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CYCLOTRON-PRODUCED RADIOISOTOPES (I)

T. A, Butler
J. J. Pinajian

ABSTRACT

A study of the internal proton beam characteristies of the
ORNL 86-Inch Cyclotron has shown that, for (p,n) reactions,
the yield can be used as a function of beam power to opti-
mize production yields. The method of varylng the proton
energy over the range of 17-23 Mev is descrived. The radial
distrivution (radial width, ~1/% in.), beam spread (by auto-
radiography), and penetration (stacked foil experiments at
6° to the incident beam) are examined. The penetration of
23-Mev protons in Fe [Fe®%(p,n)Co® + Fe®7(p,2n)Co5% + Fe®8
(p,3n)Co®%], Wi [Ni®2(p,2p)Co™" + Wi®®(p,pn_+ p,20)N1i°7—36
hr—>C0°7], Cu [Cu®®(p,n)zn®°1 and R [RKh*%3(p,n)Pa*®? ana
Bh'93(p,pn )Rh*®?] was used to study low energy (p,n) and high
energy (p,2n), (p,pn) or (p,3n) reactions. Optimum target
thickness was 0.006 in. for gingle nucleon evaporation proc-
esses and ~0.003 in. for two and three nucleon evaporation
processes.

INTERNAL BEAM CHARACTERISTICS, FLAT PLATE TARGETS

For increased efficiency in the production of neutron~deficient radioiso-
topes in the ORNL 86-Inch Cyclotron, it is desirable to have knowledge of
the beam characteristics, e.g. spatial distribution (both internal beam
and external beam), beam energy, and the power input. With this know-
ledge, target yields may be optimized and countamination from other radio-
isotopes minimized. In this report the characteristics of the internal
proton beam impinging on a flat plate target™ is examined and its rela-
tionship to the production of radioisobopes considered.

Yield as a Punction cof Beam Power

With the protons of ~20 Mev energy, the thick target yleld of a particular
isotope will increase with increasing proteon energy. This increase is

due to the fact that the reaction cross section does not drop to zero after
peaking (but decreases to ~10% of the peak value with an increase of 3-h
Mev in proton energy), If the cross section were to drop to zero, the
yvield would remain constant with increasing proton energy.

Green and Martin2 have calculated thick target yields for the reactions
Cu®®(p,n)Zn®® and Cu®3(p,2on)Zn®2 from excitation functions measured with
the ORNL 86-Inch Cyclotron. The energy dependence of the yield from a
lT. A, Butler, Reactor~- and Cyclotron-Produced Igsotopes, July-October,
1962, ORNL-TM-L63.
2

F. L. Green and J. A. Martin, Nuclear Sci. and Bng. 7, 387 (1960).




typical (p,n) reaction is shown in Flg. 1. Curve A shows the slow increase
above 15 Mev in Zn®> yield when plotted in mc/ma—hr, whereas Curve B shows
that the yield reaches a peak at ~15 Mev and then drops when plotted as a
function of beam power on the target. Since target characteristics limit
the total beam which may be utilized because of the power dissipation prob-
lem, the important consideration becomes the yield per kw-hr rather than
the yield per ma-hr. A typical (p,2n), thick target, production rate is
given in Fig. 2. The yield per kw-hr and per ma-hr are both still rising
steeply at 22 Mev. Therefore, maximun available energy of the protons can
be utilized. Target thickness may be optimized to reduce the ccst of mate-
rials or conserve materials (e.g., enriched isotopes which may be expensive
or not readily available in large quantities) as well as to limit the pro-
duction of unwanted activities.

Proton FEnergy Range

In a fixed-frequency cyclotron, a simple method of bombarding a target at
an energy below the maximum design energy is to insert the target at a
radiue at which the desired energy can be obtained. Spacing between the
dees and the gap between the pole faces severely limits exploiting the
technique to any degree. The ORNL 86-Inch Cyclotron utilizeg a system of
precessing the orbit centers toward the target by introducing a first
harmonic in the magnetic field.3

Auxiliary coils (asymmetric, current-carrying windings on the pole tips)
installed as part of the beam deflection system, mazke it possible to re-
duce the beam energy from ~23 to ~17 Mev., Stable, large beam currents are
more readily available by pushing the effective beam center toward the
target to decrease the energy.

Radial Distribution

Cohen” has measured the radial distribution of an internal cyclotron target
by mounting a stack of seventeen l/32—in.~long carbon foils on a modified
window~-type target. Flgure 3 shows the target head, a proton orbit which
Just misses the target, and the very next orbit which would strike the tar-
get. The measured activity was due to long-lived impurities im the carbon
and the 20-min activity from C1Z(p,pn)C'*. The radial width of the internal
beamn is‘vl/H in.; the highest beam intensity is at the top or ianner portion
of the tar%et (i.e., in Fig. 4 at the 31-in. radius rather than the 31*l/h—
in. radius ).

Beam read
In Fig. 4, a flat target plate is shown tangent to the beam. The next or-

bit is shown striking the target with a radial increase of l/h—in, which
is, in effect, the radial width of the internal beam. Tn actual operation,

3Electromagnetic Regearch Div. Semiannual Progress Report for Period
Ending March 20, 1953, ORNL-1531. (June 8, 1953).
n

B. L. Cohen, Spatial Distribution of Current on an Internal Cyclotron
Target, ORNL-1348 (19537
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Iig. 1. ORNL 86-Inch Cyclotron Thick Target Yield of Zn®® Produced
by Cu®”(p,n)Zn®>, .
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the auwidliary fleld is varled periodially so that the beam will not impinge
too long on one spot. An autoradiograph of a typlcal target ig shown in
Fig. 5.

Beam Penetration

A gtudy was made of the proton beam penetration iunto a flat plate target
meterial by presénting stacked foll targets at an angle of six degrees to
the deflected beam at the "I" posibion (see Fig., 5).1 Figure & shows the
detalils of the position -~ the beam enters on the right side and the targed
probe 1ls inserted through the open port. A O0,375-in., waber-cooled, graph-
ite collimator is used to center the beam on the stack of ten 0.001- x 0.5~
x 3.75~In. foils. (Figure T i3 a gchematic presentation of the geometry.)
The center 3.0 in. of the foils Waw exposed to the beam (~0.2 wa-hr), The
folls were then set aside until the short-lived activities decayed to neg-
ligivle gquantities. To eliminate scattering effects, an additional 0,250
in. was cut from each end of the 3.0-in. sections.

1
L1Z7

The analyses were performed using (1) a 3.0- by 3.0-in. WdT(T]) crysta
mounted on a CBS-CL 1083 Dhotomultinjjev tube with a resolution, for C
0.662-Mev gamma ray, of 8.53% and (?) 1.5- by 0.080~in. WaI{Tl) crystal
mcunb“d on a HLA o@;bA.quLomult plier tube with a res olutlop, for the
Cat@® 22,2-kev x ray, of 36%. Former data were collecth with a 512-
channel pulse height analyzer, while the latter were LOll@CTCd with a 256-
channel pulse height analyzer. The 22.2-kev CAt0¥ and 32.2-kev Cgt~7

< rayy Were uged to calivrate the thin Nal(TLl) detector. A 0.732 g/em®
Lucite absorber was used with the 3- by 3-~in. crystal. The following
activitles were I”ollowed:b

Fe folls: ' T7-day Co®®
Cu foils: | 2h5-day Zn®®
Rh foils: ‘ L7-day Pd 10

210~day RhtO%

o . > » . - - g . -
The 210-day Rn'°® aetivity which was followed through 55 days demonstrated,
within the experimental error, a half-life of 210 days.

The results of the penetration sbudieg are shown in Figs., 8-11. TFor the
(p,n) reactions studied, optimum thickness (1.e., 2 minimum thickness re-
quired to produce >95% of the desired activity in an infinitely thick tar-
get) appears to be ~0,006 in. For (p,pn), (p,2n) or (p,3n) reactions opti-
mum thickness for the reactions studied apoecar to be = 0.003 in. These
results are summarized in Table

—

~y

-
’C. E. Crouthamel (ed. ); Appjled Gamma-Ray Spectrometyy, Appendix IV,
Dergdmmn Press, New York, 1900
(J. Strominger, J. M. Hollander, and G. T. Beaborg, Rev, Mod. Phys. 30,
585 (L))B) The decay schemes, gamma energles, and ha]f Iifes used are 1T5m
Ref. 6; where necessary, this information was brought up to date (e.g., by
use of Ref. T).

(J F. Stehn, Nucleonics 18 (11), 186 (1960).

“T A, Butler, Reactor- and Cyclotron-Produced Isotopes, November-
December 1962, ORNL-TM-530.
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Fig. 5. Aubtoradiograph of Aluminum Ilat Plate Target Snowing
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Fig. 6. ORNL 86-Inch Cyclotron "T" Position Assembly Showing Lucite
Probe Ports and Water Cooled Collimators. Beam Enters at Right.
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to 23-Mev Proton Beam of ORNL 86-Inch Cyclotron.
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Table 1. Penetration, st 6°, of 23-Mev Protons Into Fe, Ni, Cu, and Rh

Photon NaI(T1) Minimum Thickness 5
Target Reaction Assay Detected? Crystal (> 95% Activity) mg/cm
{mils)
Fe £e70(p,n)007C + a 0.845 Mev d 3.0 60
Fe57(p,2n)0056 +
Feb8(p,3n)Cob6
ni8 Ni58(p,2p)0057 + b 0.122 Mev a 2.5 --
NiSB(p,pn + p,on)Ni”
817 ——36nr-3c0” |
€5, 65
Cu Cu ”(p,n)Zn a 1.119 Mev a 6.0 135
Rh &nt 9 (p,n)pat®? & 20.2 kev e 6.0 190
22.5 kev® f -— ——-
Rt O2(p, pn) RutO? a 0.475 Mev a 2.5 77
1.08 Mev a 0.5 7

aMethod of assay: whole foill y-gpectroscopy.

PMethod of assay: step-wise electrostripping and y-spectroscopy. (Ref. 8)

~N
-y
~—

CX-ray energy reported by independent analysis group using NaI(Tl) crystal
dB-in. bty 3-in. NaI(Tl) crystal with 0.732 g/cm2 Tucite absorber.

®1.5 by 0.080 in. NaI(T1) crystal with no sbsorber.

fi«in. by 3-in. NaI(T1l) crystal with 0.73h g/cm2 polystyrene absorber.
€1 plated copper flat plate target.

hPhoton energies were taken from Ref. 5 and 6.
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