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MECHANISM OF ELECTROREDUCTION OF ,CHROMIC I O N  
AT THE MERCURY CATHODE 

by 

M. E. McLain, Jr. 

The uleohaniom of redurt.inn f o r  chromium (111) ion  t o  chromium (11)  
a t  t h e  mercury cathode was s tudied  i n  0 . u  KN03. Data obtained a t  

, . varying temperature #nd so lu t ion  composition from polarograms gave 
, values f o r  AH*, AS , and AF* which ind ica ted  t h a t  two mechanisms were 

involved. A t  p o t e n t i a l s  more p o s i t i v e  than t h e  polarographic half-wave 
p o t e n t i a l  t h e  mechanism appeared t o  be simple e l ec t ron  t r a n s f e r  from 
t h e  e l ec t rode  t o  t h e  chromium (111) ion i n  so lu t ion .  When t h e  p o t e n t i a l  
was more negative than t h e  half-wave p o t e n t i a l  e l ec t ron  exchange between 
t h e  reduced chromium ion near  t h e  e l ec t rode  su r face  and a  chromium (111) 
ion  i n  so lu t ion  became appreciable.  Values f o r  t h e  hea t  of a c t i v a t i o n  
f o r  t h e  reduction of chromium (111) t o  chromium (11) i n  0.m KN03 f o r  
t h e  e l e c t r o n  t r a n s f e r  and exchange r e a c t i o n  mechanisms were determined 
t o  be 34.7 and 27. P kca l  mole-l, respect ive ly .  
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MECHANISM OF ELECTROREDUCTION OF CHROMIC I O N  AT THE MERCURY CATHODE 

Mil ton  Ecc le s  McLain, Jr. 

INTRODUCTION 

Mercury cathode e l e c t r o l y s i s  i s  a well-known s e p a r a t i o n s  method i-n 

a n a l y t i c a l  chemistry f o r  removing e l e c t r o r e d u c i b l e  i ons  from so lu t ion .  . , 

The removal of i r o n ,  n i c k e l ,  and chromium by e l e c t r o l y s i s  from s t a i n l e s s  

s tee l - type  wastes may be u s e f u l  i n  developing a  t r ea tmen t  process  f o r  

was tes  r e s u l t i n g  from t h e  process ing  of nuc lea r  f u e l s .  - 

The mechanisms of e l e c t r o r e d u c t i o n  of i r o n  and n i c k e l  a r e  w e l l  

def ined ,  bu t -bas i c  informat ion  p e r t a i n i n g  t o  t h e  e l e c t r o r e d u c t i o n  of 

chromium i n  s o l u t i o n s  con ta in ing  n i t r a t e  i o n  i s  inadequate  f o r  develop- 

i n g  a  waste t rea tment  process.  

PURPOSE 

The purpose of t h i s  s tudy  i s  t o  e s t a b l i s h  t h e  mechanism of t h e  

reduct f  on of chromium ( 111) t o  chromium ( IT) . 
Chromium i s  t h e  most d i f f i c u l t  of t h e  t h r e e  a l l o y  c o n s t i t u e n t s  - 

i r o n ,  n i cke l ,  and chromium - t o  remove e l e c t r o l y t i c a l l y .  Defining a  . 

mechanism f o r  t h e  e l e c t r o r e d u c t i o n  of chromium (111) i n  n i t r a t e  s o l u t i o n  

a t  t h e  mercury cathode would be of cons iderable  h e l p  i n  developing a n  

e l e c t r o l y t i c  s e p a r a t i o n  process .  
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, 

JII. LITERATURE $URVEY 

The mechanism f o r  t h e  r educ t ion  of chromium (111) t o  chromium (11) 
. . .  . .  

a t  t h e  mercury cathode was s t u d i e d  by ~ e w i s ' ~ ~ ) .  He concluded t h a t  i n  

p e r c h l o r i c  a c i d  s o l u t i o n ,  t h e  rate-determining s t e p  invo lves  t h e  . 

t r a n s f e r  of an  g l e c t r o n  from t h e  mercury e l e c t r o d e  s u r f a c e  t o  a 
. . 

chromium ( 111) i o n  i n  s o l u t i o n .  A s tudy  by ~ l v i n g  and 2ernel('l1, of 

pa rak&ers  a f f e c t i n g  t h e  thermodynamic va lues  f o r  t h e  r educ t ion  i n  

p e r c h l o r i c  ac id ,  i n d i c a t e d  t h a t  a t  low nega t ive  p o t e n t i a l  the.mechanism 

seemed t o  be s imple e l e c t r o n  t r a n s f e r . '  However,. wi th  i n c r e a s i n g  nega- 

t i v e  poten t ia l , " ' an  e l e c t r o n  exdhange 'bitween t h e  chromium (11) and ' t h e  

.chromium (111) i o n s  appeared t o  e n t e r  i n t o  t h e  mechanism. 
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L. . THEORY 

The r a t e  of t h e  e l e c t r o d e  r eac t ion :  

oxidized + n e- -) reduced 

i s  expressed by t h e  c u r r e n t ,  i, a t  a n  app l i ed  p o t e n t i a l ,  E. By conven- 

t i o n ,  p o s i t i v e  v a l u e s  of i a r e  used f o r  r educ t ion  and nega t ive  v a l u e s  

f o r  ox ida t ion .  The p o t e n t i a l ,  E, i s  u s u a l l y  g iven  i n  r e f e rence  t o  t h e  

normal hydrogen e lec t rode .  

A n  equat ion  t o  r ep re sen t  t h e  n e t  r a t e  of r e a c t i o n  h a s  been developed 

by Volmer (3):  
9 

= LOXJ exp (- &I +J~~JE ) 
A RT 

- pqo exp (- AF: -&YE ) 
RT 

where A i s  a p r o p o r t i o n a l i t y  cons tan t ;  

bd and ' ,@ea a r e  concen t r a t ions  ( a c t u a l l y  a c t i v i t i e s )  of t h e  
0 

oxid ized  and reduced s p e c i e s  nea r  t h e  e l e c t r o d e  su r f ace ;  
9 Y 

AF and O F 2  a r e  t h e  f r e e  ene rg i e s  of a c t i v a t i o n  of t h e  r a t e -  1 

determining s t e p  f o r  t h e  r educ t ion  and ox ida t ion  r e a c t i o n s ,  

r e s p e c t i v e l y ;  

A and d a r e  t h e  f r a c t i o n s  of t h e  t o t a l  p o t e n t i a l  a c r o s s  t h e  

e lec t rode-so lu t ion  i n t e r f a c e  t h a t  a r e  e f f e c t i v e  i n  t h e  

r educ t ion  and oxida t ion ;  

3 i s  t h e  Faraday cons t an t ;  

11 1s t h e  number of Faradays pe r  mole of i o n  redilcad o r  oxidized;  

R i s  t h e  gas  cons tan t ;  --l 

T i s  t h e  a b s o l u t e  temperature.  

The f i r s t  term on t h e  r i g h t  s i d e  of Equat ion ( 2 )  . expresses  t h e ' r a t e  
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of t h e  reduction process, and t h e  second t h e  r a t e  of t he  oxidation 

react ion.  A t  equilibrium, both processes a r e  considered t o  occur 

simultaneously, The po t en t i a l  determines t h e  r e l a t i v e  r a t e s  of oxida- 

t i o n  and reduction. Equation (2) describes t h e  re la t ionsh ip  between 
, 

cur ren t  and po ten t ia l ,  regardless  of t h e  spec i f ic  mechanism control l ing 

t h e  react ion.  When experimental data  f o r  current ,  po ten t ia l ,  and 
Q * 

concentrat ion a r e  inse r ted  i n  Equation (2) ,  v a h ~ e s  of A ,  AF1, A F 2 ,  
/ 

d- and &can be calculated.  These quan t i t i e s  have meaning i n  se lec t ing  

a f e a s i b l e  mechanism. 

The propor t ional i ty  constant ,  ' A ,  i n  Equation (2)  i s  not necessary 

f o r  t h e  determination of t h e  heat  of ac t iva t ion ,  although some assump- 

t i o n s  concerniig t h i s  constant  a r e  necessary t o  c a l c ~ ~ l a t e  t h e  entropy 

and t h e  f r e e  energy of act ivat ion.  When t h e  absolute react ion r a t e  

theory of i s  extended t o  e l ec t r~chemica l  processes by 

 inb ball(^'), it may be used t o  c l a r i f y  t h e  s ignif icance of A. There i s  

some doubt whether Gurney's p i c tu r e  (I6) of t h e  e lect ron t r ans f e r  process.  

i s  accurate ly  described when A i s  evaluated by ~ y r i n g ' s  theory. The 

ac t iva ted  s t a t e  i n  t h e  adsorption and desorption mechanisms a r e  possibly 

more accurate ly  described by t h e  Eyring treatment. 

An ac t i va t i on  s t e p  may be postulated regardless  of t h e  mechanism 

chosen f o r  t h e  electroreduction.  For example, an e lec t ron  and an 

oxidized ion  may move along a po ten t ia l  energy surface u n t i l  they reach 

a saddle point  ( see  Figure 1 ) .  Further motion along t he  react ion 

coordinate r e s u l t s  i n  reduction of t he  ion. The intermediate c o n f i p a -  

t i o n  of t h e  e lect ron and t h e  i on  a t  t h i s  saddle point  i s  t he  act ivated 

s t a t e .  The ve loc i ty  with which these  act ivated complexes cross  t h e  

saddle  point  or  energy ba r r i e r  from t h e  oxidized t o  t h e  reduced form 
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M ( ~ l  + - Elec t rode  Di s t ance  

FIGURE 1 

POTENTIAL ENERGY SURFACE 
FOR 

ELECTROTIEDUCTION OF METAL I O N  
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can be expressed ,by .*-, where k i s  t h e  Boltzmann cons tant ,  T t h e  

a b s o l u t e  temperature, and h r ep resen t s  P lanck l s  constant .  Th i s  un ive r sa l  

frequency i s  dependent only on temperature and i s  ind,ependent of t h e  

r e a c t a n t s  and t h e  type  of mechanism f o r  t h e  r eac t ion .  Thus, from 

Equation ( 2 ) ,  t h e  r a t e  of reduct ion  is  given by: 
$ 

A F  + & n d ~  ) r a t e  of reduct ion  = t( + [OX] exp (- .-I o  RT 
(3, 

where i s  t h e  f r a c t i o n  of t h e  a c t i v a t e d  complexes y i e l d i n g  t h e  r e a c t i o n  

product ,  and A F; i s  t h e  f r e e  energy change involved i n  producing t h e  

a c t i v a t e d  s t a t e .  Thus, t h e  term A i n  Equation ( 2 )  c o n s i s t s  of a  frequency 

f a c t o r  and a t ransmiss ion  c o e f i c i e n t ,  t(. The f r e e  energy of a c t i v a t i o n ,  
i t  

Fq, is t h e  d i f f e r e n c e  i n  f r e e  energy between t h e  normal and a c t i v a t e d  

s t a t e s  of t h e  ion.  I n  t h e  e l e c t r o n - t r a n s f e r  mechanism t h i s  may be a  

p a r t i c u l a r  conf igura t ion  of an  ion, i ts  assoc ia t ed  water molecules, and an 

e l e c t r o n  which may e x i s t  a  smal l  d i s t a n c e  from t h e  e l e c t r o d e  surface .  The 

a c t i v a t e d  s t a t e  i n  t h e  e l e c t r o n  exchange mechanism i s  probably an appropr i a t e  

s p a t i a l  o r i e n t a t i o n  of t h e  oxidized and reduced ions  r e l a t i v e  t o  one another.  

For  t h e  adsorpt ion  and desorpt ion  mechanisms t h e  a c t i v a t e d  s t a t e  c o n s i s t s  

of a n  i o n  adsorbed on t h e  e l e c t r o d e  surface .  

The choice of an  e l e c t r o d e  with a  known geometry and su r face  al lows 

t h e  current-concentrat ion r e l a t i o n s h i p s  of Equation ( 2 )  t o  be. derived,  and 

from t h e s e  t h e  de terminat ion  of t h e  thermodynamic p r o p e r t i e s  of t h e  

a o t i v a t i o n  roaot ion  followa.. Tho polarographic method with t h e  dropping 

mercury e l ec t rode  meets t h e s e  requirements. I n  t h i s  s tudy it was used 

t o  examine t h e  reduct ion  of chromium (111) t o  chromium (11).  

Bockr is (2)  summarized a number of t h e o r i e s  which have been advanced 

. t o  exp la in  t h e  d e t a i l s  of e l ec t ro reduc t ion  and oxidat ion.  Three genera l  
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c a t e g o r i e s  are evident  i n  which t h e  rate-determining s t e p ,  i n  t h e  

mechanism is thought  of a s  occurr ing  before,  during,  o r  a f t e r  t h e  t r ans -  

f e r  of e lec t rons '  from t h e  e l e c t r o d e  t o  t h e  ion. 

- ( 6 )  The E l e c t r o n  Trans fe r  Mechanism: ~ u r n e ~ ( '  , ~ o w l e r ( " ) ,  B u t l e r  , 
and Grahame (15) suggested t h a t  t h e  r a t e d e t e r m i n i n g  s t e p  i n  t h e  r educ t ion  

I 

of hydrogen i o n s  i s  t h e  t r a n s f e r  of e l e c t r o n s  between t h e  e l e c t r o d e  and 

t h e  hydronium ion. Orlemann (29) showed t h a t  a similar mechanism 

explained t h e  experimental  d a t a  obta ined  when i o d a t e  o r  bromate was 

reduced a t  t h e  dropping mercury e lec t rode .  The p o t e n t i a l  i n  t h e  

e l e c t r b n  t r a n s f e r  mechanism r a i s e s  o r  lowers  t h e  energy l e v e l  of t h e  

e l e c t r o n s  i n  t h e  e l e c t r o d e  r e l a t i v e  t o  t h e  l e v e l  i n  t h e  ions.  Th i s  

.enables e l e c t r o n s  t o  t r a n s f e r  from l e v e l s  of h ighe r  energy t o  t hose  of 

lower energy whether t h i s  i s  from t h e  e lec t ro .de  t o  t h e  i o n s  o r  vi,ce versa.  

A d s o r ~ t ' i o n  Mechanism: A second p o s s i b l e  mechanism has  as t h e  

rate-determining s t e p  t h e  t r a n s f e r  of t h e  i o n  from t h e  s o l u t i o n  a c r o s s  
' 

t h e  double l a y e r  t o  a n  adso rp t ion  p o s i t i o n  on t h e  e l e c t r o d e  surface.  

(1 2) Th i s  mechanism has been proposed by Erdy-Gruz and ~ o l m e r ( ~ ) ,  F d i n  , 
(21) Eyring, Glasstone,  and ~ a i d l e r ( ' ' ) ,  Kimball, Glasstone,  and Glassner  , 

and Kimball(20) i n  connect ion wi th  t h e  r educ t ion  of t h e  hydrogen ion. 

T h e i r  t r ea tmen t s  of t h e  theo ry  d i f f e r ,  bu t  t h e r e  i s  agreement i n  assuming 

t h a t  t h e  double l a y e r  c o n s t i t u t e s  a p o t e n t i a l  b a r r i e r ,  which t h e  hydrogen 

i o n  must c r o s s  t o  be reduced. F igu re  2 i s  a g r a p h i c a l  r e p r e s e n t a t i o n  of 

such a p o t e n t i a l  b a r r i e r .  ' The adso rp t ion  mechanism can be expla ined  i n  

terms ' o f  Equat ion (2) a s  fol lows:  
9 

A F~ is t h e  d i f f e r e n c e  i n  f r e e  energy between t h e  normal. and 

a c t i v a t e d  s t a t e s  a t  zero  p o t e n t i a l .  I nc reas ing  t h e  nega t ive  
. , . ,  

p o t e n t i a l  of t h e  e l e c t r o d e  does work on t h e  p o s i t i v e  ions  i n  
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s o l u t i o n  and e l e v a t e s  them t o  a n  a c t i v a t e d  o r  adsorbed s t a t e ,  

d i s  t h e  f r a c t i o n  of t h e  t o t a l  app l i ed  p o t e n t i a l  used i n  t h i s  
* 

process.  In l i k e  manner, A F 2  and &'apply t o  t h e  ox ida t ion  

of reduced ions. 

The D e s o r ~ t i o n  Mechanisq: Theor ies  have been presented,  which 

asaume t h e  escape  of adsorbed hydrogen atoms from t h e  e l e c t r o d e  su r f ace  

(  owd den(^) , t o  be t h e  rate-determining s tep .  Bowden and Ridea l  , 
~ e ~ r o v s k ~ ( " l ) ,  and Bockris and ~ ~ n a t o w i c z ( ~ )  sugges t  va r ious  mechanisms 

f o r  t h i s  deso rp t ion  process.  The a p p l i c a t i o n  of t h e  gene ra l  equat ion  
- 

 quati ti on (2)) i s  s imi l a r ,  except  t h a t  t h e  energy b a r r i e r  e x i s t s  f o r  t h e  

removal of i o n s  from t h e  e l e c t r o d e  sur face .  

u e c t r o n  J x c h a n ~ s  Mechanis~:  Another p o s s i b l e  mechanism, which 
I 

cannot occur  alone,  but  on ly  concur ren t ly  wi th  one of t h e  p rev ious ly  

mentioned processes ,  is  t h e  r educ t ion  of a chromium (111) i o n  by a 

chromium (11) ion. Th i s  e l e c t r o n  exchange r e a c t i o n  becomes more probable 

a s  t h e  p o t e n t i a l  i n c r e a s e s  and t h e  concen t r a t ion  of chromium (11) i o n s  

n e a r  t h e  e l e c t r o d e  becomes g r e a t e r .  T h i s  mechanism was mentioned by 

Elv ing  and ~emel ( ' l )  i n  connect ion wi th  the: r educ t ion  of chromium (111) 

t o  chromium (11) i n  p e r c h l o r i c  ac id .  

/ 

JYJ POLAROGRAPHIC &$lJ,QQ 

Since  t h e  polarograph and i t s  use  have become commonplace i n  t h e  

r e sea rch  l abo ra to ry ,  t h e  d e s c r i p t i o n  h e r e  w i l l  be b r i e f .  More d e t a i l e d  

d e s c r i p t i o n s  of t h e  method and appa ra tus  used may be found i n  K o l t h o f f l s  

(22) and Linganels  t rea tment  . 
Bas ica l ly ,  t h e  polarograph c o n s i s t s  of a dropping mercury e l ec t rode ,  
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A ( ~ i g u r e  3), whose po t en t i a l  is  var ied by a po t en t i a l  d ivider  c i r c u i t ,  

D. The dropphg  mercury e lect rode (D.M.E.) i s  immersed i n  t h e  c e l l ,  C, 

containing t h e  so lu t ion  of t h e  reducible ions  i n  contact with a reference 

e lect rode,  B. The negative po t en t i a l  of t h e  D.M.E. i s  increased and t h e  

cur ren t  between t h e  D.M.E. and t h e  reference e lect rode is  measured by . 

t h e  galvanometer, G. In a recording instrument, t h e  po ten t ia l  d ivider  

i s  dr iven by a motor, and t h e  galvanometer is replaced by a microampere 

recorder.  1 

A t y p i c a l  current-voltage curve obtained by t h e  polarographic 

technique i s  shown i n  Figure 4 .  This curve is a t rac ing  of t h e  average 

value  of t h e  current  a s  it f luc tua t e s  with t he  dropping electrode. Unt i l  

a po t en t i a l  s u f f i c i e n t ' t o  reduce t h e  ion  is at ta ined,  a very small 

increase  i n  current  with increas ing po ten t ia l  is observed, This 

"res idual  currentn  is  due,to impuri t ies  i n  t h e  so lu t ion  and t o  capaci- 
, 

tance e f f e c t  a t  t h e  solution-electrode in terface .  A t  more negative 

po ten t ia l s ,  e l ec t ro ly s i s  begins a s  some of t h e  oxidized ion  is  reduced 

a t  t h e  mercury surface. In t h e  case of t h e  chromium (111) t o  chromium 

(11) reduction, t h e  reduction product d i f fuses  back i n to  t h e  bulk of t h e  

s o l u t ~ o n ,  A concentration gradient  is  established,  which i n c r d s e s  a s  

t h e  e lect rode po t en t i a l  becomes more negative. Soon, a point  i s  reached 

where t h e  concentration of t h e  oxidized ion  a t  t h e  D.M.E. surface becomes 

neg l ig ib le  compared t o  t h e  concentration i n  t h e  body of t h e  solution.  

If a s u f f i c i e n t  quant i ty  of an i nd i f f e r en t  e lec t ro ly te ,  e.g. potassium 

n i t r a t e ,  is present t o  lower t h e  transference number of t h e  reducible 

ion  t o  zero, a l im i t i ng  o r  d i f fus ion  current  i s  reached with increasing 

po t en t i a l  a t  which t h e  r a t e  of reduction, indicated by t h e  current ,  i s  . 
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control led  by t h e  r a t e  a t 'which t h e  reducible  i o n  can d i f f u s e  from t h e  

body of solut ion,  ac ross  t h e  concentrat ion gradient ,  t o  t h e  e lec t rode  

surf ace. 
8 

Maxima of ten  occur i n  t h e  current-voltage curv'es. These a r e  

thought t o  be due t o  a s t i r r i n g  phenomenon'at t h e  dropping e lec t rode 

surf ace  (1,13) , They may be eliminated by increased d i l u t i o n  o r  t h e  

add i t ion  of a s  l i t t l e  a s  5 x percent  of a surface  a c t i v e  agent 

such a s  ge la t in '  o r  methyl ' red,  In t h i s  inves t igat ion,  however, t h e  

t o t a l  absence of surface  a c t i v e  agents was necessary i n  severa l  instances,  

Therefore, t h e  problem was eliminated by reducing t h e  concentrat ion of 

chromium (111) t o  a point  where t h e  maximum 'df  sappeared, 

An equation f o r  t h e  dlfjfusion current  has been derived by I lkovic  (1 9)  

and MacCillavry and  ideal'^?) from F i c k g s  l a w  of diffusion.  An explana- 

t i o n  of t h e i r  de r iva t ion  is  presented by Kolthoff and ~ i n ~ a n e ' ~ ~ ) .  The 

11kbvic equation i b :  

' I  

where id is  t h e  d i f fus ion  cur ren t  i n  microamperes; - 
n is  t h e  number of e lec t rons  t r ans fe r red  pe r  molecule; 

D i s  t h e  d i f fus ion  c o e f f i c i e n t  of t h e  reduc ib le  substance 

i n  square centimeters per  second; 

m is t h e  mass of mercury flowing f r o m t h e  c a p i l l a r y  i n  milligrams 

per  second; 

t is t h e  drop time i n  seconds; 

C is  t h e  concentrat ion of t h e  reducible  substance i n  millimoles per  
. . 

l i t e r .  

Several  terms i n  t h e  I lkovic  equation a r e  o f t en  combined t o  give: 
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'where K is t h e  I lkovic  o r  d i f fus ion  current  constant expressed in 

microamperes per  millimole per  l i t e r .  

The I lkovic  equation was checked experimentally by Kolthoff and 

Lingane (22) and proved accurate  provided t h e  drbp time was from th r ee  t o  

si; seconds, su f f i c i en t  i nd i f f e r en t  e l ec t ro ly t e  was present t o  reduce t he  

t ransference number of t h e  reducible ion  t o  0.01 o r  l e s s ,  and a correction 

was made f o r  t h e  r e s idua l  current. 

Current-Potential relations hi^ for Reversible,Svstems: By 

de f in i t i on ,  the  reac tan t s  i n  a revers ib le  system a r e  a t  equilibrium a t  

a l l  times. Taking t h e  e l e c t r o l y t i c  system: 

#+ + n e  - M(m - nj+  

t o  be a t  equilibrium, t h e  n e t  r a t e  of t h e  react ion is zero, s ince  t h e  

r a t e s  of reduction and oxidation a r e  equal. Se t t i ng  i equal t o  zero i n  

Equation (2) gives: 
I 

F* + d n ~ ~ )  = F(m - n)+l exp (. [M~+] exp ' -1 A P: - 
RT I 

- 0 RT ) (7) 

Converting t o  logarithms: l-$+7 

For a revers ib le  react%on, t h e  e l e c t r i c a l  work done i n  t h e  reduction, 

An JE, plus  t h e  work done i n - t h e  oxidation, db d ~ ,  must equal t h e  

t o t a l  work done i n  t h e  system. Therefore, t h e  sum, must be equal 

t o  unity. Also, i f  t h e  forward and reverse react ions  pass through t h e  

same act ivated s t a t e ,  a s  is necessary f o r  a revers ib le  process, 
, 
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where E0 is  t h e  po ten t ia l  f o r  t h e  react ion (Equation (6)) a t  u n i t  a c t i v i t y .  

Subs t i tu t ing  i n t o  Equation ( 9 )  : 

Equation (11) was applied t o  polarography by Heyrovsky and Ilkovic (18) : 

where E i s  t h e  po ten t ia l  a t  which t h e  current ,  i, is equal t o  one-half 
1 /2 

t h e  d i f fus ion  o r  l imi t ing  current ,  id, 

( i d ) c  and ( id )a  a r e  t h e  d i f fus ion  currents  f o r  t h e  cathodic and 

anodic processes, respectively.  

They assumed t h a t  t h e  average r a t e  05 d i f fus ion  of ions t o  t h e  mercury 

drop i s  proportional  t o  t h e  concentration gradient ,  and t h a t  t h e  r a t e s  of 

change of t h e  surface concentrations a r e  zero a t  a s ing le  potent ia l .  

It is  obvious from Equation (12) t h a t  t h e  half-wave potent ia l ,  Ell2, 

is  i den t i ca l  f o r  reduction and oxidation i n  a revers ib le  system. Even i n  
I 

t h e  absence of one of t he  species, corresponding t o  ( i d ) c  or  ( i d ) a  equal 

t o  zero, E1/2 f o r  t h e  other form i s  unchanged. Figure 5 i l l u s t r a t e s  t h i s  

p r inc ip le  f o r  t h e  revers ib le  reduction and oxidation of metal ions. 

Equation (1 2) has been ve r i f i ed  by Stackelberg and Freyhold (30) and 

Lingane (26) i n  t h e i r  s tud ies  of t h e  revers ib le  f erric-ferrous oxala te  

system. Curve D i n  Figure 5 i l l u s t r a t e s  t h e  r e s u l t  when an i r r eve r s ib l e  

system such a s  t h e  chromium (111)-chromium, (11) p a i r  is electrolyzed. . 

The following sect ion discusses t h i s  system. 



IDO-145 05 
Page 26 

POLARERAPHIC WAVES" DUE TO REDUCTION OR OXIDATION OF METAL 

IONS OR OTHER SUBSTANCES 

A, Cathodic Wave of Oxidized Form. 

B . .  Composite Cathodic-Anodic Wave o f  an Equal 
Mixture of Oxidized and Reduced Forms. 

C. Anodic Wave of  Reduced Form. 

DME 

D .  Composite Cathodic-Anodic Wave When t h e  
Electrode Reaction i s  Irrevers ib le .  

\ 



Current-Potential relations hi^ for Jrrevers ible  Systems: A t  any 

po ten t i a l  during t h e  e l ec t ro ly s i s  of an i r r eve r s ib l e  system, e.g. t h e  

chromium (111)-chromium (11) pa i r ,  t h e  ne t  current  i s  t h e  a lgebraic  sum 

of t h e  reduction and oxidation currents. The po t en t i a l  a t  any point  i n  

t he  so lu t ion  i s  a function of the  dis tance from t h e  electrode,  being a 

maximum a t  t h e  electrode surface. A schematic representa t ion of t h i s  

e f f e c t  i s  shown i n  Figure 6. The s teepes t  port ion of t h e  po ten t ia l  

gradient  i s  near t h e  electrode surface, For each of t h e  mechanisms 

described i n  t h e  previous section,  t h e  act ivated s t a t e  e x i s t s  a t  a 

distance, x, from t h e  electrode. This va r i e s  w i t h d ,  t h e  f r ac t i on  of 

t h e  po ten t ia l  required t o  produce t h e  act ivated s t a t e .  Thfs dis tance 

should be l a rge r  f o r  t h e  e lect ron t r ans f e r  mechantam than f o r  adsorption 

o r  desorption mechanisms and should be even grea te r  f o r  t h e  e lec t ron  

exchange process. The net  reac t ion  r a t e ,  then, is a sum of a l l  t h e  

oxidatton and reduction occurring from t h e  electrode surface out t o  an 

i n f i n i t e l y  l a rge  distance,  X. The ne t  polarographic current  a t  any 

i n s t an t ,  it, may be expressed by an equation similar t o  Equation (2) : 

where At i s  t h e  surface area  of t h e  drop a t  time t, 
* 

DF, i s  t he  f r e e  energy of a c t i va t i on  of an ion  a t  d is tance x from 

t h e  eleotrode surfaoe, 

Ex is  t h e  po t en t i a l  a t  d is tance x, 

LrU*], and Lr9qX a r e  t h e  concentrations of chromium ( 111) and 

cbsomiw (IT), respectively,  a t  distance x. 
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P(ITElMXL GRADIEIVI NEAR ELECTRODE SURFACE 
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Distance From Electrode, A 
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I The primed quan t i t i e s  r e f e r  t o  chromium (11) ion. 

In tegrat ion of Equation (13) gives : 

KC f ~ ~ * + c L n 3  it = n3Atx KTi- exp 
RT o 

where AF* i s  t h e  average of a l l  AF: from 0 t o  X, 

E i s  the  di f ference i n  po t en t i a l  between t h e  electrode and t h e  

body , of t h e  solution,  

& is  t h e  f r ac t i on  of t h e  po ten t ia l  e f f ec t i ve  i n  reducing t h e  ion, 

Er+++]o and Lr'q r e f e r  t o  t h e  average values f o r  chromium (111) 
0 

and chromium (11) i n  t h e  surface layer.  

Primed terms again r e f e r  t o  chromium (11) oxidation. A t  increasing 

negative values of E, t he  second term on t h e  r i g h t  s i de  of Equation (14) 

' becomes negligible,  and t h e  current  is  e s sen t i a l l y  a reduction current .  

~ e w i s ( ~ ~ )  has shown t h i s  t o  be t r u e  by t h e  f a c t  t h a t  chromium (11) 

solut ions  give only a res idual  current  a t  po t en t i a l s  corresponding t o  

t h e  reduction of chromium (111) ion. A c ' ~ ~ g  t o  Heyrovqky and Ilkovic(18):  

where id is t h e  di f fus ion o r  l imi t ing  current ,  

KCr+++ i s  t h e  I lkovic constant  f o r  chromium (111) ion  i n  t h i s  

pa r t i cu l a r  system. 

Subst i tu t ing t h i s  i n to  Equation (14) we ge t  a t  l a rge  negative values 
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The va lue  of A t  as a func t ion  of t h e  mass of mercury flowing per  second 

from t h e  c a p i l l a r y ,  m, and i ts density,  d, may be expressed by: 

The I lkov ic  constant  may be w r i t t e n  ( ~ o l t h o f f  and Lingane (22))  : 

Incorporat ing Equations (1 7) and (18) i n t o  Equation (16) we  obtain: 

The average va lue  of t h e  cur ren t  i s  given by: 

where t,,, i s  t h e  drop time (he rea f te r  c a l l e d  t )  , then: 
L 

Converting t o  logarithms: 

When i equals  I/:! id, E equals  E1/2 and: 

So E may be givcn by: 
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(25) The preceding der ivat ion was presented by Lewis . A more exact 

expression has been dbrived by Koutecky (24) from t h e  equation 

id 
= 607 n CD1/2 m2/3 t1/6 ( 1  + Am-1/3 t1 /6 .~1/2)  

&ere A is  a constant given t h e  value 34 by Koutecky, 

C i s  t he  concentration of reducible ion i n  millimoles per  l i t e r ,  

which allows f o r  expansion of t h e  mercury drop and curvature of i t s  

surface. The only change produced i n  t h e  expression a s  used by ~ e w i s  is  

t h a t  t h e  term "In 0.77" i s  replaced by "In 0.87n. In t h e  calcula t ion of 

t h e  experimental data  i n  t h i s  study, Koutecky's value of 34 was used. 

P lo t s  of E v s  i n  f o r  t h e  polarograms obtained i n  t h i s  investi-  
id ' 5. 

gation f o r  chromium (111) reduction t o  chromium (11) i n  0.10E potassium 

n i t r a t e  of ten gave two s t r a i g h t  l i n e s  in te r sec t ing  a t  t h e  half-wave 

potent ia l .  This indicates  two mechanisms a r e  involved with a change i n  

mechanism occurring near t h e  half-wave potent ia l .  The values of d 
corresponding t o  each s tage i n  t h e  mechanism a r e  calculated from t h e  

slopes of t h e  E vs I n  - plots .  These values l i e  between zero and 
Id  - i 

I nn\ 

one. Other i r r eve r s ib l e  systems were found by Kolthoff and ~ i n ~ a n e ~ ~ )  

and Orlemann (29) t o  f i t  Equation (25). 

For convenience, Equation (24) can be writ ten:  

where B equals I n  0.87 
t1/2 kT (using Koutecky's constant) .  
'TK*T 

Subst i tu t ing AH*-TQS f o r  AF*, Equation (26) bacorues: 

* 
If we assume AH t o  be temperature independent, t h i s  equation has 

t h e  form a + bT. P lo t t ing  E,12 vs temperature enables one t o  determine 
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va lues  f o r  "aw, t h e  i n t e r cep t  on t h e  E1/2 a x i s  a t  T equal zero, and "bn, 
\ 

t h e  s lope of t h i s  p lo t .  The thermodynamic proper t ies  f o r  t he  rate-  

determining s tep  may be expressed i n  terms of nan and "bn: 

AH* = -dn& ( 29) 

AS* = d n S b  - R l n  B (3C) 

AF* = AH* - a s *  ( 31) 

Similar  expressiofis may be developed f o r  t h e  oxidation of t he  

chromium (11), but were not considered within t h e  scope of t h i s  invest i -  

gation. 
* * 

The experimentally determined values f o r  DH*,AS , AF , and 

o( a r e  discussed i n  a l a t e r  sec t ion  i n  regard t o  t h e  various suggested 

mechanisms. The quan t i t i e s  a r e  numerfcally t h e  same regardless of t h e  

mechanism, but t h e  e f f e c t  on t h e  values with changing solut ion and 

e lect rode surface  condit ions has s ignif icance i n  choosing a most reasonable 

mechanism. 

Consideration of t h e  foregoing theor ies  of poss ible  mechanisms leads  

t o  t h e  conclusion t h a t  invest igat ion of t h e  e f f e c t  of temperature and 

surface  ac t i ve  agents may o f f e r  evidence favorable t o  a pa r t i cu l a r  

mechanism. The study of temperature e f f e c t  on t h e  half-wave po ten t ia l  

y i e l d s  a value f o r  t h e  heat  of act ivat ion.  Changes i n  t h i s  value may 

permit t h e  choice of a "most reasonablen react ion path. 

Atmaratus: Figure 7 is  a photograph of t h e  laboratory apparatus. 

The equipment used included: 

1. A Leeds and Northrup Electro-Chemograph, Type E. The recorder 



FIGURE 2 

LABORATORY &PARATUS USEXI IN POLAROGRAPHIC STUDY OF THE MECHANISM 
OF ELECTROREDUCTION OF CHROMIUM (111) 
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sensi t ivi ty used in these studies was 2 microamperes f u l l  scale. 

The damping control on t h i s  polarograph was used a t  the f i r s t  

position (minimum damping) without effecting the half-wave 

potential or distorting the  currantvoltage curve, The p o l a r i ~  

ing slidewire was calibrated against an Eppley Laboratories 

standard c e l l  using a Leeds and Northrup K-2 potentiometer, 

2. A dropping mercury electrode was prepared by connecting a Fisher 

nectropode capalary  (approximately U .05 mlllimeZeP bOXe 

diameter) t o  a leveling bulb by a length of Tygon tube. The 

drop time was regulated by adjustilng the level of the mercury 

in the bulb re la t ive  t o  the  capillary t ip.  This difference was 

45.4 centimeters in all experiments. The quantity m 2/3 +,1/6 

fo r  t h i s  capillary was 2.00 + 0.01 millignms2/3 

over the range of temperature and potential examined. 

3 .  The reference electrode was prepared by grinding calomel w i t h  

mercury and covering t h i s  mixture with saturated p6t.assim 

chloride cantaifllng solid potassium chloride. The reference 

electrode temperature remained a t  20 2 lo. The saturated calomel 

reference electrode (S. C.E.) and bridge were shielded with 

aluminum f o i l  and gr6tltlded t o  ~l imina t e  errratlr: eWrel~ts i n  the 

c e l l  circuit.  

4, The polarographic c e l l  was of the modified Carrftt  t m e  (28) t o  

permit rapid deaeration, yet exclude the diffiaion of' agar and 

chloride ion into the area around the dropping mercury electrode. 

Figure 8 shows the construction of the cell .  The iUm~?~lsions w e :  

diameter, 4 centimeters; height, 8 centimeters. The resistance 
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of t h e  c e l l  assembly was measured with a Wheatstone.brfdge f o r  

use  i n  correct ing t h e  measured po t en t i a l  f o r  ohmic drop. 

5. The c e l l  temperature was regulated t o 2  0.05 degree by a constant 

temperature bath control led by a Bronwill Sc ien t i f i c ,  Inc. 

regulator.  Sodium chromate was added' t o  t h e  bath water and t h e  

s t i r r e r  grounded t o  minimize t he  pickup of extraneous currents  

by t he  c e l l  c i r cu i t .  

Reagents: A l l  reagents  were prepared with reagent grade chemicals 

and d i s t i l l e d  water. The chromium (111) n i t r a t e  and potassium n i t r a t e  

were Baker Analyzed Reagent Grade. A 0.48'@ so lu t ion  of chromium (111) 

n i t r a t e  was used i n  preparing a l l  chromium solutions.  Tn a l l  experiments 

t h e  chromium (111) concentration w a s  2.43 x l0-4h and t h e  potassium 

n i t r a t e  concentration O.1DB. Agar solut ions  were prepared by dissolving 

an appropr ia te  weight of Difco Bacto-Agar i n  hot  water and heating on a 

boi l ing water bath f o r  one hour t o  insure  complete hydrolysis. The 

i nd i f f e r en t  e l ec t ro ly t e  was then added, t h e  solut\ion cooled, an aliquot 

of t h e  chromium (111) n i t r a t e  stock solut ion added, and t he  solut ion 

made up t o  volume. 

Ex~er imenta l  Procedyre: The c e l l  was f i l l e d  with 2.43 x 10.~2 

chromium (111) n i t r a t e ,  0.0m potassium n i t r a t e  so lu t ion  and dsaesated 

by passing nitrogen (freed of oxygen by chromium (11) s u l f a t e  scrubbing) 

i n t o  t h e  c e l l  through t h e  s a l t  bridge and f r i t t e d  g lass  cylinder. Purge 

time was f i f t e e n  minutes. The nitrogen flow was then changed t o  sweep 

t h e  so lu t ion  surface and suct ion applied t o  t h e  nitrogen i n l e t  t o  f i l l  

t h e  bridge tube with c e l l  solution.  The dropping mercury e lect rode was 

placed i n  t h e  c e l l  following cleaning with 91 n i t r i c  ac id  and d i s t i l l e d  
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water, i n  t h a t  order. Three polarograms were made each time th'e condit ions 

were varied,  The temperature was then adjus ted  and/or t h e  so lu t ion  changed 

and a d d i t i o n a l  da ta  taken. 

, - Accuracy and Prec i s ioqof  Data: The current  was measured from t h e  

polarograms with a standard devia t ion between t h e  measurements of 2 1% 

including correc t ion f o r  t h e  r e s i d u a l  current .  The values  ca lcula ted  f o r  
1 

t h e  I lkovic  constant,  K = = d , f o r  chromium (111) ions  i n  t h i s  
Cm 2/3 

system a r e  given with  their^-standard devia t ion i n  Table I. Each o f - . the  

valu&s is t h e  average of t h r e e  determinations a t  a g a r .  conc6ntrations 

varying from zero to f7.f705 percent  by weight. The temperatures a r e  a l s o  

averages of t h r e e  values. 
, , 

. . 
0 

The d i f fus ion  constant  f o r  t h e  chromium (111) ion  a t  25 , DCr+++, . . :ii ,= _ .. :. 

calcula ted  from t h e  equation: . . .  . . , .: '1. ., .. 

K = 607 nII1I2 

where K is  t h e  I lkovic  constant,  was found t o  be 5.4 x loo6 cmi secol. -: , 

This  i s  i n  good agreement with Lewis1 value  (25) of 5.6 x loo6 cm2 sec-l , s '7. 

i n  0.m perch la r i c  ac id  and t h a t  of Lingane and ~ e c s o c k ( ~ ~ )  who found 

5.8 x loo6 cm2 sacg1 f o r  t h e  0.53 sodium perch lo ra te  system. 

A l l  p o t e n t i a l s  were measured aga ins t  a sa tu ra ted  calomel e lec t rode 

a t  room temperature (20 2' 1'). The s t a b i l i t y  of t h i s  reference  e lec t rode  

was checked pe r iod ica l ly  by determining t h e  half-wave p o t e n t i a l  f o r  cadmium 

reduction and was found t o  be 'constant within t h e  p rec i s ion  of t h e  graphi- 

c a l  measurement which was 2 3 mi l l ivo l t s .  . . 

, chromium (111) concentrat ions a r e  p rec i se  t o  2 1% and .agar t o  2 0 . 8 .  

The drop time was constant  a t  4 . 5 2 2  0.04 seconds a t  -1.0 v o l t  vs  t h e  

'saturated calomel electrode. Cell temperature was control led  t o  2 0.05'. 
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Potassium n i t r a t e  concentrat ion was 0.10&2 0.1%. 

The Current-Voltam Curves: Figure  9 shows t y p i c a l  current-voltage - 
curves obtained f o r  t h e  chromium (111)-chromium (11) reduction i n  0.10& 

, 

potassium n i t r a t e .  These curves a r e  t r a c i n g s  of t h e  average of t h e  
. 

cur ren t  f l u c t u a t i o n s  with t h e  dropping e lec t rode as recorded by t h e  

polarograph. 

. A n a l v & & m  Data: The t h e o r i e s  described i n  a precedina sec t ion  

a i i  p r e d i c t  t h e  fol iowing current-voltage re la t ionsh ip :  

Using t h i s  equation, a l l  polarograms were analyzed by p l o t t i n g  t h e  

p o t e n t i a l  v s  t h e  logari thm of . Figure  1 0  shows some t y p i c a l  r e s u l t s .  

0 
id - i 

Below 30.0 a s t r i c t  l i n e a r  r e l a t i o n s h i p  was observed i n  accordance with 

0 
Equation (32). A t  30.0 and above, however, two s t r a i g h t  l i n e s ,  i n t e r  

i s e c t i n g  a t  l o g  equals  zero, became apparent. 
id - i 

The half-wave p o t e n t i a l ,  E,P, was determined a s  t h e  value  of E a t  

. which t h e  logarithm. of was zero. Numerical va lues  f o r  Eq12, s lopes  
id ' i 

of t h e  . s t r a i g h t  l i n e  o r  l i n e s ,  and t h e  corresponding values  of d a r e  

given i n  Table 2. I n  t h e  cases where two s t r a i g h t  l i n e s  were obtained, 

El l2  was determined by t h e i r  point  of i n t e r s e c t i o n  with t h e  logari thm 

term equal  zbro l i n e .  Slope and &va lues  f o r  t h e  two l i n e s  were calcu- 

l a t e d  separa te ly .  In Table 2 ,  values f o r  t h e  l i n e  t o  t h e  p o s i t i v e  s i d e  

of El12 a r e  denoted by t h e  subsc r ip t  I, those  on t h e  negative s i d e  of 

El/* 11. 

Values were obtained from: 

&. = - 2.303 RT 
n 2 (slope) 



t 
Potent ia l .  Difference, 100 m/divis ion 

0 
D . No Agar, 40 . . -. A. No Agar, 25'. - -  . 

B .  2.5 x 1 0 - 3  Agar, 25'. E. 2.5 x 1 0 - 5  Agar, 40'. 2% .. : ..*. 

C. 5.0 x log3% Agar, 25'. 
0 

F. 5.0 x Agar, 40 . 

CUFtRENT-VOLTAGE CURVES FOR REDUCTION OF CHROMIUM (111) AT THE 

DROPPING MERCURY ELECTRODE I N  0.10B POTASSIUM NITRATE AND VARYING 

AGAR CONCENTRATIONS 
. . 
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L e t t e r s  R e f e r  t o  
. FIGURE 9 

I I I I I + - 
P o t e n t i a l  D i f f e r e n c e ,  100 m v / d i v i s i o n  

FIGURE 10 

POTENTIAL VERSUS LOG (-) FOR THE REDUCTION OF CHROMIUM ( 1 1 1 )  
Id  

I O N S  AT THE DROPPING PlERCURY ELECTRODE 1N 0.103 POTASSIUM NITRATE 

AND VARYING AGAR CONCEIVH~ATIONS. 

- .  



dE s lope  = 
d l o g  i ( 34) 

id - i 
The half-wave p o t e n t i a l  f o r  a p a r t i c u l a r  agar  concentrat ion was 

p l o t t e d  aga ins t  temperature. The curves obtained were l inea r .  Figure 11 

shows t h i s , r e l a t i o n s h i p  f o r  varying agar  concentration. The s lope  of t h i s  

.: p l o t  corresponds t o  "bw i n  Equation (30) and t h e  i n t e r c e p t  a t  O'K t o  "aw 

i n  Equation (29) . Theref ore: 

* 
A l l  va lues  of "au, a i d  the re f  ore  AH , were ca lcula ted  i n  reference  

t o  t h e  normal hydrogen e lec t rode,  N.H.E., which i s  -0.242 v o l t  v s  t h e  

sa tu ra ted  calomel ' electrode.  

The transm,ission coef f i c ien t ,  t(, is  assumed t o  be u n i t y  f o r  a l l  

ca lcula t ions .  
. ?  

0 
  he d i s t ance  f a c t o r ,  X, of Equation (14) was assumed t o  be 100 A i n  

9 
ca lcu la t ing  AS* and AF . This  f i g u r e  was chosen a s  a reasonable maximum 

d i s tance  a t  wh ich  reduction might occur and a l s o  s o  t h a t  t h e  d a t a  of t h i s  

study'would be comparable with those  of Lewis (25) f o r  t h e  pe rch lo r ic  ac id  

system. The value- of AS* w i l l  d i f f e r  by 1.6 c a l  mole-' degol l o r  a f a c t o r  
. . 

bf t i n  e r r o r  i n  t h i s  assumption. ~ h e r e f q r e ,  t h e r e  i s  an uncer ta in ty  i n  
.,... 
Y 

A F  of 4.6T o r  13.5 kcal  moleo1 a t  25' f o r  a devia t ion of X from 100 8 
, . 

by a f a c t o r  of ten. ' 



Temperature, OC* ' 

HALF-WAVE P O T E N T I A L S  F O R  T H E  REDUCTION O F  CHROMl7Jl.I (111) AT THE 

D R O P P I N G  MERCURY ELECTRODE I N  0.10g P O T A S S I U M  N I T M E  A S  A FUNCTION 



V I I .  RESULTS AND DISCUSSION - 

In t h e  treatment of t h e  experimental da ta  i n  which l o g  i 
. . . , id - i 

p lo t t ed  aga ins t  E, two s t r a i g h t  l i n e s  were obtained which in te r sec ted  a t  

t h e  half-wave p o t e n t i a l  ( log  equals zero).  The da ta  obtained from 
id - i 

these  p l o t s   a able 2) show two values  f o r d  suggest ing t h e  exis tence  of 
* * 

two mechanisms f o r  which t h e  thermodynamic funct ions  AH , A S  , and dl?* 

were ca lcula ted  and a r e  shown i n  Table 3. 

Similar  evidence f o r  t h e  exis tence  of two mechanisms was obtained i n  

a perchlor ic  ac id  system(7) and was explained by t h e  pos tu la t ion  t h a t ,  i n  

add i t ion  t o  e lec t ron  t r a n s f e r ,  e l ec t ron  exchange between t h e  reduced form 

near t h e  e lec t rode surface  and t h e  oxidized form i n  t h e  d i f fus ion  l a y e r  

became prominent a t  t h e  half-wave po ten t i a l .  The app l i ca t ion  of t h i s  

hypothesis t o  t h e  present  inves t iga t ion  i s  supported by t h e  f a c t  t h a t  t h e  

chromium (11) concentration a t  t h e  e lec t rode  su r face  increases  with 

increas ing negative p o t e n t i a l  u n t i l  a t  E1,/2 it i s  approximately equal t o  

t h e  chromium (111) concentration. 

In the . .present  study, t h e  e f f e c t  of agar  on t h e  thermodynamic 

funct ions  f o r  segments I: and I1 of t h e  l o g  - v s  E p l o t s  ( F i g w c  10) 
id - i 

was inves t igated  i n  t h e  hope t h a t  t h e  information obtained would he lp  i n  

t h e  choice of reasonable mechanisms t o  explain t h e  d i f f e r e n t  s lopes  of t h e  

two segments. A maximum agar  concen t ra t ion  of 5.0 x log3 weight percent  

was chosen f o r  t h e  present  inves t iga t ion  from d a t a  by o the r  experiment- 

ers (25) which indicated  t h a t  t h e  formation of a  monomolecular l a y e r  of 

agar  on t h e  mercury surface  i s  completed a t  t h i s  concentrat ion (Figure 12) .  

The el imination of maxima on polarograms obtained i n  t h i s  study following 



Agar Conoenkration, Weight Percent 

.E.anEz 

CHANGE I N  SURFACE 'IWSION OF MERCURY IN AGAR SOLUTIONS 

KC 25' AS A FiJNXION OF AGAR CONCENTRATION. 
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t h e  addi t ion of agar indicated t h a t  t h e  agar was still adsorbed a t  

po t en t i a l s  corresponding t o  t h e  reduction of chromium (111) t o  chromium 

(11). An adsorbed layer  of agar on t h e  mercury e lect rode would a l t e r  t he  

mechanism of reduction and cause a change i n  t h e  heat  of ac t iva t ion ,  i f  

t h e  mechanism involves adsorption o r  desorption of t h e  chromium (111) or  

chromium (11) ions. 

The data  i n  Table 3 ind ica te  t h a t  t h e  heat  of ac t iva t ion  f o r  t h e  

reduction of chromium (111) t o  chromium (11) did  not change within experi- 

mental e r ro r  over t h e  range of agar concentration studied. It may be 

concluded from the  constancy of t h e  values f o r  t h e  heat  of ac t iva t ion ,  

with and without agar, t h a t  adsorption o r  desorption of chromium ions  on 

t h e  mercury surface does not play a p a r t  i n  t h e  mechanism of reduction. I 

A calcula t ion of t h e  thermodynamic values f o r  t h e  ac t i va t i on  react ion 

i n  t h e  e lect ron t r ans f e r  mechanism may be made. When a chromium (111) ion 

i s  reduced, t h e  coordinated water sphere associated with t h i s  ion  must 

expand t o  t h a t  of t h e  chromium (11) ion. In t h e  e lec t ron  t r a c s f e r  

mechanism, t h i s  expansion of t h e  coordinated water sphere may be t h e  

ac t iva t ion  o r  rate-deterrnining step.  From a consideration of t h e  energy 

of a pa r t i o lo  i n  a d i e l e ~ t r i c ( ~ ~ ) :  

where q i s  t h e  charge of an ion of radius  r i n  a medium with t h e  d i e l e c t r i c  

if 
constant K. r i n  t h i s  case r e f e r s  t o  t h e  radius  of t he  chromium (11) ion. 

Similarly,  t h e  entropy change i s  given by: 

0 

For example, f o r  t h e  change from chromium (111) ( r  = 0.62 A) t o  chromium 
* 

, (11) ( r  = 0.80 i) i n  an aqueous medium, AF* was calculated t o  be 5.5 kcal  
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moleo1 and A S* 105 c a l  moleo1 degW'. The heat  of ac t iva t ion  (AH* = 

A F* + TAS*) using these  values  was calcula ted t o  be about 37 kca l  

mole-' a t  25'. 
* 

The average experimental value  of AH a t  a l l  agar concentrations 

 a able 3) f o r  t h e  reduction of chromium (111) t o  chromium (11) a t  

po t en t i a l s  more pos i t i ve  than t h e  half-wave po t en t i a l  was 34 kcal  moleo1. 

This  i s  i n  good agreement with t h e  t heo re t i c a l  value of 37 kcal  mole-' 

ca lcula ted from Equations (37) and (38) f o r  an e lec t ron  t r ans f e r  process. 
* 

Numerical values f o r a s *  and AF a r e  dependent on t h e  r a t e  theory 

applied i n  t h e  der ivat ion of the equations describing t h e  rate of reduction. 

However, t h e  e f f e c t  of changing so lu t ion  condit ions on t h e  values of AS* 

and AF*  a able 3) may be used i n  in te rpre t ing  t h e  mechanism. 

With increasing agar concentrations S* becomes more negative 

(Table 3).  This may be due t o  an increase  i n  t h e  dis tance X a8 t h e  

e lect rode becomes more heavily coated with agar o r  t o  a more precise  

degree of o r ien ta t ion  required f o r  t r ans f e r  of t h e  e lect ron between t h e  

p a r t i a l l y  covered e lect rode and t h e  ion. 

A t  t h e  electrode,  a po t en t i a l  gradient  exists over an appreciable 

d i s tance  from t h e  electrode surface  due t o  t h e  quantum mechanical tunnel- 

i ng  e f fec t .  Figure 6 shows a graphical  p ic tu re  of t h i s  gradient. The 

compact port ion of t h e  double l aye r  has been calcula ted (14) t o  be i n  t h e  
0 

order  of 10  A th ick  and accounts f o r  about 90 percent of t h e  po t en t i a l  

drop, t h e  d i f fuse  port ion extending out f o r  severa l  hundred angstroma. 

Applying Figure 6 t o  t h e  experimental data  f o r  t h e  reduotion of 

chromium (111) a t  po t en t i a l s  more pos i t ive  than El/*, it is  evident t h a t  

t h e  chromium (111) ion  i s  reduced a t  a point  where t h e  po t en t i a l  has 
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dropped t o  92 percent ( oC = 0.92) of the value a t  t he  electrode surface 
, , 

0 
o r  a t  a distance of approximately 10 A, near the  outer surface of the  

compact d,ouble layer. Assuming t h i s  value t o  be correct f o r  X ' in  Equation 
* 3( 

(28) the  values of AS and AF would be changed by +4.6 c a l  hole-' d e g l  

and -13.7 kcal mole-' , respectively. 

The d value f o r  segment I1 (Figure 10) i s  consistently smaller than 

the d value f o r  the  electron t ransfer  process (segment I), which occurs 

a t  more posi t ive potentials.  Since the  t ransfer  coefficient,  o( , was 

defined.as the  f rac t ion  of the  t o t a l  potent ial  difference between the  

electrode and the  body of the solution tha t  was e f fec t ive  i n  reducing the 

ion, then by the  exchange,, 

cr"(II1) + C ( I 1 )  ~ r* (11)  +, Cr(1II) I 

a chromium (111) ion has been effect ively transported from position C r  t o  
* 

C r  , i.e., closer t o  t h e  electrode, across a portion of the potent ial  

, gradient without the use of the  potent ial  difference. Therefore, t he  

t o t a l  process involving both electron t ransfer  and exchange (segment 11) 

must have a lower t ransfer  coefficient than one i n  which no  exchanges 

occur (segment I ) .  Table 2 shows the expected difference i n  the  t ransfer  
. . 

coefficients f o r  the  two reaction paths, 

Figure 13 shows a comparison between the  e f fec t  of agar on the  

entropy of act ivat ion f o r  the process occurring a t  potent ials  more 

posit ive than E1/2 and t h a t  occurring more negative than The two 

curves ahow aq almost" ident ica l  e f fec t  ,yiW increasing agar concentration 

a s  would be expected if the electron exchange occurred concurrently w i th  

electron t ransfer  a s  the secondarymechanism. The heat of act ivat ion f o r  

the  composite mechanism was not affected by agar adsorption.on the  mercurp 
. . .  * . . .  , .  
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0 Electron Transfer 

a El.ec.tron Exchange 

7 

Agar Concentration, Weight Percent 

ENTROPY OF ACTIVATION FOR THE REDUCTION OF CHROMIUM (111) IN 
0.10a POTASSIUM NlTTRATE AS A FUNCTION OF AGAR CONCENTRATION 



surface  a able 3). Elect rode.surface  changes would not be expected t o  

a f f e c t  t h e  exchange mechanism, and it has already been shown t h a t  t h e  

presence of agar had no e f f ec t  on t h e  primary mechanism, .electron t rans fe r .  

Thus, t h e  dual  mechanism hypothesis is i n  agreement with t h e  experimental 

data. 

S U M M A R Y  

The reduction of chromium (111) t o  chromium (11) i n  0.101- potassium 

n i t r a t e  a t  ,potent ia ls  more pos i t ive  than t h e  half-wave po ten t ia l  proceeds 

by a mechanism i n  which t h e  t r ans f e r  of an e lec t ron  from t h e  electrode t o  

an ion  near t h e  inner l i m i t  of t he  diffuse portion of t h e  double l ayer  i s  

t he  rate-determining step. The chromium (111) ion  i s  act ivated by t h e  

expansion of i t s  water sheath t o  t h e  chromium (11) configuration. 

A t  po ten t ia l s  more negative than t h e  half-wave potent ia l ,  t h e  

increasing r a t i o  of chromium (11) t o  chromium (111) ions i n  t h e  d i f fu se  

l ayer  promotes an e lect ron exchange mechanism which i s  concurrent with 

the  e lect ron t r ans f e r  occurring nearer t h e  e lect rode surface. A 

chromium (11) ion  reduces an incoming chromium (111) ion while it is  

s t i l l . i n  t h e  v i c i n i t y  of t h e  electrode. This oxidized ion i s  then 

re-reduced through e lect ron t r ans f e r  from t h e  electrode. 
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An O.10M potassium Nitrate a t  Various Termeratures 

Temperature 
T- 

O c 
. . 

All values of K are the average of three determinations. 

Precisions are standard deviations. 
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Reduction of Chromium j I I ~  I o w  a t  t& DroppAqg J$lectrQddee & 0.10M 

Potassium Ni t ra te  =& = Function of Tempe.rature a C-0-ncentrati-0-n. 

Temperature Agar, -E1/2 d d 0( 

O c Weight Percent Volts v s  S.C.E. EVE I I1 

20.3 O 0,805 0.76 -- --- 



Reduction, & Chromium (III) & ,Droppj .  Mercurv Electrode 

Over m e  20' & 40' i n  0 . 1 0 ~  Potassium N i t r e e  

"att ( vo l t s  vs  N.H.E.) -1.673 -1.635 -1.578 

A H : ~  (kcal/mole) 
* 

A S 2 5 ~ ~  (cal/(deg) (mole) 

a ~ 3 ~ 0 ~ ~  (cal/(deg) (mole) 






