


MASTER

X-822



OAK RIDGE NATIONAL LABORATORY

Operated by

UNION CARBIDE NUCLEAR COMPANY

Division of Union Carbide Corporation



Post Office Box X

Oak Ridge, Tennessee

EXTERNAL TRANSMITTAL AUTHORIZED

ORNL

CENTRAL FILES NUMBER

CF- 58-7-138

DATE: July 10, 1958

COPY NO. 20

SUBJECT: M-25, Butt Welds in Process Piping

TO: J. L. Matherne

FROM: A. P. Litman

COPIES

1. R. H. Baughan
2. R. E. Brooksbank
3. P. A. Goudreau
4. C. D. Hilton
5. T. R. Housley
6. A. R. Irvine
7. W. H. Lewis
8. R. B. Lindauer
9. W. D. Manly
10. W. T. McCarley
11. R. P. Milford
12. E. L. Nicholson
13. J. R. Parrott
14. P. Patriarca
15. E. M. Shank
16. W. R. Whitson
17. W. R. Winsboro
18. A. P. Litman
- 19-20. Laboratory Records
21. J. L. Matherne

NOTICE

This document contains information of a preliminary nature and is intended primarily for internal use at the Oak Ridge National Laboratory. It is not for revision or correction and is not to be distributed outside the laboratory. The information contained herein is not to be distributed outside the laboratory without the written consent of the Director of the Laboratory.

107 101

## **DISCLAIMER**

**This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

## **DISCLAIMER**

**Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.**

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission,

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or use of any of the information contained in this report, or that the use of any information, which is classified, disclosed or otherwise disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liability with respect to the use of, or for damages resulting from the use of any information, which is classified, or otherwise disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or any agent of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

DO NOT PHOTOGRAPH

To: J. L. Matherne  
cc: Listed Distribution

Date: July 10, 1958  
Subject: M-25, Butt Welds  
in Process Piping

Summary

A comparison of the results of two common welding processes for circumferential butt welding austenitic stainless steel process pipe has been made. Metal-arc and inert-gas shielded tungsten-arc processes were used by qualified welders under bench conditions. Test samples were prepared from 1/2 inch - Schedule 40 type 347 pipe with some variation in joint design, fit up, and the employment of backing gas.

Inert-gas tungsten-arc welding, when done as prescribed by ORNL procedure specifications, was superior to the other techniques.

837 002

The Chemical Technology Division of ORNL uses large quantities of austenitic stainless steel as a material of construction. Service requirements generally demand joining of stainless piping by fusion welding. The brief test series herein reported compares fusion weld joining techniques which are prevalent or have been considered for use at the above facility.

The base material used throughout this test series was annealed 1/2 inch - Schedule 40 type 347 pipe. Joining was accomplished by techniques described below using lime-coated type 347 electrodes in the case of metal-arc welding and bare type 347 filler wire in the inert-gas tungsten-arc welding processes.

Table 1 presents all welding process details pertinent to this test series. All welds were made under bench conditions by qualified welders at ORNL. Photographs of the finished welds are shown in Fig. 1.

After joining, the specimens were subjected to visual, radiographic, and metallographic examination. The results are presented in Table 2 and typical longitudinal cross sections are shown in Fig. 2.

Maximum weld corrosion resistance is contingent upon having a finished joint free from crevices, porosity, inclusions and other non-uniformities. Under conditions of thermal cycling and high temperatures these defects become particularly hazardous. If radioactivity makes periodic inspection of welded joints impractical, and strong decontaminating solutions are used, acceptance of anything less than the most homogeneous weldments appears to be imprudent.

Two of the most common discontinuities of metal-arc welding were noted in Samples 1 and 2. Fig. 2 shows entrapped slag at the top of the first pass for the former and root porosity in the latter. Either defect can be the origin of a weld crack to which austenitic stainless steels are particularly susceptible. The particular position of the porosity in Sample 2 lends itself to rapid preferential corrosive attack.

| Sample No. | Welding Process                          | Electrode                  | Electrode Size Inches | Position | Current D.C. Amp                 | Spacing Inches | Land Inches | Bevel Degrees Included Angle | Filler Wire | Filler Wire Size Inches | Gas Cup Size | Cup Gas CFH | Cup Gas CFH | Backing Gas | Backing Gas | Welder      |
|------------|------------------------------------------|----------------------------|-----------------------|----------|----------------------------------|----------------|-------------|------------------------------|-------------|-------------------------|--------------|-------------|-------------|-------------|-------------|-------------|
| 1          | Metal-arc Reverse Polarity               | Arcos 347 S.S. Lime-Coated | 5/64                  | 2G       | 55/60-1st Pass<br>55/60-2nd Pass | 1/16           | 1/16        | 75                           | -           | -                       | -            | -           | -           | -           | -           | V. Houchin  |
| 2          | Metal-arc Reverse Polarity               | Arcos 347 S.S. Lime-Coated | 3/32                  | 1G       | ~ 45-1st Pass<br>~ 45-2nd Pass   | 3/32           | 1/16        | 90                           | -           | -                       | -            | -           | -           | -           | -           | L. Ratliff  |
| 3          | Inert-gas tungsten-arc Straight Polarity | 2% Thoriated Tungsten      | 1/8                   | 1G       | 35/40-1st Pass<br>55/60-2nd Pass | 1/16           | 1/16        | 90                           | 347 S.S.    | 1/16                    | 8A Argon 20  | None        | None        | None        | None        | L. Stinnett |
| 4          | Inert-gas tungsten-arc Straight Polarity | 2% Thoriated Tungsten      | 1/8                   | 1G       | 35/40-1st Pass<br>55/60-2nd Pass | 1/32           | 1/16        | None                         | 347 S.S.    | 1/16                    | 8A Argon 20  | None        | None        | None        | None        | L. Stinnett |
| 5          | Inert-gas tungsten-arc Straight Polarity | 2% Thoriated Tungsten      | 1/8                   | 1G       | 35/40-1st Pass<br>55/60-2nd Pass | 3/32           | 1/16        | 90                           | 347 S.S.    | 1/16                    | 8A Argon 20  | Helium      | 15/30       | 15/30       | 15/30       | L. Ratliff  |
| 6          | Inert-gas tungsten-arc Straight Polarity | 2% Thoriated Tungsten      | 1/8                   | 2G       | 40-1st Pass<br>50-2nd Pass       | 3/32           | 3/64        | 100                          | 347 S.S.    | 1/16                    | 8A Argon 20  | Argon       | 5/10        | 5/10        | 5/10        | V. Houchin  |

TABLE 1

## Butt Welds in Process Piping

All Material 1/2" Schedule 40 Type 347 Stainless Steel Pipe

100-1285

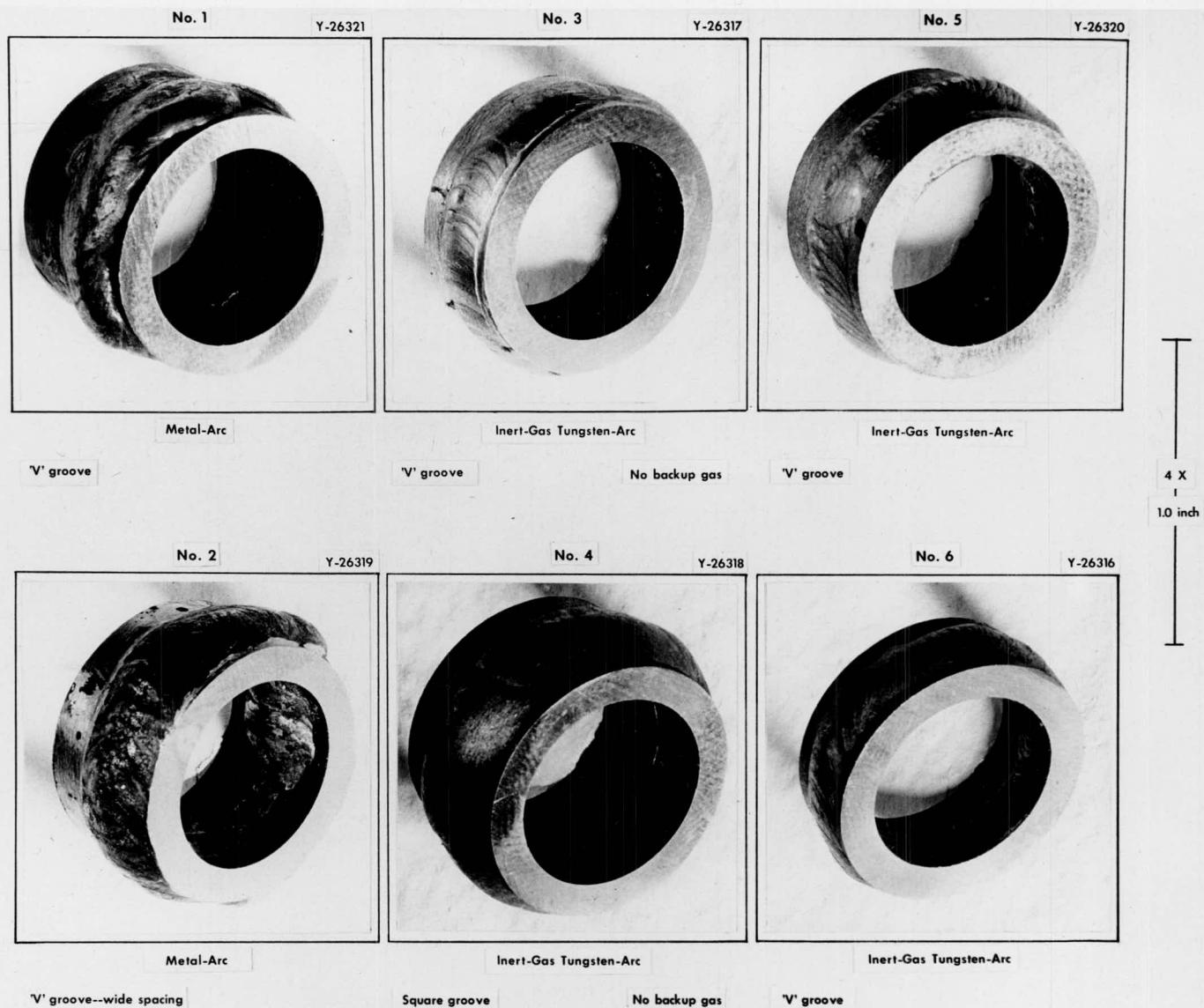



Figure 1

## BUTT WELDS IN PROCESS PIPING

Cross-reference to Table 1

**Y 2 6542**

| Sample No. | Weld Classification                        | Visual Examination                                                                                                                                   | Radiographic Examination                                                                                | Metallographic Examination <sup>1</sup>                                                                                                                                                                                                                                          |
|------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | Metal-arc                                  | Generally satisfactory appearance--non-uniform width of root and cover passes--normal metal-arc oxidation on root and cover passes                   | No defects visible                                                                                      | Generally satisfactory structure noted with entrapped slag visible at the top of first pass                                                                                                                                                                                      |
| 2          | Metal-arc                                  | Fair appearance--excessive penetration--non-uniform width of root penetration--normal metal-arc oxidation on root and cover passes                   | Burned root edges visible--non-uniform penetration--3 or 4 spots of ASME medium to large porosity noted | Excessive penetration noted with porosity at maximum penetration                                                                                                                                                                                                                 |
| 3          | Inert-gas tungsten-arc<br>No backing gas   | Satisfactory cover appearance--unsatisfactory root appearance showing non-uniform penetration with "grape" formations--severe oxidation on root pass | Non-uniform root with "grape" formations--possible slag inclusions--1 spot of ASME fine porosity        | Two sections illustrated show adjacent root areas with inadequate penetration and excessive penetration--a few voids present adjacent to the fusion zone which are believed to be former inclusions--high magnification showed a heavy oxide layer covering the root penetration |
| 4          | Inert-gas tungsten-arc<br>No backing gas   | Wide but generally satisfactory cover--unsatisfactory root showing incomplete penetration and non-fused crevice                                      | Inadequate penetration visible--some very fine spots of porosity visible                                | Incomplete penetration resulted in a sharp crevice at the weld root approx. 35 mils deep--high magnification showed a heavy oxide layer covering the root penetration                                                                                                            |
| 5          | Inert-gas tungsten-arc<br>With backing gas | Satisfactory appearance--slight non-uniformity in width of root penetration                                                                          | Generally satisfactory--a few very fine spots of porosity visible                                       | Satisfactory structure                                                                                                                                                                                                                                                           |
| 6          | Inert-gas tungsten-arc<br>With backing gas | Satisfactory appearance--no obvious irregularities                                                                                                   | No defects visible                                                                                      | Satisfactory structure                                                                                                                                                                                                                                                           |

TABLE 2  
Butt Welds in Process Piping  
All Material 1/2" Schedule 40 Type 347 Stainless Steel Pipe

<sup>1</sup> Random longitudinal cross-sections

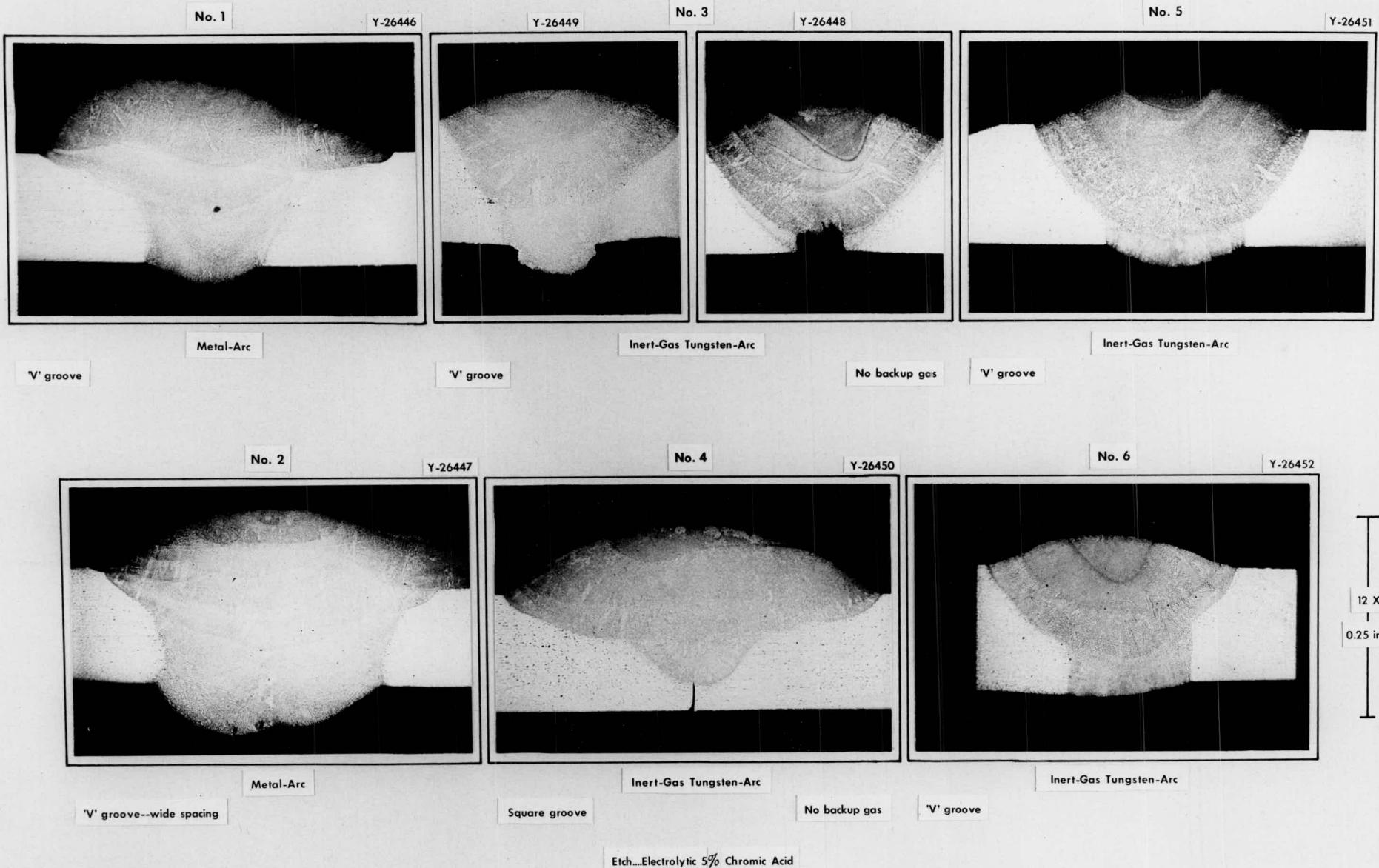



Figure 2

## BUTT WELDS IN PROCESS PIPING

Y26543