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PREFACE

In undertaking to review the Monte Carlo method as applied to particle transport, it is
inevitable that we spend more time on topics of interest to us in our work at Los
Alamos Scientific Laboratory. However, we have endeavored to present a variety of
material which will be of general use in solving neutron- and photon-transport
problems, regardiess of their origin.

Although one may argue that our remarks are directed to an audience having
widely differing backgrounds and interests, we hope that this review, in addition to
providing a summary of Monte Carlo methods in transport theory, will assist the
uninitiated reader in using the techniques described to solve his own problems. The
knowledgeable practitioner of the Monte Carlo method can skip the more elementary
exposition. ’ '

We wish to express our appreciation to various people who have helped in the
preparation of this manuscript. We extend our thanks to Robert F. Pigeon, Office of
Information Services, U.S. Atomic Energy Commission, for his cooperation during the
time this work was being prepared and for obtaining reviews of the manuscript. We are
grateful to Professor Norman McCormick for suggesting that the project be undertaken
and for offering his comments on parts of the original draft. Qur special thanks are
offered to our colleagues, W. L. “Buck” Thompson, who suggested countless
improvements in the manuscript, and to C. J. Everett, whose hand is evident in much
of the material presented here.

L. L. Carter
and
E. D. Cashwell
Los Alamos Scientific Laboratory







CONTENTS

Preface . . . . . . . . e i
1 Introduction . . . . ... e e e e e e e 1
2 SamplingMethods . . ... ... ... .. . .. e 2
Introduction . . . . ... L L e e 2
The Basic Principle . . . . . . . . . . . e 2
The Rejection Technique . . . . . . . . . . . . . . . . .. oo 8
Tables of Sampling Schemes . . . . . . . . . . .. .. 12
Importance Sampling . . . . . . . . . L Lo e 13
Splitting and Russian Roulette . . . . . . . . . . . ... ... ...... 16
The Exponential Transformation . . . . . . . . . .. ... .. .. .... 17
Antithetic Variates . . . . . . . . . . .. .. 19
Other Sampling Methods . . . . . . . . . . . .. ... oo 25
Accuracy of Monte Carlo Results . . . . . . . .. ... .. .. ....... 26
Central Limit Theorem . . . . . . . . . . . . . . . 28

3 Mathematical Prescriptions for Simulating

Particle Transport . . . . . . . . . .t i i i e 32
Introduction . . . . . ... L e e e e e 32
Integral-Transport-Equation Approach . . . . . . . . . . .. .. ... ... 33
Integro-Differential Approach . . . . . . . ... ... .. ... 40
Physical Approach . . . . . . . . . . ... 41




4  Mechanics of Simulating Particle Transport . . . . . .. ... .......
Introduction . . . . . .. Lo e

TimeDependence . . . . . . . . . . ..
Sampling the Source . . . . . . . ... Lo e
Attenuationand Leakage . . . . . . . . . . ... ...
Sampling the Collision Event . . . . . . . . . .. . .. ... ... . ...
Estimators . . . . . . . .. e
Simulation of Adjoint Equations . . . . . . . . . ... .. ... ...
Mulitigroup Monte Carlo . . . . . . . . . . . . ...

5 NeutronTransport . ... ................ e e
Elastic Scattering . . . . . . . . . . . . .. .o
Inelastic Scattering . . . . . . . . . ... oL
Fission . . . . . L
Thermal Scattering . . . . . . . . . . . ... ..
Criticality . . . . . . . . e

6 Photon Transport . . . . . . .. .. ... ... e
Introduction . . . . . . L
Compton Collisions . . . . . . . . . . ...
Incoherent Scattering . . . . . . . ... ..o
Coherent Scattering . . . . . . . . . . . ...
Photoelectric Effect . . . . . . . . . . .. ... o
Pair Production . . . . . . . ... e

T  Literature Survey . . . . . . . . .. e e
Introduction . . . . . . L oL
Books on Monte Carlo and Probability Theory . . . . . . . ... ... ..
Sampling and Scoring Techniques . . . . . . . . . . ... . ... .. ...
Biasing Methods . . . . . . . . . . . ... e
Neutron and Photon Transport . . . . . . . . . . .. . .. . .......
Applications of Monte Carlo in Other Areas . . . . . . .. ... .. ...
General References on the Monte Carlo Method . . . . . . . .. .. ...

Vi




] INTRODUCTION

The computational speed and fast memory capacity of the modern digital computer
have made practical the simulation of difficult mathematical problems with the Monte
Carlo method of statistical trials. Although the Monte Carlo method is typically used
to simulate a random process, it frequently is applied to problems that do not have an
immediate probabilistic interpretation. Thus it has become a useful computational tool
in all major areas of scientific endeavor.

Since complete treatment of the Monte Carlo method is beyond the scope of this
review, we have focused attention on its application to particle-transport problems,
with major emphasis on neutron and photon transport. Historically Monte Carlo has
been a useful computational tool for particle-transport problems, and this is still its
area of most extensive use. However, a sampling of references in other areas has been
included in Chap. 7 to provide a starting point for the interested reader.

In Chap. 2 sampling techniques and the basic mathematics used in a Monte Carlo
calculation are discussed. Chapters 3 to 6 present a bird’s-eye view of the theory and
use of Monte Carlo in solving neutron- and photon-transport problems. References are
cited to enable a deeper study of each topic.




2 SAMPLING METHODS

INTRODUCTION

The Monte Carlo method is distinguished from other techniques in numerical analysis
by the use of random sampling to construct the solution of a physical or mathematical
problem. A stochastic model, which may or may not be immediately obvious from the
problem, is set up, and, by sampling from appropriate probability distributions, we
estimate the required numerical answers to the problem by statistical means. In the
treatment of particle-transport problems, which we are primarily interested in here,
the probabilistic methods used may require rather sophisticated mathematical tools to
justify them rigorously. The interested reader is referred to the report by Spanier! and
the book by Spanier and Gelbard.? However, much of Monte Carlo is intuitive in
nature and requires only a knowledge of elementary probability theory. In this
chapter, we shall review basic sampling techniques essential to the treatment of
transport problems as well as remark on the estimation of errors in these problems.

THE BASIC PRINCIPLE

Throughout our discussion we assume that we have at our disposal a supply of
random numbers £, which are uniformly distributed on the interval [0,1).* There are

*We use the common mathematical definitions for real intervals; the open interval (0, 1)
refers to the set of real numbers £ such that 0 < £ < 1, and the closed interval [0, 1] is the
set of real numbers £ such that 0 <X & <C 1. Similarly, [0, 1) is the set of real numbers £ such
that 0 < £ < 1, and (0, 1] denotes the set of real numbers £ such that 0 < £ < 1,
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many schemes for generating such numbers. The most practical for machine use is to
generate these “pseudorandom” numbers by some arithmetical subroutine as they are
needed. The sequence of numbers used must satisfy certain properties of randomness.
In addition to being uniformly distributed, an obvious requirement is that they be
uncorrelated; for example, the size of the (n + 1)s¢f number should be independent of
the size of the nth or, for that matter, of any of the preceding numbers. Since
arithmetical schemes are almost universally used in present-day codes, it is not obvious
that these requirements can be met. A very popular method for generating sequences
of pseudorandom numbers is the congruential scheme of Lehmer.> An informative
discussion of the generation and testing of random numbers is given in Chap. Il of a
book by Knuth,* which also includes a set of six ““rules” to follow in choosing a good
random-number generator. Additional references are contained in Knuth’s discussion.
The literature on the generation of random numbers before 1962 is summarized by
Hull and Dobell,5 and a more comprehensive treatment is given by Jansson.® In regard
to the question of the reliability of random numbers, MacLaren and Marsaglia”-8 point
out difficulties that can arise with congruential schemes in certain high-resolution
applications. The work of Beyer®-10 is also concerned with the deficiencies of the
linear congruential generators, discussing in more detail the lattice structure of
n-dimensional vectors obtained from such generators. An interesting discussion of the
lattice structure of these vectors is also contained in a paper by Coveyou.!l

Suppose E,, ..., E, are n independent, mutually exclusive events with prob-
abilities p,, ..., p,, respectively, p, +...+p, = 1. Clearly, if a random number &,
0 < § < 1,is such that

pl+...+pi_l<2<pl+"'+pi (21)

then & determines the event E;. For example, E,, E,, and E; may refer to capture,
elastic scattering, and inelastic scattering when a neutron collides with an atom. The
probabilities are defined by p, = o /0y, p, = 080y, p; = 0o, with o, = o, + 0L + 0.

This case of discrete probabilities can be illustrated graphically by assigning a
variable x on the interval 0 <x <n to the events E, , ..., E, with the agreement that
i- 1 <x<i represents the event E;. Let us construct a probability density function
p(x) by the definition

p(x) = p; (2.2)
wherei- 1 < x<ifori=1,2,...,n.13 Thus p(x) is a step function similar to that
shown in Fig. 2.1. The sum of the rectangular areas depicted is clearly
p, t ...+ p, = 1. Now suppose we define the probability distribution function

P(x) = fOX p(t)dt (0 < x <n) (2.3)
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whose graph is shown in Fig. 2.2, a monotone increasing broken-line function such
that P(O) = 0, P(n) = 1. Since P(i) = p, + ... + p;, we may interpret P(x) to
mean the probability of the inequality x'<xforx =i,i=1,2,...,n. Moreover
the equation

£=P(x) = [*p(n)dt (2.4)
determines x uniquely as a function of £ in such a way that, if 0 < & < landif {is

distributed uniformly on the unit interval, then x falls on the interval i ~ 1 < x < i
with frequency p,, thereby determining the event E;.

p(x)

PaI—

Poj—~—=| Ez |[-—————

Py En

(0] 1 2 e o o n-1 n

Fig. 2.1 Density function for the discrete case.

o | L {

1 2 o o o n-f n

Fig. 2.2 Cumulative probability distribution function for the discrete case.
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For a continuous density function p(x), a < x < b, as shown in Fig. 2.3, clearly
we could approximate p(x) arbitrarily closely by a step function defined on equal
subdivisions of [a,b) and repeat the reasoning above to determine x, a < x < b, by
throwing a random number £ uniformly on [0,1), except the x is now a continuous
variable. This argument leads us to state the fundamental principle for the continuous
case: If p(x) is a probability density function on the interval a < x < b, then

£=P() = [*p(t)dt (2.5)

determines x uniquely as a function of ¢ (Fig. 2.4). Moreover, if ¢ is uniformly
distributed on 0 < & < 1, then x falls with frequency p(x) dx in the interval
(x,x + dx).

Let us give a couple of examples to illustrate the basic principle. Suppose we want
to sample the distance to collision of a particle. The probability of a first collision
between / and/ + d/ along its line of flight is given by

-z
pdl =e V2 dl (2.6)

p(x)

/N

I

I |

| Ly
a b

Fig. 2.3 Density function for the continuous case.

Fig. 2.4 Distribution function for the continuous case.
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where Z, is the macroscopic total cross section of the medium and is interpreted as the
probability per unit length of a collision. Setting
! !

g=fe Urds=1-¢ 2.7)

it follows that
1
I=-—In( ~¥% (2.8)
Z¢

But, since 1 - £ is distributed in the same manner as £ and hence may be replaced by
¢, we obtain the well-known expression for the distance to collision,

I = - zitln £ (2.9)

Another quite different example is obtained if we wish to sample from an
isotropic (spherically symmetric) distribution. That is, each element of solid angle
receives the same contribution, d§2/4m. One way of sampling from this function is to
write it in spherical coordinates,

42 _ sin6 d9 dy (2.10)
4r 2 2m

where we have written the density function in the form p(6,¢) = p,(6) p,(¥). Thus @
and ¢ are independent random variables and can be sampled separately. Setting

i
£ =%'[ du (u = cos 8)

2 (2.11)
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we obtain

cos ¢
o = 2mk, (2.12)
Usingsin6 = (1 - cos? 9)”,
Q, = sinf§ cosy
Q. =sinf siny

Q. = cosb (2.13)

are the direction cosines of the new direction. Later we will show how to sample
directly for sin ¢ and cos g, rather than to evaluate the sine and cosine of the angle ¢.
In many applications the solution of Eq. 2.5,

£=Px) = [ p(t)dt

for x in terms of £ involves difficult implicit problems. An iteration method, such as
the Newton-Raphson scheme, may be used to invert the relation £ = P(x), when P(x)
is obtained in closed analytic form.

A simple but fast method, applicable in all cases, involves subdividing the interval
[a,b] and storing accurate values of P(x;) = P; at the points of subdivision
X, =a<x; <...<x, =b. Using the method described above for discrete
probabilities to determine the subinterval (x;-,, X;) on which x falls, we obtain the
sample value of x on this interval by interpolation. If i is the first value of the index
for which £ - P, is negative and if we use linear interpolation to determine x, then

P, - ¢
X = X

_—— (X - X 2.14
; Pi—Pi—l(XI Xi.1) (2.14)

In some applications the values of P; will have to be obtained by numerical integration.
Owing to its speed and versatility, this method is used extensively in transport codes.
Equation 2.14, which fits the curve of [x, P (x)] with straight lines between successive
points (x;-,, Pi-,) and (x;, P;), distributes x uniformly on the interval (x;-,, x;)and
is strictly valid only when p(x) is a step function. Greater accuracy may sometimes be
obtained by passing through successive pairs of points on the curve of the distribution
function polynominals of second or higher degree. (See Chap. 1 of Ref. 11a.)
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THE REJECTION TECHNIQUE

A method often convenient for sampling from a density function p(x),
a < x < b, is the rejection method shown in Fig. 2.5. It is frequently favored when
p(x) is readily computable and storage space is at a premium. Suppose p(x) is
bounded, and let us define

sy = PX)
px) Sup p(x)
fab p(x)dx =1 (2.15)

where a < x < b. Let us select a pair of random numbers (£, 1) and define x' = a+
£b — a). If p*(x') > n, we accept x" as our sample value of x; otherwise we reject x’
and repeat the procedure. Thé points (x’, 7)) are uniformly distributed in the area
below the curve and above the x axis. Hence it is geometrically obvious that in many
trials the fraction of points x’ retained between x and x + dx will be approximately
the ratio of the areas

p*(x)dx _ p(x)dx
e dx [ p(x)dx

= p(x) dx (2.16)

This may also be seen in a more formal and rigorous manner. The probability density
function of x is the conditional density of x, given that n < p*(x), and is denoted by
q[x | 7 < p*x)]. If we denote the joint density of x and 7 by q(x,7n), where
q(x,n) = 1/(b - a) in the rectangle and is O elsewhere, then

o b ————

Fig. 2.5 The rejection technique.
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[1/ - 2)] /2" dn

[1/6 - )] £ dx [P ™) dn

qfxin < p*x)] =

- _ p*x)
1 pr(x) dx
The efficiency ot a rejection method is defined as the ratio of the number of

values of x" accepted to the total number selected, and this is clearly the ratio of the
area under the curve to the total area of the rectangle. That is, if Sup p(x) = A, then

. Ppr@d Ppdx
ey = e Ab-a)  AD-a)

= p(x) (2.17)

(2.18)

This number, which is obviously less than 1, determines to a large extent whether a
given rejection method may be feasible. Although usually convenient to use, the
rejection technique may prove to be costly of machine time if the efficiency is low.
Many commonly used routines that use a rejection have an efficiency considerably
above 1/2.

Let us consider a generalization of this method which is in common use. In fact,
we shall use this device in discussing photon transport in Chap. 6. Suppose we have a
probability density function p(x) on the interval [a, b] which has the form

p(x) = Cg(x)f(x) (2.19)

Here f(x) is itself a density function on [a, b] ; without loss of generality, g(x) may be
bounded, 0 < g(x) < 1, and C is a normalization constant. Now we choose a sample
x" from the density f(x), a < x’ < b. If a random number £ is less than g(x'), x is
retained as our sample from f(x); otherwise x’ is rejected, and we repeat the procedure.
The conditional density of x, given that § < g(x), is

(x) 5 d

[P () dx [ ag

qlxlE < gx)] =

- fx)gx)
fab f(x) g(x) dx

= Cf(x) g(x) (2.20)
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We can show that this rejection scheme yields values with density p(x) in a
different manner, one which is patterned after the procedure actually followed in
sampling with this method. Let us first compute the probability that the first trial in
the process is successful, i.e., the value of x is not rejected. The probability that x is
chosen between x and x + dx is f(x) dx, and then the probability that the assignment
is ratified is g(x), leading to the probability of x in the interval (x, x + dx) on the
first trial given by g(x) f(x) dx. However, the probability of rejection on the first trial
is easily seen to be

f;’ [1 - gx)] f(x) dx =1 - C!

Thus the probability that x will be chosen in the interval (x, x + dx) on the second
trial is (1 - C-1) g(x) f(x) dx. Continuing the argument through the countable
sequence of trials, we obtain for the probability that x will be chosen in the interval
(x, x *+ dx) the expression

o0

D e f(x) dx(1 - €~k = Cg(x) f(x)dx = p(x) dx (2.21)
k=0

(It is observed that

C= ! >1

) 1 8(x) f(x) dx

since
fab g(x) f(x)dx < fab f(x)dx =1

therefore |1 - C71] < 1))

Various other generalizations of this method appear in the literature.?:12 Let us
return to an application used widely in computer codes, evaluation of cos ¢ and sin ¢,
where ¢ = 2nf is a uniformly distributed angle on (0, 27). As seen earlier, these
functions arise in determining an isotropic distribution of particles, and, more
generally, they appear in the process of computing a new direction of motion from an
arbitrary scattering function. One can justify the rejection procedure used by
appealing to a multidimensional generalization? of the one-dimensional process
described above. However, a geometric argument makes the sampling procedure
transparent.

Consider Fig. 2.6, which portrays the unit circle inscribed in a square of side
length 2. Choosing pairs of random numbers (&; §&,) with
0<§f <1,0<¢, <1 and computing x, =2§, - 1, x, = 2§, - 1, we see
that the points (x;, X,) are uniformly distributed in the square. If we retain those
points inside the circle and reject those outside, it follows that each element of angle
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(xyyx,)
Qo\P +tAv

(e}

Fig. 2.6 Rejection for cos ¢ and sin ¢.

Ap will receive the same number of admissible points. Thus, if each retained point

(x4, x,) determines a value of ¢, then ¢ is sampled uniformly between O and 27.
Further, each point that is retained determines the functions

S S
Ol D)

X2

in = —5 22 22
sin @ T+ x2 )% (2.22)

Use of the double-angle formulas from trigonometry leads to the relations

x3 —x3}
cos =
oS
in 2X( Xy
sing=
aEET

which avoids the use of the square root.

The efficiency of this process is the ratio of the area of the circle to that of the
square, and hence is /4. An acceptable value of the efficiency accounts for the
extensive use of the above device for sampling these functions.




12

SAMPLING METHODS

TABLES OF SAMPLING SCHEMES

Many of the commonly occurring density functions in neturon- and
photon-transport problems have simple and elegant schemes for sampling from them.
For example, a very important density function in neutron transport is the normalized
fission spectrum, which may be approximated by

2 1 v B/T
X(E) = — E”%e 2
( ) 771/7' T3/2 ( 23)

Let £ represent a random number on the unit interval. Then this function may be
sm’npled13 by choosing three random numbers £,, £, , and £, , and then

E = T[—lnsl - (n 22)cos2<g- go>] (2.24)

Similarly, suppose we want to sample '3 for the frequency v from the normalized
blackbody distribution

b = 15 _ %
i (225)
where v = (kT/h)x. Set
!
L= l; -4
wliZre o
then
x = -L' In (£,£,£,8,) (2.26)
and
, kT
h (2.27)

(The notation {x; F(x)} means the set of all x satisfying the condition F(x).)

At this point in the development of Monte Carlo methods, many other examples
of commonly occurring density functions can be sampled by clever and efficient
schemes. The earliest compilation of such devices was made by Kahn!4 and numerous
examples appear throughout the later literature. A more recent collection of many of
the known cases has been made by Everett and Cashwell.13:133




IMPORTANCE SAMPLING

Another example of a simple device, one that is described in Ref. 13, which we
single out for mention here since we refer to it in Chap. 5 in connection with the
discussion of elastic scattering, is the following: Suppose we wish to sample from the
probability density function p(x), defined on the interval (a, b), where

J

p(x) = Z a;(x) (2.28)

=1

with aj(x) = 0 and J finite or infinite.

If we define
_ b
A = fa aj(x) dx

It follows that
J
A =1
j=1

Set

i
k

K = mingk;ZAj > gs
1

where £ is a random number on the unit interval. Then sample the density function
ag(x)/Ag for x. It is clear that the density function aj(x)/Aj is sampled with
probability A;, and hence that a sample is chosen between x and x + dx with
probability p(x) dx.

If p,(x) and p,(x) are two density functions, this scheme provides an efficient
way of sampling for the interpolated density p(x), where

p(x) = o, p,(x) + a, p,(x) (g 20, 0y +a, = 1) (2.29)

13

IMPORTANCE SAMPLING

When, in the course of obtaining an estimate of a given quantity by a Monte Carlo
calculation, one samples from fictitious density functions, then one is using biasing.
This distortion must be corrected for by using a weight factor to alter the contribution
to the quantity being estimated. Another name applied to biasing in certain instances
is “importance sampling.” Importance sampling refers to sampling the most important
regions of a problem—in an integral, sampling well that portion of the domain which
contributes most to the value, and, in a transport problem, sampling adequately those
trajectories which are likely to contribute to the functional being evaluated.
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Let us assume that we have a probability density function p(x) defined on [a, b]
and that we wish to evaluate the mean value of a function f{x) when x is sampled from

p(x),
B() = [°f(x) p(x) dx (2.30)

Suppose that, for convenience or from need to reduce the error, we choose x from a
different density function 'f)'(x) If for each point x; so chosen we assign a weight
w(x,) p(x;) / P(x;) and if the score of the game is calculated as w(x;) f(x;), we are
computing the mean value of Tx) = f(x) w(x) = f(x) p(x)/P(x),

E(D) = [P T dx = (2 () p(x) dx = E(f) (231)

Thus the mean of ?(x) is naturally unchanged from the mean of f(x). This is not true,
in general, for the variances of the two functions, since

E(f2) = fab £2(x) p(x) dx (2.32)

b
E(f?) = f £2(x) P(x) dx

a

b
=j 200 2 53 ax

a P (x)

P() .
j [ 5 )] 70 p0a) dx (2.33)

a Lp(X

The variance is given by E(?2) - E2(T) = E(T?) - B2 (f). Since this is a
positive quantity, if we can chooseP(x) such that [p(x) /P(x)] < 1 over a portion of
the interval (an important portion) which contnbutes extensively to the second
moment E(f?), then it appears from the relation for E( f T2) that the variance has been
reduced. [Note that p(x) /P(x) cannot be less than 1 over the entire interval, because
p(x) and P(x) are density functions and hence are normalized to unity.] The perfect
density P(x) is given by f(x) p(x) / E(f) since then

E(f?) - E2(f) f [f(x) p(x)) E(f)] Px)dx =0 (2.34)
p(x
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and hence the variance is zero. Of course, if we knew E(f), we would not need to
sample for it. We cannot choose Pix) such that Tx) = f(x) p(x)/Pix) is constant
since the constant will be E(f). However, the sample mean is found as the arithmetic
mean of trial values of ?(x), and hence the sample variance will be small if one
chooses P(x) so that f(x) p(x)/Plx) is approximately constant. To accomplish this,
the function P(x) may determine many more sample values in some parts of the
interval than in others. In a simple case we are led naturally to the idea of importance
sampling by attempting to reduce the variance.

In a similar way one is led to the idea of importance sampling in treating transport
problems by the Monte Carlo method. Here we sample trajectories or random walks in
phase space. Along each of these random walks, it may be desirable to sample from
fictitious density functions for points in phase space, correcting by altering the
statistical weight that may be assigned to the particle in this case. One attempts to
emphasize the choice of points in phase space which will lead to significant
contributions to the function of interest.

Consider the integral form of the transport equation

F(R) = [K(R;R)F(R")dR' + SiR) (2.35)

where R denotes the kinetic energy, direction of flight, and position of the particle;
F(R) is the density of particles entering collision at R; Si{R) is the first-flight collision
density due to extraneous sources; and K(R;R") is the next-flight collision density at R
due to a collision occurring at R'. This equation is discussed in more detail in Chap. 3.
Suppose we wish to estimate the functional

= [F(R)h(R) dR (2.36)

where h(R) is the contribution to the desired quantity of interest due to a collision at
R.

In attempting to bias the random-walk process in favor of trajectories more likely
to contribute to the above functional, we might make an estimate of the expected
contribution to J from a particle at R. If such an importance function, I(R), is
available, it can be used as a weighting function to modify the density functions that
yield, at each step of the random walk, the next point R in phase space. The weighting
function I(R) can be used to define new functions Sr(R) and K(R R’) as follows:

SRy - SR

f [S{R) IR dR’

~ o on = KR;R)IR)

KR®:R) = IRy (2.37)

These functions are used to define the random-walk process, the weight of the particle
being modified accordingly at each step. A source particle at R has its weight modified
by the factor S{R) /S{(R), and each particle that enters collision at R from a previous
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collision at R’, has its weight multiplied by the factor K(R; R')/I’Z(R; R'). For further
discussion of this, the reader is referred to a review article by Goertzel and Kalos;!? in
Chap. 3, however, the special case where I(R) is the solution of the adjoint equation
is considered in detail. There the ideal weighting function is shown to be given by the
solution to the adjoint equation

F'(R) = [K(R;R)F'(R)dR" + h(R) (2.38)

When this function is used for I(R), each sample trajectory yields J as the score. Of
course, finding F'(R) is, in general, as difficult as obtaining F(R), but these

" considerations indicate that an approximate solution of the adjoint equation may

prove to be of real value as a weighting function.

SPLITTING AND RUSSIAN ROULETTE

One of the oldest and most successful biasing techniques, and one which is
commonly used in deep-penetration problems, is that of splitting accompanied by
Russian roulette. To illustrate its use, suppose we have an optically thick slab of
material, say a semi-infinite slab of thickness T, 0 < z < T, with a source of particles
prescribed either at or near the plane z = 0. At specified plane boundaries z = z; in
the increasing z direction, assume that the particle splits into v identical particles, each
of weight W/p, where W is the incoming weight. Clearly, weight is preserved, and we
process more (v times as many) particles with smaller weights. The statistics should be
improved since in many shielding problems the sample size diminishes to almost
nothing in the far reaches of the shield. Although » may frequently be an integer, it
need not be. All that is necessary is that the expected number of split particles be »;
eg,if n < v < n+ 1, acommon recipe is to choose n particles with probability
n+ 1~ v and n + 1 particles with probability » - n. Obviously many other
recipes are available. If v is not an integer, it may be preferable not to split into »
particles on the average but to split into n + 1 particles with weights W/(n + 1).
However, splitting is most often provided in combination with Russian roulette, and
then there are advantages in preserving the value » by which the weight is divided.

If it is desirable to split particles when they penetrate deeper into a shield, or, in
general, when they enter a more important region of the problem, then it is usually
sound practice to decrease the number of particles followed when they enter a less
desirable region. This can be achieved by Russian roulette. In our example, if a particle
proceeds across the boundary z = z; in the direction of decreasing z, Russian roulette
allows the particle to survive with probability ¥! and its weight to be increased by a
factor v. The particle is killed with probability 1 - v’!.

In complex geometries each cell or geometric region of the problem can be
assigned an importance 1. Then, when a particle enters cell n+ 1 from cell n, the ratio
I,+1/1, is examined. If I, /I, > 1, so that the particle is entering a cell of greater
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importance, then the particle is split into » = I, /I identical particles, each of
weight Worl where W is the incoming weight. If » = 1_, /I, < 1, then Russian
roulette is played, and the particle survives with probability » with weight Wy~ 1. Some
variation of this scheme is built into most Monte Carlo codes?%in general use.

When splitting and Russian roulette are combined as we have described, then the
particles that are in a region of importance I will tend to have the same weights—if
these are the only processes modifying the weight of a particle, the weights will be
identical—and this is usually advantageous in computing the variance of a scored
quantity.

The device of assigning an importance to a cell in the problem can be generalized
to make this quantity a function of other variables in the problem. For example, by
this means the splitting and Russian roulette can be made to depend on the energy of
the particle.

Splitting, with Russian roulette, is undoubtedly the most widely used
variance-reduction technique. Simple to use, it is also hard to abuse—it usually saves
machine time. With a shielding problem, we find it efficient to maintain roughly the
same sample size (by splitting) as the shield is penetrated. Although the recipe depends
on the material composition, this means that the particles should be split
approximately 2 for 1 at boundaries spaced a distance of X (mean free path) apart.
Sample calculations may be advisable in setting up the splitting parameters for
maximum efficiency, although rough estimates usually pay dividends in reducing the
amount of machine time necessary for a given error. In calculations on the penetration
of thick shields (v 10 to 20 M), savings in time of several orders of magnitude have
been obtained by efficient use of splitting and Russian rouiette.

In the slab problem considered above, the process of splitting, accompanied by
Russian roulette, may be thought of as an example of importance sampling where the
transport kernel is modified. In the limit of infinitely many splitting boundaries, it
is a special case of the exponential transformation,?-12 which we consider next.
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In attempting to improve on straight model sampling when applied to
deep-penetration problems, we find that the devices of splitting and Russian roulette,
discussed in the previous section, appeal to the intuition. It appears obvious that one
should artificially increase the number of particle histories in important regions (with
suitable modification of weights, of course) while decreasing the sample size in
unimportant regions. Another way in which this might be accomplished would be to
artificially increase the distance between collisions in the desired direction, say, that of
increasing penetration of a shield, while at the same time decrease the collision
distance in the opposite direction. Such a method of importance sampling is effected
by the exponential transformation.

In order to discuss the exponential transformation, suppose we again consider the
semi-infinite shield of thickness T, 0 < z < T, with a source confined to small z.
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Since the flux of particles will fall off approximately exponentially in the positive z
direction, it appears that a good guess for the importance function discussed earlier
will be given by

I(z) = e%* (2.39)
The transformation'? of the transport equation which results from the modifications
of the source and kernel through the use of this importance function is called the
exponential transformation. Omitting the mathematical details in transforming the
transport equation, the net effect of using this importance function is to modify the
transport kernel, in that the macroscopic total cross section, Z,, is replaced by
T, - aw, where w is the direction cosine of the line of flight of the particle with the

z-axis. Thus in the transport process for an arbitrary direction, the probability of
having a first collision at a distance between s and s + ds is given by

~(Et - 0W)s

(Z; - aw)e ds (2.40)
In the analog simulation this probability should be

-2
T Uds (2.41)

Hence, if we use the fictitious X, - aw for sampling the random walk, we should
multiply the weight of the particle entering collision by

e WS (2.42)

or, since ws = Az, by-

In Monte Carlo codes with complex geometry and many materials, it is frequently
convenient to adjust the weight of the particle as we go. If we proceed in this manner,
the scattering kernel is unchanged; i.e., the scattering process is unaltered by this
transformation.

Usually o is chosen so that =, - aw > 0. If so, the fictitious total cross section
will be smaller for positive w and larger for negative w, leading to longer flight paths
between collisions in the direction of increasing penetration of the shield and shorter
flight paths in the opposite direction.

If Z,-aw < 0, one may add a term Z;p to both sides of the integro-
differential transport equation written in terms of the flux, ¢, such that
Z;-aw+ Z}) > 0 for « and all values of w. The term E'tap can be regarded as a new
process, whose cross section is E't, in which particles continue undeflected with all
parameters unchanged.
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The exponential transformation and its use in solving deep-penetration problems
is discussed by Leimdorfer'6-17 and Levitt1®

ANTITHETIC VARIATES

The antithetic method of reducing the variance by a modification of the scoring
scheme was proposed as an important Monte Carlo technique by Hammersley and
Morton!® in 1956. The method was developed further in aseries of papers,2023 and
shorter treatments are to be found in the books by Hammersley and Handscomb?# and
by Spanier and Gelbard? We offer a brief summary here.

Given random variables X,Y with means X, Y, respectively, then the covariance of
X and Y is defined as

cov(X,Y) = E[(X - X)(Y - V)] (2.43)

where E[Z] stands for the expected value of Z. If X and Y are independent random
variables, cov(X,Y) = 0, although the converse does not necessarily hold. We may
define the correlation coefficient of X and Y as

p(XY) = cov(X,Y) (2.44)

[(var X)(var Y)]”

It follows from the Cauchy-Schwarz inequality that p has a value between -1 and +1.
If o = 0, the two random variables are said to be uncorrelated, and therefore
independent random variables are uncorrelated. It is for this reason that p(X,Y) is
frequently used as a measure of the dependence between X and Y. If p(X,Y) > 0, the
variables are said to be positively correlated; if p(X)Y) < 0, they are negatively
correlated.

In the method of antithetic variates, given the estimator twith expectation 8, we
seek a second estimator t* having the same expectation as t but possessing a strong
negative correlation with t. Then (t + t*)/2 will be an unbiased estimator of 8, with
variance

(t+t*)| _vart  vart® cov(t,t*)
Var[ 7| 3 3 (2.45)

If cov(t,t*¥) < 0, then it may be true that

*
var [Q;—)] <vart
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For example, suppose we wish to evaluate

(©) = f) g(x)dx

(2.46)

The usual Monte Carlo procedure is to select a random variable £ uniformly on the

unit interval and evaluate
n
= 1
G=— g(Ei)
n
i=1
G is taken as the estimate of (G). Consider instead the scoring function

g(x) = aglax) + (1 ~agll - (1 - o)x] o0<ax<1

) 860 dx

JF et dt + fp g0 dt

= [ g®dt = <G
Thus the expectation of g(x) is( G ). On the other hand, if
[ 00 dx < 82(0) dx
the variance is reduced.

We may observe that, regardless of the function g(x),
fl ~2 < 1 2
b Br(x)dx < Jj g7 (x)dx

and hence the variance of g(x),

[ P20 dx - <GY
is never larger than the variance of g(x),

g dx - (6

a fol glax)dx + (1 - ) fol gl - (1 - o)x] dx

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)
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To see this, let us compute

fol () dx = a? fol g2(ax)dx + 2a(l - a) fol glax) g[l - (1 - a)x] dx

+ (1 - a)? fol g2[l - (1 - a)x] dx (2.52)
But, by using an elementary inequality, we have

2gax) g[l - (1 - @)x] < g?(ax) + g2l - (1 - @)x] (2.53)
with equality only if glax) = g[l - (1 - a)x]. Equality is clearly impossible for

strictly monotone g(x). Substituting for the inequality and combining terms, we
obtain

fol 2(x)dx < a fol g2(ax)dx + (1 - ) fo1 g2l - (1 - @)x] dx
= S7g2(0)dt + [, g2(t) dt

1
= Jy g2(t)dt (2.54)
Therefore
fy BAx)dx < ) g2(x)dx (2.55)
with inequality holding for strictly monotone g(x).

Suppose we consider the estimator2:24

f(x) = g(x)_+2g(1—_x) (2.56)

For all practical purposes, f(x) is equivalent to choosing @ = 1/2 in the definition of
g(x). Defining V = var g and V; = var f, we see from the above arguments that
V, < V.If we define

_1g
fo = ;Z f(&;) (2.57)

1=1
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f,, is an unbiased estimator of [ g(x) dx. Also

var f, = —rll-var f

_1 | ] 2
=— [y £ ax - (077

=—:1-v1 <lvy (2.58)

==

We shall show that, for g(x) monotone, V,; < V/2, which makes the estimator f(x)
much more attractive since the cvaluation of f is about twice as much work as the
evaluation of g.

This result is given by Spanier and Gelbard.2 The proof depends on the following
lemma. Since the lemma occurs as a by-product of some work on inequalities by
Everett and Cashwell 25-27 we give a trivial proof that does not depend on the conti-
nuity of the functions.

Lemma. Let g(x) be a nonnegative monotone nondecreasing (nonincreasing)
function and let q(x) be a monotone nondecreasing (nonincreasing) function with

fy q(x)dx=0

Then
J) g q(x)dx >0 (2.59)

Proof. Given that q(x) is a monotone nondecreasing function with
fol q(x) dx =0
then there exists an x,, such that
qgx) <0 0 < x <%
gx) =2 0 X < x <1 (2.60)

Thus [5° g(x) dx < 0, f;o q(x) dx = 0, and g(x) > 0 everywhere on the unit interval.
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Hence
J, g0 a0 dx = g0 a dx + ] 800 a9 dx
> g(x0) foxo q(x) dx + g(xo) fxlo q(x) dx
= g(xo) J; a(x)dx = 0 (2.61)
Therefore
il e gedx 2 0 (2.62)

For nonincreasing functions the proof is similar.
Now the following result follows easily:

Theorem. If g is a nonnegative monotone function of x, V, < V/2.
Proof.

1
\'2 =f £2(x)dx - ()
0

1 1
=%f g2(x)dx + -};f g2(1 ~ x)dx
0 0

1
+%f g0 g(l - x)dx - (g)? (2.63)
0
If in the lemma above we choose
a) = 1 - =0

fy 8(1 - x)dx

then q is monotone with

fol q(x)dx = 0

23
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Therefore, by the lemma,

f) g g1l - x)dx

fol g(l ~ x)dx

fo 09 a0 dx = J gx) dx -

>0
or
) 809 8(1 - ) dx < [ g dx [ gl - x)dx
Therefore
1{"' 5 1!,
\'2 <—4~ . g“(x) dx ary . g(1 - x)dx
1 1 1
+7f g(x)dxf g(l - x)dx - (g)°
0 0
1 1
=3 f g2(x)dx - (g
0
Hence

v, < "\2'/' (2.64)

Where g(x) is not necessarily monotone, Goertzel and Kalos!? point out that an
estimator that may be effective is given by

g(x) = aglax) + (1 - agla - (1 - a)x] (2.65)

This function had previously been considered by Hammersley and Morton.!?

As a simple example of the use of antithetic variates in a practical situation,
Hammersley and Handscomb2# discuss the problem of calculating the multiplication
rate in a sphere of fissile material, where it is assumed that fission neutrons are emitted
isotropically. In estimating the eigenvalue, they chose that neutrons in pairs from
fission be emitted in opposite directions and made estimates of the expected number
of fissions occurring in the system in each of the two directions. These estimates are
negatively correlated since, if one is too large, then the other is too low. A better
estimate is then expected to be the arithmetic mean of the two.

Another example mentioned by Spanier and Gelbard? involves the use of
antithetic variates in estimating resonance integrals. Neutrons born at higher energies
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will usually contribute more heavily to the resonance integrals simply because they
pass through more energies at which resonances occur. The source of resonance
neutrons is sampled in such a manner that a particle born at high energy is paired with
a particle born at a correspondingly low energy. These two contributions are
negatively correlated, and using their mean as the value of the contribution can lead to
much more efficient sampling of the resonance integrals.

25
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In closing our summary of some of the most useful methods of sampling
employed in Monte Carlo, we mention two sampling schemes that are quite helpful in
practice and refer the reader to the literature for a more comprehensive discussion of
each.

One sampling scheme is the method of stratified sampling.?#(See the discussion
of quota sampling by Goertzel and Kalos!? and the treatment of systematic source
sampling by Spanier and Gelbard?) In this method the sampling region is subdivided
into discrete subregions, and each of these is sampled a preassigned number of times.
When the subdivisions, as well as the number of sampling points in each subdivision,
are chosen with a view to minimizing the variance of the stratified sampling estimator,
appreciable savings in computer time can result. In any event the scheme is easy to put
into practice, and even elementary attempts at stratification will usually lead to an
increase in efficiency over the use of straightforward (crude) Monte Carlo.

The second sampling method, which is very important in many applications, is the
technique of correlated sampling.?:2% This method of calculating differential effects is
applied to the Monte Carlo sampling of two random variables that have a strong
positive correlation. If the changes between the two problems under investigation are
small so that one problem may be regarded as a perturbation of the other, separate
Monte Carlo calculations for the two systems may be impractical. The statistical
uncertainties in the estimates may mask the difference between them that is being
sought. It may be possible to correlate the two problems by using a single set of
particle histories. One set of histories is descriptive of the base problem, and the effect
of the perturbation is calculated at each collision by weight factors that correct for the
changes in the collision process. Even when a single random-walk process is impractical
to use for the two problems, the pair of Monte Carlo runs can be correlated by
providing each new history in the base and perturbed problems with the same initial
pseudorandom number (as well as the same sequence of subsequent numbers, as far as
they are needed), taking care that these initial numbers form a pseudorandom
sequence. Small changes in a system can thus be effectively estimated since many of
the histories in the two runs will be identical.
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ACCURACY OF MONTE CARLO RESULTS

In applying the Monte Carlo method to obtain solutions to practical problems,
one must have confidence in the numerical values obtained. This usually involves an
estimate of the statistical errors in these values. Quite general results from probability
theory are available for this purpose.

One of these results from the theory of probability is the law of large numbers.
This result states that the accuracy of an estimate of a quantity tends to improve as
one averages larger and larger samples of observations of the value of the quantity. To
apply this to our Monte Carlo calculations, suppose that x, x,,... X, are sample
values of the random variable x. If the sample mean

(2.66)

is formed, the law of large numbers states that the sample mean, with a probability
that approaches 1 as n increases to infinity, approximates the population mean (or
true mean), E(x).

The law of large numbers can be demonstrated quite simply. To do this, however,
we need a very general result in probability theory known as Chebyshev’s inequality.
Given a random variable X with arbitrary distribution, but with mean m and standard
deviation o, it is easy to deduce a quantitative result about the closeness of X to the
mean m in terms of the standard deviation o, i.e.,

P{Jx-m|<ho}>1-EE

or
1
P{IX ~ > ho} < — 2.67
{IX ~ m| > ho} - (2.67)

where P{Z} means the probability of Z. This is Chebyshev’s inequality.

Let us consider a binomial distribution. That is, suppose we consider a random
variable x that takes the value 1 with probability p and the value 0 with probability
1 - p = q. This corresponds to an experiment with two possible outcomes, success
or failure, occurring with probabilities p and q, respectively. Such an experiment is
called a Bernoulli trial. Let x; represent the value of the random variable x at the ith
Bernoulli trial. Then

n
1
-—Tl- xi
i=1

X (2.68)

n
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represents the frequency of successes in n trials. It can be shown that

lim P{IX, - pl <€} =1 (2.69)
n= o

or, alternatively, that
lim P{IX, - pl > e} = 0 (2.70)
n+ee

This may be proved quite simply by using Chebyshev’s inequality. Since the random
variable x has mean p and variance p(1 - p), it follows that X, has mean p and
variance [p(1 - p)]/n. Applying Chebyshev’s inequality with € = ho, we obtain

P{IX, - pl > ¢} < pd - p) (2.71)
ne?
It follows that
lim P{IX, - pl > ¢} =0 (2.72)
n+oe ‘

regardless of the value of p.

Similarly, if x; is a random sample of a random variable x with finite mean m and
standard deviation ¢, then the arithmetic mean of the n independent variables
Xy .- ,Xp is given by Eq. 2.68. X has mean m and variance ¢2/n. Again it follows
from Chebyshev’s inequality that

P{IX, - m > e} <2
ne?

or

lim P{|X, - m| > e} =0

n-+o

Thus the (weak) law of large numbers has been demonstrated for the case of
identically distributed random variables with mean and variance finite. More general
results are available in the literature, but this version is usually sufficient for Monte
Carlo applications.

In applications, however, we desire more precise information about a sample mean
obtained by Monte Carlo than that it converges to the true mean. Usually we require a
sharper estimate of the statistical error in the sample mean than we can obtain from
applying the Chebyshev inequality. For such information we have recourse to the
Central Limit Theorem of the theory of probability.

27
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CENTRAL LIMIT THEOREM

Given n independent, identically distributed random variables X, X5, ..., Xy
with common mean m and variance 02, let

n

1
XI] = _1'-1— X

1=1

Then

b
im Pim+a—9— < X, <m+b-—2l=_1_| c®a (73
nee (n)* my*]  @n*J

This can be written

X, -m b
P{a << b} - —L-J e t*12 gt (2.74)
a/(n)” Qmn”J,

In this form, it follows that the distribution of the sum of n independent, identically
distributed random variables with finite means and variances, normalized to mean O
and variance 1, approaches a normal distribution as n takes on large values.

In a Monte Carlo calculation, quite often the random variable is a function x(t),
where the choice of the real variable t is governed by the probability density function
p(t). That is, we seek to obtain the expected value of x,

+oo
m = E(x) =f x(t) p(t) dt (2.75)
Now the variance 02, which appears in the central limit theorem, is given by

02 = J i [x(t) - E®)]? p(t)dt = E(x?) - E*(x) (2.76)

3

The sample mean of n experimental trials, X, is given by

-
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With these definitions the central limit theorem stated above is applicable to the
quantities scored in a Monte Carlo calculation.

In a practical calculation, one should keep in mind not only that the true mean m
is unknown but also that the variance 02 must be estimated in order to apply the
central limit theorem. If we have sampled x, the random variable, n times, we use the
sample variance 02,

_ 1 <
OZ:H_IZ(Xi'Xn)2

i=1

n
n 1
== 1<TZ x? - xg> (2.77)

i=1

as our approximation to the variance 2. Thus the estimated variance of the sample
mean, 6> /n, is used in the application of the central limit theorem in place of 02/n. In
many codes n is assumed sufficiently large that o2 is approximated by

n

L, 1

52 e;—? X2 - X2 (2.78)
=1

The sample mean X, is our Monte Carlo estimate of m.

We have stated here the form of the central limit theorem applicable to
independent, identically distributed random variables with finite means and variances
because this version of the theorem is sufficient for our needs. Another useful version
of this important theorem applies to independent random variables that are not
identically distributed. The interested reader should consult the literature?°-3° for a
broader coverage of this theorem, as well as the other topics mentioned in this section.
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MATHEMATICAL PRESCRIPTIONS FOR
SIMULATING PARTICLE TRANSPORT

INTRODUCTION

The Monte Carlo solution of the Boltzmann transport equation differs considerably
from other standard numerical techniques. There is even a difference in the definition
of what constitutes a solution. A numerical solution of the transport equation usually
provides a rather complete description of the flux in all of phase space. A Monte Carlo
solution does not include such fine detail but instead provides information about
certain specified quantities of interest, usually integral quantities, such as reaction
rates in portions of phase space. It will be understood that the word “solution” is to
be interpreted in this context.

A unique feature in solving transport problems by Monte Carlo is that individual
particle histories are simulated. The modeling of the physical processes may be
accomplished without even referring to the transport equation. This is conceptually
simple for a Markov process since the simulation at any point in the particle history
does not depend on how the particle happened to reach that point.

The treatment of each physical process is actually a distinct advantage of Monte
Carlo since the modeling tends to be conceptually simpler than numerical methods.
However, this modeling of the physical processes is often inadequate by itself. Some
reasons for this inadequacy are: (1) the physical (analog) simulation may require an
excessive amount of computation time, (2) special scoring techniques may be required
which are difficult to derive from a purely physical viewpoint, and (3) questions may
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arise regarding a possible bias in schemes that differ from an analog scheme. Such
considerations as these indicate the need for a satisfactory mathematical description of
the Monte Carlo method.

The common description of particle transport is formulated in terms of the
Boltzmann transport equation. The integral form of this equation provides a useful
beginning point for establishing a mathematically sound Monte Carlo simulation. The
integro-differential form of the transport equation is also frequently referred to in the
literature; it has been particularly useful as a starting point for constructing a sampling
scheme to solve the equation that is adjoint to the transport equation.

It is interesting to note that, while the physical modeling of the Markov process is
conceptually simple, a more rigorous mathematical treatment of the application of the
Monte Carlo method to solve particle-transport problems is not trivial. This is quite
aptly demonstrated in the first few chapters of the book by Spanier and Gelbard.!

In this review a complete mathematical description of the Monte Carlo method
will not be attempted; instead, some insights will be given into various ways of looking
at a Monte Carlo simulation of particle transport. Specifically, the integral form of the
transport equation will be used to gain some understanding of the sampling process.
The integro-differential form of the transport equation will be used to obtain
additional perspectives. Finally, the physical viewpoint of a Monte Carlo simulation of
the Markov process is discussed.
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The integral form of the transport equation as a starting point for obtaining a
mathematical description of a Monte Carlo simulation has been examined in a number
of places in the literature. The review article of Goertzel and Kalos,? the journal article
by Coveyou, Cain, and Yost,> a report by Spanier,* and the book by Spanier and
Gelbard! provide useful references on the subject for the interested reader. A brief
discussion is presented here.

The integral form of the transport equation is

F(R) = /K(R;R)F(R)dR' + SyR) (3.1)

where R denotes the kinetic energy, direction of flight, and spatial coordinates of the
particle; F(R) is the collision density: S{R) is the first-flight collision density due to
extraneous sources; and K(R;R) is the next-flight collision density at R due to a
collision occurring at R'. Time-dependent problems are not being considered here,
although time may be treated by -using the appropriate time-dependent kernel. The
kernel, K(R;R"), is assumed to be nonnegative and of such a nature that a solution for
F(R) exists. For critical assemblies this usually implies that S{R) is the source from
one generation of fission neutrons and K(R;R") is the kernel obtained by treating
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fission as a terminal event so that F(R) is the collision density for one fission-to-fission
generation.

The unnormalized kernel K(R;R’) may be conveniently separated into the product
of a noncapture probability, a normalization factor to account for such multiplying
events as (n,2n) inelastic scattering, and a normalized kernel. Thus the kernel K(R;R")
is expressed as

K®R:R) = [I - ¢(R)] n(R)B(R;R)) (3.2)

where o{R") is the capture probability at the collision point R'. The normalization
factor n(R") and the normalized kernel S(R;R") are defined in terms of the complete
kernel as

S K(R;R')dR
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T - o(R)] )

n(R’) =

and

K(R;R")

R;R) = ——
B( » ) fK(R”’RI) dR/I

(3.4)

The reason for separating K(R;R') into the product form of Eq. 3.2 will become
apparent later.

We may express the collision density as a summation, each term consisting of a
multidimensional integral that suggests a random-walk scheme for its evaluation. This
multicollision expansion may be obtained by substituting for F(R') in Eq. 3.1 the
equivalent expression

F(R) = JK(R';R") F(R")dR" + S¢(R) (3.5)

and repeating this procedure for the resulting F in each subsequent integrand. The
result is that F(R) may be expressed as

FR) = ) f = f $;(Re) K(R 3R K(RyiR,) - -
n=0 -

.- K(R;R,_)dR, dR, - - -dR (3.6)

n-1
where the first term of the summation (n = 0) is understood to be S{(R).

The purpose of the Monte Carlo calculation is to compute quantities that depend
functionally, usually linearly, on the collision density. We specify such a functional to
be

J = [F(R)h(R)dR (3.7)
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where h(R) is the contribution that a collision at R makes to the functional of interest.
The multicollision expansion of Eq. 3.6 may be used to express J as

J = ;’ {J‘ : 'J\Sf(RO) [1 - O‘(Ro)] ﬁ(R1§Ro) [1 - O‘(Rl)] B(Rz;R1) o

=R, )] B(Rn;Rn_l)a(Rn)W(RO,“-,Rn)dRO--‘an} (3.8)

where K has been separated into the product form of Eq. 3.2 and W(R, , ..., R, ) is
defined as
hR,) n-1
W(Ry, -, Ry) = n(R;) (3.9)
0 n Cl’(Rn) E) 1

The expression for J in Eq. 3.8 may be used to construct a Monte Carlo sampling.
When you sample with the functions S{R) for the initial coordinates of the particle
history,* o(R;-,) for termination at the it/ collision, and S(R;;R;- ) for the next
collision point given that the chain continues, the quantity

{Si(Ry) [1 = a(R] B(R;:Ry)Y - [1 = a(R,_,)]

x B(RyR,_ ) a(R,)dRy dR, -~ dR,}  (3.10)

n-1

is the probability that the initial coordinates for the first collision are sampled within
dR, about R, the subsequent collisions of the particle fall within the phase space
volume dR; ...dR, about R;,... R, and the chain terminates at the (n + 1)sz
collision. The factor W(R,, ... ,R,) in Eq. 3.9 is the score for such a particle in the
Monte Carlo calculation. The expected value of the score is simply the product of
W(R,, ... .R,) with the probability chain of Eq. 3.10 integrated over phase space and
summed over n. This is equivalent to the right-hand side of Eq. 3.8; so the expected
value of Wis J,

EW)=1J (3.11)
Thus, sampling with the density functions S;, &, and § and scoring with the W defined
by Eq. 3.9 is a Monte Carlo scheme that yields an unbiased estimate of J.

This sampling scheme has a useful physical interpretation for many problems. For
example, if the functional of interest is the capture rate in some region, then h(R) is

*A normalized S¢ is assumed.
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the ratio of the capture to the total macroscopic cross section; so h(R) = «(R) in that
region. Then, for materials in which all collisions are nonmultiplying [n(R) = 1], the
sampling scheme would simulate the physical process, and the score of Eq. 3.9 at
each terminal capture colilision within the region of interest is unity.

There is one flaw in this derivation of the sampling scheme. The possibility exists
that the capture cross section may be exactly zero in some portion of phase space
which does contribute to the functional. The last-event estimator will miss such
contributions, although this can easily be corrected by using a fictitious, nonzero
capture cross section and adjusting the particle weight at each collision accordingly.
We also expect a possible reduction in statistical errors with an estimator that scores at
each collision rather than only at the termination of the chain. It is easy to show that
an appropriate unbiased collision estimator for a particle that suffers termination at
the (nt1)s¢ collision is given by

n-1

B(Ry) + h(R,)n(Ry) + h(R)N(R)nR,) + -+ h®R) [T n®)  (3.12)
1=0

A collision estimator usually, but not always, yields a lower variance than the
last-event estimator.

The last-event estimator is useful for obtaining insights into methods of reducing
variances in Monte Carlo calculations. In fact, it is theoretically possible to define a
sampling scheme that uses a last-event estimator and has a variance of zero, i.c., the
estimate obtained with each individual source particle sample is the exact answer J. We
use the last-event estimator to show how such a sampling scheme may be derived and
also to illustrate the construction of altered sampling schemes that are unbiased.

An altered sampling scheme is constructed by replacing the density functions
S¢, @, and B, which will be referred to as the analog density functions, with another
set of density functions, Sf, a and ﬁ This alternate set of density functions is
introduced into Eq. 3.8 in such a manner as to obtain the same value for the
functional J. This criterion is satisfied by

- ZUf Si(Ro) [1 = &R B(R 1R -~ [1 = a(R,,_)]
n=0

X BR:R,DIR)W(R,, -+, Ry dRy - an} (3.13)

where

. h(R,) S¢(Ry) b n(R) [1 - a(RD] B(R;+,:R))
WRy, " Ry = —= — = (3.14)
AR ) S:(Ry) o [1 = a(R)] BR 3Ry
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Equation 3.13 has the same form as Eq.3.8; so a Monte Carlo scheme may be
constructed by using the altered den31ty functions Sf(R ) to sample the initial
coordinates of the particle history, AR~ ) to sample termination at the it% collision,
and ﬁ(Rl,R]_ 1) to sample for the next collision point given that the chain continues.

Certain restrictions are placed on the altered density functions toensure that the
altered Monte Carlo sampling scheme will yield the correct expected contribution to
the functional J from all portions of phase space. In general, an altered density
function is required to satisfy the condition that it be nonzero at all points in phase
space when the corresponding analog density function is nonzero. It is interesting to
note the additional criterion that the altered density function be zero at all points in
phase space where the analog density function is zero is not necessary. This criterion is
usually included, however, since any chain that would lead to such a phase-space point
would result in zero weight and hence generally degrade statistics, even though the
expected value of the sampling scheme is still J. Nevertheless, it is sometimes
convenient to use altered density functions that do not always go to zero when the
analog density functions do.

The significance of evaluating the functional J with the altered Monte Carlo
scheme is that, whereas the mean is unchanged,

E(W) = E(W) = J (3.15)
the second moments are not generally equal, i.e.,

E(W2) # E(W?) (3.16)
The sample variance can be decreased by finding an altered sampling scheme with

E(W2) < E(W2) (3.17)

At this point we digress to show that there is a sampling scheme that yields zero
variance, and hence each sample history predicts the exact answer J. The existence of
such a sampling scheme is easily demonstrated by referring to the equation that is
adjoint to the integral transport equation,

F'(R) = fK(R;R) F*(R) dR’ + h(R) (3.18)

The altered density functions for the zero-variance sampling scheme are defined in
terms of F*(R) as

~ Sc(R,)F'(R
S.(R,) = fRo) F (Ro) (3.19)
f 0 +
[ 8¢(R) F*(R) dR
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~ h(R;)
a(Ry) = — (3.20)
F'(R)
~ R, ;R)F'(R,
ﬁ(Ri+];Ri) _ B( it1 1) ( 1 1) (3.21)

" /B(R:R)F'(R)dR

These density functions may be substituted in Eq. 3.14 to obtain the scoring function
for an altered scheme:

F*(R,)
F'(Ry)

W(Ros Y Rn) = { [f St(R) F+(R) dR]

Ry [1 - (R FT(RY SBR;R) FT(R)dR
=0 [F*(R) - h(RY] F*(R;4y)

} (3.22)

The definition of K in Eq. 3.2 may be used in Eq. 3.18 to obtain
2Ry [1 - a®Rp] S BR;RY FT(R)AR = F'(R) - h(Ry)  (3.23)
Therefore the expression for W of Eq. 3.22 simplifies to
W(R,, -, R,) = [ S(R) F*(R)dR (3.24)

i.e., a constant score independent of the history of the sample! That this constant
score is indeed J may be shown by multiplying Eq. 3.1 by F"(R) dR, multiplying Eq.
3.18 by F(R) dR, extracting the difference of the resulting two equations, and
integrating the final equation over all of phase space.

The density functions given in Eqs. 3.19 to 3.21 can be used for a zero-variance
Monte Carlo sampling scheme. However, this theoretical zero-variance sampling
scheme is not directly applicable, since the construction of these density functions
requires the solution of the adjoint equation for F*(R). In spite of the fact that the
theoretical zero-variance scheme is not used in practical problems, it does provide a
useful guide for constructing schemes that are in some sense an approximation to the
theoretical scheme; in addition, it is encouraging to know that there is a theoretical
sampling scheme with zero variance. It should be emphasized, however, that an
approximate scheme does not imply approximations in computing the functional J. As
long as the weight factor of Eq. 3.14 is used for scoring and the altered density
functions satisfy the necessary and sufficient condition, the sampling scheme is still
unbiased.
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A word of caution is in order now. Although the previous derivation may seem to
imply that an analog scheme is easy to improve on, this is often not the case. There is
the very real danger that an altered scheme will actually increase the variance
(sometimes disastrously). As a rule of thumb, try to avoid sampling schemes that allow
the particle weight to increase greatly, particularly without an upper bound. In many
cases this difficulty can be averted by using methods that deviate less from analog
simulation.

Coveyou, Cain, and Yost3 have also examined minimum variance schemes for
collision estimators; i.e., each collision may contribute to the functional. They found
that the use of the value function as an importance function resulted in an upper limit
in the sample variance so that

Variance 395

Mean? (3.25)
Here the value function is the expected value of the contribution, present and future,
of a particle of unit weight.

In this discussion the integral transport equation was used to construct a Monte
Carlo simulation with the collision density F(R) defined as the density of particles
entering a collision. The results obtained here by beginning with the transport equation
for the density of particles entering a collision are correspondingly obtained by
beginning with the transport equation for the density of particles leaving a collision.
Pertinent relations between the two approaches are given by Spanier and Gelbard! and
by Irving.3

The functional J can alternatively be computed by sampling from an equation
that is adjoint to the transport equation. It can be shown that there is an altered
scheme for sampling from the adjoint equation that also has zero variance. In this
scheme the collision density acts as the importance function, with the result that there
is symmetry between the construction of the forward and adjoint zero-variance
simulations. This will be discussed further in Chap. 4 when the simulation of the
adjoint equation is considered.

We have indicated how the integral transport equation can be used as a starting
point to provide a sound mathematical basis for a Monte Carlo sampling. By using this
approach, we were led rather naturally to an unbiased method for correcting particle
weights when using an altered. sampling scheme. In general, the particle weight of the
analog scheme is multiplied by a correction factor at each stage of the sampling. This
correction factor is the ratio. of the analog density function to the corresponding
density function in the altered scheme, where these density functions are evaluated at
the phase-space point that is selected with the density function of the altered scheme.

The integral transport-equation viewpoint suffers from certain limitations. The
multicollision expansion is awkward to work with, and, in addition, the kernel in the
integral transport equation is complicated enough so that it is not easily interpretable.
For these reasons, it is often preferable to work with the integro-differential form,
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which we will now consider. Both approaches are equivalent in that one can find
transformations to go back and forth between the integral transport equation and the
integro-differential transport equation. However, one of the equations may provide a
decided advantage as a beginning point for a specific problem.

INTEGRO-DIFFERENTIAL APPROACH

The interpretation of the Monte Carlo simulation of particle transport as a
solution of a multidimensional integral is not as straightforward to obtain from the
integro-differential form of the transport equation. This equation can be converted to
an integral postcollision transport equation, and the techniques discussed in the
previous section can be applied to understand the Monte Carlo simulation. The
mathematics of this transformation will not be discussed, but the interested reader
may consult a report by Irving.> For the purpose here, a few useful insights that are
obtained by beginning with the transport equation in integro-differential form will be
mentioned.

An important application is in the general area of biasing schemes, which typically
evolve in the following manner. The particle-transport problem of interest is first
stated. It is assumed that an analog or some similar simulation could be done in
principle, but the calculation for the particular problem under consideration requires
an excessive amount of computation time to obtain acceptable statistical-error limits.
Therefore some transformation of the integro-differential transport equation is made
by using information about the expected solution. A well-known example of this is the
exponential transformation.® After the transformation the new equation is examined
in regard to its similarity to the original transport equation. Assuming that it has the
identical form of the original equation (i.e., leakage term, attenuation term, and source
term), the prescription for sampling this equation is known. The mean values of
functionals do not depend on the particular transformation, but variances do. Hence it
is theoretically possible to reduce the variance with the proper change of variables. Of
course, there is also the very real possibility of selecting a transformation that actually
increases the variance.

The integro-differential form of the transport equation is useful as a starting point
for developing methods to sample from equations that are adjoint to transport
equations.%7-% This form of the transport equation is used with the observation that
the equation that is its adjoint is not radically different. In fact, the adjoint equation
may be changed to an equation having a form identical to an integro-differential
transport equation with a transformation that simply reflects the direction-of-flight
coordinates (and reverses the time coordinate for time-dependent problems). The
resulting equation not only has the same form but also satisfies the same boundary
conditions as the original transport equation. It is therefore straightforward to sample
from this transformed adjoint equation. The important consideration is to sample in
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such a way that variances are within acceptable limits for a fixed amount of
computational effort.

The integro-differential transport equation also is a convenient starting point for
deriving various methods for scoring quantities of interest and for providing relations
between estimators.

The integral transport equation and the integro-differential transport equation
provide useful tools for improving and understanding Monte Carlo calculations of
particle transport. We now turn to a viewpoint that is in some respects less
mathematical in nature.

PHYSICAL APPROACH

Particle transport can be simulated without even referring to the transport
equation. This should not be too surprising, since the particle transport itself is a
stochastic process and a direct simulation should also be stochastic in nature. In
contrast, the transport equation represents an ensemble average of the
more-complicated forward Chapman-Kolmogorov equation.

One of the basic advantages of the Monte Carlo method is that the analog Monte
Carlo calculation can be carried out by simulating the physics at each point in the
history of a particle. This enables us to concentrate the computational effort in a small
portion of phase space near the current particle of interest. All that is required for the
simulation of the history is a probabilistic description of what may happen to the
particle at each point in its history. This generally includes a description of the
geometrical boundaries of regions, a description of the material composition within
each region, and an adequate description of the cross sections for each isotope. These
cross sections also include energy- and angle-transfer frequency functions for all
relevant events.

The construction of a Monte Carlo calculation by simulating the Markov process is
demonstrated in a book by Cashwell and Everett.!® Many of the practical problems
associated with Monte Carlo calculations of neutron and photon transport are
discussed in this book, but the transport equation is never displayed.
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MECHANICS OF SIMULATING
PARTICLE TRANSPORT

INTRODUCTION

In this chapter we consider transport processes under the assumption that (1) particles
travel in straight lines without losing energy between collision points, (2) particles
suffer a collision per unit distance with probability X, (3) the transition time between
entering and leaving a collision can be neglected, and (4) the particle transport being
simulated is linear. We assume that satisfactory density functions for modeling the
physical processes are available. Special considerations applicable to neutrons and
photons are discussed in Chaps. 5 and 6, respectively.

GEOMETRICAL CONSIDERATIONS

There are advantages to describing particle flight paths by Cartesian coordinates
even though the problems of interest may have special symmetries, for example,
spherically symmetric systems. A particle’s direction of flight in Cartesian coordinates
is uniquely specified by the direction cosines (u,v,w) with respect to the x,y, and z
axes, respectively. The new position of the particle after traveling a distance A is
simply

X' = X + ulA (41)
y =y + vA (4.2)

43
z' =z + wA (4-3)

where (x,y,z) was the old position.
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The direction cosines do not change along flight paths, which is a distinct ad-
vantage of Cartesian coordinates. However, the direction cosines do change at scatter-
ing events. The scattering angle with respect to the incident direction of flight is
sampled from an appropriate distribution, which will be discussed later. For isotropic
media the final direction on the cone determined by the scattering angle is selected
uniformly. A routine for finding the new (u’,v',w’), given the precollision (u,v,w),
is shown in Fig. 4.1. Here u,,, is the cosine of the scattering angle in the laboratory
system found before entering this routine. The mathematical relations used in Fig.
4.1 to compute the new (u',v’,w’) are derived in Ref. 1. We also note that the cosine
and sine of an angle uniformly distributed from O to 27 are required for the new
(u',v,w"). These functions were obtained by the rejection method described in
Chap. 2.

The Monte Carlo computer program is usually designed to solve transport prob-
lems consisting of contiguous regions. The material properties within each region are
uniform in order to make data storage tractable. In the usual application the bound-
aries of a region are specified by one or more quadratic surfaces of the general form

Ax? + By? + Cz*> + Dxy + Byz + Fax + Gx + Hy + Jz + K = 0 4.4)

—

-2 2 - -
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1
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o

o
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u’ = Cg cos &

@.___> v’ = Cg sin & )__>

W= e w/ilwl

Fig. 4.1 Routine to compute the direction of flight after a scattering collision.
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where A, B, ..., K are constants. For a simple surface, such as a plane, sphere, or
cylinder, several coefficients are zero, and the computer program is typically written
to treat these as special cases of the more general equation in order to save computa-
tion time.

A region can be specified by its bounding surfaces and by the sense of the region
with respect to each bounding surface. The sense of the region is used to determine on
which side of a surface the region lies. The usual convention is that a positive sense
means that any (x,y,z) point within the region results in a positive value for the left-
hand side of Eq. (4.4).

Since it is beyond the scope of this review to examine geometry questions in de-
tail, the interested reader is referred to Refs. 2 to 4 for an introduction to the subject.
The so-called combinatorial geometry is discussed in Ref. 3. This technique is in-
tended to simplify the problem specification by allowing the user to model complicated
problems from intersections and unions of such simple shapes as spheres, parallelepi-
peds, cylinders, and truncated cones.

TIME DEPENDENCE

Time dependence is included in Monte Carlo calculations with a trivial amount of
additional effort, which is in contrast to discrete-ordinates calculations. Time de-
pendence is accounted for simply by advancing the time of the particle after each
flight and scoring in the appropriate time bins for the functionals of interest.

SAMPLING THE SOURCE

An extraneous source distribution is specified by an unnormalized density func-
tion S(r,E,£2,t). The source is relatively easy to bias in order to improve the efficiency
of the Monte Carlo calculation, and even a poor guess regarding an importance func-
tion can reduce statistical errors. Furthermore, biasing the source distribution is not
potentially as dangerous as many other biasing techniques since only the initial particle
weight is affected. For generality it will be assumed that a guess regarding the im-
portance function is I(r,E,$2,t), although typically an importance function for source
biasing will be relatively simple and may, for example, only depend upon energy.

The source coordinates are selected with the density function

S(r, E,2,t) I(r, E, 2,
g(r.E,Q,1) = ( ) 1¢ ) (4.5)
ISt E,Q,0) U(r,E,Q,1) d3r dEdQ dt
and the initial weight assigned to thé source particle is
_ S(r,E,Q,1) (4.6)

g(r,E, Q,1)
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where the coordinates (r,E,Q,t) of the particle were selected from g. The function g
can be conveniently split into the product of conditional density functions for each
variable to simplify the sampling. Examples of sampling from some common source
functions are given by Cashwell and Everett.'

ATTENUATION AND LEAKAGE

The probability that a particle beginning a flight path at s = 0 will suffer its next
collision in some distance As about s is given by

p(s) As = Z(s) exp (—fOS Z,ds') As (4.7)
The corresponding cumulative distribution function is
PGs) = 1 - exp(-f] 2 ds) (4.8)
so that
Jy Zpds' = =Inf1 - P(s)] (4.9)

For sampling purposes the cumulative distribution function P(s) is uniformly dis-
tributed on the unit interval, and hence [1 - P(s)] must also be uniformly distributed
on the unit interval; so

f(j T, ds' = -In¢ (4.10)

This equation may be used in the random walk to sample for the distance s to a colli-
sion point. For the typical case when the total cross section is sectionally constant
across regions, the Markov nature of the particle transport can be used to simplify the
sampling. Then, if a random number £ is greater than exp (-Z,;s,), where s, is the
distance to the first region boundary, the distance to the collision point is determined
as

-In ¢

§ = — 4.11
o8 (4.11)

If the random number £ is less than exp (-Z;,s,), the particle reaches the region
boundary without suffering a collision. In this case the particle coordinates are ad-
vanced to the boundary, and the procedure is repeated for the next region.

In some situations X, is not constant across regions. The inverse solution of Eq.
(4.10) may then require excessive computational effort since it must be evaluated for
each flight path. Alternate sampling schemes are described in Ref. 5 for this special
case.
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With some importance sampling methods, the selection of the distance to a colli-
sion point is itself altered; so the total cross section appearing in the previous equa-
tions is actually a fictitious total cross section. The particle weight at the end of the
flight path is adjusted to obtain unbiased results. If Z,(s) is the fictitious total cross
section used to sample the distance to a collision point, unbiased answers are obtained
by multiplying the particle weight, W, by the ratio of the analog to the fictitious den-
sity functions evaluated at the collision point s:

W Z,(s) exp (—foS T, ds")

w' 4.12)

[I’it(s) exp (-foS it ds"]

Care must be exercised in choosing a proper it(s) to prevent undesirable particle-
weight fluctuations from the frequent adjustments of the particle weight. The well-
known exponential transform has this stability property.

It is often necessary to show that a proposed sampling scheme or estimator is cor-
rect in the sense that it leads to unbiased answers. We will illustrate a verification for
flight paths sampled with the fictitious total cross section Z,(s). The correctness of
the sampling scheme or estimator can be shown by focusing on some infinitesimal sec-
tion of the flight path As’ about s’ to demonstrate that the correct expected contribu-
tion within As’ is made from the projected flight of the particle beginning at s = 0.
Let f(s) be the Monte Carlo estimate of the function of interest in As’ due to the se-
lected collision point s in the random walk. Then the expected value of f for a particle
startingats =0 s

E(f) = f: p(s) f(s) ds (4.13)

where p(s) is the density function for selecting the collision point s in the random
walk. This is illustrated here for two examples.

We show that the weight-correction factor in Eq. (4.12) yields the correct ex-
pected number of collisions in As’ about s’ for the random walk itself. In this case,
with an initial particle weight of W ats =0,

p(s) = Z,(s) exp (—foS Z, ds") (4.14)
f(s) = 0 (for s not contained in As’ about s") (4.15)
and
W Z(s) exp (- fos Z, ds™)
f(s) = (4.16)

[Zi(s) exp (-1 T, ds")]

for s contained in As' about ', i.e., the adjusted particle weight at the collision point.
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Then

E() = WE,6) exp (-f) 2, ds") A’ (4.17)

is the correct expected weight of collisions.

The second example is the verification that a proper path-length estimator to use
with the previous sampling scheme is simply the triple product of the new particle
weight at the collision point selected in the random walk, the path length across the
cell of interest, and the scoring cross section Z(s) of interest. An infinitesimal seg-
ment, As’ about s', of the projected flight path is assumed to cross the cell of interest.
The particle weight at the collision point is given by Eq. (4.12). The path-length score
of the proposed estimator is

W Z(s') Z,(s) exp (-foS T, ds") As'
f(s) = — — (4.18)
[Z,(s) exp S 2 dsn)]

fors > s'. Fors < s’ the flight path does not cross the cell: thus
f(s) = 0 (fors < s') (4.19)

Using the density function for selecting the collision point given by Eq. (4.14),

o ‘ W Z(s') Z,(s) As' exp (—fos T, ds")ds
E(f) = fs, Z(s)yexp (—f(; Z,ds") — ) 3 ) (4.20)
Zs)exp (- (; Z, ds"

which simplifies to the correct analytic value
E(f) = W 2(s') As' exp (-fos' T, ds") (4.21)

The extension of the above analysis to large As’ and to more complicated situa-
tions is obvious. This type of proof should be used whenever there is doubt about the
correctness of a proposed sampling scheme. The correct expected value should result
for a valid scheme.

SAMPLING THE COLLISION EVENT

The collision kernel tends to be a complicated and unwieldy function to sample
directly. Considerable simplification both conceptually and numerically is obtained
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by expressing the kernel as the sum of contributions from the various events that
correspond to the physical model of the possible interactions. It is standard practice
to express the kernel as a sum of the contributions from each isotope,

C(E,Q;E,Q,1) = Z ZrB) C(E,Q;E,Q,r), (4.22)
e —i Z(r,E) e
1

where the subscript i denotes the contribution from the itk isotope and the primes
denote postcollision conditions. The itk isotope is randomly picked to participate in
the collision with probability Z,(r,E);/Z (r,E). The attention in the random walk is
then focused on the conditional function C(E',Q2;E,Q,r); for the itk isotope selected
rather than on the entire collision kernel.

The collision kernel for the ith isotope is simplified still further by expressing it
as the sum of contributions from various physical events, such as capture, elastic
scattering, inelastic scattering, and fission;

C(E,QE,Q,r); = ﬂ C(E', Q;E,Q,1);, (4.23)
Ut(l', E)]

where k denotes an event. A particular event is then selected to occur in the random
walk with a frequency proportional to its cross section o(r,E); . An exception to this
procedure for selecting the event is sometimes made for capture.

Capture can be treated in the analog manner just described, where the history is
simply terminated after a capture event in the random walk. A more common tech-
nique in Monte Carlo computer codes is to reduce the particle weight with the non-
capture probability [o,(r,E); — 0.(r,E};] /o, (r,E); after a collision with the it4 isotope
and then to sample the type of event from the other possible events with probabilities
normalized to exclude capture. The advantage of this technique is that the statistical
fluctuation due to the particle termination probability is eliminated; however, the
disadvantage is that some of the particle weights may eventually become very small
so that a significant fraction of machine time is wasted on particles with such small
weights that they do not significantly contribute to any estimate. It is also possible
for the Monte Carlo population to become supercritical when capture is not allowed to
occur; i.e., increase without limit even though the physical system is subcritical. Be-
cause of these disadvantages the above treatment is usually augmented with a lower
weight cutoff: -Whenever the particle weight falls below this cutoff, Russian roulette
is played, and the particle history is either terminated or allowed to continue with a
larger weight determined such that the expected weight is conserved.

The conditional kernel C(E',Q';E,Q,r)ik for the event selected is normalized to
unity. The particle weight can either be multiplied by the mean number of second-
aries per collision, or, when the mean number is greater than 1, more than one particle
can be allowed to emerge from the collision in the Monte Carlo simulation. It is
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usually desirable to break the normalized kernel for a particular noncapture event into
the product of a marginal density function for either the emerging energy or direction
of flight and a conditional density function for the remaining random variable. The
marginal density function is used to select the appropriate random variable, and the
conditional density function is used to select the remaining random variable. The
physics of the event usually dictates the order for the random variables. For example,
elastic scattering is usually treated by selecting the scattering angle, in the center-of-
mass system, and then the energy is uniquely determined from the scattering angle. In
contrast to this, there are some events, such as fission, where the scattering angle and
emerging energy are assumed to be uncorrelated. Then the order of the selection is
unimportant. Special cases of interest are discussed more fully in the neutron- and
photon-transport chapters.

ESTIMATORS

The majority of the currently used estimators in Monte Carlo codes are of four
basic types. These are the collision estimator, the last-event estimator, the track-length
estimator, and the nexi-event (point-detector) estimator. The use of these four esti-
mators is briefly discussed here for analog sampling. If importance sampling
methods are used, these estimators may require alteration to obtain unbiased results.

The functional of interest for discussion purposes is assumed to be the number of
reactions in some portion of phase space denoted by V.. The macroscopic reaction
cross section is denoted by Z.

The collision estimator for the functional scores W Z(r,E)/Z (r,E) at each colli-
sion event that occurs within the phase-space volume V.. The last-event estimator
differs from the collision estimator in that the scoring occurs only when the particle
history is terminated by capture. The score at each such capture event, which occurs
in the phase-space volume V, is W X(r,E)/Z (r,E). This is an unbiased estimator
provided the macroscopic capture cross section Z (r,E) does not vanish at any phase-
space point where Z(r,E) is finite. One might expect the collision estimator to yield a
lower variance than the last-event estimator since a score is made at every collision.
This is generally verified in practice, although there are converse cases that can occur.
For example, the theoretical zero-variance scheme, which uses importance sampling
to obtain the correct answer with each sample, invokes a last-event estimator.

Both the collision estimator and last-event estimator tend to suffer statistically in
optically thin regions since few collisions occur there. This statistical problem is
usually improved with the use of a path-length estimator. The path-length estimator
scores [W fOS 2(r,E) ds'] for each track length in the phase-space volume V., where s
is the path length within V_ of a particle with weight W. The path-length estimator
enjoys extensive use since it has excellent properties in optically thin regions and
tends to perform satisfactorily for optically thick regions as well. Spanier and Gel-
bard® show that the track-length estimator is a limiting form of the collision estimator.
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This is obtained by adding a fictitious “straight-ahead” scattering contribution to the
usual scattering term and increasing the attenuation term to obtain a balance.

The variance of the path-length and collision estimators can be computed ana-
lytically for the simple case of a beam of monoenergetic particles incident normally on
a slab of material with £ = Z,. The resulting expressions for the relative errors (ratio
of the square root of the variance to the mean) in the collision probability per
incident particle for a slab that is x mean free paths thick are

Relative error of | _ e X v
collision estimator (1 = e¥)

- 0 as X > o (4.24)

! N\ V2
Relative error of _ (1= 2xe™ - e72Y)
path-length estimator a5

- (x/3)” as x > 0

-1 as X = oo (4.25)

The relative errors are shown in Fig. 4.2 as a function of x. The path-length estimator
is clearly preferable for thin shells, but the collision estimator is better for thick shells
with the crossover point at x = 1.256. One must remember, however, that this is a
special case, and the extension of these results to more complicated situations must be
made with caution.

The collision, last-event, and track-length estimators all tend to suffer from in-
creasing statistical errors as the volume of the detector region becomes arbitrarily
small. The next-event (point-detector) estimator is a candidate for such problems.
This estimator may be understood by beginning with the integral transport equation

F(R")-= J F(R)K(R;R)dR + S(R") (4.26)

where R’ denotes the detector phase-space point (r',E’,€2). The detector point r’ and
the collision point r fix the emerging direction of flight necessary to reach the detector
after the collision; so it is convenient to express K(R';R) as
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where the notation is that used in the section on sampling the collision event. The
random walk calculates the integral over R by.simply scoring the product of the parti-
cle weight at each collision with the kernel K of Eq. (4.27). Typically the detector
score of interest is '

FR') ———= 0, E) dQ' dE'
Zy(r',E)

integrated over 4mand some energy bin; so the delta function in Eq. (4.27) and a possi-
ble delta function in the kernel C are removed. Here Z is the cross section of the reac-
tion being considered at the point detector (Z is set to unity for a flux calculation).

The integral of the kernel K over an energy bin is often impractical to evaluate at
each collision in the Monte Carlo simulation. Hence the isotope i and event k are

-
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usually sampled in the random walk before scoring the point detector. If elastic scat-
tering with a target nucleus at rest is the event selected, the required angle to scatter
to the detector uniquely determines the final energy; so the score for this event is

W h(1a5 E)at SR’ oty gy 428
R (R)exp[‘fo t s (4.28)
27lr - r'|

whenever the final energy lies within the energy bin of interest. Here g, is the co-
sine of the scattering angle in the laboratory system,

tpp = Q- (4.29)
and h(u,,:E),p is the density function for the particle to scatter elastically through
ujap With €' determined by the detector position. If h is given in the center-of-mass

system, the appropriate transformation must be made. The pertinent relation for the
elastic scattering of a neutron is

h(lJ'Cln ; E)cm

h(kian By = A 2y + (A% + k- 1)
“12ab
(A% + gy, = 1) (4.30)
where
Mem = %[“fab — 1 (A ] - 1)'/2] (4.31)

The final energy and scattering angle have a one-to-one positive correlation for
elastic scattering, i.e., knowledge of one uniquely determines the other. In contrast to
this, some events are modeled so that the emerging energy and the scattering angle in
the laboratory system are uncorrelated. The appropriate point-detector score for such
an event is

W hiuap LE)ik,lab »(E) Z(R') exp (_f(')" -1l 2( dS’) (4.32)

2alr—r' P

whenever the final energy lies within the energy bin of interest. Here h is the density
function in the laboratory system for scattering through wy,,, v is the number of sec-
ondaries for the event, and the final energy E’ is sampled from the density function
for the kinetic energy of a particle emerging from the event.
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A variety of physical models are used which lie between the completely corre-
lated elastic-scattering case and the uncorrelated event just considered. We will not
discuss any of these additional possibilities here, although the appropriate point-
detector score for the inelastic scattering of a neutron is derived in the section on in-
elastic scattering in Chap. 5, and the point-detector score for the thermal scattering
of neutrons using a free gas model is given in the section on thermal scattering in
Chap. 5. It should also be noted that the first-flight contribution from the extraneous
source to the point detector must be scored for each source particle. This first-flight
contribution can often be computed analytically. For more complex sources the
Monte Carlo method can be used to compute the necessary integrals.

The next-event estimator suffers from two very severe limitations that become
apparent in practical applications. This estimator tends to require a great deal of com-
putational effort since the attenuation distance from each collision to the point de-
tector is required. This becomes a particularly important consideration for geo-
metrically complicated systems or when many point detectors are dictated by a prob-
lem. The second limitation of the point detector involves variances. When the detector
point lies within a scattering medium, the theoretical second moment of the estimate
may be infinite even though the first moment is finite. This is due to the 1/|r'~r|? fac-
tor in the scoring equation.

Kalos’ proposed a once-more-collided estimator to remedy this infinite variance
problem. The contribution at the detector point r' is computed for a collision at r by
sampling an intermediate collision point. This method yields a finite second moment
with a properly chosen density function for selecting the intermediate collision point.
However, it does suffer from the disadvantage that the selection of the intermediate
collision point requires additional computer programming effort and increases the
running time of the problem. Steinberg and Kalos® later proposed a method to bias
the selection of the collision points in the random walk toward the point detector.
This also results in a finite second moment, but the particle weights must be corrected
to produce unbiased estimates, and it is possible for this resulting weight fluctuation
to adversely affect estimates in other portions of phase space.

These two methods of obtaining a finite variance are unbiased. Other methods
have been proposed which involve some approximation but, nevertheless, are useful in
problems of practical interest. One useful technique is to draw an imaginary sphere of
radius R around the detector point. Any collisions that occur outside this sphere are
scored with the usual point-detector equations developed previously. For collisions
within the sphere, the factor

exp (_fgr-r'l Z,ds")

Ir - r'|?

is replaced by its volume average, assuming uniform collisions within the sphere, as

-z
foR e trdr 1 - e‘EtR
= 4.33
R ar 1 (R} Z) (439
0 3 t
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The variance in the estimator tends to decrease as the imaginary sphere radius R is in-
creased. On the other hand, the approximation involved by volume averaging tends to
be worse for large R. These considerations generally mean that R is chosen to be
some fraction of a mean free path, perhaps in the range 1/8 to 1/2 of a mean free path.

Numerous journal articles (in addition to those just mentioned on the point de-
tector) are devoted almost exclusively to estimators. MacMillan® considers linear
combinations of various estimators to minimize the variance. Gelbard, Ondis, and
Spanier! O and Spanier!! develop the mathematics for constructing a variety of esti-
mators and discuss some pertinent examples.
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There would be little practical value in simulating equations that are adjoint to
transport equations if all particle-transport problems could be solved by a simple
analog calculation. The literature attests to the fact that analog simulations require
excessive computational effort for some problems, thus the interest in adjoint calcula-
tions both to bias forward simulations as well as to provide an entirely alternate
method of solution.

A calculation using an adjoint equation is particularly attractive for two general
classes of problems where the solution of the transport equation is difficult if not im-
possible to obtain with a reasonable amount of computational effort. The first class
of problems has the common feature that the phase-space volume of interest for
computing some response is small enough that an analog Monte Carlo calculation is
inefficient since the particles will seldom pass through the volume of interest. Al-
though the analog Monte Carlo simulation can be improved by biasing techniques or
by using a point-detector estimator, there are still many problems that are not amen-
able to such a direct attack. The second class of problems has the common feature
that some response is required as a function of various source distributions. This re-
quires a separate simulation of the transport equation for each source distribution
and hence requires considerable computational effort. We will show that a simulation
of an adjoint equation has attractive advantages for both these classes of problems.
However, before we proceed, we should state that an adjoint-equation approach is not
a panacea for all problems that are difficult to solve in a direct way. For example,
deep-penetration problems are difficult to solve with acceptable amounts of computa-
tional time, but these problems also tend to be difficult to solve with an adjoint simu-
lation since the particle histories must still be tracked through many mean free paths.
The difference is that in the simulation of the transport equation particle histories are
tracked from the source to the detector, whereas in a simulation of an adjoint equa-
tion, particle histories are tracked from the detector back to the source.

Various methods for simulating adjoint equations are reported in the litera-
ture.} 217 Some investigators consider the simulation of the adjoint to the integral
transport equation, and others consider the simulation of the adjoint to the integro-
differential transport equation. We will consider the integro-differential viewpoint
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here for the specific case of neutrons. There are no important differences for
gamma rays.

The relevant equations can be derived by beginning with the Boltzmann integro-
differential neutron transport equation for a point source of monoenergetic and
monodirectional neutrons,

1 3G(R;R")

. - + Q-VG(R;R") + Z(R)G(R;R")

LG(R;R) =

~Jou fpn GILE", Q' 5 RY) 2(r, E") C(E, Q& B, Q',r) dE" dQ"

=8 (r-r) 8(E - ENS(Q - Q)5(t - t) (4.34)

where L is an operator defined by Eq. (4.34). The quantity R is a shorthand notation
denoting the neutron space position r, its kinetic energy E, and direction of motion £
at time t, and C(E,£2;E",Q",r) is the collision kernel defined previously. The total
cross section Z, is assumed to be independent of time and direction and thus the nota-
tions Z,(R) and Z(r,E) are used interchangeably. The coordinates to the left of the
semicolon in the Green’s function G of Eq. (4.34) represent field (i.e., final state)
points, and those to the right of the semicolon represent source points. Hence G(R;R")
is the neutron flux at R due to a unit point source at R’

The neutron flux ¢(R) can be expressed in terms of the solution of Eq. (4.34) for
the Green’s function as

¢(R) = [ G(R;R) S(R") dR’ (4.35)

where S(R") is the extraneous source density. However, rather than using the Monte
Carlo method to compute a point value of the neutron flux, it is more often used to
estimate a functional J (or a number of such functionals) defined as

J = [¢(R) Z(R)dR
= [/ G(R;R") S(R") Z(R) dR' dR (4.36)

Here Z(R) is an arbitrary cross section, and the last relation of Eq. (4.36) was obtained
from the expression for the neutron flux given by Eq. (4.35). The functional J is
computed with Monte Carlo by selecting the ith source neutron coordinates R; with the
density function S(R) and following the history of the neutron (and progeny) to
compute the estimate

J, = [ G(R;Ry) Z(R) dR W(R)) (4.37)

where W(R;) is the initial weight assigned to the neutron given by f S(R)dR'. The




SIMULATION OF ADIJOINT EQUATIONS

functional J is estimated by sampling trom the transport equation, but we will show
that a corresponding estimate of J can be obtained by sampling from the adjoint

equation.
The equation for the adjoint Green’s function G* is derived by finding an operator

L* that satisfies the equation
S ILYGY(R;R")] G(R;R')dR = JG'(R;R") [LG(R;R")] dR (4.38)

The boundary conditions on G*(R;R") are chosen to be consistent with those on
G(R;R") and are such that the bilinear concomitant is zero, i.e., G is equal to zero for
direction-of-flight vectors into the system and G* is equal to zero for direction-of-
flight vectors out of the system. The definition of the operator L* in Eq. (4.38) with
the associated boundary conditions is used to obtain the adjoint equation for the ad-
joint Green’s function as

p 1 0G*(R;R" " "
LYG'(R:R") = - _(at—) - Q-VG'(R;R") + Z,(R)G*(R;R")

_ff G'(r,E,Q,t;R") Z,(r,E")
Q

[ 0

dE'dSY’

’yC(E', QLE, Q1) Z,(r,E)

L Z,(r,E")

=80 - 1")6(E - ENS(Q - Q)8 - t") (4.39)

A reciprocity relation between G* and G can be derived by multiplying Eq. (4.39)

by G(R;R") dR, multiplying Eq. (4.34) by G*(R;R") dR, extracting the difference of

the resulting two equations, and integrating this difference over all phase space. The

subsequent change of variables by replacing R” by R yields the familiar form of the
reciprocity theorem,

G'(R;R) = G(R;R") (4.40)

The reciprocity relation of Eq. (4.40) can be inserted into Eq. (4.36) to obtain an
alternate expression for the functional J as
J = /fG'(R;R)S(R") £(R)dR' dR 4.41)

The functional J of Eq. (4.41) is computed with Monte Carlo by selecting the ith
source pseudoneutron™ coordinates R; with the density function

*Pseudoneutrons are defined here as those “‘particles” whose transport is described by the ad-
joint equation.
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IR (4.42)

S Z(R) AR
and then following the history of pseudoneutrons (and progeny) to compute the
estimate

J. = [G"(R,R) S(R") dR' W(R)) (4.43)

where W(R,) is the initial weight assigned to the pseudoneutron as given by f Z(R") dR".
The roles of the neutron source S and the scoring cross section X have been inter-
changed in this estimation of J by sampling from the adjoint equation. Thus Z now
assumes the role of a source, and S assumes the role of a scoring cross section. This
fact has two well-known implications about the computational effort required for a
problem:

1. If a response of some part of the system as a function of the neutron-source
distribution is required, it may be more efficient to estimate the functionals by
sampling from the adjoint equation. This is because only one adjoint calculation is
required rather than a number of separate transport calculations.

2. If the phase-space volume containing nonzero X is small, it may be more effi-
cient to estimate J by sampling from the adjoint equation because all pseudoneutron
histories begin in the small phase-space volume.

If the region in phase space where the source does not vanish is not too small and
if an efficient scheme for sampling from the adjoint equation is available, then use of
the adjoint equation is advantageous.

The approach used here to develop a scheme for sampling from the adjoint equa-
tion is to begin by finding a simple way of transforming Eq. (4.39) into an equation
identical in form to the transport equation, Eq. (4.34). Techniques for sampling
from the resulting equation are therefore well known.

This simple transformation is obtained with the definitions

ty =ty — t

, =-Q

a

G}t E, Q,,t,;1", E', Q) t7)

a’-a

G*(r,E,-Q,,t — t;r B, -Q 1, - th)  (4.44)

where t, is a maximum time of interest in the problem, t, is the adjoint time, and £2,
is the direction of motion of the pseudoneutron. Substituting these definitions into
Eq. (4.39) yields the equation
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PP !
1 OGL (R 9R) " \ R
7 —‘at—da— + Qd -VGd(Ras R‘]) + Zt(Ra) G: (Ra’ Ra)

a
" , C(E’,— Q:l; E, - Qa, r)Et(r, E) , ,
_f f Gt (r.E, 2, t,;R}) Z,(r, ) X dE' 2,
Q‘; E’ t\r

=50 -r")8(E - ENS(-Q, + Q)8(-t, + t}) 445

where R, is defined to be the phase-space point r,E,Q,,t,. Equation (4.45) is identical
in form to the neutron transport equation, where the term in brackets in the integrand
is recognized as the transfer kernel.

It may also be proved that G} satisfies the same boundary conditions as G. The
condition on G is that G(rS,E,Q',t;R') =0 at every point r, on the outer surface of the
system, where £2° denotes any direction into the system. This boundary condition,
combined with the requirement that the bilinear concomitant be zero on the outer
surface, leads to the following condition for G*:

G'(r E, Q5 tR") = 0 (4.46)

where Q" denotes any direction out of the system. From Eq. (4.46) and the definition
of Gj, the boundary condition on G} demands that no pseudoneutrons enter the
system from the outer surface. The time constraint on G is that G(R;R") =0 for
t'>t. This requirement coupled with the reciprocity theorem of Eq. (4.40) and the
definitions in Eq. (4.44) dictate that Gy (R,;R})=0for t > t,.

Since Eq. (4.45) has the same form as the transport equation and also satisfies the
same boundary conditions, it would seem to offer no difficulties for a Monte Carlo
simulation. However, this is not necessarily the case. The reason for this is an old
problem with Monte Carlo calculations. Not only must one develop an unbiased
sampling scheme, but from a practical viewpoint this sampling scheme must have a
small enough variance so that statistically acceptable answers can be obtained in a
reasonable amount of computational effort. To better understand the typical prob-
lems that arise with a straightforward sampling of the adjoint equation, we will first
make some comments on random-walk simulations of the transport equation.

A large portion of the literature on Monte Carlo has been oriented toward the
proper biasing of sampling schemes to reduce variances. However, it should be em-
phasized that many of the particle-transport problems of current interest are solved
with a direct analog simulation or with only small alterations of an analog simulation.
Why is the analog random walk acceptable for this large class of problems? The
answer tends to be twofold. First, the analog random-walk models the physical
process. Hence it tends to be efficient for estimating the class of functionals such that
a significant fraction of the source particles contributes to the estimate of the func-
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tional. For this reason analog Monte Carlo tends to work well for many nuclear reactor
problems but works poorly for deep-penetration problems. The second reason that
analog Monte Carlo works so well in many transport problems involves particle
weights. For many problems of interest, the normalization of the collision kernel is
unity or less than unity in most of the phase space. That is, the system is not multi-
plying, is only weakly multiplying, or only the first generation of neutrons from an
iterated fission-source distribution is being tracked. This has the practical advantage
that the particle population does not multiply drastically (or that particle weights do
not increase drastically), which can adversely effect variances.

These two advantages are not usually present in an attempt to do an analog simu-
lation of the transformed adjoint equation, Eq. (4.45). The pseudoneutrons do not
necessarily migrate toward regions of interest, and the normalization of the collision
kernel appearing in Eq. (4.45) is often much greater than unity. This latter effect tends
to result in increasing and fluctuating particle weights at collisions or, alternatively,
in a multiplying system if some type of weight splitting is used.

It is possible to overcome the first problem in most cases by simply using splitting
and Russian roulette to bias the pseudoparticle history toward regions of interest.
The weight-fluctuation problem is not so easily resolved. A number of different tech-
niques have been suggested in the literature to alleviate the problem. With all due
respect to the proponents of the various techniques, these techniques all seem to
suffer from rather severe deficiencies for general applications. Spanier and Habetler!’
used the infinite-medium multigroup thermal-neutron flux to bias the adjoint scatter-
ing kernel for an adjoint calculation of thermal-neutron transport. They observed
that this technique reduced variances considerably over those obtained in calculations
without such biasing. Levitt and Spanier!? used a transformation of the adjoint
integro-differential equation such that changes in particle weights would only occur at
each boundary crossing. They attempted to optimize the adjoint-scattering kernel by
using the corresponding infinite-medium flux for each individual region in the problem
as a biasing function for that region. One disadvantage of this technique is the infinite-
medium flux of a homogeneous region may be quite different from the actual flux in
that region in the heterogeneous problem. However, the usefulness of the method was
demonstrated in a number of resonance-escape problems. Eriksson et al.!> allow for
splitting to occur along each path in such a manner that weights do not increase.
However, this can result in an unacceptable multiplication of the particle population.
Carter and McCormick!® use a short Monte Carlo calculation of the neutron flux to
bias the adjoint collision kernel. This has been demonstrated to be a useful technique
in a production code, MCNA!2 at LASL, but this method does suffer from the limi-
tations that the additional transport calculation is required and that the necessary pro-
gramming effort is significant.

In this section on the simulation of adjoint equations, we have discussed a number
of advantages in solving certain problems with the adjoint approach. We have also
attempted to point out that the adjoint simulation often requires special care to avoid
unacceptably large variances. The investigation of effective methods of simulating the
adjoint equation is presently an active area of research.
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A multigroup treatment of the kinetic energy of the particles is sometimes used in
Monte Carlo calculations of particle transport. To begin the discussion, we will con-
sider a number of advantages and disadvantages of this approach over a continuous-
energy treatment.

The computer programming tends to be simpler with a multigroup approach since
cross sections and energy-transfer probabilities are cast in vector and matrix form. An
advantage of this formulation is the similarity in the computer programs for simulating
the transport of neutrons and gamma rays.

There is also a close correspondence between the simulation of the multigroup
transport equation and its adjoint equation. This significantly reduces the computer-
programming effort when both modes of solution are required. However, the simula-
tion of the adjoint equation may still suffer from large statistical errors for the reasons
discussed in the previous section.

An important advantage of doing multigroup calculations with Monte Carlo is the
generation of cross sections. Processor codes have been extensively developed in the
past few years to generate cross sections for discrete-ordinates and diffusion-theory
methods. These processor codes can be used with little or no alteration to generate
cross sections for multigroup Monte Carlo codes.

Perhaps the most important advantage of this treatment is that it enables com-
parisons between Monte Carlo and discrete-ordinates calculations to be made directly
with the identical cross-section sets. Thus the importance of geometrical approxima-
tions necessary to do a discrete-ordinates calculation can be evaluated.

The multigroup treatment does not necessarily assure a gain in the number of
particle histories processed per unit of computation time. The Monte Carlo method is
commonly used in geometrically complicated problems so that the tracking of particle
histories through the geometry requires a significant fraction of the computation
time. Thus the particular treatment of the collision process may not make a great
deal of difference. In addition, the majority of the collisions are usually elastic, and
the physics of elastic collisions is simple enough that they can be treated rapidly with a
continuous-energy treatment.

Multigroup Monte Carlo has the obvious disadvantages inherent in group averaging.
Thus it has definite limitations in problems where the fine energy detail of the cross
sections is important, such as in treating resonance self-shielding problems.

Another disadvantage of the multigroup method involves the selection of the scat-
tering angle at collision events. The usual multigroup approach is to expand the scat-
tering kernel in a low-order Legendre expansion. The energy group of the emerging
particle is selected in the random walk from the appropriate column of the P, matrix.
The density function for the scattering angle in the laboratory system is described by
the corresponding components of the P ,P,,... P, matrices. Since this function
represents the conditional angular distribution, given that a group-to-group scattering
occurs, it may be highly anisotropic. Furthermore, the Legendre expansion is trun-
cated so that the conditional angular distribution may actually go negative over a
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portion of the range. This is demonstrated in Fig. 4.3 for the in-group elastic scatter-
ing of neutrons on hydrogen nuclei for an energy group with the lower energy bound
of the group equal to one-half the upper energy bound. The exact density function
for the cosine of the scattering angle in the laboratory system is zero for u < 0.707 and
is shown in the figure for u > 0.707.

The scattering angle can be sampled from the normalized density function

£ (w)
L 1) dw

O Exact

-1
-1.0 -08 -06 -04 -02 0 02 04 06 08 1.0

Fig. 4.3 In-group scattering density function for hydrogen.
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with the emerging particle weight adjusted by the factor
L) B dw

()]

to obtain an unbiased simulation of the multigroup equations. This weight-correction
factor can result in a change in sign for the particle weight, which leads to statistical
problems. It also has the disadvantage that even for the low-order expansion through
P, the density function is not trivial to sample.

f(u)

A different technique for selecting the scattering angle is employed in the MORSE
Monte Carlo code.* A Gauss quadrature treatment is used to conserve the first few
moments of the distribution. The particle is allowed to scatter into one of n discrete
scattering angles with n corresponding probabilities. This technique requires (2n - 1)
words of data storage to conserve the first (2n — 1) moments, i.e., (u,, iy, . . ., Hypy()-
This method avoids the negativity problem in most cases and is very fast to use in the
random-walk process. However, it does suffer from the disadvantage that scattering is
allowed only at discrete angles so the flux distribution tends to have some angular dis-
tortion during the first few collisions.

Spanier and Gelbard® discuss a technique used in the MARC code. The scattering
angle is selected from one of four distributions, i.e., straight forward, straight back-
ward, at 90°, or from an isotropic distribution. The probabilities for selecting from
the four distributions are computed to conserve the first four half-range moments.

The TART code!8:19 is a hybrid between a full multigroup treatment and a
continuous-energy treatment. This code uses the reaction cross sections in multi-
group form for each isotope. These include the total, capture, elastic, fission, inelastic
cross sections for exciting discrete levels and the inelastic cross sections that correspond
to available analytic or tabular data for the emerging neutron energy. The multigroup
cross sections are used to sample flight paths and the type of collision event in the
random walk. The emerging neutron energy and the scattering angle are then sampled
by a continuous-energy treatment.

This discussion of multigroup methods has been brief. The interested reader
should consult Refs. 4, 6, and 18 for a more detailed treatment and Ref. 20 for
a comparison of various methods of sampling the scattering angle at collision
events. In the next two chapters, we focus on techniques for sampling interaction
models that are commonly used in describing neutron and photon transport.
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ELASTIC SCATTERING

The mathematics describing the elastic scattering of a neutron from a free nucleus is
considerably simplified if the precollision kinetic energy of the target nucleus can be
neglected. This is usually a satisfactory approximation for neutron kinetic energies
greater than about 10 times the equilibrium kinetic energy of the target nuclei. The
case when the energy of the target nucleus is not negligible is discussed in the Thermal
Scattering section of this chapter.

Elastic scattering is usually treated by selecting the scattering angle in the
center-of-mass system and then computing the corresponding scattering angle in the
laboratory system. This has the advantage of minimizing data-storage requirements
since elastic scattering is isotropic in the center-of-mass system for a wide range of
neutron energies. When incident-neutron energies are such that the scattering is not
uniform, a computationally fast and accurate sampling method can be devised by
tabulating the (n + 1) center-of-mass angles that correspond to n equally probable
intervals of the cumulative distribution function. Then in the random walk we
randomly choose one of these intervals and sample the scattering angle from a uniform
density function between the two scattering-angle bounds of the interval. The
advantage of this technique is that the mesh points in the table are automatically dense
where the probability density function is large. Data storage is also used effectively
since we do not have to tabulate the cumulative distribution function; only the
random variable bounds are needed. This is a special case of the sampling method
discussed in the Basic Principle section of Chap. 2. The number n of equally likely
intervals is typically chosen to be some integral power of 2 as a convenience for
randomly sampling an interval on a binary machine.

65




66

NEUTRON TRANSPORT

The density function for the scattering angle in the center-of-mass system depends
in some continuous manner on the kinetic energy of the incident neutron, but
satisfactory accuracy is obtained by tabulating at discrete incident-neutron energy
points with some type of interpolation between these energy points. A commonly
used method is linear interpolation of the density function in the following manner:

E, - E
f(uemsE) = <E—_—E—> fkemsE)
2 1

E - E,
+ <—E E >f(ucm;E2) EI < E < E, (5.1)
2 T :

where (i, E,) is the density function at an incident-neutron energy E, and
f(emsE,) is the density function at an incident-neutron energy E,. The density
function is a linear combination of two density functions with positive coefficients; so
a sampling technique suggested in the fourth section of Chap. 2 can be used, i.e., ¢
is sampled from f(u.:E;) with probability (E, - E)/(E, - E,) or from f(u.,, ;E,)
with probability (E - E,)/(E, - E,). The equally probable center-of-mass intervals are
tabulated at E, and E,. For example, the table for the energy E;, would consist of
the inverse solutions, (u.p,);, of the equation

i (“cm)i
;=j fue: B ) die, 1= 0,1,2,...,n (52)
1

where n is the number of equally likely intervals. Typically 16 or 32 intervals are
adequate.
The corresponding scattering angle in the laboratory system is

(1 + Apep)
Map = o ) (-3)
(1 + A% +2Ap )"
and the emerging neutron energy is
E' = (1/D)E[(1 - u. +1+a (5.4)
where
A -1V
= 5.5
* <A " 1) (5:5)

and A is the mass of the target nucleus in units of the mass of a neutron.
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The proton and neutron have essentially the same mass; so computational effort is
saved by treating elastic scattering with a hydrogen nucleus separately. This is
particularly true since the elastic scattering of a neutron with a proton is isotropic in
the center-of-mass system for neutron energies less than about 10 MeV. In this energy
range the event can be modeled simply by using one random number £, to select the
emerging energy and the laboratory scattering angle as

E = E,E (5.6)
and

= ED” (5.7)
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The kinetic energy of the emerging neutron in the center-of-mass system after
suffering an (n,n") inelastic scattering is

— A\ A
E. = <X'+_T> E + Q(A . 1> (5.8)

where E is the incident kinetic energy of the neutron in the laboratory system, Q is the
Q value of the reaction, and the precollision kinetic energy of the target nucleus in the
laboratory system has been neglected. The Q value of the reaction is defined here as
the rest energy of the target nucleus prior to the collision minus the rest energy of the
target nucleus immediately after the collision (evaluated before the nucleus decays to
its ground state). With this definition, Q is always negative for the (n,n")
inelastic-scattering reaction being considered.

The scattering in the center-of-mass system is nearly isotropic for many cases of
interest. If experimental measurements or theoretical calculations justify an
anisotropic treatment, the center-of-mass scattering angle can be sampled in the
random walk in the same manner we have discussed for elastic scattering.The emerging
neutron energy in the laboratory system and the laboratory scattering angle are then
determined from the center-of-mass scattering angle as

E+2 A+ 1)(EE’ )~
E =E +[ Hem ( ) ( Cm)] (5.9)

(A + 1)?

B, \* e/
Miap = (?) Hem T B/ \A +1 (5.10)
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The appropriate score for the point-detector estimator discussed in Chap. 4, after
excitation of an inelastic level as described above, will be derived. The right- and
left-hand sides of Eq. (5.10) are squared, each term of the resulting equation is
multiplied by E', and E' is then replaced by the expression given by Eq. (5.9). The
result of this operation is a relation between y;,;, and ¢y,

2 ' + E + 2ucm (A + 1)(EEém)l/2
#lab cm (A + 1)2
2u,.(E. _E)”
A A S I
cm cm A+ 1 (A+ 1)2’
with E, E'Cm, and A constants for a given event. Therefore,
A em _ “labE (5.12)
d 4 ! 5 ' 1 :
Hrab  we Bl +I(E' L E)2HA + 1)) - (1], (EL E)A(A + 1)]
which can be expressed as
d#cm _ (E'/Eém) (5 13)

Wiy (B'VEL))” = g, /(A + DI (E/E] V"

cm

by the use of Eq. (5.9) and (5.10). For a fixed scattering angle in the laboratory
system, the final neutron energy can be obtained by eliminating u.,,, from Eqs. (5.9)
and (5.10) and solving for E' to obtain

1, 2 v
Hiap (B [ uf B , E
+ +

+ E - —
A+l (A + 1)2 CM(A+ 1)

(E))" = (5.14)

There are three possibilities! regarding the final energy of the neutron in the
laboratory system determined by Eq. (5.14):

Case 1. ¥ E\.,, <0, which implies E < [(A + 1)/A}(—Q), then the quantity inside
the right-hand square root of Eq. (5.14) is negative for all scattering angles in the
laboratory system, and the reaction cannot occur. This corresponds to
incident-neutron energies below threshold and hence is an uninteresting case.

Case 2. If E,, > [E/(A + 1)?], which implies E > [A/(A - 1)] (-Q), the
quantity inside the square root is always greater than or equal to zero for all scattering
angles in the laboratory system. However, the root corresponding to the positive sign

-




INELASTIC SCATTERING

in Eq. (5.14) is the only acceptable solution since the right-hand square root term is
larger than [(E)”u,p /(A + DI

Case 3. If 0 < E,, < E/(A+ 1)2, or equivalently [(A+1)/A] (-Q) <
E < [A/(A - 1)] (- Q), it is only possible to scatter through a range of scattering
angles in the laboratory system such that {1 - A2 - [QA (A+ 1)/E]?'/2< U < 1.
For any such acceptable scattering angle in the laboratory system, the neutron can
emerge with either of the two energies corresponding to the roots of Eq. (5.14).

The point-detector score for each acceptable emerging neutron energy is given by

Wh(u. ;E).

cm’ Jik,cm

exp (- ;" 2 ds) 2R du

(5.15)
2rlr ~ 1|2 d#lab

with dug,/duy,p given by Eq. (5.13).

A few practical comments are in order. The possibility of multiple roots occurs
when the kinetic energy of the incident neutron is just sufficient to excite the level.
The significance of this observation is that the lower root E can usually be ignored
without introducing appreciable error. In addition, subject to the previous
consideration, dg.p,/du;,, is nearly unity for heavy nuclei, and the use of this
approximation saves considerable computation effort and removes worry that the
denominator of Eq. (5.13) may approach zero in rare cases. We return now to
considerations of the random walk.

It is impossible to treat all energy levels for inelastic-scattering events.
Furthermore, experimental measurements are usually either nonexistent or have been
made for only a few of the lower levels. Hence some simple model is used to describe
the majority of the levels. This model may consist of replacing a near continuum of Q
values with a number of discrete Q values. Another model that enjoys considerable use
is the statistical gas model, where the level structure is replaced by a continuum. The
emerging-neutron energy is picked from the density function

-C,(E)E’
e 2

g(E;E) = C,E' (0 <E <E,) (5.16)

where C, is a normalization constant, C,(E) depends on the properties of the nucleus
of interest and on the incident-neutron energy, and E, is the maximum energy of the
emitted neutrons. The density function g(E';E) can be sampled as?

v -In (E1‘§2)

= —Cz(—E) (5.17)

where E' is accepted if E' <E_.In Eq.(5.17),%, and &, are random numbers on the
unit interval.
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Various other methods are used to model (n,n’) inelastic-scattering events. The
method used in the Monte Carlo calculation is often dictated by models that are
recommended in the particular cross-section set being used.

The sampling of the inelastic-scattering events (n,2n) and (n, 3n) is simplified by
using models that ignore the correlation between the emerging neutrons. That is, the
emerging kinetic energy and the scattering angle of each neutron are selected
independently. This treatment yields unbiased results since on the average the correct
amount of energy is emitted in each small energy interval even though energy is not
conserved in the individual inelastic event. Of course, an exception to this occurs
when quantities that depend on the correlation between the emerging neutrons are
being estimated.

FISSION

The fission event is treated in a variety of ways, depending on the particular
calculation of interest. For criticality calculations, usually only one generation (from
one fission event to the next) of neutrons is followed for each fission-source iteration;
so the neutrons produced at a fission event are banked for possible use in the
subsequent iteration. For calculations in which the histories of the progeny are also of
interest, the emerging neutrons from the fission event are sampled and followed in the
random walk. Some care must be used in this description of the fission event for
near-critical systems since it is possible for the Monte Carlo population of weighted
histories to become supercritical even though the physical system is subcritical. This
can be avoided by allowing less than v neutrons to emerge from the fission event in the
random walk and properly adjusting their weights. Carrying this to the extreme by
allowing only one neutron to emerge from fission can introduce undesirable particle
weight fluctuations in the random walk.

The sampling of the fission event is simplified by the usual assumption that the
neutrons from fission are emitted isotropically in the laboratory system. In many
computer codes the density function for the kinetic energy of the neutrons from a
fission event is also assumed to be independent of the energy of the neutron causing
fission. This is a useful approximation for nuclear-reactor calculations since only a
small percentage of the neutrons from fission are emitted at energies above a few
million electron volts. There are experimental measurements that indicate that, for
fission events caused by an incident-neutron energy above a few million electron volts,
one or two of the emergent neutrons may have been scattered inelastically rather than
emitted in the fission process. The cross sections for these processes are denoted by
0y qn'¢ 8nd Oy oy, respectively. This does not introduce any error in the number of
neutrons emerging from the event since measurements of v also include those neutrons
scattered inelastically. However, it does introduce a change in the energy spectrum of
the neutrons emitted from a fission event. The inclusion of these inelastic neutrons in
the sampling is considered here.
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The cross section for the fission event, o, g, can be expressed as

A T Y (5.18)

n,F n,f n,2n'f

where the partial cross sections oy, ¢, 0, 5'p, and 0y 5,'p are assumed to be available
from experimental measurements or from theoretical calculations. Here oy, ¢ is the
cross section for true fission, where no inelastic neutrons are emitted in addition to
those from the fission process. Such data for 235U, 238U, 23°Py, and 24°Pu, along
with fits to the spectra of emerging neutrons for the various reactions, are available in
Refs. 3 and 4.

Experimental measurements indicate that the kinetic-energy spectrum of the
neutrons emitted in the true fission process is unaffected by the inelastically scattered
neutrons. Hence the energy of an emerging neutron from the fission event is selected
from the inelastic spectrum of the (n,n'f) event with probability

g

n,n’f
—_— 5.19
I/'On,F ( )
and from the inelastic spectrum of the (n,2n'f) event with probability
20n,2 n'f
Vo, g (5.20)

If the random test does not select either of these two possibilities, the
emerging-neutron energy is sampled from a fission spectrum.

A fission spectrum can be handled in the Monte Carlo calculation by tabulating
equally probable energy bins for the sampling. Alternatively, we can sample from an
analytic fit, as discussed in Chap. 2.
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Neutron scattering at thermal energies is modeled with a variety of methods.
Scattering can be treated in a rigorous manner by sampling directly for & and § from
the S(a,8) scattering lawif’ this also includes chemical-binding effects. The a and f
uniquely determine the kinetic energy and scattering angle of the emerging neutron in
the laboratory system. This direct sampling of & and § enables calculations to be made
with the full scattering kernel but requires the storage of only two-dimensional arrays.
A formulation for sampling o and § is discussed in detail in Ref. S.

Computer storage limitations, computational speed requirements, and the fact
that chemical binding may often be either ignored or adequately described by various
approximations have led to the extensive use of simpler thermal models in Monte




72

NEUTRON TRANSPORT

Carlo codes. An approximation that is often used is a multigroup treatment of the
thermal energy range. This is quite effective since the thermal target motion tends to
make the scattering more nearly isotropic so that a low-order Legendre expansion of
the frequency distribution for the scattering angle is satisfactory for many
applications.

The free gas kernel is a thermal interaction model that enjoys considerable use
since it results in a good approximation to the thermal flux spectrum in a variety of
applications and can be sampled without tables. In this model neutrons are assumed to
be transported in a monatomic gas, the latter having an isotropic Maxwellian
distribution of velocities. The effective scattering cross section in the laboratory
system for a neutron of kinetic energy E is

1
U:ff(E) = Tffos(vrel) Veel P(V,u) dV duy (5.21)
n

Here, v, is the relative velocity between a neutron moving with a scalar velocity v,
and a target nucleus moving with a scalar velocity V, and y, is the cosine of the angle
between the neutron and the target direction-of-flight vectors. The scattering cross
section for this relative velocity is denoted by o (v,.(), and p(V,u¢) is the probability
density function for the Maxwellian distribution of target velocities,

) 2 32vy2
P(V,/Jt) = 7_T-l/7 ﬁ3V2 € g (522)
with § defined as
g=[AY (5.23)
2kT

In Eq. (5.23) A is the mass of a target nucleus in units of the mass of a neutron, k is the
Boltzmann constant, and T is the equilibrium temperature of the target nuclei.

The relative velocity between the neutron and target is obtained from the cosine
law, M.

Viel = [(Vn)2 A 2anut]l/z (5.24)

We assume that the scattering cross section of a nucleus is independent of this relative
velocity; so

04(V,e)) = 09 = constant (5.25)
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This assumption enables us to evaluate the integral over p, in Eq. (5.21) and to
express the scattering cross section in the laboratory system as

o -32V?2
. 200 g3VZe b 1 )
0tMl(E) = - f — 3| [(v)? + V? = 2v, Vi ] * du v
0 -

1
Vi ah .

20° °°
5/—(‘?[ (v, + V)? = v, - VI3 g3ve™®Viav  (5.6)
TV, 0

It is convenient in the following considerations to define a dimensionless variable
X as

x = BV (5.27)

so that x? is the ratio of the kinetic energy of a target nucleus to kT. We also define
the constant a as

a = fv, (5.28)
Then, with a change of variables, the effective scattering cross section is

o8

U:”(E) = f [(a + x)° - |la-xI3] xe'x2 dx (5.29)
0

352 ﬂ%‘

which is equivalent to the well-known result

o¢(E) = o [(1 + #) erf(a) +

a a7r'/2

e—aj (5.30)

The integrand on the right-hand side of Eq. (5.29) is proportional to the
probability density function for the target velocity in the transformed x variable. This
density function for x decreases in value rapidly as x becomes large; so the total
probability of x > 3 can be shown to be less than 0.00125. The random walk is
simplified by neglecting x > 3, in which case an x value is sampled uniformly
between zero and 3 and accepted with a probability proportional to the integrand on
the right-hand side of Eq. (5.29). The efficiency of such a sampling is approximately
0.4, and this efficiency is nearly independent of the incident-neutron energy. The
approximation involved in neglecting x >3 is equivalent to ignoring all target
energies greater than 9 kT.
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We also observe from Eq. (5.26) that the density function for the cosine of the
angle between the target and neutron direction-of-flight vectors is given by

f(u) = C@* + x® - 2axp)” (5.31)

This can be sampled analytically as

1 2 4 42 3 3 3 . 5.32
e = g=(at x5 = qla - x? - Efla - x)7 - @+ %)) (5.32)

The incident-neutron direction of flight will be denoted here by the
direction-of-flight cosines (u,v,w). This incident direction, the value of u,, and an
azimuth angle uniformly selected on the cone about the incident direction of flight of
the neutron are sufficient to fix the direction of flight of the target nucleus, denoted
here by the direction cosines (u;,v;,w,).

The scattering is assumed to be isotropic in the center-of-mass system; so the new
direction of flight in this system of coordinates is sampled uniformly on the unit
sphere and is denoted by the direction cosines (u,,v,,w,). The kinematics of the
collision process® yields the final neutron energy and direction-of-flight cosines in the
laboratory system as

E Ca s =
E'=—— _ (X% +y% +2?) 5.33
(A+1)2 (533)

u = (5.34)
(x2 + y2 + 22)'/2

: y
v o= 5.35
(X2 + y2 + 72)% 339
w = z (5.36)
(x2 +y2+ 22)‘/2
where
X
X=u+ A(Buo o ut> (5.37)
X
F=v+ Ay, v, (5.38)
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N
It

w+ A(Bw, +§wt) (5.39)

(=]
1l

2 2xu %
(1 + X ‘) (5.40)
a2 a

Figure 5.1 is a flow diagram for sampling the free gas kernel, based on the above
derivation. In the figure, E is the precollision kinetic energy of the neutron, and
(u,v,w) are the precollision direction-of-flight cosines. The postcollision kinetic energy
of the neutron is denoted by E’, and the postcollision direction-of-flight cosines are
denoted by (u'v',w').

In some applications we find it convenient to use the point-detector estimator
discussed in Chap. 4 in conjunction with the free gas kernel. We describe here a
method to score at the point detector for each collision event. For the (x,u,) selected
from the scheme of Fig. 5.1 in the random walk, the kinetic energy that the neutron
must have in order to scatter to the detector can be obtained from energy and
momentum balances. The resulting equations are straightforward to derive, but we
have omitted the rather involved mathematical details. A flow diagram for the
point-detector score is given in Fig. 5.2, assuming (x.y,z) is the point of collision and
(x',y' ') is the location of the detector.
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CRITICALITY

Criticality calculations have the distinguishing feature that the equilibrium
spatial-source distribution of the fission neutrons is unknown at the beginning of the
calculation. Sometimes an adequate source distribution can be constructed from
deterministic methods, but, in the more common situation, it must also be constructed
in the course of the Monte Carlo calculation. The computation time required to obtain
a converged source is sometimes an unimportant consideration (e.g., for fast critical
assemblies), but it is often a significant factor in determining the feasibility of doing
Monte Carlo calculations on thermal systems. There are also physical systems, such as
certain array configurations of fissionable materials and split-core reactors, where care
must be exercised to ensure that the iteration method will converge to the correct
equilibrium source distribution.

The typical Monte Carlo calculation uses an initial neutron source distribution
from fission which is either obtained from a simplified deterministic calculation or is
merely a guess. This initial distribution is used as the neutron source for the first
generation of neutrons in the Monte Carlo calculation. The resulting progeny from
fission events is used to construct the neutron source for the next generation, and so
the iteration proceeds. After a sufficient number of generations, convergence of the
fission-source distribution is deemed satisfactory from some test, and the neutron
histories in a number of subsequent generations are used to compute quantities of
interest, such as the muitiplication factor.
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Sample cosine of angle uy between target and neutron direction
|
AE| ! ;

of flights and sample target velocity x,.

2
0.45304x, x5 e *1 ¢ +
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Sample random direction assuming isotropic scattering in center of mass.
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vo =V 1 — wi sin 2n¢

Compute final neutron energy £ and direction of flight u’, v/, w'.
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|
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—_—ly, =AY >l u'=y,y, L END
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*Use correct limits® as jw| — 1.

Fig. 5.1 Flow diagram for sampling the free gas kernel.
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We can reduce the computation time required for source convergence by replacing
the Monte Carlo iteration on the source with a fission matrix iteration. The volume of
the system containing fissionable material is divided into a number of contiguous
spatial cells, and an element a;; of the matrix is defined to be numerically equal to the
number of first-generation fission neutrons produced in cell i from one fission neutron
starting in cell j. These elements can be computed in a one-generation Monte Carlo
calculation. The subsequent numerical iteration using the matrix with an initial source
vector typically requires a negligible amount of computational effort.

The disadvantage of the matrix method is that the elements themselves are
computed from an assumed initial distribution in the Monte Carlo calculation. The
error due to this initial distribution tends to be of second order since only the
functional dependence of the. fission source across individual cells, rather than across
the entire system, is important for computing the matrix elements. If the error due to
the assumed distribution across individual cells does turn out to be significant, it can
be reduced by using information from the first matrix iteration to repeat and improve
the Monte Carlo calculation of the matrix elements. The statistical error involved in
the evaluation of the matrix elements also leads to an error in the eigenvalue obtained
from the matrix iteration. Recent studies have indicated that this is an important
disadvantage of a matrix method.

The interested reader is referred to Ref. 7 for examples in which Monte Carlo was
used to iterate the fission-source distribution. Fission-source iterations with a matrix
approach are discussed in Refs. 8 and 9; these two references are also excellent as an
introduction to the use of Monte Carlo in reactor-physics problems. Techniques to
improve and accelerate the matrix method are discussed in Ref. 10.

1

(x" — x){u+ Axqu) +{y' = ylv + Axgv) + (2" — 2w + Ax,w,)

Al —xPP +ly =)+ (2 —2)?

Ay, —Asing sing=+/1—cos® ¢ cos ¢ =

-r=1l sine=AAS'yn)¢ cose =4/1 —sin? €

l[ucm =cos¢d cose —sindsine

!

. E
Br = [T7 A (AT F AN+ 28y, B )
Find point detector

energy bin and score e
W(A? + A?y2 + 2Ay, Apern)? SR exp (—fo | Z, ds)
Arler’ FPAZy2 Ay, + Apcn |

Fig. 5.2 Point-detector score in the thermal routine.
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B PHOTON TRANSPORT

INTRODUCTION

Since photons can be considered as particles subject to scattering laws as they pass
through matter in much the same manner as neutrons, the techniques of Monte Carlo
are eminently suited to photon-transport problems. ~A linear equation governing
photon transport is essentially identical in form to the Boltzmann transport equation
for neutrons. The collision processes of photons on electrons, although physically
quite different from those of neutrons, are analogous to corresponding processes of
neutrons. In this chapter, we discuss the principal types of collision and ways of de-
scribing them by Monte Carlo.

COMPTON COLLISIONS

A Compton collision is by definition a collision of a photon with an electron that
is assumed to be free and at rest in the laboratory system of coordinates. We use the
following definitions in this chapter:

¢ = 2997925 X 1010 ¢m/sec, the velocity of light in a vacuum
h = 6.626196 X 10-27 erg sec, Planck’s constant

mgy = 9.109558 X 10-28 g, the rest mass of the electron
e = 4.803251 X 10719 esu, the charge of the electron
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In the treatment of Compton collisions, the photon has an energy E that satisfies the
relation E = hp, where » is the frequency of the photon. The particle also has a wave-
length A, with Av =c¢. A mass can be defined for a photon by means of the relation
E=mc?, and a momentum mV can be assigned, with [V|=c and [mV|= mc = hy/c.

The electron in these collisions is characterized by its charge e, rest mass m,, and
velocity vector V'. Its mass is then m = m, /(1 - §2)"2, with §= |V'|/c. The momentum
is mV', and its total energy is mc?.

Many of the relations derived from considering photons colliding with free elec-
trons are simplified if the photon energies are expressed by a dimensionless parameter
a=hv/myc?, which gives the ratio of the photon energy to the rest energy of the
electron, myc? = 0.511004 MeV (1 MeV = 1.60210 X 10-% erg).

In a Compton collision the total energy and momentum are preserved. Using the
foregoing definitions and writing down these conservation laws, we can derive the fol-
lowing relation between the incoming photon energy «, the scattering angle, 9, and the
outgoing photon energy, «':

. 4]
e ] ©.1)

Here u = cos 6, the cosine of the scattering angle in the laboratory system, and the
energies « and o' are in units of the rest energy of the electron, myc2. The pertinent
information on the electron, such as the scattering angle and the energy, is immediate
from the derivation. The interested reader may consult Chap. VI of the manual by
Cashwell and Everett! for the derivation of these relations.

The Klein-Nishina cross section for the scattering of a photon of energy a =
E/m002 on a free electron at rest, at an angle § within du of ¢ = cos 6 from its line of
flight, is given by

’

o(a, ) du = 7rr02(%> (% + Z‘— +u? - 1> du -1 <up<1) (62
where o' =of[1 +a(l ~ u)] is its final energy o' =E'/myc?, and r,=e?/myc? =
2.81794 X 1013 cm is the classical Thomson radius of the electron.

With the incoming energy « fixed, define x=a'/a=1/[1+a(l - )] and
o(a,x) dx = o(e, ) du. Writing Eq. 6.1 in the form u=1+a! —a!x-!, we have
du/dx = avtx-2? and

oo, x)dx = 75 o7 (x + x7' + u? - 1) dx 6.3)

The expression on the right has an associated probability density function

f(x) dx

p(x)dx = FG)
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= < < .
P=sgrysxs! 64)
where

f(x:)=x+x1+/.12—1
p=1+al-alx! (6.5)
F(8) = fﬁ' f(x)dx = G (6.6)
The Monte Carlo method of sampling for x = '/« consists in solving the equation

_
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F(x) = /] f(1) dt (6.7)

for x in terms of a random number £, equidistributed on [0,1].
Referring to Egs. 6.3, 6.5, and 6.6, we can compute the Compton scattering cross
section from the relation

o,(Compton) = mrg a~1G (6.8)

This cross section has been plotted by the National Bureau of Standards.?

Various methods have been used to sample the Klein-Nishina scattering function.
Very early in the development of Monte Carlo, Kahn? devised a rejection technique to
sample this function. Another method that has proved very successful in practice is to
approximate the inverse function x = F-1(y) = Q(y) of y = F(x) given in Eq. 6.7 and
to take x = F-1(G§) = Q(G§). The method can be fast to use since each random num-
ber leads to a value of x. Examples of this latter scheme appear in the literature, 4>
where very accurate fits to the inverse function are displayed. Both the rejection
method and the approximation of the inverse function have been incorporated into
machine codes for transporting photons. Some of these codes are mentioned later in
this chapter.

More accurate treatment of the photon-scattering process necessitates considera-
tion of the structure of the atom and leads to two types of scattering, incoherent and
coherent.
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Scattering from free electrons is referred to as incoherent since the independent
behavior of the electrons prevents any interference effects. In this process the differ-
ential scattering cross section is written in the form
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o(Z,o,p) du = I(Z,v) K(o, 1) dp (6.9)

where I(Z,v) is an appropriate scattering factor modifying the Klein-Nishina cross
section

N2 ’
K(o,u) du = 1} (_9(_) <ﬁ + ﬁ, +u? - 1> du
Q o o

Here K(a,u) is written in place of o(a,u) in Eq. 6.2. As in the latter equation,
o' = af[1 + a(l - p)], with the definitions of r, and u the same as before. The scat-
tering factor represents the probability that an atomic electron, having been imparted
momentum by a photon, will absorb energy and thereby become excited or leave the
atom.

The factor I(Z,v) has the effect of decreasing the Klein-Nishina cross section more
extremely in the forward direction for low E and for high Z independently; it in-
creases from I(Z,0) =0 to I(Z,)=Z. The parameter v =v(e,u) is a function of a
and u which, for a given value of the incident energy «, increases from v(e, 1) =0 at
@ =1 to a maximum value v=v(a,-1) at g =-1. As u varies from 1 to -1, the quan-
tity I(Z, v)/Z increases rapidly from O toward 1. At high energies I(Z,v)/Z is approxi-
mately 1 except for the extreme forward direction. The variation of I(Z,v)/Z with v
for different values of Z is shown in Fig. 6.1. Here the parameter v is the inverse length
v =sin (1/2)0/MR) = ko1 — )% k =108 moc/h(2)%=29.1433 cm™ | with maximum
value v = ka(2) % for given a.

e T T 1
Z =10
Z = 80
N
Eos— —
YA W N N S
0 2 4 6 8

Fig. 6.1 Incoherent scattering factor.
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To describe a sampling method for g =cos 8 from I(Z,v) K(a,u), we recall the
generalization of the rejection method described in Chap. 2. Given P(y) = C,F(y)Q(y).
a <y < b, where P(y) and Q(y) are probability densities, 0. < F(y) < 1, and
Co, > 1 is any constant. If y is sampled from the density function Q(y), retained as
the sample value of y with probability F(y) [and rejected with probability 1 - F(y)],
then the set of y values retained was shown to have density P(y).

To apply this to incoherent scattering, we write ol(Z.a) and oy(a) for the total
incoherent and Kliein-Nishina cross sections, respectively, and express the probability
density for scattering into (u, u + du) in the form

_ 04(Z,0,p)

p(u) = =
o} (Z,)

I(Zv) o(@) w IZ.v) o Klop)
Oit Z, ) 1(Z,%) Ot(a)

= Co F(u) Q1) (6.10)

We therefore sample K(a,u)/o(a) for u, which is retained with probability F(u)=
I[Z,v(e, )] /I(Z, 7)< 1.

Tables of the scattering factors I(Z,v) are available in the literature. In the Los
Alamos code MCP,® the complete tabulations of Cromer and Mann’-8 (and of
Brown? for a few low Z) are used for all Z>2, v< 8, and we can set I(Z,v) = Z for
v > 8 without any noticeable impairment of accuracy. For Z =1 an exact formula is
available.10
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This type of scattering is important at low energies when the electron must be
considered bound. The mass of a bound electron is effectively that of the entire atom,
and a good assumption is that no energy loss occurs in this process. Only the angle of
deflection is changed in the collision. Because all atomic electrons behave similarly,
the radiation scattered by the individual bound electrons of a given atom will be co-
herent, i.e., capable of showing constructive or destructive interference. We can write
the differential scattering cross section in the form

0%(Z, 0, 1) du = C*(Z,v) T(p) du (6.11)

where C(Z,v) is a scattering factor modifying the energy-independent Thomson cross
section T(u) =mr3 (1+ u?). The scattering factor represents the probability that the
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Z electrons of an atom take up the recoil momentum without absorbing any energy.
The notation is the same as that given previously.

The effect of C2(Z,v)/Z? is to decrease the Thomson cross section more extremely
for backward scattering, high E, and low Z, which is opposite to the effect of I(Z, v)/Z
on the Klein-Nishina cross section described in the preceding section. For a given Z,
C(Z,v) decreases from C(Z,0)=Z to C(Z,>~)=0. For example, C(Z,v) is a rapidly
decreasing function of u as u varies from +1 to -1, and therefore the coherent cross
section is peaked in the forward direction. At high energies of the incoming photon,
coherent scattering is strongly forward and can be ignored. The parameter v=
ka(l - u)”* is identical to that used in the discussion of incoherent scattering. The
qualitative features of C(Z, v) are shown in Fig. 6.2.

Values of the scattering factor C(Z,v) are documented in a number of references.
For example, the Los Alamos code MCP® uses tables of C(Z,v) for Z>1, v<6,
which were compiled from various sources!!13 with values listed for vi=0,...,
Vs = 6. (For details, see Storm and Israel.!*) For practical purposes, we can define
C(Z,v)=0forv>6.

To sample for the scattering angle in coherent scattering, we can again use the
rejection technique used in the preceding section. However, it is convenient to follow
a device used in the SORS photon code!S and reverse the roles of the coherent cross-
section components. Defining p*(u) = 0%(Z,a,u)/0¢ (Z, &), the probability density
function of u, where of is the total coherent cross section, we can transform to the

clzviz
=)
[4,]
]

Fig. 6.2 Coherent scattering factor.
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variable v2 as follows:

P(v) dv? = p(u) dv?

du

dv?
where u is rteplaced by the variable vZ = (xa)?(1 - ), 0<v2<Vv?. Since u=
1 - [v?/(ka)?], du/dv? = -1/(xka)?, and we can write

Pe) vt = 2mrlz? A(z,v2)<1 + u?
ka)? 0§(Z,0) © ©

Joe?) av

il

Co F(v2) Q(v?) dv?

where

Cq(Z,v) 272
Az

Q(?) =

A@EZY2) = 1Y CHZv) 272 4y

for arbitrary v2.

A random number £ on [0,1] can therefore be used to tentatively assign v2 with
density Q(v?) by the relation £= A(Z,v2)/A(Z,v?), v? being accepted with prob-
ability F(v?) =(1 +u?)/2 <1, where u is the above function of v2. The required
values of A(Z,v?) and v can be found by linear interpolation using tables of A(Z, v?)
for v"; =0,... ,vgs =36 obtained by numerical integration and stored in the
program.6

PHOTOELECTRIC EFFECT

In this process the incident photon of energy E disappears, an orbital electron
with kinetic energy E - e is ejected from some (positively written) energy level e <E,
and a second electron from an energy level e’ < e makes the transition to the e-level
vacancy. There are two possibilities.

1. A fluorescence photon of energy E' = e — ¢’ may be emitted. Then the photon-
energy difference E-E'=(E-¢)+e’ consists of the kinetic energy of the first
ejected electron plus a residual excitation energy e’ that is ultimately dissipated by
further processes with additional fluorescence of still lower energy. In some com-
puter programs with an energy cutoff in the neighborhood of 1 keV, this additional
fluorescence is ignored, the energy E ~ E' is deposited locally, and the photon of en-
ergy E' is processed further if E' is greater than the energy cutoff. However, in the
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following we describe a treatment of the most important secondary fluorescence
photons. All fluorescence photons are assumed to be emitted isotropically.

2. The electron transition e’ —~e may not be accompanied by E'=¢-¢
fluorescence but instead by the ejection of an Auger electron resulting from internal
conversion. In a Monte Carlo treatment of this case, the entire incident energy E is
tallied as energy deposition, and the collision is terminal.

The energy levels e are called edge energies because the photoelectric cross section
o(E), elsewhere decreasing continuously, shows a sharp discontinuity (edge) at each
E=¢. The cross section jumps from its lower limiting value o'(e) to its value a(e) >
o'(e) as the photon energy E becomes sufficient to activate the e-level. The behavior at
the K edge is shown in Fig. 6.3.

To illustrate a Monte Carlo treatment of the photoelectric effect, we shall describe
the methodl® that is presently incorporated in the Los Alamos code MCP.6 This
method supersedes the original MCP scheme, which was patterned after that used in
PHOTRAN!7 and used the tabulated data of Marotta.l® The present method uses
basic data from the tables of Storm and Israel.}4 Fluorescence is not considered from
shells other than K and L. The probability of exciting other shells and the corre-
responding yields are both small and are maximal for high Z, for which the photo-
electric cross section is enormous at the fluorescent energies. Therefore local absorp-
tion for such fluorescence is assumed. For Z <12, a photoelectric event is regarded
as terminal, the possible fluorescence energy being below 1 keV, the cutoff energy in
MCP.

Given a photoelectric event at incident-photon energy E, the purpose of the
fluorescence routine is to determine which (if either) of the two shells, K or L, loses an
electron and the fluorescence photon energy emitted.

1. Edge Energies. The K-edge energies Ey are taken from Table II of Ref. 14.
The L-edge energy (for Z 2 31) is regarded as the simple average Ey =(E;{ +E;, +
E[ 3)/3, the individual E| ; being taken from Table II of Ref. 14. The energies Ey and
E;, compared with the incident-photon energy E, serve to determine the possibility
of K or L events.

K
Fig. 6.3 Behavior of 0(E) at the K edge.
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2. Fluorescence Energies F. L fluorescence is allowed only for Z 2 31, and the
single fluorescence energy F| is taken as E123 in Table V of Ref. 14. This is an aver-
age of all energy gaps from edges Mj, Nk, . . . to all Li edges, weighted by their relative
intensities as given in Tables IV and VI of Ref. 14.

The single value Fy given for 12<Z<19 is the weighted average of the
Ka, (L3 - K) and Ko, (L2 > K) lines, given as Ka in Table V of Ref. 14.

For 20 <Z <94, the individual fluorescence energies FKal > FKa2 are taken

from Ref. 14, Table III. These are pure lines resulting from the transitions indicated
above.
For 20 < Z <94, the fluorescence energy FKﬁ,1 (M2 -~ K, M3 - K, M4 > K) given

is the weighted average of the three energy differences, computed from Tables III
and VI of Ref. 14.
For 37<Z <94, the energy FKﬁrz (N2> K, N3—-K) is the corresponding

weighted average of these two lines. Note that Fy < FKa2 < FKal < FKﬁrl < FK%.

3. The Yields Yy and Y. The yield Yg for a shell S is the total probability of
fluorescent emission accompanying electron transitions from outer shells to a vacancy
(see item 6).

The yield Yy, furnished by Israel and Storm, is an updated version of that in Ref.
19, Table VIII. For this we have no published reference; no yields are included in Ref.
14. These updated yields are in general accord with Ref. 20, Table II, and the yields
for Z > 60 are identical with those in Ref. 19 but are higher for Z < 60.

The data for Y; in Ref. 20 are very spotty, and the values now used from Ref. 19,
Table VIII, do not appear to be a bad compromise between those of Refs. 18 and
20.

4. Relative Probabilities of K and L Events. For 12 < Z < 30, only K fluorescence
is considered, and this can occur only for E > Eg. For such an incident energy E, it is
assumed (see Ref. 14, page 569) that the probability of ejecting an electron from the
K shell has the constant value (og - og)/og =1 - pg, where pg =0 /og is the
ratio of the photoelectric cross sections at the bottom and the top of the K edge,
respectively (Fig. 6.3). Here and elsewhere, o’ and o are taken from Table I of Ref.
14. Thus, for a photoelectric collision at an energy E 2 Ey, 1 ~ py is the probability
" a K ejection, and (1 - px )Y is the probability of a contingent K fluorescence.
(Observe that 1 - pg is the entry og (photo)/o(photo) given in Table VIII of Ref. 14.)

In the range 31 <Z <94, both L and K ejections are considered, and, in order to
follow the scheme of Ref. 18 used previously with no change in code, we require three
numbers $y, &; , ®,, which will give the relative probabilities of K-, L-, or outer-shell
events for E > Ex and are such that &; @, also define the chances of L- or outer-
shell events for Ef SE<Eg.

The basic assumption is that the relative contribution of any edge to the total
photoelectric cross section at that edge is (¢ — 0")/0 and that this relative contribution
remains constant at higher energies. If we define p; = oi'/oi, i=1,2,3, (Fig. 6.4), it
follows that p; =p3p,p, and 1 - p are the probabilities of outer-shell events (and
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hence no fluorescence) and L-shell events at the L, edge, the latter being given in
Table VIII, column 2, of Ref. 14 with some minor discrepancies.

Similarly, at the K edge, with pg =og/og, we find that p; ok /ox =pp Pk,
(1 - py)oglog = (1 -pp)og, and (o - oyg)/ox =1 -py are the probabilities of
outer-, L-, and K-shell events at the K edge. For convenience, we take the propor-
tional numbers

2
(=)
It
b
=

o
=
H
°
~
1

as giving the corresponding relative probabilities, and these satisfy the required condi-
tions for all energies E, as stipulated above. Moreover, given the numbers 0, &, Y|,
Py Yk if, for Ef <E < Ey, we divide each of the first two by @, + ®; =1 and, for
E > Ey, we divide each of the three by ¢, + ¢} + Py = py', then in each case we ob-
tain the probability of outer, L, or K fluorescence, as the case may be.

’

O3

Fig. 6.4 Schematic of K and L edges.

5. Relative Intensities of K Fluorescence. The preceding discussion suffices to
give the total chance &g Yy /(®, + P + Py ) of K fluorescence, assuming a K event
with E> Ey. However, for 20 < Z < 36, such fluorescence was assumed to consist
of the lines Ka,, Ka,, and KB/, and, for 37 <Z <94, of the additional line Kg,.
The corresponding probabilities p,, p,, p5 and p,, Py, P3, P4 of the component lines
for the two ranges of Z are computed from the table of relative intensities given in
Ref. 14, Table VI, based on the calculations of Schofield.

Let us illustrate the foregoing remarks with a few examples. Decisions regarding
fluorescence are based on comparison of E with EL and Eg. IfE< EL’ no fluores-
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cence is allowed. For By SE<Ey, @ Y| (P, +Pp)=(1 - py )Y is the chance of
obtaining the fluorescence energy F;. Similarly, for E > Ey, the chance of Fp
fluorescence is O Y /(Py + Py + P ) =Y (I - pp )og, and the chance of exciting
one of the K lines, say, Fyg,. is Dy Ygpa (g + P + )= (0K - DYgpyok =
(1 = pg)Ykp,-

6. Secondary Fluorescence. The type of fluorescence considered in the preceding
remarks is primary, in the sense that it arises from the transition of an electron from an
outer shell to a shell in which a vacancy has been created by ejection of an electron
from that shell by the initial incident photon. Thus we allow for L fluorescence fol-
lowing an L ejection and for K fluorescence following a K ejection.

In the following remarks, we attempt to show roughly how secondary L fluores-
cence may be of the same order of importance as primary L fluorescence and then to
describe how it may be accounted for in a necessarily approximate fashion.

Let us assume that we have a photoelectric event with an element of Z > 31 at an
incident energy E>Eyx. Then the probability of an L ejection is & /Z, where
I =, + P, +dy and, as already stated, the overall probability of primary L fluores-
cence is given by

) P

On the other hand, there is a probability ®x/Z of a K ejection. In this event the K
vacancy may be filled by an L3—~>K or L2 ~>K transition, say with probabilities
P 3k, PLog, respectively, thus creating a vacancy in the L3- or L2-subshell and at the
same time producing a Ka, or Ka, photon. If we denote by Qp 3, Qpk the
chances of the latter photon escaping the atom (as fluorescence), then we obtain as
part of the K yield the quantity

+ =Y

+Y (6.13)

PraxQuak + ProxQok = YkPi kP2
the right-hand side being written in our previous notation.
However, regarding the L3- and L2-subshells as separate entities, we may expect
secondary L3 or L2 fluorescence with yield probabilities Y; ; and Y , due to the
now-existing vacancies created by the L - K transition. Hence the probability of this

secondary L fluorescence is given by

®
v _ K
P = = (i Y3 * ProxYio) (6.14)

Apparently none of the probabilities in parenthesis are known. Making the assumption

Y

_ _ _ "L
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we find the expression in Eq. 6.14 for P” becomes

®, (Pyqy + P )Y
P,,ng L3K 3LzK L (6.16)

But from Eqs. 6.13 and 6.16 , we see that for the secondary L fluorescence

b (Yypy + Ygp,)Y
EK K13K2 L _ ps (6.17)

P’ =

and even P* may exceed the primary probability P’. For example, using the basic data
from Storm and Israel cited above for Z = 79, we find that P' = 0.058 <P* = 0.075 <
P”. Thus it would appear that secondary L fluorescence should be included for the
sake of consistency and accuracy.

Guided by Eq. 6.17 we can make the following approximation with regard to
secondary L fluorescence, admittedly oversimplified but perhaps better than ignoring
it. In the event of a photoelectric event with an atom of Z > 31 at an energy E > E,
which is followed by Ka, or Ka, fluorescence, assume that secondary L3 or L2
fluorescence is emitted in each case with probability Y{ /3 and fluorescent energy F; .

PAIR PRODUCTION

This reaction becomes increasingly important for energies greater than 1.022 MeV.
In the field of charged particles, mainly in the nuclear field but to some extent also in
the field of an electron, the photon is completely absorbed, and a positron-electron

" pair appears with a total energy equal to that of the photon. Some of the energy goes

into the kinetic energy of the electron and positron, but 1.022 MeV is required to
create the electron-positron pair since the rest energy of each of these particles is
myc? =0.511 MeV. A pair is produced by absorption of the photon only in the pres-
ence of a charged particle since the charged particle is required for conservation of
momentum.

The positron created in pair production combines with an electron in an inter-
action in which the rest masses of the electron and positron disappear and two quanta
of energy totaling 2mgc? appear. If the positron is assumed to be essentially at rest
at annihilation so that the momentum of the center of mass of the resulting two-body
system is zero in the laboratory system, then the two quanta will appear in opposite
directions, each having an energy equivalent to the rest energy of an electron, or 0.511
MeV.

In many Monte Carlo codes® treating gamma rays of energy E > 1.022 MeV, when
pair production occurs, an amount of energy equal to E - 1.022 MeV is deposited
locally, and two gammas, each of energy 0.511 MeV, appear in opposite directions
and are transported farther. The angular distribution of the annihilation quanta is as-
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sumed to be isotropic. In such a simplified treatment, the bremsstrahlung associated
with the change in velocity of the electron and positron is ignored, just as it is in con-
nection with the recoil electron in Compton scattering.

For many photon-transport problems, the assumptions made above are adequate.
However, experiment and theory now indicate that the omission of a suitable treat-
ment of bremsstrahlung from secondary electrons can lead to serious errors in many
cases. In particular, this is indicated for high-energy photons impinging on a high-Z
material. A thorough discussion of electron transport and the accompanying brems-
strahlung is given in an article by Berger and Seltzer?! and in the dissertation by
Thompson.22 The theoretical considerations by Thompson are presently being in-
corporated into general three-dimensional transport codes at Los Alamos.

N

COMBINED NEUTRON AND PHOTON TRANSPORT

Given the existence of Monte Carlo codes that transport neutrons and photons
separately, our next logical step is to combine the two types into one code. Then we
can process the gamma rays produced by the collisions of the neutrons in the medium
as well as the neutrons themselves. Storage of gamma-production cross sections in the
code permits the linking of the neutron- and gamma-transport codes.

Let us describe in more detail how the Los Alamos code MCNG23 operates. The
MCNG code is made up by combining the neutron code MCN and the gamma code
MCG. Gamma-production cross sections are provided on a cross-section tape along
with the required neutron and gamma cross sections. Cross-section data for the mate-
rials in the problem are drawn from this tape. Neutrons are processed by MCN, and at
each collision gammas are created and stored on a tape. To reduce the variance in esti-
mating the heating in a region (the charged-particle energy is assumed to be deposited
locally as heat), we compute the expected charged-particle heating per collision, i.e.,
we calculate the expected gamma energy I and the expected neutron energy E' leaving
the collision. Using these expected quantities and Q, the average Q value for the in-
coming neutron energy E, we obtain the charged-particle heating H per collision from
the relation

Further heating of the medium may occur from energy deposited from the transport
of the gammas. After a prescribed number of neutrons are processed, the gammas
created are transported. The code cycles between the neutron code MCN and the
gamma code MCG until the required accuracy is attained in the heating numbers or
other quantities of interest in the problem (all results are normed per starting neutron).
Because of the large number of low-weight gammas created by neutron collisions,
Russian roulette is played for particles with weight below a lower weight bound, the
result being to form fewer particles of larger weight. Heating in small regions can be
obtained with a track-length estimator.
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7 LITERATURE SURVEY

INTRODUCTION

The emphasis in this chapter is on the literature of the last few years; very few
references predate 1964. The references are described briefly, and we focus on those
we consider to be of general interest. This requires a judgment decision, and we
apologize for any references that have been omitted or have not been described
properly. The more recent and easily accessible literature has been given priority; so
the work of an original contributor to a subject is sometimes omitted or only
mentioned briefly in the interest of aiding the reader in his search for information.

The references cited are listed in general categories at the end of this chapter to
help in the isolation of subjects of interest.

BOOKS ON MONTE CARLO AND PROBABILITY THEORY

A few books are available on the use of the Monte Carlo method to simulate
particle transport. The Russian book! edited by Shreider and translated by Tee is a
useful reference for the engineer. It is directed toward applications, but enough
mathematics is included to provide a background. The general principles of Monte
Carlo are introduced in the first chapter and include a brief discussion of estimation
and error analysis, the random walk, generation of random numbers, simulation of a
Markov process, the computation of eigenvalues and eigenfunctions, and machine
considerations. The evaluation of definite integrals is discussed in the second chapter.
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SAMPLING AND SCORING TECHNIQUES

The application of the Monte Carlo method to neutron physics is the subject of the
third chapter, which includes many useful comments on practical problems that arise
in the simulation of particle transport. The next two chapters are concerned with
applications of Monte Carlo outside the area of particle transport. The last two chapters
discuss the generation of uniformly distributed random variables with computers and
the transformation of random variables.

The book by Cashwell and Everett? can serve as a handbook for the practitioner.
It contains numerous relations that are required in programming a Monte Carlo code.
The book is directed toward particle-transport problems and displays pertinent
equations and flow diagrams for their simulation on a computer.

Spanier and Gelbard’s book3 applies the Monte Carlo method to
neutron-transport problems. A mathematical framework for the Monte Carlo
calculation is developed in the first three chapters. The last three chapters are devoted
to engineering applications, with emphasis on the superposition principle to solve
reactor lattice problems.

The book by Hammerstey and Handscomb? is another useful reference on Monte
Carlo. Although not devoted exclusively to particle transport, it does provide another
excellent reference and includes some pertinent material not covered in the other three
books.

The reader may also find useful reference material in books that are not directly
concerned with the simulation of particle transport. We include as possibilities the
books on probability theory by Parzen’ and by Loéve® and the book by Jansson? on
the machine generation of random numbers.
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The generation of random numbers on the unit interval and the techniques for
using such numbers to sample from density functions are prerequisites for all Monte
Carlo calculations. The book by Jansson,” the article by Hull and Dobell,® and the
report by Lehmer? provide helpful references for the machine generation of random
numbers on the unit interval. The four books on Monte Carlo previously mentioned! -
also discuss the generation of random numbers and display examples of the use of
these numbers to sample density functions. There are a number of reportsi9-13 in
which tests for randomness are discussed and applied for various random-number
generators. Other references!41? discuss sampling from a variety of commonly
encountered density functions.

There is a considerable body of theory devoted to so-called quasirandom numbers.
Whereas a sequence of pseudorandom numbers is intended for use in a wide variety of
applications, a quasirandom number sequence is designed for a specific application and
does not necessarily satisfy the statistical tests imposed on pseudorandom numbers.*
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Foderaro?9 and Woolson?! consider decidedly nonrandom numbers on the unit
interval to bias and hopefully improve the Monte Carlo transport calculation. They
claim to achieve more uniform sampling on regions of equal importance, but it is not
yet clear whether this use of nonrandom numbers has general advantages over the
more common inportance sampling techniques used in particle-transport calculations.

The results of a Monte Carlo particle-transport calculation are subject to at least
three sources of error: (1) inadequacies of physical models, (2) uncertainties in the
basic cross-section data, and (3) the statistical nature of the Monte Carlo calculation it-
self. For most calculations the statistical error will usually approach zero as the number
of samples approaches infinity. However, we cannot simulate an infinite number of
samples, and thus we must be able to evaluate the error in the calculation. This
introduces a practical problem since we cannot estimate the statistical uncertainty
precisely unless we know the exact answer. Therefore we often quote the uncertainty
to be within some confidence limit; i.e., the true answer lies within certain bounds
with some probability. The error bounds are evaluated under certain assumptions that
usually involve normality. References on Monte Carlo theory invariable have at least a
brief discussion on the evaluation of statistical fluctuations. Burrows and MacMillan??
also discuss a test of normality that is easy to apply.

Statistical errors are frequently estimated as proportional to the square root of the
population variance. In particle-transport calculations this variance may change
dramatically with the method used to score quantities of interest, and hence selection
of the proper estimator is an important consideration. Popular estimators include the
collision estimator, the path-length estimator, the last-event estimator, and the
point-detector estimator. A discussion of various scoring techniques is presented in
Refs. 23 to 29 as well as in the books on Monte Carlo.1-# The point-detector estimator
is a special type used to obtain information at a spatial point. Various point-detector
estimators and a discussion of their variances are presented in Refs. 30 to 32.

Correlated sampling is often effective in estimating the change in a quantity
resulting from a small perturbation in the system. This technique enables the
evaluation of small quantities that would otherwise be masked by the statistical errors
of uncorrelated calculations. A useful discussion of correlated sampling and the
evaluation of the resulting errors are given in the book by Spanier and Gelbard.3
Additional material is available in Refs. 33 and 34.

An alternate method of evaluating the effect of small perturbations is to compute
derivatives of differences during the random walk. The article by Miller and Miley52
on the computation of Doppler coefficients and the article by Takahashi®5 on the
geometrical perturbation of a pulsed reactor provide an introduction to the subject.

A careful evaluation of various sampling schemes is difficult since the theoretical
variances cannot usually be computed exactly but must also be estimated by Monte
Carlo. Amster3® and Spanier3® have considered some test cases where the theoretical
variance can be either evaluated analytically or obtained by a relatively simple
numerical calculation.
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Importance sampling and biasing methods have received attention ever since
Monte Carlo was first used for particle-transport calculations. A clear incentive has
been provided by the fact that a zero-variance scheme exists for a wide class of
transport problems. The construction of this optimal sampling scheme requires the
solution of an equation that is typically equivalent in difficulty to solving the original
equation, so the zero-variance scheme is not realized in practical problems.

For sampling schemes that are not optimal, it is often difficult to demonstrate
that the efficiency of a biased Monte Carlo calculation is better than that of an analog
sampling scheme, i.e., a straightforward modeling of the particle birth-death process.
Here the efficiency factor of the Monte Carlo calculation of a functional is customarily
defined to be inversely proportional to the product of the sample variance and the
average computation time required per sample. A sampling scheme that increases the
efficiency of some calculations may be disastrous in others, particularly if improperly
used. As a rule of thumb, one must use caution when applying sampling schemes with
the property that the particle weight may change many times in the course of a
history. This is particularly true if the particle weight at any given phase-space point
can become much larger than the average weight at that point. Ironically, schemes
patterned after the theoretical zero-variance scheme tend to fall in this caution
category. In the following paragraphs we mention a number of biasing methods and
cite references that discuss these further.

Biasing the particle source is a technique that is simple and relatively safe to use in
Monte Carlo calculations, and computer programs are usually written to allow for
some source-biasing options. Source biasing is discussed in a number of places, e.g.,
Refs. 2, 3, and 39.

The analog density function for selecting collision points is sometimes normalized
so that leakage out of the system does not occur, and the particle weight is
appropriately reduced to account for this after each flight path. However, this method
is not necessarily beneficial, because of the time wasted in computing the required
nonleakage probability for each flight path and because many low-weight particles
result. The interested reader is referred to Ref. 40.

The exponential transform is a technique widely used to accelerate
deep-penetration calculations. In our experience, we prefer to use cell importances
rather than the exponential transform whenever possible, but the exponential
transform does enjoy considerable use in the Monte Carlo community. It has some
weight-stability properties that make it relatively safe to use. The interested reader is
referred to Refs. 41-43 and 53.

The biasing of the energy and scattering angle at scattering events has become a
popular subject during the last few years.#4-47 The approach can yield significant
gains; but this is also an area where caution should be exercised, and such biasing
should only be used when the pitfalls are well understood.
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A problem in using importance sampling arises in choosing near-optimal biasing
parameters. An approximate solution of the adjoint equation can be used to estimate
these parameters for the random walk.*®1%% Conversely, approximate calculations of
the flux have been used to bias Monte Carlo simulations of adjoint equations.14? Some
efforts have also been made to automate the computation of importance sampling
functions?%-50  to relieve the user of such worries. One may also visualize a learning
process in which the Monte Carlo code is written to improve itself as information is
learned in the calculation.37- 51

The maze of references on biasing techniques should not lead the uninitiated
astray. Many Monte Carlo transport calculations can be completed with a reasonable
amount of computational effort and yet use little or no biasing in the simulation. In
fact, the Monte Carlo novice should try to use an analog simulation whenever
practical, and he should apply biasing methods with caution. Most problems can be
solved with simple source biasing along with the use of importances in regions for
playing Russian roulette and splitting. We turn now to references on the mechanics of
simulating neutron and photon transport.

NEUTRON AND PHOTON TRANSPORT

The mathematics for neutron-transport simulation is developed in the previously
referenced books.!* Additional information regarding the treatment of the neutron
interactions and related discussions are given in Refs. 53 to 61 and 105 to 108. This is
a broad subject area, and we will make no effort here to delineate further the various
subtopics covered in these references.

Computer codes for simulating neutron transport tend to become obsolete in a
few years, and, in addition, reviewers find it difficult to adequately evaluate specific
code strengths and weaknesses. Hence individual computer programs will neither be
discussed in detail nor recommended. References 62 to 79 describe 2 number of Monte
Carlo codes for neutron transport as an introduction to the possibilities. This list
undoubtedly does not include all the important codes, and therefore we recommend
that potential Monte Carlo code users consult a code library, such as the Radiation
Shielding Information Center (RSIC) at Oak Ridge National Labratory or the Argonne
Code Center at Argonne National Laboratory for a more complete and up-to-date
listing of major codes and their capabilities.

References 80 to 102 include discussions of numerous neutron-transport
calculations that have been performed with Monte Carlo and contain other pertinent
articles relating to the theory of Monte Carlo and techniques for applying it to neutron
transport. These references are for the most part taken from the literature of the past
few years. An excellent review of the older Monte Carlo literature is given by Kraft
and Wensrich!03 for the period from 1949 to 1963.

Many neutron-transport calculations pertain to multiplying systems. Special
considerations in the use of Monte Carlo to compute criticality are given in Refs. 1 and
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4 as well as in numerous other places, including Refs. 54 and 105 to 110. The specific
problem of source convergence is discussed in Refs. 54 and 109 to 111. Special
problems concerned with error limits in source iteration calculations are considered in
Refs. 112 and 113. We also include a number of other pértinent articles regarding

criticality calculations with Monte Carlo.114-124
Monte Carlo tends to have advantages over other numerical methods for

computing the multiplication factor of small, fast critical assemblies. Mihalczo!14
demonstrates that for some rather simple reflected systems, Monte Carlo criticality
calculations can be faster than discrete-ordinates methods.

We turn now from neutron-transport references to photon-transport references.
The simulation of photons cotresponds closely to a simulation of neutrons, except
that the physical models of the interactions differ. Cashwell and Everett? include a
consideration of important scattering mechanisms and techniques to sample them. In a
later report by Cashwell et al.125 the simulation of the more sophisticated models
necessary to treat low-energy (down to 1 keV) photon transport is discussed. Several
additional articles applicable to photon transport appear in Refs. 126 to 136.

For problems where the (n,y) reaction and the subsequent gamma-ray transport
are important, it is sometimes convenient to link the neutron- and photon-transport
calculations. Two computer codes that simulate the neutron and photon transport are
described in Refs. 77 and 78.

We also include here a number of specific applications of neutron- and
photon-transport calculations with Monte Carlo. The first is its use in particle
shielding. A good introduction to special problems in the use of Monte Carlo in solving
shielding problems is presented in Refs. 137 and 138. Additional information on
shielding calculations with Monte Carlo is given in Refs. 44 and 139 to 141.

Another application of Monte Carlo in neutron and photon transport, which has
become popular in the last few years, is the solution of equations that are adjoint to
the transport equation. Certain classes of problems may be solved more efficiently via
the adjoint approach, and, in addition, these solutions can be used to bias forward
sampling methods. A variety of techniques for sampling from equations that are
adjoint to the transport equation are given in Refs. 142 to 145. The interested reader
will also find Refs. 146 to 154 pertinent to this general subject area.

Present-day computers are attaining such computational speeds that nonlinear
radiative transport problems can sometimes be solved with an acceptable amount of
computer time. The interested reader is referred to Refs. 155 to 159. This is an active
area of investigation, but many problems must still await solution until faster
computers are available.

We turn now from specific applications of neutron and photon transport to a
brief discussion of nuclear data. The ability to perform sophisticated particle-transport
calculations is of questionable value unless reliable basic nuclear data are also available.
Significant progress has been made in this direction during the past few years, and
evaluated nuclear data files are now readily accessible. This relieves the user of some
anxieties about cross sections, but he should always remember that reliable output
depends upon good cross-section input. The user is also sometimes overwhelmed 160
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by the large volume of cross-section data available from nuclear data files, and this can
be nearly as frustrating as a complete lack of data. Levitt16! alleviates this problem by
using a probability-table method to describe cross sections in the unresolved resonance
region with a minimum amount of data. Cullen!? has extended the probability-table
method to multigroup calculations.

The Evaluated Nuclear Data File, ENDF, maintained by the National Neutron
Cross-Section Center at Brookhaven National Laboratory has become the most widely
used source for neutron and photon cross sections. The interested reader may obtain
introductory information on this library from Ref. 163 for neutron cross sections and
from Ref. 164 for photon cross sections. A variety of cross-section processor codes are
available to manipulate the data and perform multigroup averaging. Codes!®5-166
have also been written to utilize the ENDF data and obtain neutron-energy deposition
KERMA factors.

A cross-section compilation by Howerton et a also enjoys considerable use,
particularly for neutron cross sections in the energy range from 1 keV to 20 MeV.

In this review we assume that adequate cross sections are available from libraries,
and therefore we do not present a comprehensive discussion of cross sections. Photon
cross sections are sometimes more difficult to obtain than are neutron cross sections,
but Refs. 168 to 176 may be helpful in this regard.
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APPLICATIONS OF MONTE CARLO IN OTHER AREAS

The Monte Carlo method for solving problems other than neutron and photon
transport is the primary motivation for Refs. 177 to 204. The report by Everett177 on
the mathematical framework to include relativistic effects in particle-transport
calculations is mentioned specifically since it may be of particular interest. This list of
references involving applications outside the realm of neutron and photon transport is
by no means complete. Qur intention is that it may serve as a useful starting point for
a literature search on the use of Monte Carlo to solve special problems.
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The author has taken full advantage of the report literature and
other sources to obtain a unified treatment of topics not previously
covered in a single book. An extensive bibliography is given to aid in
additional study.
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