport process for an arbitrary direction, the probability of 
having a first collision at a distance between s and s + ds is given by 

-(Ct - azv)s 
(2, - aw)e  ds 

In the analog simulation this probability should be 

-2 s 
C , e  ds 

(2.40) 

(2.41) 

Hence, if we use the fictitious C, - aw for sampling the random walk, we should 
multiply the weight of the particle entering collision by 

=t e-cyI(’s 
e ,  - CYW 

(2.42) 

=t 

C, - cyw 
or, since ws = Az, by.--- e-ffAZ. 

In Monte Carlo codes with complex geometry and many materials, it is frequently 
convenient to adjust the weight of the particle as we go. If we proceed in this manner, 
the scattering kernel is unchanged; i.e., the scattering process is unaltered by this 
transformation. 

Usually Q is chosen so that 2, - QW > 0. If so, the fictitious total cross section 
will be smaller for positive w and larger for negative w, leading to longer flight paths 
between collisions in the direction of increasing penetration of the shield and shorter 
flight paths in the opposite direction. 

If 2, -QIW < 0, one may add a term C;cp to both sides of the integro- 
differential transport equation written in terms of the flux, cp, such that 
(2 ,  - a w  + C;) > 0 for a and all values of w. The term Cilp can be regarded as a new 
process, whose cross section is C;, in which particles continue undeflected with all 
parameters unchanged. 

-~ .- . .... . . . .. .- .. 
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The exponential transformation and its use in solving deep-penetration problems 
is discussed by L e i m d ~ r f e r ’ ~ . ’ ~  and Levitt!8 

ANT IT H ET1 C VARIATES 

The antithetic method of reducing the variance by a modification of the scoring 
scheme was proposed as an important Monte Carlo technique by Hammersley and 
Morton’’ in 1956. The method was developed further in aseries of paper~:O-~~ and 
shorter treatments are to be found in the books by Hammersley and HandscombZ4 and 
by Spanier and Gelbard? We offer a brief summary here. 

Given random variables X,Y with means x, Y,respectively, then the covariance of 
X and Y is defined as 

cov(X, Y) = E [(X - X)(Y - y)] (2.43) 

where E[Z] stands for the expected value of Z. I f  X and Y are independent random 
variables, cov(X,Y) = 0, although the converse does not necessarily hold. We may 
define the correlation coefficient of X and Y as 

(2.44) cov(X,Y) 

[(var X)(var Y)] % 
P(X,Y)  = 

It follows from the Cauchy-Schwarz inequality that p has a value between - 1 and +1. 
I f  p = 0, the two random variables are said to be uncorrelated, and therefore 
independent random variables are uncorrelated. It is for this reason that p(X,Y) is 
frequently used as a measure of the dependence between X and Y .  If  p(X,Y) > 0, the 
variables are said to be positively correlated; if p(X,Y) < 0, they are negatively 
correlated. 

In the method of antithetic variates, given the estimator twith expectation 8, we 
seek a second estimator t* having the same expectation as t but possessing a strong 
negative correlation with t .  Then (t + t*)/2 will be an unbiased estimator of 8. with 
variance 

If cov(t,t*) < 0, then it may be true that 

var [ - (t t*)] < var 

cov(t, t *) 
2 (2.45) 
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For example, suppose we wish to evaluate 

SAMPLING METHODS 

(2.46) 

The usual Monte Carlo procedure is to  select a random variable 
unit interval and evaluate 

uniformly on the 

G = I f : g ( $ J  n (2.47) 

i =  1 

is taken as the estimate of (G). Consider instead the scoring function 

%(x) = (Yg((Yx) -t (1 - a )g [ l  - (1 -.)XI 0 < (Y < 1 (2.48) 

= ,d g(t)dt = ( G )  

Thus the expectation of z (x)  is( G ). On the other hand, if 

,d xz(x)  dx < .I: g’(X) dx 

the variance is reduced. 

We may observe that, regardless of the function d x ) ,  

I,’E’(x)dx < ,d g’(x)dx 

(2.49) 

(2.50) 

(2.5 1) 

and hence the variance of r (x ) ,  

.(: p ( x ) d x  - (G)’ 

is never larger than the variance of d x ) ,  

i . ... -. - . - I ... . . . . - - . .  . ._ . . . . . - ~. . 
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To see this, let us compute 

I , ’ ~ z ( ~ ) d x  = az  lo 1 g2(ax)dx + 2a  (1  - a )  c’ g(ax)g[l  - (1 - .)XI dx 

t (1 - a)’ .(: g2[1 - (1 -.)XI dx  (2 .52 )  

But, by using an elementary inequality, we have 

2g(ax)g[l - (1 - @)XI < $(ax) t g2[1  - (1 -.)XI (2 .53)  

with equality only if g(ax) E g[1 - (1 - .)XI. Equality is clearly impossible for 
strictly monotone g(x). Substituting for the inequality and combining terms, we 
obtain 

s,’ F2(x) dx < a 1 gZ(@x) dx  + (1 - a )  lo 1 gz [ l  - (1 - .)XI dx 

= I,”g’(t) d t  t l: g2(t) dt 

= .(: g2(t)dt  

Therefore 

Ji x2(x) dx  G J,, g2(x) dx 

with inequality holding for strictly monotone g(x). 

Suppose we consider the e ~ t i m a t o r ~ , ~ ~  

(2 .54 )  

(2 .55 )  

(2 .56)  

For all practical purposes, f(x) is equivalent t o  choosing a = 1/2 in the definition of 
z(x). Defining V = var g and VI = var f, we see from the above arguments that 
V, < V. If we define 

(2.57) 

21 
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f, is an unbiased estimator of JJ g(x) dx. Also 

1 
n 

var f,, =-var f 

=-(J; 1 f2 dx - ( f )2)  n 

1 1 
n n =-VI < -v  

SAMPLING METHODS Q 

(2.58) 

We shall show that, for g(x) monotone, V,  < V/2. which makes the estimator f(x) 
much more attractive since the evaluation of f is about  twice as much work as the 
evaluation of g. 

This result is given by Spanier and Gelbard? The proof depends on the following 
lemma. Since the lemma occurs as a by-product of some work on inequalities by 
Everett and Ca~hwell:~-~' we give a trivial proof that does not depend on  the conti- 
nuity of the functions. 

Lcninza. Let g(x) be a nonnegative monotone nondecreasing (nonincreasing) 
function and let q(x) be a monotone nondecreasing (nonincreasing) function with 

Ji q(x) d x =  0 

Then 

Pvoofi Given that q(x) is a monotone nondecreasing function with 

1 So q(x) dx = 0 

then there exists an xo such that 

(2.59) 

(2.60) 

Thus J;O q(x) dx < 0, .(Lo q(x) dx 2 0, and g(x) 2 0 everywhere on the unit interval. 

........... ........ _I. -- . . . .  .- .... .- . ...... . . . . . . . . . . . . .  ." . .  
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i 

Therefore 

> .It g(x) q(x)dx = 0 

For nonincreasing functions the proof is similar. 

Now the following result follows easily: 

meorem. If g is a nonnegative monotone function of x, VI < V/2. 
P r O O t  

1 

V, = 1 f2(x)dx  - ( f ) ?  

1 1 =tl g2(x)dx ++L g2(1 - x)dx  

1 

+ +l g(x)g(l - x ) d x  - ( g ) 2  

If in the lemma above we choose 

then q is monotone with 

Jt q(x)dx = 0 

(2.61) 

(2.62) 

(2.63) 
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Therefore, by the lemma, 

1 

= i[i g2(x)dx - (g )  

Hence 

v, <-- V (2.64) 
2 

Where g(x) is not necessarily monotone, Goertzel and Kalos12 point out that an 
estimator that may be effective is given by 

g x )  = cYg(cyx) + (1 - (Y)g[(Y - (1 - .)XI (2.65) 

This function had previously been considered by Hammersley and Morton.' 
As a simple example of the use of antithetic variates in a practical situation, 

Hammersley and H a n d ~ c o m b ~ ~  discuss the problem of calculating the multiplication 
rate in a sphere of fissile material, where it is assumed that fission neutrons are emitted 
isotropically. In estimating the eigenvalue, they chose that neutrons in pairs from 
fission be emitted in opposite directions and made estimates of the expected number 
of fissions occurring in the system in each of the two directions. These estimates are 
negatively correlated since, if one is too large, then the other is too low. A better 
estimate is then expected to  be the arithmetic mean of the two. 

Another example mentioned by Spanier and Gelbard2 involves the use of 
antithetic variates in estimating resonance integrals. Neutrons born at higher energies 

. .  "- ~. .. .. . . . _. -. . . . .. _- . . - .. . . . . .. . _ _  . . . 
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will usually contribute more heavily to  the resonance integrals simply because they 
pass through more energies at which resonances occur. The source of resonance 
neutrons is sampled in such a manner that a particle born at high energy is paired with 
a particle born at a correspondingly low energy. These two contributions are 
negatively correlated, and using their mean as the value of the contribution can lead to 
much more efficient sampling of the resonance integrals. 

OTHER SAMPLING METHODS 

In closing our summary of some of the most useful methods of sampling 
employed in Monte Carlo, we mention two sampling schemes that are quite helpful in 
practice and refer the reader to  the literature for a more comprehensive discussion of 
each. 

One sampling scheme is the method of stratified ~ampling.*~(See the discussion 
of quota sampling by Goertzel and Kalos12 and the treatment of systematic source 
sampling by Spanier and Gelbard?) In this method the sampling region is subdivided 
into discrete subregions, and each of these is sampled a preassigned number of times. 
When the subdivisions, as well as the number of sampling points in each subdivision, 
are chosen with a view to minimizing the variance of the stratified sampling estimator, 
appreciable savings in computer time can result. In any event the scheme is easy to  put 
into practice, and even elementary attempts at stratification will usually lead to an 
increase in efficiency over the use of straightforward (crude) Monte Carlo. 

The second sampling method, which is very important in many applications, is the 
technique of correlated sampling.2~2s This method of calculating differential effects is 
applied to the Monte Carlo sampling of two random variables that have a strong 
positive correlation. If the changes between the two problems under investigation are 
small so that one problem may be regarded as a perturbation of the other, separate 
Monte Carlo calculations for the two systems may be impractical. The statistical 
uncertainties in the estimates may mask the difference between them that is being 
sought. It may be possible to  correlate the two problems by using a single set of 
particle histories. One set of histones is descriptive of the base problem, and the effect 
of the perturbation is calculated at each collision by weight factors that correct for the 
changes in the collision process. Even when a single random-walk process is impractical 
to use for the two problems, the pair of Monte Carlo runs can be correlated by 
providing each new history in the base and perturbed problems with the same initial 
pseudorandom number (as well as the same sequence of subsequent numbers, as far as 
they are needed), taking care that these initial numbers form a pseudorandom 
sequence. Small changes in a system can thus be effectively estimated since many of 
the histories in the two runs will be identical. 
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ACCURACY OF MONTE CARLO RESULTS 

In applying the Monte Carlo method to obtain solutions to practical problems, 
one must have confidence in the numerical values obtained. This usually involves an 
estimate of the statistical errors in these values. Quite general results from probability 
theory are available for this purpose. 

One of these results from the theory of probability is the law of large numbers. 
This result states that the accuracy of an estimate of a quantity tends to improve as 
one averages larger and larger samples of observations of the value of the quantity. To 
apply this to our Monte Carlo calculations, suppose that x1 ,x2, . . . ,x, are sample 
values of the random variable x. If the sample mean 

x, = + L ' x i  (2.66) 
i = l  

is formed, the law of large numbers states that the sample mean, with a probability 
that approaches 1 as n increases to infinity, approximates the population mean (or 
true mean), E(x). 

The law of large numbers can be demonstrated quite simply. To do this, however, 
we need a very general result in probability theory known as Chebyshev's inequality. 
Given a random variable X with arbitrary distribution, but with mean m and standard 
deviation u,  it is easy to  deduce a quantitative result about the closeness of X to  the 
mean m in terms of the standard deviation u,  i.e., 

1 P{lX - ml < ho} 2 1 - -  
h 2  

or 

P{IX - ml > h u }  < - 1 
h2  

(2.67) 

where P(Z1 means the probability of Z. This is Chebyshev's inequality. 
Let us consider a binomial distribution. That is, suppose we consider a random 

variable x that takes the value 1 with probability p and the value 0 with probability 
1 - p = q. This corresponds to an experiment with two possible outcomes, success 
or f d u r e ,  occurring with probabilities p and q,  respectively. Such an experiment is 
called a Bernoulli trial. Let xi represent the value of the random variable x at the ifh 
Bernoulli trial. Then 

(2.68) 

n 
- 

. . . -. . 
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represents the frequency of successes in n trials. It can be shown that 

lim P{IX, - P I  < E }  = I 
n- 

or, alternatively, that 

lim P{IX, - P I  > e} = o 
n + -  

27 

(2.69) 

(2.70) 

This may be proved quite simply by using Chebyshev’s inequality. Since the random 
variable x has mean p and variance p(1 - p), it follows that X, has mean p and 
variance [p( 1 - p)] In. Applying Chebyshev’s inequality with E = hu, we obtain 

P(1 - P) 
n e2 

P{IXn - pl > E }  < 

It follows that 

lim P{IX, - PI  > E }  = o 
n + m  ’ 

(2.71) 

(2.72) 

regardless of the value of p. 
Similarly, if xi is a random sample of a random variable x with finite mean m and 

standard deviation u ,  then the arithmetic mean of the n independent variables 
x1 , . . . ,xn is given by Eq. 2.68. X, has mean m and variance u2/n. Again it follows 
from Chebyshev’s inequality that 

P{IX, - ml > E }  <- U 2  

n €2 

or 

lim P{IX, - ml > E }  = o 
n+== 

Thus the (weak) law of large numbers has been demonstrated for the case of 
identically distributed random variables with mean and variance finite. More general 
results are available in the literature, but this version is usually sufficient for Monte 
Carlo applications. 

In applications, however, we desire more precise information about a sample mean 
obtained by Monte Carlo than that it converges to the true mean. Usually we require a 
sharper estimate of the statistical error in the sample mean than we can obtain from 
applying the Chebyshev inequality. For such information we have recourse to  the 
Central Limit Theorem of the theory of probability. 
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CENTRAL LIMIT T H E O R E M  

S A M  P L I N G MET I< 0 D S 

Given n independent, identically distributed random variables x l ,  x2 ,  . . . , x,, 
with common mean m and variance u2,  let 

x, = --- 1 ,  xi 

i = 1  

Then 

l b  ) = mli dt (2 .73)  0 U m + a-  < X, < m + b- 
n + -  (n)” (n)” 

This can be written 

(2.74) 

In this form, it follows that the distribution of the sum of n independent, identically 
distributed random variables with finite means and variances, normalized to mean 0 
and variance 1, approaches a normal distribution as n takes on large values. 

In a Monte Carlo calculation, quite often the random variable is a function x(t), 
where the choice of the real variable t is governed by the probability density function 
p(t). That is, we seek to obtain the expected value of x, 

m E E(x) = x(t)p(t)dt  L- (2.75) 

Now the variance u2, which appears in the central limit theorem, is given by 

[x(t) - E(x)12 p(t)dt  = E(x2) - E2(x) (2.76) 

The sample mean of n experimental trials, X,, , is given by 

1 ,  1 xn =,E X(ti) = ,- 3 
i = 1  i = l  
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With these definitions the central limit theorem stated above is applicable to  the 
quantities scored in a Monte Carlo calculation. 

In a practical calculation, one should keep in mind not only that the true mean m 
is unknown but also that the variance u2 must be estimated in order to  apply the 
central limit theorem. If we have sampled x, the random variable, n times, we use the 
sample variance 2 ,  

n 

i = l  

(2.77) 

as our approximation to the variance u2.  Thus the estimated variance of the sample 
mean, 0 2 / n ,  is used in the application of the central limit theorem in place of u*/n. In 
many codes n is assumed sufficiently large that u2 is approximated by 
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(2.78) 
i = l  

The sample mean Xn is our Monte Carlo estimate of m. 
We have stated here the form of the central limit theorem applicable to 

independent, identically distributed random variables with finite means and variances 
because this version of the theorem is sufficient for our needs. Another useful version 
of this important theorem applies to  independent random variables that are not 
identically distributed. The interested reader should consult the l i t e r a t ~ r e * ~ * ~ O  for a 
broader coverage of this theorem, as well as the other topics mentioned in this section. 
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MATHEMATICAL PRESCRIPTIONS FOR 3 SIMULATING PARTICLE TRANSPORT 

INTRODUCTION 

The Monte Carlo solution of the Boltzmann transport equation differs considerably 
from other standard numerical techniques. There is even a difference in the definition 
of what constitutes a solution. A numerical solution of the transport equation usually 
provides a rather complete description of the flux in all of phase space. A Monte Carlo 
solution does not include such fine detail but instead provides information about 
certain specified quantities of interest, usually integral quantities, such as reaction 
rates in portions of phase space. It will be understood that the word “solution” is to 
be interpreted in this context. 

A unique feature in solving transport problems by Monte Carlo is that individual 
particle histories are simulated. The modeling of the physical processes may be 
accomplished without even referring to  the transport equation. This is conceptually 
simple for a Markov process since the simulation at any point in the particle history 
does not depend on how the particle happened to  reach that point. 

The treatment of each physical process is actually a distinct advantage of Monte 
Carlo since the modeling tends to  be conceptually simpler than numerical methods. 
However, this modeling of the physical processes is often inadequate by itself. Some 
reasons for this inadequacy are: (1) the physical (analog) simulation may require an 
excessive amount of computation time, ( 2 )  special scoring techniques may be required 
which are difficult to derive from a purely physical viewpoint, and (3) questions may 

32 
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arise regarding a possible bias in schemes that differ from an analog scheme. Such 
considerations as these indicate the need for a satisfactory mathematical description of 
the Monte Carlo method. 

The common description of particle transport is formulated in terms of the 
Boltzmann transport equation. The integral form of this equation provides a useful 
beginning point for establishing a mathematically sound Monte Carlo simulation. The 
integro-differential form of the transport equation is also frequently referred to in the 
literature; it has been particularly useful as a starting point for constructing a sampling 
scheme to  solve the equation that is adjoint to  the transport equation. 

I t  is interesting to note that, while the physical modeling of the Markov process is 
conceptually simple, a more rigorous mathematical treatment of the application of the 
Monte Carlo method to  solve particle-transport problems is not trivial. This is quite 
aptly demonstrated in the first few chapters of the book by Spanier and Gelbard.' 

In this review a complete mathematical description of the Monte Carlo method 
will not be attempted; instead, some insights will be given into various ways of looking 
at a Monte Carlo simulation of particle transport. Specifically, the integral form of the 
transport equation will be used to gain some understanding of the sampling process. 
The integro-differential form of the transport equation will be used to  obtain 
additional perspectives. Finally, the physical viewpoint of a Monte Carlo simulation of 
the Markov process is discussed. 

I N T E G R A L - T R A N S P O R T - E Q U A T I O N  APPROACH 

The integral form of the transport equation as a starting point for obtaining a 
mathematical description of a Monte Carlo simulation has been examined in a number 
of places in the literature. The review article of Goertzel and Kales,* the journal article 
by Coveyou, Cain, and Y o ~ t , ~  a report by Spanier," and the book by Spanier and 
Gelbard' provide useful references on the subject for the interested reader. A brief 
discussion is presented here. 

The integral form of the transport equation is 

F(R) = I K(R;R') F(R') dR' + Sf(R) (3.1) 

where R denotes the kinetic energy, direction of flight, and spatial coordinates of the 
particle; F(R) is the collision density: SdR) is the first-flight collision density due to  
extraneous sources; and K(R;R') is the next-flight collision density at R due to  a 
collision occurring at R'. Time-dependent problems are not being considered here, 
although time may be treated by using the appropriate time-dependent kernel. The 
kernel, K(R;R'), is assumed to  be nonnegative and of such a nature that a solution for 
F(R) exists. For critical assemblies this usually implies that SAR) is the source from 
one generation of fission neutrons and K(R;R') is the kernel obtained by treating 

, \  
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fission as a terminal event so that F(R) is the collision density for one fission-to-fission 
generation. 

The unnormalized kernel K(R;R’) may be conveniently separated into the product 
of a noncapture probability, a normalization factor to  account for such multiplying 
events as (n,2n) inelastic scattering, and a normalized kernel. Thus the kernel K(R;R’) 
is expressed as 

K(R;R‘) = [ I  - a(R’)] v(R’)p(R;R’) (3 4 

where a(R‘) is the capture probability at the collision point R’. The normalization 
factor v(R’) and the normalized kernel P(R;R’) are defined in terms of the complete 
kernel as 

and 

K(R; R’) 
~ ( R ; R ’ )  = 

j K(R”;R’) dR” 
(3.4) 

The reason for separating K(R;R‘) into the product form of Eq. 3.2 will become 
apparent later. 

We may express the collision density as a summation, each term consisting of a 
multidimensional integral that suggests a random-walk scheme for its evaluation. This 
multicollision expansion may be obtained by substituting for F(R’) in Eq. 3.1 the 
equivalent expression 

F(R‘) = .I” K(R’;R”) F(R”) dR” + Sf(R’) (3 5 )  

and repeating this procedure for the resulting F in each subsequent integrand. The 
result is that F(R) may be expressed as 

m o r -  

where the first term of the summation (n = 0) is understood to  be SLR). 
The purpose of the Monte Carlo calculation is to  compute quantities that depend 

functionally, usually linearly, on the collision density. We specify such a functional to  
be 

J = IF(R)h(R)dR (3.7) 

~~ . ...~ _ ~ _  . .. . . .  . . . .  . .. ” . .  . _ _  ” . - .  . . . .  ..... 
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where h(R) is the contribution that a collision at R makes to the functional of interest. 
The multicollision expansion of Eq. 3.6 may be used to express J as 

where K has been separated into the product form of Eq. 3.2 and W(R, , . . . , R,) is 
defined as 

The expression for J in Eq. 3.8 may be used to construct a Monte Carlo sampling. 
When you sample with the functions SdR,) for the initial coordinates of the particle 
history,* C Y ( R ~ - ~ )  for termination at the itlz collision, and /3(Ri;Ri-,) for the next 
collision point given that the chain continues, the quantity 

{ Sf(R0) [ 1  - Q(R,)1 P(R, ; R,) . ’ . [1 - 4Rn-1)1  

is the probability that the initial coordinates for the first collision are sampled within 
dR, about Ro, the subsequent collisions of the particle fall withm the phase space 
volume dR, . . . dR, about R, ,  . . . ,Rn, and the chain terminates at the (n + 1)st 
collision. The factor W(R,, . . . ,Rn) in Eq. 3.9 is the score for such a particle in the 
Monte Carlo calculation. The expected value of the score is simply the product of 
W(R,, . . . ,Rn) with the probability chain of Eq. 3.10 integrated over phase space and 
summed over n. This is equivalent to the right-hand side of Eq. 3.8; so the expected 
value of W is J ,  

E(W) = J (3.1 1) 

Thus, sampling with the density functions S,, a, and f l  and scoring with the W defined 
by Eq. 3.9 is a Monte Carlo scheme that yields an unbiased estimate of J .  

This sampling scheme has a useful physical interpretation for many problems. For 
example, if the functional of interest is the capture rate in some region, then h(R) is 

*A normalized Sf is assumed. 
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the ratio of the capture to  the total macroscopic cross section; so h(R) = 4 R )  in that 
region. Then, for materials in which all collisions are nonmultiplying [q(R) = 11, the 
sampling scheme would simulate the physical process, and the score of Eq. 3.9 at 
each terminal capture collision within the region of interest is unity. 

There is one flaw in this derivation of the sampling scheme. The possibility exists 
that the capture cross section may be exactly zero in some portion of phase space 
which does contribute to  the functional. The last-event estimator will miss such 
contributions, although this can easily be corrected by using a fictitious, nonzero 
capture cross section and adjusting the particle weight at each collision accordingly. 
We also expect a possible reduction in statistical errors with an estimator that scores at 
each collision rather than only at the termination of the chain. It is easy to  show that 
an appropriate unbiased collision estimator for a particle that suffers termination at 
the (n+ 1)st collision is given by 

A collision estimator usually, but not always, yields a lower variance than the 
last-event estimator. 

The last-event estimator is useful for obtaining insights'into methods of reducing 
variances in Monte Carlo calculations. In fact, it is theoretically possible to  define a 
sampling scheme that uses a last-event estimator and has a variance of zero, i.e., the 
estimate obtained with each individual source particle sample is the exact answer J.  We 
use the last-event estimator t o  show how such a sampling scheme may be derived and 
also to  illustrate the construction of altered sampling schemes that are unbiased. 

An altered sampling scheme is constructed by replacing the density functions 
S,, a, and 0, which will & r e r r e d  t z a s  the analog density functions, with another 
set of density functions, S,, a, and p. This alternate set of density functions is 
introduced into Eq. 3.8 in such a manner as t o  obtain the same value for the 
functional J. This criterion is satisfied by 

where 

~ - _  . . . . . .. .. . .. . . .. . . .. . .. . . -. - - . . . .  . ~. / 
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Equation 3.13 has the same form as Eq. 3.8; so a IvJonte Carlo scheme may be 
constructed by using the altered density functions S&Ro) to sample the initial 
coordinates of the particle history, q R i -  to sample termination at the ith collision, 
andjr(Ri;Ri- ,) to sample for the next collision point given that the chain continues. 

Certain restrictions are placed on the altered density functions to ensure that the 
altered Monte Carlo sampling scheme will yield the correct expected contribution to 
the functional J from all portions of phase space. In general, an altered density 
function is required to  satisfy the condition that it be nonzero at all points in phase 
space when the corresponding analog density function is nonzero. It is interesting to 
note the additional criterion that the altered density function be zero at all points in 
phase space where the analog density function is zero is not necessary. This criterion is 
usually included, however, since any chain that would lead to  such a phase-space point 
would result in zero weight and hence generally degrade statistics, even though the 
expected value of the sampling scheme is still J. Nevertheless, it is sometimes 
convenient t o  use altered density functions that do not always go to zero when the 
analog density functions do. 

The significance of evaluating the functional J with the altered Monte Carlo 
scheme is that, whereas the mean is unchanged, 

E@) = E(W) = J (3.15) 

the second moments are not generally equal, i.e., 

E(W2) # E ( W 2 )  (3.16) 

The sample variance can be decreased by finding an altered sampling scheme with 

E ( G 2 )  < E ( W 2 )  (3.17) 

At this point we digress to  show that there is a sampling scheme that yields zero 
variance, and hence each sample history predicts the exact answer J. The existence of 
such a sampling scheme is easily demonstrated by referring to the equation that is 
adjoint to the integral transport equation, 

F+(R) = .f K(R'; R) F+(R') dR' t h(R) (3.18) 

The altered density functions for the zero-variance sampling scheme are defined in 
terms of F+(R) as 

(3.19) 

37 



38 MATHEMATICAL PRESCRIPTIONS 

(3.20) 

(3.21) 

These density functions may be substituted in Eq. 3.14 to  obtain the scoring function 
for an altered scheme: 

The definition of K in Eq. 3.2 may be used in Eq. 3.18 to obtain 

q(Ri) [ l  - a(Ri)] IP (R;Ri )  F+(R)dR = F+(Ri) - h(RJ (3.23) 
N 

Therefore the expression for W of Eq. 3.22 simplifies to 
N 

W(Ro, . . . , R,) = I Sf(R) F+(R) dR (3.24) 

i.e., a constant score independent of the history of the sample! That this constant 
score is indeed J may be shown by multiplying Eq. 3.1 by F+(R) dR, multiplying Eq. 
3.18 by F(R) dR, extracting the difference of the resulting two equations, and 
integrating the final equation over all of phase space. 

The density functions given in Eqs. 3.19 to  3.21 can be used for a zero-variance 
Monte Carlo sampling scheme. However, this theoretical zero-variance sampling 
scheme is not directly applicable, since the construction of these density functions 
requires the solution of the adjoint equation for F+(R). In spite of the fact that the 
theoretical zero-variance scheme is not used in practical problems, it does provide a 
useful guide for constructing schemes that are in some sense an approximation to  the 
theoretical scheme; in addition, it is encouraging to know that there is a theoretical 
sampling scheme with zero variance. It should be emphasized, however, that an 
approximate scheme does not imply approximations in computing the functional J. As 
long as the weight factor of Eq. 3.14 is used for scoring and the altered density 
functions satisfy the necessary and sufficient condition, the sampling scheme is still 
unbiased. 

n 
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A word of caution is in order now. Although the previous derivation may seem to 
imply that an analog scheme is easy to improve on, this is often not the case. There is 
the very real danger that an altered scheme will actually increase the variance 
(sometimes disastrously). As a rule of thumb, try to  avoid sampling schemes that allow 
the particle weight t o  increase greatly, particularly without an upper bound. In many 
cases this difficulty can be averted by using methods that deviate less from analog 
simulation. 

Coveyou, Cain, and Yost3 have also examined minimum variance schemes for 
collision estimators; i.e., each collision may contribute to the functional. They found 
that the use of the value function as an importance function resulted in an upper limit 
in the sample variance so that 

Variance 

Mean* 
< I  -- (3.25) 

Here the value function is the expected value of the contribution, present and future, 
of a particle of unit weight. 

In this discussion the integral transport equation was used to  construct a Monte 
Carlo simulation with the collision density F(R) defined as the density of particles 
entering a collision. The results obtained here by beginning with the transport equation 
for the density of particles entering a collision are correspondingly obtained by 
beginning with the transport equation for the density of particles leaving a collision. 
Pertinent relations between the two approaches are given by Spanier and Gelbard' and 
by I r ~ i n g . ~  

The functional J can alternatively be computed by sampling from an equation 
that is adjoint to the transport equation. It can be shown that there is an altered 
scheme for sampling from the adjoint equation that also has zero variance. In this 
scheme the collision density acts as the importance function, with the result that there 
is symmetry between the construction of the forward and adjoint zero-variance 
simulations. This will be discussed further in Chap. 4 when the simulation of the 
adjoint equation is considered. 

We have indicated how the integral transport equation can be used as a starting 
point t o  provide a sound mathematical basis for a Monte Carlo sampling. By using this 
approach, we were led rather naturally to an unbiased method for correcting particle 
weights when using an altered sampling scheme. In general, the particle weight of the 
analog scheme is multiplied by a correction factor at each stage of the sampling. This 
correction factor is the ratio, of the analog density function t o  the corresponding 
density function in the altered scheme, where these density functions are evaluated at 
the phase-space point that is selected with the density function of the altered scheme. 

The integral transport-equation viewpoint suffers from certain limitations. The 
multicollision expansion is awkward to  work with, and, in addition, the kernel in the 
integral transport equation is complicated enough so that it is not easily interpretable. 
For these reasons, it is often preferable to  work with the integro-differential form, 
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which we will now consider. Both approaches are equivalent in that one can find 
transformations to  go back and forth between the integral transport equation and the 
integro-differential transport equation. However, one of the equations may provide a 
decided advantage as a beginning point for a specific problem. 

I N T E G R O - D I F F E R E N T I A L  APPROACH 

The interpretation of the Monte Carlo simulation of particle transport as a 
solution of a inultidimensional integral is not as straightforward t o  obtain from the 
integro-differential form of the transport equation. This equation can be converted to 
an integral postcollision transport equation, and the techniques discussed in the 
previous section can be applied to understand the Monte Carlo simulation. The 
mathematics of this transforination will not be discussed, but the interested reader 
inay consult a report by Irving.5 For the purpose here, a few useful insights that are 
obtained by beginning with the transport equation in integro-differential form will be 
mentioned. 

An important application is in the general area of biasing schemes, which typically 
evolve in the following manner. The particle-transport problem of interest is first 
stated. It is assumed that an analog or some similar simulation could be done in 
principle, but the calculation for the particular problem under consideration requires 
an excessive amount of computation time to  obtain acceptable statistical-error limits. 
Therefore some transformation of the integro-differential transport equation is made 
by using information about the expected solution. A well-known example of this is the 
exponential transformation.6 After the transformation the new equation is examined 
in regard t o  its similarity t o  the original transport equation. Assuming that it has the 
identical form of the original equation (i.e., leakage term, attenuation tern], and source 
term), the prescription for sampling this equation is known. The mean values of 
functionals do  not depend on the particular transformation, but variances do. Hence it 
is theoretically possible to  reduce the variance with the proper change of variables. Of 
course, there is also the very real possibility of selecting a transformation that actually 
increases the variance. 

The integro-differential form of the transport equation is useful as a starting point 
for developing methods to sample from equations that are adjoint to  transport 
e q u a t i o n ~ . ~ j ~ - ~  This form of the transport equation is used with the observation that 
the equation that is its adjoint is not radically different. In fact, the adjoint equation 
may be changed to  an equation having a form identical to  an integro-differential 
transport equation with a transformation that simply reflects the direction-of-flight 
coordinates (and reverses the time coordinate for time-dependent problems). The 
resulting equation not only has the same form but also satisfies the same boundary 
conditions as the original transport equation. It is therefore straightforward to  sample 
from this transformed adjoint equation. The important consideration is to  sample in 
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such a way that variances are within acceptable limits for a fixed amount of 
computational effort. 

The integro-differential transport equation also is a convenient starting point for 
deriving various methods for scoring quantities of interest and for providing relations 
between estimators. 

The integral transport equation and the integro-differential transport equation 
provide useful tools for improving and understanding Monte Carlo calculations of 
particle transport. We now turn to a viewpoint that is in some respects less 
niathematical in nature. 

PHYSICAL APPROACH 

Particle transport can be simulated without even referring to the transport 
equation. This should not be too surprising, since the particle transport itself is a 
stochastic process and a direct simulation should also be stochastic in nature. In 
c o n t r a s t ,  t h e  t r a n s p o r t  equation represents an ensemble average of the 
more-complicated forward Chapman-Kolmogorov equation. 

One of the basic advantages of the Monte Carlo method is that the analog Monte 
Carlo calculation can be carried out by simulating the physics at each point in the 
history of a particle. This enables us to concentrate the computational effort in a small 
portion of phase space near the current particle of interest. All that is required for the 
simulation of the history is a probabilistic description of what may happen to  the 
particle at each point in its history. This generally includes a description of the 
geometrical boundaries of regions, a description of the material composition within 
each region, and an adequate description of the cross sections for each isotope. These 
cross sections also include energy- and angle-transfer frequency functions for all 
relevant events. 

The construction of a Monte Carlo calculation by simulating the Markov process is 
demonstrated in a book by Cashwell and Everett.’OMany of the practical problems 
associated with Monte Carlo calculations of neutron and photon transport are 
discussed in this book, but the transport equation is never displayed. 
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I NTRO D UCTlO N 

In this chapter we consider transport processes under the assumption that (1) particles 
travel in straight lines without losing energy between collision points, (2) particles 
suffer a collision per unit distance with probability C,, (3) the transition time between 
entering and leaving a collision can be neglected, and (4) the particle transport being 
simulated is linear. We assume that satisfactory density functions for modeling the 
physical processes are available. Special considerations applicable to neutrons and 
photons are discussed in Chaps. 5 and 6, respectively. 

GEOMETRICAL CONSIDERATIONS 

There are advantages to describing particle flight paths by Cartesian coordinates 
even though the problems of interest may have special symmetries, for example, 
spherically symmetric systems. A particle’s direction of flight in Cartesian coordinates 
is uniquely specified by the direction cosines (u,v,w) with respect to  the x, y ,  and z 
axes, respectively. The new position of the particle after traveling a distance h is 
simply 

(4.1) 

(4.2) 

(4.3) 

XI = x + u x  

y’ = y + v h  

z’ = 2 + w h  
where (x,y,z) was the old position. 
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The direction cosines do not change along flight paths, which is a distinct ad- 
vantage of Cartesian coordinates. However, the direction cosines do  change a t  scatter- 
ing events. The scattering angle with respect to  the incident direction of flight is 
sampled from an appropriate distribution, which will be discussed later. For isotropic 
media the final direction on the cone determined by the scattering angle is selected 
uniformly. A routine for finding the new (u‘,v’,w’), given the precollision (u,v,w), 
is shown in Fig. 4.1. Here plab is the cosine of the scattering angle in the laboratory 
system found before entering this routine. The mathematical relations used in Fig. 
4.1 to compute the new (u’,v’,w’) are derived in Ref. 1. We also note that the cosine 
and sine of an angle uniformly distributed from 0 to 271 are required for the new 
(u’,v’,w’). These functions were obtained by the rejection method described in 
Chap. 2. 

The Monte Carlo computer program is usually designed to  solve transport prob- 
lems consisting of contiguous regions. The material properties within each region are 
uniform in order to  make data storage tractable. In the usual application the bound- 
aries of a region are specified by one or more quadratic surfaces of the general form 

Ax2 + By2 + Cz2 + Dxy t Eyz + Fzx + Gx + Hy + Jz + K = 0 (4.4) 

I 1 

I 

= up,,b + 2 { uw cos 6 - v sin 6 
6 

I w’ = wpbb - C5C6 cos 6 I I 

u’ = c, cos 6 

w’ = phb wllwl 

v’ = C5 sin 6 

Fig. 4.1 Routine to compute the direction of flight after a scattering collision. 

~ ~ . . .  . . ... . . .  . . .  _. 
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where A, B, . . . , K are constants. For a simple surface, such as a plane, sphere, or 
cylinder, several coefficients are zero:, and the computer program is typically writ ten 
to  treat these as special cases of the more general equation in order to save computa- 
tion time. 

A region can be specified by its bounding surfaces and by the sense of the region 
with respect to each bounding surface. The sense of the region is used to determine on 
which side of a surface the region lies. The usual convention is that a positive sense 
means that any (x,y,z) point within the region results in a positive value for the left- 
hand side of Eq. (4.4). 

Since it is beyond the scope of this review to  examine geometry questions in de- 
tail, the interested reader is referred to  Refs. 2 to  4 for an introduction to  the subject. 
The so-called combinatorial geometry is discussed in Ref. 3. This technique is in- 
tended to simplify the problem specification by allowing the user to model complicated 
problems from intersections and unions of such simple shapes as spheres, parallelepi- 
peds, cylinders, and truncated cones. 

TIME DEPENDENCE 

Time dependence is included in hlonte Carlo calculations with a trivial amount of 
additional effort, which is in contrast to  discrete-ordinates calculations. Time de- 
pendence is accounted for simply by advancing the time of the particle after each 
flight and scoring in the appropriate time bins for the functionals of interest. 

SAMPLING THE SOURCE 

An extraneous source distribution is specified by an unnormalized density func- 
tion S(r,E,S2,t). The source is relatively easy to bias in order to improve the efficiency 
of the Monte Carlo calculation, and even a poor guess regarding an importance func- 
tion can reduce statistical errors. Furthermore, biasing the source distribution is not 
potentially as dangerous as many other biasing techniques since only the initial particle 
weight is affected. For generality it will be assumed that a guess regarding the im- 
portance function is I(r, E , a ,  t), although typically an importance function for source 
biasing will be relatively simple and may, for example, only depend upon energy. 

The source coordinates are selected with the density function 

and the initial weight assigned to the source particle is 
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where the coordinates ( r ,E ,n , t )  of the particle were selected from g. The function g 
can be conveniently split into the product of conditional density functions for each 
variable to simplify the sampling. Examples of sampling from some common source 
functions are given by Cashwell and Everett.' 

ATTENUATION AND LEAKAGE 

The probability that a particle beginning a flight path at s = 0 will suffer its next 
collision in some distance As about s is given by 

p(s) A s  = C,(s) exp (-J: C, ds') A s  (4.7) 

The corresponding cumulative distribution function is 

P(s) = I - exp (-.I: C, ds') (4.8) 

so that 

Jo' C, ds' = -In [ l  - P(s)] (4.9) 

For sampling purposes the cumulative distribution function P(s) is uniformly dis- 
tributed on the unit interval, and hence [ 1 - P(s)] must also be uniformly distributed 
on the unit interval; so 

J s  C, ds' = -1nt (4.10) 
0 

This equation may be used in the random walk to sample for the distance s to a colli- 
sion point. For the typical case when the total cross section is sectionally constant 
across regions, the Markov nature of the particle transport can be used to simplify the 
sampling. Then, if a random number t is greater than exp (-Ct,sl) ,  where s1  is the 
distance to  the first region boundary, the distance to the collision point is determined 
as 

(4.1 1) 
- In  t s = -  
C, 1 

If the random number is less than exp (-Ctls , ) ,  the particle reaches the region 
boundary without suffering a collision. In this case the particle coordinates are ad- 
vanced to the boundary, and the procedure is repeated for the next region. 

In some situations E, is not constant across regions. The inverse solution of Eq. 
(4.10) may then require excessive computational effort since it must be evaluated for 
each flight path. Alternate sampling schemes are described in Ref. 5 for this special 
case. 
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With some importance sampling methods, the selection of the distance to a colli- 
sion point is itself altered; so the total cross section appearing in the previous equa- 
tions is actually a fictitious total cross section. The particle weight at the end of the 
flight path is adjusted to  obtain unbiased results. If ct(s) is the fictitious total cross 
section used to  sample the distance to a collision point, unbiased answers are obtained 
by multiplying the particle weight, W, by the ratio of the analog to the fictitious den- 
sity functions evaluated a t  the collision point s: 

W C,(s) exp (-Jos C, ds') 

[%,(s) exp (-.I: 5, ds')] 
w'  = - (4.1 2) 

Care must be exercised in choosing a proper c,(s) to prevent undesirable particle- 
weight fluctuations from the frequent adjustments of the particle weight. The well- 
known exponential transform has this stability property. 

It is often necessary to show that a proposed sampling scheme or estimator is cor- 
rect in the sense that it leads to unbiased answers. We will illustrate a verification for 
flight paths sampled with the fictitious total cross section c,(s). The correctness of 
the sampling scheme or estimator can be shown by focusing on some infinitesimal sec- 
tion of the flight path As' about s' to demonstrate that the correct expected contribu- 
tion within As' is made from the projected flight of the particle beginning at s = 0. 
Let f(s) be the Monte Carlo estimate of the function of interest in As' due to  the se- 
lected collision point s in the random walk. Then the expected value o f f  for a particle 
starting at s = 0 is 

E(f) = .fom p(s) f(s) ds (4.13) 

where p(s) is the density function for selecting the collision point s in the random 
walk. This is illustrated here for two examples. 

We show that the weight-correction factor in Eq. (4.12) yields the correct ex- 
pected number of collisions in As' about s' for the random walk itself. In this case, 
with an initial particle weight of W a t  s = 0, 

p(s) = &(s) exp (-Jos E t  ds") 

f(s) = 0 

(4.14) 

(4.15) (for s not contained in As' about s)) 

and 
W C,(s) exp (-.fos Et ds") 

f(s') = 
\ ,  

[c,(s) exp (-fOs Et ds")] 
(4.16) 

for s contained in As' about s', i.e., the adjusted particle weight a t  the collision point. 
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Then 

E(f) = W C,(s’) exp (-Jos’ C, ds”) As’ (4.1 7) 

is the correct expected weight of collisions. 
The second example is the verification that a proper path-length estimator to use 

with the previous sampling scheme is simply the triple product of the new particle 
weight at  the collision point selected in the random walk, the path length across the 
cell of interest, and the scoring cross section C(s) of interest. An infinitesimal seg- 
ment, As’ about s’, of the projected flight path is assumed to cross the cell of interest. 
The particle weight at the collision point is given by Eq. (4.12). The path-length score 
of the proposed estimator is 

for s > s’. For s < s’ the flight path does not cross the cell: thus 

f(s) = 0 (for s < s‘) (4.19) 

Using the density function for selecting the collision point given by Eq. (4.14). 

W C(s’) C,(s) As’ exp (-J: C, ds”) ds 

&(s) exp (-Ios ct ds”) 
E(f) = 4,- ct (s)  exp (-.los C, ds”) (4.20) 

which simplifies to the correct analytic value 

E(f) = W C(s’) As’exp (-.los’ C, ds”) (4.21) 

The extension of the above analysis to large As’ and to more complicated situa- 
tions is obvious. This type of proof should be used whenever there is doubt about the 
correctness of a proposed sampling scheme. The correct expected value should result 
for a valid scheme. 

SAMPLING T H E  COLLISION E V E N T  

The collision kernel tends to be a complicated and unwieldy function to sample 
directly. Considerable simplification both conceptually and numerically is obtained 
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by expressing the kernel as the sum of contributions from the various events that 
correspond to the physical model of the possible interactions. It is standard practice 
to  express the kernel as a sum of the contributions from each isotope, 

C(E’, 52’; E, R, r)  = C(E’, R’; E, R,r)i  
1 

(4.22) 

where the subscript i denotes the contribution from the ith isotope and the primes 
denote postcollision conditions. The ith isotope is randomly picked to participate in 
the collision with probability Xt(r,E)i/Zt(r,E). The attention in the random walk is 
then focused on the conditional function C(Er,52’;E,R,r), for the irlz isotope selected 
rather than on the entire collision kernel. 

The collision kernel for the ifh isotope is simplified still further by expressing it 
as the sum of contributions from various physical events, such as capture, elastic 
scattering, inelastic scattering, and fission; 

C(E’, 52’; E, R, r)i = C(E’, R’; E, R, r)ik (4.23) 
k 

where k denotes an event. A particular event is then selected to occur in the random 
walk with a frequency proportional to  its cross section a(r,E),k. An exception to this 
procedure for selecting the event is sometimes made for capture. 

Capture can be treated in the analog manner just described, where the history is 
simply terminated after a capture event in the random walk. A more common tech- 
nique in Monte Carlo computer codes is to  reduce the particle weight with the non- 
capture probability [o,(r,E), - U , ~ ( ~ , E ) , ]  /u,(r,E), after a collision with the ith isotope 
and then to sample the type of event from the other possible events with probabilities 
normalized to  exclude capture. The advantage of this technique is that the statistical 
fluctuation due to  the particle termination probability is eliminated; however, the 
disadvantage is that some of the particle weights may eventually become very small 
so that a significant fraction of machine time is wasted on particles with such small 
weights that they do not significantly contribute to  any estimate. It is also possible 
for the Monte Carlo population to  become supercritical when capture is not allowed to  
occur; i.e., increase without limit even though the physical system is subcritical. Be- 
cause of these disadvantages the above treatment is usually augmented with a lower 
weight cutoff. Whenever the particle weight falls below this cutoff, Russian roulette 
is played, and the particle history is either terminated or allowed to continue with a 
larger weight determined such that the expected weight is conserved. 

The conditional kernel C(E’,Q’;E,Q,r),k for the event selected is normalized to 
unity. The particle weight can either be multiplied by the mean number of second- 
aries per collision, or, when the mean number is greater than 1, more than one particle 
can be allowed to  emerge from the collision in the Monte Carlo simulation. It is 
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usually desirable to break the normalized kernel for a particular noncapture event into 
the product of a marginal density function for either the emerging energy or direction 
of flight and a conditional density function for the remaining random variable. The 
marginal density function is used to  select the appropriate random variable, and the 
conditional density function is used to select the remaining random variable. The 
physics of the event usually dictates the order for the random variables. For example, 
elastic scattering is usually treated by selecting the scattering angle, in the center-of- 
mass system, and then the energy is uniquely determined from the scattering angle. In 
contrast to this, there are some events, such as fission, where the scattering angle and 
emerging energy are assumed to be uncorrelated. Then the order of the selection is 
unimportant. Special cases of interest are discussed more fully in the neutron- and 
photon-transport chapters. 

ESTIMATORS 

The majority of the currently used estimators in Monte Carlo codes are of four 
basic types. These are the collision estimator, the last-event estimator, the track-length 
estimator, and the next-event (point-detector) estimator. The use of these four esti- 
mators is briefly discussed here for analog sampling. If importance sampling 
methods are used, these estimators may require alteration to obtain unbiased results. 

The functional of interest for discussion purposes is assumed to  be the number of 
reactions in some portion of phase space denoted by V,. The macroscopic reaction 
cross section is denoted by C. 

The collision estimator for the functional scores W C(r,E)/Ct(r,E) at each colli- 
sion event that occurs within the phase-space volume V,. The last-event estimator 
differs from the collision estimator in that the scoring occurs only when the particle 
history is terminated by capture. The score at each such capture event, which occurs 
in the phase-space volume V,, is W C(r,E)/Cc(r,E). This is an unbiased estimator 
provided the macroscopic capture cross section C,(r,E) does not vanish at any phase- 
space point where C(r,E) is finite. One might expect the collision estimator to yield a 
lower variance than the last-event estimator since a score is made at every collision. 
This is generally verified in practice, although there are converse cases that can occur. 
For example, the theoretical zero-variance scheme, which uses importance sampling 
to obtain the correct answer with each sample, invokes a last-event estimator. 

Both the collision estimator and last-event estimator tend to suffer statistically in 
optically thin regions since few collisions occur there. This statistical problem is 
usually improved with the use of a path-length estimator. The path-length estimator 
scores [W J: C(r,E) ds‘] for each track length in the phase-space volume V,, where s 
is the path length within V, of a particle with weight W. The path-length estimator 
enjoys extensive use since it has excellent properties in optically thin regions and 
tends to perform satisfactorily for optically t h c k  regions as well. Spanier and Gel- 
bard6 show that the track-length estimator is a limiting form of the collision estimator. 
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This is obtained by adding a fictitious “straight-ahead” scattering contribution to the 
usual scattering term and increasing the attenuation term to obtain a balance. 

The variance of the path-length and collision estimators can be computed ana- 
lytically for the simple case of a beam of monoenergetic particles incident normally on 
a slab of material with C, = C,. The resulting expressions for the relative errors (ratio 
of the square root of the variance to  the mean) in the collision probability per 
incident particle for a slab that is x mean free paths thick are 

Relative error of ] = [ e-“ 1% 
collision estimator (1 - e-x) 

-+ 0 a s x + m  (4.24) 

>” ( 1  - 2xe-X - e-*“ I =  ( I  -e-’) 

Relative error of 
path-length estimator 

+ ]  a s x + . o  (4.25) 

The relative errors are shown in Fig. 4.2 as a function of x. The path-length estimator 
is clearly preferable for thin shells, but the collision estimator is better for thick shells 
with the crossover point at x = 1.256. One must remember, however, that this is a 
special case, and the extension of these results to  more complicated situations must be 
made with caution. 

The collision, last-event, and track-length estimators all tend to  suffer from in- 
creasing statistical errors as the volume of the detector region becomes arbitrarily 
small. The next-event (point-detector) estimator is a candidate for such problems. 
This estimator may be understood by beginning with the integral transport equation 

F(R‘). = .f F(R) K(R’; R) d R  t S(R’) (4.26) 

where R’ denotes the detector phase-space point (r’,E‘,Q’). The detector point r’ and 
the collision point r fix the emerging direction of flight necessary to reach the detector 
after the collision; so it is convenient to express K(R’;R) as 
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Fig. 4.2 
frcc paths thick. 

liclativc crrors of path-lcngth estimator and collision estimator tor a .;lab t h a t  is K iiieaii 

where the notation is that used in the section on sampling the collision event. The 
random walk calculates the integral over R by simply scoring the product of the parti- 
cle weight at each collision with the kernel K of Eq. (4.27). Typically the detector 
score of interest is 

integrated over 477 and some energy bin; so the delta function in Eq. (4.27) and a possi- 
ble delta function in the kernel C are removed. Here Z is the cross section of the reac- 
tion being considered at the point detector (Z is set to unity for a flux calculation). 

The integral of the kernel K over an energy bin is often impractical to evaluate at 
each collision in the Monte Carlo simulation. Hence the isotope i and event k are 

. . - . -. . . . .- .- .- .. .- .- - ..... ~. - .... -. ._  ... - . ... . . 
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usually sample1 in the random wa ,efore scoring the point detector. If elastic scat- 
tering with a target nucleus a t  rest is the event selected, the required angle to  scatter 
to  the detector uniquely determines the final energy; so the score for this event is 

(4.28) 

whenever the final energy lies within the energy bin of interest. Here v l ab  is the co- 
sine of the scattering angle in the laboratory system, 

plab = R * R 1  (4.29) 

and h(plab;E)lab is the density function for the particle to  scatter elastically through 
'lab with R' determined by the detector position. If h is given in the center-of-mass 
system, the appropriate transformation must be made. The pertinent relation for the 
elastic scattering of a neutron is 

r 

where 

(4.30) 

(4.31) 

The final energy and scattering angle have a one-to-one positive correlation for 
elastic scattering, i.e., knowledge of one uniquely determines the other. In contrast to  
this, some events are modeled so that the emerging energy and the scattering angle in 
the laboratory system are uncorrelated. The appropriate point-detector score for such 
an event is 

whenever the final energy lies within the energy bin of interest. Here h is the density 
function in the laboratory system for scattering through plab, v is the number of sec- 
ondaries for the event, and the final energy E' is sampled from the density function 
for the kinetic energy of a particle emerging from the event. 
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A variety of physical models are used which lie between the completely corre- 
lated elastic-scattering case and the uncorrelated event just considered. We will not 
discuss any of these additional possibilities here, although the appropriate point- 
detector score for the inelastic scattering of a neutron is derived in the section on in- 
elastic scattering in Chap. 5, and the point-detector score for the thermal scattering 
of neutrons using a free gas model is given in the section on thermal scattering in 
Chap. 5. It should also be noted that the first-flight contribution from the extraneous 
source to  the point detector must be scored for each source particle. This first-flight 
contribution can often be computed analytically. For more complex sources the 
Monte Carlo method can be used to compute the necessary integrals. 

The next-event estimator suffers from two very severe limitations that become 
apparent in practical applications. This estimator tends to require a great deal of com- 
putational effort since the attenuation distance from each collision to  the point de- 
teLtor is required. This becomes a particularly important consideration for geo- 
metrically complicated systems or when many point detectors are dictated by a prob- 
lem. The second limitation of the point detector involves variances. When the detector 
point lies within a scattering medium, the theoretical second moment of the estimate 
may be infinite even though the first moment is finite. This is due to the 1 /lr'-rJ2 fac- 
tor in the scoring equation. 

Kalos7 proposed a once-more-collided estimator to remedy this infinite variance 
problem. The contribution at the detector point r' is computed for a collision at r by 
sampling an intermediate collision point. This method yields a finite second moment 
with a properly chosen density function for selecting the intermediate collision point. 
However, it does suffer from the disadvantage that the selection of the intermediate 
collision point requires additional computer programming effort and increases the 
running time of the problem. Steinberg and KalosX later proposed a method to bias 
the selection of the collision points in the random walk toward the point detector. 
This also results in a finite second moment, but the particle weights must be corrected 
to  produce unbiased estimates, and it is possible for this resulting weight fluctuation 
to  adversely affect estimates in other portions of phase space. 

These two methods of obtaining a finite variance are unbiased. Other methods 
have been proposed which involve some approximation but, nevertheless, are useful in 
problems of practical interest. One useful technique is to  draw an imaginary sphere of 
radius R around the detector point. Any collisions that occur outside this sphere are 
scored with the usual point-detector equations developed previously. For collisions 
within the sphere, the factor 

exp (-J:'-''' C, ds') 

is replaced by its volume average, assuming uniform collisions within the sphere, as 

(4.33) 

_. . . . . . .. . . . . . . . . .. -. .-~ ~. _._.. . . .- - - -  
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The variance in the estimator tends to decrease as the imaginary sphere radius R is in- 
creased. On the other hand, the approximation involved by volume averaging tends to 
be worse for large R. These considerations generally mean that R is chosen to be 
some fraction of a mean free path, perhaps in the range 1 /8 to 1 /2 of a mean free path. 

Numerous journal articles (in addition to those just mentioned on the point de- 
tector) are devoted almost exclusively to estimators. MacMillan9 considers linear 
combinations of various estimators to minimize the variance. Gelbard, Ondis, and 
Spanier' and Spanierl ' develop the mathematics for constructing a variety of esti- 
mators and discuss some pertinent examples. 

SIMULATION O F  ADJOINT EQUATIONS 

There would be little practical value in simulating equations that are adjoint to 
transport equations if all particle-transport problems could be solved by a simple 
analog calculation. The literature at tests to the fact that analog simulations require 
excessive computational effort for some problems, thus the interest in adjoint calcula- 
tions both to bias forward simulations as well as to provide an entirely alternate 
method of solution. 

A calculation using an adjoint equation is particularly attractive for two general 
classes of problems where the solution of the transport equation is difficult if not im- 
possible to obtain with a reasonable amount of computational effort. The first class 
of problems has the common feature that the phase-space volume of interest for 
computing some response is small enough that an analog Monte Carlo calculation is 
inefficient since the particles will seldom pass through the volume of interest. Al- 
though the analog Monte Carlo simulation can be improved by biasing techniques or 
by using a point-detector estimator, there are still many problems that are not amen- 
able to such a direct attack. The second class of problems has the common feature 
that some response is required as a function of various source distributions. This re- 
quires a separate simulation of the transport equation for each source distribution 
and hence requires considerable computational effort. We will show that a simulation 
of an adjoint equation has attractive advantages for both these classes of problems. 
However, before we proceed, we should state that an adjoint-equation approach is not 
a panacea for all problems that are difficult to solve in a direct way. For example, 
deep-penetration problems are difficult to solve with acceptable amounts of computa- 
tional time, but these problems also tend to be difficult to solve with an adjoint simu- 
lation since the particle histories must still be tracked through many mean free paths. 
The difference is that in the simulation of the transport equation particle histories are 
tracked from the source to the detector, whereas in a simulation of an adjoint equa- 
tion, particle histories are tracked from the detector back to the source. 

Various methods for simulating adjoint equations are reported in the litera- 
ture.l l-' Some investigators consider the simulation of the adjoint to the integral 
transport equation, and others consider the simulation of the adjoint to the integro- 
differential transport equation. We will consider the integro-differential viewpoint 



56 

here for the specific cas 
gamma rays. 
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of neutrons. There are no important differences for 

The relevant equations can be derived by beginning with the Boltzmann integro- 
differential neutron transport equation for a point source of monoenergetic and 
monodirectional neutrons, 

-Sa ,, SE,, G(r, E”, 52”, t ;  R’) Ct(r, E”)  C(E, a; E”, n”,r) dE” d a ”  

= F (r - r‘) F (E - E’) 6 (a - R’) 6 (t - t’) (4.34) 

where L is an operator defined by Eq. (4.34). The quantity R is a shorthand notation 
denoting the neutron space position r, its kinetic energy E, and direction of motion 52 
at time t, and C(E,C2;Er’,52’’,r) is the collision kernel defined previously. The total 
cross section C, is assumed to be independent of time and direction and thus the nota- 
tions C,(R) and C,(r,E) are used interchangeably. The coordinates to the left of the 
semicolon in the Green’s function G of Eq. (4.34) represent field (i.e., final state) 
points,and those to the right of the semicolon represent source points. Hence G(R;R‘) 
is the neutron flux at R due to a unit point source at R’. 

The neutron flux @(R) can be expressed in terms of the solution of Eq. (4.34) for 
the Green’s function as 

(4.35) @(R) = I G(R; R’) S(R’) dR’ 

where S(R’) is the extraneous source density. However, rather than using the Monte 
Carlo method to compute a point value of the neutron flux, it is more often used to 
estimate a functional J (or a number of such functionals) defined as 

J = S@(R) C(R) dR 

= G(R; R‘) S(R’) Z(R) dR’ dR (4.36) 

Here C(R) is an arbitrary cross section, and the last relation of Eq. (4.36) was obtained 
from the expression for the neutron flux given by Eq. (4.35). The functional J is 
computed with Monte Carlo by selecting the ith source neutron coordinates Ri with the 
density function S(R’) and following the history of the neutron (and progeny) to  
compute the estimate 

Ji = S G(R; R,) C(R) dR W(RJ (4.37) 

where W(Ri) is the initial weight assigned to the neutron given by J S(R‘) dR‘. The 
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functional J is estimated by sampling from the transport equation, but we will show 
that a corresponding estimate of J can be obtained by sampling from the adjoint 
equation. 

The equation for the adjoint Green’s function G+ is derived by finding an operator 
L+ that satisfies the equation 

J [L+G+(R; R”)] C(R; R‘) dR = G+(R; R ” )  [LC(R; R‘)] dR (4.38) 

The boundary conditions on G+(R;R”) are chosen to  be consistent with those on 
G(R;R‘) and are such that the bilinear concomitant is zero, i.e., G is equal to  zero for 
direction-of-flight vectors into the system and G+ is equal to  zero for direction-of- 
flight vectors out of the system. The definition of the operator L+ in Eq. (4.38) with 
the associated boundary conditions is used to  obtain the adjoint equation for the ad- 
joint Green’s function as 

G+(r, E’, i2’, t ;  R” )  Ct(r, E’) 

dE’dS2’ 
Ct(r, E‘) 

X 
L 

= 6 ( r  - r ” )  6(E - E’’) F (R - a”) 6 (t - t”)  (4.39) 

A reciprocity relation between G’ and C can be derived by multiplying Eq. (4.39) 
by G(R;R‘) dR, multiplying Eq. (4.34) by G+(R;R”) dR, extracting the difference of 
the resulting two equations, and integrating this difference over all phase space. The 
subsequent change of variables by replacing R” by R yields the familiar form of the 
reciprocity theorem, 

G+(R‘; R) = G(R;R’) (4.40) 

The reciprocity relation of Eq. (4.40) can be inserted into Eq. (4.36) to obtain an 
alternate expression for the functional J as 

J = JS G+(R’; R) S(R’) C(R) dR’ dR (4.41) 

The functional J of Eq. (4.41) is computed with Monte Carlo by selecting the ith 
source pseudoneutron* coordinates R i  with the density function 

*Pseudoneutrons are defined here as those “particles” whose transport is described by the ad- 
joint equation. 
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(4.42) 

and then following the history of pseudoncutrons (and progeny) to compute the 
estimate 

J ,  = .f C+(R'; Ri) S(R') dR' W(Ri) (4.43) 

where W(R,) is the initial weight assigned to  the pseudoneutron as given by J C(R') dR'. 
The roles of the neutron source S and the scoring cross section C have been inter- 
changed in this estimation of J by sampling from the adjoint equation. Thus C now 
assumes the role of a source, and S assumes the role of a scoring cross section. This 
fact has two well-known implications about the computational effort required for a 
problem: 

1 .  If a response of some part of the system as a function of the neutron-source 
distribution is required, it may be more efficient to  estimate the functionals by 
sampling from the adjoint equation. This is because only one adjoint calculation is 
required rathcr than a number of separate transport calculations. 

2. If the phase-space volume containing nonzero C is small, it may be mote effi- 
cient to estimate J by sampling from the adjoint equation because all pseudoneutron 
histories begin in the small phase-space volume. 

If the region in phase space where the source does not vanish is not too small and 
if an efficient scheme for sampling from the adjoint equation is available, then use of 
the adjoint equation is advantageous. 

The approach used here to  develop a scheme for sampling from the adjoint equa- 
tion is to begin by finding a simple way of transforming Eq. (4.39) into an equation 
identical in form to  the transport equation, Eq. (4.34). Techniques for sampling 
from the resulting equation are therefore well known. 

This simple transformation is obtained with the definitions 

t, = t, - t 

a, = -a 

Gi(r ,  E, a , ,  t,; r", E", fir:, t'i) = G+(r, E, -a,, t,, - t,; r", E", -ai, t,, - t:) (4.44) 

where t,, is a maximum time of interest in the problem, t, is the adjoint time, and R, 
is the direction of motion of the pseudoneutron. Substituting these definitions into 
Eq. (4.39) yields the equation 
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where R, is defined to be the phase-space point r,E,fi,,t,. Equation (4.45) is identical 
in form to the neutron transport equation, where the term in brackets in the integrand 
is recognized as the transfer kernel. 

It may also be proved that G l  satisfies the same boundary conditions as G. The 
condition on G is that C(r,,E,fi-,t;R') = 0 at every point rs on the outer surface of the 
system, where fi- denotes any direction into the system. This boundary condition, 
combined with the requirement that the bilinear concomitant be zero on the outer 
surface, leads to the following condition for G': 

G+(r,. E, at, t; R") = 0 (4.46) 

where Q' denotes any direction out of the system. From Eq. (4.46) and the definition 
of G i ,  the boundary condition on C;: demands that no pseudoneutrons enter the 
system from the outer surface. The time constraint on G is that G(R;R')=O for 
t '  > t. This requirement coupled with the reciprocity theorem of Eq. (4.40) and the 
definitions in Eq. (4.44) dictate that Cl- (R,;R'J = 0 for t I  > t,. 

Since Eq. (4.45) has the same form as the transport equation and also satisfies the 
same boundary conditions, it would seem to offer no difficulties for a Monte Carlo 
simulation. However, this is not necessarily the case. The reason for this is an old 
problem with Monte Carlo calculations. Not only must one develop an unbiased 
sampling scheme, but from a practical viewpoint this sampling scheme must have a 
small enough variance so that statistically acceptable answers can be obtained in a 
reasonable amount of computational effort. To better understand the typical prob- 
lems that arise with a straightforward sampling of the adjoint equation, we will first 
make some comments on random-walk simulations of the transport equation. 

A large portion of the literature on Monte Carlo has been oriented toward the 
proper biasing of sampling schemes to  reduce variances. However, it should be em- 
phasized that many of the particle-transport problems of current interest are solved 
with a direct analog simulation or with only small alterations of an analog simulation. 
Why is the analog random walk acceptable for this large class of problems? The 
answer tends to be twofold. First, the analog random-walk models the physical 
process. Hence it tends to be efficient for estimating the class of functionals such that 
a significant fraction of the source particles contributes to the estimate of the func- 
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tional. For this reason analog Monte Carlo tends to work well for many nuclear reactor 
problems but works poorly for deep-penetration problems. The second reason that 
analog Monte Carlo works so well in many transport problems involves particle 
weights. For many problems of interest, the normalization of the collision kernel is 
unity or less than unity in most of the phase space. That is, the system is not multi- 
plying, is only weakly multiplying, or only the first generation of neutrons from an 
iterated fission-source distribution is being tracked. This has the practical advantage 
that the particle population does not multiply drastically (or that particle weights do  
not increase drastically), which can adversely effect variances. 

These two advantages are not usually present in an attempt to do  an analog simu- 
lation of the transformed adjoint equation, Eq. (4.45). The pseudoneutrons do  not 
necessarily migrate toward regions of interest, and the normalization of the collision 
kernel appearing in Eq. (4.45) is often much greater than unity. This latter effect tends 
to result in increasing and fluctuating particle weights at collisions or, alternatively, 
in a multiplying system if some type of weight splitting is used. 

It is possible to  overcome the first problem in most cases by simply using splitting 
and Russian roulette to  bias the pseudoparticle history toward regions of interest. 
The weight-fluctuation problem is not so easily resolved. A number of different tech- 
niques have been suggested in the literature t o  alleviate the problem. With all due 
respect to  the proponents of the various techniques, these techniques all seem to 
suffer from rather severe deficiencies for general applications. Spanier and Habetler I ’ 
used the infinite-medium multigroup thermal-neutron flux to bias the adjoint scatter- 
ing kernel for an adjoint calculation of thermal-neutron transport. They observed 
that this technique reduced variances considerably over those obtained in calculations 
without such biasing. Levitt and Spanier13 used a transformation of the adjoint 
integro-differential equation such that changes in particle weights would only occur at 
each boundary crossing. They attempted to optimize the adjoint-scattering kernel by 
using the corresponding infinite-medium flux for each individual region in the problem 
as a biasing function for that region. One disadvantage of this technique is the infinite- 
medium flux of a homogeneous region may be quite different from the actual flux in 
that region in the heterogeneous problem. However, the usefulness of the method was 
demonstrated in a number of resonance-escape problems. Eriksson e t  al. allow for 
splitting to  occur along each path in such a manner that weights do  not increase. 
However, this can result in an unacceptable multiplication of the particle population. 
Carter and McCormickI use a short Monte Carlo calculation of the neutron flux to  
bias the adjoint collision kernel. This has been demonstrated to be a useful technique 
in a production code, MCNA” at LASL, but this method does suffer from the limi- 
tations that the additional transport calculation is required and that the necessary pro- 
gramming effort is significant. 

In this section on the simulation of adjoint equations.we have discussed a number 
of advantages in solving certain problems with the adjoint approach. We have also 
attempted t o  point out that the adjoint simulation often requires special care to  avoid 
unacceptably large variances. The investigation of effective methods of simulating the 
adjoint equation is presently an active area of research. 

. 
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MU LTlG R O  UP MONTE CAR LO 

A multigroup treatment of the kinetic energy of the particles is sometimes used in 
Monte Carlo calculations of particle transport. To begin the discussion, we will con- 
sider a number of advantages and disadvantages of this approach over a continuous- 
energy treatment. 

The computer programming tends to  be simpler with a multigroup approach since 
cross sections and energy-transfer probabilities are cast in vector and matrix form. An 
advantage of this formulation is the similarity in the computer programs for simulating 
the transport of neutrons and gamma rays. 

There is also a close correspondence between the simulation of the multigroup 
transport equation and its adjoint equation. This significantly reduces the computer- 
programming effort when both modes of solution are required. However, the simula- 
tion of the adjoint equation may still suffer from large statistical errors for the reasons 
discussed in the previous section. 

An important advantage of doing multigroup calculations with Monte Carlo is the 
generation of cross sections. Processor codes have been extensively developed in the 
past few years to  generate cross sections for discrete-ordinates and diffusion-theory 
methods. These processor codes can be used with little or no alteration to  generate 
cross sections for multigroup Monte Carlo codes. 

Perhaps the most important advantage of this treatment is that it enables com- 
parisons between Monte Carlo and discrete-ordinates calculations to  be made directly 
with the identical cross-section sets. Thus the importance of geometrical approxima- 
tions necessary to do a discrete-ordinates calculation can be evaluated. 

The multigroup treatment does not necessarily assure a gain in the number of 
particle histories processed per unit of computation time. The Monte Carlo method is 
commonly used in geometrically complicated problems so that the tracking of particle 
histories through the geometry requires a significant fraction of the computation 
time. Thus the particular treatment of the collision process may not make a great 
deal of difference. In addition, the majority of the collisions are usually elastic, and 
the physics of elastic collisions is simple enough that they can be treated rapidly with a 
continuous-energy treatment. 

Multigroup Monte Carlo has the obvious disadvantages inherent in group averaging. 
Thus it has definite limitations in problems where the fine energy detail of the cross 
sections is important, such as in treating resonance self-shielding problems. 

Another disadvantage of the multigroup method involves the selection of the scat- 
tering angle a t  collision events. The usual multigroup approach is to  expand the scat- 
tering kernel in a low-order Legendre expansion. The energy group of the emerging 
particle is selected in the random walk from the appropriate column of the Po matrix. 
The density function for the scattering angle in the laboratory system is described by 
the corresponding components of the P,,P,, . . . , P, matrices. Since this function 
represents the conditional angular distribution, given that a group-to-group scattering 
occurs, it may be highly anisotropic. Furthermore, the Legendre expansion is trun- 
cated so that the conditional angular distribution may actually go negative over a 
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portion of the range. This is demonstrated in Fig. 4.3 for the in-group elastic scatter- 
ing of neutrons on hydrogen nuclei for an energy group with the lower energy bound 
of the group equal to one-half the upper energy bound. The exact density function 
for the cosine of the scattering angle in the laboratory system is zero for p < 0.707 and 
is shown in the figure for p > 0.707. 

The scattering angle can be sampled from the normalized density function 
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Fig. 4.3 In-group scattering density function for hydrogen. 
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with the emerging particle weight adjusted by the factor 

to  obtain an unbiased simulation of the multigroup equations. This weight-coriection 
factor can result in a change in sign for the particle weight, which leads to  statistical 
problems. It also has the disadvantage that even for the low-order expansion through 
P, the density function is not trivial to  sample. 

A different technique for selecting the scattering angle is employed in the MORSE 
Monte Carlo code.4 A Gauss quadrature treatment is used to  conserve the first few 
moments of the distribution. The particle is allowed to  scatter into one of n discrete 
scattering angles with n corresponding probabilities. This technique requires (2n - 1) 
words of data storage to conserve the first (2n - 1) moments, i.e., (Fl ,  ,G2, . . . , p 2 n - I ) .  
This method avoids the negativity problem in most cases and is very fast to  use in the 
random-walk process. However, it does suffer from the disadvantage that scattering is 
allowed only at discrete angles so the flux distribution tends to  have some angular dis- 
tortion during the first few collisions. 

Spanier and Gelbard6 discuss a technique used in the MARC code. The scattering 
angle is selected from one of four distributions, Le., straight forward, straight back- 
ward, at 90°, or from an isotropic distribution. The probabilities for selecting from 
the four distributions are computed to  conserve the first four half-range moments. 

The TART code18,’9 is a hybrid between a full multigroup treatment and a 
continuous-energy treatment. This code uses the reaction cross sections in multi- 
group form for each isotope. These include the total, capture, elastic, fission, inelastic 
cross sections for exciting discrete levels and the inelastic cross sections that correspond 
to  available analytic or tabular data for the emerging neutron energy. The multigroup 
cross sections are used to  sample flight paths and the type of collision event in the 
random walk. The emerging neutron energy and the scattering angle are then sampled 
by a continuous-energy treatment. 

This discussion of multigroup methods has been brief. The interested reader 
should consult Refs. 4, 6, and 18 for a more detailed treatment and Ref. 20 for 
a comparison of various methods of  sampling the scattering angle a t  collision 
events. In the next two chapters, we focus on techniques for sampling interaction 
models that are commonly used in describing neutron and photon transport. 
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E LAST1 C S C A T T E R I N G  

The mathematics describing the elastic scattering of a neutron from a free nucleus is 
considerably simplified if the precollision kinetic energy of the target nucleus can be 
neglected. This is usually a satisfactory approximation for neutron kinetic energies 
greater than about 10 times the equilibrium kinetic energy of the target nuclei. The 
case when the energy of the target nucleus is not negligible is discussed in the Thermal 
Scattering section of this chapter. 

Elastic scattering is usually treated by selecting the scattering angle in the 
center-of-mass system and then computing the corresponding scattering angle in the 
laboratory system. This has the advantage of minimizing data-storage requirements 
since elastic scattering is isotropic in the center-of-mass system for a wide range of 
neutron energies. When incident-neutron energies are such that the scattering is not 
uniform, a computationally fast and accurate sampling method can be devised by 
tabulating the (n + 1) center-of-mass angles that correspond to n equally probable 
intervals of the cumulative distribution function. Then in the random walk we 
randomly choose one of these intervals and sample the scattering angle from a uniform 
density function between the two scattering-angle bounds of the interval. The 
advantage of this technique is that the mesh points in the table are automatically dense 
where the probability density function is large. Data storage is also used effectively 
since we do not have to tabulate the cumulative distribution function; only the 
random variable bounds are needed. This is a special case of the sampling method 
discussed in the Basic Principle section of Chap. 2. The number n of equally likely 
intervals is typically chosen to  be some integral power of 2 as a convenience for 
randomly sampling an interval on a binary machine. 
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The density function for the scattering angle in the center-of-mass system depends 
in some continuous manner on the kinetic energy of the incident neutron, but 
satisfactory accuracy is obtained by tabulating at discrete incident-neutron energy 
points with some type of interpolation between these energy points. A commonly 
used method is linear interpolation of the density function in the following manner: 

where f(pcl,,;El) is the density function at an incident-neutron energy E, and 
f(pcll,;E2) is the density function at an incident-neutron energy E,. The density 
function is a linear combination of two density functions with positive coefficients; so 
a sampling technique suggested in the fourth section of Chap. 2 can be used, i.e., pcm 
is sampled from f(pc,ll;El) with probability (E, - E)/(E, - E,)  or from f(pcIn:E2) 
with probability (E - E,)/(E, - E,). The equally probable center-of-mass intervals are 
tabulated at E, and E,. For example, the table for the energy E, would consist of 
the inverse solutions, (pcm)i ,  of the equation 

where n is the number of equally likely intervals. Typically 16 or 32 intervals are 
adequate. 

The corresponding scattering angle in the laboratory system is 

and the emerging neutron energy is 

E' = (1/2)E [(I - a)pcrn + 1 + ct] (5.4) 
where 

and A is the mass of the target nucleus in units of the mass of a neutron. 

. __ . . . . . . . . .. .- . _ .  ..~ .- ... .. . .I.._. ., _ _  ... . , " . . .. .. . . - 
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The proton and neutron have essentially the same mass; so computational effort is 
saved by treating elastic scattering with a hydrogen nucleus separately. This is 
particularly true since the elastic scattering of a neutron with a proton is isotropic in 
the center-of-mass system for neutron energies less than about 10 MeV. In this energy 
range the event can be modeled simply by using one random number t o  select the 
emerging energy and the laboratory scattering angle as 

and 

IN E LAST1 C SCATTERING 

The kinetic energy of the emerging neutron in the center-of-mass system after 
suffering an (n,n’) inelastic scattering is 

where E is the incident kinetic energy of the neutron in the laboratory system, Q is the 
Q value of the reaction, and the precollision kinetic energy of the target nucleus in the 
laboratory system has been neglected. The Q value of the reaction is defined here as 
the rest energy of the target nucleus prior to the collision minus the rest energy of the 
target nucleus immediately after the collision (evaluated before the nucleus decays to  
its ground state). With this definition, Q is always negative for the (n.n’) 
inelastic-scattering reaction being considered. 

The scattering in the center-of-mass system is nearly isotropic for many cases of 
interest .  If experimental measurements or theoretical calculations justify an 
anisotropic treatment, the center-of-mass scattering angle can be sampled in the 
random walk in the same manner we have discussed for elastic scattering.The emerging 
neutron energy in the laboratory system and the laboratory scattering angle are then 
determined from the center-of-mass scattering angle as 

(5.10) 
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The appropriate score for the point-detector estimator discussed in Chap. 4 ,  after 
excitation of an inelastic level as described above, will be derived. The right- and 
left-hand sides of Eq. (5.10) are squared, each term of the resulting equation is 
multiplied by E', and E' is then replaced by the expression given by Eq. (5.9). The 
result of this operation is a relation between @lab and pcm, 

with E, E',,, and A constants for a given event. Therefore, 

which can be expressed as 

(5.13) 

by the use of Eq. (5.9) and (5.10). For a fixed scattering angle in the laboratory 
system, the final neutron energy can be obtained by eliminating pcm from Eqs. (5.9) 
and (5.10) and solving for E' to  obtain 

There are three possibilities' regarding the final energy of the neutron in the 
laboratory system determined by Eq. (5.14): 

Case 1. If E;, < O .  which implies E < [ ( A t  I)/A](-Q), then the clt1antlty inside 
the right-hand square root of Eq. (5.14) is negative for all scattering angles in the 
l a b o r a t o r y  s y s t e m ,  a n d  t h e  reaction cannot occur. This corresponds to 
incident-neutron energies below threshold and hence is an uninteresting case. 

Case 2. If E:, > [E/(A + 1)2] ,  which implies E > [A/(A - l)] (-Q), the 
quantity inside the square root is always greater than or equal to  zero for all scattering 
angles in the laboratory system. However, the root corresponding to the positive sign 
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in Eq. (5.14) is the only acceptable solution since the right-hand square root term is 
larger than I(E)”plab/(A + 1)l. 

(-Q) < 
E < [A/(A - l ) ]  (- Q), it is only possible to  scatter through a ran e of scattering 

For any such acceptable scattering angle in the laboratory system, the neutron can 
emerge with either of the two energies corresponding to the roots of Eq. (5.14). 

The point-detector score for each acceptable emerging neutron energy is given by 

Case 3. If 0 < ELI,, C E/(A + 1 ) 2 ,  or equivalently [(A+ 1)/A] 

angles in the laboratory system such that 11  - A2 - [QA (A + 1)/E] F < Flab < 1. 

with dpcI,,/dplab given by Eq. (5.13). 
A few practical comments are in order. The possibility of multiple roots occurs 

when the kinetic energy of the incident neutron is just sufficient to excite the level. 
The significance of this observation is that the lower root E! can usually be ignored 
w i t h o u t  introducing appreciable error. In addition, subject to  the previous 
consideration, dpcm/dplab is nearly unity for heavy nuclei, and the use of this 
approximation saves considerable computation effort and removes worry that the 
denominator of Eq. (5.13) may approach zero in rare cases. We return now to 
considerations of the random walk. 

It is impossible to  treat all energy levels for inelastic-scattering events. 
Furthermore, experimental measurements are usually either nonexistent or have been 
made for only a few of the lower levels. Hence some simple model is used to  describe 
the majority of the levels. This model may consist of replacing a near continuum of Q 
values with a number of discrete Q values. Another model that enjoys considerable use 
is the statistical gas model, where the level structure is replaced by a continuum. The 
emerging-neutron energy is picked from the density function 

(5.16) 
- C z ( E )  E ’  

g(E’;E) = C,E‘ e (0 < E’ < E,) 

where C, is a normalization constant, C,(E) depends on the properties of the nucleus 
of interest and on the incident-neutron energy, and E,,, is the maximum energy of the 
emitted neutrons. The density function g(E’;E) can be sampled asz 

(5.17) 

where E‘ is accepted if E’ < E,. In Eq. (5.17),t1 and C;, are random numbers on the 
unit interval. 
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Various other methods are used to  model (n,n’) inelastic-scattering events. The 
method used in the Monte Carlo calculation is often dictated by models that are 
recommended in the particular cross-section set being used. 

The sampling of the inelastic-scattering events (n,2n) and (n, 3n) is simplified by 
using models that ignore the correlation between the emerging neutrons. That is, the 
emerging kinetic energy and the scattering angle of each neutron are selected 
independently. This treatment yields unbiased results since on the average the correct 
amount of energy is emitted’ in each small energy interval even though energy is not 
conserved in the individual inelastic event. Of course, an exception to t h s  occurs 
when quantities that depend on the correlation between the emerging neutrons are 
being estimated. 

F lSSl0 N 

The fission event is treated in a variety of ways, depending on the particular 
calculation of interest. For criticality calculations, usually only one generation (from 
one fission event to the next) of neutrons is followed for each fission-source iteration; 
so the neutrons produced at a fission event are banked for possible use in the 
subsequent iteration. For calculations in which the histories of the progeny are also of 
interest, the emerging neutrons from the fission event are sampled and followed in the 
random walk. Some care must be used in this description of the fission event for 
near-critical systems since it is possible for the Monte Carlo population of weighted 
histories to  become supercritical even though the physical system is subcritical. This 
can be avoided by allowing less than v neutrons to  emerge from the fission event in the 
random walk and properly adjusting their weights. Carrying this to the extreme by 
allowing only one neutron to emerge from fission can introduce undesirable particle 
weight fluctuations in the random walk. 

The sampling of the fission event is simplified by the usual assumption that the 
neutrons from fission are emitted isotropically in the laboratory system. In many 
computer codes the density function for the kinetic energy of the neutrons from a 
fission event is also assumed to  be independent of the energy of the neutron causing 
fission. This is a useful approximation for nuclear-reactor calculations since only a 
small percentage of the neutrons from fission are emitted at energies above a few 
million electron volts. There are experimental measurements that indicate that, for 
fission events caused by an incident-neutron energy above a few million electron volts, 
one or two of the emergent neutrons may have been scattered inelastically rather than 
emitted in the fission process. The cross sections for these processes are denoted by 
%,n’f and u , , ~ ~ ‘ ~ ,  respectively. This does not introduce any error in the number of 
neutrons emerging from the event since measurements of v also include those neutrons 
scattered inelastically. However, it does introduce a change in the energy spectrum of 
the neutrons emitted from a fission event. The inclusion of these inelastic neutrons in 
the sampling is considered here. 
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The cross section for the fission event, u ~ , ~ ,  can be expressed as 

- (5.18) 'n,r; - 'n,f + 'n,n'f + 'n,2n!f 

where the partial cross sections u,,f, un ,n f f ,  and un,2nlf  are assumed to  be available 
from experimental measurements or from theoretical calculations. Here is the 
cross section for true fission, where no inelastic neutrons are emitted in addition to 
those from the fission process. Such data for 2 3 5 U ,  238U,  239Pu, and 240Pu, along 
with fits to  the spectra of emerging neutrons for the various reactions, are available in 
Refs. 3 and 4. 

Experimental measurements indicate that the kinetic-energy spectrum of the 
neutrons emitted in the true fission process is unaffected by the inelastically scattered 
neutrons. Hence the energy of an emerging neutron from the fission event is selected 
from the inelastic spectrum of the (n,n'f) event with probability 

'n,n!f - (5.19) 
*'n,F 

and from the inelastic spectrum of the (n2n'f)  event with probability 

2un,2n!f  

"'n,F (5.20) 

I f  t h e  random test does not select either of these two possibilities, the 
emerging-neutron energy is sampled from a fission spectrum. 

A fission spectrum can be handled in the Monte Carlo calculation by tabulating 
equally probable energy bins for the sampling. Alternatively, we can sample from an 
analytic fit, as discussed in Chap. 2. 

T H E R M A L  SCATTERING 

Neutron scattering at thermal energies is modeled with a variety of methods. 
Scattering can be treated in a rigorous manner by sampling directly for a and 0 from 
the S(aJ) scattering lawjfihis also includes chemical-binding effects. The a and 0 
uniquely determine the kinetic energy and scattering angle of the emerging neutron in 
the laboratory system. This direct sampling of a and p enables calculations to be made 
with the full scattering kernel but requires the storage of only two-dimensional arrays. 
A formulation for sampling a and 0 is discussed in detail in Ref. 5. 

Computer storage limitations, computational speed requirements, and the fact 
that chemical binding may often be either ignored or adequately described by various 
approximations have led to  the extensive use of simpler thermal models in Monte 
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Carlo codes. An approximation that is often used is a multigroup treatment of the 
thermal energy range. This is quite effective since the thermal target motion tends to 
make the scattering more nearly isotropic so that a low-order Legendre expansion of 
the frequency distribution for the scattering angle is satisfactory for many 
applications. 

The free gas kernel is a thermal interaction model that enjoys considerable use 
since it results in a good approximation to  the thermal flux spectrum in a variety of 
applications and can be sampled without tables. In this model neutrons are assumed to  
be transported in a monatomic gas, the latter having an isotropic Maxwellian 
distribution of velocities. The effective scattering cross section in the laboratory 
system for a neutron of kinetic energy E is 

(5.21) 

Here, vrel is the relative velocity between a neutron moving with a scalar velocity vn 
and a target nucleus moving with a scalar velocity V, and pt is the cosine of the angle 
between the neutron and the target direction-of-flight vectors. The scattering cross 
section for this relative velocity is denoted by us(vrel), and p(V,put) is the probability 
density function for the Maxwellian distribution of target velocities, 

with 0 defined as 

s = (&Y 

(5.22) 

(5.23) 

In Eq. (5 .23)  A is the mass of a target nucleus in units of the mass of a neutron, k is the 
Boltzmann constant, and T is the equilibrium temperature of the target nuclei. 

The relative velocity between the neutron and target is obtained from the cosine 
law, . '$ 

're1 = [(V,)* + v2 - 2v,Vpt] Y2 (5.24) 

We assume that the scattering cross section of a nucleus is independent of t h s  relative 
velocity; so 

us(vrel) = u: =constant (5.25) 
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This assumption enables us to  evaluate the integral over pt in Eq. (5.21) and to 
express the scattering cross section in the laboratory system as 

- - [(v, + V)3 - Iv, - VI3] p3V e-o2v2 dV (5.26) 

It is convenient in the following considerations to define a dimensionless variable 
x as 

x = pv (5.27) 

so that x2  is the ratio of the kinetic energy of a target nucleus to  kT. We also define 
the constant a as 

a = pv, (5.28) 

Then, with a change of variables, the effective scattering cross section is 

which is equivalent to the well-known result 

(5.30) 

The integrand on the right-hand side of Eq. (5.29) is proportional to the 
probability density function for the target velocity in the transformed x variable. This 
density function for x decreases in value rapidly as x becomes large; so the total 
probability of x > 3 can be shown to be less than 0.00125. The random walk is 
simplified by neglecting x > 3, in which case an x value is sampled uniformly 
between zero and 3 and accepted with a probability proportional to the integrand on 
the right-hand side of Eq. (5.29). The efficiency of such a sampling is approximately 
0.4, and this efficiency is nearly independent of the incident-neutron energy. The 
approximation involved in neglecting x > 3  is equivalent to ignoring all target 
energies greater than 9 kT. 
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We also observe from Eq. (5.26) that the density function for the cosine of the 
angle between the target and neutron direction-of-flight vectors is given by 

This can be sampled analytically as 

213 
p t  = +--(a2 + x2 - {la  - x13 - .$[la - xi3  - ( a t  x)~]} ) (5.32) 

The  incident-neutron direction of flight will be denoted here by the 
direction-of-flight cosines (u,v,w). This incident direction, the value of pt, and an 
azimuth angle uniformly selected on the cone about the incident direction of flight of 
the neutron are sufficient to fuc the direction of flight of the target nucleus, denoted 
here by the direction cosines (ut,vt,wt). 

The scattering is assumed to  be isotropic in the center-of-mass system; so the new 
direction of flight in this system of coordinates is sampled uniformly on the unit 
sphere and is denoted by the direction cosines (uo,vo,wo). The kinematics of the 
collision process6 yields the final neutron energy and direction-of-flight cosines in the 
laboratory system as 

where 

E 
(A t 1)2 

Et = - (2’ + y 2  + 2’) 

7 = v t A(6vo t $ v t )  

(5.33) 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

n 
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- z = w t A(Sw, t a w t )  X 
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(5.39) 

(5.40) 

Figure 5.1 is a flow diagram for sampling the free gas kernel, based on the above 
derivation. In the figure, E is the precollision kinetic energy of the neutron, and 
(u,v,w) are the precollision direction-of-flight cosines. The postcollision kinetic energy 
of the neutron is denoted by E’, and the postcollision direction-of-flight cosines are 
denoted by (u’,v’,w‘). 

In some applications we find it convenient to  use the point-detector estimator 
discussed in Chap. 4 in conjunction with the free gas kernel. We describe here a 
method to score at the point detector for each collision event. For the (x.& selected 
from the scheme of Fig. 5.1 in the random walk, the kinetic energy that the neutron 
must have in order to scatter to the detector can be obtained from energy and 
momentum balances. The resulting equations are straightforward to  derive, but we 
have omitted the rather involved mathematical details. A flow diagram foi the 
point-detector score is given in Fig. 5.2, assuming (x,y,z) is the point of collision and 
(x’,y’,z’) is the location of the detector. 

CRITICALITY 

Criticality calculations have the distinguishing feature that the equilibrium 
spatial-source distribution of the fission neutrons is unknown at the beginning of the 
calculation. Sometimes an adequate source distribution can be constructed from 
deterministic methods, but, in the more common situation, it must also be constructed 
in the course of the Monte Carlo calculation. The computation time required to  obtain 
a converged source is sometimes an unimportant consideration (e.g., for fast critical 
assemblies), but it is often a significant factor in determining the feasibility of doing 
Monte Carlo calculations on thermal systems. There are also physical systems, such as 
certain array configurations of fissionable materials and splitcore reactors, where care 
must be exercised to ensure that the iteration method will converge to the correct 
equilibrium source distribution. 

The typical Monte Carlo calculation uses an initial neutron source distribution 
from fission which is either obtained from a simplified deterministic calculation or is 
merely a guess. This initial distribution is used as the neutron source for the first 
generation of neutrons in the Monte Carlo calculation. The resulting progeny from 
fission events is used to construct the neutron source for the next generation, and so 
the iteration proceeds. After a sufficient number of generations, convergence of the 
fission-source distribution is deemed satisfactory from some test, and the neutron 
histories in a number of subsequent generations are used to compute quantities of 
interest, such as the multiplication factor. 
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XI  =3E x 2  = ia - 1 3  

- 

- 

I of flights and sample target velocity xl. 

pt = 1 [a2 t x: -(XI + x3c)Y1 
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x1 =XIICY 

Sample target direction of flight uniformly on cone. 

c = cos 2nt  

d = sin 2nc 
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Jm + V I u  
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+ p t V  
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I 

vo = J t  - wa sin 2 n ~  

Compute final neutron energy E' and direction of flight u', v'. w'. 
I 
I - 

'usecorrect limits6 as iwI + 1 

Fig. 5.1 Flow diagram for sampling the free gas kernel. 



CRITICALITY 

We can reduce the computation time required for 3U se convergence by replacing 
the Monte Carlo iteration on the source with a fission matrix iteration. The volume of 
the system containing fissionable material is divided into a number of contiguous 
spatial cells, and an element aij of the matrix is defined to be numerically equal to the 
number of first-generation fission neutrons produced in cell i from lone fission neutron 
starting in cell j .  These elements can be computed in a one-generation Monte Carlo 
calculation. The subsequent numerical iteration using the matrix with an initial source 
vector typically requires a negligible amount of computational effort. 

The disadvantage of the matrix method is that the elements themselves are 
computed from an assumed initial distribution in the Monte Carlo calculation. The 
error due to this initial distribution tends to be of second order since only the 
functional dependence of the, fission source across individual cells, rather than across 
the entire system, is important for computing the matrix elements. If the error due to 
the assumed distribution across individual cells does turn out to be significant, it can 
be reduced by using information from the first matrix iteration to repeat and improve 
the Monte Carlo calculation of the matrix elements. The statistical error involved in 
the evaluation of the matrix elements also leads to an error in the eigenvalue obtained 
from the matrix iteration. Recent studies have indicated that this is an important 
disadvantage of a matrix method. 

The interested reader ,is referred to Ref. 7 for examples in which Monte Carlo was 
used to  iterate the fission-source distribution. Fission-source iterations with a matrix 
approach are discussed in Refs. 8 and 9; these two references are also excellent as an 
introduction to the use of Monte Carlo in reactor-physics problems. Techniques to 
improve and accelerate the matrix method are discussed in Ref. 10. 

1 
A = J 1  + A ' x i  + 2Ax,u. I I S T A R T  U L .  I + 

( x '  - X ) ( U  + A x 7 u t )  + (y '  - y l ( v  + Ax,v,) + (2' ~ z l (w  + Ax,w,l 

A,,/(X' - X I 2  + ( y '  - VI' + ( 2 '  - 2)2 

pcm = cos 0 cos E ~ sin 0 sin E 

( A 2  + A'v: + 2Ayi  b c m  1 

Find point detector 
energy bin and score 

lr-r'l 
I W ( A 2  + A2y:  + 2 A y , A p c m  )yz Z(R'1 exp (-io Z, dsl 

4nlr-r'12A2y:1Ay, +Ap,,I 

Fig. 5.2 Point-detector score in the thermal routine. 

77 



78 

REFERENCES 

Q 
NEUTRON TRANSPORT 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

IO. 

C. J. Everett and E. D. Cashwell, Scattering Formulas for the Two-Particle Reaction, 
USAEC Report LA-5196-MS, Los Alamos Scientific Laboratory, 1973. 
C. J. Everett and E. D. Cashwell, A Monte Carlo Sampler, USAEC Report LA-5061-MS, Los 
Alamos Scientific Laboratory, 1972. 
J. J. Berlijn, R. E. Hunter, and C. C. Cremer, Neutron Cross Sections for 235U and 238U in 
the Energy Range 1 keV to 14 MeV, USAEC Report LA-3527, Los Alamos Scientific 
Laboratory, 1968. 
R. E. Hunter, J. J. Berlijn, and C. C. Cremer, Neutron Cross Sections for Z39h and 24oh 
in the Energy Range 1 keV to 14 MeV, USAEC Report LA-3528, Los Alamos Scientific 
Laboratory, 1968. 
F. G. Bischoff, M. L. Yeater, and W. E. Moore, Monte Carlo Evaluation of Multiple 
Scattering and Resolution Effects in Double-Differential Neutron Scattering Cross-section 
Measurements, Nucl. Sci. Eng., 48: 266-280 (1972). 
E. D. Cashwell and C. J. Everett, A Practical Manual on the Monte Carlo Method for 
Random Walk Problems. Pergamon Press, Inc., New York, 1959. 
J. T. Mihalczo, Criticality of Graphite- and Polyethylene-Reflected Uranium (93.2%)-Metal 
Cylinders and Annuli, Nucl. Sci. Eng., 49: 489-504 (1972). 
M. R. Mendelson, Monte Carlo Criticality Calculations for Thermal Reactors, Nucl. Sci. 
Eng., 32: 319-331 (1968). 
M. H. Kalos, F. R. Nakache, and J.  Celnik, Monte Carlo Methods in Reactor Computations, 
in Computing Methods in Reactor Physics, pp. 359438, H. Greenspan, C. N. Kelber, and 
D. Okrent (Eds.), Gordon and Breach, Science Publishers, Inc., New York, 1968. 
L. L. Carter and N. J. McCormick, Source Convergence in Monte Carlo Calculations, Nucl. 
Sci. Eng.. 36: 438441  (1969). 

n 



n ti PHOTON TRANSPORT 

INTRO D U CTI 0 N 

Since photons can be considered as particles subject to  scattering laws as they pass 
through matter in much the same manner as neutrons, the techniques of Monte Carlo 
are eminently suited t o  photon-transport problems. ' A linear equation governing 
photon transport is essentially identical in form to the Boltzmann transport equation 
for neutrons. The collision processes of photons on electrons, although physically 
quite different from those of neutrons, are analogous to  corresponding processes of 
neutrons. In this chapter, we discuss the principal types of collision and ways of de- 
scribing them by Monte Carlo. 

COMPTON COLLISIONS 

A Compton collision is by definition a collision of a photon with an electron that 
is assumed to be free and at rest in the laboratory system of coordinates. We use the 
following definitions in this chapter: 

c = 2.997925 X 1Olo cmlsec, the velocity of light in a vacuum 

h = 6.626196 X erg sec, Planck's constant 

m0 = 9.109558 X g, the rest mass of the electron 

e = 4.803251 X lo-" esu, the charge of the electron 
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In the treatment of Compton collisions, the photon has an energy E that satisfies the 
relation E = hv, where v is the frequency of the photon. The particle also has a wave- 
length X, with Xu = c. A mass can be defined for a photon by means of the relation 
E = mc2, and a momentum mV can be assigned, with IVI = c and lmVl= mc = hv/c. 

The electron in these collisions is characterized by its charge e, rest mass mo,  and 
velocityvector V'. Its mass is then m = mo/(l - pZ)lh,  with /3 = IV'l/c. The momentum 
is mV', and its total energy is mcz. 

Many of the relations derived from considering photons colliding with free elec- 
trons are simplified if the photon energies are expressed by a dimensionless parameter 
a = hv/moc2, which gives the ratio of the photon energy to the rest energy of the 
electron, mOcZ = 0.51 1004 MeV (1 MeV= 1.60210 X 

In a Compton collision the total energy and momentum are preserved. Using the 
foregoing defmitions and writing down these conservation laws, we can derive the fol- 
lowing relation between the incoming photon energy a,  the scattering angle, 8 ,  and the 
outgoing photon energy, a': 

erg). 

a a' = 
1 + a(l - p) 

Here p = cos 0,  the cosine of the scattering angle in the laboratory system, and the 
energies a and a' are in units of the rest energy of the electron, moc2. The pertinent 
information on the electron, such as the scattering angle and the energy, is immediate 
from the derivation. The interested reader may consult Chap. VI of the manual by 
Cashwell and Everett for the derivation of these relations. 

The Klein-Nishina cross section for the scattering of a photon of energy a = 
E/rnoc2 on a free electron at rest, at an angle 6' within dp of p = cos 6 from its line of 
flight, is given by 

u(a,p) d p  = nrd(:r (: f 5 + p 2  - 1) d p  (-1 < 1.1 < 1) (6.2) a 

where a ' = a / [ l  +a(l - p ) ]  is its final energy a '=  E'/moc2, and ro = e2/rnoc2 = 
2.81 794 X 10-l3 cm is the classical Thomson radius of the electron. 

With the incoming energy a fixed, define x = &'/a = 1/[1 f a( l  - p) ]  and 
F((LY,X) dx a(a ,p)  dp. Writing Eq. 6.1 in the form p =  1 + a-l - a-lx-l, we have 
dp/dx = ~ y - l x - ~  and 

The expression on the right has an associated probability density function 

f (x) dx 
p(x) dx = 

F(Pf 

n 
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where 

f(x) = x + x-1 + p2 - 1 

The Monte Carlo method of sampling for x = a'/a consists in solving the equation 

F(x) = f(t) dt (6.7) 

for x in terms of a random number E, equidistributed on [0,1] . 

section from the relation 
Referring to  Eqs. 6.3, 6.5, and 6.6, we can compute the Compton scattering cross 

p,(Compton) = mg a- 'G (6.8) 

This cross section has been plotted by the National Bureau of Standards.* 
Various methods have been used to  sample the Klein-Nishina scattering function. 

Very early in the development of Monte Carlo, Kahn3 devised a rejection technique to  
sample this function. Another method that has proved very successful in practice is to 
approximate the inverse function x = F-'(y) Q(y) of y = F(x) given in Eq. 6.7 and 
to  take x = F-' (Gl )  E Q(Gt). The method can be fast to use since each random num- 
ber leads to  a value of x. Examples of t h s  latter scheme appear in the l i t e r a t ~ r e , ~ > ~  
where very accurate fits to  the inverse function are displayed. Both the rejection 
method and the approximation of the inverse function have been incorporated into 
machine codes for transporting photons. Some of these codes are mentioned later in 
this chapter. 

More accurate treatment of the photon-scattering process necessitates considera- 
tion of the structure of the atom and leads to  two types of scattering, incoherent and 
coherent. 

INCO HERE NT SCATTERING 

Scattering from free electrons is referred to as incoherent since the independent 
behavior of the electrons prevents any interference effects. In this process the differ- 
ential scattering cross section is written in the form 
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where I(Z, v) is an appropriate scattering factor modifying the Klein-Nishina cross 
section 

Q 
K ( a , p )  dp = (:re + 7 Q + p2 - 1)dp 

Here K ( a , p )  is written in place of u(a,p) in Eq. 6.2. As in the latter equation, 
a'=cu/[l t a(1 - p ) ] ,  with the definitions of r,, and p the same as before. The scat- 
tering factor represents the probability that an atomic electron, having been imparted 
momentum by a photon, will absorb energy and thereby become excited or leave the 
atom. 

The factor I(Z, v) has the effect of decreasing the Klein-Nishina cross section more 
extremely in the forward direction for low E and for high Z independently; it in- 
creases from I(Z, 0) = 0 to I(Z,m) = Z. The parameter v = v(a,p) is a function of a 
and p which, for a given value of the incident energy a ,  increases from v(a,I)  = 0 at 
p = 1 to a maximum value V = v(a, -1) at 1-1 = -1. As p varies from 1 to -1, the quan- 
tity I(Z, v)/Z increases rapidly from 0 toward 1. At high energies I(Z, v)/Z is approxi- 
mately 1 except for the extreme forward direction. The variation of I(Z,v)/Z with v 
for different values of Z is shown in Fig. 6.1. Here the parameter v is the inverse length 
v = sin (1/2)0/h(a) = ~ a ( 1  - p)%,  K = 10-8 rnoc/h(2)%= 29.1433 cm-' .with maximum 
value v = ~ a ( 2 ) %  for given a. 

0 2 4 6 8 
V 

Fig. 6.1 Incoherent scattering factor. 
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To describe a sampling method for p = cos 0 from I(Z,v) K ( a , p ) ,  we recall the 
generalization of the rejection method described in Chap. 2. Given P(y) = C,F(y)Q(y), 
a < y < b ,  where P(y) and Q(y) are probability densities, 0 < F(y) < 1, and 
C, > 1 is any constant. If y is sampled from the density function Q(y), retained as 
the sample value of y with probability F(y) [and rejected with probability 1 - F(y)] , 
then the set of y values retained was shown to have density P(y). 

To apply this to  incoherent scattering, we write ai(Z.a) and at(a) for the total 
incoherent and Klein-Nishina cross sections, respectively, and express the probability 
density for scattering into (p ,p  + dp) in the form 

We therefore sample K(a,p)/ot(a) for p,  which is retained with probability F(p) = 

Tables of the scattering factors I(Z,v) are available in the literature. In the Los 
Alamos code MCP? the complete tabulations of Cromer and Mann7,8 (and of 
Brown9 for a few low Z) are used for all Z 2 2, v G 8, and we can set I(Z,v) E Z for 
v > 8 without any noticeable impairment of accuracy. For Z = 1 an exact formula is 
available. l o  

1 [Z, v(a, PI1 M Z ,  G 1. 

COHERENT SCATTERING 

This type of scattering is important at low energies when the electron must be 
considered bound. The mass of a bound electron is effectively that of the entire atom, 
and a good assumption is that no energy loss occurs in this process. Only the angle of 
deflection is changed in the collision. Because all atomic electrons behave similarly, 
the radiation scattered by the individual bound electrons of a given atom'will be co- 
herent, i.e., capable of showing constructive or destructive interference. We can write 
the differential scattering cross section in the form 

where C(Z, v) is a scattering factor modifying the energy-independent Thomson cross 
section T(p) = m$ (1 + p2) .  The scattering factor represents the probability that the 
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Z electrons of an atom take up the recoil momentum without absorbing any energy. 
The notation is the same as that given previously. 

The effect of Cz(Z,v)/Zz is to decrease the Thomson cross section more extremely 
for backward scattering, high E, and low Z, which is opposite to  the effect of I(Z,v)/Z 
on the Klein-Nishina cross section described in the preceding section. For a given Z, 
C(Z,v) decreases from C(Z, 0) = Z to C(Z,-) = 0. For example, C(Z,v) is a rapidly 
decreasing function of p as /J varies from +1 to -1, and therefore the coherent cross 
section is peaked in the forward direction. At high energies of the incoming photon, 
coherent scattering is strongly forward and can be ignored. The parameter v =  
K C Y ( ~  -p)" is identical to that used in the discussion of incoherent scattering. The 
qualitative features of C(Z,v) are shown in Fig. 6.2. 

Values of the scattering factor C(Z,v) are documented in a number of references. 
For example, the Los Alamos code MCP6 uses tables of C(Z,v) for Z 2 1 ,  v < 6, 
which were compiled from various  source^^'-^^ with values listed for v1 = 0,.  . . , 
vS5 = 6. (For details, see Storm and 1 ~ r a e l . l ~ )  For practical purposes, we can define 
C(Z, v)= 0 for v > 6. 

To sample for the scattering angle in coherent scattering, we can again use the 
rejection technique used in the preceding section. However, it is convenient to follow 
a device used in the SORS photon codel and reverse the roles of the coherent cross- 
section components. Defining p"@) = uc(Z, c.u,/~)/uf' (Z, a), the probability density 
function of p ,  where uf is the total coherent cross section, we can transform to the 
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Fig. 6.2 Coherent scattering factor. 
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variable v2 as follows: 

where p is replaced by the variable v2 = ( K C W ) ~ ( ~  - p), 0 S v2 G2. 
1 - [ V ~ / ( K ( Y ) ~ ] ,  dp/dvz = - I / ( K C W ) ~ ,  and we can write 

Since p = 

E C, F(v2) Q(vZ) dv2 

where 

C2(Z,V) z-2 
Q(v2) = 

A(Z,V2) 

A(Z,vZ) = j-12 Cz(Z,v) Z-2 dv2 

for arbitrary vz .  
A random number t on [0,1] can therefore be used to  tentatively assign v2 with 

density Q(vZ) by the relation t = A(Z,vZ)/A(Z,Y2), vz being accepted with prob- 
ability F(vz) = (1 + pz)/2 < 1, where p is the above function of vz .  The required 
values of A(Z,T2) and v2 can be found by linear interpolation using tables of A(Z, v:) 
for v i  = 0,.  . . , v : ~  = 36 obtained by numerical integration and stored in the 
program.6 

PHOTOELECTRIC EFFECT 

In t h s  process the incident photon of energy E disappears, an orbital electron 
with kinetic energy E - e is ejected from some (positively written) energy level e S E, 
and a second electron from an energy level e’ < e makes the transition to the e-level 
vacancy. There are two possibilities. 

1. A fluorescence photon of energy E‘ = e - e’ may be emitted. Then the photon- 
energy difference E - E ’ =  (E-e)  + e ’  consists of the kinetic energy of the first 
ejected electron plus a residual excitation energy e’ that is ultimately dissipated by 
further processes with additional fluorescence of still lower energy. In some com- 
puter programs with an energy cutoff in the neighborhood of 1 keV, this additional 
fluorescence is ignored, the energy E - E’ is deposited locally, and the photon of en- 
ergy E’ is processed further if E‘ is greater than the energy cutoff. However, in the 
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most important secondary fluorescence 
photons. All fluorescence photons are assumed to  be emitted isotropically. 

2. The electron transition e ’ + e  may not be accompanied by E’=  e - e’ 
fluorescence but instead by the ejection of an Auger electron resulting from internal 
conversion. In a Monte Carlo treatment of this case, the entire incident energy E is 
tallied as energy deposition, and the collision is terminal. 

The energy levels e are called edge energies because the photoelectric cross section 
a(E), elsewhere decreasing continuously, shows a sharp discontinuity (edge) at each 
E = e. The cross section jumps from its lower limiting value o’(e) to its value a(e) > 
o’(e) as the photon energy E becomes sufficient to activate the e-level. The behavior at 
the K edge is shown in Fig. 6.3. 

To illustrate a Monte Carlo treatment of the photoelectric effect, we shall describe 
the method16 that is presently incorporated in the Los Alamos code MCP.6 This 
method supersedes the original MCP scheme, which was patterned after that used in 
PHOTRAN” and used the tabulated data of Marotta.18 The present method uses 
basic data from the tables of Storm and 1 ~ r a e l . l ~  Fluorescence is not considered from 
shells other than K and L. The probability of exciting other shells and the corre- 
responding yields are both small and are maximal for high Z, for which the photo- 
electric cross section is enormous at the fluorescent energies. Therefore local absorp- 
tion for such fluorescence is assumed. For Z < 12, a photoelectric event is regarded 
as terminal, the possible fluorescence energy being below 1 keV, the cutoff energy in 
MCP. 

Given a photoelectric event at incident-photon energy E, the purpose of the 
fluorescence routine is to  determine which (if either) of the two shells, K or L, loses an 
electron and the fluorescence photon energy emitted. 

The K-edge energies E, are taken from Table I1 of Ref. 14. 
The L-edge energy (for Z 2 31) is regarded as the simple average EL = (ELl -t EL, + 
EL3)/3, the individual ELi being taken from Table I1 of Ref. 14. The energies E, and 
EL, compared with the incident-photon energy E, serve to determine the possibility 
of K or L events. 

1. Edge Energies. 
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Fig. 6.3 Behavior of U(E) at the K edge. 
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2. Fluorescence Energies F. L fluorescence is allowed only for Z Z 3 1, and the 
single fluorescence energy FL is taken as L,23 in Table V of Ref. 14. This is an aver- 
age of all energy gaps from edges Mj, Nk, . . . to all Li edges, weighted by their relative 
intensities as given in Tables IV and VI of Ref. 14. 

The single value FK given for 12 < Z < 19 is the weighted average of the 
Ka, (L3 -+ K) and Ka2(L2 + K) lines, given as% in Table V of Ref. 14. 

For 20 G Z Z 9 4 ,  the individual fluorescence energies FK, > FKa2 are taken 
from Ref. 14, Table 111. These are pure lines resulting from the transitions indicated 
above. 

For 20 < Z < 94, the fluorescence energy FKpt (M2 +. K, M3 -+ K, M4 + K) given 
is the weighted average of the three energy differences, computed from Tables I11 
and VI of Ref. 14. 

For 37 G Z G 9 4 ,  the energy FKp; (N2-+K,  N3 + K )  is the corresponding 
weighted average of these two lines. Note that F, < FKa2  < FKa, < FKp; < FKp;. 

3. The Yields YK and Y,. The yield Y, for a shell S is the total probability of 
fluorescent emission accompanying electron transitions from outer shells to  a vacancy 
(see item 6). 

The yield Y,, furnished by Israel and Storm, is an updated version of that in Ref. 
19, Table VIII. For this we have no published reference; no yields are included in Ref. 
14. These updated yields are in general accord with Ref. 20, Table 11, and the yields 
for Z > 60 are identical with those in Ref. 19 but are hlgher for Z < 60. 

The data for YL in Ref. 20 are very spotty, and the values now used from Ref. 19, 
Table VIII, do not appear to be a bad compromise between those of Refs. 18 and 
20. 

4. Relative Probabilities of K and L Events. For 12 < Z < 30, only K fluorescence 
is considered, and this can occur only for E > E,. For such an incident energy E, it is 
assumed (see Ref. 14, page 569) that the probability of ejecting an electron from the 
K shell has the constant value (OK - u ; ( ) / u ~  = 1 - pK,  where pK = uk/uK is the 
ratio of the photoelectric cross sections at the bottom and the top of the K edge, 
respectively (Fig. 6.3). Here and elsewhere, u’ and u are taken from Table I of Ref. 
14. Thus, for a photoelectric collision at an energy E 2 E,, 1 - pK is the probability 
” a K ejection, and (1 - pK)YK is the probability of a contingent K fluorescence. 

(Observe that 1 - pK is the entry oK(photo)/u(photo) given in Table VI11 of Ref. 14.) 
In the range 31 < Z < 94, both L and K ejections are considered, and, in order to  

follow the scheme of Ref. 18 used previously with no change in code, we require three 
numbers aK, aL, Q 0 ,  which will give the relative probabilities of K-, L-, or outer-shell 
events for E 2 E, and are such that @L,Q0 also define the chances of L- or outer- 
shell events for EL < E < E,. 

The basic assumption is that the relative contribution of any edge to  the total 
photoelectric cross section at that edge is (u - u’)/a and that this relative contribution 
remains constant at higher energies. If we define p1 = u;/u,, i = 1, 2,  3, (Fig. 6.4), it 
follows that pL = p 3 p 2 p 1  and 1 - pL are the probabilities of outer-shell events (and 

1 

1 
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hence no fluorescence) and L-shell events at the L, edge, the latter being given in 
Table VIII, column 2, of Ref. 14 with some minor discrepancies. 

Similarly, at the K edge, with pK =:;<loK, we find that pLu;</uK = pLpK,  
(1 - P L ) u ~ / o K  = (1 - pL)pK, and (uK - uK)/uK = 1 - pK are the probabilities of 
outer-, L-, and K-shell events at the K edge. For convenience, we take the propor- 
tional numbers 

aL = 1 - pL 

as giving the corresponding relative probabilities, and these satisfy the required condi- 
tions for all energies E, as stipulated above. Moreover, given the numbers 0, QLYL,  
a K Y K  if, for E, < E < E,, we divide each of the first two by Qo + QL = 1 and, for 
E 2 E,, we divide each of the three by (Do + @, + QK = p i : ,  then in each case we ob- 
tain the probability of outer, L, or K fluorescence, as the case may be. 

Fig. 6.4 Schematic of K and L edges. 

5 .  Relative Intensities of K Fluorescence. The preceding discussion suffices to 
give the total chance aKYK/(ao + Q, + QK) of K fluorescence, assuming a K event 
with E 2 E,. However, for 20 < 2 < 36, such fluorescence was assumed to consist 
of the lines K a , ,  Ka,, and mi, and, for 37 < 2 < 94, of the additional line KO;. 
The corresponding probabilities p , , pz , p3 and p pz , p3, p4 of the component lines 
for the two ranges of Z are computed from the table of relative intensities given in 
Ref. 14, Table VI, based on the calculations of Schofield. 

Let us illustrate the foregoing remarks with a few examples. Decisions regarding 
fluorescence are based on comparison of E with EL and E,. If E < EL,  no fluores- 

,.. . . . . . .  . ~ . , .  
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cence is allowed. For EL < E < E,, @,YL/(a0 + a,) = (1 - pL)YL is the chance of 
obtaining the fluorescence energy FL. Similarly, for E > E,, the chance of FL 
fluorescence is a L Y L / ( a 0  + QL + @,) = YL(l - pL)pK, and the chance of exciting 
one of the K lines, say, FK, is aKYKp2/(@0 + (PL + aK) = (p-,' - l)YKp,pK = 

(1 - P K ) Y K P ~ .  
6. Secondary Fluorescence. The type of fluorescence considered in the preceding 

remarks is primary, in the sense that it arises from the transition of an electron from an 
outer shell to a shell in which a vacancy has been created by ejection of an electron 
from that shell by the initial incident photon. Thus we allow for Lfluorescence fol- 
lowing an L ejection and for K fluorescence following a K ejection. 

In the following remarks, we attempt to show roughly how secondary L fluores- 
cence may be of the same order of importance as primary L fluorescence and then to 
describe how it may be accounted for in a necessarily approximate fashion. 

Let us assume that we have a photoelectric event with an element of Z 2 31 at an 
incident energy E 2  E,. Then the probability of an L ejection is QL/C,  where 
C = a0 + cDL + aK and, as already stated, the overall probability of primary L fluores- 
cence is given by 

2 '  

@L p' = - 
c yL 

(6.12) 

On the other hand, there is a probability @.,/E of a K ejection. In this event the K 
vacancy may be filled by an L3 + K or L2 + K transition, say with probabilities 
'L3K9 'LZK, respectively, thus creating a vacancy in the L3- or L2-subshell and at the 
same time producing a Kau, or Ka, photon. If we denote by Q L 3 ~ ,  QL2K the 
chances of the latter photon escaping the atom (as fluorescence), then we obtain as 
part of the K yield the quantity 

'L3KQL3K + 'L2KQL2K = 'KPl + yKp2 (6.13) 

the right-hand side being written in our previous notation. 
However, regarding the L3- and L2-subshells as separate entities, we may expect 

secondary L3 or L2 fluorescence with yield probabilities Y,, and YL2 due to the 
now-existing vacancies created by the L -+ K transition. Hence the probability of this 
secondary L fluorescence is given by 

@K 
('L3KYL3 ' 'L2KYL2) 

p" = - 
c (6.14) 

Apparently none of the probabilities in parenthesis are known. Making the assumption 

YL YL3 = YL2 = Y,, = - 
3 

(6.1 5 )  
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we find the expression in Eq. 6.14 for P” becomes 

(6.16) p“ = - ‘K (‘L3K + pL2K)yL 

3 

But from Eqs. 6.13 and 6.16 , we see that for the secondary L fluorescence 

(6.17) 

and even P* may exceed the primary probability P’. For example, using the basic data 
from Storm and Israel cited above for Z = 79, we find that P’ = 0.058 < P* 2 0.075 S 
Pf’. Thus it would appear that secondary L fluorescence should be included for the 
sake of consistency and accuracy. 

Guided by Eq. 6.17 we can make the following approximation with regard to 
secondary L fluorescence, admittedly oversimplified but perhaps better than ignoring 
it. In the event of a photoelectric event with an atom of Z > 31 at an energy E 2 E,, 
which is followed by K a ,  or Ka, fluorescence, assume that secondary L3 or L2 
fluorescence is emitted in each case with probability YL/3 and fluorescent energy FL. 

PAIR PRODUCTION 

This reaction becomes increasingly important for energies greater than 1.022 MeV. 
In the field of charged particles, mainly in the nuclear field but to some extent also in 
the field of an electron, the photon is completely absorbed, and a positron-electron 
pair appears with a total energy equal to that of the photon. Some of the energy goes 
into the kinetic energy of the electron and positron, but 1.022 MeV is required to  
create the electron-positron pair since the rest energy of each of these particles is 
mOc2 = 0.51 1 MeV. A pair is produced by absorption of the photon only in the pres- 
ence of a charged particle since the charged particle is required for conservation of 
momentum. 

The positron created in pair production combines with an electron in an inter- 
action in which the rest masses of the electron and positron disappear and two quanta 
of energy totaling 2m0c2 appear. If the positron is assumed to be essentially at rest 
at annihilation so that the momentum of the center of mass of the resulting two-body 
system is zero in the laboratory system, then the two quanta will appear in opposite 
directions, each having an energy equivalent to the rest energy of an electron, or 0.51 1 
MeV. 

In many Monte Carlo codes6 treating gamma rays of energy E > 1.022 MeV, when 
pair production occurs, an amount of energy equal to E - 1.022 MeV is deposited 
locally, and two gammas, each of energy 0.511 MeV, appear in opposite directions 
and are transported farther. The angular distribution of the annihilation quanta is as- 
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sumed to be isotropic. In such a simplified treatment, the bremsstrahlung associated 
with the change in velocity of the electron and positron is ignored, just as it is in con- 
nection with the recoil electron in Compton scattering. 

For many photon-transport problems, the assumptions made above are adequate. 
However, experiment and theory now indicate that the omission of a suitable treat- 
ment of bremsstrahlung from secondary electrons can lead to serious errors in many 
cases. In particular, tlus is indicated for high-energy photons impinging on a high-Z 
material. A thorough discussion of electron transport and the accompanying brems- 
strahlung is given in an article by Berger and SeltzerZ1 and in the dissertation by 
Thompson.2 The theoretical considerations by Thompson are presently being in- 
corporated into general three-dimensional transport codes at Los Alamos. 

COMBINED N E U T R O N  A N D  PHOTON TRANSPORT 

Given the existence of Monte Carlo codes that transport neutrons and photons 
separately, our next logical step is to combine the two types into one code. Then we 
can process the gamma rays produced by the collisions of the neutrons in the medium 
as well as the neutrons themselves. Storage of gamma-production cross sections in the 
code permits the linking of the neutron- and gamma-transport codes. 

Let us describe in more detail how the Los Alamos code MCNGZ3 operates. The 
MCNG code is made up by combining the neutron code MCN and the gamma code 
MCG. Gamma-production cross sections are provided on a cross-section tape along 
with the required neutron and gamma cross sections. Cross-section data for the mate- 
rials in the problem are drawn from this tape. Neutrons are processed by MCN, and at 
each collision gammas are created and stored on a tape. To reduce the variance in esti- 
mating the heating in a region (the charged-particle energy is assumed to be deposited 
locally as heat), we compute the expected charged-particle heating per collision, i.e., 
we calculate the expected gamma energy r’ and the expected neutron energy E’ leaving 
the collision. Using these expected quantities and 0, the average Q value for the in- 
coming neutron energy E, we obtain the charged-particle heating H per collision from 
the relation 

H = E + Q - E’ - r’ 

Further heating of the medium may occur from energy deposited from the transport 
of the gammas. After a prescribed number of neutrons are processed, the gammas 
created are transported. The code cycles between the neutron code MCN and the 
gamma code MCG until the required accuracy is attained in the heating numbers or 
other quantities of interest in the problem (all results are normed per starting neutron). 
Because of the large number of low-weight gammas created by neutron collisions, 
Russian roulette is played for particles with weight below a lower weight bound, the 
result being to  form fewer particles of larger weight. Heating in small regions can be 
obtained with a track-length estimator. 
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7 LITERATURE S U R V E Y  

I N T R O  D U CTI  0 N 

The emphasis in t h s  chapter is on the literature of the last few years; very few 
references predate 1964. The references are described briefly, and we focus on those 
we consider to be of general interest. This requires a judgment decision, and we 
apologize for any references that have been omitted or have not been described 
properly. The more recent and easily accessible literature has been given priority; so 
the work of an original contributor to  a subject is sometimes omitted or only 
mentioned briefly in the interest of aiding the reader in his search for information. 

The references cited are listed in general categories at the end of this chapter to 
help in the isolation of subjects of interest. 

BOOKS O N  M O N T E  CARLO A N D  PROBABIL ITY T H E O R Y  

A few books are available on the use of the Monte Carlo method to simulate 
particle transport. The Russian book' edited by Shreider and translated by Tee is a 
useful reference for the engineer. It is directed toward applications, but enough 
mathematics is included to  provide a background. The general principles of Monte 
Carlo are introduced in the first chapter and include a brief discussion of estimation 
and error analysis, the random walk, generation of random numbers, simulation of a 
Markov process, the computation of eigenvalues and eigenfunctions, and machine 
considerations. The evaluation of definite integrals is discussed in the second chapter. 
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The application of the Monte Carlo method to neutron physics is the subject of the 
third chapter, which includes many useful comments on practical problems that arise 
in the simulation of particle transport. The next two chapters are concerned with 
applications of Monte Carlo outside the area of particle transport. The last two chapters 
discuss the generation of uniformly distributed random variables with computers and 
the transformation of random variables. 

The book by Cashwell and Everett2 can serve as a handbook for the practitioner. 
It contains numerous relations that are required in programming a Monte Carlo code. 
The book is directed toward particle-transport problems and displays pertinent 
equations and flow diagrams fo1 their simulation on a computer. 

Span ie r  and  Gelbard’s  b o o k 3  app l i e s  the Monte Carlo method to 
neutron-transport problems. A mathematical framework for the Monte Carlo 
calculation is developed in the first three chapters. The last three chapters are devoted 
to engineering applications, with emphasis on the superposition principle to solve 
reactor lattice problems. 

The book by Hammersley and Handscomb4 is another useful reference on Monte 
Carlo. Although not devoted exclusively to  particle transport, it does provide another 
excellent reference and includes some pertinent material not covered in the other three 
books. 

The reader may also find useful reference material in books that are not directly 
concerned with the simulation of particle transport. We include as possibilities the 
books on probability theory by Parzen5 and by Lodve6 and the book by Jansson’ on 
the machine generation of random numbers. 

SAMPLING A N D  SCORING TECHNIQUES 

The generation of random numbers on the unit interval and the techniques for 
using such numbers to sample from density functions are prerequisites for all Monte 
Carlo calculations. The book by Jansson? the article by Hull and Dobell,8 and the 
report by Lehmer9 provide helpful references for the machine generation of random 
numbers on the unit interval. The four books on Monte Carlo previously mentioned’ -4 

also discuss the generation of random numbers and display examples of the use of 
these numbers to  sample density functions. There are a number of reports1°-13 in 
which tests for randomness are discussed and applied for various random-number 
generators. Other references14-19 discuss sampling from a variety of commonly 
encountered density functions. 

There is a considerable body of theory devoted to so-called quasirandom numbers. 
Whereas a sequence of pseudorandom numbers is intended for use in a wide variety of 
applications, a quasirandom number sequence is designed for a specific application and 
does not necessarily satisfy the statistical tests imposed on pseudorandom  number^.^ 
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Foderaro” and Woolson” consider decidedly nonrandom numbers on the unit 
interval to  bias and hopefuUy improve the Monte Carlo transport calculation. They 
claim to achieve more unifoim sampling on regions of equal importance, but it is not 
yet clear whether this use of nonrandom numbers has general advantages over the 
more common inportance sampling techniques used in particle-transport calculations. 

The results of a Monte Carlo particle-transport calculation are subject to at least 
three sources of error: ( 1 )  inadequacies of physical models, (2) uncertainties in the 
basic cross-section data, and (3) the statistical nature of the Monte Carlo calculation i t -  
self. For most calculations the statistical error will usually approach zero as the number 
of samples approaches infinity. However, we cannot simulate an infinite number of 
samples, and thus we must be able to evaluate the error in the calculation. This 
introduces a practical problem since we cannot estimate the statistical uncertainty 
precisely unless we know the exact answer. Therefore we often quote the uncertainty 
to be within some confidence limit; Le., the true answer lies within certain bounds 
with some probability. The error bounds are evaluated under certain assumptions that 
usually involve normality. References on Monte Carlo theory invariable have at least a 
brief discussion on the evaluation of statistical fluctuations. Burrows and MacMillan” 
also discuss a test of normality that is easy to apply. 

Statistical errors are frequently estimated as proportional to the square root of the 
population variance. In particle-transport calculations this variance may change 
dramatically with the method used to  score quantities of interest, and hence selection 
of the proper estimator is an important consideration. Popular estimators include the 
collision estimator, the path-length estimator, the last-event estimator, and the 
point-detector estimator. A discussion of various scoring techniques is presented in 
Refs. 23 to  29 as well as in the books on Monte The point-detector estimator 
is a special type used to obtain information at a spatial point. Various point-detector 
estimators and a discussion of their variances are presented in Refs. 30 to 32. 

Correlated sampling is often effective in estimating the change in a quantity 
resulting from a small perturbation in the system. This technique enables the 
evaluation of small quantities that would otherwise be masked by the statistical errors 
of uncorrelated calculations. A useful discussion of correlated sampling and the 
evaluation of the resulting errors are given in the book by Spanier and Gelbard.3 
Additional material is available in Refs. 33 and 34. 

An alternate method of evaluating the effect of small perturbations is to  compute 
derivatives of differences during the random walk. The article by Miller and Miley52 
on the computation of Doppler coefficients 2nd the article by T a k a h a ~ h i ~ ~  on the 
geometrical perturbation of a pulsed reactor provide an introduction to the subject. 

A careful evaluation of various sampling schemes is difficult since the theoretical 
variances cannot usually be computed exactly but must also be estimated by Monte 
Carlo. A m ~ t e r ~ ~  and S ~ a n i e r ~ ~  have considered some test cases where the theoretical 
variance can be either evaluated analytically or obtained by a relatively simple 
numerical calculation. 

..-... - .... -. . . - .  ... ” .”. . . . . . ... .., .... . - . ... 
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BIASING METHODS 

Importance sampling and biasing methods have received attention ever since 
Monte Carlo was first used for particle-transport calculations. A clear incentive has 
been provided by the fact that a zero-variance scheme exists for a wide class of 
transport problems. The construction of this optimal sampling scheme requires the 
solution of an equation that is typically equivalent in difficulty to solving the original 
equation, so the zero-variance scheme is not realized in practical problems. 

For sampling schemes that are not optimal, it is often difficult to  demonstrate 
that the efficiency of a biased Monte Carlo calculation is better than that of an analog 
sampling scheme, i.e., a straightforward modeling of the particle birth-death process. 
Here the efficiency factor of the Monte Carlo calculation of a functional is customarily 
defined to  be inversely proportional to  the product of the sample variance and the 
average computation time required per sample. A sampling scheme that increases the 
efficiency of some calculations may be disastrous in others, particularly if improperly 
used. As a rule of thumb, one must use caution when applying sampling schemes with 
the property that the particle weight may change many times in the course of a 
history. This is particularly true if the particle weight at any given phase-space point 
can become much larger than the average weight at that point. Ironically, schemes 
patterned after the theoretical zero-variance scheme tend to fall in this caution 
category. In the following paragraphs we mention a number of biasing methods and 
cite references that discuss these further. 

Biasing the particle source is a technique that is simple and relatively safe to use in 
Monte Carlo calculations, and computer programs are usually written to  allow for 
some source-biasing options. Source biasing is discussed in a number of places, e.g., 
Refs. 2 ,3 ,  and 39. 

The analog density function for selecting collision points is sometimes normalized 
so that leakage out of the system does not occur, and the particle weight is 
appropriately reduced to  account for this after each flight path. However, this method 
is not necessarily beneficial, because of the time wasted in computing the required 
nonleakage probability for each flight path and because many low-weight particles 
result. The interested reader is referred to Ref. 40. 

T h e  e x p o n e n t i a l  transform is a technique widely used to  accelerate 
deep-penetration calculations. In our experience, we prefer to use cell importances 
rather than the exponential transform whenever possible, but the exponential 
transform does enjoy considerable use in the Monte Carlo community. It has some 
weight-stability properties that make it relatively safe to use. The interested reader is 
referred to Refs. 41-43 and 53. 

The biasing of the energy and scattering angle at scattering events has become a 
popular subject during the last few  year^.^^-^' The approach can yield significant 
gains; but t h s  is also an area where caution should be exercised, and such biasing 
should only be used when the pitfalls are well understood. 
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A problem in using importance sampling arises in choosing near-optimal biasing 
parameters. An approximate solution of the adjoint equation can be used to estimate 
these parameters for the random Conversely, approximate calculations of 
the flux have been used to  bias Monte Carlo simulations of adjoint e q ~ a t i 0 n s . l ~ ~  Some 
efforts have also been made to automate the computation of importance sampling, 
 function^^^,^^ to  relieve the user of such worries. One may also visualize a learning 
process in which the Monte Carlo code is written to improve itself as information is 
learned in the c a l ~ u l a t i o n . ~ ~ ~  5 1  

The maze of references on biasing techniques should not lead the uninitiated 
astray. Many Monte Carlo transport calculations can be completed with a reasonable 
amount of computational effort and yet use little or no biasing in the simulation. In 
fact, the Monte Carlo novice should try to use an analog simulation whenever 
practical, and he should apply biasing methods with caution. Most problems can be 
solved with simple source biasing along with the use of importances in regions for 
playing Russian roulette and splitting. We turn now to references on the mechanics of 
simulating neutron and photon transport. 

NEUTRON AN0 PHOTON TRANSPORT 

The mathematics for neutron-transport simulation is developed in the previously 
referenced books.14 Additional information regarding the treatment of the neutron 
interactions and related discussions are given in Refs. 53 to 61 and 105 to 108. This is 
a broad subject area, and we will make no effort here to delineate further the various 
subtopics covered in these references. 

Computer codes for simulating neutron transport tend 'to become obsolete in a 
few years, and, in addition, reviewers find it difficult to adequately evaluate specific 
code strengths and weaknesses. Hence individual computer programs will neither be 
discussed in detail nor recommended. References 62 to 79 describe a number of Monte 
Carlo codes for neutron transport as an introduction to the possibilities. This list 
undoubtedly does not include all the important codes, and therefore we recommend 
that potential Monte Carlo code users consult a code library, such as the Radiation 
Shielding Information Center (RSIC) at Oak Ridge National Labratory or the Argonne 
Code Center at Argonne National Laboratory for a more complete and up-to-date 
listing of major codes and their capabilities. 

References 80 to 102 include discussions of numerous neutron-transport 
calculations that have been performed with Monte Carlo and contain other pertinent 
articles relating to the theory of Monte Carlo and techniques for applying it to neutron 
transport. These references are for the most part taken from the literature of the past 
few years. An excellent review of the older Monte Carlo literature is given by Kraft 
and WensrichIo3 for the period from 1949 to 1963. 

Many neutron-transport calculations pertain to multiplying systems. Special 
considerations in the use of Monte Carlo to  compute criticality are given in Refs. 1 and 

-. . . . .. 
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4 as well as in numerous other places, including Refs. 54 and 105 to  110. The specific 
problem of source convergence is discussed in Refs. 54 and 109 to 1 11. Special 
problems concerned with error limits in source iteration calculations are considered in 
Refs. 112 and 113. We also include a number of other pertinent articles regarding 
criticality calculations with Monte Carlo.' 14-124 

Monte Carlo tends to  have advantages over other numerical methods for 
computing the multiplication factor of small, fast critical assemblies. Mihalczo' l 4  
demonstrates that for some rather simple reflected systems, Monte Carlo criticality 
calculations can be faster than discrete-ordinates methods. 

We turn now from neutron-transport references to photon-transport references. 
The simulation of photons corresponds closely to a simulation of neutrons, except 
that the physical models of the interactions differ. Cashwell and Everett2 include a 
consideration of important scattering mechanisms and techniques to  sample them. In a 
later report by Cashwell et al.125 the simulation of the more sophisticated models 
necessary to treat lowenergy (down to 1 keV) photon transport is discussed. Several 
additional articles applicable to photon transport appear in Refs. 126 to 136. 

For problems where the (n,r) reaction and the subsequent gamma-ray transport 
are important, it is sometimes convenient to link the neutron- and photon-transport 
calculations. Two computer codes that simulate the neutron and photon transport are 
described in Refs. 77 and 78. 

We also include here a number of specific applications of neutron- and 
photon-transport calculations with Monte Carlo. The first is its use in particle 
shielding. A good introduction to special problems in the use of Monte Carlo in solving 
shielding problems is presented in Refs. 137 and 138. Additional information on 
shielding calculations with Monte Carlo is given in Refs. 44 and 139 to 141. 

Another application of Monte Carlo in neutron and photon transport, which has 
become popular in the last few years, is the solution of equations that are adjoint to 
the transport equation. Certain classes of problems may be solved more efficiently via 
the adjoint approach, and, in addition, these solutions can be used to bias forward 
sampling methods. A variety of techniques for sampling from equations that are 
adjoint to  the transport equation are given in Refs. 142 to 145. The interested reader 
will also find Refs. 146 to  154 pertinent to t h s  general subject area. 

Present-day computers are attaining such computational speeds that nonlinear 
radiative transport problems can sometimes be solved with an acceptable amount of 
computer time. The interested reader is referred to  Refs. 155 to  159. Thls is an active 
area of investigation, but many problems must still await solution until faster 
computers are avadable. 

We turn now from specific applications of neutron and photon transport to a 
brief discussion of nuclear data. The ability to  perform sophisticated particle-transport 
calculations is of questionable value unless reliable basic nuclear data are also available. 
Significant progress has been made in this direction during the past few years, and 
evaluated nuclear data files are now readily accessible. Ths  relieves the user of some 
anxieties about cross sections, but he should always remember that reliable output 
depends upon good cross-section input. The user is also sometimes overwhelmed I 6 O  
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by the large volume of cross-section data available from nuclear data fdes, and t h s  can 
be nearly as frustrating as a complete lack of data. Levitt16' alleviates t h s  problem by 
using a probability-table method to describe cross sections in the unresolved resonance 
region with a minimum amount of data. Cullen16' has extended the probability-table 
method to  multigroup calculations. 

The Evaluated Nuclear Data File, ENDF, maintained by the National Neutron 
Cross-section Center at Brookhaven National Laboratory has become the most widely 
used source for neutron and photon cross sections. The interested reader may obtain 
introductory information on this library from Ref. 163 for neutron cross sections and 
from Ref. 164 for photon cross sections. A variety of cross-section processor codes are 
available to manipulate the data and perform multigroup averaging. Codes' 6 s - 1  6 6  

have also been written to  utilize the ENDF data and obtain neutron-energy deposition 
KERMA factors. 

A cross-section compilation by Howerton et  a].' 6 7  also enjoys considerable use, 
particularly for neutron cross sections in the energy range from 1 keV to 20 MeV. 

In this review we assume that adequate cross sections are available from libraries, 
and therefore we do not present a comprehensive discussion of cross sections. Photon 
cross sections are sometimes more difficult to  obtain than are neutron cross sections, 
but Refs. 168 to 176 may be helpful in this regard. 

APPLICATIONS OF M O N T E  CARLO IN OTHER AREAS 

The Monte Carlo method for solving problems other than neutron and photon 
transport is the primary motivation for Refs. 177 to 204. The report by Everett'77 on 
the mathematical framework to  include relativistic effects in particle-transport 
calculations is mentioned specifically since it may be of particular interest. This list of 
references involving applications outside the realm of neutron and photon transport is 
by no means complete. Our intention is that it may serve as a useful starting point for 
a literature search on the use of Monte Carlo to solve special problems. 
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