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INVESTIGATION OF PATTERN RECOGNITION TECHNIQUES FOR THE
IDENTIFICATION OF SPLITTING SURFACES IN MONTE CARLO

PARTICLE TRANSPORT CALCULATIONS

by

James L. Macdonald

Abstract

Statistical and deterministic pattern recognition systems are
designed to classify the state space of a Monte Carlo transport problem
into importance regions. The surfaces separating the regions can be
used for particle splitting and Russian roulette in state space in order
to reduce the variance of the Monte Carlo tally.

Computer experiments are performed to evaluate the performance of
the technique using one and two dimensional Monte Carlo problems., Addi-~
tional experiments are performed to determine the sensitivity of the
technique to various pattern recognition and Monte Carlo problem dependent
parameters.

A system for applying the technique to a general purpose Monte
Carlo code is described. An estimate of the computer time required by the
technique is made in order to determine its effectiveness as a variance
reduction device. It is recommended that the techmique be further in-

vestigated in a general purpose Monte Carlo code.

xiii



I. Introduction

The Monte Carlo method of particle transport was originally
developed by Fermi, Ulam,and von Neumann during the mid 1940's.' As
digital computers became larger the method became more practical. Be-
cause of the large running times zncountered on early computers, the
method gained the reputation of being extremely time consuming. As a
result, the Monte Carlo method has often been referred to as "a method
of last resort."? The current generation of digital computers, such as
CDC 7600,has reduced the running time of problems previously taking in
the hours or days to only a few minutes. As a result, for the Monte
Carlo problems run today the method is hardly considered a 'method of
last resort" and in many cases is the '"only method of resort.” A des-
cription of Monte Carlo code development and the current state of the
art at the Los Alamos Scientific Laboratory is given in Section 1.1.

When the Monte Carlo method is used to solve a transport prob-
lem,the calculated answer is based on the sampling of statistical proc-
esses. Because of this, the answer has associated with it a prcbabilis-
tic error based on the statistical behavior of the answer. The purpose
of a Monte Carlo calculation is to calculate an answer that has a

variance below some acceptable level. As a result there have been

the

numerous techniques devised to accelerate the reduction of the variance.

These techniques and their corresponding problems are discussed in

Section 1.2.



The purpose of this thesis is to allow the computer to assist
in the reduction of the variance by using pattern recognition tech-
niques. The field of pattern recognition is very new, beginning with
the introduction of large computers in the 1940's. Pattern recognition
is discussed briefly in Section 1.3.

Sections 1.4, 1l.5,and 1.6 describe the purpose, scope, and out-

line of the dissertation respectively.

1.1) Monte Carlo Developrent

The development of the Monte Carlo method as an accepted dis-
cipline and research tool began during the second World War from
weapons development work.! These early applications are usually attrib-
uted to the work of Fermi, von Nevmann, and Ulam® and involved the
simulation of neutron diffusion in fissile material. Even at this
early stage the techniques of "splitting" and "Russian roulette" were
being used for variance reduction;1 however, the more rigorous
development of importance sampling was performed by Harris and Herman
Kahn in 1948.°

The first open discussions of Mo;te Carlo applications work took
place in 1949 at a symposium sponsored by the RAND Corporation.3
Since computer machinery did not exist at that time, calculations were
usually performed by hand. In the course of describing the usefulness

of an alignment chart for making calculations, Spim:adl+ states



«+.it also enables the computer to work

completely on one sheet of paper, only

interrupting his vision when a new random

number is required...
where the term "computer' refers to the person performing the calcula-
tion and the random numbers were provided from tables by RAND Corpora-
tion’. Desk top calculators helped speed up calculations some; how-

ever, these early calculators could only add, subtract, multiply, and

divide.

At Los Alamos, the first semi-useful equipment for performing Monte
Carlo calculations were IBM accounting machines.® The development of
MANIAC I resulted in the first computer application of Monte Carlo at
LASL.® However, each problem had to be programmed separately, in
machine language. Examples of some of these early problems are given

in reference 7.

As Monte Carlo developed in the 50's, it quickly became a "fad"
as is described in reference 1:

...There was an understandable attempt to
solve every problem in sight by Monte Carlo,
but not enough attention paid to which of
these problems it could solve efficiently
and which it could only handle inefficiently;
and proponents of conventionzl numerical
methods were not above pointing to those
problems where Monte Carlo methods were
markedly inferior to numerical analysis...

However, the same author' notes when referring to the 60's:

...In the last few years Monte Narlo methods
have come back into favor. This is mainly
due to better recognition of those problems
in which it is the best, and sometimes the
only, available technique...



The problems for which Monte Carlo is best suited have increased in

number for the following reasous:

¢y

(2)

3

Improved variance reduction techniques have made Monte
Carlo more efficlent where before it was very inefficient.
Computer machinery has improved so as to make previously
unsolvable problems solvable in a reasonable amount of
time.

Increasing demands for details to be included in a problem
have in some cases eliminated solution by numerical tech-
niques which required many simplifying assumptions., Ex-
amples of this are particle transport involving mixed
diffusion and streaming effects, three-dimensional complex

geometries, and requirements for non-group energy treat-

ments.

As a result of the demands for Monte Carlo calculations, group TD-6 of

the Los Alamos Scientific Laboratory has developed a number of particle

transport codes 8, Although these codes are primarily intended for

weapons development, they are often used in many other programs at LASL.

These computer codes are used on CDC 7600 computers and include the

following:

%)

MCN'2 A neutron transport code

MCG32E A gamma ray transport code

Mcp3d A general photon transport code (includes lower
energy treatment than MCG)

MCNG - A combined neutron-~gamma transport code



(5) MCNA?L A neutron adjoint code

(6) MCK - A criticality code

(7) MCMG - A neutron-gamma multi-group transport code

(8) MCGE’% A coupled electron~photon transport code

¢D) MCGBai A gamma code with Bremsstrahlung
In the case of the neutron related codes (except MCMG) the cross-
sections are provided as pointwise data that is vead into the codes in
considerable detail. Although this greatly reduces the nutb:r of

approximations and distortions caused by cross-section reduction, it

does place a considerable burden on the computer. For example, the na-
tional Evaluated Nuclear Data File (ENDF) version of ircnm requires
50,000 words of storage. The codes handle three-dimensional geometry
involving first, second, and some fourth (elliptical tori) degree sur-
faces. All codes are programmed in FORTRAN IV, .

Although the researeh of this dissertation is applicable to
Monte Carlo codes in general, it is the above codes that are of particu-
lar interest. Thus some of the research is directly related to functions

as they are performed in these codes.



1.2) Incentive for this Research

The overwhelming majority of Monte Carlo improvements reported

in the literature are related to the reduction of the probabilistic error

or variance associated with the Monte Carlo answer or tally. The use of

these "variance reduction" techniques varies in proportion to the dif-

ficulty encountered in their iImplementation. The difficulty of imple~-

menting many of these techniques is due to:

1)

2)

3)

(4}

The complexities involved in applying the technique to real
problems. For example, many of the techniques are theoreti-
cally based on very simple geometries, etc.; whereas, actual
Monte Carlo problems usually involve complex three~dimen~
sional geometries. Many of the techniques do not “scale up"

to real applications.

Some of the variance reduction techniques proposed are "unsafe"

in that they can distort the calculations resulting in the

wrong value for the tally.

Most of the techniques require that a priori information be
provided by the user. This information is usually nuantita-
tive in nature and depends on the intuition and experience
of the user. Furthermore, 1f the user provides the wrong

information, some variance reductioa techniques can actually

consume more zomputer time than they save.

Because of the diversity of Monte Carlo problems, different

problems require different techniques. As a resuit, the



user is not sure when to use one technique as opposed to

another.

A fundamental problem of all variance reduction techniques is that if cne
were going to use z technique optimally, he would have to know all the
characteristics (including the answer) of the Monte Carlo problem being
investigated before applying the technique. Thus vwhat is needed is a
technique that instead of requiring information from the user, obtains
most of the necessary informoation during the Monte Carlo calculation.
Such learning®* techniques have been proposed in the literature
and are discussed in Chapter II. The methods of Spanieg and MacMillan®
involve learning of an optimum parameter for use with the exponential
transform techniqué '(see Section 2.3.2). This approach has the disadvantage
thet it is based on a technigue, the exponential tramsform, which can be
unsafe if used improperly. Furthermore, the technique is primzrily con-
cerned with directional variables and is difficult to apply to problexs
involving complex gecmetries. Another learning method'? has been prcposed

which learns optimum spatial quantities. Besides being limited to spatial
variables, this technique has difficulties with problems involving small
prodabilities.

The most successful techniques used in the Los Alamos Monte Carlo

1%
codes are geometry splittiné“ and Russian roulette (see Section 2.3.1).

*# A learning technicue in this dissertation refers to the ability of =z
conputer program to improve its performance in solving a problem based
on its own experience!®. This is achieved by a preplanned strategy
wherein the program podifies itself based on information gained through
experience and evaluation of its previous operations.



These techniques are popular because they are safe and simple to im-
plement. Even when not used optimally, they still yield large savings in
computer time. These methods have the disadvantage that they are con-
fined to spatial coordinates (energy splitting can be used, but only
independently of geometry splitting) and do require that quantitative
information be supplied by the user prior to implementation.

What is needed is a technique which is as safe and simple to use
as splitting and Russian roulette, involves all variables of the Monte
Carlo problem (spatial, directional, energy, and time) as a whole instead
of independently, and relieves the user of the task of providing quanti-
tative information. The development of such a technique using pattern

recognition is the subject of this research.

1.3) Pattern Recognition

Before the introduction of large digital computers pattern recog-
nition could only be described as being a human function. Examples of

human pattern recognition are:

-~ recognition of a man from a woman
- recognition of handwritten characters
- recognition of speech

~ recognition of a dog from a cat

Pattern recognition is frequently referred to as an "artificial intelli~
gence" technique since it performs an operation on a computer which is

usually considered to require intelligence. The pattern recognition



process consists of these basic functiomns:

(1) identifying which features of the problem being analyzed

are important

(2) finding a correlation between these features and various

categories (or classes) into which the input can be sorted

(3) sorting future input into classes according to the cor-

relation determined in (2).

These operations can be performed by mathematical transforms that usually
require machine learning of some of the parameters involved. These func-

tions will be discussed in more detail in Chapter III.

1.4) Purpose of Dissertation

The purpose of this dissertation is to establish a "proof of
principle" for the application of pattern recognition techniques to the
identification of splitting surfaces in Monte Carlo particle tramnsport

calculations. This is done by:

£1) Developing a pattern recognition system that can be used to

learn splitting surfaces in Monte Carlo transport calculations.

(2) 1Investigating the performance of statistical and deter-
ministic classifiers when used to recognize splitting sur-
faces. This investigation includes a sensitivity study of

the pattern recognition parameters involved.



(3) Proposing a system for applying pattern recognition to a

general purpose Monte Carlo code.

(4) Analyzing the effectivemess that can be expected by using

pattern recognition as a variance reduction technique.

Thus the purpose of this dissertation is not to apply the technique

to a general purpose Monte Carlo code but to establish that such an

application would be profitable.

1.5) Scope of Dissertation

The scope of this dissertation is limited in two areas: (1) the
selection of a pattern recognition system and (2) the selection of
Monte Carlo problems used for demonstration.

There have been many pattern recognition systems developed for a
large range of problems. This research investigates two basic techniques
(one statistical and one deterministic) which are suitable for the type
of information generated in a Monte Carlo calculation. These techniques
are used with as little modification as possible from the basic algorithms
found in the literaturd®/!®. Thus the purpose of this research is not tc
design an optimum pattern recognition system.

The Monte Carlo problems used in this research have been chosen
50 as to minimize computer time while gtill being useful models for
demonstrating the operations of the pattern recognition system. Since
many Monte Carlo runs are necessary in research of this type (600 to 700

runs were performed), the computer time would be prohibitive (at least 10
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times as great) using a general purpose code with complex problems.

The majority of parameter tests and classifier evaluation experi-
ments were performed using a one-dimensional, one-region, homogeneous
slab Monta Carlo problem. Although such a model is simplified, it still
exhibits the characteristics necessary for the application of pattern
recognition. Computational experiments are also performed using a one-
dimensional multi-region slab and a two-dimensional (distance and direc-
tion) multi-region slab. It is found that the only modification to the
pattern recognition system necessary for increasing the dimensionality of

the problem is to increase the dimensionality of the various vectors

involved.

1.6) Outline of Dissertation

It is assumed in this dissertation that the reader is familiar
with statistical terminology (i.e., mean, variance, probability distribu-
tion, etc.) but is not familiar with either the Monte Carlo method or
pattern recognition theory. The next two chapters are intend:d to
introduce the reader to these topics.

Chapter II introduces the basic principles of Monte Carlo and how
statistical errors are calculated. In addition variance reduction tech-
niques are described and the incentives for state space splitting are
presented. Finally, a means for measuring the success of a variance re-
duction technique is described.

Chapter III discusses the general operations of a pattern recog-

nition system. Particular attention is given to the classification

11



techniques that are used in this research. The problem of feature
selection is only described as it relates to the Monte Carlo problem.

In Chapter IV a pattern recognition system is developed for
identifying splitting surfaces and performing various parameter tests
(items (1) and (2) of Section 1l.4). 1In this chapter a scheme is pre-
sented for learning a single splitting surface and is implemented on a
one-dimensional one-region slab, a one-dimensional multi-region slab,
and a two-dimensional slab Monte Carlo problem. Several parameter tests
are made in this chapter and comparisons are made between the different
classifiers used. The computer programs used in Chapter IV are given
in the Appendices. Although these programs are not implemented on a
general purpose Monte Carlo code, several of the timing parameters involved
are approximated.

Chapter V considers the practical problem of implementing the
technique for full scale applications. A system suitable for general
applications is designed and required user input is noted. Finally, an
analysis is performed to determine the effectiveness of the technique.
Thus Chapter V treats items (3) and (4) of Section 1.4.

Chapter VI states the conclusions of this research and makes
recommendations for implementing this research on a full scale in a

general purpose Monte Carlc code.
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II. The Monte Carlo Method and Variance Reduction

Although the Monte Carlo method is applied to a wide range of
problems, the emphasis of this research will be on particle transport cal-
culations., It is the purpose of this chapter to describe in very general
terms how Monte Carlo sampling is performed and how statistical errors
are determined (Section 2.1). For further details of the sampling used
for neutron transport, the reader is referred to Appendix A. Section 2.2
contains a description of variance reduction in general and Section 2.3
surveys some of the more common variance reduction techniques including
those which involve learning. A method is then proposed which requires
learning during the Monte Carlo calculation in order to reduce the vari-
ance (Sextion 2.4). Finally, in Section 2.5 effectiveness of Monte Carlo

calculations will be defined so that the effect of variance reduction can

be measured.

2.1) The Monte Carlo Method for Particle Transport

2.1.1) Basic Principles

The transport problem in this research consists of estimating the
probability that particles leaving a source and undergoing various pro-
cesses (capture, escape, etc.) will finally terminate in a specified
category or tally., Decisions as to which processes occur are made by

sampling the appropriate "probability distribution" functions as described

below.

13



The probability that a variable s lies between s znd s+ds is given

by p(s)ds uliore p(s) is defined as the probability density function e

An exanple of such a function is shown in Figure 2.1 for s ranging froo

0 to 3. In this research it is always assumed that p(s) has been normalized

so that
fp(s)ds =1

where the integral is over all possible s.

p(s) |

Figure 2.1 A Probability Density Function

13

The integral of p(s) is defined as the probability distribution function:
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P(s) = p(s')ds' (2.1)

The distribution function of the example in Figure 2.1 is shown

in Figure 2.2.

P(s) "

Figure 2.2 A Probability Distribution Function

The probability distribution function is sampled by choosing a random

number, r, between 0 and 1 and setting r equal to P(s) as given by

r= p(s')ds' (2.2)

15



The s that satisfies this equality is used as the sampled value, The
values of s sanpled in this rammer can be shown to have the probabilicy
density p(s).*

As an example cf this sa=pling process, consider the case of o
neutron enicted from one side of 2 slab (see Figere 2.3) in the 4 divece

tion.

Sourcel.ge dircction of
art

e %

Figure 2.3 Sazpling Distance to Collision

The probability that this neutron hzs a collision betwcen x and xidx is

given by 18

plx)dx = & e Bex dx

wvhere Xt the total macroscopic cross saction

p(x)

[}

the probability density function fer a collision
at xl

16



The probability distribution function for this process is given by

P(x) = p{x*)dx"’

o

x
. wEox!
) Jlﬁ ice e dx
0

-Etx
Pix} » 1 «¢

Note that if x=, P(x)}=l and if x=0, P(x)=0. Setting a random number, r,

(0Sr<1l) equal to the probability distribution function gives

-Ecx
r=Px)=1-¢

v = in{r)
. L

e

where (1-r) has been replaced by r.
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The value of x for a given r is the sampled value for the distance to a
collision. In Monte Carlo transport calculations many processes are
sampled similar to the example above. Appendix A describes the sampling

process in more detail for the case of neutron transport.

Eventually, after undergoing numerous events as determined by the
appropriate probability distributions,a particle is lost to the system.
This occurs when the particle is either captured, leaves the system being
considered, falls below the energy range of interest, etc. At this point
the contribution, x;, of the i'th particle to the tally under study is

calculated. Thus, for N particles the average contribution to the tally

is

d=1 (2.3)

This x is the statistical approximation used to estimate the physical

quantity of interest.
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2.1.2) Estimate of Statistical Errors

The mean value of N samples, ;; is given by Equation 2.3. The

. 17 - . .
variance of the N samples with respect to the sample mean x is given by

N

760 = }_, (x; -~ 02 (2.4a)
=

2@ = o |2 - 2| (2.4b)

17 .,
The true mean of x is given by

x(s)p(s)ds (2.5)

<xD

where p(s) is the probability density function of s. The mean <{x)> is
often referred to as the "expecLed"I%alue of x(s). For an unbiased!’

estimate X,

(D =& 2.6)
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The true variance of x(s) is defined as the second moment of x(s) about

{x> as given by

-]

0% (x) = (x(s) - (x))z p(s)ds (2.7)

b~ ~}

It can be shown (see Appendix B) that the variance of the samples X, about

the true mean <x) is given by

o2 = T (2.8)

Since in practice neither <x> or o?(x) is known, they are approxi-
_ 2 —
mated by x and ¢ (x)? Making these substitutions and assuming large N

results in

-2 =
@ = 1&") ~ E2 = X2 (2.9)
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as an estimate of the var .

7
The Central Limit Theoreﬁ {see Appendix B) states that

Prob IQE(x) <(x -<¢xM <ﬁE(x)l ~L [ & Cac. (2.10)

For an=-1 and £ =1, Equation 2.10 means that there is a 68.3% probability
that the estimated mean is within *0(x) of the true mean.
Frequently in Monte Carlo calculations it is helpful to express

. 19 .
the error in terms of relative error as given by

(2.11)

Equation 2.11 exhibits a very important characteristic of Monte Carlo

calculations-- that the error of the sample mean varies as 1A/N .
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2.2) Variance Reduction

In order to decrease the error of a Monte Carlo calculation (see
Equation 2.11), one must either increase N or decrease ECE). The effec-
tiveness of increasing N to reduce the error is illustrated in Figure 2.4.
From this figure it is apparent that as N increases, the decrease in Re,
ARe, for a given increase in N, AN, decreases. For example, increasing the
number of particles from N=100 to N=10,000 reduces the error by a factor
of 10; however, increasing N from 10,000 to 20,000 reduces the error
by a factor of only /2, Although computer time spent per particle
history is an extremely problem dependent parameter, in many cases run-~
ning time becomes prohibitive after a sample of 10,000 to 100,000 par-
ticles, If the relative error is still unacceptably large after several
10,000 particles, additional histories are far too costly for the small

amount of error reduction gained.

Relative Error,Re

Number of Histories, N

Figure 2.4 Reducing Error by Increasing the Number of Histories
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Because of this problem variance reduction techniques are often
required to reduce the variance of the sample mean., As seen by Equation
2.4a,the only way to do this is to sample values of Xy which are closer
to x.

One technique frequently used for doing this is the im-
plementation of particle "weights"7*!! with the elimination of capture.
The weight of a particle can be thought oi as representing a fraction
of a particle. For example, a3 weight of 1.0 represents an entire particle
vhereas a weight of 0.5 represents only half a particle., When a particle
undergoes a reaction, it is never "killed" by a capture but instead its
weight is multiplied by the factor Zna/Et (Zna = non-absorption cross

section, Zt = total cross section) and the particle history is continued

with reduced weight.

Example. Consider a Monte Carlo problem in which 100 neutrons
are started from a source. Of these neutrons 30% leak
out of the system without a collision and 30% are cap-
tured at their first collision. The remaining neutrons
undergo one scattering collision after which they are
tallied with a value of xi=1. Using no weights and
assuming neutrons behave exactly as the above percentages

indicate, one arrives at:

100
X,
i
—_  i=1 40x1.0 + 60x0.0
X="300 ~ 100 = .

100

- - 1 —
2@ = o5 Z (xy-0? = s [60x(.4)2 + 40x(.6)2] - .24
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Using weights and assuming that each neutron that does
not escepe undergoes one collision and is thern tallied

results in:

100
E xiwi
- =1 _ 30x0.0 + 7034/7
X = 7100 = 100 = .4
100
20y o L N2 1 ) 2 2
o?(x) = 755 1-2;1 (%)% = 755 [303(.4) + 70x(.17) ] = .0686

A nzme applied to a family of variance reduction techniques is

“irportence sampling"!®»??,

In transport problems, importznce sampling
refers to preferentially sampling those particles which are more likely
to contribute to the tally being investigated. From a probability

density function p(x) the mean value of a function f(x) is given by

<f (x)) = jrf (x)p(x)dx (2.12)

In izportance sampling an alternate distribution pA(x) is used and the

function f(x) is multiplied by w{(x) where
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wix) = R (2.13)

Using this alternate distribution gives a mean of

<fA(x)> = ffA(x)pA(x)dx = ﬁ(x) [Eﬁ'g—::‘;']PA(x)dx = <f(x)> (2.14)

Thus the mean is unchanged. However, the second moment of fA(X) is given

by

]

./.fi(x)pA(x)dx =fl';§%}%]f2(x)p(x)dx

fx(x)fz(x)p(x)dx, (2.15)

=

- = p(x)
where I(x) [pA(x)] .

This 1is not the same as the second moment of the unaltered distribution

which is
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(fz(x)> =ff2(x)p(x)dx (2.16)

In Equation 2.15 <fi(x)> can be reduced by decreasing I(x) where p(x)
is large. This requires that I(x) be increased where p(x} is small.

In the ideal case p,(x)= fEfé(é?i resulting in

02(£,()) = (fi(x)) - <f<x>>2

= £ (x)-RLX) _ <f(x)> Zp (x)dx = 0 (2.17)
f[ py (%) A

However, before this zero variance p,(x) can be found, the mean < f(x)>
must be known, which of course is never the case. In the following section

several techniques based on importance sampling will be discussed.

2.3) Survey of Variance Reduction Techniques

During the development of Monte Carle, there have been numerous
techniques proposed to reduce the variance of the Monte Carlo tally. How-
ever, wheu one looks at the major Monte Carlo codes, he finds that only
very few of these techniques are used. One of the reasons for this is that

many methods are "unsafe'" to use because they may bias the answer or may
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actually consume more computer time than they save. Other methods are
rarely used because they are too complex to implement. The majority of this
section will be devoted to the description of splittingl" and Russian

* which are perhaps the most widely used variance reduction

roulette!
techniques. A brief description of some other popular techniques will

also be given. In Section 2.3.3 techniques which require ''learning”

during the calculations will be discussed.

2.3.1) Splitting and Russian Roulette

Splitting accompanied by Russian roulette is one of the most
commonly used variance reduction techniques? It consists of dividing
the geometry of the problem into regions and assigning an importance to
each region. This "importance" is selected so that particles in a region
of high importance have a higher probability of contributing to the tally.
A particle going from a region of low importance to one of greater im-
portance is split at the boundary between the regions into two or more
particles (the number depends on the ratio of the importinces) with each
new particle having a reduced weight. A particle entering a region of
lesser importance is terminated or "killed" with a probability determined
by the ratio of importances. If the particle survives the Russian
roulette, its weight is increased proportionately.

Figure 2.5 shows an example of splitting planes and importance
regions used with aninfinite slab of thickness T. For problems in which
T iz many mean free paths, splitting and Russian roulette can be very

effective and often lead to several orders of magnitude reduction in
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computer time.

-splitting planes

planar —®™ l
source
l le— tally particles
crossing this
, surface
|

I=Importance

— — e——— —— a—
— — —

Figure 2.5 Splitting Planes in One Dimension

Splitting and Russian roulette can also be used in energy space
for problems in which particular energy regions are more important than

others. An example of "emergy splitting”'“ is the tallying of y235

thermal fission. In this case, one ould separate energy space into
regions which increase in importance as thermal energies are approached

as shown in Figure 2.6.

28



I=Importance

U-235 O¢

Energy

Figure 2.6 Energy Splitting

The popularity of the above techniques can be attributed pri-
marily to the ease of their implementation. In most cases only a very
rough guess based on intuition will lead to a large savings in computer
time. Usually the importance regions specified are already geometrically
defined by the problem (different materials, densities, and shapes) and

the user only has to provide the importances.

2.3.2) Other Techniques

A very simple technique commonly used is source biasing’>1*.
In source biasing important particles are produced more frequently but

with reduced weights. An example of source biasing is showm in Figure 2.7.
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particles
crossing this >
surface are lost

thin slab source
[ —tally particles

crossing this

f=2,u=.75 surface

R

w

1O 0 OGS 00D 0.9 0.0.9.0.9.9.9.0:1

r-n‘ —%

w=particle weight
f=frequency of
emission

N

Figure 2.7 Source Biasing

In this example twice as many particles are started to the right as to the

left. However particles to the left have twice as much weight.
Another method used to increase the number of particles in im-
11,14, 30

portant regions is the exponential transform This technique

transforms the transport equation, resulting in the replacement of Zt

by I, - w where w is the direction cosine of the line of flight of the
particle with the preferred line of flight. Figure 2.5 shows the case
where the desired line of flight is the x-axis. The weight of a particle

entering a collision is multiplied by
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— o ~Ows (2.18)

where s is the distance traveled before collision.
A problem in using many importance sampling techniques is that

of choosing near optimum biasing parameters. This is frequeuntlyvy done by

rough calculations or maybe even a few preliminary Monte Carlo calculaticns.

14,20

Another method is to use the solution to the adjoint of the problem

to estimate these parameters. The computation of importance sampling
functions has also been automated by other means.

Other variance reduction techniques include stratified samplingl,
antithetic variatesll, scattering angle biasingzx, method of expected

11,29 32

11, correlated sampling ; and others”“.

values

2.3.3) Variance Reduction Through Learning

In all of the previously mentioned techniques, importance samp-
ling parameters had to be provided prior to the execution of the Monte
Carlo calculations. In this section techniques will be described which
allow the variance reduction technique to improve during operation by
learning from early histories of the calculations.

Spanier9 applies a learning technique to the exponential trans-
form using a one-dimensional slab as an example. The parameter g (see
Section 2.3.2) is optimized by making estimates of <f§(x)> for several

values of o while histories are being generated on the basis of the
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parameter value &. An @ which minimizes <f§(x)> can then be used in
another iteration as the next &. This process continues until satisfactory
agreement is reached between two stagas. In the examples given three
iterations were sufficient and led to a greatly reduced variance.
MacMillan'® suggests a refinement on Spanier's method involving estimates

of the first and second derivatives of <f§(x)> with respect to & and

using these estimates to improve the approximation of & in going from

one iteration to another.

A multistage self-improving Monte Carlo method!? has been des-
cribed which divides space into volumes V; and assigns each volume a
weight p; where Py determines the amount of sampling for associated Vi,
The Monte Carlo calculation then proceeds in stages after which p; and
V; are altered in such a way as to reduce the variance. This method is
analogous to learning the optimum importances for different geometry
regions only in this case the extent of the regions is variable. For
small probability problems the range of the tally is enlarged to increase
the probability until suitable V4 and p; are learned after which the tally
is reduced to its original specifications. Running times have been re-
duced as much as a factor of 100 using this method over the crude Monte
Carlo'?.

The Spanier and MacMillan techniques are primarily concerned with
the directional variables of a Monte Carlo problem and since they are
based on the exponential transform, they can be unsafe to use. The multi~
stage technique is concerned primarily with spatial variables. Further-
more, this technique has disadvantages when used with Monte Carlo problems
with low probability.
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2.4) Splitting and Russian Roulette in State Space

Consider the general Monte Carlo problem in which particles are

characterized by the following state variables:

~ Spatial coordinates-x,y,and z

=~ Angular coordinates-u,v, and w, where these values are
the cosines of the particle line of flight with the
x,y, and z axis respectively.

~ Energy-E

-~ Time-t

In Section 2.3.1 splitting and Russian Roulette were described primarily
as applied to the spatial coordinates. Independent application was also
mentioned with respect to the energy variable.

Theoretically,it would be quite effective if splitting could be
used in the entire state space. In other words all variables would be
considered to determine which regions in state space are more important
than others. A practical problem arises in determining the importances
of these state space regions. Users have trouble enough with the three
spatial coordinates; the complexity involved in determining splitting
surfaces in eight dimensions would certainly confuse even the most

experienced user.

As has been seen in the previous sections, there is a considerable
amount of information generated during a Monte Carlo calculation which
can be used to accelerate the calculation. However, utilization of this
information can become costly in terms of computer time and storage. In

this research, pattern recognition techniques are used to
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learn these splitting surfaces during the calculations.
Such a technijue would be an improvement over the learning

techniques described in Section 2.3.3 for two reasons:

(1) All state space parameters would be considered, not just

directional or spatial quantities.

(2) The technique is based on the splitting and Russian
roulette techniques which have proven to be the most

popular and useful techniques.

2.5) Effectiveness of Variance Reduction Techniques

Although it is certainly useful in Monte Carlo calculations to
reduce the variance, the primary goal is to reduce the amount of computer
time spent on a calculation. It is quite possible to use variance re-
duction to decrease 0 for a given N but in so doing to increase the time
spent per particle to such an extent that it would be cheaper just to
run more particles. Therefore, the parameter to minimize is the time

required to obtain the desired relative error as given by

tc = NeAte (2.19)
where: N, = number of histories required to obtain
the desired Re (see Equation 2.11)
At, = time spent per neutron history
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Variance reduction techniques decrease Ne but increase Ate. If tc*, Ne*,
and Ate* are the parazeters of a calculation without using variance re-
duction, then the relative effectiveness of a technique can be defined

as

- [ xe‘Lte
F. =

R t o Y *lt &* (2-20)
Cc e Tre

.

It should be recembered that ER is relative to the following factors:

(1) the cozputing machinery being used,

(2) the efficiency of the Monte Carlo calculation without
veriance reduction,

(3) the characteristics of the particular problen under
study and,

{4) the progre-—=ming efficiency used to implement the technique

(i.e., assexzbiy language vs. FORTRPAN etc.).

Of the above, point three is the most important since the effectiveness
of a technique is strongly dependent on the problem to which it is being
applied.

Computer time spent during a calculation is not the only measure
of performance for evaluating variance reduction techniques. Another
parameter is the amount of human effort (and sometimes additional com-
puter time) required to implement a technique. The majority of techuiques

in use require a certain amount of a priori information. Thus the
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implementation of some techniques is an art in itself requiring con-

siderable ingenuity and experience on the part of the user. In addition

some techniques require that calculations be performed in order to deter-

mine importance parameters, etc. Figure 2.8 illustrates the operations

and times required in implementing a variance reduction technique. The

importance attributed to time spent on each of these operations is an ex-

tremely subjective function yet it certainly influences the overall

acceptability of a technique.

Determine
Variance
Reduction
Parameters

l

—
e
problem . Monte Carlo
description . Calculation
—
Variance
Reduction
Calculations

T

Prepare Data
for Variance
Reduction

Calculations

user time
spant

Monte Carlo
Estimate

computer time
spent

user time
spent

Figure 2.8 Implementation of Variance Reduction Techniques
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III. Pattern Recognition

The field of pattern recognition includes an extremely broad range
of topics including engineering applications, artificial intelligence
studies, biological systems, and others. Because of its diffuse appli-
cation, a general theory of pattern recognition is difficult to separate
from its applications. To confuse matters further, it appears that even
the introductery textés’16’22’23’2h’§3’§§ttern recognition do not agree
on a unified framework for describing pattern recognition systems. As
a result, a novice in the field frequently encounters a variety of new
vocabulary words describing types of pattern recognition systems including
such terminology as statistical, parametric, non~parametric, sequential,
distribution free, stochastic, nonsupervised, supervised, error-correcting,
Bayesian, etc.

The purpose of this chapter is not to explain all facets of pattern
recognition to the reader, but only to provide him with the tools nec~
essary to understand how pattern recognition is to be used in this re-
search.

A general pattern recognition system will be explained in Section
3.1 in terms of the basic operations performed. The different types of
pattern classification algorithms will then be classified according to
the type of input data they require . Sections 3.2 and 3.3 describe in
more detail the type of pattern classification algorithms to be used in
this research. Section 3.4 discusses the problem of feature selection

with emphasis on the Monte Carlo transport problem. Finally, Section 3.5

expands the previous explanations to multiclass problems.
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3.1) The General Pattern Recognition Problem

3.1.1) Fundamentals

The primary difficulty with understanding the fundamentals of a
pattern recognition system is due to the terminology used. This section
introduces pattern recognition terminology by relating the concepts to

the simple example of weather prediction as given below:

Example. Given the following information -
(1) barometric pressure,
(2) temperature, and |

(3) percent cloud coverage,

predict whether it will
(1) rain, or

(2) not rain.

The input ~ output relationship of a system to perform this task is showm

in Figure 3.1.

Input Qutput

Pressure e——— o Weather
Temperature —_— PrEdlftlon e Rain or
System No Rain

Cloud Coverage ~

Figure 3.1 Input-Output Model of Weather Prediction
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A coordinate system defined by the input variables of Figure 3.1

is shown in Figure 3.2

x3 = cloud coverage

(XlaXZsXB)

X; = pressure

Xp= temperature

Figure 3.2 Pattern Space

and is referred to as pattern space. The vector drawn from the origin of

pattern space to the point (xl,xz,x3) in Figure 3.2 is called the pattern

vecter and in this dissertation will be designated by
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vhere R is the dimension of pattern space (R=3 for the example shown in
Figure 3.2). The purpose of the pattern recognition system in this ex~
ample is to divide pattern space into two regions: (1) those X which

indicate rain and (2) those X which indicate no rain. The options rain

and no rain are called classes and are referred to as Cl and C2 where

C, = rain and
Cz = no rain.

In general, the purpose of a pattern recognition system is to classify
attern vectors into their appropriate classes Cy,Cs,....,Cy where K is
p P 1s%2» K

the number of classes (see Figure 3.3).

Pattern Vector, X : Classification
X TF
X2 Pattern
. —> Recognition S Ck =l,... K
. . System
* .
R g

Figure 3.3 Input-Qutput Model of a Pattern Recognition System

The structure of a pattern recognition system can often be sim-

plified if pattern space is transformed into a more efficient configuration.
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For instance, if in the weather prediction example,it is found that the
temperature is of no value for predicting rain (i.e. there is no correla-
tion between temperature and rain) and that the probability of rain in-
creases in proportion to the square of the percent cloud cover, then it

would be more efficient to use the coordinate system shown in Figure 3.4.

Yo = (x3)2= (cloud coverage)2

(Yl ,yz)

¥y = X; = pressure

Figure 3.4 Feature Space

This new coordinate system is referred to as feature space. The vector from

the origin of feature space to the point (y;,yj) is called the feature

vector and in this dissertation is designated by




where N is the dimensionality of feature space. The process of trans-

forming a pattern vector into a feature vector is called feature selecticen®.

The input - output relationship of a feature selector is shown in Figure

3.5 vhere in general <R,

Pattern Vector, X Feature Vector, Y

*1 ® > 1
x Yeature

2" —— Y7
. . Selector . .
 — e

Figure 3.5 Feature Selection

The feature selection operztion is highly problem dependent and will be
discussed further in Section 3.4.

The operation of classifying the feature vecter into classes

Cl’CZ""’CK is called pattern classification. Thus the pattern recog-

nition system consists of two major components: feature selection and

pattern classification (see Figure 3.6).

* In this dissertation any cperation performed on the pattern vector prior

to classificaticn is considered to be a feature selection operation.
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Figure 3.6 A Pattern Recogniticn Svstem
Given functions 3. (Y), k=1,2,...,K, of the feature vector, Y,
such that

(¥) > g, (¥) i=1,2,....,K  ifk (3.1)

[N
&)
00

then Y is placed in clzss C, by the pattern classifier. The function gk(Y)
K

If K=2,as in the wveather fore-

=N

c

funeticn o

rr

K

is called the discrizinan
casting example, a discriminant functicn 8, 2(Y) can be defined such
?

that
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g1,2(1) = g, (1) - g (V) . (3.2)

In this case,

if gl,z(Y) > 0, then Y belongs to Cp (3.3)

if 81,2(Y) < 0, then Y belongs to Cy .

The surface for which

g (1) = g; (V) k=1,2,....K (3.4)

is called the decision surface between Cj and Cj. The decision surfaces

separate feature space into K regions. The Y's in each region belong to

the same class., For a two class problem the decision surface is given by

81,21 =0 . (3.5)
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Such a surface (a line in this case) is shown in Figure 3.7 for the

weather forecasting example.,

81,2(Y) = discriminant
function

Y1

g1,2(Y) = 0
decision surface

Figure 3.7 Decision Surface

The previous discussion is concerned with how features are

classified and is true for pattern classifiers in general. How-
ever, before the classifier can operate, the form of the discrimi-

nant functions, gk(Y), must be known. How the gk(Y) are arrived
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at for different pattern classifiers is the subject of the next

section.

3.1.2) Types of Pattern Classifiers

Every feature vector has associated with it a probability of be-
longing to a given class. This probability will be denoted by P(CiIY)
which is the probability that feature vector Y belongs to class Cj. For

a two-class problem, if one class can be uniquely associated with each

pattern such that

(3.6)

I
(=]

if p(Cy[Y) > O then p(Cy|Y) =

[
o

if p(Cy|Y) > O then p(Cy|Y) =

then the classes are said to be non-overlapping. If patterns can belong
to one class sometimes and the other class at other times, the classes are
said to be overlapping. Examples of these two different types of dis-

tributions are shown in Figure 3.8 using the weather prediction example.
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y rain y
2 rain sometimes 2

rain
no rain
no rain
Y1 Yy
(a) Overlapping (b) Non-Overlapping

Figure 3.8 Overlapping and Non-Overlapping Classes

Classifier input data and the schemes they require can be separated
into different cases depending on what is known about P(CilY) and the in-
27
put data . There are basically four types of information of which one or

more may be available to the classifier. These information types are?’:

(1) Functional form of p(Ci,Y) is known. For example it may be
known that both p(C;|Y) and p(Cy| Y) are Gaussian but with

unknown means and variances.

(2) Parameters of p(Ci'Y) are known. Parameters include the

mean, variance, etc.

(3) Sample pattern vectors with known classification are given.

Each pattern vector with its classification is called a pro-

totype. These prototypes serve as a training set for the classi-
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(4) Sample pattern vectors of unknown classification are given.

Depending on which of the above information is available, six major kinds

. . 27
of pattern classifiers can be defined” .

(1) Case A: Information types 1 and 2 are given

(2) Case B: Information types 1 and 3 are given

(3) Case C: Information types 1 and 4 are given

(4) Case D:; Information type 3 is given,Deterministic methods
are used

(5) Case E: Informaticn type 3 is given, Statistical methods
are used

(6) Case F: Information type 4 is given

In Case A all the in*ormation required to make an analytical solu-
tion for g(Y) is known. In Case B the classified Y's must be used to make
an approximation of the required parameters after which the classifier
becomes a Case A. Cases C and F are often referred to as '"learning without
a teacher" or unsupervised learning'® and usually consist of a type of
clustering technique.l6

In Case D the basic idea is to find a g(¥Y) which operates "satis-
factorily" on the samples of known classification. This type of approach,
sometimes referred to as "distribution free"ls:liakes no assumptions con-
cerning the p(CiIY). Instead the data is assumed to be separable by a
given form of g(Y), i.e., linear, quadratic, etc. One drawback of such an
approach is that it places an additional burden on the feature selector

in order to produce feature vectors which satisfy the assumptions made on

g(¥).
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Case E consists of using statistical techniques tc minimize classi-
fication errors. These techniques are theoretically more useful for over-
lapping data since they allow for the existence of error. Frequently in

the statistical approach P(CilY) is expanded in a series?®

J
p(Ci|Y) = Zaij $5(V), i=1,2 (3.7)

jz

where the aij's are approximated by using prototypes. A simpler approach
is similar to the deterministic approach and consists of assuming a form
for g(Y)%8 However, unlike the deterministic classifier, the input data
need not conform to the assumptions made on g(Y) since in this case g(Y)

is approximated by the statistical behavior of the data in order to mini-
mize the number of misclassifications.

Classification techniques for Cases B through F can be further
characterized as sequential23 or non-sequential techniquesls. In sequential
techniques the prototypes are presented one at a time and approximatioms
are made concerning g(Y) or p(CilY) as each prototype is presented. In
non-sequential techniques a finite number of prototypes 1is presented at
once to the classifier and an optimum g(Y) or P(CiIY) is fitted to these
prototypes.

In summary, the selection of a pattern classification scheme
depends upon the information available (Cases A-F), whether the
p(CiIY) are overlapping, and the manner in which the prototypes are pre-

senced (sequential or non-sequential). Because of the characceristics
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of Monte Carlo problems,only Case D and E classifiers will be investigated
in this study. A more detailed description of these classifiers using

sequential learning methods is presented in Sections 3.2 and 3.3.

3.2) Sequential Deterministic Classification Techniques (Case D)

In this section several deterministic techniques are described for
classifying patterns when prototypes of known classification are presented
sequentially. This approach consists of assuming a form for g(Y) and
using the prototypes to learn the necessary parameters. Two class problems
(K=2) are assumed resulting in 2 single discriminant function g(Y)Egl,z(Y)

(see Equation 3.2).

3.2.1) Linear Discriminant Functions

The general form of a linear discriminant function for N dimen-

sional feature space is given by

g(¥) = wyy; + wayp + ...... wyYy * oWl = Wlyx (3.8)
1 (Wl
Y2 2
where Y* = . , W=
N
1 W
- i N+H
W= the transpose of W
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and the vector W (the weizht vector) must be obtained from information

[}

contained in the prototypes. The vector Y* is called the augmented16

feature vector znd is of dimensicn X+1. The use of g(Y) as given by

Equaticen 3.8 assumes that feature space is linearly separgble. For two-
dimensional featuve space this means that all feature vectors belonging

to C; can be separated by a linear decision surface (a straight line for N=2)
from all feature vectors belonging to C,. Figure 3.9 illustrates linearly
and non-linearly separable feature vectors. Note that for the lirearly
separable data shown (Figure 3.92), there 1is an infinite number of de-
cision surfzces which satisfactorily sepearate feature space. For the datsz
of Figure 3.9b there is nc linear g(Y)=0 that will separate the classes.

The cocrdinate systen created oy the components of the weight vec-

‘-
4

- . . - . . 15 .
tor, W (see Equztion 3.8), is referred to as weight space zind is frequently
used to explezin the behavier of deterministic classifiers. Weight space
for two-dimensional feature space is shown in Figure 3.10,where the vector

it

from the origin to the point (w;,wy,w3) is called the weight vector.

should be noted that weight space is of dimension M1 when feature space

is of dimension N.

Consider the one-dimensional feature space shown in Figure 3.11

vhere

if -5<y <3 y belongs to Cq

if 10 <y <15 vy belongs to C, .
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2=(y1,y2) belongs to Cy
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Figure 3.9 Linearly and Non-Linearly Separable Classes
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(Wl »Wo ,W3)

Weight Vector = W

w1
Y3
Figure 3.10 Weight Space
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-5 0 5 10 15

Figure 3.11 One Dimensional Feature Space
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If a decision surface is located at point y', then for this example

g(Y) = 0 =wy' +wy

and

Wy = —wly' . (3.9)

1ss1¢
The surface given by Equation 3.9 is called a pattern hvperplane in weight

space and divides weight space into two regions: (1} that region for

which g=(wly‘+v2)> 0 znd (2) that region for which g=(wly'+w2)< 0. Pattern
hyperplanes for y'=2,3, and 10 are shown in Figure 3.12 where the + and -
signs indicate the sign of g on the different sides of the hyperplane.

o

Tbz shaded region of Figure 3.12 is that region of weight space for which

g>0 if y! 2_10
and

g<0 if y' < 3
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Figure 3.12 Pattern Hyperplanes in Weight Space
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and is called the solution region. Any W in the solution region results
£ y g

in a discriminant function which satisfies Equation 3.3,

Tlie training of a linear classifier consists of first guessing
en initial weight vector, wl. The classifier is then presented with
prototypes, Y;, of known classification. If g(Y;) gives the correct

clzssification for Yi, Wis unchanged. If g(Yi) gives the incorrect

. 15
clzssification then W is corrected as follous:

if g(¥y) >0 and Y; belongs to C (3.10)

T, = /.=cY%
1'1‘!‘1 "ll C&.i

if g(Y3) <0 and Y; belongs to C,

Wiqp = Wyteyd

where ¢>0

The effect of the above procedure may be varied depending on the value
of ¢, the correction increment. The above scheme will always move W in

a direction normal to the pattern hyperplane®*. The size of c determines

16

< .
how far the W is moved. Three rules'®s commonly used to determine

the vealue of ¢ are:

*w 1s moved along the direction of the vector ("1+1‘“ )—_cl The
equation for all h)perplhnes perpendicular to the vector (‘c\l) is

K. (zeYs ) =r; or W.Yj=rj vhere r; and ry can be any scalar values?®,

Kow cver, the equation of the h)pern ane corresponding to the prototype
Yy is W- 1=0- Thercefore, using rZ—O W7 is moved normal to the pattern
hyperplane in weight space.
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)

(2)

3)

Fixed Increment Rule: ¢ is taken to be any fixed increment

greater than zero. In this case the weight adjustment may
or may not correct the misclassification of the prototype,
depending on the value of W-Y* in relation to c.

Absolute Correction Rule: c¢ is the smallest integer greater

than |W-Y*|/ Y*.Y*. Thus after one adjustment with this

rule W will be on the correct side of the pa.tern hyperplane.

Fractional Correction Rule: c¢ is chosen such that W is moved

a fractional distance, A, towards the pattern hyperplane.
The distance from the weight vector W to the pattern hyper-

plane defined by Y is given by

W Y*
D= lIY*li = JfézTJ (3.11)

Therefore, using

’wi+1‘wil= C,Y*’ = AD

c is given by

AD MeD!
€= Tex] T JyxevE| (3.12)
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If A >1, W;4y will be on the correct side of the hyperplane. Throughout

this study A will be referred to as the learning parameter since it con-

trols the rate of learning by the classifier. Figure 3.13 illustrates the
behavior of these thrce rules using the problem illustrated in Figure 3.11
and the following prototypes (prototypes are presented to the classifier

in the order presented below)

(1) y=-2 and belongs to C;

]

@) vy

3) vy

10 and belongs to Cy

2 and belongs to C3

Figure 3.13 Example of the Fixed Increment, Absolute Correction, and
Fractional Correction Rules
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The X:5Yy and z, are the positions of W after the i'th prototype has been
presented using the fixed increment (c=1), absolute correction, and frac-

tional correction rules (A=1) respectively.

3.2.2) Quadratic Discriminant Functions

The general form of a quadratic discriminant function for a two

class problem with N dimensional feature vectors is given by

A quadratic discriminant function has M=(N+1) (N+2)/2 weights. This type
of g(Y) can be treated in exactly the same manner as the linear g(Y) if
the feature vector is first operated on by a "quadric processor"!'® as
shown in Figure 3.14. The quadric processor behaves as a feature selez-
tor except that the dimensionality of the data is increased from N to M
instead of decreased. The same techniques described in Section 3.2.1
can be used to learn the W vector corresponding to g(F). This same

procedure can also be performed for any g(Y) which depends linearly on

the W]sWoeoo Wy resulting in
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Figure 3.14 Quadratic Discriminant Functions

g(Y) = wlfl(Y) + wsz(Y) + ... + waM(Y) + Vel

Such a g(Y) is frequently referred to as a ¢ function’S.

3.3) Sequential Statistical Classification Techniques (Case E)

The main incentive for using a statistical approach in pattern

classification is that many processes can best be characterized in

statistical terms. It is also often desirable to evaluate a pattern

classifier in terms of its statistical performance. The statistical
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classifier investigated in this research is similar to the deterministic
classifier described in Section 3.2 in that a form of g(Y) is assumed
(i.e. g(¥Y)=f(4,Y)). The following notation will be used when referring

to the statistical nature of pattern classifiers:

p(YICi) = the probability density function of those vectors
Y which belong to Ci
P(Ci) = the probability of class Ci occurring (P(Cl)+P(C2)=l)
p(¥) = p(YICl)P(Cl)+p(YIC2)P(C2) = the probability density
of Y
p(CiIY) = p(Y|Ci)P(Ci)/p(Y) = the probability of the vector

Y belonging to class Ci'

3.3.1) Linear Discriminant Functions

In Section 3.2.1 the feature vectors were assumed to be linearly
separable. By use of statistical techniques, linecar discriminant func-
tions (i.e. g(Y)=W:Y*) can be used with non-linearly separable data in
a least error sense.

Let the function S(N,Y,Cilck) be defined as the loss incurred!®
when a pattern or feature vector, Y, actually belonging to class Cy, is
placed in class Ci (note that S is a function of the weight vector W).

A vector Y is said to belong to class Ck if
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P(C|Y) > p(Cs M) for iZk.

This loss function provides a means of weighing specific classification
errors more heavily than others. For example the distance from a mis-

classified prototype to the decision surface (see Figure 3.15) as given

by

d@,y) = J.?%_ii (3.13)

222222
12222
2222

2=location

11111 of Cy ¥
‘ 2 1111111 l1=location
1111 of € ¥

1111

Y2

Figure 3.15 Misclassification Distance

where W' is the weight vector W with w ]=O, is frequently used as a loss

N+

28

function which for two classes results in
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S(W,Y,Cq[Cy) = 5(d,Cq]C,) = d(W,Y),

S(W,Y,Cy[C) = s(d,Cylc;) =0,

S(W,Y,Cy[Cy) = 5(d,C,[C,) = 0, and

S(W,Y,Czlcl) S(d,C2[C1) = d(W,Y), (3.14)

The variable d is frequently referred to as the "misclassification

distance'"?® and should not be confused with the distance, D, as given

by Equation 3.11. The average loss!® L(W,Y,C;) as given by
i

L(W,Y,C3) = S(W,Y,C;[C)p(Cy|¥) (3.15)

can be interpreted as the average S(W,Y,CiICk) associated with vector Y
and class Ci' If L(W,Y,Ci) is integrated over all feature space, the

result is the risk'® associated with each class:

R(W,C.) =./r£(W,Y,Ci)p(Y)dY i=1,2
* k=1,2
i#k
R(W,C;) = _/g(w,Y,ci|ck)p(cily)p(y)dy ' (3.16)



The total risk in the classification problem is the sum of the risks

involved in each class:

R(W) = R(W,Cl) + R(W,Cz) (3.17)

The purpose of the pattern classifier is to minimize the risk with re-
spect to W. Assuming R(W) is differentiable and has a global minimum

with respect to W, the optimum W is the solution of VR(W)=0. However,

as seen by

VR(W) = VJ p(¥)L(W,Y,C,)dY + q/;(Y)L(w,Y,cz)dY (3.18)

P(Cy) p(Y[Cl)VS(W,Y,CliCZ)dY

+ P(Cy) p(chz)Vs(w,Y,czlcl)dY,

this requires that p(YlCi) be known. This problem can be alleviated if

R(W) is approximated by a summation over prototypes

2 Ny
Rw) = E L E S(W,Y5,C. [ C, ) i=1,2 (3.19)
My n’ ik k=1,2
k=1 n=1 ,

k#i
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I

no. of prototypes in class Cy

where Mk

YE = nth misclassified prototype of class k
Nk = number of misclassified prototypes in C}

rather than an integration over densities. Using this approximation for

R(W), W can be incremented proportional to the negative of YK(W) as given

by

if g(Yi) > 0 and Y, belongs to Cy (3.20)

or

if g(Yi)-< 0 and Yi belongs to C2

then
W =W - AV B(W)
— -
9
Swl
V= | 9
9
3wN+l
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where M\ is a proportionality constant or learning parameter similar to

the X described in Section 3.2.1 and
(3.21)

2 Ny
VR(W) = Z—i Z vs,Y5.c.c,) =1
Mk N (L 1 4
k=1 n=1

3.3.2) Quadratic Discriminant Functions

Quadratic discriminant functions using statistical techniques are
treated the same as linear discriminant functions except that the feature

vector is first processed by the quadric processor described in Section

3.2.2,

3.4) Feature Selection

The objective of feature selection is to retain that information
necessary for classification and to eliminate that information which is
not. Feature selection often results in greatly reducing the demands on the
classifier. For example,a feature selector may process non-linearly

separable data into linearly separable data as shown in Figure 3.16.
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Figure 3.16 Linearization by Feature Selection

Unfortunately, the operation of feature selecticn is far less
defined mathematicalily than that of pattern classification. Although a
human can implement feature selection with ease, the techniques used are
heuristic in nature and usually highly problem depeandent. At the present
time, selection decisiong trivial to a human may take a great deal of
effort to model and even then may take a large amount of computer time to
implement. Thus this research will rely upon the heuristic techniques of

the user to supply the feature selection process.
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The pattern space of a particle transport problem consists at most

of eight basic parameters:

- three position parameters (x,y,z)

three angular parameters#x (u,v,w)

energy (E)

time (t)

Certainly,if a problem independent of time is under investigatiom it is
much easier for the human user to remove t from feature space than it is
for a computer based selection system to recognize that there is no cor-
relation between time and classification. Another case is a problem in-
volving spherical symmetry in the geometry in which three variables

25,2 2).

(x,y,z) can be replaced by one, r{ r= x“4+y“+z This not only reduces

the dimensionality of the problem but can also linearize the feature
space. Such a substitution is easily specified by the user but would

take numerous operations tc recognize computationally.

3.5) Multiclass Problems

The previous sections have considered pattern recognition prob-
lems involving two classes. In this research discriminant functions are

learned for two classes at a time* resulting in a single discriminant

finction for classes i and i+l (see Equation 3.2)

# The reasoun for this will become apparent in Chapter V.

*% Only two of the angular parameters are independent.
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g ¥) = gi+l(Y) - gi(Y) i=1,...,J-1 (3.22)

i,i+l

where J is the total number of classes. These classes are ordered such

that

if Y) <0
g 1W<,
then Y must belong to a class Cj where j=1,...,1i

then . must belong to a class Cj where j=i+l,...,J

Because of this characteristic, the class of a prototype can be deter-

mined as shown by the flow diagram in Figure 3.17.
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i=0
i=i+1 inJi—
0
0
Class=C,

Figure 3.17 Multi-Class Problems
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IV. Recognition of Splitting Surfaces

In Section 2.4 splitting in state space was described and it
was suggested that pattern recognition be used for the identification
of the splitting surfaces. It is the purpose of this chapter tu de-
scribe how pattern recognition can be implemented and to investigate
the performance of the technique.

Since the purpose of this dissertation is to demonstrate proof
of principle, the technique is not applied to a general purpose Monte
Carlo code. The Monte Carlo problems investigated in this research
have been chosen for their simplicity and their minimal use of computer
time. These sample problems include: (1) a one-dimensional one-
region homogeneous slab, (2) a one-dimensional multi-region slab,
and (3) a two-dimensional, multi-region slab. These problems illustrate
the basic treatment of distance and direction variables in a Monte
Carlo problem.

This chapter is concerned only with the laarning of the split-
ting surface. A description of how to use the splitting surface and
what surfaces are desirable as splitting surfaces is given in Chapter V.

Section 4.1 describes in general how pattern recognition is
used to identify splittirg surfaces. In Section 4.2 both deterministic
(see Section 3.2) and statistical (see Section 3.3) classifiers are
used to identify splitting surfaces for a one-region slab Monte Carlo
problem and studies are made to determine: (1) the effects of slab

thickness and class overlapping, (2) the improvement due to the use of
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buffer zones,(3) the best choice of a loss function (see Section 3.3.1)
for the statistical classifier, (4) computer time spent for pattern
recognition, and (5) the sensitivity of the classifiers to the learning
parameter A. In Section 4.3 the same classifiers developed in

Section 4.2 are used to identify surfaces for multi-region problems
and again the sensitivity to A is investigated. Section 4.3 also in-
cludes a study of the sensitivity of the classifiers to the selection
of initial conditions (i.e., the initial guess for W). Section 4.4
increases the pattern space to two dimensions, distance and angle,
thus requiring ncrmalization of the feature vector. Studies of the
learning parameter and initial conditions are then repeated for the
two-dimensional problem. Section 4.5 summarizes the results of the

chapter.

4,1) Basic Principles

The purpose of this section is to relate the pattern recogni-
tion system described in Chapter III to the problem of identifying
Monte Carlo splitting surfaces as described in Chapter II.

In Section 3.1.2, the concept of "prototypes” or "training
sets'" was introduced. This concept is very important in this research

and is discussed with respect to Monte Carlo calculations in Section

4.1.1.

Althcugh feature selection is not discussed until Chapter V,
Section 4.1.2 does describe how feature selection relates to the simple

Monte Carlo problems of this chapter.
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Two pattern classification systems are investigated in this
chapter: (1) the Case D deterministic classifier using . fractional
correctior rule (see Section 3.2) and (2) the Case E statistical
classifier (see Section 3.3). The structure of these classifiers and
the operations performed for learning a splitting surface are described
in Section 4.1.3.

In Chapter III, the term "learning parameter"” was introduced
for both deterministic and statistical classifiers. This parameter,

A, plays an important role in this research. Its importance is ex-
plained in Section 4.1.4.

In order to evaluate different classifiers and classifier

parameters, one must be able o measure the performance of the classi~-

fier. The performance measures used in this dissertation are described

in Section 4.1.5.

4,1.1) Prototypes from Monte Carlo Calculations

Prototﬁﬁes were described in Section 3.1.2 as being pattern
vectors with known classification. The prototypes allow Case B, D,
and F classifiers to learn a diseriminant function, g(¥), (see Section
3.1.1) which is necessary before classification can take place.

In Section 3.14 it was stated that for the general Monte Carle
problem pattern space consists of 8 variables:

- three position parameters (%,V,z)

- three direction parameters (u,v,w)
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- energy (E)

- time (t)
As a particle travels through a material region, it undergoes numerous
collisions. At each collision point a new set of (x,y,z,u,v,w,E,t) is
calculated for the particle (see Appendix A). This new set of values
consists of a point in state space (see Section 2.4) and can be repre-

sented by the state space vector X as given by

ol

«

jrtHme<en

This vector X is also a pattern vector; therefore,

state space vector = pattern vector
and

state space T pattern space.

Thus pattern vectors are created in a Monte Carlo problem wherever a
particle undergoes a collision.

Before the pattern vectors can be used as prototypes, their
classification must be known. In Section 3.5 it was stated that
discriminant functions are learned for two classes at a time. There~
fore, before the pattern vector, X, can be used as a prototype, it must
be known to which class, Ci(i==1,2), the vector belongs. This is domne

by introducing the concept of "importance'.
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In this research the importance of the vector X in state space
is defined as the average contribution to the tally by particles which
pass through X divided by the average weight (see Section 2.2) that
particles have at X. If the importance were known for all X, there
would be little reason to solve the Monte Carlo problem since the aver-
age importance of the source particles would be equivalent to the
desired tally., Therefore, only approximations to the importance as
defined above will be used. The approximation to the importance at X

of a single particle passing through X is given by

N _ T
I(X) = T (4.1)
where T = the contribution of the particle to the tally

Wt(X) = the weight of the particle when it existed at X.

Using Equation 4.1 for the importance, one can classify the pattern

vector X as follows:

if I(X)<I, X belongs to c, (4.2)

if I(X)>T, X belongs to C2 s
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where T is an importance which is used to discriminate between Cl and
C2 (I will be discussed later).

Thus prototypes, X, are created at collision points with their
classification determined by Equation 4.2. The following example il-

lustrates the creation of prototypes.

Example: Consider the problem of the one-~dimensional homogene-
ous slab shown in Figure 4.1 with a unidirectional source at x=0
and a tally of particles as they cross the surface at x=L. A
single particle is shown traversing the slab and undergoing five
collisions before it is tallied. The absorption probability at
each collision is .2; thus, the weight of the particle is multi=~
plied by .8 at each collision. When the particle is tallied
approximations of the importances at the various collision points

can be found by

N o We(L)
1) = Wt(x) *

where I(x) = importance of a particle at x
We(l) = tally contribution of the particle=
weight of the particle at x=L, and
Wt (x) = weight of the particle at x.
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The values of I(x) for the five collisions shown in Figure 4.1

are given in Table 4.1. If 1=.75, the pattern vectors are

classified as shown in Table 4.1.

\/\

<t— Unidirectional Tally across =
Source at x=0 this Surface

We=1 =.8 =,064 =.51 =,41 =.33

o\ N AN N\ rar 1y

Xi=.33

it =.15 =,3 =,5 =,75 =.90

L

x=0 \/\ x=L

Figure 4.1 Prototypes from a One-dimensional Slab Monte Carlc Problem
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4.1.2) Feature Selection

Sections 4.2 and 4.3 use one dimensional slab Monte Carlo
problem and thus pattern space consists of the single variable x, where
x 1s the distance from the source (see Figure 4.1). For this problem

feature space will be the same as pattern space; thus

The two dimensional problem of Section 4.4 will be treated

similariy. In this case

-
1
H

<
]
[}

Table 4.1 Prototypes for Problem Illustrated in
Figure 4.1 and I=.75

X

L Wt (x I(x) _i
.15 .8 41 1
.30 .64 .51 1
.50 .51 .64 1
.75 .41 .8 2
.90 .33 1.0 2
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where ¢ will be defined in Section 4.4. Some experiments are also made

in Section 4.4. for which X#Y.

4.1.3) The Pattern Classifier

The classifiers used in this research assume a linear form for
g(Y) as described in Sections 3.2.1 and 3.3.1 and operate in two
stages:
(1) prototypes are used to learn the weight vector W for the
linear discriminant function g(Y) =W+ Y* (see Equation 3.8)
(2) the discriminant function g(Y) is used to classify the
feature vector Y where Y is of unknown classification.
This chapter is concerned only with the first operation. The second
operation is discussed in Chapter V.
The learning of the weight vector, W, consists of:
(1) selecting an initial value of W and
(2) 1incrementing W (using Equations 3.10 and 3.20) whenever
a prototype belonging to class Ci (as determined by
Equation 4.2) is classified into Cj (j#1) as determined
by the sign of g(W).
The sensitivity of the classifier to the initial selection of W is
investigated in Section 4.3.1.
The incrementing of W is the major operation of the learning
process. The classification of a feature vector according to Equation

4.2 is referred to as the "teacher". The classification according to
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the pattern classifier is determined by Equation 3.3 which is repeated

here as
it g(¥)<0 Ybﬂm@stocl
if g(¥) >0 Y belongs to ¢,

The classification according to Equation 3.3 is referred to as the
"student". Thus whenever the student disagrees with the teacher, the
student is corrected by adjusting W. This process continues until the
agreement between student and teacher meets some threshold value., At
this point the classifier has learned the desired V.

The intersection of the discriminant function g(Y) with state
space 1s called the decision surface (see Section 3.1.1) and is given
by g(¥) =0. This surface separates state space into two regions:

(1) X for which g(¥)> 0 and {2) X for which g{Y)<0. Since this 1s the

purpose of a splitting surface, it follows that

decision surface = splitting surface.

These two terms will be used interchangeably throughout the remainder

of this dissertation.

80



4.1.%4) The Learning Parameter, )

The weight adjustment algorithm using the deterministic classi-

fier znd the fracticnal correction rule is given by (see Equations 3.10

.4
1
-
i
5 t
“
0

i+l

For the statistical classiiier the adjustment algorithm is given by

n both cases the azocunt of the adjustment of wi is determined by the

learning parezmeter, X.

khen a pattern claszifier is presented with overlapping distri-
butions* (see Section 3.1.2), the selection of an optimum A becores
Before usinz the adjustment algorithims, the classi-

quite ccmplex.

fier —ust be tcld te which class a feature vector belongs.

2 produced by Monte Czrlo will be overlapping since the proto-

assificaticn is determined by Equation 4.2 and I(X) is cnly

e estinate of the true value of the importance at X. Over-
will be discussed further in Section 4.2.
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When Y can belong to either class with probability p(Cl]Y) and p(CZIY)

(see Section 3.1.2) the classifier should be told

if p(CllY) >p(CZ!Y) Y belongs to Cl

if p(CzlY) >p(clfY) Y belongs to G,

In this research tue p(Ciff) are unknown. As a result, when the classi-

fier is told that Y belongs to C2’ it may be that

p(C, D) >p(c,[V) .

In such a case, the classifier should not adjust the weights if g(V)<O0,
since it is the prototype classification that is wrong, not the classi-
fier. However, since the p(Ci|Y) are not known, it is impossible to

determine which classification is right.

As the confidence in a prototype's classification becomes small,

i.e, as

p(C;]|¥) > .5 and p(CzlY) +.5
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a smaller value of A should be used than when the confidence becomes

great, i.e., as

p(ci[Y)-»1 i=1 or 2

Thus, it would be beneficial to use a A that is a function of

AY) =1 - |p(c, |V - plc, D]

which is not possible since A(Y) is unknown. If the average value of

A(Y) is known for a problem as given by

_ Iaqwyay

A Tdy

a "semi-optimal" constant A can be chosen for each problem such that
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For Monte Carlo problems, the value of K is not known. There~
fore a single A must be used for all problems which from the above
discussion is definitely sub-optimal. One of the purposes of this dis-
sertation is to determine the sensitivity of classifier performance to

A so that a suitable A can be chosen for a large range of probl