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ABSTRACT

We cansider the nonlinear coupling of three waves in a plasma.
One of the waves is assumed large and constant; ite amplitude ig the
persmeter of the parametric instability. The spatial-temporal evolu-
tion of the other two waves is treated theoretically, in one dimension,
by anelytic methods and by direct numerical integration of the basic
equations. Varlous monotonic forms of inhomogenelty are cansidered;
agreement with previcus work 1s found and new results are established.
Nonmonotonic inhamogeneities are cansidersd, in the form of turbulence
and, as a model problem, in the form of a simple sinusoidal modulation.
Relatively smsil amounts of nonmmonotonic inhomogeneity, in the
presence of a linear density gradient, are found to deatabilize the

well-known convective saturation, ebsolute growth occurring instead,
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I. GENERAL CONSIDERATIONS AND MONOTONIC INHOMOGENEITIES
A. Introductlon

The three wave coupled mode ¢qQuations are encountered in many
branches of physice. In sclld etate physics, an electromegnetic
driver can couple an electronic disturbance and another electromagnetic
wave, the process being cailed Raman autteringl'B; replace the
electronic disturbance by an ion lattice vibration snd we have Brillouin
suthrh\;“"’. In electrical ergineering, a waveguide couples two
electromagnetic wuves to produce paremetric oscillators and parametric
amplifierss. A laser cen be thought of as a coupled mode aystem, two
of the modes being the population densities of the higher energy level
snd the lower energy level, the third mode being the populstiui density
of photonag. In plasma physics, an electromagnetic wave ir. an 1sotropic

plagma can decay Into: an electron wave and an lon-accoustic wave, the
10-14, )

parametric decay instability 3 two electron waves, the pr or
Oold-n-J-ckam15’1‘6 instability; an electron wave and another electro-

pagnetic wave, called Reman scattering' —17

; an ion-acoustic wave and
an electromagnetic wave, called Brillouin scatteringm’zo'zz. An
electromagnetic wave in an anisotropic plasma has edditional three-wave
interactions>> 2%,

Each of these interactions can be described by a system of
three equations, each one a partial differential equation in space
and time governing the evolution of ane of the modes, including the
effects due to the other two modes. There are then two alternstives:
(a) Solve all three equations on the same footing. This has been done
by many workers2®33; we will not be concerned with this procedure here.
(b) Assume that one wave, called the pump, is much larger than the two

others, and that over times of interest its magnitude dces not change
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appreclably. Then we can discard the equation for its evolution, and
we are left with two linear coupled mode equations. The amplitude of
the pump appears as a parameter in these two equations. It Is th"™-
procedure which will be followed here.

The standard coupled mode equations, in one dimension, for the
axplitudes of the waves of interest are

(at * g 4 VR ) ayfnt) = Y, 8x(2,t)

(1)
(at syt vzax) nz(x,t) =, al(x,t)

where V1 and v2 are the group velocitles of waves 1 and 2, having
elther sign; v and v, are the damping rates of waves 1 and 2 in
the absence of coupling; Y, {real and positive) represents the
coupling of the two waves due to the presence of the pump wave, assumed
constant over times of interest; el(x,t) and az(x,t) are the slowly
varying amplitudes of waves 1 and 2; i.e., at(ln al(x,t )} < w),
ax[u- nl(x,t)] << ¥, Where (‘"1']‘1) are the frequency and wave
number of wave 1; and likewise for wave 2.

Given suiteble i1aftial conditions and boundary conditlons, Eqs.
(1) can be golved. Before doing 80, we give two examples of the
derivation of Eqs. (1) from firsi principles.

First, suppose we have two normal mode cscillations in a
medium, in the absence of the third wave, described by the followlng

wave cquations:
> 2
(3, - avja, + 2" - vB P o(x,t) = 0

(2)
2 2 20
(3, - 2v, , + 8" - w79 )oz(x,t) = 0
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Assuning solutions of the form 0}:.”« oxp(-imJt + uJ,), J=1,2,
we cbtain the normsl mode frequencies

ujz = an - vjzka J=1,2 (3)

where we have naglected vy, amall. Aes examples, consider:
electromagnetic waves, with 4y - "p' vJ = ¢; Langmuir waves, with
a" - ‘“p' "J = 3*v‘; and ion scoustic waves, with ‘J =0, 'J " e,
(scund speed).

In the presence of the third wave, Eqe. (2) are coupled
together aa rouan"' (In Ramen scattering, EM + BM + Langmuir, these
equations are obtained from Maxwell's equations plus the lLorents force
equation):

(a2 - 2193, + 02 - v B ) ay(x,t) = 8y 0 (x0) 0, (x,0)
(&)

2o w50 0, ) o 8, 0 M (xt) a(nt)

(3 >2 . 21\:13 +ay
where 8,,8, are real coupling constants; ¢ (x,t) 1e the third
(puxp) wave, and we have taken the complex conjugate of the second
equation, ¥e now assume that eech field quantity OJ(X.?-) can be
written as a slowly varying (in epace and time) amplitude times &
rapldly varying {in space and time) phase:
0J(x,t) = ;.J(x,t) exp(-i.ujt + iij), J = 0,1,2. We further require
the three-wave matching conditions: Wy Ty by, ko = kl + Xy
With these sgsumptions, and discarding terms in af- L Btza %
J =1,2, Ega. {4) become



e

(2o, + 20+ 2tv % JaGat) = B A (xt) 8, (xt)
(5)
[-2tuga, - 2tvp, - 20700 ] 8,00 = 8" Ele) E(x0)
From Eq.(3), we obtain the group velocities V, = auJ/SkJ = szkJ/u ,
and defining v, = (8,8,/40 0, )’ i(x,t) we bave

{—s ”
[at vyt "1%]‘1“") = ]% v (mt) &(x,0)

(6)
['t ‘v, e vzax] i(xt) = 1 ::: vo'(x.t) i(x,t)

Defining &(x,1) = &y(xt); ayx,t) = 4B /B0 ) &, %(x,t) we
find

[a‘ LA vlax] a{xt) = v, a(xt)
(7
[at rv,* vzax] nz(x.t) -, ul(x.t)

When Y, i8 real and constant in space and time, these are just
Eqs.(1).

In the presence of plasma spatial inhomogeneity, the derivation
of Eqs. (1) must be modified. The inhomogeneity enters into Egqs.(4)
through the perameters B,(x), B,(x), vl(x). v{x), mp(x), vl(x), and
vz(x). Each field quantity 1s now assumed to vary in a WKBJ sense as

x
oJ(x,t) = aJ(x,t) exp[-lwdt + 1 [ RJ(x') dx'|, J=0,1,2. That
3
1s, we chcose (uJ}, and find (kJ?x)) from the dispersion relation
Eq. (3).
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The frequencies are required to match, Wy T W vwy; we choose x
to be the position where the wavenumber mismatch «(x) venishes:
Kx) = ko(x) - kl(x) - kz(x), «(x = x ) = 0. The derivation of
Eqe.(5) remains unchenged, except that now we do not have

b 4
exp i(ko -k - kz)x =1, but rather exp 1£ [ko(x') - kl(x-) -

x
kz(x' )]dx' exp 1L %(x') dx'. The other‘stepa remir unchanged,
and Eqs.(1) are replaled by

X
fo, + vy * 13 ) ay(mt) = v (x) afmt) erp[i[ w(x') ax’
X
o

(8)

m

b 4
[31. tu, ¢ vzax] az(x,t) = yo(x) al(x,t) exp -i[ e(x') ax'
x

-}

These equations were first introduced by Harker and cm'!'ord”, and
mu.a of the work on perametric instabilities in inhomogeneous

3475 15 based on these equations. Despite the large amount of

plasma
work on these equations in the years 1971-1975, new resulte

are forthcoming, and much remsins to be done. As evidence, of some
sixty papers delivered at the Fifth Annual Anomalous Ahsorbtion
CUnfcrence76, held in Los Angeles in April, 1975, three papers were
devoted entirely to solving these equations under various circumstances,

We present now en alternative derivationw of Eqe.(1), more

general then the one sbove, onsider the model field equations
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D13, -3 )6 = Te 6
(9)

D,(13,, -13_) ¢, = *

10y 13,08, = T o 0

where D1 and D2 are linear differentisl operators acting on the
wave amplitudes .91.02; @1 and 02 are coypléd to the third wave
s through the coupling congtant I'. Assuming that each wave variee

. ~lw, t+ik, x
Hixt) = §xt)e E (10)

where wy and w, are chosen to satisfy wy =Wy *wy kJ is
cbtatned frow w; through the equation Re[DJ(mJ,kJ)] =0, J=1,2
and again ko = kl + k2. (In general, of courae, all of these
equalities may not be self consistent; we sgsume here that they are.)

Equations (9) become

Dyluy 13, k) - 13)) ;1 =T 50 $2*

(11)

*
1 .

D2(m2 + 13", k2 - iat) ¢2 r éc [
Taylor expanding the operators Dl’D2 about (wl,kl), (‘”2“‘2)’ we
fing
aD. aD
1 1
“‘(Dl(“‘l'kl’l +1 I“‘(Dl(‘“rk))] M ™ La, - 5f 19,04
wlykl ml,kl

~ =~ %
= T, 4,

Equation {12) continued next page
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Equation (12) continued

an, an,
“‘[Dz(“’z"‘z)] +1 "'[Dz("’z"‘z)] t 18, - 1396,
Ky wyrky
-~ o~ %
=T °o d>1 *

Dividing out the coefficient of at in each equation; recalling that

RE[DJ(NJJJ)] =0, J=1,2; introducing the damping rates

“J H J=12; (13)
we have from Eq. (12)
ra
= o -
(20 + v+ v2, )4y A ¢
1 2.}
) Jou
(i4)
~ #
T e, ~
- 01
2
Y P
Warka
~ -1 82'
Define v, a, T d.; H
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then we find, assuming Y, real and pogitive,

(3 » vy +V3.) ay(x,t) = v, a)(x,t)

(15)

(3, + "2-’ VoA ) ay(x,t) = v, ay(x,t)

which sre Just Eqs. (1).

These have been two different derivations of Egs. (1). The
rest of this report i1s devoted to the solution of Eqs.(1), and their
inhomogeneous counterpart Egs.(8), in various situations. We will
find that different forms of the vavenumber mismatch «(x)} give very
different results for the evolution of a pulse, the main dietinction
being beiween absolute instebilitiee, which grow in time at fixed
position for t <+ =, and comvective instabilities, which are hounded
in time at fixed position.

B. Parametric Instebilities in Homogeneous Plasma

In this section, we discuss solutions of Eqs. {1), the coupled
mode equations in a homogeneous medium. In subsection 1, the pusp
extends over infinite distance, -» < x < =, and we consider the
stability properties for various initisl conditlons. In subsection 2,
the pump is finite in extent, O < x < L, and the stability properties
are found to deperd on the length L.

1. Pump Infinite in Extent

In this subsection, the pump extends {raw x = = to x = =,
We first consider the respomse to @ cpatially niform excitation.
Next, we use Ders-Briggs analysisva o 4istirg.ish absolute and
convective instabillties for the Green'r @ .nctlon response. Finally,

we discuss the exact Green's funeticnm.
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We treat the temporal response of the system to e uniform
excitation =5 follows, Ignoring spatial derivatives in Eqs. (1), we
look for a soiution ~exp(-iwt), and find

, F)

v, *V Vy, »~ V

w = -1(1—-—-2) s 1 v°2+<..1_._.2.) . (16}
2 2

(Note that this w is a frequency associated with the slowly varying
amplitudes ul(x,t.), nz(x,t). and has nothing to do with the original
frequencies of the three coupled modes.) For v, * v, = 0, £4.(16)
ylelds w = tiyo. For v eV, ¥ 0 Instability results when

Y (“1"2)’ oY, . (17)

In other words, there is 1astabllity when the pump strength exceeds a
threshold determined by th> geomsiric mean of ths damping rates.

Next, wa treat the tesporal response to an excitation et x = O:
initial conditions nl(x,t =0) = 8(x), lz(x,t = 0) = 0; boundery
conditions ll(x = sm,t) = 0, nz(x = sm,4) = 0. As In Fried, Sclmidat,
and Gould'n. we perform a Bers-Briggs analysis on E3. (8); with

solution ~ exp(«iwt ¢+ ikx) we have the dispersion relation

(w* iy, - W Ne tv,-kV) vy 2 = 0. (18)

For V1V2 > 0 there is oniy canvective instability, with convective
growth rate’ given by Eq.(18) with k = 0; thus the threshold is the
same a8 in Eq. (17) of the last paragrsph, or

(19)

* The convective growth rate ic that msasured by an cbserver msoving
with the pulee peak. The absclute growth rate is that mecsured at
fixed position.
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¢ (19)

For vlvz < 0, Eq.(19) again determines the threshoid for convective

instability, but there is absolute instability at a higher threshold:

v1|V2| +v.dv |

<

v

<
C
.

= (20)
2 '1'2
In terms of the basic length L = |Vlvzl§/v°, and the spatial damping

rates x, I vlllvll. Ky 2 v2/!V2|, eriterion (20) states
I‘o-l. > i(‘l * "2) (a1)

which says that the spatial growth rate must exceed the arithmetic
msan sputisl damping rate in order for absolute instability to occur.

The growth rate y of the absolute inetability, with V] EY, E 0, is

AAAY

om . (22}
Ir l"ll = "2" we have the absolute growth rate vy = v, which 13 the
same grosth rate cbtained above for the uniform excitation in the
absence of damping. The reason is that when '2 = -Vl, the peak of the
pulse remmins at x = O; the absclute and convective growth rates sre
then equsl and are cbtained from the dispersion relation (18) with
k=0,

Exact solutions to Egs. (1) (the Green's functions) giving the
reaponae of the system to the initial conditioms (23),
ul(x,t =0} = 6(x), 5:,(!.1. = 0) = 0, can be cbtained in a straight-
foreard fasnion hy isplace transforning in time (t +w) and Fourier

transforming in space (x + k). The responses ul(x,t) and az(x.t)
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are then cbtained as an inverse Fourier-Laplace transforn, Cassedy

80

and Evans =~ first perform the inverse laplace transform, and then the

inverse Fourler iransform, for "1"2 >0 and for "1"2 < 0.
Bobrof{ and I-la\.nss1 perform the inverse Fourier transform first, and
then the inverse laplace transform, for the case v1"'2 < 0. KN]J.7
and Kel1ey52 have also treated this problem. We note that the sign of
V1V2 depends on Lhe cbserver's frame of reference; in particular, 1t
15 always possible to transform to & frame where V¥, = ¥y thus we
need anly do this case.

The nusber of indepsndent parameters in Zqe. (1) can be made
explicit by defining the dimsnsionless varisbles:

]tIVVl
H 12; X £

T 2 v.4; E;
o o o f;'
(%)
- ) 3
D = V1Y, ¢ Dz 2 vy Vi 8= A .
Substituting these new variables into Eqe.(1), we find
1
9. ¢+ D+ 9, ] (X,T) = a(X,T)
l Tt h W 14 B 2
(2%)

[ 30D, 2 \fe'ax]a?(x,n = a(x,1)

where the top sign is for v2 > 0, the bottom sign is for V2 < a,

and we always take V. > O,

1
In the form Eq. (25), the coupled mode equations have only

three independent parameters: Dl’ D., 8.
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An example of the solution of Eqs.(25), with the inft{al
conditions (23), is shown in Fig. 1, taken from Bobroff end Hluﬁel.
Here we see the temporal-gpatial evolution of ‘1( X,T), az(x,r). for
D1 = 0, D;, =0, \!2/\':l = -1 (8 =1). Thie is an sxample of an
absolute insiability, where ll(x = 0,T), lz(x = 0,T) grow for all
time.

Equations (25) may be further simplified by the subat.it.ut.lmel

D, - D D, - D.
8.X,T) = AX,T D, ¢+ a2 - (1 2) .
y%n 3t )"p{<1 TYVA Ve VA K
(26)

=12 .

Then Eqs. (25) becams

{3, + - ) A(XT) = A(X,T)
L 4 x) A A

(27)

(2 + VB ap) A(NT) = A(XT) .

The e=ffects of dazping have now been formally removed, and the only
remaining explicit peramster is v2/v1 (8 plus a sign). If we now
make a Gelilean transforsation to a frame where 8 = 1 (V, - -Vl).

we have no remaining parexeters:

N Y
(28)
“’T'ax”‘z = A
Eiiminating Az, we Tird

(af - ax" - AT = 0 (29}
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which would be the well~known Klein-Gordon c.-qum.ion83 if the eign of
~1 were reversed, The Green's Mmection of (29) {s a modified Bessel

function, ylelding the behavior shown in Fig, 1.

2., Pusp Finite in Extent

We next consider the case where the pump, represented by Yo
exists over only the finite range 0S5 x s L (see Fig. 2). ¥We csn
regard this either as the case of Eqe. (1) with boundary conditians
at z =0, x =L; or as a special case of an irhomogensous pump,
with amplitude y°=0 for == <x <0, L<x<+; and A finite
for 0 £z < L. The utual boundary canditicns specify that a right
going (V_( > 0) amplitude li(x,t) vanish at the left boundary,
sJ(x =0,t) = 0; and that a left going (VJ < ) asplitude vanish
at the right boundery, lJ(x =L,t) = 0.

The most important queation ve may ask is this: Given an
initial perturbation, ie the time-asymptotic (t + =) response
bounded, or does it grow without bound? One way to answer this
question i8 to look for normal modee in time; that is, a response which
T8y depend on x but shich has the time dependence
exp{vt): nJ(x,T) B aJ(x) exp(YT). Implieit in the work of Bobroff and
Hn.ussl, this was carried out explicitly by Pesme, Laval, and Pelht%-
Set l?l1 = Dz = 0 in Eqs. (25),and aesume temporal dependence
exp(yT); then Eqs. (25) beccne

G- ﬁ 3 )a ) = ayx)

(30)

Gt VEy)am - s
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For V,V, >0 the boundary conditions are s, (X = 0) = 12(X = 0) = 0.
Finding no solution with y > O for these boundary conditions, we
conclude that no absolute instability exists for \Il\l2 > 0.

For V,V, < G the boundary conditions are a(X = 0) =
uz(x =L/L) = 0. (We always take V, > C, 60 here V_ 0.) Solving
Egs. (30) with these boundary conditions, wa find unstable normal
modes when

Lo>FL . (31)

We cap understand this threshold heuristically as followe.
Conaider Eqs. (1) with V) = -V, = V, and suppose thav [a,(x,t)|
represents an energy density. Suppose further that 11(x.t) and
-z(x,t) sre equal and independent of x. Ther from Eqs. (1) with
vy 2y s 0, 3‘a1 LR A PIEE AT Maltiply by 8 then ignoring
factors of 2 we find B‘lnllz ~ yollllz. The time rate of increase of
energy in the system is then 3‘[14‘112] - 1°L||1|2. The rate of loes
of energy through the sides is -VI:-,I!?'. For net energy gain, we need
(rate of energy increase) > (rate of energy loss), or
voLlnllz > Vlullz. ar L >V/y =L. The latter corresponds to Eq.
(29).

The temporal growth rate itself is given by the formula

Ve

Y = ——=—n (32)
1+8
where
n = ¥ 2cosy (33}

and y 1is a solution of
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sny .yl (34)
Y T

The top (bottom) signs in Eqs. (33) and (34) go together. (See Pig. 3.)
For 0% L/I.D €1 there is no real solution to Eq. (32), Por
12 L/I.0 < w/2, there 1s a solution y for the top eign in Eq. (34),
glving n < 0 apd s0 a stable soluticu vy < 0, For
(n+ %),, SIA s (n+ %)ﬂ, n=1,2,3,..-, there are 2n+l roots
to Eq.(34), roughly half of which correspond to unstable y's. The
most unstable mode i8 always the one at the smallest value of .
Figure 3, adapted from Bobroff and H-usal, shows the graphieal solution
of Eq.{34) for L/Lo = (9/2)n; there are four stable roote and five
unstable roots.

For very large L/L,, ¥ =7, n~+2 and v=280/(14p)
In dimensional units, this 1s
XA

(35)
oV * 1%

Yy = 2y

which is the same as Eq.(22) for the medium of infinite extent.

There is an alternative derivation of the threshold Eq. (31),
due to Iiu and Nishikangl’, which uses the well-known propertizs of the
Schrodinger equation. Comsider Eqs. (1) with vy = v, = 0, and ellm-

inate az(x,t); we have
(3, + V2,03, + V13 ) ay(x,t) -y 2 ay(xt) = 0 . (%)

laplace transform in time, neglect initial conditicns, and divide by
Vlvz; then



[axz . (1 . 7)31 'fﬁvg‘f‘] a(xt) = 0 . (m
Define
Wx,t) = e (xt) emp %(Jl-~ ;2-)1 (38)
and fina

i+

-3 % Lo’zt - -1 J--"-\zw (39)
2 4 2/' -

1

This 18 just Schrodinger's equation for a aquare well potential:

Lo‘z H yozzwlvzi is finite, O < z £ L, and zerc otherwise. If we
can find sn unstable eigenvalue Re{y) > O, with eiganfunction

vv(x) corresponding to a bound atate, then we have an sbsoclute
instability. For V,V, >0 (top zign in Eq. (39)), there s »
potentisl husp, and thus no bound stete. For V,V, <0 [botiom eign
in Eq. (29)), there is a potential wall. Apply the houndary comditions
Wz = =) = 0, and assume the solutian

wWx) = exﬂ"kcx) wecyx<Q
I R NPT Y (40)
etp(-k x) Ly <w
where k ;(_v..v_\ Lc-‘2 . kc: , 71 > a, .',2 -

Requiring the cantinuity of ¢ and 4’1 at x =0 sand x =1, we
find an eigenvalue condition which is equivalent o Eq.{31).

In a somewhat different spproach, Kroll and Ke‘.leye: BL
sidered the ‘etporal evolutlar of a pulse in & finite, homogeneuus

rmedium, with the further specification that the jump be uquere in ‘ime
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and in spece, They found different qualitetive behaviors in three
temporal regimes: short, intermediate, anc long.

Gt:«x-l:nu-lo.“r85 considered the case V2 = 0, where ve know there are
no temporally growing solations. Assuming Vl < 0, he applies a
constant level al(x = L,t) = C; #t the boundary. With initial
conditions a(x,t = 0) = Cys az(x,t = Q)= Cyr be finds that the
transient response at early times can be orders of magnitude greatver
than the final steady state response., We have verified this result
by direct numerical integraiion of the aquations.

There are several analytic methods for obtaining exact Green's
funetions for the finite, homogeneous systes. The results of one »f
these, taken from BRroff and Haus®l, sre shown in Mig. &, for an
absolutely unstable case. A partisulerly interesting msthod, based

on the concept of "reflections”, is discussed in Appendix A.

C. The Effects of Inhomogeneity
So far we have discusced anly s homogenecus medium in the
presence of a homogeneous pump, of finite or infinite extent, repre-
sented by Yo* We now wish to discuss he possibility that the pusp
and the medium are inhomogeneocus. Pump inhomogernsity can be intro-
duced by eimply allowing

Yo = v f(x) . (41)

Inhomogeneity of the medium 1s introduced through the wave number
mismatch k{x), as discussed in Section I-A. With both types of

inhomogeneity, Eqe. (8) become
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x
[at e ‘1'13!} Il(l.l) < faY exp iJ{ <{x') dx' a{x,t)
x
®
{¢2)
z
[at T 23:] nz(x.t) = yo(x) exp -if wWx') ax’ al(x.t)
x

where we again msaume vo(x) resl. Taylor expanding the function
«(x) about the polut x_ = O, and keeping only the firat terw

xd, x) : x'x, we have
x*0

3y vy * V3 ) ay(xt) =y (x) cxp[ﬁ' 12/2] a{x,t)
(43)
(31. vy, e vzax) ax,t) = yo(x} ex‘p[-h?' 12/2] s,(x,1)

Ignoring Y and v,, which could be removed by the transformation

2q. (26), we define dimensionless variables

T = \o(x = 0t

L, = Y-
X = w/L (&)
8 = v /M1
(' k4 <! L°2
2 v
I VA A /x*{vle:t

und obtain fran Fqs. (43)
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Y (%)

QT + -_vl'_.f; ax)al(x»,'r) = mexp[ix‘ x}_‘/‘] a (7 T)

(45)

(%)
Q.r t ﬁ ax)az(x.'l‘) = Y—w—)—exp[ ! X2/2J al(x T) .

Note that inhomogeneity of the punp enters as a resl amplitude of X;
inhomogeneity of the plasma as a complex funetion of X, with unit
absolute value; we might therefore suspect that the effects of these
two types of iphomogeneities are entirely different.
1. Inoh neous Plasma, H ous

In this section, we consider Eqs. (45) in their dimensionlesa
form, with «(X) £ L, ¥(z), and with Y{x) = constant, -= < x <
then

1 X
ar"}-"ax 8(KT) = a)XT)emplt | o(x')ax
YR L Jo

(46)
\ [
GT + -(a'axjaz(x,r) = ay(X,T) expj-1 x(X') ax’
. 40
We ask the following questian: Given an initial perturbation
al(X,T =0) = 0 ; az(x,r =0) = §X) (47)

are there any solutions al(x,T) which remain unbounded a8 T + o,
Thls question was first answered by Piliya58 for the case Vlv2 >Q,
and then by Rasenbluth57 for erbitrary V1V2, both for the case

«(X) = «'X. In an elegant application of WKBJ theory% , Rosenbluth’?
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showed thet for arbitrary V1V2, there 1s no absolute instebility for

T + =, but rather a saturation of the amplitudes [a,(X,T)| and
laz(x,T)l at a value -~exp(TA) where X = k'"l. HKote that this

dees 1ot carvespand to Brigge' usual definiton of convective instability®
either, since the amplitude asymptotes to a certain level exp{mA)

{when V) =Y, s 0) rather than falling to zero.

In the cage x(X) = % K" x2, with «" = constant, Rosemaluth” :
showed that for vlvz < 0 there can be an absolute inatability for
sufficiently large 10. In Appendix B we discuss these results in
relation to the general criterion for absclute instabilities in an
inhomogeneous medium proposed by Sudanm.

The exact solutiom of Eqs. (46) with initial conditions (47),
and with x(X) * k' X, was first worked out by Roserbluth, White, and

I.iuﬁo. Thelr exact resulis were in good agreement with the WKBJ results

of Roaenblut.h”. Figure 5 shows the evolution of lul(x,'r)l for the
case vlvz <0, B=<0.2, x' =1, taken fran Rosenbluth, White, and
110, Figure 6 shows the results of our direct mumerical integraticn
of Eqs. (46) for the same case. Figure 6 also showa the behavior of
Jay(X,T)|, which includes & pulse growing = T followingthe initial
delta-function. For !al(x,T)l we see the same behavior as in the
work of Rosenbluth, White, and Lium, (Fig. 5), except that the satura-
tion occurs at a value sumewhat less than exp(mA). This is due to a
factor which was dropped in the lest hslf of Ref. 60; for \’2 = -Vl
this factor is [2(217)5]'1. With its inclusion, our results are in
exact agreement with Ref. 60,

An alternative solution to Eqs. (46), with «k(X) = x'X, was

61 6

provided by Laval, Pellat, and Pesmwe —, and independently by Kaufman 2.
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By making a transformation of varigbles, Egs. (43) can be put in the
form

3T2 B(T) - £(T) B(T) = O . (48)

In this form y = VI:(_T_)_ is found to be real and positive only for
a finite time, 1mplying no absolute instability. The form of (T}
also provides easy access to the result |aj(X,T + =)| ~ exp(m).

We consider next the form k(X)} = A tenh(BX), which is a
possible model of the junction between two regions of homogeneous plasma
with different densities. By direct numerical integration of Eqs. (46)
we ottain the behevior shown in Fig, 7, for A =10, B = '!:.'LU' and
V,/V; = -1. With these paranmeters, dK/dX'X=° = 1, and the reglon of
nearly constant dx/dX is large enough to see the beginning of
convective saturation. The pulse response to the initlal conditioms
31(1,1' = 0) = &X), ax(X,T = 0) = 0, grows Initlally with the
homogeneous growth rate y = 1 (see Bq. (22), #hich in dimensional
wits ylelds y/y, = 1). The pulse begins to saturate at ~exp(m),
then feels the homogeneous regions and takes off again at the hamo-

geneous growth rate y = 1.

2. Homogeneous Flasma, Inhomogensous Pump

We have already considered a special case of homogeneous
plasma, inhomogensous pump In Section I-B-2, where the pump was
constant over the region 0 ¢ x ¢ L, and zero otherwise. There we
found an absclute instability omly for L/Lo > n/2.

When the pump hes a parabolic shape, and the medium is
homogeneous, we have Yo(x) = '{o(l - leLYZ)& and {x) =0 1in
Egs. (42). Following Liu and Nishik“as"', we again put Egs. (42)

in the form of a Schrédinger equation. For V1V2 > 0, we again find
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a potentlal hump, no bound eigenfunctions, and no unstsble eigenvalues,
For v1v2 > 0, an infinite number of unsteble modes are fourd, with
threshold pump width Iﬁﬁ‘o =(2n+1), n=0,1,2,-++, for onset of
the nth mode. With demping, and taking the limit LY + @, the homo-
geneous medium threshold 1s regained {See Eq.(21)); when both the
damping threshold and pump length threshold are greatly exceeded the
modes grow at nearly the largest possible growth rate, 1/10 = 1.

From the form of the eigenfunction solutian to the Schrodinger

equation, 1t can be seen that the absolutely growing modes are local-
1zed with characteristic dimeneion ~{ LY“o )i.

3. Inhomogeneous Plesma and Pump

We turn now to the study of Eqs. (42) in their full camplexity:

x
Qt oyt Vlax) a3(x,t) = vy (x) ay(x,t) exp ij (x') dx'
[s]
(49)
x
ét vyt Vzax) az(x,t) = yo(x) al(x,t) exp -:lf x') dx'} .
4]

The simplest case, and the most enlightening, involves a pump existing
over a finite regiom, Yo © conastant, 0 < x < L, and zero otherwise;
and a 1inear inhomogenelty of the plasma, «x(x) = k'x. This config-
uration is sketched in Fig. 8. First considered by Forslund, Kindel,
and Lindmen®?, and by Pesme, Laval, and Pellat®®, sgditions to the
theory of this case have been made by: the present author, to be

discussed below; Jha and Srivastsva75

and Chambers and Bers66.

; Dubels, Forslund, and Williems65;

Recall first that when «' = 0, this 1s just the case con-

sidered in Section I-B-2, the finite pump, homogeneous plasma case.
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There we found sbsolute instabllity for L/'Lo > m/2; we expect that
very small inhomogeneity «' will not change this qualitative
behavior.

Forslund, Kindel, and Lindman®? proceed as follows. With
x(x) = X'z, assume a solution al(!,t) = 8;(x) exp{¥t),

ay(x,t) = a(x) exp(T); then Eas. (42) become
h * vlax]al(!) = Yo ;2(1)
(50}
{7 +vp, -1, E(x)] ax) = v, a,(x}
where Ez(x) = a,(x) exp[ij! x(x') dx'}. Define 8 new space seale
X= xY /Vy; then Egs. (50) are
(?rho + ai)sl(i) = a)¥)

(51)
V. =N - .
(Wo 2 3 - i.:(x)) Ak = ay®

where «(X) = ®(x) VI/YO’ Assum; now that 1V2/V1( << 1, and define
v-l-; then Eqs.(49) are
2

ril

a new temporal quantity vy =

-

[+]

(y Vo ai)el(i) s
(52)
(Y "o 1.<(i))§2(i) = 8(X) .

Since }VZ/VIJ €< ) we can neglect the first term ia the first

equation, belng left to solve



5_a(X) = &.(X)
- ;
{53)

(‘y ‘o - n(i)) ) = a(X)

with (X) = k'X. We wish to find the efgenvalue Y. With v, >0,
V, < C we have the boundary conditions al(i =0) =0, 32(3'( =L)=0,
where L = Lyo/\rl. We guess a value for vy, set al(f( =0)= 0 and
Ez(i = 0) = 1, and integrate the Egs. (53) numerlecally from -0
to X =L, where we desire a,(X = L) = 0. Adjust the guessed value
of y until this i1s s0; v 1B then the desired eigenvalue. The
reaulte of this procedure are shown in Fig. 9, for the case [ = 5,
V, =2, Vy,=-1, v, = V2. Foremall «', we find two resl
elgenvalues, in agreement with Section I-B-2 for the homogensoua
{x' + Q) case. As x' Increases, the elgenvaluss move together; at
a particuler value of ' the two real roots merge to become two
camplex roots, complex conjugates, For very large k', the real
growth rate goes to zero and the instability disappears.

To verify these results, we have mumerically integrated
Eqe. (42). The large points in Fig. 9 are the eigenfrequencies
obtained from our numerical integration; we see sxact agressent with
the results of Foralund, Kindel, and Lindmn63 , within the accuracy
of our numerical calculation.

We can gain further understandirg of this problem by calculeting

the Green's function response of Eqs. (45) to the initlal conditions

a(xT=0) = &x) , o {X,T=0) = 0 . (541
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Such a calculation, by direct integration of the fundamental equatioms,
is shown in Fig. 10, where we plot |a)(X,T)| and {ay(X,T)| vs. X

at different times T, for the parameters «' = 1, Vl = 24, VZ = -1,
Y, ® ﬁ , © = 5. (These perameters were chosen for easy compariscn
with Fig.9 and F{g. 11.) Here we see quite clearly the presemce of
two normal modes; in particular, at the point X = 5, we seem to have
equel emounts of each normal mode, becaumeat T = 3.25,

!ul(x =5, T = 32.5)] =~ 0. We interpret this behavior as being of the

form

la (X = 5,1)| - |e(7‘“”T v VBN T (A0 | 48T

- "M jeae(ar)] (55)

which variea between a maximm value ~exp(yT) and & minizum value
zero, Just as seen in Fig. 10 at the position X = 5. Thie oécilhtiw
dehavior, on top of the exponential growth, occurs in the time
asymptotic response. This behavior differs from that of the finite,
homogenecus case, seen in Fig. 4, where the asymptotic betavior con-
siste of purely expcnsntisl growth at each position.

A further caleulstion by Foralund, Kindel, and Lindman®® is
shown in Fig. 11. Here we see the behavior of the fastest groving
normal mode as a function of pump length [, for fiwed x' = 0.4
(V1 =2%, Vy=-1, Y = V—ZT, v =, 0). The real part of the
growth rate reaches a constant value for large pump length L, while
the imgimry part of the growth rate is linearly proportional to [
for large L.

At this point, we must pause to consider an apparent contra-

diction. Figure 11 predicts an sbeclute instability for fixed «',
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L + =, whereas the work of Rosenbluth? 7, discussed in Sectior I-C-1,
indlcated no absolute instebility.

There sre two possible resoclutions o this apparent contradic~
tion. The firet 1s that perhaps Eosenhlut.h” should have found & Toot
(y + 1Q) with finite growth rate y and infinite imaginary pert Q,
as indicated in Fig. 11 for L + «. It 1r possible that his WKBI pro-
cedure could have mlssed such m root, since 1t would have an infinite
absolute value.

The gecond possible resolution lles in the limiting procedures
trvolved. Mathematically, Foralund®® et al., take T+ first and
then L + «; Rosenbluth, on the other hand, takes L + e and then
T +w, It 1 well known mathematically that changing the order of
limdts can completely change the result; witness, for example,

i.: :z-:—‘?- , which ylelds either zero or infinity depending on the
b+0

order of the iimits. Physicelly, Forslundeg et al, assume that each
wave hag had the charce to "reflect" many times from boundary to
boundary, and vice versa. But Roaenblut.h's57 p.)<e never reaches the
boundaries, and never has time to reflect. Thus, the absolute growth
rate of ForulmdBe et al, never mskes 1ts appearance.

At thipg time, it i8 not clear whether ane, or both, or neither,
of the above resolutions is the appropriate one.

The Green's functions shown in Fig. 10 can be cbtained analyt-
ically, as well as by direct numerical integration of the coupled mode
eguations. We have done this, and present the celculation in
Appendix C. Due to the complexity of this solution, it 1s easler in

practice to numerically integrate the baslc equations,
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Finally, let us briefly discuss three other contributions to
this problem of finite pump, Inhomogeneous plssma, Fig. 8. Jha and

5

Srivastava'’ obtain an analytic solution for the growth rate (v + iQ),

using perturbation theory for small «k'. Dubols, Forsiund, and
I1111m65 use the WKBJ theory to obtain approximte resulte for the
growth rate (v + 1) vs. pump length L and inhomogeneity «'. They
also considered the cage yo(x) - einz(X/LY), -I.Y <X< LY" as well
ag other emooth functions for yo(x). In all cases, results similar
to those of this section were found. Chambers and Bera66 sclve Eqs.
(42) in the same marmer as we do in Appendix C. However, they look
for & special valus of temporal variasble vy, rather than regarding

Y as a Leplace tranaform variable to be Integrated over. #pplying
boundary conditions at X = 0 and X = L, they find the elgenfrequency
y + 10, which agrees sxactly with thoge shown in Figs. 9 and 11. They
next obtain the full spatial solution to Bgs. (42) in terms of pera-
bolic cylinder functions. These solutions are found to hug the walls
as L +«, thus lesving no effect in the middle of the system. This
prenomenon is claimed by Chambers and Bersf'6 to provide yet a third
possible resolution to the Forslud-Rosenbluth paradox.

Angther interesting characterlstic of the finite pump case ie-
the following, With Vl >0, v2 < 0, suppose the system is too short
to be abgolutely unstedle. Then suppose we input & constant value
ll(X « 0,T) = 8, it the left-hand boundary. What will be the amplifi-
cation al(X " L/LO,T)ao, measured at the right-hsnd boundary
after the steady state has been reached? For VZ/V1 = -1, L/Lo =1,
we determine the amplification A for various values of «', by

direct numerical integration. Figure 12 shows the results. We sce
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that the greatest ampiificetlion is for the homogeneous case x' = 0,
and the amplification decreases for increasing inhomogeneity.
We turn next to the work of White, Kaw, Pesme, Rosenbluth,

Laval, Huff, and Vnm&, who considered the inhomogeneous pump,

inhomogenecus medium case. Starting with the equations

ij(')x K(x')dx'
(3 + vy + V33, ) ay(x,t) = Y (x) e a(x,t)
(56)

A E™
(3 + vy - V3 ) alxt) = y(x)e a,(x,t)

with V),V, >0 (note the (-) sign in the second equation), v (x)
is then expressed in the form

aﬁ)x al x' Mx'
Y (x) = ¥, . (57)

o

L]
Laplace transform in time, f£(p) E] o Pt £(t) dt, and define
Q

P*+V

) SO
a,(x,p) = F(x,p) exp [-%(—v_l s 2 )x
1 2

X
. éf [atxr) + 1etxt)) u-] (58)
0

obtaining the equation for F(x,p)

a,? F(x,p) + £(x,p) F(x.p) = 0 (59)
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where

2
LRtV
tx,p) = - %[a(x) - 1K(x) - ( ] .

2 2 u(x')dx'
1 Yo
‘E(axu-iaxt)*v;v;e . (60)

Choose a Gaussian profile for the pump, a{x) = -2x/1.72
and let x(x) = x'x; we cbtain

1 P“’
f(x)'—x-—z —v_
L,
2y 2
' -2x°/L
( ) ‘v';*f;' v (e1)

Prom this point, Ihitoa' et al. analyze Eq. (56) using WKBJ t.oohniquea“
and looking for normal modes. PFor Vl and vz in the same direction,
there are no unstable normal modes. For V, and v2 in opposite
directions, there exiets an unstable normsl mode provided three neces-
sary cenditions for absolute instability are sstisfiei, namely

(1)  the thresl.id for instability in an infinite, homogeneous
mediue must be satisfied, (see Eq. (21)) namely

Yo “1|:zl ;:zlvll ; (62)
172

{(11) we require l.Y > L,. This corresponds to the threahold
for sbsolute instability in a hamogeneous plasma with finite length
puxp, Section [-3-2. (See Eq. (29).)
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(111) we require

- 2 .
L/LD > (1 ""Lv) . (63)

Ir K'L'Yz >> 1, this becomss

LY < ;’lt- . (64)

(<]

This upper bound on LY' perhaps surprising, could have been predicted
on the basls of Section I-B-2, the Infinite pusp, inhomogeneous medium
case, where we found no absolute instability; there we had LY + w,

'hiteu' et sl. interpret this upper bound on I.,v as being a
condition on the sharpness of the boundary yo(x), a sufficient amount
of sharpness being necessary to cause the "reflections” needed to
produce sbsolute insiability. This interpretation is along the same
1ines a5 the "reflections® of Bobroff and Heus®l (Appendix A). Another
way to discuss this phenomenon is to say that in the infinite,
inhomogenecus case there are destructive interferences, originating at
large x, which quench the absolute instability. Cutting off the
pump at large x destroys the source of these destructive inter-
ferences, allowing the absolute instability to exist.

In this section, we have been concerned with inhomogeneities
which vary monotonically. In the next section, we consider non-

monotonic inhomogenelties In the form of spatial turbulence.
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IT. PARAMETRIC INSTABILITIES IN THE PRESENCE
OF LONG WAVELENGTH TURBULENCE
A. General Results

In thie seciion, we disouss the influence of irregular
inhomogeneities on parametric instabilities., First, we review pre-
vious work. Then we discuss our own 'ork67 on long wavelength
turbulence, in the presence of a linesr density gredient, for anti-
parallel group velocities.

There is a substantial body of work on parametric instabilities
driven by a pamp which hes finite bandwidth®® 9%, tne bandwidth being
thought of as a random phase ¢(t) in the temporal behavior of the
P, which varies -ozy[- Lot + o(t)]- An important effect is found
waen the bandwidth is of order Yo

The earliest treatment of three wave interactions in the
presance of spatial turbulence is due to Tamoikin and Fa:l.nnht.ein%,
who comeider all three squations end find that the turbulence
suppresses the usual relaxation oscillatiomns. There has also been
some work on all three waves in the presence of a random phase, by

Uilhglmmzs.

The case of spatial turbulence in a homogeneous plasma, using
Eqs. (42) with x(x) a random function characterized by amplitude
Az <[E(x)]2>" and correlation length Ly, has been considered by
Kaw, White, Peame, Rosenbluth, lLaval, Varma, and Hut‘t‘69 for the case
of parallel growp velocities. For L %Ly >> 1> Ly/L , they find an
increase in the growth length from L, (for & =0G) to (LoAer )Lo'

Kang et al. have also considered, for parallel group veloci-
ties, the c.se of a linear density gradient {n the presence of spatial

turbulence, «(x) = K'x + 8x(x), where ©Sx(x) 1is the turbulent
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wavenumber mlsmetch with correlation length Ly << Lo. ¥We know that
in the absence c” turbulence, e constant input at x = O saturates
spatlally at a level exp{7)), where X = yozl(i‘l'v’l'v’zl). In the
presence of turbulence, l(u69 et al, find the same result, spatial
saturation at exp(mA), but with an increased growth length before
saturation.

We wish to generalize the results of the last parmgreph in
two m§67, by considering the space-time behavior for antiperallel
group velocitles, and by considering correlation lengths LT ~ Lo.

We do 5o by direct namerleal integration of Egs. {42).

The turbulent part of the wave number zdematch 18 characterizvd
by amplitude A and correlation length 1.r We take the corrslatiom
function to be statistically uniform and Geussian,

(6ctx) 6e(x)y = 2% empfx - /2,2 (e)
Since the spectral functiom S(k) = jdy I {5lz) &xlx + ¥)
= (21} 2% Ly ex( 1%L, %/2), we take a5 & mode1” for the random
function &x{x) a sur of sine waves with random phases,

Ngan
Sk(x) = (321'!)" V-LE A exp -ka 112/4] sin(ij +af) (66)
J=1

* Die midel nispatch Eq. (66) has a correlation function of the form
-

(8x) 6(x)) - T expl-k;? 1,%/2) cos[2ni(x - x'W/L] whtoh o

periodic in x with perfod L. For distances of interest x << L,

this correlation function is aceurately given by Eq. {65).



-33-

where kJ = 2n§/L; L {is an arbitrary basic length, much longer than
any other length in the problem; (aJ} 18 a get of random pheses, with
probability density uniform from zero to 2m; and the upper limit of
summation 1s taken to be large, such that (kJI.l.)mx-» 1. (of

course, care wag taken that all turbulent wavelengths be large with
respact to the numericel grid specing. The resultis are then insensitive
to the mmerical grid spacing.) For a given realization (ujl. and a
particular set of psrwmeters, the total mismatch gradient

de(x)/dx = k' + déc/dx 1s 1llustrated in Mg. 13.

Given this model, the coupled-mode equations (42) are inte-
grated numerically to determine the effect of the spatial turbulence on
the response of the system to an initial perturbation. The main result
of this study is that if A exceeds a threshold value (dependent om
I.r). the instability no longer seturates at & valus -ex{wi), but
growm exponentially at fixed x for large time, at a growth rete vy
lower than that for a mmturulent homogeneous medium, In Fig. 14 we
show the temporal development of a typical unstable case with initial
conditions e,(x,t = 0) = &(x), ay(x,t = 0) = 0. Fluctuaticns
rexiniscent of Rosenbluth, White, and 11u® are cbserved, but with a
less regular charactar. The most unstable part of the pulse has the
behavior of a tesporal normal mode, mainteining its shape while
growing exponantielly.

In Fig. 15 we show the absolute growth rate y/yonA/Lo
for VMW, =<1, Azl a1, L/ s 1.2 The threshold
turbulence level is seen to cocur st AL} = 0.1, The maximm
gowth rete 1z y/y° % 0.70, which is compareble to the homcgenecus
growth rate Yo+
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The function dx(x)/dx shown in Fig. 13 corresponds to the
threshold case of Flg. 15. Thia functiem 13 seen to 1lle ir the range
0.80 < Lo2 dx(x}/dx < 1.20. This shows that the coupled mode equations
can produce absolute instability even if dx{x)/dx veniches nowhere
in the medfur, in contrast to the result of Kav69 et al.

In Fig. 16 we show the growth rate y a3 a function of correla-
tin length Ly, for fixed fluctuation level A, For this caleulation
we use the same realization of the set (“J} in Eq. (2), varying Ly
with A/L,;l = 0.5. We see that the sbasclute growth rat decreases
with increasing correlation length.

It should be noted that in thle work the turbulent wavelengths
are quite long, the shortest being equal to the standard length
Iy = VInT,lr,

A further point is that for s given value of A, the sbsolute
growth rate depends stroogly on the realizaticn of hg) cposen 1n
¥q.(66). The relstive dispersion of the growth rates is of the order
of 30-40%.

We interpret our results as follows., The convective saturation
of the linearly inhamogeneous coupled mode problem’’ %%, with oppositely
directed group velocities, seems to be due to destruciive interferences
betwesn responses origimting at large positive and negative positions.
This interpretstion is supportad by the work of I'hite“ et al,, who
found that replacing the constant pump by a Gaussian in x reaulted in
absolute inatebility, as discussed in Section 1-B-3; i.e., removing the
responses st large x Tremoved the destructive interference at =z = O.
The analogy in our work is that the turbulence upeets the destructive

interferences, allowire the instabllity to grow absolutely.
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We conclude that the presence of long~wave turbulence tends to

des<ublilize vhe :onvective asturation roundw'“

for the coupled mode
equations, with oppositely directed group velocities, in an iniiomogen-
eous adiue. T+ destabilizstion occurs ai relatively asmall turbulence
levels; so small thet the condition du{x)/dx 1s never saticfie.'.

At this time, thers oxin‘n"”'

seversl amlytic efforts which
deal with situations closely related to this section. Much of *his
work involves epproximatiane, an exasmple being the Bourret closure

- approxisation, the valldity of which are at present being debated.

B. BRaman Backecuttering in Laser Fusic: Mcdel
Ir. this section we apply thw results of the previous Sectiom

II-A to the question of Raman scaitering, in which an electromgnetic
wave decays into amother e¢lectromagnitic wawe and a Langmuir uscilla-
tion. We consider an example from the parsmeter regime of laser
fuston?’-301,

First studied by Blossbergen and Shanl’, Volkovl®, snd

Cowm! slr‘l’

, ezcellent jerivations of the ccupled mode equations (1)
for iaman backscattering are given by m-ahmz et al. and by Liu,
Rosenbluth, and White’. These derivations proceed from Maxwell's

equntions and the Lorentz force equation to our Eqs. (42), which are

x
{3, * Vla‘) ul(x.t) " Yy '2("") oxp [ﬂ[ Hx') dx‘]
0

(67)

x
(3, * V.30 a{xt) = v, ayxt) exp [-1] k(x') n"}
0
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where a; 18 row the ccattiered electromagnetic (EM) weve and a,
is the electron plasma oscillation,

The laser fusion geometry is depicted in Fig. 17, where we
see the density rise from zero to above the critical density. Since
both decay products have frequencies above the local plasma frequency,
w -RJ%Z + klzcz » '-\,%2 * ]k22 \re2 , the pump frequancy must
satisfy w, > Zup Thus, Raman acattering can uvccur only below the
point 'i where n = nc/l., or "’p = wo/Z; the critical density n,
is the deneity at which up =W Furthermore, Rasan backscattering
can occur only above a certain density, because for too low a density,
the langmuir d.cay product 1s strongly Landeu damped. We can see this
fact as follows. In the far underdense region, up(x) <« w,, the M
decay product will have a frequency sbout equal to Wys and thus a
waverusher kl about equal in magnitude to ko' but oppoeite in
direction, as shown in Fig. 17. Thus, the Langmuir wave hae wavenumber
kz 2 ko. For very low plasm frequency, the Langmuir wave phase
velocity V‘ ~ mp/ﬁ° will be 8o small that kZAD ~ Zkove/up ~1,
producing large landau dasping. In this region, Raman backscatter
1 suppressed and is dominated by induced Thomsan seattering'®>, the
difference frequency w, - now correspanding to a beat disturbance
which 1s not a plasma narmal mods In the abgence of the pump; the
three wave coupled mode equations nc longer apply.

We see therefore that Raman instability happens between a
minimum density and a maximum density % n,, as shown schematically in
Fig. 17. Our Eqs. (40) are valld over part of this region, byt not all
of it. Near the point xl' the FM wave i8 near i{ts :lascical <urning
point (m‘1 - up) and has kl = 0; thus the wavelengih Al is very

large and the approximation of slowly verylng amplitude ll(l,'-) 1s no
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longer vaiid; we cannot use Egqs. (42) in this region. We therefore
restyrict our study <o the reglon indicated schematically in Fig. 17
[Note that we have also neglected damping in Egs. (67). In practice,
the 1M wave 1s collisionally damped, and the Langmuir wave i3
collisionally and landau damped. At the end of this section we
briefly discuss the effects of demping.)

Let us evaluate the parameters V,, V,, v , and (x) 1in the
genaral vicinity of mp(x) = u°/3. or nf{x) = nc/9, working to roughly
108 accurscy. We take fixed w, and w For Vl, we have

--o\/l-uz/ul"'z-c\ﬁ-l - -c. Ve have V, = 3v. k0,
where e 1s the electron thermal spved; we find

RS OIHI--{! 2 %"F; - =(an/e)(1-u/aa).

and Wy * W, ul.thul

v 2
2. 1'./e)2(f-1> . (68)
For v, we obtain from Drakel%Z et al.
v
Yo * ‘ggV"o"p (69)

where vy is the oscillation velocity of an electron in the fleld
of the pusp wave, relsted to the pump intensity I(I/e- ) by

vse = 100 (70)

for & Nd:plass laser with w, = 2.101% 471

Firally, we determine «<{x). At the point of exact matching
%, we have #(x,) = 0. At sny other point, we have
w(x) = ko(x) - k(x) - ky(x); expanding about x_ we find
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k(x) = @pz(x) - wpz(xOD

_ 1 . 1 _ 1
[ 26\ 2 - wir) 2?0 x) Ao - uj(xo>]

(7
For a ncnrelativistic plasme, ve/c << 1, the Langmuir wave term in

Eq.(71) is much larger than the other two terms, ylelding
wz(xo)—mz(x) mz(xo)-mz(x)

= (72)
Z-V; 'e-\ ,u22 _ upzho) 6v "k,

where all quantities except mpz(z) are evaluated locally at X, In

(x) =

the far underdense region

oy << ug . (73)

1 ["’Pz(’o) N “’22(’)].
’ P

e’ L wix)

-+
e

For a linear density gradient with scale length I.n, and turbulent

relative density fluctuation An(x.‘, Eq. (70) becomes, with x, =0,

k.
CES R [5 . An(x)] : (7)
6(k2AD) n
We choose parameters characteristic of laser t‘usimw'ml.

-l
The laser Is Nd:iglass, w, = 2-1015 8 ~, lo = 1 um, intensity
T = 10%° w/en?, pulee length 100 peec = 10710 & = 2.10° w, 1. The

plasma has 'Ie = 1 KeV, wp(O) = w°/3, XD = (.022 ym, k2 = 1.6 ko.
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At these values, collisional and landau damping rates are lower than
Yo * Q.02 9y by a factor of 100. At the homogeneous growth rate, an
initial noise levsl would amplify by exp(yo x pulse time) =

exp(0.02 u_ * 2.10°

uo'l) = axp(4000), « huge value which would mean
serious attenuation of the incoming laser beam. Thus, 1t is important
to study the inhomogensous regime, to determine whether such growth
rates are a.tually cbtained.

Choosing a densily scale length Lll = 100 um, we have from

Zqx. (68) and (%)

72 = 0,03 ¢ (7)

2

lx) = 2.3-20" ca2 x + 2.8.10% ca”! An(x) .

Also of imtarest are the purwmeters L = 1.3 im, A= yo"’/l\ilvzii' -
1.5. From these we note teo important facts. First, wme are pushing
the WKBJ Eqe. (42) to the limits of their walidity, since L,~1.3us
is only slightly larger than xo - Al « 1,0 ym; wheress we have
assumed L - 3! lnlnl(x,t)l > %,AI,A . Secondly, the nontwrbulent
convective saturaticn at exp{wi) = exp(5) is st & very low value for
these paramsters (for 1 =10'°w/ew®, wa » 50; for 1 =10 w/ew?,
T = 0,5); 1t 1s therefore cruclal to determine whether turbulence
destabilizes the conwvective saturetion, allowing sbsolute growth,

With LT/!'o = 1.3, and o particular realization of (uj) in
Eq. {66), the recuize are es shown ia Fig. 18. Although not shown in
Fig. 18 & the ‘lreghold for absclute instability oceurs at & relative
RS density fluctustion 4 ~ 107% t0 10”2, & very low value for real

plasms. The wbsolute growth rate above threshold Is y/vo 0.2,
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falling off for large A!;ms ~ N,1, This growth rate should be compared
to the hamogeneous absclute growth rate, which from Eq.(22) is
Vg = ZNILIAI |+ [V,D) = 0.3,

The effects of damping on the ebsolute growth rate have been
studied. Fesults qualitacively simlilar to those in a homogeneous

mediun’” have been found; the growth rate is reduced when the Langmuir

\}
wvave damping rate v, ~ 'Tziy R
1 o

Thus, we have found that the convective saturation of Raman
backscattering in laser fusion geometry 1s destsbilized by very low
levels of turbulence, such that the relative FMS density fluctuation
1 4 ~~107% 10107,

Let us depart from the abatract world of one dimensionsl theory
1o ask the question: ¥hat is the experimental situation regarding
Raman backscatter? Answer: There ls no direct evidence for any Raman
buckscatter in any experiment, even though many laser-plasma experi-

104~106

mants are in the intensity range (101" - 1016 l/cm2 for

Nd:glass) where theory predicts huge amounts of Raman scatter.
Numerical eimulations, however, do desonstrate Raman scattering which

63,107,108

behaves as predicted by theory There 18 sows Indirect

experimental evidence for Raman scatter near H n,, in that acattered

light of frequency g w has been obaemd1°5’1°6. 0f various
theorieslog'llz accounting for light at g W all make use of the

combination of pump light at @y with Raman or 2mp instabill ty-

generated radiaticn at w°/2: indeed, a paper by Langdon, lLasinsky, and

113

Kruer shows that at 3 n,, these two instabilities merge into

4
a mixed eiectrostatic-electromagnetic Instebility. This is then the

indirs-t evidence for the existence ¢f %aran ccattering.
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%e offer two speculstions for the absence of large amounts of
Raman backscatter. First, the large turbulence limits of both Fig. 15
and Fig. 18 show a decrease in growth rate for very large turbulence;
perhaps such turbulence is experimsntally present. Second, it has been
shom?14 thet wagnetic fielda assoclated with turbulence can inhibit
faman sceitering; perhaps such sagnetic fields are present.

This discussion has been limited to one dimension. There has
also besn & copsidersble smunt of work on Reman eide-
scattering®® T0:14-118 | 1oy 1y taportant since perpendicular to the
density gradient the three wawe mtching conditions can be exmctly
satisfied over large distsnces.
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111. PARAMETRIC INSTABILITIES IN THE PRESENCE OF
A NONMONOTONIC INHOMOGENEITY--A MODEL PROBLEM

A. Theory of Homogenecus Plasme With Sinusoidal Density Modulation

As discussed in pert II above, it is very difficult to make
analytic progress with our coupled mode equations when the inhomo-
geneities are nonmonotonic, or turbulent-like, For this reason, we
considsr the tractable problem of a sinusoidal density inhomogeneity,
expressed as a wave number mismatch in the form
x(X) = L, %a sin(n.oll.-). the subseript standing for modulation.

This prohlemis like the turbulent problem in two respects: the wave-
nusber migsmatch is characterized by an amplitude ¥ and by a length
L‘, Jus? as turbulence has an amplitude A and a correlation length

I‘l" This problem is unlike turbulence in one important respect; tlLat
is, wx(X) is coherent in the gense that the value of the function at
each point 1is given once ¥a and L- are given., Thus, the solution
of this problem will contain important similerities to the turbulemt

problem, as well as important differences.

We begin with the coupled mode equations in the form

X
x(X") dx']

(3 + v+ 71: 3l a(X,T) = ay(XT) exp[if

Q

(76)
X
(3 + v, ¢ V’B'ax)az(x.'r) = a(X,T) exp [—1[ ®(X') dx']
0

where 8 ° !V2/\’]|. Assuming a time dependence

a,(X,T) = 8,(X) exp(-1uT}, and eliminating the factor
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X
az(x,'l') ex'p[ 1 L x(X') ax'] ag in section 1-C-III ahove, we have

{axz +[: 71; (~18 + v,) = 1(X) + (1w + vl)VE']ax

+ [t(-iu + vl)(-iu + \»2) - 1V§ (XX -1w + vl) * 1]} -l(x) =0 ,
(77)

Assuming that x(X) = L, %y sin(X Lo/I'n) and defining the new spatial
variable 2Z = (LD/I.-)X = x/I.n, we cbtain

l{azz +(%)[:#_;(-m +9,) ¢ VB (-t + v,) - 1L x_ sinid )] °,

2
L
+ (15) [t(-iw * o d-tw 4 vy) R - 18 (-1 + vy)
° N
x Lo “n s:l.n(Z)] al(Z) =0 ., (78)
This equation has the simple form

lazz + (p_l + A, sin(2))3, + (Aj + 4 sin(2)>] a(z) = 0

(79)
L VB,
A1 = t('ﬁml.o)(—im + UZ) * (—Ib—>(-iw + Ul)

b = 1L x

where

Equation (80) continued next page
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Equation (80) continued

= Ll\z ( o T LIll ¥
AJ = 2 l:/ -{w + 41)(-11.:0 v2) ¥ L-o-

8L
A = - (&)(-1u+v1)1.m %y (80)
(<]

and where the top sfign s for parallel group velocities and the bottom
sign 1s for antiparellel group velocities. When w = 0, Eq. (79) is
equivalent to Ince's equation119'120. A simple transformation could

then remove the middle term, producing s Hill eqmticmn?‘lzo of the

form 522 !1(2) - [(c:1 *+c, cos(z) + ¢q cos(Zz)] al(z) = 0. Onl.v the

exiptence of the coa(2z) +term makes this equation different from
the well-imown: Mathieu equatfun. For our purposes, the present form
2q.(79) is more convenient.

Equation (79) is periodic in 2 with period 2n. Floquet's

t.hoorunq'm otates that there exists a solution of the form
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exp(kz) ¢(z) where ¢(z) is perlodic in 2z with period 2.
Such 2 solution can te very helpful to us, as we ghall see below.'

The solutionis expressed as

alz) = 2 4(z) = &° Z o el®Z (81)

neem

Usually, there will be two solutions of Floquet form to Eq. (79),
fl(z) = 01(2) exp k,z, fz(z) = 02(5) exp k,z, where 01 and 02

are periodic in z with perlod 27, 1If klsz, or k. =X

1 2

but 01( z) 1s linearly independent of Oz(z), then fl(z) and
fz(z) are linearly independent. This is the case in Section
II1-A-1, where we find kz = -k1. For a discrete gset of values ':m'
if vl = vz = 0, we find k2 =-k1 = 0; in this case it can be
show ' that 9.(z) and ¢,(z) are indeed 1inearly indepentent;
f1(e) end (z) are therefore the complete solutfon set. In
Section IfI-A-2, the basic Eq. (79) with nonzero @ 18 more compli-
cated then in Section III-A-1 with @ = 0. Here we force k1 =0
and solve for w; this is then one solution of Floquet form 01(2).
We remain ignorant of the second solution; there are three
possibilities: (1) 1t could be of Floquet form with different

k2 ¥ 0; (11) 1t could be of Floquet form with k2 =0 but 02(z)
1inrearly independent of 01(2); (111) 1t could be of completely
diffe-ent form. Whichever of these three possibilities occurs is
not our concern; we sre only interested in determining which values
of @ are consistent with a Floquet solution exp( klz) ¢1(7)

having k1 = 0; this we have done.
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then Eq. (79) becomes

= A A
2 iz -
Z(kain) +<A1¢Ei.e7-5i.eiz)(k‘in)
N
A A -

The coefficlent of em must be zero for each n, -= <n < o

thus we find for each n that

A
g.zr[x +1(n - 1) Elf‘}cn-l + e+ ) e Ak dn) v A e,

3
A, A
4 -
* "}T["'i(“'l)] "% - O
n=e..,=2,-1,0,1,2,"-¢ . (83)

Dividing cut the middle coefficlent gives 3 a set of equations, which

in m triz form would be convergentug‘lzo.

{An infinite matrix is
convergent 1f (1) the prod.ct of the diagonil elemente converges, end

(11) the sum of the off diagonal elements converges.] Defining

. . [Azikiin-i_]tA4

Y =
n 21[(x + ) ¢ Ak ¢ 1n) AJI

- <n <@

(84)
Equationg (83} becomes, on ¢ividing out the middle coefficient and
using (82),

Y. < +c_+Y ¢ = 0 - <pn<w , (85)

This set of equations is solved as fellows, Defining
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_ ‘p-l = _n*l
U = e V. S em— . (86)
n cn n ch

Equations (85) become, on dividing through by e

- +
< .
A un+1+yn vnan ~<n<w (87)

This set Eqs. (87) can be solved for L and v, a8 shown in
Appendix F, The result is

+ - + - +
Yn-1 Yn-1 Yp-2 Yn-2 Yn-3 .

q T o mmm cer—— ————— % &

n 1- 1- 1-
You1 Y1 Yooz Yas2 Y
Y,
v, = - o+l ‘n+l Tne2 ‘ne2 ‘n¢3 (88)

1- 1- 1-

--<nd<o

where continued fraction notation has been used, meaning that each
minus sigr in the denominator acts on everything to the right of {t.
The solution (81) is now completely determined. The value of k 1is
obteined by choosing & value for n, n =0 let us say, in Eq. (87).
Inserting u, and v, from (88), and v ' from (84), ana A, A,,
AB’ A4 from (80), all into (87) for n = O, we solve for k as a
function of w, Km' and L‘ That is,

- *
Yo “0'1’70 Vo = O (89)

is a dispersion relation for k. It remalns to evaluate e

-0 €< n < o,

The ¢, are obtalned by choosing a value for e, and noting

that from the definition (86), we have ey = V¥

o¥1" Vg-2Vn-1% T
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[} = eew [J
n>0, and e, TNy LI LA for n < 0, Thué we have
constructed the complete solution Eq.(81), aside from ap arbitrary
constant c,. In this report we shall not evaluste {cn}, but rather
obtain as much information as possible from the parameter k.

1. Parallel Group Velocities

As we have seen befors, when the group velocitliesare parallel,
V:'l‘l2 > 0, there 1s no poseibility of absolute instabllity, and we may
consider the problem of the spatial response to a constant source
al(X = () = 1, steady state in time. We do this by setting the
temporal growth yate @ = O in the definition below Eq. (76), and
consider Eq. (89) as = dispersion relation for k. For gero modulatiun
kgt e know that the spatisl response is ~exp(x/L); for finite
modulation we expect this spatial growth rate to be reduced, Fram
Eqs. (80)

. 2 aVEl
8L, L,

f ot L,

(%0)
A - (vl\)z,--1)(1-,”/1-,:,)2
A, = (LK XVEL/L) .

Then from Egs. (84) we have

. ATy Ve L]
2f0eetn) o (erin )17z Mo, VEov,/ V) + (1 /1 )(vv)-1)]

iR d

wcn<wo . (91)



-49-

For small Lrn m# Ve can approximate u, v, in Eq. (89) by
the first term in the expressions (88), all other terms being
proportional to higber powers of L o’ Then Eq. (89), our

dispersion relation, becomes

- + + -
Yo Yo Yy Y *1 =0 . (92)

For heuristic clarity, set v, =v, =0, B=1. Then Kq. (92) 1s

(kgL E(K - 1)
W€ - LI - 17 - 1 7]

(gL x(x + 1)

+ +1 = 0 . (93)
W 1 Do 1F -1

For fixed L, let x +0. Then ig. (93) can be satisfied only if
the derominator In one of the terms vanishes. Choosing
¢ -1 2 - 0 ylelds k= ¢I /L, or
al(x) ~ ex'p[tt:—‘ z] -exp[tx] ~ exp[tx/l.o]! the usual result for a
homogeneous medium. The other zeros of the denominators yield
k= I‘m/I‘o 4+ 1; dut this 1s the same as above since exp[tiz] is
periodic with period 2w and so can be absorbed in ¢(z) in Eq. (81).
In fact, a careful look at the full dispersion relation (89) shows
that for L 0, there are an infinits number of roots
k= th/LO + 12, —» <t <w all of them equivalent to the % =0
root.

For smell "mI‘h' we expand about k =z Lm/Lo, and solve Eq.
(93) for the small quantity (k - Lm/Lo); we find ir physical units

1

the inverse growth length L' = (&, which s
m



-50-

2
(L) '1
J R KL - Al B oo

° - C N 2""23
1.1+I.Lm/L°'J

Thus, for small modulation amplitude L the growth length is

H foln << - (94)

increased by a term proportional to ncmz. The increase in growth
length 1s most pronounced for large modulation wavelength Lm'

For erbitrary K » We can solve Fq. (89) numerically for the
inverse growth length X, keeplng as many terms as necessary in the
continued fractions of Egq. {88) for u, and v_. The results are
shown in Flg. 19 for Ln/Lo =1, and in Fig. 20 for Lm/Ln = 0.5.
The spetlal growth rate, in units of the zero mcdulation spatial
growth rate I.o-l, decreases with increasing modulation x, until a
certain p>int, where it reaches zerc and bounces up egain. For
comgletesiess, we have shown both the positive and the negative roots;
both roota are purely real. We interpret the bouncing effect as being
due to constructive and destructive interferences between the
oppositely traveling solutions to our second order differential
equation (77).

2. Antiparallel Group Velocities

If V1V2 < 0, it 1s no longer appropriate ic consider a steady
state in time, 80 we consider a different, physically relevant
problem. We ask the questlion: What is the temporal response of the
system to the uniform initial conditions al(x,t = 0) = constant,
az(x,t = 0) = 0? We expect to find a temporal growth rate Im{w)
#hich in the 1limit Ky ™ 0 reduces to the usual homogeneous result
im{w) =1 [or in physical units, Im{w) = yo]. The basic equations

(76) are periodic, and the initial conditions are periodic; thus,
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we may look for a periodic solution to Eqs. (79) which means setting
=0 in Eg, (81). Then Eq. (89) becomes a dispersion relation for
w, with k get equal to zero,

In this case, we have from Eqa. {20)

o {1 ) vy (-1 )
= - - + V, + -iw+ Vv
! :qﬂ: w* vy - 1
= -iL K
b2 o (95)
Aj = -(Ih/l'o)z(-m + vl)(-iw + vz) + (Lm/Lo)2
A, - (VEL W% CURRN A
Using (84) apd (95) we have
s (g2 3 (VB L X-tee))
n -m[ _(-mw )+ -h»vl)]
LO
\Lm (-uruy X ~dutvy ) - \L_) . (96)

For small ("mlh)' we again choose only the first term in the expres-
sions (88) for us v, end again cbtain the simplified dispersion
relation (92). For simplicity, set 8 =1 (V1 = -Vz), and

vy = v2 = 0. Then we find, as expected, that for KmLm +0 the
temporal growth rate is Im{w) = 1 (Im{w) = Y, in physical units .
For small "mLm' we find

Im(w) = 1--2..0 Kplp << 1 - (97)
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The decrease in temporal growth rate 1s proportional to sz, and is
mogt pronounced for large modulatlion wavelengths Lm'

Let uys note that in eddition to the root diecusged in tha
previous paragraph, there are an infinite number of other roots. To
see this, first consider the form of Ynt in Eq. (96) when B =1,
vy =y 0, which 1ic

. (Lnxnlz)[tin -1 %1 l‘/1.‘,]
1 - (/L) + 1)

. (98)

Nex*, consider the form of the full dispersion relation (£9) which
is, after inserting u, and v, from Egs. (88),
- + - + + - + -
A Y,y Ya Yoo _ 10—’ WwNn v

- ———— ———— v +]1 +

- - —=~..) =0 .
1 1 1 1

(99)

Since each Ynz hag L in the numerator, the only way to setisfy
the dispersion relation (99) when Kk * 0 1s to make one of the
denominators in (99) vanish also. This occurs for

o = r(eA2n? -t i (100)

n =0,1,2,°"

This infinite set of roots 1s reminiscent of the theory of wave
propagation in periodic medim, where we find an infinite number of
roots Wk = 0), one root per Brillouin zonel2l. For finite Kyr v
expect one branch of the graph w vs L associated with each root
(100). In the special case B =1, \)1 =V, T 0, it is eazy to show
from Eqs. (98) and (99) that if w is a root of (99) fer given Kn?

then so 18 -w and so is -m'.
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B. Linear Demsity Gradient With Sinusoidal Density Modulation

We sonsider next a sinusoidal density modulationin the presence
of a linear density gradient. We restrict ourselves to antiparallel

group velocities, and take the wave number mismatch to be
X) = x'X+ (LOK.) d-n(XLOIIh) . (102)

For small «,. we expect tu recover the usual exp(n/x') ssturation
discussed in Section I-E. For larger Ky W might expect to destabi-
1ize the convective saturation, just as turbulence did in Section II.

We numerically integrate the basic equations (76). with the
form (102) for x(X) and with Green's function initial conditions.

We indeed find exp(%/x') ssturation for small «ys and we indeed
find absolute inetability for %5  greater than an L ~dependent
threshold. In Fig. 22 we show the absolute growth rate, obtsined with
B=x'=], I.‘lz.o = 0.8. Above threshold, the growth rate rises
rapidly to nesrly the homogeneous msdium growtl rate.

In the example shown in Fig. 22, the threshold value of g
occurs at Lol:. * J.1. As in the turbulent case of Section II, this
value of L Xa is fer bslow that required for the vanishing of the
derivative of the wave number sismateh «(X); i.e.,
ax(X)/aX = ¢ o (L2 /1) con(XL /L)) * O isplies (with « =1
and Lm/"o = 0,8) that L% * 0.8, » muck higher velye of Ly
than the cobserved threahold Loxg = 0.1,

We next consider s shorter wavelength modulation, .'.-/l.o = 0.18,
in Fig. 23. Here we see & much less violent instability, the mexix.e
growsh rete belng only ln:(..;)/yD z 0.2. Furihermore, the ‘hreshold
value of “n is I'o‘l = 1.0, much higher than would be predicted by
setting ix(x)/dx = O, ylelding here Lout! = 518,
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Our conclusior from the lsst two paragraphs is that the modula-
tion wavelength is *he relevan! parameter in determining the tendency
of the systen toward abeclute instability, rather thar considerutions
of the vanishing of the derivatlve of the wave rimber mismatch K(X).
This conclusion is emphasized in Fig. 2{, where we hold the modulation
amplitude fixed at a value L g * 2R = x' * 1) and vary the wmodula-
tion wavelength. W¥e find that the absolute growth rate is substantial
for Lh - l‘o' falling off rapidly for Lh << Lo and for Lh >» "o'

In Fig. 25, we d 3play the results of Figs. 22, 23, 24 as
a three disensional plot of absolute growth rate vy vs xg and L.

The dashed curve 1s schematic, showing the inferred threshold for
absolute instability in the K.-Lh plane. For large Kot the
threshold value of Lh approaches zero. For both large and sasll Lh'
the threatwld value of «_ 1is lerge, demonstrating once again that

.
the most effective Lihomogeneities are those with scale length -~L .

(]

We again interpret these results in terms of the concept of
mthematical reflections discussed in Appendiz A. Waen the inhomo-
goneities are of s size near the ell important length Lo. congtructive
interfersnces between sclutions of our second order system Eqs. (76)
lead to instability. When the lnhomogeneities are of a rize wmuch
smaller or greater than Lo' the system feels only the monotonic
part of w(X), given by x'X, and exhibite the umsual expl{e/x*)
saturation. This saturation we {rterpret as e destructive inter-
ference between solutions of our secord order cet Egqs. (7.

e detailed space-time resj:nse of the xysiea, 0 the initial
conditions xzfx.‘: %) = 8(x), .\2(1.7 £ %) 5 ¢, 15 of interest in
1ts oWn rlght. ¥ar the perameters .7 Filg, 2 (Lonrg 22, Bt wy)

we choore n valye Tor the modulat!ior, saveleng'h, LEILQ = .16,
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which is Just barely above the thrashold for absviute instabiliry.
Figure 26 shows <he space-time behaviour of -z(x.*:) nt four different
times, T = 7,13,16,20. At T * 7, the usual exp(®n/x') saturetion
has set in, At the substantially later time T * 13, the exp({n/x‘')
behaviar persists, but with sany more fiuctuations. The hint of
things to come is shown by the enhanced fluctuation at X = O, in the
middle of the figure. At T : 16, this enhanced fluctuation has growm
rapidly to tower over the rest of the pules shape. After a period of
rapid growth, the enhanced fluctustionat X = G f{teell ssturstes.
This saturated state, shomn at T * 20, bas its own enhanced Cluctum-
tions at ths very cemter shich foretell the outburst of yet a third
period of rapld grosts, and s on ad infinivam.

To oonclude, We have seen that the belavior of the system of
Eqe. (76) with the wave mmber sismmteh «{X) = «'X ¢ (Lycy) otn(x /1)
is qualitatively similar to the turbulent csse of Section II. Absolute
instability results for wavelengthe "h - "o’ and for sodulstion
amplitudes one order of magnitude smmller than that required to make
de(X)/dX ~ C. The instability growth rate is very sensiziwe to
modulaticn wavelength L, falling off repidly for L 351t .
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APPPNDICES

A. The Concept of Reflections
Bobroff and Haus have treated the case of homogenecus sedium,
firite pump length (Sec. I-B-2) in several different ways. One of
them uses the eonsspt of "reflections”. Consider Egs. (25), with
D]..DZ.O‘ Vzﬂlt—l.lhiehm

(3g + ¥) 8,(X,T) = a)(X,T)

(A.1)
(aT - ax) .z(er) = II(X.T) .
Using tha method of claracteristics we define new veriables
Yy = T-X
(A.2)
T = T+X .
Equations (A.1) become
¥, 0(yx) = %-z(:.t)
(4.3)
3’ uz(y,:) = ]5' 8,(y,2) .
Eliminating a, from Egs. {A.3) we have
3, a(ne) = Falve) . (A.4)

From the symmetry of Eq. (A.4) we see that 1f f(y,z) 13 a solutiom,
then f(z,y) 1s also a sclution, Referring to Fig. 2, we perturb the
system at some point Xy C < x, < L. Assume that the solution
f(y,z) has been excited by our perturbation; then the solutlon

f(y,z) will propagate (in X and 7} as in en infinlte medium until
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one edge reaches one of the boundaries X =0 or X = L/Lo' Assume

it reaches X = 0 first. With Vl > 0, we have the boundary condition
ul(X =0,T)=0. Nowat X=0, y=2=T, so that f(y,z) = f(z.y)
at X =0 for all T, Thus, after the pulse reaches the boundary,

the solution al(x,'r) = f(y,z) - £(z,y) satisfies the boundary condi-
tions; this eolution looks like the original solution f(y,z) plus

a reflected solution. This argument can be continued in time sc that
each time one solution reaches a boundary, a new solution is brought

in; the response is thus seen as a sum of repeatad reflections.

B. Sudan's Criterion for Absolute Instability

in Inhomogeneous Media
In an early peperm, Sudan proposed, without proof, a generali-
zation to inhamogeneous media of the Bers-Briggs criter.lon78 for
absolute instability. In a homogeneous medium, a necessary (not
sufficlent) condition for absolute instability is that there be a
gaddle point of the phase i(m. - k(m)x) in the complex w-flane,

vhere k(w) is obtained from the dispersion relation D{k,x) = 0.

g%[ut-k(w)z] = 0% -a%&"lx =t . (A.5)

For asymptotic time at a fixed position X,

o) . o (A.6)

the solution of which determines the unstable frequency W

In an inhomogeneoug medium, the phase has the form
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exp 1[«:1. -f k(w; x') dx} (A.7)
[}

where k{w;x) 1s cbtained from the dispersion relation
Nk,w; x) = 0 . (A.8)

Then the saddle point cond!tion at a point L becomes

a
f Wi X)) gyt i e o, (A.9)
0

We determine D(k,w; X) from the dimensionless Egs.(4}), taking
V2N1 = -1; then

[or - 35 + w3y + 3y} ayxm) - a0y = 0 . (a0
Fourier transforming locally (not affecting «(X)} we find

[u +k+ K(X)][u - x] +1 =0 . (A.11)

Solving Eq. (A.11) for k{w; X) and 3, Kw; X) we fing

2 -3
Bw k(w; X} = #(2w + ‘)[(5(_;_)) + 31 L,z . ,,(,)J {A.12)

x
o
In order to have f 3w k(w; x') dx' « @ , ag required by EqQ. (A.9),
0

we must have 3 k(w; X)' + o, since the lower linit cf integration
X=X

is arbitrary. We therefore require the denominator ir Z5. (A.12)
to vanish at X = X ; taking X = X tc be the poirn: siere x(X)

vanishes (we can always add a constant to «x(X) :o make -his be true),
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we find the unsteble frequency w = i. In the -eighborhood of

D Xo, Eq. (A.12) has the form

3 Mu; X) = ...___.L__.T . (A.13)
w 2
["—{-x—)-t ix(X)]

Assuming a power law form for «(X)

ox) ~ (x-x M (A.14)

we have near X = Xo
2 K X) - (x-x M2 (2.15)

Condition (A.9) then becomes Jk (x' - xo)""/2 4X' + =, which will

be true only for N 2> 2. This Sgreu precisely with the results of

Rosenbluth’’, who found no sbeolute instability for x(X) ~ X; and

an absolute Instability with growth rate v/y, =1 for «(X) - X2,
However, this method doea not sgres with our resulte for the

turbuient case, Sec. II, or for the case x{X) = c'X + L%y sin(XLolL-).

Sec. ITI. For these cases, sbsoluyte instability 3 [ound when

a«(xi/dx vanishes nowhere in the system, and condition (A.9) is never

satisfied. Thus, Sudan's method works for monotonic inhomogeneities,

but not for turbulent llke inhomogeneities.

C. Analytic Solution for the Case of Finite Pump,

InhomeM Plagma

At some point it may prove useful to have an exact analytic
solution for the case of finite pump extent, irhomogenecus plesmm.

Referring to Fig. 8, we wish to solve Eqs. (43), which are
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(3, + vy + V33 )a(at) - o (x,1) exp( 15127 /2)
(h.16)

(3, + v, + V3 ) my(z,t) = AALNE R exp(-ﬁ'lez)
for Vl >0, Vz < 0; with the boundary conditions ‘l(l s 0,t) =
alx = L,t) = 0; and with the initial conditions ul(:.t s0)=0,
a(x,t =0)= Hx-x) 0x %, S L. We follow Rossnbluth, White,
and 1100, who solved the infinite pusp extent cese. After s similar
calrulstion, we find

o
aixt) = g‘;j o o (x.p) ap (A7)
L

where the integral is taken around the Laplace contour, and sust
satisfy couwsality: a,(z,t €0) = 0. a,(x,p) is given ty
_ wl '"'2 I)
122/ T 212
a(z,2) = ole,p) e .
(A.18)

ox,p) = YL.WA/Z .1'/‘

o (x,p) 8 (2,p) 8(x - 1) * o (x..p) 0 (2.p) iy -~ x)
" LACYER B8

where A% YOZIE‘ v, v, 1,

e{x) =
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The functions a,, 8, F‘_. F_ are defined by

L ~in
a (x,p) = F(p) D‘,ﬂ(x‘e1 4y 4 Dyy q(-x'e las

a (x,p) = F_(p) D_ﬂ(x'e”/") + Dﬂ_l(-x'e'”/")
(A.19)
- in/4 = T/, /4
F(p) = oBplxe 70 1V, Ve e 77D ga g (xje )
+
[{P tv t(pe "2”1”2} Dn_l(-x'e"i”/”)
- v VR e 140 - 1) by, (-xpe”t ")]
FAp) = ~bj, (- i™4)
where
- i pt \ll p+ Vz
¢ = v 1 -
rEYETRY R )
x  (x Ywo ¢
y = ()
and where D\J(z) is the parabolie cylinder functionla. For
Re[v] <0
2 -
e WL 2
Dfz) = =— I a ot f2-2t vl
-v) J,
(A.20)

]:] >> ]v] e-zz/l. PA

lz] > 1
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It is clear that thla auviuticn must be evalumted numericuily. We
have found it easler In practice to integrate Egqs. {41) dircetly <o

obteln the Green's function shown in Fig. 10,

D. Mumericsl Integwation Using the Method of Characieristics

We discuse the details of the numerical integration of our
coupled mode equationa.

Consider the most general coupled mode Ege. (40), written in
+he form

(at . V‘Ix) 11(:.!) = r‘(x.t)

(A.21)
(3, + V,0.) a(x,t) » flxt)

where l‘l( x,t) rz(x,t) are functions of (x,t) and functionals of
a.(x,1), a{x,t) Y (x), and Rx). Equatione (A.26) wre an exsmple of
a hyperbolic aystea of equations, so long as at least one of "1'

V, is different from aero. Mumerical solution of Eqs. (A.21) is
facilitated by use of the wethed of eh-ncurh'.iesu’ . Dafining

the variadbles

n I x- V‘t
(A.22)
[ -Vz'.
Equations (A.21) become
£.(n,£)
3, 0, * !
I A
(A.23)
f(n,8)

2 1
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Each equation now hae only one derivative. In the x-t plane, the
stsuation is shown in Fig. 27. Starting at the point (x = 0, t = 0)
®e draw a line of constant n =x - V,t (n =0 for this line)

and & line of constant £ = x -Vt (£ =0 for this line). The
slope of the first is At/Ax = vl-s the slope of the second is

ot/Ax = 1/v2 (assume V2<0). Ilhrkiu off the time axis at intervals
4t, we define a grid point on each 1line of constant n or E, at
intervals At abow. the x axis. From each grid point comes a new
line of constant n or £, called characteristic lines.

Next we put Eqs. (A.28) in finite difference form

Ml rl('b{)
™ '1 - l’2

(A.24)
A‘z fz(n.i)

Y

Suppose we imow all velues a,(n,€), 3(n,) on the horfsantal line
at t = 3At, for example, and we wish to imow the values of a5, e,
along th: horizontal line at t = 4At. At points a,8 In Fig. 27,
we know a)(a), a(a), ;(8), a,(8) and we desire u,(¥), a,(v).
where a,(a) = .1(-.. at point a, £ at point a), etc. We use s
predictor-corrector ltthod]‘z3 , accurate to first order In At.
Working from Eq. (A.29), we predict a value ll(v)p for al(v) as
follows:
‘1(')p = a)la) + AE fy(a)/(V, - V,)
(A.25)

az(v)p = a(B) + an f(RIAV, - V,)
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Note that we are integrating alung characteristice, and tha* only
information at o, is necenonry “o predict a value a' Y.

We now correct our predicted values, defining corrected

values for a,(y),, ¢z(v)c as follows:

1
8(v), = a(a)+y 1'1—55-‘;7(!‘1(0) . !‘l(v))
(A.26)

i), -2(a)-g"2-"}7!-,(r2(e)or2m,) .

We define ¢ 3 [lI(V)c - ll(v)pllll(v)p; it © is emsli enough we are
done, setting a,(Y) = a,{y), ay(¥) = a,y). If € 1o not yet
mmil enough, » st a)(Y), = & (Y], 8, (¥) ¥ a)(¥); insert the
new predicted valuss into (A.26); <btain a new 8,(Y),, 8,(Y); vest
€ again; and o0 on wntil ¢ is smmll enough.

In practios, this technique eorks well and economicslly. For
the dimensionless Zqe.(30), with B8 » 1, theory predicts y = 1;

numerically the relative error in vy is approximately equal to At.

E. An Exssple Where WKBJ Theory Is No Better
Than It Chould Be
wKBJ theory“ bas & reputation for having, in many instances,
a much wider range of validity than {ts derivetion would indicate.
Here we demonstrate a situation where *he WKBJ solution has only the
minimue range of validity.
i Section I11-A-l, we ¢ nglidered the steady state, spatisl

growth rute shen
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K(X) = L% sin(XL,l/Lm) (A.27)

for which Eqs. (III-1) are (taking B = 1)

i

X
Ay B, exp i [ L% Bin(X'LofL.) dx*
0

(A.28)

X
3a, = a) exp -1[ Ly sin(JI'LO/Lm) axt
o) .

In certain limits it is not necessary to use the complicated analysis
of Section III-A to find the growth length. We can instead use the
¥KBJ solution of Eqs. (A.28). Putting (A.28) in the form

37 a(X) + o(X) e(X) = 0 (A.29)

X
where &(X) = 8,(X) exp [-%‘L L Ky ain(X‘Lole) ax: ] we find
for q(X),

(0 = 22302 /1 coof w2 ) o2 (L e atn2( o2
a4 3% ' © T: 7' s Tm- .
(A.30)
WKRJ theonra6 assigneé two approximate solutions to (A.29), which are

f(X) =

X
~t—emp)n |  Vax) a (r.31)
4Ve(x) o
valld i q(X) is not close to zero. Expanding q(X) for small
(Lown), and integration over a distance lrrge compared to L, we
find a growth length
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N OEOI

which 1s incorrect for arbitrery Lo/Lm; it reduces to the correct
value Eq. (III-13) only in the limit L /L, << 1, where we find
(L
LO/’-‘ = 1 “z-—————’j (A.33)
4Q ¢ 1)
Why ig it pecessary to go to the I.°/l.,h << 1 limit ¢ get the correct
growth length? The answer lles in the positfor of the zercs of q(X),

which for small (Lot‘) occur at

x - :%(%".) . )m[“’ﬂ' ne 1,59, .

(A.32)

Thus, the zeros of q(X) aere for from the real X axis only when
Ii/l'o >> 1 (because of the log dependence on Lox-, it is ot
sufficlent to have L x << 1); the WKBJ solutions {A.31) are thus
valid on the real axis, only for Ln/"’o »> 1, when the r-cts of g(X)
are far from the real axis. For LJLD: 1, the roots of g(X) are
near the real axis apd the WKBJ solution (A.31) is ircorrest. This

is an example where= WKBJ theory works only where it sh-yld, that is,

in reglons of the complex X-plane far from zeros of g(i;.

F. The Solution of an Infinite Jet of Algetraic Iguation:

We wish to solve the infinte cet of coupled Iqs.l27", which

are

Y cn~10en+y.c = n (v <= . (A.35)
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Deflne
e e
o . 2L v, - =% {A.36)
n = Cn = n
and divide (A.35) by ¢, then
- +
Y, vty v T 0. (A.37)
Now divide (A.50) by e W cbtain
- +
Yy t Vg Y Y (v fu) =0 (A.38)

Solve (A.37) for w, and ineert u into Eq. (A,38), cbtaining

n
- . Yo
Yn +vn_107n 'n —— = 0 , (A.39)
-7 Y

Solve ¥q.(4.39) for V,q ood shift the index up by one; then

Y,
v, - ol (A.40)
1 Yne1 Va1
In continued fraction form, Eq. (A.40) 18
Vong Yooy Yaez Yaez Vo
v = __n:_ln_ﬂ.__niMh wc<n<wo ., (A4)

1 1 1

where each minus sign in the denominator acts on everything to the
right of 1t.

To find u, we divide 2q.(A.35) by e instead of ¢

+1 n-1°

the remaining steps are analagous. The result is
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L4 + - * - +
u = - Tn-1 = - Ya-1 "n-1 o2 Ya-2 Y03 .
n T = =
14 Y1 % 1 1 1
@acpn<e . (A.42)

Equations {A.41) and {A.42) are the desired Eqs. (87).
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Fig. 1.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.
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FIGURE CAPTIONS
The space-time response of Egs. (25) in an Irfinite, homo~
genecus medium, with the initial conditons al(x,‘l' =0) = §x),
aZ(X,T =0)=0. (Dl = lZ‘2 =0, V2/V1 = «-1) From Bobroff
and Haussl.
The configuration for the finite pump extent, homogeneous
medium case. Boundary conditions: If VJ >0,
aJ(X = 0,T) = 0; if VJ <0, aJ(x = L/LO,T) =0; 1=1,2.
Graphical olution of Eq. (34) for the temporal growth rate
in the finite pump extent, homogeneous medium case.
(L/L, = 9n/2). From Bobroff and Haus®L.
The space-ilme response of the finite pump, homogeneous medium
case, to the initlal conditions al(X,T = 0) = §(X),
aZ(X,T =0)=0. (L/Lo =2, V2/V1 = .1, Dl = D2 = Q).
From Bobroff and Haus —.

2

Analytic pulse response of the infinite pump extent, inhomo-
geneous plasme case, Egs. (46) with «(X) = x'X, for the
iritlal conditions a,(X,T=0) =y, az(X,T = 0) = §(X).
(¢' = 1.25, V,/V, =-0.2). From Rosenbluth, White, and
L:lueo.

Pulse response of the infinite, inhomogeneous system, Eqs.
(46) with (X} = «¥'X, by direct numericel integration, with
the Initial conditions al(x,T =0} =0, az(X,T = Q) = §(X).
(et = 1.25, V2/V1 = -0.2; compare Fig. 5).

Wavenumber mismateh «(X) = 10 taph(X/10); end space-time
response of Eqs. (46) with initial conditons

a. ({X,T = 0) = 8(x), a,(X,T=0)=0. (VZN]_ = 1),



Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12,

Fig. 13.

P o 2

Wavenumber mismatch «(X) = x'X and spatial pump variation
yo(x) for the case of finite pump extent, inhomogeneous
plasma. The equations are solved with the initlal conditions
al(X,T = 0) = §(X), az(X,T = 0) = 0, and the boundary
conditions al(x =0,T) = 0O, az(x = L/LO,T) = 0.

Real and immginary perts of the complex eigenfrequency for
the case of finite pump extent, inhomogeneous plasme

x{X) = x'X, The solid lines are from Forslund, Kindel, and
I.in&‘n63; the polnts ere measured from our numerical
integration of Egs. (42). (V, =24, V,=-1, v

Y, = 2% T = 5). See Fig. 8 for configuration.
nl(X,T) ve X for 0.25 . T _ 4.25, obtalned by numerical
integration of Egs. (42). The parameters are those of Fig. 9,

with k' =1, (V1 = 24, Vz ® ], v = vy = 0, Y, = 24,
L = 5). See Fig. 8 for configuration.

Complex growth rate v + i ve length L of finite pump.
From Forelund, Kindel, and Linaman®?, (x' = 0.4, V, = 24,

Vy=-l, vy =yt 0, v, = VSZ). See Fig. 8 for

configuration.

Amplification A = lal(x = L/Lo,r)t/ao, where a &

s z .l(x = 0,T) 18 the constant input, vs inhomogeneity

k', From numerical integration of Fgs. {46; with

(X) = "X, (V2/V1 = -1, L/Lo =1).

The function Lbz ax(x)/dx vs x/L, at the -treshcld value
Mg =00 in Flg. 15, (LyLg = 1.27 VAL = L,

Atz ae'L T =1, L/Lo = 400; a particuler realizaticn of the

cet (u‘,} is used.)



Fig. 4.

Flg. 15.

Flg. 16.

Fig. 17.

Fig. 18.

Fig. 19.

Fig. 20.

Fig. 21.

83
The temporal evolution of {az(x,tx vs x/L  for the {nitial
corditions a (x4 2) = &(x), az(x,t =0)=0.
(/1,71 = 0.5, otherwise as in Fig. 13 )
The absolute growth rate Y/YO vs the RMS mismatch function
A/Lc"l (parameters as in Fig. 13).
The absclute growth rate Y/yo ve the correlation length
I..l./I.o ( parameters as in Fig. 13).
A schematic disgram of Raman backscattering in laser fusion
geometry.
Absolute growth rate v/Yo ve turbulent demsity fluctuation
level An for the lagser fusion situation of Section II-B.
(Vy/¥) = -0.03, R'L?=0.67, L/l = 1.3; & particular
realization of the set {ui) was used.)
Spatial growth rate \s& modulatfon amplltude. (v.‘,/'!l1 =1).
For eac h root k shown, Xk + in 1s alsc a root,
-» < n< » ., The roots shown are purely real.
w(X) = L% sin( XL /L)
Spatial growth rate vs modulation amplitude. (v;_,/\!1 =1).
For each root k shown, k + in 1s also a root,
-~ < n < *, The roots shows are purely real.
(X) = L¥n s:ln(x[.o/l.m).
Temporal growth rate vs modulation mmplitude. (Vzﬂl =1).
The roots which have solid 1ines in the Im{w) graph have
zero real frequency. There are four roots corresponding to
the four possible combinations of dashed lines in the
Re{w) and in the Im{w) graph. The icts sre growth rutes

of a pulse response %o the initial cenditions



Fig. 22.

Fig. 23.

Fig. 24.

Fig. 25.

Fig. 26.

Fig. 27.

—R4m

al(x,r =nj: o(X), az(x,'r =0)=0,

x(X) = bRy Ir.()u.o/‘i.m).

Temporal growth rate vs modulation amplitiie.

(VZIVI =-1, &' =1) k(X)=«'X+¢ L%p axn('f_l.oll.m).

Temporal growth rate vs modulation amplitude.

(V2/V1 =21, k' =1). «(X)=x'X+ L% sin(xl.oll.m).

Teaporal growth rete vs modulation wavelength,

(VZIV:l = -1, «* =1). x{X)=«'%X ¢+ ~5 sin('f.l.O/Ln).

Absolute growth rate vy/y o V8 acdulaticr. wavelength L./Lo

ard modulaticn amplitude Lo"l’ combirirg <he results of

Figs. 22, 23, and 24. The dasghe: ~urve ls a s -hematic curve

reprezenting the threshold curve in the L *a plans.

(\!2/\!1 =-1, «' =1), o{X) = «'X + !'o‘n nin(n.oll..).

Space-times response to the initisl cordi<ions

a,(X,T = 0) = &(X), az(l.'l' = Q) =cC.

(X)) = c'X + L% sln(ﬂ.oll.-). (I.oltlz =2, L/L, = 0.16,
E L)

Vzﬂl 1, « 1).

The method of characteristics, discucse? !n Arpendix D.
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