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ABSTRACT 
We consider the nonlinear coupling of three waves in a pla 

One of the waves is assumed large and constant; its amplitude is the 
parameter of the parametric instability. The spatial-temporal evolu­
tion of the other two waves la treated theoretically, in one dlaension, 
by analytic methods and by direct numerical Integration of the basic 
equations. Various monotonic forms of inhomogeneity are considered; 
agreement with previous work is found and new results are established. 
Nonmonotonic inhooogeneitiea are considertd, In the form of turbulence 
snd, as a model problem, In the form of a simple sinusoidal modulation. 
Relatively small amounts of nonmonotonic lnhcoogeneity, in the 
presence of a linear density gradient, are found to destabilize the 
well-known convective saturation, absolute growth occurring Instead. 

This work was supported by the U. S. Biergy Research and Development 
Administration. 
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I. GENERAL CONSIDERATIONS AND MONOTONIC INHCUDGENEITIES 
A. Introduction 

The three wave coupled mode equations are encountered in many 
branches of physics. In solid state physics, an electromagnetic 
driver can couple an electronic disturbance and another electromagnetic 
wave, the process being called Raman scattering ; replace the 
electronic disturbance by an ion lattice vibration and we have Brillouin 

i n 
scattering In electrical engineering, a waveguide couples two 
electromagnetic waves to produce paraattrlc oscillators and parametric 

s 
amplifiers . A laser can be thought of as a coupled mode system, two 
of the nodes being the population densities of the higher energy level 
and the lower energy level, the third mode being the populat it̂ z; density 

Q 

of photons . In plasma physics, an electromagnetic wave ir. an Isotropic 
plasma can decay into: an electron wave and an ion-accoustic ware, the 
parametric decay Instability ; two electron waves, the 2u or 
Goldman-Jackson Instability; an electron wave and another electro-17-19 magnetic wave, called Raman scattering ; an Ion-acoustic wave and 

16 20—22 an electromagnetic wave, called Brlllouin scattering ' . An 
electromagnetic wave in an anisotropic plasma has additional three-wave 

23-25 
interactions . 

Each of these Interactions can be described by a system of 
three equations, each one a partial differential equation in space 
and time governing the evolution of one of the modes, including the 
effects due to the other two modes. There are then two alternatives; 
(a) Solve all three equations on the same footing. This has been done 
by many workers " ; we will not be concerned with this procedure here. 
(b) Assume that one wave, called the pump, is much larger than the two 
others, and that over times of interest its magnitude does not change 
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appreclably. Then we can discard the equation for its evolution, and 
we are left with two linear coupled mode equations. The amplitude of 
the pump appears as a parameter in these two equations. It is th" 
procedure which will be followed here. 

The standard coupled mode equations, In one dimension, for the 
anplltudes of the waves of interest are 

<3 t * v x • Vja x) ajd.t) * Y 0 a2(x,t) 

O t • v 2 + V 2 » x ) a 2(x,t) = y Q a^x.t) 
(1) 

where V, and V~2 are the group velocities of waves 1 and 2, having 
either sign; v. and v, are the damping rates of waves 1 and 2 in 
the absence of coupling; y (real and positive) represents the 
coupling of the two waves due to the presence of the pump wave, assumed 
constant over times of interest; a.(z,t) and a 2(z,t) are the slowly 
varying amplitudes of waves 1 and 2; i.e., 3t[ln a^z.t)] « u , 
3 [in a,(x,t)l « i,, where (<u .JO are the frequency and wave 
number of wove 1; and likewise for wave 2. 

Given suitable initial conditions and boundary conditions, Eqs. 
(1) can be solved. Before doing so, we give two examples of the 
derivation of Eqs. (1) from first principles. 

First, suppose we have two normal mode oscillations In a 
medium, in the absence of the third wave, described by the following 
wave equations: 

<»t2 - a V t • v - v i V ' * i ( x ' t ) 

< 3t 2- a»:t • « 2
2 - » ? V ) * 2 ( x ' t ) 

(2) 



Aasuaing aolutions of the font •^x»t}« expf-iUjt • ikjx), j » 1,2, 

*e obtain the normal aode frequencies 

"i ' */ * V J V J *x-2 ( 3 ) 

where we hat* neglected » 1 # » 2 as aaell. to exajaplee, consider: 
electraaagnetic ware*, with a, • u , r, • c; Ungaulr m m , with 
a, • <IL, T, • 3 v ; and Ion acouatlc waves, with a, « 0, v. • e g 

(aound apeed). 
In the presence of the third wave, Eqa. (2) are coupled 

together aa fallows'5* (In Bssaxn scattering, EK * Bl + Lanfauir, these 
equations arc obtained froa Maxwell's equations plus the Lorentj foree 
equation): 

(a^ 2 - 2i V l 3 t • a 1
2 - v^e, 2) ^(x.t) - 6X * 0(x,t) • 8*(x,t) 

U) 
( 3 t

2 * 21vj3t • a 2
2 - r 2 \ Z ) • 2*<x,t) • B., •/(x.t) •jU.t) 

where B.,»B, are real cotgaing constant*, • (x,t) is the third 
(pump) wan, and we have taken the coaplex conjugate of the second 
equation. We now asauaa that each field quantity •,(i,t) can be 
written as a sl_,»3j varying {in apace and tlas) enplitude tlaes a 
rapidly varying (in space and time) phase: 
• ,(x,t) • *,(x,t) expf-iu.t • lijx), J * 0,1,2. We further require 
the three-wave Hatching conditions: u. » to, • u,, k = k, • k,. 

J' 9t V 3 2 
With these assiMptions, and discarding terns in 3 *, , 3 4 », . 
j * 1,2, Eqs. (4) become 
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[2l*j»t * 2lvlUl * 21vf*1ix]i1{x,t) ' Bx a 0 (x,t) a 2*(x,t) 

(5) 

[-2U>2\ - a v f t - if£*£^ S 2*(x,t) • I* a*(x,t) a^x.t) . 

Froa »J.(3), we obtain the group yelocltla* V, = 3u,/9k. - v A . / w . , 

and deflninf Y O = Itjt^tu^r » 0 (x,t) we have 

[»t * vx • V^J^x.t) - -1 -jggj Y o ( , l t ) 52» ( x, t) 

(6) 

[»t • v2 • v 2» x] i2(x,t) - i-Jjg. Yo*(x,t) ijlxA) 
1~2 

,4 s * , Defining a^x.t) = i ^ x . t ) ; a 2 (x , t ) = - 1 ( B ^ / B ^ ) * S 2*(x,t) we 

find 

[»t * v l * T l ' x ] a l ( x ' t ) * >0«2(».t> 
(7) 

[3t + v 2 * V x l , 2 ( x ' t ) - Yo«l ( x ' t ) • 

When Y 0 la real and constant In space and tlat, these are Just 
Eqa.(l). 

In the presence of plaswa spatial inhomogeneity, the derivation 
of Eqe. (1} aust be aodlfled. The inhonogeneity enters Into Eqe.U) 
through the parameters B ^ x ) , B 2(x), vAx), \>2(x), u Ax), vAx), and 
vJx). Each field quantity Is now assumed to vary In a WKBJ sense as 
$,(x,t) = a,(x,t) exp -iui.t • i / *,(*') dx' , J = 0,1,2. That 
Is, we choose {u,}, and find {k,(x)J from the dispersion relation 
Eq. (3). 



The frequencies are required to match, u = UL + u,; we choose x Q 

to be the position where the wavenumber mismatch K(X) vanishes: 
KCX) S k 0(x) - k ^ x ) - lc2(x), K(X * x 0 ) » 0. The derivation of 
Eqe.(5) remains unchanged, except that now we do not have 
exp I(k 0 - kx - k 2)x = 1, but rather exp l [ (kQ(x') - k^x') -
k 2(x') ] dx1 = exp I / *(x') dx'. The other0stepa renair. unchanged, 
and Eqs.(l) are replaSed by 

[ 3t * v i * v i 3 x ] •ifJt' t>- * y0

ix) •2<*»t> e x p r / "• ( x' ) ta' -K 
(8) 

[a t • u 2 + V 2 3 x ] a 2(x,t) » Y 0 ( * ) a^x.t) expj-i / ic(x') dx" 

These equations were first introduced by Herxer and Crawford , and 
mu...i of the work on parametric instabilities in lnhomogeneous 

34,»75 plasma Is based on these equations. Despite the large amount of 
work on these equations In the years 1971-1975, new results 
are forthcoming, and much renins to be done. As evidence, of some 
sixty papers delivered at the Fifth Annual Anomalous Absorbtioc 

76 Confurence , held in Los Angeles in April, 1975, three papers were 
devoted entirely to solving these equations under various circumstances. 

77 fe present now an alternative derivation of Eqs.(l), more 
general than the one above. Consider the model field equations 
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D 1(18 t. -13 x) ̂  -- f ^ » 2 

V I 3 f -13x> *2 * F *o *1 

(9) 

where D and D, are linear differential operators acting on the 
wave amplitudes •.,*2> $i a a i #5 a r e coupled to the third wave 
• through the coupling constant F. Assuidng that each wave varies 
as 

-iu>,t*ik,x 
•j(x,t) - • ,(*>*> e J * 

where Uj and u, are chosen to satisfy «_ « uu • os.j k. 

(10) 

is 
obtained fro« u, through the equation Re|D,(u,,k,)| = 0 , J = 1,2s 
and again k = k, • k,. (In general, of course, all of these 
equalltie* nay not be self consistent; we assume here that they are.) 
Equations (9) becoa* 

V"l * "f*! " *V *1 " r*o*2 

V-2 * "f *2 - l V *2 * r i . V 
(11) 

Taylor expanding the operators Ci>D, about (ni^tk.), (« 2,k 2), we 
find 

H ^ V i ' l • i i n ^ u ^ ) } * -jA i a 
3 D i 

t - I F 
<Vki 

"x)*l 

= r *0 *2 

Equation (12 ) continued next page 
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Equation (12) continued 

("•fc^'Vl * 1 *»[¥vk2>] 
3D 

1 3 

<V k2 

3D. 

t--3T| * K)h 

- r * 0 +r • 
Dividing out the coefficient of 3 t in each equation; recall ing that 

R e l D / w j ' k , j ' ] = °' J = 1 » 2 ' introducing the damping rates 

Im[D,(a,,k.)l 

u J' k J 

(13) 

we have froa Eq. (12) 

( • t * « i * V « ] * i 
' • « 

"Si 
(14) 

K * v a * v « ) V r»„ 

Define Y 
r 2 l*J 2 - ! • , 

o = 76^ 
X I 

- i ' * i 
X l 

"l * * 1 : a 2 - TSS. /A 
\*r2 

\TB1 

V i \ 

« 2 . k 2 / 



-8-

then we find, assuming y real and positive, 

O t - v x • \ \ ) a^x.t) => T oa 2(x,t) 

(15) 

<3 t • v 2 + V 2 3 x ) « 2(x,t) - Y 0 aj(x,t) 

which sre Just Eqs. (1). 

These have been two different derivations of Eqs. (l). The 
rest of this report Is devoted to the solution of Eqs.(l), and their 
lnhomogeneous counterpart Eqs.(8), in various situations. We will 
find that different forms of the wavenumber mismatch K ( X ) give very 
different results for the evolution of a pulse, the aain distinction 
being between absolute instabilities, which grow In time at fixed 
position for t * », and copvectlve instabilities, which are *>ounoed 
in time at fixed position. 

B. Parametric Instabilities In Homogeneous Pla—a 
In this section, we discuss solutions of Eqs. (l), the coupled 

mode equations in a homogeneous medium. In subsection 1, the pump 
extends over infinite distance, -«• < x < -, and we consider the 
stability properties for various Initial conditions. In subsection 2, 
the pump Is finite In extent, 0 < x < L, and the stability properties 
are found to depend on the length L. 
1. Pump Infinite in Extent 

In this subsection, the pump extends frets x = -" to x * •>. 
We first consider the response to a spatially inlfortn excitation. 
Next, we use Bers-Briggs analysis to distinguish absolute and 
eonvective instabilities l'or the Green'.- •.'Jr.c'.ion response. Finally, 
we discuss the exact Green'F function. 
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Wa treat the temporal response of the systen to a uniforn 
excitation iss follows. Ignoring spatial derivatives In Eqs. (1), we 
look for a solution -exp(-i<iit), and find 

. .-(ili),,^.(^)2 . ,» 
(Note that this u la a frequency associated with the slowly varying 
amplitudes a,(x,t), » 2(x,t), and haa nothing to do with tha original 
frequencies of tha three coupled sodas.) For «, » v, * 0, Zq.(16) 
yields u « tiy . For v 1,v, f 0 Instability results whan 

Yo * (viV* - \ • ( 1 7 ) 

In other words, there i s Instability whan the p\xap strength exceeds a 

threshold determined by the geoatevrlc Bean of the dawning rates. 

Next, wa treat the tewporal response to an excitation at x » 0: 

Initial conditions a^x.t « 0) •• S(x), e,(x,t » 0) » Oj boundary 

conditions a^x * **,%) * 0, a 2(x - t» , t ) - 0. Aa In Fried, Scheldt, 
79 end Gould , we perform, a Bera-Brlgga analysis on Eq. (8); with 

solution - exp(-lttt * lkx) we have the dispersion relation 

(u • iv x - W 1Ku l v 2 - kV2) «• y o

2 • 0 . (18) 

For V V, > 0 there is only eonveeti*e instability, with connective 

growth rate given by Eq.(18) with k • 0; thus the threshold i s the 

ease as in Eq. (17) cf the last paragraph, or 

(19) 

The convective growth rate is that measured by an observer aevlng 
with the pulse peak. The absolute growth rate is that se&eured at 
fixed position. 



-10-

'o 'c • (19) 

For l^Vj < 0, Eq.(19) again determines the threshold for convec'ive 
instability, b'<t there Is abaolute instability at a higher threshold: 

v | T | • v.lV | 
- - - » --l-^- 1 (20) 

In ten* of the baaic length LQ = I ' ^ l 'yo' * n d t h e 8 P , t l » 1 dating 
rates Kj = Vj/ITjl, * 2 = Vj/lTjl, criterion (20) states 

V 1 » 5 ( K 1 * ' C 2 ) ( 2 3 > 

which says that the spatial growth rate Bust ezcaed the arithmetic 
•tan spatial da aping rate in order for abaolute Instability to occur. 
The growth rate Y of the absolute instability, with v = v = 0, is 

If fil ' i'2l- *a ha** the absolute growth rate Y = Y > which Is the 
sane growth rate obtained above for the uniform excitation in the 
absence of damping. The reason Is that whan ¥, • -V., the peak of tke 
pulse remains at x - 0; the absolute and coavectlve growth rates are 
then equal and are obtained from the dispersion relation (18) with 
k - 0. 

Exact solutions to Eqs. (1)(the Green's functions) giving the 
response of the system to the Initial conditions (23). 
e^x.t « 0) « 4(x), s^(x,t = 0) * 0, can be obtained in a straight­
forward fashion hy U.place transforming in time (t * u>) and Fourier 
transforming in space (x -» x). The responses Sjd.t) and a^(x,t) 
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are then obtained as an Inverse Fourier-Iaplace transfers. Cassedy 
art and Evans first perform the Inverse Laplace transform, and then the 

inverse Fourier transfers, for V,V 2 > 0 and for V-V, < 0. 
81 

Bobroff and Haus perfois the inverse Fourier transform firrt, and 
then the Inverse Laplace transform, for the case V̂ V., < 0. Kroll 
and Kelley82 have also treated this problem. we not* that the sign of 
V,V 2 depends on the observer's frame of reference! In particular, it 
is always possible to transform to a frame where Vj • -Vji thus we 
need only do this case. 

the number of Independent parameters in tqs. {1} sen be made 
explicit by defining the dlmansionleas variables: 

(24) 

T = f_t; L = " „ i X t 

(25) 

Dl = V V D2 5 W B 5 Yl 

Substituting these new variables into Eqe.(l), we find 

| 3 T • Dj • i a l a j U . T ) » a2(X,T) 

where the top sign is for V, > 0, the bottom sign is for V, < 0, 
and we always take V., > 0. 

In the form Eq. (25), the coupled mode equations have only 
three Independent parameters: D,, D.,, B. 
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An example of the solution of Eqs.(2S), with the initial 
81 conditions (23), is shown in Fig. 1, taken from aobroff and Kaus . 

Here we see the temporel-ii-atial evolution of a,(X,T), a,(X,T), for 
Dj = 0, D, » 0, VJ/VJ » -l ($ • l). Thli Is an example of an 
absolute instability, where a^X - 0,T), a 2(X * 0,T) grow for all 
tlae. 

Equations (25) say be further simplified by the s u b s t i t u t i o n 8 1 

VX.T) . V " ^ ^ ^ ) ' - ^ ) ] . 
J - 1,2 . (26) 

Then Eqs. (25) become 

( 3 T * 4 r ij.) AjCX.T) « A^X.T) 

(27) 

o I > V « 8 I ) V , , I ) * V X , T ) • 
The effects of damping have now been formally removed, and the only 
remaining explicit parameter is V /V, (6 plus a sign). If we now 
make a Galilean transforastion to a frame where 6 •- 1 C' 2 - -Vj), 
we have no remaining parameters: 

< 3 T i 3 X ) A l ' A 2 
(26) 

( a . - J j ) A ? » Aj . 

Eliminating A,, we find 

iij - Y - 1) Aj(X,T) =• 0 (29) 
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which would he the well-known Klein-Gordon equation' If the algn of 
-1 were reversed. Tile Green's function of (29) Is a nodi Tied Besset. 
function, yielding the behavior shown in Fig. 1. 

2. P a w Finite In Extent 
We next consider the case where the pump, represented by y , 

exists over only the finite range 0 < x < L (see Fig. 2). We osn 
regard this either as the case of Eqs. (1) with boundary conditions 
at x < 0, x = L; or as a special cast of an lnhomogansou* pump, 
with amplitude v„ * 0 for -» < x < 0, L < x < *••: and Y „ finite 
for 0 j i < L. The usual boundary conditions specify that a right 
going (V, > 0) amplitude a,( X |t) vanish at the left boundary, 
sj(x * 0,t) » 0; and that a left going (V, < 0) amplitude vanish 
at the right boundary, «,(x * L,t) * 0. 

The nost important question we nay ask is this: Given an 
initial perturbation, is the time-asymptotic (t -» -) response 
bounded, or does it grow without bound? One way to answer this 
question is to look for nornsl modes in tine; that Is, a response which 
.nay depend on x but which has the tlae dependence 
exp(Yt): a,(X,T) = a,(X) expfvT). Implicit In the work of Bobroff and 

81 % 
HBUS , this was carried out explicitly by Pesme, Laval, and Pellat . 
Set D, ' C, » 0 in Sqs. (25),and assume temporal dependence 
exp(yr)s then Eqs. (25) bectue 

V B (30) 

(f t Ve 3x)a2(X) - ^(X) 
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For V,V 2 > 0 the boundary conditions are «..(X = 0) = a (X = o) = 0. 
Finding no solution with Y > 0 for these boundary '.'onditions, we 
conclude that no absolute instability exlots for VjV > 0. 

For VjV, < 0 the boundary conditions are a,{JC = 0) * 
a 2(X - L A 0 ) = 0. (We always take V > C, so here V. 0.) Solving 
Eqs. (30) with these boundary conditions, w» rind 'instable normal 
nodes when 

I > j t 0 . (31) 

We can understand this threshold heurfstieally as follows. 
Consider Eq*. (1) with V 1 * -V 2 i V, and suppose that la^x.t)! 2 

represents an energy density. Suppose further that i,(x,t) and 
» 2(x,t) are equal and independent of x. then froa Eqs. (1) with 
Vj « v 2 ' 0, 9^ • Y o a 2 - YQS^. Multiply by a ^ then ignoring 

2 2 
factors of 2 we find 3,1*]! - Y0|*il • The tie* rate of Increase of 
energy In the system is then 3,[l-l«1l 1 - Y0l|a, | . The rate of loss 
of energy through the sides is -V|p.] . For net energy gain, we need 
(rate of energy increase) > (rate of energy loss), or 
Y 0L|a.| 2 > Vlajl2, or L > V/Y Q • L o. The latter corresponds to Eq. 
(29). 

The temporal growth rate itself is given by the formula 

Y - -3^-n (32) 
1 • B 

where 

n = • 2cos y (33) 

and y is a solution of 
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^ " i"T? • <«) 
The top (bottom) signs In Eqs. (33) and (34) go together. (See Pig. 3.) 
For 0 S L/L S 1 there is no real solution to Eq. (32). For 
1 £ L/l < w/2, there is a solution y for the top sign in Eq. (34), 
giving n < 0 and so a stable solutioj Y < 0. For 

1 3 
(n + s)ir < L/L £ (n • g>ir, n = 1,2,3,-••, there are 2n*l roots 
to Iq.(34>, roughly half of which correspond to unstable y'»- The 
most unstable node Is always the one at the smallest value of y. 

81 Figure 3, adapted from Bobroff and Haus , shows the graphical solution 
of Eq.(34) for L/L = (9/2 fn; there are four stable roots and five 
unstable roots. 

For very large L/L , y » »» n • +2, and Y » 28/(1 * B) 
In dimensional units, this is 

y , 2 Y 0 ^ - i f | - r (35) 

which is the same as Eq.(22) for the medium of infinite extent. 
There is an alternative derivation of the threshold Eq. (31), 

84 due to I!u and Kishikawa , which uses the well-known properties of the 
Sehrodinger equation. Consider Eqs. (1) with v, = v. • 0, and elim­
inate a2(x,t)j we have 

( 8 t * V j ) ( 8 t , v i V a i ( l ' t ) - ' r o 2 , i ( , ' t ) * ° • < 3 6 ) 

Laplace transform in time, neglect initial conditions, and divide by 
VjV ; then 
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' . 2*(*-i>-^-. '"" 
Define 

and find 

*<x,t) H a ^ x 

- »> * V2* 

•°Hi(H>] 

• < * - * ) -

(37) 

(.18) 

(39) 

This is Just Schrodinger'a equation for a square well potential: 
\.~2 5 T 0V|TjT 2J is finite, 0 ,< x J L, and jiero otherwise. If we 
can find an unstable eigenvalue Re(r) > °» with elgenfunction 
* ( x ) comspendinf to a bound state, then we have an absolute 
instability. For V ^ > 0 (top sifn in Eq. (39)), there is a 
potential hump, and thus no bound state. For V,V < 0 (hottest sign 
in Eq. (39)), there is a potential wall. Apply the boundary conditions 
•(x • s») * 0, and aesuae the solution 

*(«) - exp(*kx) -» < x < 0 

4 e 1** • Be* 1 3™ 0 S x S L (40) 

exp(-kox) L < x < •> 

where k = ĵ ( .ii> -i ) , k = V ^ v - * / • vi * °- V J * C-
Requiring the cemtinuity of * and |* a t x = C and x = L, we 
find an eigenvalue condition which is equivalent to Eq.Ol). 

Ir. a somewhat different approach, Kroll and Kelley "• con­
sidered the teaporal evolution of a pulse in . fir.lte, homogeneous 
medium, with the further specification '.hat the rump be aquare in time 
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and In space. They found different qualitative behaviors in three 

temporal regimes: short, in'ieraediate, ana long. 
85 Gorbunor considered the case v., = 0, where we know there are 

no temporally growing solutions. Assuring V, < 0, he applies a 

constant level a^x = L,t) » Cj at the boundary. With initial 

conditions ajU.t = 0) = C ,̂ a,(x,t * 0) • Cj, he finds that the 

transient response at early tinea can be orders of magnitude greater 

than the final steady state response. We have verified this result 

by direct nuaarlcal integration of the equations. 

There are several analytic nethods for obtaining exact Green's 

functions for the finite, hoaogeneous systea. the results of one oi 

these, tafcen froa Bobroff and H*u* , arc shown in Fig. i,, for an 

absolutely unstable case. A particularly interesting aathod, based 

on the concept of "reflections", i s discussed in Appendix A. 

C. The Effects of Irhoaogenelty 

So far we have discussed only a hoaogeneous atdlua in the 

presence or a hoaogeneoua punp, of finite or Infinite extent, repre­

sented by Y . We now wish to discuss ".he possibility that the puap 

and the medium are Inhonogeneous. Puap inhoaogeneity can be intro­

duced by aiaply allowing 

Y 0 = r jx ) • UU 

Inhomogeneity of the medium is introduced through the wave number 
mismatch K ( X ) , as discussed in Section I-A. With both types of 
inhomogeneity, Eqs. (8) become 



[ a t • v : • VjS^I » j ( x , t ) «• Y C < * 5 expj i / < ( x ' l d x ' a 2 ( x . t 

L K 

[» t • - •v->2 * V x W 1 , 0 * Y 0 (x)exp|-1 / Kx')dx' 

(42) 

a^x.t) 

where we afaln esauae YQ(*i real- Taylor expanding the function 

K(X) about the point < » 0, and keeping only the first tera 

x d„ «<x)j ^ J'x, we have 
|x«0 

(* t • u x • V ^ ) e j U . t ) - t„(x) exp(i;' z2/z) a 2 (x,t) 

(43) 

(» t • v 2 • V ^ ) a 2 (x , t ) • Y o(x;exp[-lJ' x 2 / 2 ]a 1 (x , t ) . 

Ifnorinc v. and v-,, which could be rewnwd by the transforaation 

Eq. (26), we define diaenslonleas variables 

T ; i o ( x « o)t 

X = x/L (44) 

o 

6 : I V ^ ! 

• - -.. , 2 

1/ Y^AMvyiU 

and obtain from Eqs. (4?) 
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Y„(X) 
(*T * ̂  3 x W X ' T ) = ^jyexpflK' X 2 ^ ] a2(X,T) 

(45) 

(>T * V B axj) Y o ( X ) [-!«' X 2/^] a l(X,T) 

Note that lnhomogeneity of the punp enters ae a real amplitude of X; 
inhomogenelty of the plasma ae a complex function of X, with unit 
absolute value; we mis»ht therefore suspect that the effects of these 
two types of inhomogeneitles are entirely different. 
1. Iphomogeneous Plasma, Homogeneous Pump 

In this section, we consider Eqs. (45) In their dlmensionlesa 
form, with K(X) S L Q K(X), and with Y Q{x) « constant, -»<»<«>. 
then 

f»t * -pt»x^ a l ( x ' T ) " a 2 ^ T ) « P | 1 j «<-X') A*' 

\K ± - ^ 3 x)a 2(X,T) = (^(X.T) erp -1 I K(X' ) dX» 

(46) 

We aalc the following question; Given an Ini t ia l perturbation 

0 ; a„(X,T = 0) = «(X) ax(X,T = 0) a2(X,T = 0) (47) 

are there any solutions a^X.T) which remain unbounded as T •* ». 
58 This question was first answered by Plliya for the case V V > 0, 

57 and then by Hosenbluth for arbitrary V,V2, both for the case 
c(X) • K'X, In an elegant application of WKBJ theory86, Rosenbluth57 
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showed that for arbitrary VjV , there is no absolute instability for 
T + », but rather a saturation of the amplitudes |a,(X,T)| and 
|a2(X,T)| at a value -exp(irA) where X = K ' " 1 . Note that this 
dees not correspond to Briggs' usual deflniton of convective instability 
either, since the amplitude asymptote* to a certain level exp(irX) 
(when Vj - \>2 = 0) rather than falling to zero. 

In the case ic(X) • | K" X 2, with <" = constant, Roseribluth57 

showed that for VjV, < 0 there can be an absolute instability for 
sufficiently large v . In Appendix B we discuss these results in 
relation to the general criterion for abaolute instabilities in an 
lnhooogeneous median proposed by Sudan . 

The exact solution of Eos. (46) with initial conditions (47), 
and with K ( X ) • K' X, was first worked out by fiosenbluth, White, and 

60 Liu . Their exact results were in good agreement with the WXBJ results 
57 of Roeenbluth . Figure 5 shows the evolution of la^X.T)! for the 

case V.V, < 0, 6 " -0.2, K' « 1, taken fron Rosenbluth, White, and 
Liu Figure 6 shows the results of our direct numerical integration 
of Eqs. (46) for the same case. Figure 6 also shows the behavior of 
|a-(X,T)|, which includes a pulse growing • T following the initial 
delta-function. For |a,(X,T)| we see the same behavior as in the 
work of Rosenbluth, White, and Liu , (Fig. 5), except that the satura­
tion occurs at a value somewhat less than exp(nA). This is due to a 
factor which was dropped in the last half of Ref. 60; for V, = -V 
this factor is With its inclusion, our results are in 

exact agreement with iief. 60. 
An alternative solution to Eqs. (46), with <(X) = K'X, was 

provided by Laval, Pellat, and Pesme , and independently by Kaufman . 
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By making a transformation of variables, Eqs. (43) can be put In the 

3 T
2 b(T) - f(T) b(T) = 0 . (48) 

form 

In this form y = Vf(T) is found to be real and positive only for 
a finite time, implying no absolute Instability. The form of f(T) 
also provides easy access to the result ja^(X,T •*• m ) \ ~ eip(nX). 

We consider next the form K(X) = A ttnh(BX), which is a 
possible model of the Junction between two regions of homogeneous plasma 
with different densities. By direct numerical integration of Eqs. (46) 
we ottain the behavior shown in Fig. 7, for A - 10, B = i , and 
Vj/Vi = -1- With these parameters, dK/dXL = 0 = 1, and the region of 
nearly constant die/dX is large enough to see the beginning of 
convective saturation. The pulse response to the Initial conditions 
a1(X,T = 0) * «(X), a2(X,T * 0) = 0, grows Initially with the 
homogeneous growth rate y * 1 (see Eq. (22), which in dimensional 
units yields Y / Y Q « l). The pulse begins to saturate at ~exp(irX), 
then feels the homogeneous regions and takes off again at the homo­
geneous gronth rate y = 1. 
2. Homogeneous Plasma, Inhomogeneous Pump 

We have already considered a special case of homogeneous 
plasma, inhomogeneous pump in Section I-B-2, where the pump was 
constant over the region 0 ̂  x j 1, and zero otherwise. There we 
found an absolute instability only for L/L > it/2. 

When the pump has a parabolic shape, and the medium is 
2 2 i homogeneous, we have Y 0(x) = Y 0(l - r/l r and K(X) = 0 in 

Eqs. (42). Following Liu and Nishikawa**, we again put Eqs. (42) 
in the form of a Schrodinger equation. For V V, > o, we again find 
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a potential hump, no bound eigenfunctions, and no unstable eigenvalues. 
For VVjV- > 0, an infinite number of unstable modes are found, with 
ihreshold pump width U./t0 = (2n + 1), n = 0,1,2,--', for onset of 
the nth mode. With damping, and taking the limit I •* °>, the homo­
geneous medium threshold is regained (See Eq.(21)); when both the 
damping threshold and pump length threshold are greatly exceeded the 
modes grow at nearly the largest possible growth rate, y/y ~ 1. 
From the form of the eigenfunction solution to the Sehrodinger 
equation, it can be seen that the absolutely growing modes are local­
ized with characteristic dimension ~(LJL ) . 

3. Inhoaogeneous Plasma and Pump 

We turn now to the study of Eqs. (42) in their full complexity: 

6t * vl * V i ) a l ( : ( ' t ) = Y o ( x ) a 2 ( x ' t 5 e*P * J *<*') **•] 

(49) 

Qt * v2 + V x ) a2 ( x' t> = 1o ( l l ) al<*<t> e xP -1 I *<*') to'J . 

The simplest case, and the most enlightening, involves a pump existing 
over a finite region, Y ~ constant, 0 < x < L, and zero otherwise; 
and a linear lnhomogeneity of the plasma, <(x) * K'X. This config­
uration is sketched in Fig. 8. First considered by Forslund, Kindel, 

6^ 56 
and Lindman , and by Pesme, Laval, and Pellat , additions to the 
theory of this case have been made by: the present author, to be 
discussed below; Jha and Srivastava J Dubois, Forslund, and Williams ; 
and Chambers and Bers . 

Recall first that when K1 = 0, this is just the case con­
sidered in Section 1-8-2, the finite pump, homogeneous plasma case. 
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There we found absolute instability for LA- > */2; *e expect that 
very small Inhomogeneity K' will not change this qualitative 
behavior. 

Forslund, Kindel, and Lindman 3 proceed as follows. With 
tc(x) « ic'x, assume a solution aJx,t) = a.(x) exp(Yt), 
a2(r,t) = a2(x) exp(Yt); then Eqs, (42) become 

(y'VjajU) = YOS2(X) 
(50) 

(9 • V 2a x - iV2 «x)] a2(x) = Y O ax(x) 

where £«(x) = a 2(x) explij K(X') dx'J. Define a new space scale 

X = XY A , ; then Eq,s, (50) are 

( Y / Y O • 3 - W x ) = a2(X) 

(51) 

/YV, - V -
{y^T* K - i*WJ a2<X) « a^X) 

where K(X) 3 ic(x) V /y . Assume now ttat |V_/V | « 1, and define 
- V" 

a new temporal quantity y S J-ni; then Eqs.(49) are 
Y- '•} 

( ' W ^ V ^ • *z<*> 

(• 

(52) 

Y • 3„ - M x A a ^ X ) .* a^X) . 

Since IV./V'J << 1 *e can neglect the first tern in the first 
equation, beinc left to solve 
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3 8,(X) = a.(X) 
X l 

fy * a. - iK(x)U 2(x) = ttl( 
(53) 

X) 

with K(X) - K'X. We wish to find the eigenvalue Y. *"ith \ > 0, 

V, < C we have the boundary conditions a.(X = 0) * 0, a,(X » I) • 0, 
where £ = LY /V.. We guess a value for y , set a,(X • 0) • 0 and 
IgfX » 0) = 1, and integrate the Eqs. (53) numerically from X = 0 
to X = I, where we desire a 2(X = L) = 0. Adjust the guessed value 
of y until this i* toj Y 1B then the desired eigenvalue. The 
results of this procedure are shown in Fig. 9, for the case £ » 5, 
V x « 24, V 2 • -1, Y C • V ^ T For small <', we find two real 
eigenvalues, in agreement with Section I-B-2 for the homogeneous 
(K 1 -»0) case. Aa «' increases, the eigenvalues move together! at 
a particular value of K' the two real roots merge to become two 
complex roots, coaplex conjugates. For very large K ' , the real 
growth rate goes to zero and the instability disappears. 

To verify these results, we have numerically Integrated 
Eqs. (42). The large points in Fig. 9 are the eigenfrequencles 
obtained from our nunerical integration; we see exact agreement with 
the results of Forslund, Kindel, and Lindman , within the accuracy 
of our numerical calculation. 

We can gain further understandliig of this problem by calculating 
the Green's function response of Eqs. (45) to the Initial conditions 

a ( X , T = 0 ) = 6(X) , a2(X,T •= 0) = 0 . (54) 
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Such a calculation, by direot integration of the fundamental equations, 
is shown in Fig. 10, where we plot la^X.DI and |a-(X,T)| vs. X 
at different tines I, for the parameters *• » 1, V, = 24, V = -1, 
v = "y24 , £ = 5. (These parameters were chosen for easy eom>arison 
with Fig.9 and Fig. 11.) Here we see quite clearly the presence of 
two normal Bodes j in particular, et the point X = 5, we seem to have 
equal amounts of each normal mode,because at 1 * 3.25, 
|a-(X = 5, T « 32.5)| » 0. we interpret this behavior as being of the 
form 

^ ( X - 5,T)| - l e ^ ) 1 • e < ^ l n ^ - . * | . » * • e* 1 1*! 

- e^lcortnt)! (55) 

which varies between a maximum value -eip(yr) and a minimum value 
zero. Just as seen in Fig. 10 at the position X • 5. This oscillating 
behavior, on top of the exponential growth, occurs in the tiae 
asymptotic response. This behavior differs froa that of the finite, 
homogeneous case, seen in Fig. 4, where the asymptotic behavior con­
sists of purely exponential growth at each position. 

Cg 

A further calculation by Forslund, Kindel, and Lindman is 
shown in Fig. 11. Here we see the behavior of the fastest growing 
normal node as a function of pump length E, for fixed K 1 = 0.4 
(Vj -24, ¥ 2 « -1, Y 0 * V24> v l ° v 2 * ° ^ T h * r e * 1 *•** ° f t h * 
growth rate reaches a constant value for large pump length L, while 
the imaginary part of the growth rate is linearis proportional to I 
for large t. 

At this point, we oust pause to consider an apparent contra­
diction. Figure 11 predicts an absolute instability for fixed it*, 
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- 57 
L * *>, whereas the work of Rosenbluth , discussed in Section I-C-l, 
indicated no absolute instability. 

There are two possible resolutions to this apparent contradic-
57 tlon. the first is that perhaps Roseribluth should have found a root 

(y * ill) with finite growth rate y and infinite imaginary part n, 
as indicated in Fig. 11 for I * ». It Is possible that his WKBJ pro­
cedure could have nissed such a root, since it would have an infinite 
absolute value. 

The seeond possible resolution lies in the limiting procedures 
88 involved. Mathematically, Forslund et al., take T * » first and 

then L •• «>; Rosenbluth, on the other hand, takes L •* » and then 
T * -. It Is well known mathematically that changing the order of 
limits can completely change the result; witness, for example, 
Lim ••* • , which yields either zero or infinity depending on the 
a*0 S * \T 
b->0 

86 order of the limits. Physically, Forslund et al. assume that each 
wave has had the chance to "reflect" many times from boundary to 

57 boundary, and vice versa. But Rosenbluth'e p-J-e never reaches the 
boundaries, and never has time to reflect. Thus, the absolute growth 

ga rate of Forslund et al. never makes its appearance. 
At this time, it is not clear whether one, or both, or neither, 

of the above resolutions is the appropriate one. 
The Green's functions shown In Fig. 10 can be obtained analyt­

ically, as well as by direct numerical Integration of the coupled mode 
equations. We have done this, and present the calculation In 
Appendix C. Due to the complexity of this solution, it is easier in 
practice to numerically Integrate the basic equations. 
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Finally, let ue briefly discuss three other contributions to 

this problem of finite pump, inhomogeneous plasma, Fig. 8. Jha and 

Srivastava obtain an analytic solution for the growth rate (Y * id), 

using perturbation theory for small K'. Dubois, Forslund, and 

Williams use the 1KBJ theory to obtain approximate results for the 

growth rate (T • id) vs. pump length L and inhomogeneity K'. They 

also considered the case Y„(x) ~ sin (X/L ), -L < X < L , as well 

as other smooth functions for y (x). In al l cases, results similar 

to those of thl* section were found. Charters and Bers solve Eqs. 

(42) in the saae Burner aa we do In Appendix C. However, they look 

for a special value of temporal variable y, rather than regarding 

Y as a Laplace transform variable to be Integrated over. Applying 

boundary conditlona at X > 0 and X • L, they find the eigenfrequency 

Y + 10, which agrees exactly with those shown in Figs. 9 and 11. They 

next obtain the full apatlal solution to Eqs. (42) In terns of para­

bolic cylinder functions. These solutions are found to hug the walls 

aa L * «, thus leaving no effect in the middle of the system. This 

phenomenon Is claimed by Chambers and Bers to provide yet a third 

possible resolution to the Forslu;id-Rosenbluth paradox. 

Another interesting characteristic of the finite pump case is 

the following. With V1 > 0, V, < 0, suppose the system is too short 

to be absolutely unstable. Then suppose we input a constant value 

aj(X « 0,T) * a 0 i t the left-hand boundary. What will be the amplifi­

cation a^X * L/L ,T)a , measured at the right-hand boundary 

after the steady state has been reached? For V/V = -1 , L/L = 1, 

we determine the amplification A for various values of <', by 

direct numerical integration. Figure 12 shows the results. We see 
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that the greatest salification Is for the homogeneous case ic' = 0 , 

and the amplification decreases for increasing inhomogeneity. 
We turn next to the work of White, Kaw, Pesne, Rosenbluth, 

Laval, Huff, and Varna , who considered the inhcoogeneous pump, 
inhoBOgeneous medium case. Starting with the equations 

i L K(x')dx' 
( » t • « ! * Vx>-«1^'*> ' Y 0 U ) e J ° > 2(x,t) 

(56) 

- i£<(x ' )dx' 
O t • v 2 - V 23 x) a ^ x . t ) = Y o ( x ) e J 0 a ^ x . t ) 

with V1,V2 > 0 (note the (-) sign In the second equation), y (x) 

la then expressed in the form 

T o ( x ) = YQ S" . (57) 

Laplace transform in time, f(p) = J e " p t f ( t ) dt, and define 
Jo 

(x,p) = «x ,p) exp - ^ i ^ i • ^ ~ S ) 5 t 

j J [a(x') + iicCx1)] dx- (58) 

a2C, 

obtaining the equation for F(x,p) 

d_ 2 F(x,p) • f (x ,p ) F(x,p) = 0 (59) 
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where 

tfx.p) » - i L x ) - iK(x) - (%^ • -T-^)\ 

y> 2* 2jf tfx- )dx' 
• I ( 9 . a - 13_ic) • f l V e J ° (60) 

CbooBe a Gaussian profile for the pump, a(x) = -2x/L , 

and let K(X) = K'X; we obtain 

(61) / 1 „ i*>\ . T o 2 -**2/Ly2 

4 i a t 

From this point, tMtar* et al . analyze Eq. (96) using WKBJ teohnlquea^ 

and looking fcr noiaal •odes. For V. and V, In the saae direction, 

there are no unstable nonal nodes. For V1 and V. in opposite 

directions, there exists an unstable nomal node provllded three neces­

sary conditions for absolute Instability are satisfied, namely 

(1) the tbresl«.ld for Instability In an Infinite, homogeneous 

nediun nust be satisfied, (see Eq. (21)) naaely 

> "ilT 2l * VzlVj (62) 

(11) *« require L > L . This corresponds to the threshold 
for absolute- instability In a homogeneous plasna with finite length 
puap, Section I-B-2. (See Eq. (29).) 
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( i l l ) we require 

2 
L. • / L 0 > (1 * * ' y ) . (63) 

If *'L Y » 1, this becomes 

This upper bound on L , perhaps surprising, eould have been predicted 
i 

on the basis of Section I-B-2, the infinite pump, inhonogeneous medlia 
case, where we found no absolute instability; there we had L + «>. 

white et al. interpret this upper bound on L as being a 
condition on the sharpness of the boundary Y (x), a sufficient amount 
of sharpness being necessary to cause the "reflections" needed to 
produce absolute Instability. This interpretation is along the sane 

81 lines as the "reflections" of Bobroff and Haus (Appendix A) . Another 
way to discuss this phenomenon is to say that in the Infinite, 
inhomogeneous case there are destructive interferences, originating at 
large x, which quench the absolute instability. Cutting off the 
piap at large x destroys the source of these destructive inter­
ferences, allowing the absolute instability to exist. 

In this section, we have been concerned with inhoaogeneitlee 
which vary monotonically. In the next section, we consider non­
monotonic inhomogeneitles in the form of spatial turbulence. 
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II. PARAMETRIC INSTABILITIES IN THE PRESENCE 

Or LONG WAVELENGTH TURBULENCE 

A. General Results 

In thi» aectlon, w» dlsouea the Influence of irregular 

lnhoaofeneltiet on paraartrlc inatabllities. First, we review pre-

vioua work. Tien we discuss our own work on loaf wavelength 

turbulence, In the presence of a linear density gradient, for anti-

parallel group velocities. 

There is a substantial body of work on parametric instabilities 
89-95 driven by a puap which has finite bandwidth , the bandwidth being 

thought of aa a randea phase +(t) In the teaporal behavior of the 
puap, which varies -expj- lu t + •(t)J. An laportant effect is found 
when the bandwidth la of order Y O -

The earliest treataent of three wave interactions In the 
presence of spatial turbulence Is due to Tanoikln and Fainshteln, 
who consider all three equations and find that the turbulence 
suppresses the usual relaxation oscillations. There has also been 
some work on all three waves in the presence of a random phase, by 
WlLhelaseon28. 

The case of spatial turbulence in a hoaogeneous plasma, using 
Eqs. (42) with K(X) a randon function characterized by amplitude 
A 5 \ [<(*)] V and correlation length L_, has been considered by 

69 Kaw, White, Pesme, Rosenbluth, Laval, Varma, and Huff for the case 
of parallel group velocities. For L i X , » 1 » L./L , they find an 
increase in the growth length from L (for 4 = 0) to (L A 1~)L . 

Kaw et al. have also considered, for parallel group veloci­
ties, the t..;se of a linear density gradient in the presence of spatial 
turbulence, x(x) - Ic'i + 6<(i), where 6V(x) is the turbulent 
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wavenumber mismatch with correlation length L_, « L . We know that 

in the absence cT turbulence, & constant input at x = 0 saturates 

spatially at a level exp(irA), where A = Y O
2 / { K ' | V 1 V 2 | ) . In the 

presence of turbulence, Kaw et al. find the same result, spatial 

saturation at exp(nX), but with an increased growth length before 

saturation. 

We wish to generalize the results of the last paragraph in 
67 two ways , by considering the space-tloe behavior for antlparallel 

group velocities, and by considering correlation lengths L- - L . 
We do so by direct xuajertcal integration of Eqs. (42). 

The turbulent part of the wave number mismatch la characterized 
by amplitude A and correlation length L_. We take the corralation 
function to be statistically uniform and Gaussian, 

( f c d l k d 1 ) ) - A 2exp[-(x - x ' ) 2 / ^ 2 ] . (65) 

Since the spectral function S(k) = Ady e l k y («K(X) « K ( I + y)) 
i n 2_ 2 * 

* (2ff) A U. expf-kT,. /2), we take as a model for the random 

function 6K(X) a sue of sine waves with random phases, 

«K(X) = ( 3 2 u ) * " V ^ A ^ expf -kj 2 I , , 2 / * ] sln(kjx • a j ) (66) 

The model mismatch Eq. (66) has a correlation function of the form 

<«K(x) 6 K ( I ' ) > - Z e * P ( - * j 2 U^/2) cos(2iij(x - X ' ) / L ] which i s 

periodic in X with period L. For distances of interest x « L, 

th is correlation function i s accurately given by Eq. (65). 



-33-

where k, = 2TJ/L; L is an arbitrary basic length, much longer than 
any other length in the problem; {a,} is a set of random phases, with 
probability density uniform from zero to 2ir; and the upper limit of 
summation Is taken to be large, such that ( ^ i ^ W r ** 1 - ^ 
course, care was taken that all turbulent wavelengths be large with 
respect to the numerical grid spacing. The results are then Insensitive 
to the numerical grid spacing.) For a given realization (a,), and a 
particular set of parameters, the total mismatch gradient 
die(x)/dx • K' * d<K/dz la illustrated in K g . 13. 

Given this model, the coupled-mode equations (42) are Inte­
grated numerically to determine the effect of the spatial turbulence on 
the response of the system to an Initial perturbation. The main result 
of this study Is that If A exceeds a threshold value (dependent so 
L,), the Instability no longer saturates at a value -exp(wX), but 
grows exponentially at fixed x for large time, at a growth rate v 
lower than that for a nontureulwt homogeneous aedlw. In Fig. U we 
show the temporal development of a typical unstable caee with initial 
conditions a^x.t « 0) • *(x), a,(x,t » 0) * 0. Fluctuations 
reminiscent of Doaenbluth, White, end U u are observed, but with a 
less regular character. The most unstable part of the pulse has the 
behavior of a temporal normal mode, maintaining Its shape while 
growing exponentially. 

In Fig. 15 we show the absolute growth rate Y/Y. VS O/L 
o o 

for \ n 2 • -1, J*"1 = «'I.0
2 • 1, Ut/Vt) * 1.27. The threshold 

turbulence level la seen to occur at &/L* 0.1. The maximum 
growth rate i- y/y. » 0.70, which la comparable to the homogeneous 
growth rate Y 0* 
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The function d*(x)/dx shown in Fig. 13 corresponds to the 

threshold case of Fig. 15. This function is seen to lie in the range 
0.80 < L Q d>c(x)/dx < 1.20. This shows that the coupled node equations 
can produce absolute instability even if d<(x)/dx vanishes nowhere 
in the mediae, in contrast to the result of Kaw et al. 

In Fig. 16 we show tae growth rate v as a function of correla­
tion length 1^, for fixed fluctuation level A. For this calculation 
»e use the aaae realization of the set {a,} In Eq. (2), varying L-
with A/l,~ "0.5. we see that the absolute growth rate decreases 
with increasing correlation length. 

It should be noted that in this work the turbulent wavelengths 
are quite long, the shortest being equal to the standard length 

A further point is that for a given value of A, the absolute 
growth rate depends strongly on the realization of {a.} chosen In 
Eq.(66). The relative dispersion of the growth rates is of the order 
of 30-40*. 

we Interpret our results as follows. The convectlve saturation 
57 68 of the linearly inhosogeneous coupled node prdblew/ * , with oppositely 

directed group velocities, seess to be due to destructive interferences 
between responses originating at large positive and negative positions. 
This Interpretation is supported by the work or lhite w et al., who 
fount that replacing the constant pun? by a Gaussian in x resulted in 
absolute instability, as discussed in Section I-B-3; i.e., removing the 
responses at large x reaoved the destructive interference at r. * 0. 
The analogy in our work is that the turbulew-e upsets the destructive 
interferences, allowinf the Instability to grow absolutely. 
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We conclude that the presence of long-wave turbulence tends to 
57 68 daa-.nbUiM 'he ;onvectlve saturation round ' for the coupled node 

equation*, with oppositely directed group velocities, In an lniicatogen-

eoua a»dlua. Thi» daatablllntlon occurs at relatively eaall turbulence 

levels; ao aamll that the condition d«(x)/dx 1* never setlcfle.'. 

At tola Mas, there exist 7 1 " 7 * several analytic efforta which 

deal with situations closely related to this section. Much of rhie 

work Involves approxlaatlQ.-u, an exaaple being the Bourret closure 

approslaatlon, the validity of which are at present being debated. 

B. Basse aw,ossomttsrtng In Laser Fugles Mcdsl 

Ir, this section we apply tfc* results of the previous Section 

II-A to the question of Hasan scattering, In which an electromagnetic 

wave decay* Into another eloctrr—gtmtic wave and a Lanesulr vacilla­

tion, we consider an exaaple froa the paraseter regis* of laser 

f u l o n 9 7 - 1 0 1 . 

First studied by Blotsbergen and Shan1 7, Volxov18. and 
19 

Ccc'.sar , excellent terivatlons of the coupled node equations (1) 

for Hasan backacattsrlng ate given by Drake et al. and by Liu, 

Rosunbluth, and White-". These derivations proceed from Sauwell'a 

equations and the Lorentz force equation to our Bqa. (42), which are 

( » t • ^ 9 , ) • 1 ( » . t ) " Y0 a 2 (x,t) exp 

l \ * V * 1 *2 (*' l> ' V0 a ^ x . t l e x p j - l j jHxOdx [••/; 
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where a- la i.ow the mattered electromagnetic (EM) wave and a_ 
Is the electron plasma oscillation. 

The laser fusion geometry is depicted in Fig. 17, where we 
see the density rise froa zero to above the critical density. Since 
both decay products have frequencies above the local plasma frequency, 

"1 * 7 % * ̂ i 2" ' "z * " V % 2 * ^ 2 v e 2 ' t h e v m p frequwncy Bust 
satisfy u 0 > 2c*. Thus, Hajaan acatterlng can occur only below the 
point x. where n « n /A, or u_ • u /2; the critical density n t c p o c 
is the density at which in = u . Furtheraore, Hasan beckscettering 
can occur only above a certain density, because for too low a density, 
the Lanaaulr iWoay product is strongly Landau daaped. We can aes this 
fact as follows. In the far underdense region, u_(x) « io_, the HI 

P o 
decay product will have a frequency about equal to u , and thus a 
wavenuaber k about equal In aagnltude to k , but opposite In 
direction, as shown In Fig. 17. Thus, the Langaulr save has wavenuaber 
k, < 2 1 . For very low plasaa frequency, the Langauir save phase 
velocity V^ , u_/2kc will be so saall that kjAp -. 2k0veA>_ - 1, 
producing large Landau daaping. In this region, Raaan backscatter 103 ia suppressed and la dominated by induced Thomson acatterlng , the 
difference frequency u - u. now corresponding to a beat disturbance 
which is not a plasma normal mode in the absence of the punp; the 
three wave coupled mode equations no longer apply. 

We see therefore that Raman instability happens between a 
minimum density and a maximum density -. n , as shown schematically in 

s c 
Fig. 17. Our Eqs. (40) are valid over part of this region, but not all 
of it. Near the point x,, the EU wave Is near its classical -urning 
point (in, « u ) and has k = 0; thus the wavelength X, Is very 
large and th» approximation of slowly varying amplitude a^x.t) Is no 
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longar valid; we cannot use Eqs. (42) in this region. We therefore 
restrict our study to the region indicated schematically in Fig. 17 
(Hote that we bam also neglected dawping in Eqs. (67). In practice, 
the HI wave is collialonally deaped, and the Langaulr wave id 
collisionally and landau damped. At the end of this section we 
briefly discuss the affect* of daaplnf.) 

L«t us evaluate the parameters V., V,, y , and J(x) in the 
general vicinity of u (x) x u /?, or n(x) = n/9, working to roughly 
10* accuracy. We take fixed t» and «,. For V 1 ( we have 

V x - -o"\A " w p Z / w l 2 ~ " e V l - I ' -<=• »e have V 2 = ^^2

/U>2' 

where r is the electron theraal speed; we find 

*2 ' k o * I'll ' S l k " - "P 2 * c ^ - % * ( 2 V e > ( 1 - "v/2ao>> 
and «j » « 0 - •>,; thus 

For v we obtain frca Dralw et al. o 

To • T V V £ <»> 

whera v is the oscillation velocity of an electron in the field 
of the puap wave, related to the pixap Intensity I(I/ca) by 

vo/c - 10" 9 I* (70) 

for a Hd:elasu laser with u Q « 2-10 1 5 s" 1 . 

Finally, «•• detenoine <(x). At the point of exact matching 

x , we have 5(x o) * 0. At any other point, we trove 

If(x) » kQ(x) - k^x) - k 2(x); expanding about x o we find 
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««) - (./(*) - up

2(*0j) 

[ 2d"V»0

2 - «p2(X0) a d ^ T T U p

2 ( X o ) ?J7^;,2 - ^ 2(X o)j 

(71 

For a nonrelativlstie plasma, v /c « 1, the Langmulr wave term In 

Eq.(71) Is much larger than the other two terms, yielding 

">„2< *„) " ur.Z< * > u n 2 ( «„) " "„2( *) 

a V T r ^ 8 - «p2(«J 6 ¥«' k2 
J(x) = " ° p = P ° , P (72) 

where all quantities except en (x) are evaluated locally at x . In 
the far underdense region 

_xk 2(* 0)-» p
2(*)-a») up « »„ . (73) 

For a linear density gradient with scale length L , and turbulent 
relative density fluctuation o_(x', Eq. (70) becomes, with x = 0, 

<(x) - 2 f**fl( x)] . (74) 

We choose parameters characteristic of laser fusion 
The laser Is Nd:glass, u = 2-10 s'~, \ = 1 uoi, intensity 
I = 1 0 1 5 W/em 2, pulse length 100 psec » 10~ 1 0 r = 2-10 5 u 0"l. The 
plasma has I = 1 KeV, u>(0) = u>0/3, X D - 0.022 ym, k 2 - 1.6 k Q. 
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At these values, colllsional and Landau daaping rates are lover than 

•y - 0.02 LJ 'ay a factor of 100. At the homogeneous growth rate, an 

Initial nolee level would aapllfy by exp(vo * pulse tise) * 

ezp(0.02 u * Z'10 w ) • exp(4000), a huge value which would lean 

aarioua attenuation of the inrcaring laaer baam. Thua, tt la iaportant 

to study the inhonageneous reflate, to deteraine whether such growth 

rata* are actually obtained. 

Choosing a density scale length I- * 100 w, we have fro* 

Eqs. (68) and (?<) 

S l ' -

T 2 • 0.03 c (75) 

c ( i ) - 3.3-10 7 em"2 x * 2.8-10 5 eef 1 A (x) 
n 

Also of Interest a n the parameter* LQ • 1.3 Ha, X i vf/ft^i' * 

1.}. Fran these we note two laportant facta. First, we are pushing 

the WKBJ Eos. (42) to tiw llalta of their validity, since LQ > 1.3 u" 

ia only slightly larger then A • A, • 1.0 \m; Theresa we have 

assured I, • i > n |a . (x , t ) | » \»A 1 .A 2 . Secondly, the nontwxbulent 

convectlve eaturetion at exp(»A) s exp(5) la at a very low value for 

theee paraw*ters (for 1 » 10 1 6 I /e» 2 , »x * 50; for I » 1 0 U W/CB2, 

"A « o.$); It Is therefore crucial to determine whether Vorbulence 

destabilizes the convectlve saturation, allowing absolute growth. 

With Lj/I^ » 1.3, and a particular realization of fa .) in 

Eq. (66), the remits are aa shown la Fig. 18. Although not shown in 

Fig. IB,, '.he -Areshold for absolute instability occurs at a relative 

HMS density fluctuation a - 10"* to 10~3, s very low value for real n 
plasma. Die absolute growth rate above threshold if y/y ; 0.2, 
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failing off for large i -0.1. This growth rate should be compared 
to the homogeneous absolute growth rate, which from Eq.(22) Is 
Y/Y 0 - 2"V|V1V2|/(|V1| * |V 2|) = 0.34. 

The effects of damping on the absolute growth rate have been 

studied. Results qualitatively similar to those in a homogeneous 
79 medium have been found the growth rate is reduced when the Langnulr 

V, wave damping rate \>_ - «p 

Thus, we have found that the convective saturation of Raman 
backscattering in laser fusion geometry is destabilized by very low 
levels of turbulence, such that the relative RUS density fluctuation 
i» A - -10"* to 1D~3. 

a 

Let us depart froa the abstract world of one dimensional theory 
to ask the question: what is the experimental situation regarding 
Raaan backscatter? Answer: There is no direct evidence for any Raaan 
backscatter in any experiment, even though many laser-plasma experi­
m e n t s 1 0 4 " 1 0 6 are tn the intensity range ( 1 0 U - 1 0 X 6 W/cm 2 for 
Nd:glass) where theory predicts huge amounts of Raman scatter. 
Kuaerlcal simulations, however, do demonstrate Raman scattering which 
behaves as predicted by theory J' ' There is some indirect 
experimental evidence for Raman scatter near j n

e > * n f1** scattered 
light of frequency i u has been observed . Of various 
theories 0 9 " 1 1 accounting for light at j u . all make use of the 
combination of pump light at u , with Raman or 2u instability-
generated radiation at u 1 2 : indeed, a paper by Langdon, Lasinsky, and 
Kruer shows that at 7 n , these two Instabilities merge into 
a mixed electrostatic-electromagnetic instability. This is then the 
indirect evidence for the existence of Parar. mattering. 
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w* offer tiro speculations for the absence of large aaounta of 

Raaan baekaoattar. First, the large turbulence limits of both Fig. IS 
and Fig. 18 aho* a daerease In growth rate for very large turbulent-*; 
pei'wape aueh turbulence la experlawntaUy praaent. Second. It haa bean 
shown 1 1* that aagnatlr Meld3 asaoeiated with turbulence can Inhibit 
kwasn aoattaring; perhaps such aagnetlc flelda are preaent. 

This discussion haa been llaltad to one 11—nalon. There has 
also bean a considerable aaount of work on Hasan alde-
ae«tterinf' , ,' 0' l l t" 1 1', which la isporUnt since perpendicular to the 
density gradient the three wave watching conditions can be exactly 
satisfied over large dletaneee. 
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III. PARAMETRIC INSTABILITIES IN THE PRESENCE OF 
A NONMONOTONIC INHOMOGENEITY—A MODEL PROBLEM 

A. Theory of Homogeneous Plasma With Sinusoidal Density Modulation 
As discussed In part II above. It Is very difficult to makf. 

analytic progress with our coupled mode equations when the Inhomo-
geneltles are nonmonotonic, or turbulent-like. For this reason, we 
consider tbe tractable problem of a sinusoidal density Inhooogenelty, 
eipressed as a wave number mismatch In the form 
K(X) - L Kn sln(XL/L), the subscript standing for modulation. 
This problem is lllte the turbulent problem In two respects: tbe wave-
number mismatch Is characterized by an anplitude K and by a length 
L , Just as turbulence has an amplitude A and a correlation length 
L_. This problea is unlike turbulence In one important respect; tLat 
Is, «r(X) Is coherent in the sense that the value of the function at 
each point is given once K a and L B are given. Thus, the solution 
of this problem will contain important similarities to the turbulent 
problem, aa well as Important differences. 

we begin with the coupled mode equations in the form 

( 3T * vl * r ^ V ai< x> T ) * « 2U.T)MPji J <c(X')dX' 

(76) 

(3 T • v 2 ± yT3xh2(r..1) = a1(X,T) eip -1 J K(X')dX' 

where 8 T ]V /V, I. Assuming a time dependence 
a^X.T) * a^X) exp(-iwT), and eliminating the factor 
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a2(X,T) exp 1 J ic(X') dX'l aa in section I-0-II1 above, ve have 

h%

2 • f i i ( - i u + v 2 ) - iK(X) • (-iu • v 1)VB J3X 

• |±(-i*> • N^M-IU • v 2 ) - iV5 K(XX-ioi + v x ) * lj> a^X) - 0 . 

(77) 

Aaauaing that K(X) * L 0 K sin(X LA-,,) and defining the new spatial 
variable Z = (L /L )X » x/L , we obtain 

O K ID 

{ 322 + ( £)[* ^ ( _ 1 U * V 2 > + V* ("*- * V - iL 0 ^ sinrt)] 3 Z 

• f £ J [*(-iu * -.uX-Iu • v 2 ) *1 - iVfl (-1" • v x) 

x L^stnfZjHe^Z) = 0 . (78) 

This equation has the simple form 

[3 Z
2 * (^ * K, sin(Z))3z + (hj * A^ ein(Z))] a^z) =° 0 

(79) 
where 

^ " t ( ^ ) " * ' * V * ^ ) ( ' 1 , , * V l 

-i L K 

Equation (80) continued next 
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Equation (80) continued 

^ "*(£) f-»-^iX-l-*va)*(^) 

A 4 m •*Q-^)<-*-*V I* , e. ( 8 0 ) 

end irtwre the top sign is for parallel group velocities end the bottom 

eign 1* for antiparallel group velocities. \»hen u • 0, Eq. (79) i» 

equivalent to Ince's equation ' . A simple transformation could 
119 120 then renove the middle tem, producing a Hill equation ' of the 

fom 3_ &jU) • U^ * a. cos(z) • c . cos(2z)J a^z) - 0. Only the 

existence of the coa(2s) tens nakes this equation different froM 
the well-known Ifethleu equatijn. For our purposes, the present form 
Eq.(79) la more convenient. 

Equation (79) is periodic in Z with period 2ir. Floquet's 
theorem ' states that there exists a solution of the form 
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exp(kz) •(z) where d<Cz) Is periodic In z with period 2ir. 
Such a solution can te very helpful to us, as we shall see below. 

The solution Is expressed as 

a^z) = e k 2,j,U) = e k z V c n e l n z ; (81) 
n=-» 

Usually, there will be two solutions of Floquet form to Eg.. (79), 
fj(z) * •jfz) exp kjZ, f 2(z) • * 2<z) exp k 2z, where ^ and * 2 

are periodic In z with period 2". If fc, )* k,, or 1L « k 2 

but •.(z) Is linearly Independent of •-(z), then f.(z) and 
f,(z) are linearly Independent. This is the case In Section 
III-A-1, where we find kg « -k.. For a discrete set of values K 

if v « v, = 0, we find k, * -t * 0; in this case It can be 

that * x(z) and * 2(z) are Indeed linearly independent; 
f,(z) and fo(z) art therefore the complete solution set. In 
Section III-A-2, the basic Eq. (79) with nonzero <" Is more compli­
cated than In Section III-A-1 with "> = 0. Here we force k. = 0 
and solve for &>; this is then one solution of Floquet form •.(z). 
We remain ignorant of the second solution; there are three 
possibilities: (i) it could be of Floquet form with different 
k 2 f 0; (ii) it could be of Floquet form with k, = 0 but *.(z) 
linearly Independent of •..(z); (iii) it could be of completely 
different form, whichever of these three possibilities occurs is 
not our concern; we are only interested in determining which values 
of <» are consistent with a Floquet solution exp(k.z) <J> (7) 
having k, = 0; thiB we have done. 
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then Eq. (79) becomes 

£^in)^(A 1 4e-4e-) (k * In) 

e n e ^ e k l . 0 . (82) 

The coefficient Of e must be zero for each n, - • < n < •»; 

thus we find for each n that 

1*2 (* * l (n - 1 ) ] * * | j V l • L • I n ) 2 • A^k • in) * A A c n 

•j-^lk •!(*•!)] - M c n n . 0 

n - ...,-2,-1,0,1,2,••• • (83) 

Dividing out the »lddle coefficient gives 3 a set of equations, which 
in atriz few would Be convergent ' . (to infinite matrix is 
convergent if (i) the product of the diagonal elements converges, and 
(ii) the SUB of the off diagonal elements converges.) Defining 

k ?k J in - ij I A 
n 2i[(k • in) • A^k * in) • A J 

(84) 
Equations (83) becomes, on dividing out the middle coefficient and 
uaing (84), 

v ~ c , • c + T * c ^ , » C - « < n < » .(85) n n-1 n 'n n+1 

This set of equations is solved as follows. Defining 
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-2£ . (86) 
°n 

Equations (85) become, on dividing through by e n > 

Y ~ u + 1 + V v * 0 - » < n < » . (87) 'n n 'n n 

This set Eqa. (87) can be solved for u and v , as shown In 
Appendix F. The result is 

V i V l Yn-2 Is^. V 3 . 
1- 1- 1-

2k T »*l T°*2 <* Jk. (88) 

-» < n < » 

where continued fraction notation has been used, meaning that each 
minus slgt in the denominator acts on everything to the right of It. 
The solution (81) is now completely determined. The value of k is 
obtained by choosing a value for n, n - 0 let us say. In Eq. (87). 
Inserting u and v from (88), and Y from (84), and JL, A_, 
A,, A, from (80), all into (87) for n - 0, we solve for k as a 
function of u, K , and L . That Is, 

Yo~ uo * X * Yo* v o ' ° ( 8 9 > 

is a dispersion relation for k. It remains to evaluate c , 
n 

-«> < n < «>. 

The c are obtained by choosing a value for c , and noting 

that from the definition (86), we have c = vn vi"' vn-2 ,'n-l co ^ o r 
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n > 0, and s_ = u u .•••u _̂ .,u i n c for n < 0. Thus we have n o -1 -n*2 -n*l o 
constructed the complete solution Eo,.{81), aside from an arbitrary 
constant c . In this report we shall not evaluate {c}, but rather 
obtain as such information as possible from the parameter k. 
1- Parallel Group Velocities 

as we have seen before, when the group velocities are parallel, 
V1 V2 > °' t b e r e 1 B n o possibility of absolute instability, and we nay 
consider the problem: of the spatial response to a constant source 
a,(X = 0) * 1, steady state in time. We do this by setting the 
tewjioral growth rate a * 0 in the definition below Bo.. (76), and 
consider Eq. (89) as a dispersion relation for k. For zero modulation 
K , we know that the spatial response is -exp(x/L„); for finite 
B O 
Modulation we expect this spatial growth rate to be reduced. rro» 
Hs- (80) 

— • 

*z " - " A 
(90) 

A3 - ( V z - i x y v 2 

Then froii Egs. (84) we have 

v * . - ( L m K » ) [ ' k ' l n - > ? v l ^ l L m / I - o ] 
V n 2[(k*in) 2 * (k*ir.)(Lm/L o)(v 1Ve'-v 2/Vi) • ^ A ' ^ l V 1 ' ! 

— < n < « . (91) 
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For snail L t , n can approximate u , v in Eq. (89) by mm o o 
the first term in the expressions (88), all other terms being 
proportional to higher powers of It . Then Eq. (89), our 
dispersion relation, becomes 

- V Y-I + - \>+ y*i + 1 = o • (92) 

For heuristic clarity, set v. = v, * 0, 6 = 1 . Then Eq. (92) is 

W 2^" 1' 
«* - v̂ f** -1)2 - L » Z V J 

U L )2k(k + i) 
(93) 

For fixed L , let K •» 0. Then Eq. (93) can be satisfied only if 
the denoadnator in one of the terms vanishes. Choosing 

"2 - L m 2 / L o ! : ° .*eiie k = *wor 

a x(x) - expl+jH z j ~exp[±x] - exp[ix/LcJ, the usual result for a 
homogeneous medium. The other zeros of the denominators yield 
k = L /L ± i; but this is the same as above since expliiz] is 
periodic with period 2v and so can be absorbed in *(z) in Eq. (81). 
In fact, a careful look at the full dispersion relation (89) shows 
that for K •* 0, there are an infinite number of roots m 
k * *Lm/Lo + 14, - » < £ < » , all of them equivalent to the I - 0 
root. 

For small K L , we expand about k - L /L , and solve Eq. 
(93) for the small quantity (k - L /L ) ; we find ir. physical units 

-1 k the inverse growth length L = v— "hich is 
Lm 
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_ = L"1 11 - ,'Vm 

m 
,,,. . T-l L *VV \; < L « 1 . (94) 

< 1 +^> 0^j 
Thus, for small modulation amplitude K the growth length Is 
Increased by a term proportional to K . The increase In growth 
length Is most pronounced for large modulation wavelength L . 

For arbitrary K , we can solve Eq. (89) numerically for the 
inverse growth length k, keeping as many terms as necessary in the 
continued fractions of Eq. (88) for u and v . The results are 

o o shown In Fig. 19 for L/L = 1, and In Fig. 20 for L /L = 0.5. s o ° m o 
The spatial growth rate, in units of the zero modulation spatial 

growth rate L " , decreases with Increasing modulation < until a 
O D 

certain point, where It reaches zero and bounces up again. For 
completeness, we have shown both the positive and the negative roots; 
both roots are purely real. We interpret the bouncing effect as being 
due to constructive and destructive Interferences between the 
oppositely traveling solutions to our second order differential 
equation (77). 
2. Antlparallel Group Velocities 

If VjV < 0, It is no longer appropriate to consider a steady 
state in time, BO we consider a different, physically relevant 
problem. We ask the question: What is the temporal response of the 
system to the uniform initial conditions aj(x,t = 0) = constant, 
a,(x,t « 0) = 0? We expect to find a temporal groirth rate Im(u) which in the limit K •» 0 reduces to the usual homogeneous result m 
Im(u)) = 1 (or in physical units, Im(ui) = Y )• ^he basic equations 
(76) are periodic, and the initial conditions are periodic; thus, 
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we may look for a periodic solution to Eqs. (79) which means setting 

k = 0 in Eq, (81). Ihen Eq. (89) becomes a dispersion relation for 

in, with k set equal to zero. 

In this case, we have from Eqa. (30) 

AJ ' --J-(-iu* «2) + m_(-iu + v l) 

(95) 

e i L 

XQ SI 

A3 " " < I m V 2 < - I U + V l X - 1 U + V * ( V V 2 

Â  - -KVTl^X-1" • ^ V . • 

Using (84) and (95) we have 

<n2 - inf—js-C-!»»«,) + —JSc- lwv,) ] 

\ 2 ' I N2 1 
(96) 

For small (*„,!}„). »e «galn choose only the first term in the expres­
sions (88) for u , v and again obtain the simplified dispersion 
relation (92). For simplicity, set 8 • 1 (V x = -V.), and 
v, = \), - 0. Then we find, as expected, that for ic L -* 0 the 
temporal growth rate is Im(u) •= 1 (inKui) - y in physical units . 
For small K L . we find m m 

I C 2 L 2 

Im(o) « 1 - -2 H> K L « 1 . (97) 
. in in 
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2 The decrease in temporal growth rate 1B proportional to K , and is 

most pronounced for large modulation wavelengths L . 
Let us note that In addition to the root discussed in the 

previous paragraph, there are an infinite number of other roots. To 
see this, first consider the form of Y * in Eq. (96) when 6 * 1 , 
v. » « 2 « 0, which is 

. (L„y2)[*in - 1 t i-VL o] 
T n - ; ; — ; ' . (98; 

n n2 - (LJLorUS * 1) 

Net*, consider the fom of the full dispersion relation (89) which 
is, after Inserting u and v from Eqe. (88), 

f V y-i* y-i v-i* I . 1 . f v0* V V y 1 0 . 

(99) 

Since each T has K in the numerator, the only way to satisfy 
the dispersion relation (99) when K •» 0 is to make one of the 

m 
denominators in (99) vanish also. This occurs for 

u = * (n 2L 2/L 2 - D* m < a . (100) 
° " n=0,l,2,---

This infinite set of roots is reminiscent of the theory of wave 
propagation in periodic media, where we find an infinite number of 121 roots w(k = 0), one root per Brillouin zone . For finite le , we 
expect one branch of the graph u vs < associated with each root 
(100). In the special case 8 = 1, v = v, = 0, It is easy to show 
from Eqs. (98) and (99) that if u is a root of (99) for given < , 
then so is -tu and so Is -u . 
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B. Linear Penalty Gradient With Sinusoidal Penalty Modulation 

'.Ve consider next a sinusoidal density modulation In the presence 
of a linear density gradient. We restrict ourselves to vitlparallel 
group velocities, and take the wave number mismatch to be 

K(X) • K'X * (LjeJ sinCH^/I^) . (102) 

For small < . we expect to recover the usual exptn/K') saturation 
discussed In Section I-E. For larger r , we might expect to destabi­
lize the convectlve saturation. Just as turbulence did in Section II. 

We numerically Integrate the basic equations (76)- with the 
form (102) for K ( X ) and with Green's function initial conditions. 
We Indeed find expfw/ic') saturation for small K , and we indeed 
find absolute Instability for K

a greater than an L -dependent 
threshold- In Fig. 22 we show the absolute growth rate, obtained with 
B • K' ' 1, I,/!-,, • 0.8. Above threshold, the growth rate rises 
rapidly to nearly the homogeneous medium growth rate. 

In the example shown In Fig. 22, tbe threshold value of K > 

occurs at U « 0.1. As In the turbulent case of Section II, this 
value of L K Is far below that required for the vanishing of the 
derivative of the wave number mismatch K(X); i.e., 
d«(X)/dX » «• • (t 0

2K B/L B) coaOL^/I^) « 0 Implies (with •:• » 1 
and L/L„ « 0.8) that L_r • 0.8, a much higher value of L <_ n. o o m o m 
than the observed threshold L « : 0.1. 

We next consider a shorter wavelength modulation, * _ A 0 * 0.14, 
In Fig. 2f. Here we see a much leas violent instability, the aexlca! 
growth rf.e being only In(u)/lr * 0.2. Furthermore, the '.hrenhold 
vaiuc of <a is L < » l.o, much higher than would be predicted by 
setting lr(x)/dx « 0, yielding here la*n • 0.1«. 
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Our conclusior frcai the Inst two paragraphs Is that the modula­
tion wavelength is '.he relevimt imrameter in determining th» tendency 
of the systeB toward absolute instability, rather thar considerations 
of the vanishing of the derivative of the wave r.'uefcer alsaatch X(X). 
This oonclusioo is eapbeslzed in Fig. 24, where we hold the nodulatlon 
amplitude fixed at a value L K ^ • 2(g • K' * 1) and vary the modula­
tion aavalangth. we find that the absolute growth rate la substantial 
for 1^ - L , falling off rapidly for L « L and for L » L . 

In Fig. 25, we d splay the results of Flga. 22, 23, 24 aa 
a three dimensional plot of absolute growth rate v va K and L . 
The dashed curve la schematic, showing the inferred threshold for 
absolute Instability In the K_-l_ plane. For large K , the 
threshold value of L approaches aero. For both large and aaall L , 
the threshold value of * Is large, deajonstratlng once again that 
the west affective lihoaogcneltlee are those with seals length -L Q. 

we again Interpret these results in teres of the concept or 
SBthesmtical reflections discussed in Appendix A. wntn the inbono-
genelties are of a sise near the all important length L , constructive 
interferences between solutions of our second order systea Eos. (76) 
lead to lnatabllity. then the lnhomogenelties are of a size r.jch 
saaller or greater than L , the systea feels only the aonotonlc 
part of «(X). given by K'X, and exhibits the usual e i p W a ' } 
saturation. This saturation we interpret as a destructive inter­
ference between solutions of our serorj order set Eqs. (76;. 

The detailed space-time resj^.ise of the system, to the initial 
ev:-.d!'.Ur.s >J.X,~ '.) • {(X), ^(X,T - 'A • '^, is of interest In 
ita own right. Kir the parameters :f Fig. 2< ' V B * 2' 9 " "' * '' 

we chcoce i value for the nodula'.'or. «aveleng'.h, L/L • C.16, 
re o 
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whlch id Just barely abovt the ihraebold for absolute Instability. 

Figure .76 shows -he spacc-tlne behaviour of »,(X,T) »i four <S!rferent 

times, T - 7,13.16,20. At T • 7, the ueuel exp(*/«') saturation 

liu set In. At UM substantially later tlaa T • 13, the aip(a/«') 

bahavlar persists, but with aany wore fluctuations. Tha hint of 

things to COM la shown by V* enhanced fluctuation at X • 0, In tha 

adddl* or tha flfura. At T ••• 16, thla onhanoed fluctuation haa groan 

rapidly to toaar over tha raat of tba pulaa abapa. Aftar a parlod of 

rapid growth, tha enhanced fluctuation at X • 0 Itself aaturataa. 

This saturated a tat*, ahoan at T • 20, haa lta own enhanced fluctua­

tions at tha vary cantor ablch foratell tht outburst of yat a third 

parlod of rapid growth, and ao on ad inftnltaa. 

To oonclude, we ban aaan that UM behavior of tba aystaai of 

Eaa. (76) with tha a m nuabar ataaateb K(X) • K'X * Ua*m) aln(XL0/I^ 

la qualitatively alallar to to* turbulant eaaa of Sactlon II. Abaoluta 

lnatablllty raaulta for wavelength* L . L , and for aodulation 

aaplltudea on* ordar of aagnltuee senller than that required to sake 

d«(X)/dX •» 0. Tha instability growth rate la very sensitive to 

eedulation wavelength 1^, falling off rapidly for l^ >> L o. 
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APPBU5ICES 

A. The Concept of Reflection! 

Bobroff and Italia hew treated the caae of ho*oj«neou» aedlua, 

flr.lt* ptawp length (See. I-B-2) In aeverel different way*. QM of 

the*, I W I th**on**pt of •reflection*". Coneloer Eq». (2$), with 

0^ • D2 • 0, VJ/TJ • . 1 , which are 

(» T • »,) MjlX.T) - a2(X,T) 
U.X) 

<», - ix) • 2(X,T) = a^X.T) . 

Ualnj the netted of cbaracterlatic* we define new variablea 

y = T - X 
(*.a> 

x = T • X . 

Equation* (A.l) become 

(A.3) 

3 y «2(y.*5 = | a^y.s) • 

Eliminating » 2 froai Eq*. (A.3) we have 

J y z 2 * l ( y ' l ) = Z a l ( y ' z ) • ( A - i ) 

Fran the syonetry or Eq. (A.4) we see that If f(y,z) iJ a solution, 
then f(z,y) la also a solution. Referring to Fig. 2, we perturb the 
system at some point » , C < x< L, Assume that the solution 
f(y,z) has been excited by our perturbation; t'r.en the solution 
f(y.z) win propagate (in X and ?) as in on infinite medium until 

http://flr.lt*
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one edge reaches one of the boundaries X = 0 or X = L/L . Assume 
it reaches X - 0 first. With V > 0, we have the boundary condition 
a^X = 0,T) = 0. Now at X = 0, y = z = T, so that f(y,z) « f(r.y) 
at X = 0 for all T. Thus, after the pulse reaches the boundary, 
the solution a.,(X,T) = f(y,z) - f(s,y) satisfies the boundary condi­
tions; this solution looks like the original solution f(y,z) plus 
a reflected solution. This argument can be continued in tine so that 
each time one solution reaches a boundary, a new solution is brought 
in; the response is thus seen as a sum of repeated reflections. 

B. Sudan's Criterion for Absolute Instability 
in Inhomogeneous Media 

on In an early paper , Sudan proposed, without proof, a generall-
78 zatlon to inhomogeneous media of the Bers-Briggs criterion for 

absolute Instability. In a homogeneous medium, a necessary (not 
sufficient) condition for absolute instability is that there be a 
saddle point of the phase iQot - k(u)x) in the complex u-plane, 
where k(a>) is obtained from the dispersion relation D(k,u) = 0. 

^[ Ut-k( U)r] - 0 = ^ 2$2l, - t . (A.5) 

For asymptotic time at a fixed position x 0 

the solution of which determines the unstable frequency u . 
In an inhomogeneous medium, the phase has the form 
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r c 
exp i ut - | k(w; 

Jo 
x') dx'j 

•here k(w;x) is obtained from the dispersion relation 

D(k,(i>; x) = 0 . 

Then the saddle point condition at a point x becomes 
»x_ 

9k(iu; x ' ) ._ , . . ^ _ 
\ • Cut t •* <*>. 
dtii r 

(A.7) 

(A.8) 

(A.9) 

We determine D(k,u; X) from the diaensionleae Eq8. («.'), taking 

VJ/VJ^ = -1; then 

[a T - 3 X • MX)] [3 T • 3 X ] a^X.T) - a^X.T) « 0 . (A.10) 

Fourier transforming locally (not affecting K(X)) we find 

[u • k • ic(X)][oi - k] • 1 > 0 . (A.U) 

Solving Eq. (A.11) for k(u; X) and 3 k(u; X) we rind 
u 

3 u k(u; X) = *(2w • <)\( ££) J • i • u.2 • *<x)\ .(A.12) 

rx° 
In order to have / 3 k(w; x') dx' •• - , as required By Eq. (A.9), 

JO u 

we must have 9 k(u>; X)| •» ->, since the lower limit cf integration w lx=X 
o 

is arbitrary, we therefore require the denominator Ir. 7.-,. (A.12) 
tt> vanish at X = X ; taking X " X to be the pnir.- ».-.ere <(X) o o 
vanishes (we can always add a constant to K ( X ) to sake -.his be true), 
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we find the unstable frequency 01 - i. In the neighborhood of 
X " X , Eq. (A.12) has the form 

3 kU; X) - 1 -f . (A.13) 

[̂ •««r 
Assuming a power la* for* for K(X) 

«(!) - ( X - X o ) " (A.U) 

we have near X * X_ o 

» « « ; X) - ( X - X D ) H / 2 . (A.1J) 
til o 

Condition (A.9) than become* | (X' - I J * 2 « • * m, which will 
Jo 

be true only for N > 2. This agree* precisely with the results of 
Rosenbluth , who found no absolute instability for K(X) - X; and 
an absolute instability with growth rat* T/Y 0 - 1 for K(X) - 7T. 

However, this method does not agree with our result* for the 
turbulent ease. See. II, or for the cue e(X) » K'X • Lie sin(XL /L. ), 
Sec. III. For these cases, absolute Instability i found when 
dV(X)/dX vanish** nowhere In the system, ar.d condition (A.9) is never 
satisfied. Thus, Sudan's method works for nonotonic inhoasgeneities, 
but not for turbulent like inhomogeneltles. 

C. Analytic Solution for the Case of Finite Pump. 
Inhonogeneoua Plasma 

At some point it may prove useful to have an exact analytic 
solution for the case of finite pump extent, inhomogeneous plasma. 
Referring to Fig. 8, we wish to solve Eqs. (43), which are 
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(», • v

: * V x * a i ( x , t ) r

0 »2f*<t) expUS***/?) 
(A.16) 

( 3 t • w2 • V ^ ) e-,(x,t> « T < > •jCt.t) expt-lS'x 2/?) 

for Vx > 0, V2 < 0; with the boundary condition* â Ci • O.t) • 

» 2 ( i « L,t) • Q; and with the Initial conditions ajU.t « 0) • 0, 

» 2 (x,t - 0) - S{t - x0h 0 $ t0Sl. * folio* Roeantiluth, thlta, 

and Uu , who solved tot Infinite puap extant case. Afttr a alalia* 

calculation, we find 

r 
aj(x.t) * £ I J* ajtt.p) dp ik.V7) 

where the lntecral la taken around the Laplace contour, and auat 

satlafy causality: a^s . t < 0) • 0. e^x.p) la given by 

a^x.p) • ^ . p ) . - * ' A * . 1 l 2 J 

U.l«) 

M«.p) • i - . n X / 2 . U / * 
o 

je.Cx.p) a (x ,p) 8(x - i ) • a #(« ,p) » (x.p) XJIQ - x ) [ 
« / : r , ( p ) - n P ) ) 

•here X t Y 0

2 / « ' I v ^ t . 

1 1 x j 0 

0 x < 0 
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The functions a + , e_, F + , F_ are defined by 

a +(x,p) - F+(p> C . l X { x ' e i l r A ) • T>lX_^-x;-iV/i) 

ajx .p) « P.(p) D _ u ( x ' e i W / , t ) * D ^ t - x ' . - 1 * ' * ) (A. 19) 

F + ( p ) » _ - i 

[{p-v1*(p*v2>VV2JDlx_1(-*'e-i^) 

- VjVF e-^^iX - 1) D iX_2(-*i«"1V4>] 

F.(p) - -Dix.^-Xo*"1^*) 

where 

x' /=- i A * vl p * VX 

x 0

 £ ^ ' ) r o ' 

"£ s C x ' W 
122 and where D (z) is the parabolic cylinder function . For 

Re[«) < 0 

.2 

r(-v) J 0 
KM = 

r<-v) j 0 

(A.20) 

111 » Ivl e -» 2 A z« 
|z| » 1 
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I'. is clear that thla ablution aust be evaluated numerically. *e 

have ff'jnd It easier In practice to Integrate tqs. ii') dirccilj- re 

obtain the Green's function ahoan In Fig. 10. 

D. Numerical Intacratlon Ualng the Method of Characteristic* 
we discuss the detail* of the numerical Integration of our 

coupled aode equatlona. 
Consider the aoet general coupled aode Eq*. (40), written In 

the form 

O t • Vj^) e ^ x . O • fj(x,l) 
(A.21) 

(» t • V 2J K) a 2<x,t) » f2(x.t) 

where f,(*,t) r,(x,t) are function* of (x,t) and functional* of 
a-(x,t\ * 2(x,t\ Y O ( X ) , and K x ) . Equation* (A.26) are an example ef 
a hyperbolic system) of aquation*, so long aa at least one of V., 
V 2 la different from aeKi. Nuaerlcal aolutlon of Eq*. (A.21) 1* 
facilitated by use of the method or characteristics12'. IMflning 
the variable* 

n = x 

i. = x 

Equations (A.21) become 

3, a, * 

» «- " 
1) * 

V 
V • 

ra(n,C) 

r 2(n,o 

(A.22) 

(A.23) 
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Each equation now haa only one derivative. In the x-t plane, the 
situation ta shown in Fig. 27. Starting at the point (x - 0, t • 0) 
we draw a line of constant n = x - V.t (n * 0 for this line) 
and a line of constant £ = x ' V2X ^ ' ° f o r t M s l l n « ) - The 
slope of the first is At/Ax • w S the slope of the second Is 

'l 
At/Ax - 1/V2 (aasuwe V 2 <0). Harking off the ties axis at intervals 
At, we define a grid point on each line of constant n or C, «t 
intervals At abcvi the x axis. From each grid point coats a new 
line of constant n or E, called characteristic lines. 

Next we put Bis. (A.28) in finite difference form 

A*. M n . S ) 

(A.24) 
f2(n,£) Aa 2 f2(n,£) 

Suppose we know all values e^n.O. »2(n,C) on the horlaontal line 
at t - 3At, for exaaple, and we wish to know the values of a,, a, 
along th; horizontal line at t * 4At. At points a,fl In Fig. 27, 
we know a^a), e 2(a), e ^ B ) , a 2(B) and we desire e ^ y ) , * 2(y), 
where a^o.) = &.(,, at point a, 5 at point a), etc. We use a 
predictor-corrector atthod , accurate to first order in At. 
Working fron Bj. (A.29), we predict a value a,(y) for &Ay) as 
follows: 

*l ( l r >p = a l ( o ) * A t fi(«WVj - V 2) 
(A.25) 

a 2(Y) p = a 2(B) • An f2(B)/(V2 - V x) 
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Hote that we are Integrating alonj characteristics, and that only 

information at u,8 Is ncceoonry '.o predict a value at Y. 

we now correct our predicted values, defining corrected 

values for S^CY^. • j M g »» follows: 

*i(T)c • «!«•>* a i ^ ^ r (V> • V ' O 
(A.26) 

we define t 5 [•1(Y)C - •j(*)j*x<*'p' i f c l ' m * l i s:5"1** •» •*• 
done, setting a,(y) - s^dr>e. e?(Y) • « 2(*) c- If e la not ywt 
snail enough, w >wt S ^ Y ) " w^*),^ »2(*>p ' • j ^ V *»»•*» *•» 
new predicted values Into (A.26); obtain a new a,\Y) , a,(Y) : test 

1 C £ C 

c again; and so on until c i s aaall enough. 
In practloa, thia technique works well and econoadoaHy. For 

the dlaenslonlecs Eqs.OO), with B • 1, theory predicts Y * 1; 

nuweriolly the relailve error In t Is approxlwateljr equal to at. 

E. An IfiawBle where WBJ Theory Is Wo Better 

Than It Should Be 

WKBJ theory has a reputation for having. In aany Instances, 

a much wider range of validity than its derivation would indicate. 

Here we deaonstrate a situation where the WKBJ solution has only the 

minima range of validity. 

I:. Sect* on 1II-A-1. »* c mil dared the steady state, spatial 

growth rdte ichen 
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<X) • L K sinfXL /h ) (A.27) 
o in ^ m 

for which Eqs. (III-l) are (taking 6 - 1) 

[ L K sin(X'I. /L ) «• I o m o • 
Jo 

3X*1 " a 2 e i P 
Jo 

(A.28) 

V2 = 81 ex* - 1 | LoKm •*«<* W "' • 
In certain limits it is not necessary to use the complicated analysis 
of Section III-A to find the growth length. We can instead use the 
eKBJ solution of Eqs. (A.28). Putting (A.28) in the form 

SJJ2 a(X) + q(X) a(X) = 0 (A.29) 

where s(X) = a^X) exp I-| f L ^ sintt'I^/I^) dX' ] we find 
for q(X), 

*™ • -1 * I LoVk C 0 S ( ^ ) + | <V,/ 3 i n 2 ( ^ ) • 
(A. 30) 

86 WKBJ theory assigns two approximate solutions to (A.29), which are 

f(X) = - L , eg 1*1 { Vo/x"7] dX' (A.31) 

valid if q(X) is not close to zero. Expanding Vq(X) for small 
(L <), and integration over a distance lcrge compared to Lffl, we 
find a growth length 
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L /L 
D g mWM 

which i« Incorrect for erbltrexy L A ; it reduces to the correct 
o m 

value Eq. (111-19) only In the Halt L /L « I, where we find 
o a 

L/L, . l - _ S3 (4.33) 

Why Js It necessary to go to the L Q A « 1 Halt -.o get the correct 
growth length? The answer lies In the position of the seres of q(X), 
which for awe.ll (L * ) occur at o a 

O ^ O * O B J 

(A.3<) 
Thus, the zero* of q(X) are for froa the real X axis or.ly when 
Iy'L » 1 (because of the log dependence on L K , It Is r.ot 
sufficient to have S. K « l)j toe wltW solutions (A.3".) are thus o • 
valid on the real ajrla,onls for L/L » 1, when tlw r-*t* of q(X) 
are far froai the real a*ls. For t^L < l, the roots of <j(X) are 
near the real ails and the WKBJ solution (A.31) *s ir.corre-jt. This 
Is an exaaple where WKBJ theory works only where It shtulJ. that la, 
In regions of the complex X-plane far from zeros of q(.v.;. 

F. The Solution of an Infinite r.et of Algebraic Imatlon.; 
We wish to solve the inflnte get of coupled Hqs.f?"', ahlch 

are 

c , • c * If c A, = 0 -~ < • < * . (A..15) n-1 n n n*l 

http://awe.ll
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Deflne 

u - -Si v„ = -§£. (A.36) 
n = <=„ n " °n 

and divide (A.35) by c n; then 

\ % * X + V Tn " ° • (A-37) 

Now divide (A.50) by e j_ to obtain 

Vvi'OW • ° ( A- 3 8 ) 

Solve (A.37) for u^ and insert u into Eq. (A.38), obtaining 

(A.39) + v . • T * r ^ *" ^ * -1 n v-w 
Solve Eq.(A.J9) for w - and shift the Index up by one; then 

(A.40) 

In continued fraction font, Eq. (A.40) i s 

„ _ Yn+1 V l V 2 Yn+2 Tn*3 — < • « < _ 1 . , , , 
n 1" 1" 1" 

where each minus sign in the denominator acts on everything to the 
right of it. 

To find \in, we divide Eq.(A.3S) by c , Instead of c ,; 
the renaining steps are analagous. The result is 
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'n-1 

•m < n < m <*.42) 

muatione (A.il) and (A.42) »r» tbt dtslred Eq«. (87). 
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FIOURE CAPTIONS 
Fig, 1. The space-time response of Eqs. (25) In an infinite, hoao-

geneous medium, with the initial eonditons a.,(X,T = 0) = 4(X), 
a2(X,T ' 0) - 0. (D x « D 2 * 0, V ^ = -1). From Bobroff 

81 and Haus . 
Fig. 2. The configuration for the finite pump extent, homogeneous 

medium ease. Boundary conditions: If V. > 0, 
a,(X * 0,T) * 0; if V, < 0, a,(X = L/Lo,T) = 0; i = 1,2. 

Fig. 3. Graphical olution of Eq. (34) for the temporal growth rate 
in the finite pump extent, homogeneous medium case. 
(L/L0 = 9ir/2). From Bobroff and Haus 8 1. 

Fig. 4. The space-time response of the finite pump, homogeneous medium 
caoe, to the initial conditions a.(X,T = 0) » j(X), 
a2(X,T - 0) » 0. (L/L 0 = 2, V ^ » -1, \ • % • 0). 
From Bobroff and Haus *. 

Fig. 5. Analytic pulse response of the Infinite pump extent, inhomo-
geneous plasma case, Eqs. (46) with K(X) = «c'X, for the 
initial conditions a^X.T » 0) - u, a,(X,T - 0) - «(X). 
(K* » 1.25, TJJ/V = -0.2). From Rosenblutb, White, and 
Liu 6 0. 

Fig. 6. Pulse response of the infinite, inhooogeneous system, Eqs. 
(46) with x(X) ' «t'X, by direct numerical integration, with 
the initial conditions a^X.T • 0) =• 0, a2(X,T <= 0) * 8(X). 
(K' = 1.25, V 2/V x = -0.2; compare Fig. 5). 

Fig. 7. Wavenumber mismatch K(X) = 10 tanh(X/10); and space-time 
response of Eqs. (46) with initial conditons 
a.(X,T = 0) = 8(X), a2(X,T = 0) • 0. (Vj/Vj = -1). 
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Fig. 8. Wavenumber mismatch r(x) =• K'X and spatial pump variation 
Y (X) for the case if finite pump extent, inhomogeneous 
plasma. The equations are solved with the initial conditions 
ajU.T = 0) = 6(X), a2(X,T • 0) • 0, and the boundary 
conditions a^X = 0,T) = 0, a 2(X - L/L ,T) « 0. 

Fig. 9. Heal and imaginary parts of the complex eigenfrequency for 
the case of finite pump extent, inhomogeneous plasma 
K ( X ) * K'X. The solid lines are from Forslund, Kindel, and 
T.lnflwi ; the points are measured from our numerical 
integration of Eqs. (42). ( \ = 24, V 2 « -1, v 1 = v 2 = 0, 
Y » 24, I * 5). See Fig. 8 for configuration. 

Fig. 10. a_(X,T) vo X for 0.25 . T _ 4.25, obtained by numerical 
Integration of Eqs. (42). The parameters are those of Fig. 9, 
with K" « 1. {V x - 24, V 2 * -1, « x = v 2 = 0, Y O - 24, 
£ = 5). See Fig. 8 for configuration. 

Fig. 11. Complex growth rate Y • 10 vs length T. of finite pump. 
From Forslund, Kindel, and Iindman63. (K- = 0.4, Vx = 24, 
V 2 * _ 1 , vl = u2 " °* Y o = ^ ~ > - S e e ne- 8 T°r 
configuration. 

Fig. 12. Amplification A = |a x (X = L / L o , T ) | / a 0 > where a Q a 

a H a,{X * 0,T) i s the constant input, vs inhoaogenelty 

K'. From numerical integration of Eqs. (46» with 

K(X) - K'X. ( V 2 A X = - 1 , L/L o • 1 ) . 

Fig. 13. The function L di(x)/dx vs x/L at the -.:-.reshcld value 

A/LQ" 1 = 0.1 in Fig. 15. (L T /L 0 = 1.27 7_/V ; = - 1 , 

J""1 - K'L * = 1, L/L » 400; a particular realisation of the o o 
est {a,} i s used.) 
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Flg. H. The temporal evolution of |a2(*,t)|vs x/L for the Initial 

renditions njfx,*. 0) - i(jc), a.,(x,t = 0) = 0. 

(A/L _ 1 = 0.5, otherwise as in Fig. 13 ) 
Fig. 15. The absolute growth rate Y/Y VS the BUS mismatch function 

A/L(parameters as in Fig. 13). 
Fig. 16. The absolute growth rate Y/Y- vs the correlation length 

L_/L (parameters as In Fig. 13). 
Fig. 17. A schematic diagram of Raman backscatterlng in laser fusion 

geometry. 
Fig. 18. Absolute growth rate v/Y vs turbulent density fluctuation 

level A for the laser fusion situation of Section II-B. n 
(VJ/VJ^ « -0.03, ic'L 2 - 0.67, L T A < } » 1.3? « particular 
realization of the set fa,} was used.) 

Fig. 19. Spatial growth rate vs modulation amplitude. (Vj/V, = 1). 
For eac h root k shown, k + in is also a root, 
-» < n< <» . The roots shown are purely real. 
K ( X ) => L < sln(XL 0/L). o m o m 

Fig. 20. Spatial growth rate vs modulation amplitude. (vVV, = 1 ) . 
For each root k shown, k • in is also a root, 
-*• < n < «. The roots shows are purely real. 
K( X ) •= L < sin(XL/L,). o m o m 

Fig. 21. Temporal growth rate vs modulation amplitude. (V?/V, * 1). 
The roots which have solid lines in the Im(ii>) graph have 
zero real frequency. There are four roots corresponding to 
the four possible combinations cf dashed lines in the 
Re(cu) and in the Im(u) graph. The lets are growth rates 
of a pulse response to the initial conditions 
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& 1 (X,T = 0) •- 6(X), a,(X,T - 0) = 0. 

<{X) = i. K : ; r . ( U A . ) . u h o to 

Fig. 22. Temporal growth rate vs modulation amp 11 t r i e . 

(V./V. - - 1 , *' = 1 ) . K(X) - K'X • L « surf XL7t ) . & i o is o n 

Fig. 23. Temporal growth rate va modulation anplit'jde. 
(V 2/V x « -1, *• » 1). «(X) =• K'X • L or a sintXI^/I^). 

Fig. 24. Teaporel growth rate v« Modulation wavelength. 
(V 2/» 2 * -1, <• = 1). K(X) = K'X • L ^ sinVa.g/ln). 

Fig. 25. Absolute growth rate y A 0
 V S •odulatlor. wavelength L /L 

and modulation amplitude L IO , oombir.!;.g *.he results of 
Figs. 22, 23, and 24. The dashei -:urve is a schematic curve 
representing the threshold curve in the L -K plans. 
{ V * i = "1* *' ' 1 ) - **x) ""'* * Lo"« "i^xvV-

Fig. 26. Space-time response to the i n i t i a l ior.ii-.lons 

a^X.T = 0) - S(X), a ?(X,T = 0 ) - 0. 

«(X) = K'X • L O K B s i i r f X L ^ ) . ( L o r t • 2, L ^ - 0.16, 

Vl = - 1 ' "' = 1 ) -

Fig. 27. The siethod of characterist ics , d iac issr! ir. Arpendix C. 
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