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INVESTIGATION OF PATTERN RECOGNITION TECHNIQUES FOR THE

IDENTIFICATION OF SPLITTING SURFACES IN MONTE CARLO

PARTICLE TRANSPORT CALCULATIONS

by

James L. Macdonald

Abstract

Statistical and deterministic pattern recognition systems are

designed to classify the state space of a Monte Carlo transport problem

into importance regions. The surfaces separating the regions can be

used for particle splitting and Russian roulette in state space in order

to reduce the variance of the Monte Carlo tally.

Computer experiments are performed to evaluate the performance of

the technique using one and two dimensional Monte Carlo problems. Addi-

tional experiments are performed to determine the sensitivity of the

technique to various pattern recognition and Monte Carlo problem dependent

parameters.

A system for applying the technique to a general purpose Monte

Carlo code is described. An estimate of the computer time required by the

technique is made in order to determine its effectiveness as a variance

reduction device. It is recommended that the technique be further in-

vestigated in a general purpose Monte Carlo code.

xiii



I. Introduction

The Monte Carlo method of particle transport was originally

developed by Fermi, Ulam,and von Neumann during the mid lQAO's.1 As

digital computers became larger the method became more practical. Be-

cause of the large running times ancountered on early computers, the

method gained the reputation of being extremely time consuming. As a

result, the Monte Carlo method has often been referred to as "a method

of last resort."2 The current generation of digital computers, such as the

CDC 7600,has reduced the running time of problems previously taking in

the hours or days to only a few minutes. As a result, for the Monte

Carlo problems run today the method is hardly considered a "method of

last resort" and in many cases is the "only method of resort." A des-

cription of Monte Carlo code development and the current state of the

art at the Los Alamos Scientific Laboratory is given in Section 1.1.

When the Monte Carlo method is used to solve a transport prob-

lem,the calculated answer is based on the sampling of statistical proc-

esses. Because of this, the answer has associated with it a probabilis-

tic error based on the statistical behavior of the answer. The purpose

of a Monte Carlo calculation is to calculate an answer that has a

variance below some acceptable level. As a result there have been

numerous techniques devised to accelerate the reduction of the variance.

These techniques and their corresponding problems are discussed in

Section 1.2.



The purpose of this thesis is to allow the computer to assist

in the reduction of the variance by using pattern recognition tech-

niques. The field of pattern recognition is very new, beginning with

the introduction of large computers in the 1960's. Pattern recognition

is discussed briefly in Section 1.3.

Sections 1.4, 1.5, and 1.6 describe the purpose, scope, and out-

line of the dissertation respectively.

1.1) Monte Carlo Development

The development of the Monte Carlo method as an accepted dis-

cipline and research tool began during the second World War from

weapons development work. These early applications are usually attrib-

uted to the work of Fermi, von Neumann, and Ulam1 and involved the

simulation of neutron diffusion in fissile material. Even at this

early stage the techniques of "splitting" and "Russian roulette" were

being used for variance reduction;" however, the more rigorous

development of importance sampling was performed by Harris and Herman

Kahn in 1948.*

The first open discussions of Monte Carlo applications work took

place in 1949 at a symposium sponsored by the RAND Corporation.

Since computer machinery did not exist at that time, calculations were

usually performed by hand. In the course of describing the usefulness

of an alignment chart for making calculations, Spinrad1* states



...it also enables the computer to work
completely on one sheet of paper, only
interrupting his vision when a new random
number is required...

where the term "computer" refers to the person performing the calcula-

tion and the random numbers were provided from tables by RAND Corpora-

tion5. Desk top calculators helped speed up calculations some; how-

ever, these early calculators could only add, subtract, multiply, and

divide.

At Los Alamos, the first semi-useful equipment for performing Monte

Carlo calculations were IBM accounting machines. The development of

MANIAC I resulted in the first computer application of Monte Carlo at

LASL.6 However, each problem had to be programmed separately, in

machine language. Examples of some of these early problems are given

in reference 7•

As Monte Carlo developed in the 50's, it quickly became a "fad"

as is described in reference 1:

...There was an understandable attempt to
solve every problem in sight by Monte Carlo,
but not enough attention paid to which of
these problems it could solve efficiently
and which it could only handle inefficiently;
and proponents of conventional numerical
methods were not above pointing to those
problems where Monte Carlo methods were
markedly inferior to numerical analysis...

However, the same author1 notes when referring to the 60's:

...In the last few years Monte Tarlo methods
have come back into favor. This is mainly
due to better recognition of those problems
in which it is the best, and sometimes the
only, available technique...



The problems for which Monte Carlo is best suited have increased in

number for the following reasons:

(1) Improved variance reduction techniques have made Monte

Carlo more efficient where before it was very inefficient.

(2) Computer machinery has improved so as to make previously

unsolvable problems solvable in a reasonable amount of

time.

(3) Increasing demands for details to be included in a problem

have in some cases eliminated solution by numerical tech-

niques which required many simplifying assumptions. Ex-

amples of this are particle transport involving mixed

diffusion and streaming effects, three-dimensional complex

geometries, and requirements for non-group energy treat-

ments.

As a result of the demands for Monte Carlo calculations, group TD-6 of

the Los Alamos Scientific Laboratory has developed a number of particle

transport codes 8. Although these codes are primarily intended for

weapons development, they are often used in many other programs at LASL.

These computer codes are used on CDC 7600 computers and include the

following:

(1) MCN1- A neutron transport code

(2) MCG3- A gamma ray transport code

(3) MCP3- A general photon transport code (includes lower

energy treatment than MCG)

(4) MCNG - A combined neutron-gamma transport code



(5) MCNA2fi- A neutron adjoint code

(6) MCK - A criticality code

(7) MCMG - A neutron-gamma multi-group transport code

(8) MCGE - A coupled electron-photon transport code

3 h

(9) MCGB - A gamma code with Bremsstrahlung

In the case of the neutron related codes (except MCMG) the cross-

sections are provided as pointwise data that is read into the codes in

considerable detail. Although this greatly reduces the nvb ;x of

approximations and distortions caused by cross-section reduction, it

does place a considerable burden on the computer. For example, the na-

tional Evaluated Nuclear Data File (ENDF) version of iron requires

50,000 words of storage. The codes handle three-dimensional geometry

involving first, second, and some fourth, (elliptical tori) degree sur-

faces. All codes are programmed in FORTRAN IV.

Although the research of this dissertation is applicable to

Monte Carlo codes in general, it is the above codes that are of particu-

lar interest. Thus some of the research is directly related to functions

as they are performed in these codes.



1.2) Incentive for this Research

The overwhelming majority of Monte Carlo improvements reported

in the literature are r&lated to the reduction of the probabilistic error

or variance associated with the Monte Carlo answer or tally. The use of

these 'variance reduction" techniques varies in proportion to the dif-

ficulty encountered in their implementation. The difficulty of imple-

menting many of these techniques is due to:

(1) The complexities involved in applying the technique to real

problems. For example, many of the techniques are theoreti-

cally based on very simple geometries, etc.; whereas, actual

Monte Carlo problems usually involve complex three-dimen-

sional geometries. Many of the techniques do not "scale up"

to real applications.

(2) Some of the variance reduction techniques proposed are "unsafe"

in that they can distort the calculations resulting in the

wrong value for the tally.

(3) Most of the techniques require that a priori information be

provided by the user. This information is usually quantita-

tive in nature and depends on the intuition and experience

of the user. Furthermore, if the user provides the wrong

information, some variance reduction techniques can actually

consume more computer time than they save,

(4) Because of the diversity of Monte Carlo problems, different

problems require different techniques. As a result, the



user is not sure when to use one technique as opposed to

another.

A fundamental problem of all variance reduction techniques is that if one

vere going to use a technique optimally, he would have to know all the

characteristics (including the answer) of the Monte Carlo problem being

investigated before applying the technique. Thus what is needed is a

technique that instead of requiring information from the user, obtains

most of the necessary information during the Monte Carlo calculation.

Such learning* techniques have been proposed in the literature

and are discussed in Chapter II. The methods of Spanier and MacMillari1"

involve learning of an optinua parameter for use with the exponential

transform technique (see Section 2.3.2). This approach has the disadvantage

that it is based on a technique, the exponential transform, which can be

unsafe if used improperly. Furthermore, the technique is primarily con-

cerned with directional variables and is difficult to apply to problems

1 7

involving complex geometries. Another learning method has been proposed

which learns optimum spatial quantities. Besides being limited to spatial

variables, this technique has difficulties with problems involving small

probabilities.

The most successful techniques used in the Los Alamos Monte Carlo

codes are geometry splitting and Russian roulette (see Section 2.3.1).

* A learning technique in this dissertation refers to the ability of a
computer program to improve its performance in solving a problem based
on its own experience13« This is achieved by a preplanned strategy
wherein the program modifies itself based on information gained through
experience and evaluation of its previous operations.



These techniques are popular because they are safe and simple to im-

plement. Even when not used optimally, they still yield large savings in

computer time. These methods have the disadvantage that they are con-

fined to spatial coordinates (energy splitting can be used, but only

independently of geometry splitting) and do require that quantitative

information be supplied by the user prior to implementation.

What is needed is a technique which is as safe and simple to use

as splitting and Russian roulette, invoLves all variables of the Monte

Carlo problem (spatial, directional, energy, and time) as a whole instead

of independently, and relieves the user of the task of providing quanti-

tative information. The development of such a technique using pattern

recognition is the subject of this research.

1.3) Pattern Recognition

Before the introduction of large digital computers pattern recog-

nition could only be described as being a human function. Examples of

human pattern recognition are:

- recognition of a man from a woman

- recognition of handwritten characters

- recognition of speech

- recognition of a dog from a cat

Pattern recognition is frequently referred to as an "artificial intelli-

gence" technique since it performs an operation on a computer which is

usually considered to require intelligence. The pattern recognition



process consists of these basic functions:

(1) identifying which features of the problem being analyzed

are important

(2) finding a correlation between these features and various

categories (or classes) into which the input can be sorted

(3) sorting future input into classes according to the cor-

relation determined in (2).

These operations can be performed by mathematical transforms that usually

require machine learning of some of the parameters involved. These func-

tions will be discussed in more detail in Chapter III.

1.4) Purpose of Dissertation

The purpose of this dissertation is to establish a "proof of

principle" for the application of pattern recognition techniques to the

identification of splitting surfaces in Monte Carlo particle transport

calculations. This is done by:

(1) Developing a pattern recognition system that can be used to

learn splitting surfaces in Monte Carlo transport calculations.

(2) Investigating the performance of statistical and deter-

ministic classifiers when used to recognize splitting sur-

faces. This investigation includes a sensitivity study of

the pattern recognition parameters involved.



(3) Proposing a system for applying pattern recognition to a

general purpose Monte Carlo code.

(4) Analyzing the effectiveness that can be expected by using

pattern recognition as a variance reduction technique.

Thus the purpose of this dissertation is not to apply the technique

to a general purpose Monte Carlo code but to establish that such an

application would be profitable.

1.5) Scope of Dissertation

The scope of this dissertation is limited in two areas: (1) the

selection of a pattern recognition system and (2) the selection of

Monte Carlo problems used for demonstration.

There have been many pattern recognition systems developed for a

large range of problems. This research investigates two basic techniques

(one statistical and one deterministic) which are suitable for the type

of information generated in a Monte Carlo calculation. These techniques

are used with as little modification as possible from the basic algorithms

found in the literature15'* 6. Thus the purpose of this research is not tc

design an optimum pattern recognition system.

The Monte Carlo problems used in this research have been chosen

so as to minimize computer time while still being useful models for

demonstrating the operations of the pattern recognition system. Since

many Monte Carlo runs are necessary in research of this type (600 to 700

runs were performed), the computer time would be prohibitive (at least 10

10



times as great) using a general purpose code with complex problems.

The majority of parameter tests and classifier evaluation experi-

ments were performed using a one-dimensional, one-region, homogeneous

slab Monte Carlo problem. Although such, a model is simplified, it still

exhibits the characteristics necessary for the application of pattern

recognition. Computational experiments are also performed using a one-

dimensional multi-region slab and a two-dimensional (distance and direc-

tion) multi-region slab. It is found that the only modification to the

pattern recognition system necessary for increasing the dimensionality of

the problem is to increase the dimensionality of the various vectors

involved.

1.6) Outline of Dissertation

It is assumed in this dissertation that the reader is familiar

with statistical terminology (i.e.,mean, variance, probability distribu-

tion, etc.) but is not familiar with either the Monte Carlo method or

pattern recognition theory. The next two chapters are intended to

introduce the reader to these topics.

Chapter II introduces the basic principles of Monte Carlo and how

statistical errors are calculated. In addition variance reduction tech-

niques are described and the incentives for state space splitting are

presented. Finally, a means for measuring the success of a variance re-

duction technique is described.

Chapter III discusses the general operations of a pattern recog-

nition system. Particular attention is given to the classification

11



techniques that are used in this research. The problem of feature

selection is only described as it relates to the Monte Carlo problem.

In Chapter IV a pattern recognition system is developed for

identifying splitting surfaces and performing various parameter tests

(items (1) and (2) of Section 1.4). In this chapter a scheme is pre-

sented for learning a single splitting surface and is implemented on a

one-dimensional one-region slab, a one-dimensional multi-region slab,

and a two-dimensional slab Monte Carlo problem. Several parameter tests

are made in this chapter and comparisons are made between the different

classifiers used. The computer programs used in Chapter IV are given

in the Appendices. Although these programs are not implemented on a

general purpose Monte Carlo code, several of the timing parameters involved

are approximated.

Chapter V considers the practical problem of implementing the

technique for full scale applications. A system suitable for general

applications is designed and required user input is noted. Finally, an

analysis is performed to determine the effectiveness of the technique.

Thus Chapter V treats items (3) and (4) of Section 1.4.

Chapter VI states the conclusions of this research and makes

recommendations for implementing this research on a full scale in a

general purpose Monte Carlo code.

12



II. The Monte Carlo Method and Variance Reduction

Although the Monte Carlo method is applied to a wide range of

problems, the emphasis of this research will be on particle transport cal-

culations. It is the purpose of this chapter to describe in very general

terms how Monte Carlo sampling is performed and how statistical errors

are determined (Section 2.1). For further details of the sampling used

for neutron transport, the reader is referred to Appendix A. Section 2.2

contains a description of variance reduction in general and Section 2.3

surveys some of the more common variance reduction techniques including

those which involve learning. A method is then proposed which requires

learning during the Monte Carlo calculation in order to reduce the vari-

ance (Section 2.4). Finally, in Section 2.5 effectiveness of Monte Carlo

calculations will be defined so that the effect of variance reduction can

be measured.

2.1) The Monte Carlo Method for Particle Transport

2.1.1) Basic Principles

The transport problem in this research consists of estimating the

probability that particles leaving a source and undergoing various pro-

cesses (capture, escape, etc.) will finally terminate in a specified

category or tally. Decisions as to which processes occur are made by

sampling the appropriate "probability distribution" functions as described

below.

13



The probability that a variable s lies between s and s+ds is given

by p(s)ds ,.::?re p(s) is defined as the probability density function

An exaaple of such, a function is shown in Figure 2.1 for s ranging fron

0 to 3. In this research it is always assumed that p(s) has been normalized

so that

(s)ds = 1

where the integral is over all possible s,

P(s)

.6

.4

.2

n

•

1

0 1 2 3
s

Figure 2.1 A Probability Density Function

19
The integral of p(s) is defined as the probability distribution function;



P(s) - / p(s')ds'

0

(2.1)

The distribution function of the example in Figure 2.1 is shown

in Figure 2.2.

PCs)

0 1 2 3
s

Figure 2.2 A Probability Distribution Function

The probability distribution function is sampled by choosing a random

number, r, between 0 and 1 and setting r equal to P(s) as given by

a

- / p(s')ds' C2,2)

15



The s that satisfies this equality is used as tbn wmp 1 od value. rtw

values of s sampled in this nnsuicr ran be shovm to have tho proh.shUiiy

density p(s).l

As an example of this sampling proccssi, consider the; case of ."t

neutron er.ictad frort one side of a slab (see Figure 2.3) ir. the +K direc-

tion.

Sourc< direction of
pp.riicle

Ar

Figure 2.3 Sampling Distance to Collision

The probability that this neutron has a collision between J; and x+dx is

given by

- Et-x
p(x)dx = Zt e dx

where £ = the total macroscopic cross section

p(x) = the probability density function for a collision
at x.
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The probability distribution function Cor this process is given

X

I p{s')dsf

s'

?(s) - 1 - e

Note that if s« «•, PCs}-! and if K-0, P(K)-O. Setting a random number, r,

<l) equal to the probability distribution function gives

r - P(x) • 1 - e

h

where (1-r) has been replaced by r.
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The value of x for a given r is the sampled value for the distance to a

collision. In Monte Carlo transport calculations many processes are

sampled similar to the example above. Appendix A describes the sampling

process in more detail for the case of neutron transport.

Eventually.after undergoing numerous events as determined by the

appropriate probability distributions,a particle is lost to the system.

This occurs when the particle is either captured, leaves the system being

considered, falls below the energy range of interest, etc. At this point

the contribution, x^, of the i'th particle to the tally under study is

calculated. Thus, for N particles the average contribution to the tally

is

x =

This x is the statistical approximation used to estimate the physical

quantity of interest.
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2.1.2) Estimate of Statistical Errors

The mean value of N samples, x, is given by Equation 2.3. The

1 7variance of the M samples with respect to the sample mean x is given by

N

(X. - x )
2 (2.4a)

(2.4b)

17
The true mean of x is given by

/
x(s)p(s)ds (2.5)

where p(s) is the probability density function of s. The mean <x> is

often referred to as the "expected" value of x(s). For an unbiased1

estimate x

=<x> C2.6)
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The true variance "of x(s) i s defined as the second moment of x(s) about

<x> as given by

I (x(s) - <x>)2 p(c)dscr2(x) - / (x(s) - <x>)~ p(c)ds (2,7)

It can be shown (see Appendix B) that the variance of the samples x. about

the true mean <x> is given by

CT2(X) = 2-Jfcl (2.8)

Since in practice neither <x> or a (x) is known, they are approxi-

- -2-2

mated by x and a (x). Making these substitutions and assuming large N

results in

C2.9)
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as an estimate of the variance of the gnmpio pan

The Central Limit Theorem (see Appendix B) states that

I - - - I 1 I ~t2!2
Prob jaa(x) < (x - <x>) < ga(x)j « —rr / e dt . (2.10)

/27T ,f

Pf

For a»-l and B «1, Equation 2.10 means that there is a 68.3% probability

that the estimated mean is within ±<J(x) of the true mean.

Frequently in Monte Carlo calculations it is helpful to express

1 9

the error in terms of relative error as given by

Re = £®L « -^ £fel , (2.u)
x v'N x

Equation 2.11 exhibits a very important characteristic of Monte Carlo

calculations— that the error of the sample mean varies as
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2.2) Variance Reduction

In order Co decrease the error of a Monte Carlo calculation (see

Equation 2.11), one must either increase N or decrease o(x). The effec-

tiveness of increasing N to reduce the error is illustrated in Figure 2.4.

From this figure it is apparent that as N increases, the decrease in Re,

ARe, for a given increase in N, AN, decreases. For example, increasing the

number of particles from N=100 to N*10,000 reduces the error by a factor

of 10; however, increasing N from 10,000 to 20,000 reduces the error

by a factor of only /J. Although computer time spent per particle

history is an extremely problem dependent parameter, in many cases run-

ning time becomes prohibitive after a sample of 10,000 to 100,000 par-

ticles. If the relative error is still unacceptably large after several

10,000 particles, additional histories are far too costly for the small

amount of error reduction gained.

Number of Histories, N

Figure 2.4 Reducing Error by Increasing the Number of Histories
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Because of this problem variance reduction techniques are often

required to reduce the variance of the sample mean. As seen by Equation

2.4a,the only way to do this is to sample values of x which are closer

to x.

One technique frequently used for doing this is the im-

plementation of particle "weights"7'11 with the elimination of capture.

The weight of a particle can be thought oi as representing a fraction

of a particle. For example, a weight of 1.0 represents an entire particle

whereas a weight of 0.5 represents only half a particle. When a particle

undergoes a reaction, it is never "killed" by a capture, but instead its

weight is multiplied by the factor ^ n a/^ t (̂ ra = non-absorption cross

section, I t = total cross section) and the particle history is continued

with reduced weight.

Example. Consider a Monte Carlo problem in which 100 neutrons

are started from a source. Of these neutrons 30% leak

out of the system without a collision and 30% are cap-

tured at their first collision. The remaining neutrons

undergo one scattering collision after which they are

tallied with a value of x^=l. Using no weights and

assuming neutrons behave exactly as the above percentages

indicate, one arrives at:

100

- i=l 40x1.0 + 60x0.0
x = 100 = 100

100

r
,2• I5o | 6 0 x<-100 *r^f vx,.-x; = 1nn |ovxv.4) + 40x(.6) | = .24
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Using weights and assuming that each neutron that does

not escape undergoes one collision and is then tallied

results in:

100

- _ i=l 30x0.0 -f 70>:4/7
x " 100 ~ 100

100

1 \ * _ 2 1 I 9 ?
— / ,.. ..^ _ I ™ , ,v.i . 7 O x ( g l 7 ) ^ j = <0686

A name applied to a fanily of variance reduction techniques is

"importance sampling"1"1'*i . In transport problems, importance sampling

refers to preferentially sampling those particles vhich are more likely

to contribute to the tally being investigated. From a probability

density function p(x) the nean value of a function f(x) is given by

ff(x)\ - A(x)p(x)dx (2.12)

In importance sampling an alternate distribution P.(x) is used and the
A.

function f(x) is multiplied by w(x) where



PA(x)

Using this alternate distribution gives a mean of

Thus the mean is unchanged. However, the second moment of f»(x) is given

by

yi(x)f2(x)p(x)dX> (2.15)

where

This is not the same as the second moment of the unaltered distribution

which is
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2(x)p(x)dx (2.16)

2
In Equation 2.15 <f.(x)> can be reduced by decreasing I(x) where p(x)

is large. This requires that I(x) be increased where p(x) is small.

In the ideal case pA(x)=. f O0p(x) resulting in

a2(fA(x)) = /fA(x)\ - (f<x>/

• / [ • "

However, before this zero variance PA00 can be found, the mean < f(x)>

must be known,which of course is never the case. In the following section

several techniques based on Importance sampling will be discussed.

2.3) Survey of Variance Reduction Techniques

During the development of Monte Carlo, there have been numerous

techniques proposed to reduce the variance of the Monte Carlo tally. How-

ever, when one looks at the major Monte Carlo codes, he finds that only

very few of these techniques are used. One of the reasons for this is that

many methods are "unsafe" to use because they may bias the answer or may
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actually consume more computer time than they save. Other methods are

rarely used because they are too complex to implement. The majority of this

section will be devoted to the description of splitting"* and Russian

roulette11* which are perhaps the most widely used variance reduction

techniques. A brief description of some other popular techniques will

also be given. In Section 2.3.3 techniques which require "learning"

during the calculations will be discussed.

2.3.1) Splitting and Russian Roulette

Splitting accompanied by Russian roulette is one of the most

commonly used variance reduction techniques. It consists of dividing

the geometry of the problem into regions and assigning an importance to

each region. This "importance" is selected so that particles in a region

of high importance have a higher probability of contributing to the tally.

A particle going from a region of low importance to one of greater im-

portance is split at the boundary between the regions into two or more

particles (the number depends on the ratio of the import races) with each

new particle having a reduced weight. A particle entering a region of

lesser importance is terminated or "killed" with a probability determined

by the ratio of importances. If the particle survives the Russian

roulette, its weight is increased proportionately.

Figure 2.5 shows an example of splitting planes and importance

regions used with an infinite slab of thickness T. For problems in which

T is many mean free paths, splitting and Russian roulette can be very

effective and often lead to several orders of magnitude reduction in
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computer time.

-splitting planes

planar
source

1=1 . 1=2 1=4

.tally particles
crossing this
surface

I=Importance

Figure 2.5 Splitting Planes in One Dimension

Splitting and Russian roulette can also be used in energy spare

for problems in which particular energy regions are more important than

o o c

others. An example of "energy splitting"lk is the tallying of U

thermal fission. In this case, one rould separate energy space into

regions which increase in importance as thermal energies are approached

as shown in Figure 2.6.
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CO

I

1=Importance

1=16 ' 1=8

Energy

Figure 2.6 Energy Splitting

The popularity of the above techniques can be attributed pri-

marily to the ease of their implementation. In most cases only a very

rough guess based on intuition will lead to a large savings in computer

time. Usually the importance regions specified are already geometrically

defined by the problem (different materials, densities, and shapes) and

the user only has to provide the importances.

2.3.2) Other Techniques

.7,11.A very simple technique commonly used is source biasing »

In source biasing important particles are produced more frequently but

with reduced weights. An example of source biasing is shown in Figure 2.7.
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thin slab source

particles
crossing this '
surface are lost

"tally particles
crossing this
surface

w=particle weight
f=frequency of
emission

Figure 2.7 Source Biasing

In this example twice as many particles are started to the right as to the

left. However particles to the left have twice as much weight.

Another method used to increase the number of particles in im-

portant regions is the exponential transform1*»1k»3 °. This technique

transforms the transport equation, resulting in the replacement of £

by Zt - w where w is the direction cosine of the line of flight of the

particle with the preferred line of flight. Figure 2.5 shows the case

where the desired line of flight is the x-axis. The weight of a particle

entering a collision is multiplied by
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where s is the distance traveled before collision.

A problem in using many importance sampling techniques is that

of choosing near optimum biasing parameters. This is frequently done by

rough calculations or maybe even a few preliminary Monte Carlo calculaticns.

Another method is to use the solution to the adjoint11*'20 of the problem

to estimate these parameters. The computation of importance sampling

functions has also been automated by other means.

Other variance reduction techniques include stratified sampling1,

antithetic variates11, scattering angle biasing21, siethod of expected

values 1, correlated sampling11*2? and others 2.

2.3.3) Variance Reduction Through Learning

In all of the previously mentioned techniques, importance samp-

ling parameters had to be provided prior to the execution of the Monte

Carlo calculations. In this section techniques will be described which

allow the variance reduction technique to improve during operation by

learning from early histories of the calculations.

Spanier9 applies a learning technique to the exponential trans-

form using a one-dimensional slab as an example. The parameter ot (see

2
Section 2.3.2) is optimized by making estimates of <fA(x)> for several

values of a while histories are being generated on the basis of the
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parameter value 61. An a which minimizes <f^(x)> can then be used in

another iteration as the next d. This process continues until satisfactory

agreement is reached between two stages. In the examples given three

iterations were sufficient and led to a greatly reduced variance.

MacMillan suggests a refinement on Spanier's method involving estimates

2
of the first and second derivatives of <fA(x)> with respect to a and

using these estimates to improve the approximation of a in going from

one iteration to another.

A multistage self-improving Monte Carlo method12 has been des-

cribed which divides space into volumes V. and assigns each volume a

weight p^ where p. determines the amount of sampling for associated V^.

The Monte Carlo calculation then proceeds in stages after which p. and

V^ are altered in such a way as to reduce the variance. This method is

analogous to learning the optimum importances for different geometry

regions only in this case the extent of the regions is variable. For

small probability problems the range of the tally is enlarged to increase

the probability until suitable V i and p. are learned after which the tally

is reduced to its original specifications. Running times have been re-

duced as much as a factor of 100 using this method over the crude Monte

Carlo12.

The Spanier and MacMillan techniques are primarily concerned with

the directional variables of a Monte Carlo problem and since they are

based on the exponential transform, they can be unsafe to use. The multi-

stage technique is concerned primarily with spatial variables. Further-

more this technique has disadvantages when used with Monte Carlo problems

with low probability.
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2.4) Splitting and Russian Roulette in State Space

Consider the general Monte Carlo problem in which particles are

characterized by the following state variables:

- Spatial coordinates-x,y,and z

- Angular coordinates-u,v, and w, where these values are
the cosines of the particle line of flight with the
x,y, and z axis respectively.

- Energy-E

- Time-t

In Section 2.3.1 splitting and Russian Roulette were described primarily

as applied to the spatial coordinates. Independent application was also

mentioned with respect to the energy variable.

Theoretically,it would be quite effective if splitting could be

used in the entire state space. In other words all variables would be

considered to determine which regions in state space are more important

than others. A practical problem arises in determining the importances

of these state space regions. Users have trouble enough with the three

spatial coordinates; the complexity involved in determining splitting

surfaces in eight dimensions would certainly confuse even the most

experienced user.

As has been seen in the previous sections, there is a considerable

amount of information generated during a Monte Carlo calculation which

can be used to accelerate the calculation. However, utilization of this

information can become costly in terms of computer time and storage. In

this research, pattern recognition techniques are used to
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learn these splitting surfaces during the calculations.

Such a technique would be an improvement over the learning

techniques described in Section 2.3.3 for two reasons:

(1) All state space parameters would be considered, not just

directional or spatial quantities.

(2) The technique is based on the splitting and Russian

roulette techniques which have proven to be the most

popular and useful techniques.

2.5) Effectiveness of Variance Reduction Techniques

Although it is certainly useful in Monte Carlo calculations to

reduce the variance, the primary goal is to reduce the amount of computer

time spent on a calculation. It is quite possible to use variance re-

duction to decrease 0 for a given N but in so doing to increase the time

spent per particle to such an extent that it would be cheaper just to

run more particles. Therefore, the parameter to minimize is the time

required to obtain the desired relative error as given by

(2.19)

where: N g = number of histories required to obtain
the desired Re (see Equation 2.11)

Atfi = time spent per neutron history
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Variance reduction techniques decrease S e but increase Ate. If t *, N£
A',

and ^t * are the parameters of a calculation without using variance re-

duction, then che relative effectiveness of a technique can be defined

as

TH ^~rf-r (2.20)
cc -̂ e -"-e

It should be rer:enbered that EL, is relative to the following factors:
n

(1) the computing rsachinery being used,

(2) the efficiency of the Monte Carlo calculation without

variance reduction,

(3) the characteristics of the particular problem under

study and,

(4) the programming efficiency used to implement the technique

(i.e., assembly language vs. FORTPAN etc.).

Of the above, point three is the r.ost important since the effectiveness

of a technique is strongly dependent on the problem to which it is being

applied.

Computer tine spent during a calculation is not the only measure

of performance for evaluating variance reduction techniques. Another

parameter is the aaount of himan effort (and sometimes additional com-

puter tine) required to L-r.plsnent a technique. The majority of techniques

in use require a certain ar.ount of £ priori information. Thus the
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implementation of some techniques is an art in itself requiring con-

siderable ingenuity and experience on the part of the user. In addition

some techniques require that calculations be performed in order to deter-

mine importance parameters, etc. Figure 2.8 illustrates the operations

and times required in implementing a variance reduction technique. The

importance attributed to time spent on each of these operations is an ex-

tremely subjective function yet it certainly influences the overall

acceptability of a technique.

problem
description

Determine
Variance
Reduction
Parameters

\i

Monte Carlo
Calculation

t
Variance
Reduction
Calculations

ii

Prepare Data
for Variance
Reduction
Calculations

user time
spent

Monte Carlo
^ Estimate

computer time
spent

user time
spent

Figure 2.8 Implementation of Variance Reduction Techniques
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III. Pattern Recognition

The field of pattern recognition includes an extremely broad range

of topics including engineering applications, artificial intelligence

studies, biological systems, and others. Because of its diffuse appli-

cation, a general theory of pattern recognition is difficult to separate

from its applications. To confuse matters further, it appears that even

1 5 , 1 6 , 2 2 , 2 3 , 2 "t , 2 5 , 2 6

the introductory texts on pattern recognition do not agree

on a unified framework for describing pattern recognition systems. As

a result, a novice in the field frequently encounters a variety of new

vocabulary words describing types of pattern recognition systems including

such terminology as statistical, parametric, non-parametric, sequential,

distribution free, stochastic, nonsupervised, supervised, error-correcting,

Bayesian, etc.

The purpose of this chapter is not to explain all facets of pattern

recognition to the reader, but only to provide him with the tools nec-

essary to understand how pattern recognition is to be used in this re-

search.

A general pattern recognition system will be explained in Section

3.1 in terms of the basic operations performed. The different types of

pattern classification algorithms will then be classified according to

the type of input data they require . Sections 3.2 and 3.3 describe in

more detail the type oil pattern classification algorithms to be used in

this research. Section 3.4 discusses the problem of feature selection

with emphasis on the Monte Carlo transport problem. Finally, Section 3.5

expands the previous explanations to multiclass problems.
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3.1) The General Pattern Recognition Problem

3.1.1) Fundamentals

The primary difficulty with understanding the fundamentals of a

pattern recognition system is due to the terminology used. This section

introduces pattern recognition terminology by relating the concepts to

the simple example of weather prediction as given below:

Example. Given the following information

(1) barometric pressure,

(2) temperature, and

(3) percent cloud coverage,

predict whether it will

(1) rain, or

(2) not rain.

The input - output relationship of a system to perform this task is shown

in Figure 3.1.

Input Output

Pressure .

Temperature

Cloud Coverage

Weather
Prediction

System
Rain or
No Rain

Figure 3.1 Input-Output Model of Weather Prediction
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A coordinate system defined by the input variables of Figure 3.1

is shown in Figure 3.2

x^ = cloud coverage

x-̂  = pressure

X2= temperature

Figure 3.2 Pattern Space

and is referred to as pattern space. The vector drawn from the origin of

pattern space to the point (x-^jX^jXg) in Figure 3.2 is called the pattern

vector and in this dissertation will be designated by

X

xl

x2

SR
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where R is the dimension of pattern space (R=3 for the example shown in

Figure 3.2). The purpose of the pattern recognition system in this ex-

ample is to divide pattern space into two regions: (1) those X which

indicate rain and (2) those X which indicate no rain. The options rain

and no rain are* called classes and are referred to as C.. and C2 where

C^ = rain and

C£ = no rain.

In general, the purpose of a pattern recognition system is to classify

pattern vectors into their appropriate classes 0^,02,....,CK where K is

the number of classes (see Figure 3.3).

Pattern Vector, X Classification

C. k=l,... K

Figure 3.3 Input-Output Model of a Pattern Recognition System

The structure of a pattern recognition system can often be sim-

plified if pattern space is transformed into a more efficient configuration.



For instance, if in the weather prediction example,it is found that the

temperature is of no value for predicting rain (i.e. there is no correla

tion between temperature and rain) and that the probability of rain in-

creases in proportion to the square of the percent cloud cover, then it

would be more efficient to use the coordinate system shown in Figure 3.4.

2 2
o) = (cloud coverage)

y, = x.. = pressure

Figure 3.4 Feature Space

This new coordinate system is referred to as feature space. The vector from

the origin of feature space to the point (y^,y2) is called the feature

vector and in this dissertation is designated by

Y =
Y2

VN
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where N is the dimensionality of feature space. The process of trans-

forming a pattern vector into a feature vector is called feature .selection'1

The input - output relationship of a feature selector is shown in Figure

3.5 where in general K<R.

Pattern Vector, X Feature Vector, Y

x l •*
X

2 — r *

• »

Feature

Selector

>"N

Fig-jre 3.5 Feature Selection

The feature selection operation is highly problem dependent and will be

discussed further in Section 3.4.

The operation of classifying the feature vector into classes

CpC,,.•.,CK is called pattern classification. Thus the pattern recog-

nition system consists of two najor components: feature selection and

pattern classification (see Figure 3.6).

* In. this dissertation any operation performed on the pattern vector prior

to classification is considered to be a feature selection operation.
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Pattern
Vector
v.
1

•

:eature
Selection •

Pattern
Classification

Class

k-1...

Figure 3.6 A Pattern Recognition Systen

Given functions S^

such that

-'), k=l,2,...,K, of the feature vector, Y,

if g,.(Y) > g i(Y) 1=1,2,.... ,K (3.1)

then Y is placed in class C, by the pattern classifier. The function g, (Y)

is called the discrir.iriant functicr. of C^. If K=2,as in the weather fore-

casting example, a discriminant function g, ,(Y) can be defined such

that



gl,2 ( Y ) = S 2 ( Y ) " S 1 ( Y ) ' (3'2)

In this case,

if g1 2(Y) > 0, then Y belongs to C2 (3.3)

if gls2(
Y) < °> t h e n Y belongs to Cj_ .

The surface for which

gk0O = g±(Y) k-1,2 K (3.4)

i=l,2, K

is called the decision surface between Ck and C±. The decision surfaces

separate feature space into K regions. The Y's in each region belong to

the same class. For a two class problem the decision surface is given by

glj2(Y) - 0 . (3.5)



Such a surface (a line in this case) is shown in Figure 3.7 for the

weather forecasting example.

= discriminant
function

Si, 2 00 - 0
decision surface

Figure 3.7 Decision Surface

The previous discussion is concerned with how features are

classified and is true for pattern classifiers in general. How-

ever, before the classifier can operate, the form of the discrimi-

nant functions, g, (Y), must be known. How the S^CY) are arrived



at for different pattern classifiers is the subject of the next

section.

3.1.2) Types of Pattern Classifiers

Every feature vector has associated with it a probability of be-

longing to a given class. This probability will be denoted by p(C-jjY)

which is the probability that feature vector Y belongs to class C^. For

a two-class problem, if one class can be uniquely associated with each

pattern such that

if PCC-JY) > 0 then p(C2|Y) = 0 (3.6)

if p(C2|Y) > 0 then pCcjY) = 0,

then the classes are said to be non-overlapping. If patterns can belong

to one class sometimes and the other class at other times,the classes are

said to be overlapping. Examples of these two different types of dis-

tributions are shown in Figure 3.8 using the weather prediction example.
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rain
rain sometimes

no rain

(a) Overlapping

rain

no raxn

(b) Non-Overlapping

Figure 3.8 Overlapping and Non-Overlapping Classes

Classifier input data and the schemes they require can be separated

into different cases depending on what is known about p(C.j|Y) and ths in-

27

put data . There are basically four types of information of which one or

more may be available to the classifier. These information types are27:

(1) Functional form of pCCjjY) is known. For example it may be

known that both p(C;jjY) and p(C2|Y) are Gaussian but with

unknown means and variances.

(2) Parameters of p(CJ Y) are known. Parameters include the

mean, variance, etc.

(3) Sample pattern vectors with known classification are given.

Each pattern vector with its classification is called a pro-

totype. These prototypes serve as a training set for the classi-

fier. 47



(4) Sample pattern vectors of unknown classification are given.

Depending on which of the above information is available, six major kinds

of pattern classifiers can be defined

(1) Case A: Information types 1 and 2 are given

(2) Case B: Information types 1 and 3 are given

(3) Case C: Information types 1 and 4 are given

(4) Case D: Information type 3 is given,Deterministic methods

are used

(5) Case E: Information type 3 is given, Statistical methods

are used

(6) Case F: Information type 4 is given

In Case A all the information required to make an analytical solu-

tion for g(Y) is known. In Case B the classified Y's must be used to make

an approximation of the required parameters after which the classifier

becomes a Case A. Cases C and F are often referred to as "learning without

a teacher" or unsupervised learning16 and usually consist of a type of

clustering technique.

In Case D the basic idea is to find a g(Y) which operates "satis-

factorily" on the samples of known classification. This type of approach,

sometimes referred to as "distribution free" , makes no assumptions con-

cerning the pCC-jjY). Instead the data is assumed to be separable by a

given form of g(Y), i.e.slinear, quadratic, etc. One drawback of such an

approach is that it places an additional burden on the feature selector

in order to produce feature vectors which satisfy the assumptions made on

g(Y).
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Case E consists of us?ng statistical techniques tc minimize classi

fication errors. These techniques are theoretically more useful for over-

lapping data since they allow for the existence of error. Frequently in

the statistical approach p(C-jjY) is expanded in a series

where the ot^'s are approximated by using prototypes. A simpler approach

is similar to the deterministic approach and consists of assuming a form

2 S

for g(Y). However, unlike the deterministic classifier, the input data

need not conform to the assumptions made on g(Y) since in this case g(Y)

is approximated by the statistical behavior of the data in order to mini-

mize the number of misclassifications.

Classification techniques for Cases B through F can be further

characterized as sequential23 or non-sequential techniques . In sequential

techniques the prototypes are presented one at a time and approximations

are made concerning g(Y) or p(CjjY) as each prototype is presented. In

non-sequential techniques a finite number of prototypes is presented at

once to the classifier and an optimum g(Y) or p(C^JY) is fitted to these
prototypes.

In summary, the selection of a pattern classification scheme

depends upon the information available (Cases A-F), whether the

p(C.jjY) are overlapping, and the manner in which the prototypes are pre-

sented (sequential or non-sequential). Because of the characteristics
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of Monte Carlo problems,only Case D and E classifiers will be investigated

in this study. A more detailed description of these classifiers using

sequential learning methods is presented in Sections 3.2 and 3.3.

3.2) Sequential Deterministic Classification Techniques (Case D)

In this section several deterministic techniques are described for

classifying patterns when prototypes of known classification are presented

sequentially. This approach consists of assuming a form for g(Y) and

using the prototypes to learn the necessary parameters. Two class problems

(K=2) are assumed resulting in a single discriminant function g(Y)Eg-^

(see Equation 3.2).

3.2.1) Linear Discriminant Functions

The general form of a linear discriminant function for N dimen-

sional feature space is given by

g(Y) w 2y 2

where Y* = W =

WN+1 "

'l

2

W = the transpose of W

w,N+l

(3.8)
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the vector V' (the weight vector) ziust be obtained from information

contained in the prototypes. The vector Y* is called the augmented16

feature vector and. is of dimension X+l. The use of g(Y) as given by

Equation 3.8 assumes that feature space is linearly separable. For two-

dinensional feature space this r.ear.s that all feature vectors belonging

to C^ can be separated by a linear decision surface (a straight line fcr !.'=2)

from all feature vectors belonging to C9. Figure 3.9 illustrates linearly

and non-lineariy separable feature vectors. Note that for the linearly

separable data shown (Figure 3.9a), there is an infinite number of de-

cision surfaces which satisfactorily separate feature space. For the data

of Figure 3.9b there is no linear g(Y)=0 that will separate the classes.

The coordinate systen created by the components of the weight vec-

tor, I? (see Equation 3.8), is referred to as weight space^and is frequently

used to explain the behavior of deterministic classifiers. Weight space

for two-dinensional feature space is shown in Figure 3.10,where the vector

from the origin to the point (wj^v^jV-j) is called the weight vector. It

should be noted that weight space is of dimension N+l when feature space

is of dimension X.

Consider the one-dir.ensional feature space shown in Figure 3.11

where

if -5 <_y £ 3 y belongs to

if 10 <_ y <_ 15 y belongs to
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possible linear
decision surfaces

(a) Linearly Separable

2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 2 2 2 2
1 1 1 1 1 2 2 2 2
1 1 1 1 1 2 2 2 2
1 1 1 2 2 2 2 2
1 2 2 2 2

2 2 2 2 2 2 2

2) belongs to C 2

belongs to C-̂

(b) Non-Linearly Separable

Figure 3.9 Linearly and Non-Linearly Separable Classes
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Weight Vector = W

wl

Figure 3.10 Weight Space

1 1 ( 1 1 1 1 1

-5 10

Figure 3.11 One Dimensional Feature Space
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If a decision surface is located at point y1, then for this example

g(Y) = 0

and

i s» le
The surface given by Equation 3.9 is called a pattern hyperplane in weight

space and divides weight space into two regions: (1) that region for

which g=(w1y'-K-2)> 0 and (2) that region for which g=(w1y'-fv2)< 0. Pattern

hyperplanes for y'=2,3, and 10 are shown in Figure 3.12 where the + and -

signs indicate the sign of g on the different sides of the hyperplane.

Tha shaded region of Figure 3.12 is that region of weight space for which

g > 0 if y' _> 10

and

g < 0 if y1 <_ 3



patuern
hyperplanes

-10

"2

-10

10
wl

=-2wi

-10

Solution Region

Figure 3.12 Pattern Hyperplanes in Weight Space

55



and is called the solution region. Any W in the solution region results

in a discri-.inant function which satisfies Equation 3.3.

The training of a linear classifier consists of first guessing

an initial weight vector, \-U. The classifier is then presented with

prototypes, Y^, of known classification. If gCY.^) gives the correct

classification for Y.±, \! is unchanged. If g(Y^) gives the incorrect

1 5
classification then V is corrected as follows:

if g(Y±) > 0 and Y ± belongs to C 2 (3.10)

if g(Y±) < 0 and Y± belongs to C 2

W i + 1 = U.+cY*

where c>0

The effect of the above procedure nay be varied depending on the value

of c, the correction increment. The above scheme will always move W in

a direction normal to the pattern hyperplane*. The size of c determines

how far the V.1 is moved. Three rules 1 5' 1 6 cor.ar.only used to determine

the value of c are:

*'«.' is moved along the direction of the vector (V.'i+]_-Wi)=lcY^. The
equation for all hyperplanes perpendicular to the vector (±cY?) is
K. (-cY£)=ri or W-Y^=r2 where r^ and r2 can be any scalar values .
However, the equation of the hyperplane corresponding to the prototype
Y^ is VT'Y£=O. Therefore, using i'2=0, K is moved normal to the pattern
hyperplane in weight space.

56



(1) Fixed Increment Rale: c is taken to be any fixed increment

greater than zero. In this case the weight adjustment may

or may not correct the misclassification of the prototype,

depending on the value of W-Y in relation to c.

(2) Absolute Correction Rule; c is the smallest integer greater

than |W*Y*|/ Y*>Y*. Thus after one adjustment with this

rule W will be on the correct side of the pa .tern hyperplane.

(3) Fractional Correction Rule: c is chosen such that W is moved

a fractional distance, A, towards the pattern hyperplane.

The distance from the weight vector W to the pattern hyper-

plane defined by Y is given by

D - |Y*| = -|Y*j

Therefore, using

K+i - W i != c|Y*J = AD

c is given by

AD U R ( Y ) |
c = "fPT = |Y*-Y*j (3.12)
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If X > 1, W i + 1 will be on the correct side of the hyperplane. Throughout

this study X will be referred to as the learning parameter since it con-

trols the rate of learning by the classifier. Figure 3.13 illustrates the

behavior of these three rules using the problem illustrated in Figure 3.11

and the following prototypes (prototypes are presented to the classifier

in the order presented below)

(1) y = -2 and belongs to C^

(2) y = 10 and belongs to C2

(3) y = 2 and belongs to Cj

y =-2 y =2

Figure 3.13 Example of the Fixed Increment, Absolute Correction, and
Fractional Correction Rules
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The x^.y and z. are the positions of W after the i'th prototype has been

presented using the fixed increment (c=l), absolute correction, and frac-

tional correction rules (A=l) respectively.

3.2.2) Quadratic Discriminant Functions

The general form of a quadratic discriminant function for a two

class problem with N dimensional feature vectors is given by

N N-l N

g(Y) =1^ w yn + /^ l_j wn,kynyk + ^ wn>n T WN+1
n=l n=l k=n+l n=l

A quadratic discriminant function has M=(N+1)(N+2)/2 weights. This type

of g(Y) can be treated in exactly the same manner as the linear g(Y) if

the feature vector is first operated on by a "quadric processor"15 as

shown in Figure 3.14. The quadric processor behaves as a feature selec-

tor except that the dimensionality of the data is increased from N to M

instead of decreased. The same techniques described in Section 3.2.1

can be used to learn the W vector corresponding to g(F). This same

procedure can also be performed for any g(Y) which depends linearly on

the w^,W2....Ww resulting in
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3'2
Quadric

Processor

fl=yi2

-&>
Linear

Pattern

Classified

Figure 3.14 Quadratic Discriminant Functions

g(Y) = w2f2(Y) WM+1

Such a g(Y) is frequently referred to as a <j> function15.

3.3) Sequential Statistical Classification Techniques (Case E)

The main incentive for using a statistical approach in pattern

classification is that many processes can best be characterized in

statistical terms. It is also often desirable to evaluate a pattern

classifier in terms of its statistical performance. The statistical

60



classifier investigated in this research is similar to the deterministic

classifier described in Section 3.2 in that a form of g(Y) is assumed

(i.e. g(Y)=f(W,Y)). The following notation will be used when referring

to the statistical nature of pattern classifiers:

p(Y|c) = the probability density function of those vectors

Y which belong to C.

P(C±) = the probability of class C± occurring (P(C1)+P(C2)=1)

p(Y) = P(Y|C I)P(C 1)+P(Y|C 2)P(C 2) = the probability density

of Y

p(C.|Y) = p(Y\c.)?(C±)/pCi) = the probability of the vector

Y belonging to class C^.

3.3.1) Linear Discriminant Functions

In Section 3.2.1 the feature vectors were assumed to be linearly

separable. By use of statistical techniques, linear discriminant func-

tions (i.e. g(Y)=W-Y*) can be used with non-linearly separable data in

a least error sense.

Let the function S(W,Y,C.|ct) be defined as the loss incurred
16

when a pattern or feature vector, Y, actually belonging to class Ck is

placed in class C.̂  (note that S is a function of the weight vector W).

A vector Y is said to belong to class C, if
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P(Ck|Y) > pCCjY) for I/k.

This loss function provides a means of weighing specific classification

errors more heavily than others. For example the distance from a mis-

classified prototype to the decision surface (see Figure 3.15) as given

by

d(W,Y) = (3.13)

2 2 2 2 2 2
g(Y)=0

2=location
of C2

 Y

l=location
of Cx Y

Figure 3.15 Misclassification Distance

where W is the weight vector W with w .=0, is frequently used as a loss

function which for two classes results in
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S(W,Y,C1|C2) = S(d,C1jC2) = d(W,Y),

S(W,Y,C1|C1) = S(d,C1|C1) = 0,

S(W,Y,C2|C2) = S(d,C2|c2) = 0, and

S(W,Y,C2|C1) = S(d,C2jC1) = d(W,Y). (3.14)

The variable d is frequently referred to as the "misclassification

distance"28 and should not be confused with the distance, D, as given

by Equation 3.11. The average loss16 K W J Y J C ^ ) as given by

= S(W5Y,C |ck)p(C. |Y) i-1,2 (3.15)
k=l,2

can be interpreted as the average S(W,Y,C.|C.) associated with vector Y

and class C.. If L(W,Y,C.) is integrated over all feature space, the

result is the risk associated with each class:

R(W,C.) = /L(W,Y,C )p(Y)dY 1=1,2
1 J x k=l,2

R(W,Ci) = /S(W,Y,C.|Ck)p(C±|Y)p(Y)dY (3.16)
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The total risk in the classification problem is the sum of the risks

involved in each class:

R(W) = RCW.Cp + R(W,C2) (3.17)

The purpose of the pattern classifier is to minimize the risk with re-

spect to W. Assuming R(W) is differentiable and has a global minimum

with respect to W, the optimum W is the solution of VR(W)=0. However^

as seen by

VR(W) = VyP(Y)L(W,Y,C1)dY + v/p(Y)L(W,Y,C2)dY (3.18)

P(C2)

this requires that p(Y|C£) be known. This problem can be alleviated if

R(W) is approximated by a summation over prototypes

R(W) =y.-$7-} S(W,Yk,C.|Ck) 1=1,2 (3.19)
f-f %*—' n 1 k=l,2
k=l n=l , ,.
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where 11 = no. of prototypes in class C.

Y = nth misclassifted prototype of class k
n

Nj = number of misclassJfled prototypes in C,

rather than an integration over densities. Using this approximation for

R(W)» W can be incremented proportional to the negative of V&<.W) as given

by

if g(Y±) > 0 and Y± belongs to

or

if g(Y±) < 0 and Y± belongs to

then

(3.20)

i+1 = Wi "

V =

_9
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where A is a proportionality constant or learning parameter similar to

the A described in Section 3.2.1 and

VRCW) - 2 - < ~ L VS(W,Y C |C ) i=l,2 (3.21)
k k n=l k-1,2

3.3.2) Quadratic Discriminant Functions

Quadratic discriminant functions using statistical techniques are

treated the same as linear discriminant functions except that the feature

vector is first processed by the quadric processor described in Section

3.2.2.

3.4) Feature Selection

The objective of feature selection is to retain that information

necessary for classification and to eliminate that information which is

not. Feature selection often results in greatly reducing the demands on the

classifier. For example, a feature selector may process non-linearly

separable data into linearly separable data as shown in Figure 3.16.

66



Pattern Space

1111111/222222222
>-1

Feature Space

Figure 3.16 Linearization by Feature Selection

Unfortuiiately> the operation of feature selection is far less

defined mathematically than that of pattern classification. Although a

human can implement feature selection with ease,the techniques used are

heuristic in nature and usually highly problem dependent. At the present

time, selection decisions trivial to a human may take a great deal of

effort to model and even then may take a large amount of computer time to

implement. Thus tbis research will rely upon the heuristic techniques of

the user to supply the feature selection process.
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The pattern space of a particle transport problem consists at most

of eight basic parameters:

- three position parameters (x,y,z)

- three angular parameters** (u,v,w)

- energy (E)

- time (t)

Certainly,if a problem independent of time is under investigation, it is

much easier for the human user to remove t from feature space than it is

for a computer based selection system to recognize that there is no cor-

relation between time and classification. Another case is a problem in-

volving spherical symmetry in the geometry in which three variables

2 2 2
(x,y,z) can be replaced by one, r( r= x +y +z ) . This not only reduces

the dimensionality of the problem but can also linearize the feature

space. Such a substitution is easily specified by the user but would

take numerous operations to recognize computationally.

3.5) Multiclass Problems

The previous sections have considered pattern recognition prob-

lems involving two classes. In this research discriminant functions are

learned for two classes at a time* resulting in a single discriminant

function for classes i and i+1 (see Equation 3.2)

* The reason for this will become apparent in Chapter V.

** Only two of the angular parameters are independent.
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(3.22)

where J is the total number of classes. These classes are ordered such

that

then Y must belong to a class C. where j=l,...,i

if g l f l+1or»o

then V must belong to a class C. where j-i+l,...,J

Because of this characteristic, the class of a prototype can be deter-

mined as shown by the flow diagram in Figure 3.17.
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Class=Ci

f
Figure 3.17 Multi-Class Problems
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IV. Recognition of Splitting Surfaces

In Section 2.4 splitting in state space was described and it

was suggested that pattern recognition be used for the identification

of the splitting surfaces. It is the purpose of this chapter to de-

scribe how pattern recognition can be implemented and to investigate

the performance of the technique.

Since the purpose of this dissertation is to demonstrate proof

of principle, the technique is not applied to a general purpose Monte

Carlo code. The Monte Carlo problems investigated in this research

have been chosen for their simplicity and their minimal use of computer

time. These sample problems include: (1) a one-dimensional one-

region homogeneous slab, (2) a one-dimensional multi-region slab,

and (3) a two-dimensional, multi-region slab. These problems illustrate

the basic treatment of distance and direction variables in a Monte

Carlo problem.

This chapter is concerned only with the learning of the split-

ting surface. A description of how to use the splitting surface and

what surfaces are desirable as splitting surfaces is given in Chapter V.

Section 4.1 describes in general how pattern recognition is

used to identify splitting surfaces. In Section 4.2 both deterministic

(see Section 3.2) and statistical (see Section 3.3) classifiers are

used to identify splitting surfaces for a one-region slab Monte Carlo

problem and studies are made to determine: (1) the effects of slab

thickness and class overlapping, (2) the improvement due to the use of
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buffer zones,(3) the best choice of a loss function (see Section 3.3.1)

for the statistical classifier, (4) computer tima spent for pattern

recognition, and (5) the sensitivity of the classifiers to the learning

parameter X. In Section 4.3 the same classifiers developed in

Section 4.2 are used to identify surfaces for multi-region problems

and again the sensitivity to A is investigated. Section 4.3 also in-

cludes a study of the sensitivity of the classi fiers to the selection

of initial conditions (i.e., the initial guess for W). Section 4.4

increases the pattern space to two dimensions, distance and angle,

thus requiring normalization of the feature vector. Studies of the

learning parameter and initial conditions are then repeated for the

two-dimensional problem. Section 4.5 summarizes the results of the

chapter.

4.1) Basic Principles

The purpose of this section is to relate the pattern recogni-

tion system described in Chapter III to the problem of identifying

Monte Carlo splitting surfaces as described in Chapter II.

In Section 3.1.2, the concept of "prototypes" or "training

sets" was introduced. This concept is very important in this research

and is discussed with respect to Monte Carlo calculations in Section

4.1.1.

Although feature selection is not discussed until Chapter V,

Section 4.1.2 does describe how feature selection relates to the simple

Monte Carlo problems of this chapter.
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Two pattern classification systems are investigated in this

chapter: (1) the Case D deterministic classifier using thj fractional

correction rule (see Section 3.2) and (2) the Case E statistical

classifier (see Section 3.3). The structure of these classifiers and

the operations performed for learning a splitting surface are described

in Section 4.1.3.

In Chapter III, the term "learning parameter" was introduced

for both deterministic and statistical classifiers. This parameter,

A, plays an important role in this research. Its importance is ex-

plained in Section 4.1.4.

In order to evaluate different classifiers and classifier

parameters, one must be able, to measure the performance of the classi-

fier. The performance measures used in this dissertation are described

in Section 4.1. "j.

4.1.1) Prototypes from Monte Carlo Calculations

Prototypes were described in Section 3.1.2 as being pattern

vectors with known classification. The prototypes allow Case B, D,

and E classifiers to learn a discriminant function, g(Y), (see Section

3.1.1) which is necessary before classification can take place.

In Section 3.14 it was stated that for the general Monte Carlo

problem pattern space consists of 8 variables:

- three position parameters (x,y,z)

- three direction parameters (u,v,w)
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- energy (E)

- time (t)

As a particle travels through a material region, it undergoes numerous

collisions. At each collision point a new set of (x,y,z,u,v,w,E,t) is

calculated for the particle (see Appendix A). This new set of values

consists of a point in state space (see Section 2.4) and can be repre-

sented by the state space vector X as given by

This vector X is also a pattern vector; therefore,

state space vector = pattern vector

and

state space = pattern space.

Thus pattern vectors are created in a Monte Carlo problem whenever a

particle undergoes a collision,

Before the pattern vectors can be used as prototypes, their

classification must be known. In Section 3.5 it was stated that

discriminant functions are learned for two classes at a time. There-

fore, before the pattern vector, X, can be used as a prototype, it must

be known to which class, C.(i*l,2), the vector belongs. This is done

by introducing the concept of "importance".
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In this research the Importance of the vector X In state space

Is defined as the average contribution to the tally by particles which

pass through X divided by the average weight (see Section 2.2) that

particles have at X. If the importance were known for all X, there

would be little reason to solve the Monte Carlo problem since the aver

age importance of the source particles would be equivalent to the

desired tally. Therefore, only approximations to the importance as

defined above will be used. The approximation to the importance at X

of a single particle passing through X is given by

where T = the contribution of the particle to the tally

Wt(X) = the weight of the particle when it existed at X.

Using Equation 4.1 for the importance, one can classify the pattern

vector X as follows:

if I(X)<T, X belongs to (̂  (4.2)

if I(X)>T, X belongs to C2 ,
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where I is an importance which is used to discriminate between C, and

C (I will be discussed later).

Thus prototypes, X, are created at collision points with their

classification determined by Equation 4.2. The following example il-

lustrates the creation of prototypes.

Example: Consider the problem of the one-dimensional homogene-

ous slab shown in Figure 4.1 with a unidirectional source at x=0

and a tally of particles as they cross the surface at x=L. A

single particle is shown traversing the slab and undergoing five

collisions before it is tallied. The absorption probability at

each collision is .2; thus, the weight of the particle is multi-

plied by .8 at each collision. When the particle is tallied

approximations of the importances at the various collision points

can be found by

Wt(x) '

where I(x) = importance of a particle at x

Wt(L) = tally contribution of the particle=

weight of the particle at x=L, and

Wt(x) = weight of the particle at x.
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The values of I(x) for the five collisions shown in Figure 4.1

are given in Table 4.1. If T=.75, the pattern vectors are

classified as shown in Table 4.1.

• Unidirectional
Source at x=0

Wt=l = .8 =.64

Tally across
this Surface

A
5. =.15 = 3
L

=.75 =.90

x=0

Figure 4.1 Prototypes from a One-dimensional Slab Monte Carlo Problem
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4.1.2) Feature Selection

Sections 4.2 and 4.3 use one dimensional slab Monte Carlo

problem and thus pattern space consists of the single variable x, where

x is the distance from the source (see Figure 4.1). For this problem

feature space will be the same as pattern space; thus

X = [x.] = Y = [yj = x.

The two dimensional problem of Section 4.4 will be treated

similarly. In this case

X =

' x l

.X2_

= Y =

" y l "

/ 2 .

X

-e
-

Table 4.1 Prototypes for Problem Illustrated in
Figure 4.1 and I= .75

L

.15

.30

.50

.75

.90

Wt(x)

.8

.64

.51

.41

.33

I(x)

.41

.51

.64

.8

1.0

c.

1

1

1

2

2
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where <t> will be defined in Section 4.4. Some experiments are also made

in Section 4.4. for which

4.1.3) The Pattern Classifier

The classifiers used in this research assume a linear form for

g(Y) as described in Sections 3.2.1 and 3.3.1 and operate in two

stages:

(1) prototypes are used to learn the weight vector W for the

linear discriminant function g(Y) -\J • Y* (see Equation 3.8)

(2) the discriminant function g(Y) is used to classify the

feature vector Y where Y is of unknown classification.

This chapter is concerned only with the first operation. The second

operation is discussed in Chapter V.

The learning of the weight vector, W, consists of:

(1) selecting an initial value of W and

(2) incrementing W (using Equations 3.10 and 3.20) whenever

a prototype belonging to class C. (as determined by

Equation 4.2) is classified into C. (j^i) as determined

by the sign of g(W).

The sensitivity of the classifier to the initial selection of W is

investigated in Section 4.3.1.

The incrementing of W is the major operation of the learning

process. The classification of a feature vector according to Equation

4.2 is referred to as the "teacher". The classification according to
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the pattern classifier is determined by Equation 3.3 which is repeated

here as

if g(Y)< 0 Y belongs to

if g(Y) >0 Y belongs to

The classification according to Equation 3.3 is referred to as the

"student". Thus whenever the student disagrees with the teacher, the

student is corrected by adjusting W. This process continues until the

agreement between student and teacher meets some threshold value. At

this point the classifier has learned the desired W.

The intersection of the discriminant function g(Y) with state

space is called the decision surface (see Section 3.1.1) and is given

by g(Y)=0. This surface separates state space into two regions:

(1) X for which g(Y)> 0 and (2) X for which g(Y)< 0. Since this is the

purpose of a splitting surface, it follows that

decision surface = splitting surface.

These two terms will be used interchangeably throughout the remainder

of this dissertation.
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4.1.£) ine Learning Parar.eter, X

The weight adjustment algorithm using the deterministic classi-

fier £-c the fractional correction rule is given by (see Equations 3.10

and 3.12)

i+l i "' Y* .

Vor the statistical classifier the adjustment algorithm is given by

(see Equation 3.20)

V = T;I

i+l i

In both cases the areunt of the adjustment of W. is determined by the

learning parameter, X.

Khen a pattern classifier is presented with overlapping distri-

butions* (see Section 3.1.2), the selection of an optimum A becomes

quite ccr.plex. Before using the adjustment algorithms, the classi-

fier rust be told to which class a feature vector belongs.

*A11 cata produced by Monte Carlo will be overlapping since the proto-
type classification is determined by Equation 4.2 and I(X) is only
a single estimate of the true value of the importance at X. Over-
lapping vill be discussed further in Section 4.2.
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When Y can belong to either class with probability p(C JY) and p(C JY)

(see Section 3.1.2X the classifier should be told

if pCOjjY) >p(C2|Y) Y belongs to C^

if p(C2|Y) >p(C1|Y) Y belongs to C2

In this research the p(C.JY) are unknown. As a result, when the classi-

fier is told that Y belongs to C2> it may be that

: |Y) >P(CJY) .

In such a case, the classifier should not adjust the weights if g(V)<0,

since it is the prototype classification that is wrong, not the classi-

fier. However, since the p(C.|Y) are not known, it is impossible to

determine which classification is right.

As the confidence in a prototype's classification becomes small,

i.e., as

and
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a smaller value of A should be used than when the confidence becomes

great, i.e., as

i=l or 2

Thus, it would be beneficial to use a A that is a function of

A(Y) = 1 - |p(cJY) - p(C

which is not possible since A(Y) is unknown. If the average value of

A(Y) is known for a problem as given by

a "semi-optimal" constant A can be chosen for each problem such that

A a A
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For Monte Carlo problems, the value of A is not known. There-

fore a single A must be used for all problems which from the above

discussion is definitely sub-optimal. One of the purposes of this dis-

sertation is to determine the sensitivity of classifier performance to

A so that a suitable A can be chosen for a large range of problems.

4.1.5) Classifier Performance

Two parameters are used in this dissertation to measure the

performance of the various classifiers: misclassification rate and

variability. In addition the classifiers are timed in order to esti-

mate how much computer time is spent in learning a splitting surface.

A prototype is said to be misclassified if the student disagrees

with the teacher (see Section 4.1.3). This can be summarized as fol-

lows:

if I(Y) <I and g(Y) >0

or

if I(Y) >I and g(Y) <0

then the prototype Y has been misclassified. The misclassification

rate used in this dissertation is given by
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where N. = number of prototypes belonging to C. (according to

the teacher) that are nisclassified into C. (i^j)

M. = nur.ber of prototypes belonging to C. (according to

the teacher) .

It is important to note that the above misclassification rate is that

seen by the teacher. Because of this the misclassification rate can

never be lover than the nisclassification rate of the teacher. Therefore,

a problem in which the class distributions, pCCjjY), overlap by 30% will

never have a nisclassification rate below .3. Similarly a problea in which

the p(Ci|Y) have no overlap can theoretically have a misclassification rate

of zero. Because of the Monte Carlo problem dependence of the nisclas-

sification rate another parameter, the variability, is used to measure

performance.

The variability is a measure of the amount of fluctuation of

the decision surface. The decision surface after the j'th prototype

for the one dimensional problem is given by
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where S.. = the initial selection of the decision surface

(w ) = the i'th component of the weight vector V. . that

exists after the j'th prototype

W = the initial selection of W

The mean value of the decision surface after J prototypes is given by

J+lJ+i /_w \

J+l

The variability of the decision surface as used in this dissertation

is given by

Var

fJ+1

j-l
J+l

1/2

1
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The variability can be thought of as the relative error of the

decision surface. As the decision surface converges the variability

decreases. The variability of the statistical classifier approaches

zero; however, as will be seen, this is not true for the deterministic

classifier.

The misclassification rate and variability can also be used by

the classifier to determine when a decision surface has been learned.

This can be done by first setting a threshold on the misclassification

rate and variability. Once the misclassification rate threshold has

been reached, the classifier continues unti] the variability threshold

is reached. The values to use as thresholds will require experience

with a general purpose Monte Carlo code; however, an indication of

those values is given in this research.

Because the purpose of using pattern recognition is to save

computer time, it is important to know how much computer time is used

by the classifier to learn a splitting surface. This is done in this

research by using the timing routine described in Reference 36. it

should be noted that the FORTRAN programming used in this research is

in no way optimized. Therefore, the timing data should be considered

as an upper limit to the values that could be obtained using optimized

FORTRAN or assembly language programming. It is also important to

realize that the relative difference between timing values for differ-

ent operations, quoted in this research could also change depending on

the programming used. Thus when ii: is stated that operation x is

quicker than operation y, it should be remembered that this is relative

to the programming techniques used in this research.
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4. 2 One-Dimensional Ore-Region f̂ lafc

The Monte Carlo problem used in this section consists of calcu-

lating the transmission probability through a homogeneous slab of

thickness L (see Figure 4.2). At each collision «-he particle's weieht

is reduced by the absorption probability and then a1loved to continue

in the forward direction only. The computer code for this problem is

shown in Appendix C. The analytical solutions for the transmission

probability to x and the importance at x are s>iven by

TP = e~h* and

(4.2b)

Figure 4.3 shows the distribution of importances obtained from

Monte Carlo runs of 200 particles for various thickness slabs and

macroscopic cross sections of I = .5 and £ = .4. The discrete behavior

of this distribution can be attributed to the fact that only an integer

number of collisions can occur resulting in importances given by

- (.8)n , (4.3)
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where n is the number of collisions a particle has undergone between

the time it leaves x and is tallied. Because these importance distri-

butions are unknown prior to the beginning of a Monte Carlo calculation,

the mean or median must be learned during the initial stages of the

run. This value can then be used as the I mentioned in Section U.I.

Before applying pattern recognition it is helpful to observe

the probability densities, p(C | Y ) , of the two classes separated by I.

These densities are shown in Figure U.U for several thickness slabs

using the mean importance for I and cross sections of E = .5 and
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I = .4. For this problem p(Y) is constant (except at x =0) since the
s

particles are never killed but allowed to continue through the sla!-

until they are tallied. Therefore, since the P(C.) are also constant,

the P(Y|C.) will have the same shape as the p(C.!\') only different

magnitudes relative to each other.

The overlapping of the class distributions is Hue to the fact

that prototypes created at x do not all have the same importance T(x),

but instead have a distribution of importances (with a mean importance

of T(x) as is shown in Figure 4.5 for a slab with L = 10 and values of

x = 0, 5, and 9). If all the prototypes created at x had the same impor-

tance, I(x), then these prototypes would all belong to the same class

depending on whether I(x) is greater or less than I. However, since

prototypes are distributed about I(x), prototypes originating from the

same x can belong to both classes depending on the location of T within

the distribution. This point is illustrated by Figure 4.5 where the

classes are separated by I=.632 (shaded regions = C. , unshaded = C,).

As I (x) approaches I, the split of the distribution of prototypes at x

into two classes becomes more pronounced (this is illustrated by

Figure 4.5 where x = 5).

The remainder of this section investigates the behavior of both

deterministic and statistical pattern classification procedures when

applied to this problem. In all cases the initial decision surface will

be chosen at L/2 (w. =1.0, w =-L/2).
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A.2.1) Deterministic Techniques

Figure 4.4 illustrates the fact that this problem does not

produce linearly separable data since the p(C.'Y) are overlapping.

Deterministic techniques will never converge to a single g(Y) since

there exists no W which will correctly classify all Y's. However, if

one is willing to use a g(Y) which satisfies a large percentage of the

Y's, then deterministic techniques can be used to find an appropriate

gOO.

In the case of linearly inseparable data Equation 3.6 cannot

be used directly but must be replaced by the following

if g(Y.) >0 and Y. belongs to class C ,

W = W-c I jf-P*, or (4.4)

if g(Y.) <0 and Y. belongs to class Co>

V1 =W+c Y* ,

where N. = number of prototypes in class i.
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Equation 4.4 prevents the class with the most prototypes from influenc-

ing the selection of W simply because it has more prototypes and not be-

cause it has a higher percentage of misclassified prototypes.

In this study the fractional correction rule will be used since

it allows for a more controlled convergence when used with overlapping

distributions (i.e., the correction increment can be controlled through

A). Therefore,as given in Section 3.2.1, c=X[g|/Y* ' Y*. The FORTRAN

coding necessary to use the fractional correction rule with this prob-

lem is shown in Appendix D.

The results after 100 source particles for several slabs of

varying thickness and four values of X are summarized in Table 4.2.

The behavior of the decision surface as a function of the number of

source particles and a plot of weight space is shown in Figure 4.6 for

a A of .5. As is seen from the data of Table 4.2 the value of X has

only a small effect on the misclassification rate; however, it can

greatly decrease the variability of the decision surface. This is

useful since it is desirable to stop calculating the discriminant

function once a suitable F has been found. Thus the variability can

be used as an indicator of when to use the present discriminant func-

tion and stop adjustment of the weights.

The misclassification of prototypes after convergence is

primarily due to the overlapping of the distributions shown in Figure
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L
Slab

Thickness

10

50

200

Learning
Parameter

A =

A =

A =

A =

A =

A =

A =

A =

A =

A —

A =

A =

.05

.2

.5

1.0

.05

.2

.5

1.0

.05

.2

.5

1.0

Misclassification
Rate

Cl

.357

.397

.371

.348

.116

.103

.115

.140

.043

.040

.057

.089

C2

.181

.174

.177

.181

.079 .

.077

.051

.052

.034

.021

.026

.026

Cl+C2

.259

.273

.263

.255

.104

.094

.094

.112

.041

.037

.052

.080

Mean
Decision
Surface

3

3,

4,

4,

32,

32.

32.

32.

167.

169.

166.

162.

.57

.64

.02

.63

.01

.76

.92

,33

4

1

7

7

Variability

.128

.235

.364

.446

.086

.105

.148

.194

.048

.050

.082

.125

Table 4.2 Results of A and L Variations After 100 Source Particles
Using the Deterministic Classifier
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4.4. This overlapping is measured in terms of the error rate as given

by

Error Rate = E
100

'r " L
r

J p(C2JY)dx + J p C ^
(4.5)

where F- = % Tnisclassification of prototypes due to overlapping

of P(C±|Y)

L = slab thickness

x = the value of x for which p(C. |Y) =p(C?JY)

Since the majority of tnisclassified prototypes come from an importance

close to I, much of the error can be eliminated by the introduction of

1 6

a "buffer zone". A buffer zone consists of a band of importances from

I, to I. (I. <I< I ). Any track which has an importance I such that

I. < I<I_, is not placed in either class and W is left unchanged. Re-

sults of using various buffer zones on the P(C^fY) distributions are

shown in Figure 4.7. The reduction in the overlapping area is Riven

in Table 4.3 along with results obtained by using various buffer zones.

As can be seen from this data, the buffer zones have the effect of lower-

ing the misclassification rate considerably. The variability is lowered

in some cases, but raised in others. This is due to the fact that the

majority of variability is caused by prototypes outside the buffer
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Buffer
Zone

none

.6-.75

.5-.85

r

23.0

14.1

4.2

Misclassification
Rate

.259

.240

.153

Mean
Decision
Surface

3.572

3.929

4.532

Variability

.128

.089

.056

L = 50

none 8.85

.18-.22 6.72

.15-.28 3.87

.10-.45 .89

104

086

064

045

32.01

32.97

33.04

31.80

.086

.085

.089

.101

L = 200

none

.025-.12

.010-.30

2.96

.64

.04

.041

.024

.024

167.4

167.0

161.3

.048

.054

.059

Table 4.3 Effect of Buffer Zones on the Performance of the
Deterministic Classifier after 100 Source Particles
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zone. These misclassifications thus have more effect since there are

fewer prototypes* in the buffer zone runs.

In conclusion, deterministic techniques work satisfactorily if

A is kept small (A= .05 is sufficient) and buffer zones are used. One

interesting characteristic is that the larger L, the better the classi-

fier performs. This is quite favorable since it is for large L that one

needs variance reduction the most.

A.2.2) Statistical Techniques

In Section 3.3 the statistical approach to pattern recognition

was described in which weight adjustments were made based on the aver-

age behavior of the prototypes. In this section Equations 3.20 and

3.21 are used to adjust the weights for several different loss functions,

S(W,Y5Ci|ck). Table 4.4 lists the loss functions which are investigated

and their corresponding VS components. A description of these loss

functions and the derivation of the VS components are given in Appendix

E. From Equation 3.20 the weight vector, W, is incremented according

to

*Feature vectors falling within the buffer zone arc not counted as
prototypes since their classification is not determined.
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w,

3w,

w,

w,

3w_

V "
"2

»!2 I '1

y

/I+y2

*For all loss functions

3w,

Table A.A Loss Functions and ?S Components
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'V

_ W 2 _

=

w l

. W 2 .

-X

i

1 (4.6)

Appendix F contains a listing of the FORTRAN code used to implement

Equation 4.6. The risk as defined by Fquation 3.19 is given by

R(T-7) R"(W,C2)

1

n=l

2

M,

2
—̂

n^l
M,

(4.7)

where: II. = total number of misclassified prototypes in

class C.

M. = total number of prototypes in class C.

n
the n'th misclassified feature vector of class C.

S(W,Y ,C.|C.) = the loss incurred when feature vector

YJ is misclassified into class C..n i

The loss S is evaluated using the value

of V that exists at the time Y-* is
n

misclassified.
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By using Equation 4.7 and the S(W,Y,C.|c.) given in Table 4.4,

K(W) can be evaluated for different values of W. This was done for

the prototypes created by the slab Monte Carlo problem of Figure 4.2

(with L=10 and I=mean importance= .632) using 12 different values of

a fixed decision surface (decision surface location = -w /w. = constant

= 1,3,3.5,4,4.5,5,5.5,6,7,8,9,10) for each loss function. For these

calculations w, =1 resulting in -w« being equal to the above decision

surface locations. Each estimate of R(W) was determined by using 200

source particles (1024 prototypes). The resulting 12 values of R(K)

37

for each loss function were then fitted with a second order poly-

nomial. The resulting curves are illustrated in Figure 4.8 for the

loss functions of Table 4.4 as well as the loss function

S(W,Y,C.JC.) = constant

Each curve has been normalized to its minimum risk, fi . (W), resulting
min

in a relative loss function. The location of the decision surfaces for

minimum risk, x . , as determined by the fitted polynomials are:
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Figure 4.8 Relative Risk as a Function of a Decision Surface
Location for Various Loss Functions
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Loss Function

Constant

d

d2

D

Decision Surface Location
for Minimum Risk (x . )

5.11

4.50

4.73

4.89

3.78

Error

.187

.074

.022

.104

.442

*This estimated error is for the lcr level and includes only the error
introduced by the least squares curve fitting procedure37.

Equation 4.7 is equivalent to the following:

Risk = R.. + R_ for loss = Constant

Risk = R. y/dT + R /dT for loss =

Risk = I

Risk = I

Risk = I

Vl + R2d2

<K) • 44)
for

for

for

loss = d

loss = d

loss = D

where R. = misclassification rate for C. = N./M.

N. = no. of misclassified prototypes for C.
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M. - total no. of prototypes for C.

d = average d of misclassified prototypes of C.

/cf7~= average y/d of misclassified prototypes of C.

/~2\ 2

(d.l= average d of misclassifled prototypes of C,

D. = average D of misclassified prototypes of C.

i = 1,2

The decision surface location for which

jY) = p(C2|Y)

minimizes the total misclassification rate as given by

but does not minimize the risk as given by

N N
Risk = R, + R2 = ̂  + -£

107



unless the median is used for I (i.e., K. =M«). Therefore, the minimum

risk location for loss =constant is not the same as the p(C. |Y) =p(C?|Y)

location of Figure 4.4a. The other loss functions further affect the

optimum location by introducing the average value of a function of d or

D. Of these, the risk using loss=D has the smallest x . . This is be-
min

cause the y1 (=x) in the denominator of the expression for D (See Table

4.4) causes misclassified prototypes with small x to be weighed more

heavily than those with large x. This causes the optimum decision

surface to move so as to decrease g(Y) for smaller x (i.e., it moves to
a smaller x . ). As L becomes large, the p(C.|Y) become more symmetricmm i

and (when the mean importance is used for I) the p(C-|Y) = p(C-|Y) loca-

tion increases (see Figure 4.4). These two effects cause the x . of
mm

different loss functions to approach the same value. It was found that

for the case where L = 200, the differences in x . are indistinguishable

as far as the classifier is concerned.

For the general loss function given by

Loss = dk (4.8)

as k + ™ the maximum of the misclassif ication distances are minimized

and as k^-0 the percentage of misclassified patterns is minimized. This
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is illustrated in Figure 4.8 by the high ratio of R(W)/R i n 0 0 for

loss = d and the lower ratio for loss = ̂ Ji.

The misclassification rate and variability of the decision

surface are shown in Figure 4.9 and 4.10 respectively for the different

loss functions over a range of X. These plots are for the problem

described earlier in Section 4.2,using a slab thickness of 200 and a

source of 1000 particles. For all loss functions, the final value of

the decision surface vas between x = 166 and x = 167. These tests illus-

trate two important phenomena: (1) there is not a great amount of

difference between the performance of the different loss functions

after 1000 particles (i.e., when using optimum values of X for each)

and (2) the performance of the pattern classifier is dependent on the

value of A. For each loss function there is a range of X (approxi-

mately three decades wide) over which the performance is relatively

constant. A X below this range leads to decreased performance because

of the increase in convergence time it requires. A X above this range

leads to poor performance since it overcompensates for the correction.

The misclassification rate as a function of source particles

started is shown in Figure 4.11. The values of X used in these runs

were chosen from Figures 4.9 and 4.10 so as to optimize performance

and are
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Loss Function

.00002

.00003

.O0MO2

.01

With the exception of loss "v/tl, all loss functions lead te convergence

is* «tj>prcKlr;8tcly the S»RC nuiE&er «?f articles with Jnss*d" feeing

slightly quicker. Because of the sssali difference in performance of

the above lo«« functions, lo»s"«t appears to be the rtost attractive

because of Its confutations1 sisspliciEy. In all cases the statistical

approach results in oscillations about the cptinu- decision surface.

Although the technique is guaranteed to converge* runs rcade vich as

rsny as 20,000 source particles still show the presence of this oscil-

lation although It docs decrease in amplitude.

To alleviate this oscillation, buffer zones are introduced.

The effect of using buffer zones on the risk is illustrated in Figures

4.12a and 4.12b. Figure A.12a indicates that buffer zones have the

same effect as increasing k in Equation 4.8; however. Figure 4.12b shows

that jlthough the relative risk is increased, the absolute risk is

actually decreased. Figure 4.13 shows the effect of the buffer zones

on the misclassification rate and the variability of the decision

surface. Although the variability is less for the buffer zone runs
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during the initial approach to the decision surface, after this ap-

proach the variability of the non-buffer zone tna is less. This be-

havior is consistent with the deterministic buffer runs of Section -'s.2.1

and indicates that although the Y, that lie in the buffer zone are not

classified, they should be counted as prototypes when calculating the

variability in order to obtain a true measure of the convergence. The

smoothing of the convergence due to buffer zones is illustrated by

Figure 4.14 for the problem used earlier in this section.

In summary, the statistical approach produced satisfactory re-

sults which do not depend greatly upon the selection of the loss func-

tion. A loss function proportional to the misclassification distance

appeals to be the most attractive since it requires fewer computations.

Although the statistical approach does converge with tine, it appears

that like the deterministic approach,a decision surface will have to be

selected prior to a final convergence. The use of buffer zones reduces

the error after the initial approach and the variability (as calculated)

during the initial approach. The increase in variability after the

decision surface has begun to converge, when buffer zones are used, can be

reduced by treating buffer zone feature vectors as prototypes when cal-

culating the variability. Buffer zones arc also attractive since by

reducing the number of weight adjustments,they reduce the amount of

computer tine used.
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4.2. 3) Comparison of Deterministic and Statistical Techniques

In the previous two sections statistical and deterministic

techniques have been implemented on different thickness slabs using a

range of learning parameters (>>) and different buffer zones. Figure

4.15 compares deterministic and statistical classifiers using I. = 200,

.'. = .5, I = .4, no buffer zones, and an I = .05. Both runs use an

optimum A for the specific technique (A = .05 for deterministic and

A =.00008 for statistical). Although the deterministic classifier

leads to slightly fewer misclassifications in the early stages of the

run, as the decision surface begins to converge (after about 40 parti-

cles) the two techniques are very competitive.

The variability of the decision surface appears to be consider-

ably lower for the deterministic case. The reason for this can be seen

from Figure 4.16 in which the average decision surface and the decision

surface are plotted as a function of particles started. In the deter-

ministic case a single prototype can cause the decision surface to be

altered in a given direction. However, for the statistical classifier,

the decision surface is altered in the direction indicated by the aver-

age properties of the prototypes. This behavior leads to a buildup of

misclassification in the other direction. Although the variability of

the decision surface does appear greater for the statistical classifier

during the early stages, the final variability of the deterministic

classifier will never go to zero;whereas for the statistical,it is

guaranteed.
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The computer time spent for the two techniques can be compared

by using Equation 4.9

T - N(tA + V L
 + W e * (4-9)

where T = total computer time spent for pattern recognitions

N = total number of prototypes produced,

t = time required to determine the classification of a

prototype,

tT = time required to determine if a prototype is mis-

classified,

t, = time required to adjust weights,

f_ = fraction of classifiable prototypes which are mis-

classified t and

fT = fraction of prototypes which are classifiable (lie
Li

outside the buffer zone) .

Using suitable timing schemes results in the values shown in Table 4.5.

The following results are obtained for T after 40 particles are started

(resulting in N=4013) with no buffer zone (i.e., f =1.0).

Statistical (f = .050)
• • - - - • ( ^

T = 1.65 x 10~2 + .40 x io"2 + .21 x 1O~2 =' 2.26 x 10~2
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Time in Seconds

Statistical

1 0 . 5 >

1.0 >

4 . 1 >

< 1 0 " 6

< l O " 6

CIO"6

Deterministic

3.5 x 10"6

1.0 x 1O~6

4 . 1 x 10~6

Table 4.5 Timing Parameters for the
One Dimensional Problem

Deterministic (f = .051)
1 " ' (_•

T = 1.65 x 10~2 + .40 x io"2 + .07 x io"2 = 2.12 x io~2

From these results it is seen that the two techniques are comparable

since the majority of time spent is not for weight adjustment but for

class identification. However, since the variability is less for the

deterministic classifier, the statistical classifier requires more

prototypes (greater N) to get the same results. Thus the deterministic

classifier appears to be the most advantageous with respect to time.

The above times can be reduced by the use of buffer zones as

shown below for a buffer zone of .01 to .30 (fT = .85).
L4

Statistical (f „ = .051)

T = 1.65 x 10~2 + .34 x io~2 + .17 x io"2 = 2.16 x 1O~2
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Deterministic (f = .048)
-------- L

T = 1.65 x 10~2 + .34 x 10~2 + .06 x 10"2 = 2.05 * 10~2

The optimum A's found in previous sections are a function of

slab thickness, thus requiring normalization of the correction algo-

rithms. This is done by replacing the augmented feature vector Y* by

Y1 as given by

unnormalized Y* =•[:] normalized Y1 (4.10)

This results in

± c'x1 and (4.11)

2 2 " L »

where c' ] 1
' + —

Lc

g' = WjX1 + w2/L

x' = x/L

L = slab thickness
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for the correction algorithms. Similarly, for the statistical classi

fier the following should be used:

w.+1 = w. - A

where A' = A/L and

(4.12)

>R

<W1

:»w2

- W 2 L "

- 1

In summary,for the one-dimensional homogeneous slab the deter-

ministic approach appears to have an advantage over the statistical

approach because of its reduced variability at early stages. Further-

more, if the variability is used as a threshold for using a decision

surface shortly after the approach to such a surface, the deter -

ministic classifier also presents a savings in computer time. However,

the variability of the deterministic classifier is bounded by a minimum

(depending on the amount of overlapping of the class distributions);

whereas the statistical classifier has a variability which is guaranteed

to approach zero.
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4.3) Multi-Region Slab and Initial Conditions

In the previous section a one region slab was used to demon-

strate the type of behavior which might be expected when pattern recog-

nition is used to identify splitting surfaces. Although convenient for

demonstratiot. purposes, such problems are little challenge to the

skilled Monte Carlo user as far as identifying splitting planes is

concerned. If one considers the problem of a multi-region slab con-

sisting of several layers of different materials*the problem becomes

much more difficult for the "human intuition" approach. This section

considers this slightly more complex problem using the identical pat-

tern recognition techniques described in the previous section.

The problem is illustrated in Figure 4.17 for a slab consist-

ing of four materials. The FORTRAN coding for the Monte Carlo program

used to solve this problem is shown in Appendix G. Figure 4.18 shows

the importance distributions for several different combinations of ma-

terials (see Table 4.6). Each region is 50 cm thick and has a total

macroscopic cross section of Z = .5/cm. The variety of distributions

results from rearranging the sequence of the materials and in one case

even leads to a bi-modal distribution. The class distributions for

these same problems is shown in Figure 4.19 where the median importance

has been used for I.

Because I is the same for all four cases, the collision points

of each Monte Carlo run are identical (since each Monte Carlo run uses

the same set of random numbers). Therefore the set of feature vectors

125



Source Tally Surface

I
Region |R<-f,ion {Region » Regio

1 2 3

h '?. ! C3 1 '

Figure 4.17 The Multi-Region Slab Problem

Y., used for prototypes is identical for each case. The variation in

results of the four cases can therefore be attributed solely to the

effect of different class and importance distributions as caused by the

different I 's.
s

Because particles are allowed to continue through the slab,

there is an equal probability throughout the slab of having a collision

(and thus a prototype created) between x and x + dx. As a result for

half the prototypes

y = x < 100
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Figure 4.18 Importance Distributions for the Multi-Region Slab Problem
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}:g(2)

Es(3)

E8(4)

Tally

Median I

Mean I

Er*

Case- I

.40

.45

.47

.49

6.7 x io~5

.112

.288

3.2

Case II

.49

.47

.45

.40

7.6 x 1O~5

.00035

.0502

12.6

Case III

.45

.49

.47

.40

7.5 x io"5

.00105

.0508

19.1

Case IV

.49

.45

.40

.47

7.0 x io"5

.0011

.140

5.6

""Using Median I for I

Table 4.6 Multi-Region Sample Problems

and for the other half

y = x > 100.

Therefore the optimum position to locate the splitting surface (using

the median I) is the same for all four cases and is located at x = 100.
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Figure 4.19 Class Distributions for the Multi-Region Slab Problem
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An additional set of computational experiments is performed in

this section to determine the sensitivity of the pattern classifiers to

the selection of an initial decision surface, S.., where S.. = -w_/w.. for

the initial selection of w. and w_.

4.3.1) Initial Conditions

In Section 4.2, the midpoint of the slab was used as the initial

location of the decision surface. In this section, the effect of the

initial location, S,, on the performance of several pattern classifiers

is analyzed using Case I, Several computation experiments are made

using different classification algorithms and different learning param-

eters, X. The initial location can be varied in two ways: (1) varia-

tion of the initial value of w. and (2) variation of the initial deci-

sion surface location (i.e., -Wj/w..).

4.3.1a) Deterministic Classifier. The location of the decision surface

after the j'th prototype belonging to C, has been misclassified is giv-

en by
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SJ+1

(-l>k+1X|R(Y)

S.(x2+1) + X(x-S.)

(x +1) - Xx(x-S.)
(4.13)

where x is the feature, y,, of the j ' th misclassified prototype. Since

S. .. does not depend on Wi (independently of S.)> the value of w.. for

any given S. has no effect upon the behavior of the classifier. There-

fore the initial selection of w. (for any given S..) causes no change in

classifier performance. The effect of varying the initial decision

surface, S-,, after 1000 source particles is demonstrated in Figure 4.20

-4
for 10 < A < 1 and six different S^ This figure illustrates that

after 1000 source particles the pe.-rorinance is relatively independent

of initial conditions and X for A>1

The performance as a function of the number of source particles

is shown in Figure 4.21 for runs using X= .05. In these runs it was

found that when S. is selected below the final decision surface

location, (i.e. S-,=l,10,50), the decision surface converges monotonically

to the final location. This behavior is reflected in Figure 4.21a by

the monotonically decreasing misclassif ication rate when S-,=l, 10, and

50. However, when S^ is started above the final decision surface
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location (i.e., S.. =150, 190, 199), it was found that the decision

surface very quickly (in less than 10 source particles) moved past the

optimum location and then converged to its final location from below.

This behavior causes the misclassification rate to increase when the

decision surface overshoots the optimum location; however, as the sur-

face begins its final convergence, the misclassification rate decreases.

This behavior is demonstrated by the S. =150, 190, and 199 curves of

Figure 4.21. Thus although two S. may be located equidistant from the

optimum surface location (for example: S. = 10 and S.. = 190) the S. lo-

cated above the surface leads to better classifier performance. This

behavior is explained by investigating Equation A.13 and noting that

the change in S., AS., is affected by the value of the feature x as

well as the misclassif ication distance, A = |x-S.|. Contours of

AS.= |s.,,-S.| using Equation 4.13 are shown in Figure 4.22* forA=10,

20 and A= .01, .05. This figure illustrates that for misclassifications

in class C., AS.^-0 as S.->-0 which explains the slow convergence when

S., « 100. The increasing slope of AS. as S.->-100 from the right as

opposed to the decreasing slope as S.-*100 from the left explains why

the decision surface overshoots and then approaches from below when

S 1 = 150, 190, and 199.

*Because of overlapping classes the curves shown in Figure 4.22 actually
extend across SJ =100. However, the class 1 misclassification curve has
been plotted only for S. <100 and class 2 curve only for S. >100.
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1.4

1.2

1.0

Misclassified* '*2 Misclassified

A = |x-S

40 SO 120 160 200

Figure 4.22 Behavior of Sj+j for the
Deterministic Classitier

These results indicate that for the deterministic classifier

there is a very distinct advantage to locating S above the optimum

location.
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4.3.1b) Statistical Classifier with Loss = d. The decision surface lo-

cation after the j'th prototype belonging to C, has been misclassified

is derived in Appendix K and is given by

iwl 'I1? "

, - > [ , •

Ak

\

,2 ( ( - l ) k + 1

(A.14)

where >L = number of prototypes in the k'th class (not count-

ing the last misclassified prototype)

- <-k I

:,2

n

T 1 = A 1 , 1 + A 2 , 1

T 2 = A l l 2
+ A 2 , 2

N. = nur.ber of misclassified prototypes in the k'th

class (not counting the last, misclassified

prototype)
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Unlike the deterministic classifier, S depends on the selec-

tion of an initial w... However, by proper selection of A(i.e.» by keep-

2
ing A/w.. =constant), this effect can be cancelled. The effect of vary-

2
ing A/w.. is shown in Figure 4.23a for the case where T, =T =A. . =M. = 0 .

Although, in general M. » 0, this figure does illustrate the relative

2
effects of S. and A/w.. on the convergence of the classifier.

Once the decision surface has converged to a final location,

T and T approach zero. However, due to the overlapping of classes,

A . approaches a value proportional to the amount of overlapping. Fig-

4.23b illustrates that this overlapping has very little influence on

AS.. This is to be expected since this term of Equation 4.14 varies as

2
1/M, ,whereas the other terms vary as 1/M^ (Â  . itself varies as 1/M|) •

When the decision surface is still approaching a final loca-

tion, T.. and T_ will not be zero. If the surface is approaching the

optimum location from below (i.e., S.. < 100), T. and T 9 are positive.

The behavior of AS. for this case is illustrated in Figure 4.23c for

^ = 0 , 1, 10, T 2=.01T 1, and ^ = 100, 1000. Similarly the case for

S1 100 is illustrated in Figure 4.23d. These figures illustrate the

relative effects of two factors: (1) the statistical effects of past

prototypes reflected in T^ and T? and (2) the effect of the last mis-

classified prototype (the l/w1 and S./w1 terms of Equation 4.14).

As the misclassification rate of past prototypes becomes large

compared with the effects of the last misclassified prototype,
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Figure 4.23 Behavior of S . . . for the S t a t i s t i c a l Class i f ie r with Loss = d
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|T2|»

and

TJ»

k'2 + (-1)
w1(Mk+l)

which using Equation 4.14 r e su l t s in

X(T
(4.15)

If it is further assumed that wt » XT-, and T « T S. Equation 4.15

reduces to

AS.
3

XT.S.

wl
(4.16)

Thus AS. varies linearly with s. as is demonstrated in Figures 4.23c

and 4.23d by the curves for which IT.I = 10.

When past misclassification becomes small (i.e., after

convergence)
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w1(Mk+l)

and

\ , 2 t (-l)k+1

And since in general

V

\ ,
W l ( Mk+ 1 )

Equation 4.14 r e su l t s in

AS. (4.17)
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2 2
If it is further assumed that S. >> 1 and w (M.+1) » A S . , Equation 4.17

reduces to

M-i)k+1s2

AS. * — r — L . (4.18)

Equation 4.18 indicates that as T.->0 (1=1,2), AS. varies quadratically

with S.. However,unlike Equation 4.16, the AS. given by Equation 4.18

goes to zero as M, increases. This behavior is illustrated by the curves

in Figures 4.23c and 4.23d for which Tj=O. For these curves, the effect

of M. is much more pronounced than the curves for which |T..| =10. Al-

though AS. as given by Equation 4.18 varies quadratically with S. as

2
opposed to linearly for Equation 4.16, the coefficient of S. is much

smaller than the coefficient of S., and the linear term dominates.

Thus in Figures 4.23c and 4.23d, the AS. for \T,\ =10 is much greater

than for |T1 [ = 0.

When neither the past misclassification term nor the current

misclassified prototype term is dominant, AS. varies proportional to

the difference between the two effects. This is illustrated by the

IT.J =1 curves in Figures 4.23c and 4.23d.

The performance of the classifier after 1000 source particles

for six different S1 is shown in Figure 4.24 for a range of \ from 10
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to 10 . Unlike the deterministic classifier there is no value of X

for which the performance is acceptable for all S..

The performance as a function of the number of source particles

is shown in Figure 4.25 using X = .0001 (for S 1 = 50, 150, 190, 199) and

A =.00001 (for S.=l, 10). The behavior of the curves for S., < 100 can

be explained as follows. When S.. is very small, AS. is also very small

as explained in the previous analysis of Equation 4.14. For many itera-

tions there is little change in S. and thus the misclassification rate

remains approximately constant (see S, = 1 , 10 curves of Figure 4.25a).

Although AS. is small, the variability increases since S. is also very

small (see S, = 1 , 10 curves of Figure 4.25b). Eventually w, is de-

creased to such an extent that 1/w. and 1/w.. begin to increase rapidly,

resulting in large AS. which eventually leads to a large overshoot of

the optimum surface location. The magnitude of the overshoot and the

following oscillations about the optimum decision surface location de-

pends upon the value of S... The variability is a good indicator of

when this overshoot occurs. Figure 4.25b illustrates that for: (a)

S. = 50, the overshoot occurs between 20 and 40 source particles (b)

S, =10, although S. is increasing rapidly the overshoot does not occur

until after 200 source particles (c) S. = 1 , S. has not even begun its

approach to the overshoot.

The primary reason for this difficulty is that Equation 4.14 is

not dependent upon the location, x or |s.-x|, of the prototype but is

strongly dependent on the current location of the decision surface, S..

lliis problem can be alleviated by using a X that varies with the
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location of S.; however, this would lead to other complexities and

would involve the use of more computer time. Because of this diffi-

culty another statistical classifier is investigated which uses a

different loss function.

4.3.1e) Statistical Classifier with Loss=D. The derivation of S. ,

with loss=D (see Table 4.4) is similar to that of S . using loss = d

(see Appendix K) and results in

s j w l + A

w 1 - A

A, „ ( - l ) k + 1

K 1 x(~l)

K ^'^k+^ ) V 1 + x

(4.19)

(-1)
k+1

where
n=l \V1+:

Nk

(-1)
k+1

V:
n=l Vx/l+x /

, and

x = y. = distance from the source^
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and all other parameters are identical to those found in Equation 4.14.

Unlike the statistical classifier with loss=d, S. . for this classi-

fier depends on the location of the prototype, x, as well as the cur-

rent position of the decision surface, S.. The dependence of S. - on

an initial selection of w. can be eliminated by keeping A/w.. constant.

When past misclassification effects are large

»
-A.k,2
CMj+1)

(-Dkx

+ x
and

~Vi , (-Dk+l

and Equation 4.19 can be reduced the same as for the loss =d classifier

resulting in Equation 4.16. Thus for the initial approach to the de-

cision surface, this classifier behaves the same as the loss=d

classifier.

When the decision surface is converging to a final surface

A, 2
(VI) and
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Through the assumptions that

A .i ("I)
k+1

and

(-Dkx

+ x 2

Equation 4.19 can be reduced to

AS.
2
 W; l (Mk+1) y/l + x z - A ( - 1 ) K x

(4.20)

and under the further assumptions that

S.x 4 + x 2 * x, and X «|w1(Mk+l)|
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it can be reduced to

M-Dk+1s.
3

A comparison of Equation 4.21 with Equation 4.18 shows that using

loss = D linearizes the dependence of As. on S. for the case

when the decision surface is undergoing the final convergence. How-

ever, Equation 4.21 indicates that the dependence of AS. on S. on x

(as shown by Equation 4.19) cancels out (based upon the assumptions made

to obtain Equation 4.21). A plot of Equation 4.19 for A, . =M =0

is shown in Figure 4.26 for three values of w- and X= .05. The dis-

continuity of these curves is caused by the -A term in the denominator

of Equation 4.20 and becomes less pronounced as w. (M,+l) » X .

Plots of Equation 4.19 for various values of A, ., M, , etc. are

not presented here but are very similar to the plots of Figure 4.23c

and 4,23d. This is because, like the loss =d classifier, the coeffi-

cient of S. in Equation 4.21 is small compared with the coefficient of S.

J 3

in Equation 4.16.

The performance of the loss=D classifier is shown in Figure 4.27

for several S. and a range of X, 10 < X < 1 0 . Although the misclassifi-

cation rate is similar to the loss=d case, the variability for small S^

has increased considerably.
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(a) A, . = M, = 0
KI k

40 80 120 160 200

S.

Figure A.26 Behavior of Sj+^for the Statistical
Classifier with Loss = D

Figure 4.28 shows the performance for the first 200 source par-

ticles using X= .05. The extreme oscillations for the S =1 curve can

be explained as follows. During initial operation, v. is initially de-

creased. Like the loss = d classifier as w.. decreases, lx.t increases.

This positive feedback can lead to an instability as w. -*0 and w. can

actually become negative. In this case S. changes sign which leads to

a very large variability as seen by Figure A.28b.
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Init ial Conditions, Statistical. Classifier with Loss = D



In summary, although by using loss=D, AS., has been made to

depend on x, the dependence is very weak. The classifier is therefore

no improvement over the loss=d classifier for small S1.

4.3.3d) Summary. It has been found in this section that the performance

of the various classifiers does depend strongly on the choice of an

initial S,. The deterministic classifier is far superior to the statis-

tical ones with regard to initial condition selection below the final

decision surface. However, when S.. is chosen above the final surface,

the deterministic and statistical techniques are competitive.

It has also been found that the statistical techniques do depend

2

on w1 . However,by using an appropriate (for loss=d, A/w. = constant;

for loss=D, A/w. = constant), the effect of selecting an initial w, can

be eliminated.

It should be noted that although the statistical classifier ap-

pears to perform poorly for small S., this effect can be eliminated by

using the distance from the detector (L - x) instead of the distance from

the source (x) in the feature vector prototypes. This would necessitate

changing the initial weight to correspond to the new feature space.

This will be done for the two-dimensional problem of Section 4.4. This

new feature selection would allow the initialization of splitting sur-

faces at the origin (S. =0); however, it would prohibit originating at

S. =L.
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->.3.2) Multi-Region Slab Variations

In this section, three different classifiers (deterministic,

statistical with loss=d, and statistical with loss = D) will be used to

identify splitting planes or decision surfaces for the four Monte Carlo

problems described in Table 4.6. The median importances of the distri-

butions shown in Figure 4.18 will be used to separate the classes re-

sulting in the class distributions shown in Figure 4.19. In the pre-

vious section it was found that a high value for the initial decision

surface is better than a low one. Therefore an S, of 200 will be used

in all cases.

Because of the different types of distributions that can occur

(see Figures 4.18 and 4.19) the optimal X for different problems varies

(see Figures 4.29 and 4.30). If two classes are entirly non-overlapping,

a A which is large enough to compensate completely for a misclassified

prototope is desirable since no prototype will ever appear to belong to

more than one class. However, as classes begin to overlap, the amount

of correction and thus A must be decreased because falsely labeled proto-

types could lead to a large variability of the decision surface. This

phenotnonon is apparent from Figures 4.29 and 4.30 which show the re-

sults after 100 particles. In the deterministic case the misclassifi-

cation rate decreases for increasing X,but the variability increases.

In Cases II and III the overlapping of classes results in a high vari-

ability which is understandable since the deterministic classifier is

not designed for overlapping classes. The statistical classifier leads

to a large improvement in variability for Cases II and III but only a
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Figure 4.29 MisclassifLcation Rate Vs. X for Four
Different Multi-Region Problems
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small improvement for Cases I and IV. Of the two statistical techniques

the loss function using d results in slightly better performance al-

though the difference is small.

Because a pattern classifier must be able to operate on a large

range of problems without alteration, a single A must be chosen for each

-1 -4
classifier. For the purpose of this investigation, V s of 10 ,10 ,

_2
and 10 will be used for the deterministic, statistical (loss=d), and

statistical (loss=D) classifiers respectively. Although this selec-

tion has not been optimized, these values are at least a reasonable

compromise as is seen from Figures 4.29 and 4.30 for decreasing the

error while keeping the increase in variability down.

For these values of X, the performance for the first 100 parti-

cles is shown in Figures 4.31 and 4.32. It is interesting to note that

in all cases the deterministic classifier leads to a smaller misclassi-

fication rate. Because the prototypes in these problems are presented

in the order that they occur (i.e., for a single source particle

x, <x <x ... <x , where N is the number of collisions) and because

the deterministic classifier responds only to a single prototype at a

time,it has an advantage over the statistical technique. For example,

consider the following prototypes and a current S. =100:

i = ...9, 10, 11, 12, 13, 14, 15...

x± = ...75, 83, 91, 97, 109, 114, 119.

CXass = • • •£•!» ^o> 9s 9* Co» *>* 9" " *
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Figure A.31 Misclassification Rate Vs. Number of Source
Particles for Four Different Multi-Region Problems
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If A = 1 , and x-« is presented to the deterministic classifier,

the new S... =83 which in turn makes x... and x. ~ correctly classified.

For A <1, the deterministic classifier still has this effect to some

degree. The statistical classifier may or may not decrease S. in this

case depending on the value and sign of T- and T (see Equations 4.14

and 4.15). Although this appears to be an advantage of the determinis-

tic classifier, it may actually be a disadvantage since the objective

is to minimize the number of misclassified prototypes according to

their average importances and not the importance encountered for each

prototype. Thus the misclassification rate shown in Figure 4.29 may

be a "false misclassification" rate since this is the misclassification

rate as seen by observing prototypes one at a type instead of looking

at the average importance of each prototype. This phenomenon is often

referred to as "learning from a teacher who makes mistakes" since the

classifier must use prototypes which are misclassified part of the time.

In summary, the deterministic classifier performs better for

non-overlapping or slightly overlapping classes. However, as the over-

lapping increases statistical techniques become increasingly more at-

tractive because of their lower variability.

4.4) Distance and Angle, A Two-Dimensiv. ial Problem

In previous sections of this chapter the pattern space has con-

sisted of one dimension—distance. In this section the Monte Carlo

problem consists of the multi-region problem shown in Figure 4.17

except that after each collision, a scattering angle is calculated
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(see Figure 4.33). For the purposes of this research, scattering is

assumed isotropic in the laboratory system. The FORTRAN coding used

for the calculations in this section is shown in Appendix H.

Source Tally Surface

Figure 4.33 A he Two Dir.ensional Monte Carlo Problem
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Because the number of regions in the slab does not affect the

structure of the pattern classifier, a single region will be used with

X =.5 and Z = .4. A slab thickness of five roean-free-paths (L=10) is

chosen for this example in order to keep computer time at a minimum

while still maintaining the characteristics of a two-dimensional prob-

lem.

A significant difference between this problem and the previous

one-dimensional problems for which L=200 is the number of prototypes

(equal to the number of collisions). The one-dimensional problem

creates 100 prototypes per source particle, whereas the two-dimensional

problem of this section produced only 11. Consequently the two-dimen-

sional problem investigated in this section requires more source parti-

cles to learn a splitting surface. An important characteristic of the

two-dimensional problem is that particles are allowed to escape from

the system without contributing to the tally. As a result the distribu-

tion of track importances consists of a distribution of importances

created by non-zero tallies plus a number of track importances equal to

zero. This is a common feature of the majority of Monte Carlo problems.

Because of this, one wishes to locate splitting surfaces so as to get

particles from regions of zero importance into regions of non-zero

importance. Therefore, the I described in the introduction to this

chapter is equal to zero.
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In the sample problem of this section approximately 59% of all

tracks have zero importance. The distribution of the remaining 41% is

shown in Figure 4.34a. The probability distribution of prototypes,

p(Y), as a function of x is shown in Figure 4.34b for three different

contours through x-d> space and in Figure 4.34c as a function of <$>.

The decreasing probability of prototypes with increasing x j s a result

of fewer particles penetrating the slab and thus fewer prototypes occur

deep within the slab. The flat distribution with respect to cos<j> re-

sults from isotropic scattering.

Given the feature vector Y=[x cjf], the probability that Y belongs

to class C.. is given by p(C.|Y), (see Section 3.3). Plots of p(C. |Y)

for the same contours used in Figure 4.34b and c are shown in Figure

4.35. The symmetry of the class distributions is due to isotropic scat-

tering and the single material region. The intersections of the dis-

tributions define the decision surface. A particle with coordinates on

this decision surface has an equal probability of being tallied or

escaping. Unlike the one-dimensional problem the probability densities

of each class, p(Y|c.) are not proportional to p(C.|Y) since p(Y) is

not constant. The misclassification rate due to the overlapping of

p(Ci|Y) is 29% (i.e., Er=29 where Er is defined by Equation 4.5).

In Section 4.2.3 normalization was achieved by multiplying the

feature vector Y by 1/L and altering the adjustment algorithms according-

ly. This is not possible for two-dimensional pattern space since both

variables <t> and x must be normed with respect to each other. This is
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done by normalizing both angle and distance to one. Thus, pattern space

is transformed to feature space as shown by Equation 4.22.

X =

x/L

.(cos <J> +

(4.22)

In the one-dimensional slab problem the performance of the

classifier is measured in terms of the misclassification rate and the

variability of the decision surface. The misclassification rate will

be used unchanged; however, the variability of the decision surface (a

line in two dimensions) is given by

Variability (4.23)

where <$> = the mean value of the decision surface with the y_

l(cos <}>+l)/2] axis

x = the mean value of the decision surface with the

y.(x/L) axis

a = standard deviation of the mean x

a. = standard deviation of the mean <j>
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In addition to investigating learning parameter influence, this

section studies the effects of initial conditions as vas done in

Section 4.3.1 for the one-dinensional case. For one-dimensional feature

space the initial condition consists of a single variable S =-w?/w .

The choice of an initial •..• vas found to have no effect provided the

proper X were selected. Thus by keeping A=constant, an initial w. =1

could be used V7ithout loss of generality. Figure 4.36 illustrates the

decision surface for normalized t*?o-dir.ensional feature space. From

this figure it is seen that two parameters are required to specify the

decision surface, -w./w, and -w /w.. A third parameter (in this case

let it be w..) determines the slope of the discriminant function and

like the one-dimensional case can be set equal to 1 provided that X

-W3/W2 ' 2

Figure 4.36 Decision Surface for the Two Dimensional Problem
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rcnains constant. A simplifying assumption nade only for the purposes

of this research is to use v_=w- -1.0 which results in a decision

surface (line) oriented at 45° to the y and y_ axes. Using this

assumption, the initial conditions consist of specifying w,, where -w

is the y. and y« intercept.

It was demonstrated in Section 4.3.1 that an initial decision

surface near the origin leads to decreased performance and it was

recornsended that this problem be alleviated by changing the feature x

tc L-x. This situation also occurs in the two-dimensional problen.

Therefore, several runs will be nade using y =1 - x/L and

\> = 1 - (cos$ + l)/2. For these runs w = w =-1.0 and w_ will be chosen

to correspond to an equivalent v.'_ in x/L, (cos? + l)/2 space. To

illustrate this feature conversion two equivalent decision surfaces are

shown in Figure 4.37. In the following sections a negative value of w,

implies v. = w ? = l (as in Figure 4.37a), a positive w_ implies w- =w =-1

(as in Figure 4.37b).

(cos;.+l)/

(a) Wj , w3=-.5

'A
I

(b)

Figure 4.37 Feature Vector Conversion
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4.4.1 Deterministic Classifier

The algorithm for weight adjustment is the same as given by

Equation 4.4 except that the dimension of the vectors W and Y* is in-

creased from two to three. The FORTRAN coding of this classifier is

shown in Appendix H. The effect of the learning parameter, X is illus-

trated in Figures 4.38a and 4.38c for several di ferent initial condi-

tions after 5000 source particles. The behavior of the classifier as

a function of X is similar to that illustrated in Figures 4.29 and 4.30

for the problems in which the class distributions have a large ar.eunt

of overlap (Cases II and III). The misclassification rate drops vrith

increasing X while the variability increases. The fact that the r̂ is-

classification rate drops below that due to overlapping classes (29^)

indicates the effect of "false nisclassification" described in Section

4.3.2.

The misclassification rate and variability for runs started

near the origin (w_=-.25, -.05) are higher than the other runs (see

Figures 4.39a and 4.40a). When feature space is converted (wo = 1.75,

1.95) the sane prototypes lead to much better performance.

4.4.2 Statistical Classifier

The correction vector for the two-dimensional problem with a

loss function equal to d is given by
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*T 1

2,

3/2 (4.24)

1/2

The FORTRAN coding for the statistical classifier is given in Appendix

I. The nisclassification rate after 5000 particles is relatively flat

for A's between 10 and 1 (see Figure 4.38b); however, the variability

has a minima at A =10 . Unlike the deterministic classifier, normali-

zation affects the optisun >.. The cisclassification rate (see Figure

4.39b) is nore spread than the deterministic classifier due to the sen-

sitivity of the statistical classifier to an initial decision surface

near the origin. The variability is also nore spread (see Figure 4.40b)

since initial surfaces nearei the origin (v =-.25, -.05, .5) performed

considerably worse than theiv counterparts away frca the origin

(v7. = 1.75, 1.95, -1.5). Thus the statistical classifier behaves the

sane as previously illustrated in one dinension.

4.A. 3) Sunrnary

Aside from the normalization procedure the tvo-diraensional prob-

lem behaves sinilar to the one dimensional cai,e. Once again the classi-
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fiers perform better whan not operating near the origin and, as has been

shown, inversion of the feature vector can be used to alleviate this

problem.

The time spent by the two techniques can be compared by using

Equation 4.9 and the timing parameters given in Table 4.7. The time

required for normalization of features is not included in this data

since it is a feature selection process and Xv'ill be treated in Chapter V.

The time to determine classification, t , is unchanged since it does not

involve the dimensionality of Y. The increase in t is due to the addi-

tional terms necessary to calculated g(Y). The weight adjustment times

increase by 100% for the statistical case and by 66% for the determinis-

tic case. The example times given below are for .300 source particles

(3,590 prototypes), an initial w3 = 1.95 (see Figures 4.39 and 4.40, runs

E) and no buffer zones.

Time in Seconds

Statistical Deterministic

tc 21.5 x 10~6 5.8 x 10~6

t. 1.7 x 10~6 1.7 x io~6
LA

tA 4.1 x 1O~6 4.1 x 10"6

Table 4.7 Timing Parameters for the Two
Dimensional Problem
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Detenr.inistic (f = .327)

T = 1.47 x io"2 + .61 x 1O"2 + .68 x io"2 = 2.76 x io"2

Statistical (£„ = .330)

T = 1.47 x iO~2 + .61 x 1O~2 + 2.55 x 1O~2 = 4.63 x io"2

Unlike the one dimensional case of Section 4.2.3 the difference

between the two techniques is significant. This difference is due

primarily to the increase in the amount of class overlap (from 4% to the

1-D case to 29? for 2-D) which causes the effect of tr to be more pro-

nounced in the two-dimensional case.

4.5 Summary

In this chapter statistical and deterministic classifiers have

been used to learn splitting surfaces for several different Monte Carlo

problems. The conclusions drawn from these numerical experiments are

listed below for each topic.

Slab Thickness and Class Overlapping. It was found in Section

4.2 that the smaller the distance variable (in this case slab thickness)

is in terms of mean free paths, the greater is the amount of class

overlapping. Because class overlapping decreases classifier performance,

geometries of many mean free paths are easier problems as far as pattern

recognition is concerned.
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Buffer Zones. Buffer zones decrease the roisclassification rate

of the classifier by removing prototypes which are very close to class

boundaries (according to the teacher). However, if prototypes falling

within the buffer zone are not used as prototypes, the variability can

be increased since the variability is proportional to the inverse of the

number of prototypes. Therefore, prototypes within the buffer zone

should be considered as correctly classified prototypes. A further

benefit of buffer zones is that they decrease the amount of computer

time necessary for pattern recognition.

Loss Functions. Although there was no great difference in per-

formance for the loss functions used, loss=d appears to be the most

attractive since it is the simplest computationally.

Learning Parameter,X. It is desirable to use a single \ for

all problems since this greatly simplifies the classification process.

As has been seen in previous sections a range of X does exist for both

statistical and deterministic classifiers over which the performance is

relatively constant. If a X below this range is used, the convergence

of the classifier is slowed down requiring additional time for the

misclassification rate to decrease sufficiently. A X above this

range causes the variability to increase although it may actually de-

crease the misclassification rate. This range is uaffected by normali-

zation for the deterministic classifier but is strongly affected for

the statistical classifier. The following appear to be reasonable val-

ues of X that are suitable for a wide range of problems.
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Deteiminisric , 0 1 < K .1

Statistical (normalized to 1.0) . 0 K K 1

Problens with a large amount of overlap require A's in the lover part

of this range (snail overlap, the upper part). Konte Carlo problems

affect the choice of \ only because of differences in the amount of

class overlap. Values of .05 and .1 can be used for the deterministic

and statistical classifiers respectively without greatly penalizing

performance generality*

Initial Conditions. Although both techniques are sensitive

to the selection of an initial decision surface, this selection is far

•ore critical for the statistical classifier. The problem can be al-

leviated by altering the feature vector and thus changing frozi the re-

gion near the origin to a region near the point (y,,y«,...y )

= (1,1,...,1). As will \,2 seen in the next chapter decision surfaces

will be started at the origin; therefore, this alteration of feature

space is necessary.

Computer Tir.e. Although programming efficiency has been over-

looked in the construction of the classifiers, some conclusions can be

drawn from the timing data. These values can then be used as an upper

limit for the time spent in pattern classification. The time to deter-

mine prototype classification, t., is a major contributor to tine spent

on pattern classification, amounting to about 4.1 * 10 seconds per

prototype. Using Tables 4.5 and 4.7 and extrapolating to feature space

of N dimensions results in
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tT * 1.0 x 10
 6 + (N-l) .7xl0~ 6 (A.25)

Performing the ŝ r.e extrapolation for t_ results in

Deteministic: tr « 3.5*10~
6 + (N -1) 2.3*lCf6 (A.26)

Statistical: t = 10.5 * 10~6 + (N - 1) ll.xlO""6 (4.27)

Both the one-dinensional and tr.ro-dinensional problems require about the

same number of prototypes (3 to 4 thousand) until convergence. However,

due to difference in the overlapping of class distributions, the one-

dimensional case converges to a nisclassification rate of R=5% whereas the

two-dinensional case converges to a rate of =s30%.

Normalization. The normalization of featm"e space for multi-

dimensional feature vectors has been accomplished by nornia.lizing the

feature space to a 1 X J coordinate system.

Deterministic vs. Statistical, Although the statistical clas-

sifier has the advantage that it is guaranteed to converge in the

presence of overlapping class distributions, this advantage is not

great since the decision surface will be used prior to final conver-

gence. The deterministic classifier appears to be the most attractive

because: (1) its performance (variability and misclassification rate)

is usually better than the statistical classifier (2) it uses less
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computer time (3) its learning parameter, A, is not affected by norma-

lization and (4) it is r.uch less affected by the initial selection of

a decision surface.
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Chapter V. Discussion of General Application

Many practical considerations remain before the techniques of

Chapter IV can be applied to a multi-purpose particle transport code.

The purpose of this chapter is to describe and analyze these considera-

tions. The first problem is that given the ability to recognize sur-

faces, what surfaces are desirable, and in what order should those

surfaces be learned. This problem is analyzed in Section 5.1 for a

single tally, the point detector tally, and multiple-tallies.

Section 5.2 describes the problems encountered in feature se-

lection and suggests a scheme for implementing the feature selection

process in a general purpose code. Section 5.3 investigates the amount

of time required for pattern recognition and its related operations and

its effectiveness as a variance reduction techniques. The limitations

of the pattern recognition system in reducing variance are discussed

in Section 5.4. Finally, Section 5.5 summarizes the chapter.

5.1) Implementation

The first requirement of implementation is to make prototypes

available to the classifier. In this research prototypes are created

after each collision;* however, not until after a particle is lost to

*Prototypes could also be created when entering a new geometric region;
however, energy and angle variables will be unchanged from the previous
prototype.
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the system or is tallied can the importance be determined (this is net

true for the point detector, see Section 5.1.3). Figure 5.1 illus-

trates when the information for the prototypes is extracted froa the

Monte Carlo proble- ar.c Figure 5.2 shows when pattern recognition is

perfomed. Unlike the Monte Carlo problems used in Chapter IV, for

many problems a single source particle can lead to nultiple contribu-

tions to the tally. Such a case is illustrated in Figure 5.3 where the

track length in region 2 is tallied. Due to scattering in region 1,

it is possible for a particle to pass through region 2 (and thus be

tallied) any nur±>er cf tines before leaving the system. Because of

these multi-contributions the pattern classification loop of Figure 5.2

can be entered nany tires during the trace of a single source particle.

The pattern classification block can be considered to be a FORTRAN

subroutine. Sections 5.1.1, 5.1.2, and 5.1.3 discuss the structure of

this subroutine for a single tally, multiple tallies, and a point de-

tector tally, respective!?^ using the information gained in Chapter IV.

5.1.1) Single Tally

The majority of Monte Carlo problems which require importance

sampling to reduce the variance are characterized by a seldom occurring

tally. Thus the majority of prototype importances will be zero. The

problem with zero importance prototypes is that they contain much less

information than a non-zero tally (i.e.,all prototypes with zero impor-

tances look the sane to the classifier whereas non-zero importances can
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be classified among themselves). Therefore the first splitting surface

to be learned is the surface separating zero from non-zero importance

regions.

The initial location of this first splitting surface should be

well within the class 1 (zero importance) region. Default*values may

be used to locate this surface; however, if the user can supply more

information, it should be used in order to speed up convergence. Suit-

able default values for the components of W are

w± = -1.0

w - NWN+1

1, (5.1)

* A default value is one which is supplied automatically by the computer

program; however, the program also allows for the user to provide a dif-

ferent value. If the user provides a value, it is used; if he does not,

the default value is used.
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where it has been assumed that the feature selector has nomalizcd all

feature components to an interval from zero to one (see Section 5.2)

such that importance decreases as y.(i = 1, • ••.*<) increases.

Once this initial location has been set, prototypes can then be

used as the Monte Carlo calculation progresses. This splitting surface

can be utilized while '*•.' is being learned. By doing this more prototypes

are introduced on the class 2 side which will accelerate the conver-

gence. Ifnen the classifier attains a suitable tnisclassif ication rate

and variability (as set by the user or default), weight adjustment on

the first splitting surface car. be stopped. During this first phase,

the nunber of prototypes in each, class, M. (i=l,2) is calculated. This

variable can be used in tne following expression

if F2 = HP^T > R

then no -ore splitting surfaces are learned

(5.2)

to determine if.core splitting is necessary where R is determined by

the user. The first splitting sv.rface (between zero and non-zero impor-

tances) divides state space into two regions - in one region

particles have a probability >50% of contributing to the tally, in the

other region the particles have a probability >50% of not contributing

to the tally. As F2 increases less splitting is necessary.
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If F_<R then an additional surface within class 1 is necessary

to get more prototypes into the important regions of the problem.

However, since all prototypes in class 1 have zero importance, a sub-

goal or sub-tally must be used for classification. One such choice is

to observe when a particle enters class 2 according to the student.

This is done by checking the sign of g(Y) after each collision (this is

already done since g(Y) is being used to split particles). If it is

found that a particle is entering C_ (i.e., g(Y) > 0), the particle is

tallied (only for the pattern classifier). The prototypes are then

sent to the pattern classifier. After the classification process, the

particle continues the random walk. However, prototypes are not

created until the particle re-enters C, (i.e. the "No" learning branch

of Figure 5.1 is used). If the particle re-enters C., prototypes are

again saved until the particle either enters C~ or is lost to the

system. Like the C.-C- splitting surface, a single source particle can

contribute several "sets" of prototypes (one set for each tally).

Unlike the C,-C2 splitting surface, prototypes are not created after

each collision, but only after collisions occurring within C.. VJith

this procedure, class 1 can be subdivided into two sub-classes, class 3

and class 4 where class 4 particles have a 50% or greater chance of

becoming a class 2 particle and class 3 particles have less than 50%.

The choice of an initial w for the second splitting surface can be made

by using Equation 5.3
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2 N+l l N - f l

2W i " l W i

IWN+1

where j.w. = initial weight of new discriminant function

jW. = initial weight of previous discriminant function

,w. « final weight of previous discriminant function

which results in a splitting surface located mid-way between the first

and last positions of the class 1-2 decision surface. Uhen the second

splitting surface has been identified a check is again made on F_. If

F«<R, three things can be done: (1) class 3 can be subdivided (2)

class 4 can be subdivided (3) class 3 and 4 can be subdivided at the

same time. If F2
<<R» tlien t*lc third choice is needed since a consid-

erable amount of splitting is necessary to make F, larger. Otherwise

the choice between 1 and 2 is decided as shown by relation 5.4 with

1-3, J-4.

If Mj. > MJf subdivide class I.

If Mj > Mj, subdivide class J.

This process continues until either a maximum number of surfaces have

been identified or F? > R. A flow diagram of the above process is shown

in Figure 5.4. Table 5.1 lists the eight regions formed by the first

4 splitting surfaces.
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Figure 5.4 Iterative Procedure for Generating Splitting Surfaces
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Class

1

2

3

4

5

6

7

8

Table 5.1

Probabil i ty of Tally

<50%

>50%

<25%

>25%, <50Z

<12.5%

>12.5%, <25%

>25%, <37.5%

>37.5%, <50%

5.1.2) Multiple Tallies

In the previous section only the splitting surface between

classes 1 and 2 depended upon the importances, I, of the prototypes (this

is not true if class 2 is subdivided). The problem of multiple tallies

consists of defining what is meant by I when more than one tally is

considered. This section considers only the C.-C splitting surface.

Subdivision of class C~ is discussed in Section 4.1.2 and subdivision

of class C-L is identical to that described in Section 5.1.1.

The importance I± (i=l,...,n. n=no. of tallies) is the importance

relative to a particular tally. Therefore each prototype actually has n

importances for n tallies. One could assign a g(Y) for each tally; however,

this would consume n times as much computer time. An easier solution is

to assign a probability, pi, to each tally such that
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IVi (5-5)

where 6 = 1 with probability p.

6 = 0 with probability (1-p.)

I. = importance with respect to i'th tally

I = overall importance of prototype.

This results in a tally with a high p. having more particles directed

towards it. Although the user can aasign the p., it is possible to

have this done automatically by using the variance of each tally during

the Monte Carlo calculation. The p. of tallies with high variances

should be increased, with low variances decreased. This splits parti-

cles so as to produce a uniform variance for all tallies. Although

this process affects only the Cj-C2 surface directly, since all other

subclasses of C. are related to this surface, they are also affected

indirectly.

5.1.3) The Point Detector Tally

The point detector tally described here assumes the same struc-

ture as is used in the MCN code at Los Alamos Scientific Labora-

tory19 , usually used for the tallying of flux at a point. This tally
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differs from other tallies in that after each collision, the contribution

to the tally, x. ., given by

where x. . = contribution to the tally of the .i'th
3-» 3

particle after the j'th collision

(x, = \ x. . where J = no. of collisions)
1 4-1»3

wt. . = weight of the i'th particle before the

j'th collision

p. = (probability of scatter) * (the probability

of scattering toward and being detected

by the point detector at the j'th collision)

is calculated. Unlike other tallies each prototype has a non-zero impor-

tance which eliminates the C.-C_ surface as described in previous sections.

Instead an appropriate. I must be selected which falls within the distribu-

tion of I.'s. (I. = importance of the j'th prototype, not to be confused

with I. of Equation 5.5 which is the importance of a prototype, wich

respect to the i'th tally). The median is a good choice for I since it

is a measure of the number of prototypes. The mean is a less useful

measure since it can be strongly influenced by the value of I. (i.e. a

few very large I. affects the mean I more than a much larger number of

prototypes with small I.). For some cases (especially when the distribu-

tion of I. is over many orders of magnitude) the mean falls at the tail

190



of the distribution which would not be very useful for splitting.

Another possible value for I is the logarithmic mean (see Equation 5.7)
N

î l 1Og10Iji
I = logarithmic mean = **-= N

x •' (5.7)

where N = number of prototypes

I = importance of the j'th prototype

which compensates for distributions that cover many orders of magni-

tude. An important consideration in the choice of an I is the computer

time required. Thus, although the median is the best choice from a

statistical point of view (it creates classes which originally have

the same number of prototypes in each class) it is also expensive

calculat ionally.

The initial stages of the Monte Carlo calculation are used to

calculate I. During this initial stage weight adjustment is allowed

with the initial W chosen the same as described in Section 5.1.1. The

splitting surface is not used until a final I has been determined.

This prevents splitting from influencing the selection of I. When the

first splitting surface has converged,? is chscked (see Equation 5.2).

If F_ < R then the procedure continues as illustrated by Figure 5.4.

As described in Section 5.1 this process continues until either F ?>R

or a maximum number of surfaces has been created.
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The importance of a prototype for multiple point detectors is

determined by

n

I = A 0 ! 1 ! <5-8>

m. = weight of the i'th detector

I = importance relative to the i'th detector (same as

Equation 5.5)

n = number of detectors

The weights, m., serve two purposes. First of all they are used to

normalize tallies. This is required when tallies with different units

are used (for example fissions at a point, captures at a point, flux at

a point) and must be normalized to 0< I. <1. The second purpose of

m. is to direct particles towards certain tallies. This is done by in-

creasing m. for tallies to which more particles are needed in the same

manner as was suggested for the p^ (see Section 5.1.2). Also like p^,

optimum E. can be learned during the calculations or can be supplied by

the user.

5.2) Feature Selection

As stated in Section 3.4, feature selection is best served for

this research if it remains a human function. This can easily be done

if the feature selector consists of a user supplied subroutine in much

the same was as for source subroutines19. The function of the feature

selection subroutine is shown in Figure 5.5. The user must supply the

following information:
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Figure 5.5 Structure of the Feature Selector



f. = the functional form of the i'th components of feature

space (e.g., f± = r = x
2+y +z2)

u. = the minimum value encountered for the i'th component

of feature space

u. = the maximum value encountered for the i'th component

of feature space

d. = +1, if the importance increases as v. (see Figure 5.5)

increases

= -1, if the importance decreases as v. increases

The selection of the f. can do more to improve the behavior of

the pattern recognition system than any other user input. As users

gain experience they will undoubtedly gain skill in the selection of

f . The following heuristics* or rules of thumb should prove of value

in this process.

(1) Omit any variables which are not used in the problem.

(2) Make use of any symmetries in the problem.

(3) If a variable spans several orders of magnitude, use the

logarithm of the variable.

(4) Limit the span of a pattern vector component to that range

* Heuristics are non-analytically derived rules usually gained through

insight or experience and are used when analytical techniques are in-
•y o

adequate or non-existent.
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over which splitting surfaces are likely to occur. This

is done by specifying the range (u.m:Ln, u.naX) to be small-

er than the actual range of variable u .

(5) If the ir.portar.ee varies very weakly with a variable, omit

the variable.

(6) Determine what variables are important fros: the "tally point

of view".

(7) Select features for which the importances either n:onoton-

ically increases or decreases.

Heuristics 1, 2, and 5 are ai~ed primarily at reducing the dimension-

ality of feature space. Heuristics 3 and 4 are used to prevent surfaces

frcn being too close to each other in feature space. The results of

these heuristics is to expand the space in the vicinity of splitting

surfaces. The purpose of heuristic 6 is to select optiEim feature

components for splitting. Heuristic 7 is aimed at preventing class

distributions which cannot be treated with linear discriminant functions.

Suggestions for each pattern vector conpor.ent are given below using the

above heuristics as guidelines.

Tise: A great number of transport problems are concerned only

with steady state situations. For these problems tine should be onit-

ted froa all f. (heuristic 1). Problems which do involve tir:e often

involve several decades. In this case heuristics 3 and 4 should be

used. Tine will usually not be conbined with any other variables to

fors a new y, but will be used alone.
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Energy: Most transport problems of interest are usually

strongly dependent on energy due to the energy dependence of nuclear

cross sections. An example of this is the fission cross section which

varies from a few barns in the Mev region to several hundred barns in

the ev region. Therefore, the probability of a fission occurring varies

by two orders of magnitude due to energy alone. Heuristics 3 and 4 are

almost always necessary unless dealing with only a very small energy

interval. There are problems in which,over the energy range of interest,

the cross sections of the materials involved (for example, carbon) are

relatively flat. In such cases heuristic 5 should be .executed. Like

time, the energy variable will seldom be combined with other variables.

Spatial Coordinates x,y,z: Heuristic 2 is intended primarily

for the spatial coordinates. For example, if the geometry of a problem

is symmetric about an axis, cylindrical coordinates should be used for the

features. Once the geometry has b^en transformed to cylindrical coordi-

nates, it may be found that the importance does not vary with y or 8 (see

2 2Figure 5.6). Then by using f .= r = x + z , three components (x,y,z)

have been reduced to one. An analogous situation exists for spherically

symmetric problems. Figure 5.7 illustrates a case where heuristic 7 is

necessary. By transforming x as given by

fi = ICX-XJL)! (5.9)
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Figure 5.7 Feature Selection to Avoid a Quadratic g(Y)
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a linear discriminate function can be used. In general the distance

to a tally is the best choice of a spatial coordinate (heuristic 6)

as given by

= d = /(x-xd)
2 + (y-yd)

2 + <z-2d>
2 (5.10)

where x,, y,, z are the coordinates of the tally

Such a choice also reduces the number of features. Spatial features

will usually not require the use of heuristics 3 and 4.

Direction Coordinates (u,v,w); The direction cosines are

similar to the spatial coordinates in that they are usually better

combined. For example, the cosine of the angle between the present

line of flight (vector=Vj) and the direction to the tally (vector=v2)

given by

V . V
= cos £ = j^y j2 (5.11)

is similar to d (Equation 5.10). Using the above feature also allows

linear discriminant functions (heuristic 7). As in the case of the

spatial coordinates, cylindrical and spherical .'.yirauetry can often reduce

the number of angular features necessary.
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Tlie problem illustrated in Figure 5.8 will be used to demonstrate

the proper selection of features. In this problem material 2 is highly

absorbing and material 1 is only slightly absorbing but has a moderately

Vacuum

Material 1

L

i
Isotropic point

source at (0,0,0)-

^

Material 2

Tally current across
this surface

Vacuum

Figure is drawn in
x=0 plane, +x axis
is out of paper

Figure 5.8 Sample Problem for Feature Selection

high scattering cross section. An isotropic source of neutrons is lo-

cated at the origin. It is assumed that all cross sections are flat

with energy and that time is of no interest. The tally consists of

counting the number of neutrons which cross the surface located at
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y = y The material regions shown are cylindrically symmetric about

the line drawn through the point (0,0,zt) and parallel to the y axis.

The following f. would be suitable for the feature vector of

this problem:

fl

f2

f3
min

ul
min

U2
min

U3

= y

= r

= V

= -y

= 0

= -1

= v/(zt-z) -

• v d l v v d (

1

.0

hx2

max
Ul =

max
U2 =

max
U3 =

yt

ro
1.0

where v = direction cosine with y axis

v, = direction cosine to point (0,y ,z )

The previous seven heuristics relate to the above selection as follows;

Heuristic 1. Since cross sections are flat, the problem is in-

dependent of energy and as was stated time is of no interest.

Therefore time and energy do not appear as variables in any of the

fi-

Heuristic 2. The form of f« was chosen due to the symmetry of the

problem. This reduced the number of variables and is also a more

effective variable for splitting.

Heuristic 3. Not used.
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Heuristic h. This heuristic vas used to set uJ?^*. For r>r

particles all belong to the sane class thus limiting splitting to

r<ro. The other u."dX and u/2111 are set to the limits of the

problen.

Heuristic 5. lot used.

Heuristic 6. This heuristic influenced the choice or all three

f.. If one is at the tally looking at contributing neutrons, al-

most all the neutrons will be coning down the channel frora

material 1 (fev: core iron naterial 2 since it is highly absorbing).

Eecause of this, the probability of a neutron arriving at the tally

depends pricari.lv on the. f. chosen.

Heuristic 7. As f increases from -y to y , the probability that

it is tallied also increases nonotonically. This is also true for

f2 and f:J.

Although the selection of features does require user inforcation, this

information ir> qualitative in nature as opposed to the quantitative

information required by normal geotaetry splitting.

5.3) Timing Considerations ar.d Effectiveness

The purpose of this section is to determine the factors neces-

sary for estimating the effectiveness of state space splitting using

pattern recognition. The only definitive way to determine the effective-

ness as given by Equation 2.16 is to apply the technique to a full scale
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>'onte Carlo Code and use it both with and without the variance reduc-

tion for a large number of problems. The approach taken in this

section is to compare the various operations involved in state space

splitting as opposed to conventional splitting (Section 5.3.1). The

additional operations involved in using pattern recognition to identify

the splitting surfaces are then described (Section 5.3.2). Although

this analysis does not result in an absolute evaluation for all

problems, some assumptions can be nade concerning the effectiveness

as compared to presently used splitting technique.

5.3.1) State Space Splitting vs. Conventional Splittine

The basis of this cocparison is the current version of the KCN

1 c

neutron Konte Carlo code at Los Alamos Scientific Laboratory "which con-

tains both energy splitting and geometry splitting. For the energy

splitting the user specifies a number of energy splitting surfaces, E,.,

i=i,...,N (K=nuiaber of splitting surfaces) and the ratio for splitting

between two energy regions (separated by E.) R^, i=l,...,N. The energy

of the particle is checked after each collision. If the energy drops

belov an E-̂ , the particle is split into R^ particles with weights equal

to the particles original weight divided by R^.

Each geometric cell or region (see Appendix J) is assigned an

importance I.. Whenever a particle crosses a surface S. which bounds

two or nore cells, a check is nade to determine which cell the particle

is entering. This check is nade by: (1) determining which cell or

cells are on the other side of S. (2) if more than one cell is on the
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other side of S. the senses (see Appendix J) are calculated with
J

respect to the bounding surfaces (with the exception of S.) of each

cell (3) the cell for which all the senses agree is used as the next

cell (if there is only one cell, it is used). The importance of the new

cell, l n, is then compared with the importance of the previous cell,

IQ, and the operations indicated in Figure 5.9 err performed. In the

case if splitting, if the ratio of importances I /IQ is a non-integer

value given by

R = I /I - J (5.12)
n o

where J = largest integer that will go into I /I .
n o '

then J + l particles are created with probability R and J particles are

created with probability (1-R). When particles are split one of the

particles is continued and the others are banked* (i.e. the state space

description of each is saved) until the first particle leaves the sys-

tem^ at which time the banked particles are continued. Of the above

process, the only time used for splitting and Russian roulette is the

time spent in the operations shown in Figure 5.9 plus the time spent in

banking particles. The average time per particle spent performing these

operations will be designated At.,, Unfortunately, this is not the only

* The banking of a particle consists of recording its state space descrip-

tion (x,y,z,u,v,w,E,t) and its weight, wt, on a pushdown list. This list

is so constructed and maintained that the next particle retrieved from

the list Is the last particle placed on the list.
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Figure 5.9 Conventional Geometry Splitting
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increase in time due to the splitting process. Because splitting is

often desired at surfaces which are not material boundaries, the user

must subdivide the already existing cells into smaller cells in order

to split at the surfaces he desires. The introduction of these new

"splitting cells and surfaces" means that more intersections will have

to be calculated and more senses will have to be checked. It also re-

quires more calculations of the distance until a col"'sion. These three

operations can consume a considerable amount of time (the majority of

computer time spent is often spent in these geometry related calcula-

tions). In fact, for some problems? the additional time required by

these operations can completely offset any gains due to variance reduc-

tion. The average time per particle spent due to increased geometry

calculations caused by "splitting cells" will be denoted as At?.

If the additional time per particle spent due to energy split-

ting is designated At., then Equation 5.13

Atg = Atx + At2 + At3 (5.13)

where At.. = time to perform processes of Figure 5.9

plus banking of particles

At- = time required to perform geometry calculations

due to additional "splitting cells"

At- = time required for energy splitting

gives the total additional time spent due to the use of splitting and

Russian roulette.
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State Space Splitting
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If state space splitting is used with known splitting surfaces

(i.e., W is known) the operations shown in Figure 5.10 are performed after

each collision. Once the new class, J , has been found it is used with
n

the old class, J , to determine the ratio of importances given by

In/Io = 2
A J, AJ=Jn-J0 (5.14)

After this ratio has been calculated,the procedure illustrated in Fig-

ure 5.9 is used. Therefore, using state space splitting, the total

additional time per particle, At , is given by
s

At = At. + At.
s 4 1

where At, = average time spent per particle to perform

operations of Figure 5.10

At1 = see Equation 5.12.

Subtracting Equation 5.15 from 5.13 results in

At - At = (At. + At.) - At. (5.16)
g s I 3 4

All three of these parameters (At^, At , and At.) are dependent upon

the amount of splitting used. The parameter At» is also very dependent

on the number of "splitting cells" and the complexity of the surfaces

involved (higher order surfaces require more time to calculate inter-

sections) . The parameter At, is dependent on the complexity and number
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of the f.(Y). A great deal of experimentation with, rany different

Monte Carlo problems would have to be run to determine whether Lt or

At is larger. It is nest probable that each technique has a class of
s

probleas for which it operates quicker.

If both techniques are used to represent the saro surfaces,

the relative effectiveness cen be calculated by comparing u-.c above

ti=es only. However, this is net the case since the conventier.al tech-

nique splits only in energy and position space (independently) and the

other approach splits in state space. Furtherr.ore, the splitting

surfaces of the conventional approach are the results of heuristic

guesses by the user; whereas, in the state space approach, the stsrfaces

are the result of the pattern recognizer. Figure 5.11 de-or.strates

the advantage of splitting in state space for the two dimensional

problen considered in Section 4.4. The solid line indicates the split-

ting surface found by pattern recognition. The dashed lines are a few

of the splitting surfaces possible if geometry splitting is used alcn».

As can be seen there is a great ar.ount of deviation regardless cf

which geonetry splitting surface is chosen. The problen is caused by

the fact that one cannot split along constant contours of I using

geocetry and energy splitting only. As a result, many particles are

split which should not be. As a result, N (see Equation 2.15) will

in general be much smaller for state space splitting than for the con-

ventional splitting approach.
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.1.1 Spliteing Surface £"«*«- the
Problem o£ Section 4.4

3^3.2)Time Spent for Pattern Recognition

Section 5.3.1 discussed the time required to split particles

in state space. This section di«cuss«s the additional tine required

to learn the splitting surfaces and includes:

(1) Tf » the additional tine required to save prototypes (see

Figure 5.1)

(2) T * the tine required to classify patterns and adjust W

(see Sections 5.2.3, 4.4.3, and 4.5)
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(3) T * time required to "manage" the splitting surface

selection (see Figure 5.A).

The above operations are different from those described in Section

5.3.1 since they are only performed while the splitting surfaces are

being learned. Because of this, the time spent for pattern recognition

is distributed only over those particles which exist while the pattern

recognizer is being used.

The discussion in this section assumes that a point detector

tally is not used and that the splitting surfaces are learned one at

a time (i.e., one surface has passed the convergence test before

another is begun) as described in Section 5.1.1. The following nota-

tion is used throughout this section:

S, . = the splitting surface between classes k and j where

the k and j are defined as given by Table 5.1. The

i'th splitting surface refers to surface S_. .. ?..

N. • the average number of collisions per source particle

In a particular Monte Carlo calculation before the

i'th surface is learned but after the (i-l)'th surface

is learned. (N..= N. before any surfaces are learned)

h = average fraction of N. which occur in C. before the

i'th surface is learned but after the (i-l)'th surface

is learned (h. =h. before any surface is learned=1).
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Q. = the average number of times a source particle contributes

to the tally (or class sub-tally) while the i'th surface

is being learned.

B = number of source particles required to learn the i'th

splitting surface.

P = N h B. = number of prototypes required to learn the i'th

splitting surface.

M = total number of splitting surfaces learned. M is either
s s

supplied by the user or is determined by the F test (see

Figure 5.4).

The splitting surfaces are learned in the following order:

Sl,2' S3,A' S5,6» S7,8' S2M -1.2M
s s

T, (saving prototypes)

The total time spent transforming vectors from pattern to

feature space is given by

M Mg

where t, = average time spent transforming one prototype

(see Figure 5.5)
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The time parameter t, depends on the nissber and computational complex-

ity of the f. (see Figure 5.5) involved and like the parameters H., It.,

and B., is highly problem dependent. The u. (see Figure 5.5) are often

already calculated within the Monte Carlo Code and therefore need onlv

be stored.

After the first learning surface has been identified, the

feature vector is calculated after every collision in order to utilize

state space splitting (see Section 5.3.1). Since this operation need

not be performed twice, the additional time used to transform pattern

vectors is given by the equation

T1 - tf N 1B 1 (5.18)

If the additional time spent In storing tbe Y. is designated by T ,

then Tf is given by the following equation

T, - T' + T • trN- B. + T (5.19)

In general T « t. N. B. resulting in the equation

Tf«T' = tf N 1B 1 (5.20)
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T (pattern classifier)

The tine spent by the pattern classifier has been discussed in

Sections 4.2.3, 4.4.3, and 4.5 for the pattern classifiers used in this

research and are summarized in Tables 4.5 and 4.7. It should be noted

that these times indicate a maximum of the values to be expected.

Very simple changes in the FORTRAN coding can lead to large reductions

in time. Some examples of these changes are:

(1) For non-point detector tallies where the classes are de-

termined by "tally" or "no tally", the importance 1^ need not

be calculated. In such a case all prototypes in a "set"

(see Section 5.1.1) belong to the same class. The only

test necessary to determine classification is to test the

tally for zero, non-zero. For the problems run in Chapter

IV, this results in changing Equation 4.9 to Equation 5.21

thus reducing T by (N-B)t..

T = BtA + N(tLfL + tcfcfL) (5.21)

where B = number of source particles

(2) The dot product of two vectors (W«Y* and Y*-Y*) can be

performed much quicker by using system functions (for

example DOTPRO39 at LASL). The larger the dimensions of W,

the more time can be saved. In this research each vector

element was multiplied in FORTRAN.
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(3) Vector addition (VJ. . -W.+cY*) can be performed much

faster using system functions (such as AODVEC at LASL)

In this research each element was added separately using

a FORTRAN statement for each element.

Since the purpose of this research is not to develop an optimum

FORTRAN program, these operations have not. been used since the note

straightforward multiplication and additions are easier for the

reader to follow (see Appendices D, F, H, I).

The total time spent by the pattern classifier to learn K

splitting surfaces is given by Equation 5.22.

T - T. + T, + T.. (5.22)
p 1 2 TIg

M s M s
T p = ^ C t L i f L + CC i f C i V P i + t

A I Q i B i
i=l i= l

where: t . , t , t_ are given by Equation 4.9
J\ Xt \J

.f. and .£„ are the same as fT and in of Equation A.9

except that they refer to prototypes used

in learning the i'th splitting surface

T^ = time spent learning surface i
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T (splitting surface selection)

The time T^ includes the following operations (see Figure 5.4):

(1) Initial Weight Selection

(2) Convergence testing including the calculations involved

in determining the misclassification rate and variability.

(3) Splitting Surface Selection including F_>R test.

Operations (1) and (3) are only performed M times throughout the

entire Monte Carlo calculation and therefore their times will be

ignored compared to operation (2) which is orders of magnitude more

tine consuming. The convergence is tested after every C T source

particles. The choice of C depends upon the number of source parti-

cles required for convergence, B.. However since B. = P./(N h.) and

since P. does not vary greatly from problem to problem (P. ~ 4,000 from

Chapter IV), B. can be approximated from the above relationship (h.

and N. are approximated within the Monte Carlo calculation). As ex-

perience is gained with this technique, a suitable C T can probably be

user specified.

Calculation of the misclassification rate involves storing

the number of prototypes and the number of misclassified prototypes.

The former is already performed by the classifier for each class and

the latter consists of incrementing a counting register every time a

prototype is misclassified. A ratio of the two is then performed

after every C source particles.
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The calculation of the variability is more complex. For every

feature vector component, y., there is an intercept of the decision sur-

face with the y^ axis which is given by

A. . = intercept with y axis after j'th prototype =

w

JttLl 1-1.....N (5.23)
l.j

where N =» number of feature vector components

w. . = i'th weight component of W., where W. is the weight
li j J J

vector after the j'th prototype

The variability of each intercept is given by

(5.24)

2 -2
AT- A.

/J A, A.

where J = number of prototypes

J

h-I

I
_ J A2 !
k. - s i
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Thus for each y. both the first and second moments of A. . must be

accumulated. If the J'th prototype is inisclassified the accumulated

moments are given by

J J-n

A± . = S Ai + (n-l)(A. ) + A (5.25a)
1-1 ' *' X' i=l,...,N

J J-n

y Ai 1 = ^ A? i + <n-L^Ai j i> + 4 i (5.25b)

where n = number of prototypes since the last

misclassified prototype

If the J'th prototype is not inisclassified then the accumulated moments

are given by

J-n

A, , + n(A. •) i=l,...,N (5.25c)

J-n
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After every C source particles the variability of each intercept is

found using Equation 5.24 and the accumulated values of Equation 5.25.

Each o*. can be tested separately or combined to give an overall vari-

ability as given by

0= -i-L

i=l,K

h
(5.26)

°i

The time required to do these operations is summarized by the

relation

M M
s t
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* *• , . - *»>>* * "

where tT = time required per operation to store the first

and second tr.oinents of the y. intercept (Equa-

tion 5.25)

t = time required per operation to calculate the

misclassification rate and variability and

test for convergence.

Using a FORTRAN code to siiailate these operations results in

the following approximate values for tT and t .

4.4 x 10~ K seconds (5.28a)

t ** 6 .7x10 N seconds

vhere N = number of features

(5.28b)

Suresary

Conbining Equations 5.20, 5.22, and 5.27 r e s u l t s in

Tw_ = T,' + T + TPR f p m

M

l f c ( t ci £ L

(5.29)

Nihi
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The above parameters fall into the following groups:

(1) t., tj, t , t , t~ are constants which depend only on the

programming efficiency used in the pattern classifier

(2) N., Q., h., .f , M are parameters which depend primarily
X X X X C S

on the characteristics of the Monte Carlo problem involved

(3) t^, .fT, C_ are parameters whose values depend on user

specification.

The timing parameters from Section 4.5 and Equation 5.28 are summarized

in Table 5.2 for the deterministic classifier and N features. If it is

assumed that the 4000 prototypes found necessary for convergence in

Chapter IV are characteristic of all splitting surfaces (actually it

should be less for each new surface that is learned since the initial

guess for W improves with the number of splitting surfaces) and if no

buffer zones are used (.fT =1.0), Equation 5.29 reduces to

M s ( )
TpR~4*103tf +4X10 3 ^ 0 . 3 + 1 . 2 ^ + NCO.7+2.7^) +± JJ-JJ—T—Z (5.30)

± ±

If it is further assumed that:

(1) .x «0.3 for all i (i.e. a large amount of overlap)

(2) C_ * 10 (a very conservative choice considering the

value of P.)

(3) N =5 (the maximum using unreduced pattern space is 8)
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Table 5.2

t . 4.1X10"6

A

tT l.OxlO"6 + (N-l).7xlO~6

tn 3.5xlO~6 + (N-l)2.3xlO"6

c

t ] [ 4.4xlO~7N

ty 6.7xlo"7N

Equation 5.30 reduces to

3 -2. -3 NT 4 > 1 Q i + °-335 (5 31))Jt£ + 3.28x10 Tl + 4x10
 J > ^ r V^.Jx;

M
s

The value of N h. will in general be greater than .5P for initial

surfaces. However as surfaces progress this value will decrease since

splitting will cause more particles in the more important classes.

Assuming the very conservative value N.h. = .IP. reduces Equation 5.31

to

M
s

Tm^^xl0tf + S^Sxlo"2*! + 10"5 SPR f s

s

S (4.1Q. + 0.335) (5.32)

l

The value of Q. will seldom be over 1 (for any problem requiring

variance reduction) and therefore the third term can be ignored com-

pared with the second resulting In

4 x 103t + 3.28 x 1O-2M (5.33)
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Although Equation 5.33 is only a very rough approximation it is still

useful as an indicator of the amount of. time spent for learning surf-

aces. Furthermore, the assumptions have been made in such a manner so

-4
as to overestimate T_n. Choosing any reasonable value for t, (10 to

10 ) and M <<10) and allowing for approximation errors of a factor of
s

ten still results in a TDD on the order of 10 seconds. For Monte Carlo

runs of many minutes this time is quite small compared with the time

saved by variance reduction.

5.3.3) Effectiveness

Geometry splitting and energy splitting techniques have proven

to be quite effective techniques for a great variety of Monte Carlo

problems. Since state space splitting is closely related to these

techniques the effectiveness of learning state space splitting surfaces

by pattern recognition is described relative to conventional techniques.

This results in the relation

N At
ER " WT& (5-34>

e e

where E_ = effectiveness of state space splitting using

surfaces learned by pattern recognition

N = number of source particles required to achieve

the desired relative error using state space

splitting
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N* • number of source particles required to achieve the de-

sired relative error using conventional splitting

At " computer time required per particle when state space

splitting is used

At* « computer time required per particle when conventional

splitting is used.

If t_ is the computer time required per particle to perform the Monte
a

Carlo calculations without any form of splitting then

At* = Atg + AtR *= Atx + At2 + At3 + AtB ;' 35)

T T
PR PP

A te " A t s + AtB + T T " Lh + A t l + AtB + IT C5'36>
6 6

where At , At., At_, At- are defined by Equation 5.13.

At , At, are defined by Equation 5.15.

TpR is given by Equation 5.29.

Substituting Equations 5.35 and 5.36 into Equation 5.34 results in

N (At + At + At ) + T
ER ~ N*(At3 + At2 + At1 + AtB)

 p

The amount of variance reduction is indicated by the ratio

R = Ng/N* (5.38)
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which measures how much more efficient for reducing the variance state

space splitting is than conventional splitting. The values of N and

N* can be further reduced to

N* = K. - AN_ (5.39)
e A C
K = N, - ANe + AN. (5.40)
e A S L

where N. = number of source particles required to achieve

the desired relative error if neither conven-

tional nor state space splitting is used
AN_ = reduction of K* due to variance reduction when
C e

using conventional splitting

AN = reduction of N due to variance reduction when

using state space splitting, assuming the split-

ting surfaces are known prior to the Monte

Carlo calculation

ANT = increase in N due to the learning of split-
u e

ting surface.

If the state space splitting surfaces are known prior to the

Monte Carlo calculation (AN =0), then in general R<1. This is be-
Li

cause state space splitting includes the advantages of conventional

splitting (i.e.,AN ) as well as the additional advantages of splitting in

time and direction space (i.e., ANg>ANc). Through proper feature selection

optimal combinations of state space parameters can be used which further
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increases ANg.

When splitting surfaces mist be learned, the value of (AN - ANT)

varies throughout the calculation starting at zero and increasing to

ANO for which splitting surfaces are known a priori. In this case R

could possibly be >1 for some Monte Carlo problems; however, by using

decision surfaces for splitting before they have converged, AN can be
Li

greatly reduced. Monte Carlo problems exist for which conventional

splitting is inadequate; whereas state space splitting appears to be

quite attractive (such problems are now usually split into two separate

problems where the tally from one provides the source to the other).

For this type of problem R«l. If several similar Monte Carlo problems

are being calculated,splitting surfaces can be learned in the first

problem and used in the others, thus making ANT =0 for subsequent simi-

lar problems. The value of ANT depends on the amount of learning per-

formed per source particle which in turn depends on the number of proto-

types created per source particle, N (see Section 5.3.2). Since proto-

types are created at collisions, problems in which the particles have a

high number of collisions before leaving the system result in converged

splitting surfaces after fewer source particles. This point is illus-

trated in Chapter IV by comparing the number of source particles until

convergence (relative to each problem) for the problems described in

Sections A.2.3 and 4.A.3:
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No. Source Particles
Collisions/Source Particle until Convergence

(4.2.3) 100 40

(4.4.3) 12 300

Problems which do not have a large number of collisions are often prob-

lems which do not require much variance reduction if any. If a problem

containing few collisions requires variance reduction, the learning

technique can be modified to produce prototypes at surface intersections

as well as collisions. However, in general problems containing many

collisions are the most suitable for learning state space splitting

surfaces. For many problems AtB will be much greater than the other
D

time parameters At., At-, At,, At, and T_R/N thus reducing Equation

5.37 to

N

e

For problems in which this is not true, the time parameters of

Equation 5.37 must be taken into consideration. Since these parameters

and R depend upon many problem characteristics and user supplied input,

it is ludicrous to propose that EL will always be less than 1.0. How-

ever, from the results and analysis of this chapter and Chapter IV, it

does appear that for many problems, this will be the situation. Only a

great number of computational experiments using a general purpose Monte

Carlo code will provide the data necessary to define for which problem

types ER<1-
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5«4) Limitations of this Research

The research described in this thesis represents an initial

investigation into the area of pattern recognition applied to state

space splitting surface identification. The following sub-sections

include the more important limitations of this research and the learn-

ing of state space surfaces.

5.4.1) Classifier Selection

Both the deterministic and statistical classifiers investigated

in Chapter IV are of the same construction in that they assume a linear

form of g(Y). It is very unlikely that any optimal splitting surface

in state space having overlapping distributions will be linear. It has

been assumed that in most cases a linear surface is a sufficient approx-

imation to adequately split particles. Furthermore, feature

space can be altered to improve this approximation. Experience with the

technique will be the ultimate test in determining whether or not linear

discriminant functions are sufficient.

There are many different types of classifiers for Case D and E

data (see Section 3.1.2), for example, the expansion given by Equation

3.4. Some other technique may prove more attractive for classifying

the types of distributions resulting from Monte Carlo calculations. In

Chapter IV it was found that the statistical classifier used is hindered

by its accumulated overshoot and that the deterministic classifier has
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the characteristic that for overlapping p(C.|Y), the variability never

goes to zero. An attractive alternative might be a hybrid classifier

that uses deterministic classification during the initial approach and

then uses statistical classification until the final convergence cri-

terion is met.

5.4.2) User Input

One of the incentives for using pattern recognition to identify

splitting surfaces is to relieve the user of the burden of providing

a priori information to the Monte Carlo calculation. However, as

is described in Section 5.2 the user must provide the values of f.,

u. , u. , and d. for the feature selector (see Figure 5.4). Once the

f 's have been selected, the values of u" n, u|?ax, and d. are deter-

mined and can be easily supplied. The main problem then is selecting

a good choice for the f. This choice will have to be based upon intui-

tion and experience using heuristics similar to those described in

Section 5.2. Although certainly a non-trivial operation, the above

selection is a qualitative decision for which humans are much more

suited than computers. Similarly, the learning of a splitting surface

using the f. is a quantitative decision for which the computer is much

better suited. In conventional splitting the user is required to per-

form both these tasks.

There is other input which could be made optional as user input

and includes:
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(1) Initial selection of W

(2) Convergence criteria for the variability and misclassifi-

cation rate

(3) A choice for R (see Equation 5.2)

(4) The limit on the number of splitting surfaces, M (see

Section 5.3.2)

(5) For multiple tallies, the values of p (see Equation 5.5)

(6) For multiple point detector tallies, the values of m. (see

Equation 5.8)

It would be a little presumptuous to expect the general Monte Carlo

user to input all this additional information. The default values can

be chosen as described in Sections 5.1 and 5.2; however, after exper-

ience has been gained with the technique better values will undoubtedly

be found.

5.4.3) Range of Application

As with any variance reduction technique this one has the prob-

lem that the user is not certain when to use it. The result is that

problems not requiring splitting or for which splitting will not help

may be slowed down. This technique does have the advantage that by us-

ing the F» test (see Equation 5.2), the code will stop learning surfaces

if they are not needed. However, this test is made only after the

first splitting surface has been learned.
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5.5) Summary

A systematic approach has been described in Section 5.1 for

collecting prototypes, determining classification, and managing the

selection of splitting surfaces. The feature selection process can be

performed by a user-supplied subroutine containing the information shown

in Figure 5.5. The selection of the features (f.) is the most important

user input and must be based on the intuition or experience of the user.

Recommended heuristics have been given to aid in this selection. Although

an absolute statement cannot be made about the timing and effectiveness,

by using constants derived in this research and assuming reasonable

values for problem parameters, it does appear that the technique

should be quite attractive compared with conventional splitting tech-

niques.
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VI. Conclusions and Recommendations

In Section 1.4 four steps toward demonstrating "proof of

principle" were stated. These steps are repeated below along with

the conclusions drawn from this research.

(1) Develop a pattern recognition system that can be used to learn

splitting surfaces in Monte Carlo transport calculations.

A scheme has been designed whereby pattern recognition can

be used to learn splitting surfaces in state space. Train-

ing sets or prototypes are required before the splitting

surface can be learned. These prototypes consist of points

in state space (collision points were used in this research)

with their corresponding importances. The importances are

determined by measuring the probability that a particle

leaving a given point contributes to the Monte Carlo tally

under consideration. Both statistical and deterministic

classifiers learn splitting surfaces satisfactorily. From

the examples of this research it appears that the number of

source particles required to learn a surface is small enough

to make the technique useful for practical applications.

(2) Investigate the performance of statistical and deterministic classi-

fiers when used to recognize splitting surfaces. Analyze the sen-

sitivity of the parameters involved.

The deterministic classifier using the fractional correction

rule is superior to the statistical one with respect to per-
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formance, computer time, sensitivity to the learning para-

meter, and sensitivity to initial conditions. The learning

parameter, A, affects the rate of convergence of the splitting

surface. Although the optimum choice of a value for X depends

upon the characteristics of the Monte Carlo problem under

investigation, it was found that a single X (^=.05) can be

used with the deterministic classifier without seriously pena-

lizing convergence. The convergence is also affected by the

initial guess of the splitting surface location. Initial

splitting surfaces should be located in the least important

region of state space. Each component, y., of feature space

should be normalized to the interval from zero to one and

should be selected so that as y. increases, the importance

decreases. As a result the least important point in feature

space is given by Y= [ylsy2,..•,yN] = [l,l,...,l].

(3) Propose a system for applying pattern recognition to a general pur-

pose Monte Carlo code.

A system for implementing pattern recognition techniques in

a general purpose Monte Carlo code is given in Chapter V.

The, scheme requires the user to supply the information needed

by the feature selector. Other parameters can be supplied

by the user or by default values. Selection of these values

must be gained from experience with the technique.
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(4) Analyze the effectiveness that can be expected by using pattern

recognition as a variance reduction technique.

The effectiveness of the technique is problem dependent and

user input dependent. The parameters involved have been

identified and values have been determined for those para-

meters which are independent of the Monte Carlo problem or

the user input. Based upon these values and reasonable

choices for the other parameters, it appears that the tech-

nique should be more useful than conventional splitting. The

problem scope and degree of effectiveness can only be deter-

mined by applying the technique to many Monte Carlo problems

using a multi-purpose code.

Based upon these conclusions, it is recommended that a multi-purpose

Monte Carlo code such as MCN at the Los Alamos Scientific Laboratory be

modified to split in state space instead of the presently used splitting.

Having done this the system described in Chapter V can be included to pro-

vide the splitting surfaces. The deterministic classifier described in

this research can be used directly except that an allowance must he made

for variable dimensioned feature vectors. The modified code should be

used on a range of Monte Carlo problems to determine many of the unknown

problem related parameters described in this research and to determine the

success of the technique for reducing computer time. The coda should

then be used routinely to determine user related problems and to gain

experience with the technique. Only after such an investigation can the

success of the technique be determined.
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Appendix A. Monte Carlo Sampling for
Neutron Transoort

The purpose of this Appendix is to give the reader a "physical

feel" for the processes involved in using the Monte Carlo nethod for

neutron transport. It is noj: the purpose of this Appendix to derive

and prove the nathe=sticai basis of Monte Carlo. The structure of this

description of Monte Carlo is modeled after reference 7 with nany of

the ideas taken fron reference 3A. These references should be con-

sulted if core details are desired. Section A.I presents the basic

principles of Monte Carlo as used for neutron transport. The reEain-

ing sections treat individual topics of neutron transport and give

examples of how the physics of the problen is programed into a

statistical nodel.

A.I Basic Principles

The basic problez: of neutron transport consists of calculating

the number of neutrons that are eaitted fron a source, undergo any

number of collisions vith atomic nuclei, and finally arri%Te at some

region of state space (defined below) of interest to the person trying

to solve the transport problem. The term state space refers to the

coraplete description of the physical properties of the neutrons as

given by:
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(x,y,z,u,v,w,E,t)

where x,y,z are the coordinates of the neutron in a Cartesian Coordi-

nate System (see Figure A.I)

u,v,w are the direction cosines of the neutron with respect to

the x,y, and z axis (see Figure A.I)

E is the kinetic energy of the neutron

t is the time elapsed since the process under study has begun

Figure A.I Geometry Coordinates

Most methods used to solve the transport equation treat all the

neutrons as a whole (i.e., they solve for the flux of neutrons) and then

236



proceed to find the value of the flux at all points in state space.

The Monte Carlo method works quite differently in that neutrons are

treated one at a time independently of the others. After calculating

the behavior of many individual neutrons, the average or mean behavior

of the neutron "sample" is determined. This mean value is used as an

approximation of the value that would be obtained if an infinite num-

ber of neutrons (i.e., the total population) had been treated. Corre-

sponding to this mean estimate is a probabilistic error based upon the

statistical behavior of the neutrons.

Neutron transport is ideally suited for the Monte Carlo method

since most of the physical processes involved are probabilistic in

nature. For example:

(1) a neutron undergoes a collision per unit path length with

probability Efc.

(2) the probability of a particular nuclear reaction, i,

occurring during a collision with a nucleus is a./o .

(3) the probability of scattering at an angle 6 (in the

center of mass system) is determined by a(6).

(4) the probability per unit time that a nucleus decays is

given by the decay constant X.

(5) the probability of a prompt fission neutron being emitted

with energy between E and E + dE is given by x(E)dE.
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Figure A.2 illustrates the major operations performed by a

Monte Carlo program when used to follow neutrons through state space.

These operations are introduced below and described in more detail in

the following sections.

(1) Source (Section A.2). The source of neutrons is usually

described as a user supplied subroutine in a Monte Carlo

program. It is the purpose of this subroutine to describe

the initial state space parameters (x,y,z,u,v,w,E,t).

(2) Collision or Escape Decision (section A.3). The geometry

of any Monte Carlo problem is divided into regions or

cells which may or may not correspond to material regions.

This decision process consists of "sampling" the probabil-

ity of having a collision as determined by I of the

material in the given region. It is for this decision

that the majority of geometry calculations are made since

the distance from the present (x,y,z) to the next inter-

section with the cell boundary must be known.

(3) Entering a New Region (Section A.4). This process con-

sists of determining which region the particle is entering

after leaving the present region.

(4) Collision Type (Section A.5). The process for determining

which type of reaction occurs is determined by the rela-

tionship of the respective cross sections.
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(x,y,z,u,v,w,E,t)
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Escape from

Present Region

Escape Present
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(x,y,z,t)

Scattering

(u,v,w,E)

Determine
Collision

Type
(x.y.z.t)

Other Reactions
(n,£),(n,2n),etc
More Neutrons ?

(u,v,w,K)

Figure A.2 Major Monte Carlo Operations for Neutron Transport



(5) Scattering (Section A.6). Both elastic and inelastic

scattering result in a change in energy which is related

to the scattering angle (usually given in the center of

mass system). The scattering decision consists of samp-

ling for this scattering angle. The new neutron energy

and direction cosines can then be determined from this

angle.

(6) Other Reactions (Section A.7). Many other reactions can

occur (i.e., fission, [n,2n], etc.) and often lead to the

creation of additional neutrons. In such a case an energy

E and direction (u,v,w) must be determined for each neutron

emitted. In addition, for fission reactions the number of

neutrons emitted can be sampled or a: average value used.

(7) Tallies (Section A.8). The tally of a Monte Carlo trans-

port problem consists of the "answer" that one is seeking

as determined by the mean behavior of the neutron histor-

ies followed. Examples of such tallies are: current

crossing a particular surface, flux at a point, number of

captures in a region, etc. Because of the generality in-

volved, the information necessary to determine the tally

can be extracted from any part of the Monte Carlo calcula-

tion. Therefore, the tally operation is not shown in

Figure A.2.
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The following sections frequently refer to the choice of a

random number, r, for sampling probability distributions. The mathe-

matical description of "random" can be found in many of the refer-
7 • !* 7 9

ences ' * '. For the purpose of this description it is assumed that the

random number, r, has an equal probability of falling between the

value of 0 and 1 and that all subsequent random numbers are uncorre-

lated1*'29.

The coordinate system used in the following description is as

shown in Figure A.I where the angles are in the laboratory system un-

less otherwise noted. Energy is also relative to the laboratory system.

A. 2 The Neutron Source

The sampling of a general neutron source involves the following

operations:

(1) sampling of the space coordinates (x,y,z)

(2) sampling of the direction cosines (u,v,w)

(3) sampling of the energy spectrum

(4) determination of the time

The above operations are performed independently and will be described

in this section by using several examples. In these examples all sampling

will be performed uniformly over the quantities (surface, volume, etc.)

of interest.
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A. 2.1 Space Coordinates

Two examples of sampling the space coordinates (x,y,z) are

described in this section: (1) a flat two dimensional surface and

(2) a right circular cylinder. Although these examples comprise only

a small fraction of the possible sources, the techniques used to

sample are similar for all sources and thus provide the reader with a

"feel" for the processes involved.

In many Monte Carlo problems neutrons are emitted from a flat

two dimensional surface. Examples of such sources are cross sections

of a neutron beam, the side of a rectangular reactor, a spill of

radioactive liquid on a flat surface, etc. Three examples are shown

in Figure A.3 - a rectangle centered at the origin, a circle centered

at the origin, and a general function f(y,z).

2

a a

i

b

b

Figure A.3 Sampling Two-Dimensional Sources
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The rectangular source is the easiest to sample and consists

of:

(1) choosing a point randomly along the y axis between

y = -a and y = 4a and

(2) choosing a point randomly along the z axis between

z = -b and z = +b.

This is done by performing the operations shown in Figure A-4 which

results in uniform sampling over the area of the rectangle.

r y - 2ar - a r z = 2br - b

Figure A.4 Sampling a Rectangular Two Dimensional Source

The sampling of the circle is facilitated by using polar

coordinates as shown by Figure A=5. This is done since one wishes to

sample evenly over the area of the circle and the area of a circle is

more easily defined by polar coordinates.
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Figure A.5 Coordinates Used for Sampling a Circle

The sampling of the circle consists of:

(1) choosing a R randomly between R = 0 and R = R.. (actually

2 2 2 2

R is chosen randomly between R = 0 and R = R )

(2) c h o o s i n g a <j> randomly between <(> = 0 and <f> = 27T

(3) converting polar coordinates (R,<f>) to rectangular coor-

dinates (y,z)

These operations are performed as shown by Figure A.6.

r R = I ^ / r r ^- 4> = 2Trr
y = Rcos£

z =Rsin£

Figure A.6 Sampling a Circular Two Dimensional Source
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The sampling of the general function f(y,z) is usually best

solved by the method of "rejection". This consists of defining a

rectangular area completely enclosing f(y,z) and:

(1) sample the rectangle the same as for the earlier case

resulting in a (y'.z1)

(2) test to see if this (y'.z1) lies within rhe area defined

by f(y,z). This is done by checking the sign of f(y',z').

[assuming that (y'.z1) which are inside f(y,z)=O result

in f(y',z')<0]

(3) if (y',z!) does not lie within the area defined by f(y,z)

then repeat the above steps, otherwise use the value of

Figure A.7 illustrates this process.

use (y'z') as sampled point

Figure A.7 Sampling by the Rejection Technique
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A source within a right circular cylinder (see Figure A.8) is

frequently encountered in reactor related problems dealing with cylin-

drical fuel rods and pellets. This problem consists of sampling a

volume as opposed to an area in the earlier examples.

Figure A.8 Right Circular Cylinder

Once again cylindrical coordinates are preferred as shown by

Figure A,5. A $ and R are selected as given by Figure A.6 followed

by the selection of x (see Figure A.9).
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R - rR

x - hr

r

r

* ~ 2Trr

y = RcosO

z = Rsin<J>

1
|

Figure A.9 Sampling the Right Circular Cylinder

A.2.2 Direction Cosines

This section considers two different sources: (1) a directed

beam and (2) an isotropic source. The directed beam as shown by

Figure. A.10 has the trivial solution

u = w = 0

v = 1 .

Since each neutron has the same direction there is no distribution to

sample.
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Figure A.10 Th« Directed Beam Source

The problem of selecting a (u,v,w) for an isotropic source is

equivalent to that of choosing a point (u,v,w) uniformly distributed

2 2 2on the unit sphere u + v + w = I 7 (see Figure A.11).

The unit area on this surface is given by sin 6 d6 d<j>. This

distribution can be sampled by the following operations (see

Figure A.12):

(1) select a w randomly between -1 and +1

(2) determine p (see Figure A.11)

(3) select a <$> randomly between 0 and 2TT

(4) convert from coordinates (<j>,p) to (u,v)
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Figure A.11 The Isotropic Source

r w - 2r - 1

u =

V =

P = v T ^

pcos$

psin<}>

—2
w

U—

r

— <* = 2Tr * 1

Figure A.12 Sampling an Isotropic Source
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A.2.3 Energy Distribution

The energy of source neutrons is frequently a single value for

all particles and thus has no distribution. The fission spectrum is

used for some sources and is discussed in section A.7. Many times ex-

perimental data results in an energy distribution which consists of the

number of neutrons lying within specified energy intervals

N(E. ,E ..) = number of neutrons having energy between

E± and E ± + 1 (A.I)

where i = 0, ... M-l

and Eo = minimum energy of neutrons

iL, - maximum energy of neutrons

In such a case the data must first be normalized by dividing by the

total number of neutrons

M-l

I H<VEi+l>
1-0

which results in the probability of a source neutron having an energy

between E. and E. .,. The probability distribution is given by summing

the P(E
i>

E
±+1)

 a s given by

i

(A'3)
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where PClO = 1.0. A random number is then selected between 0 and 1.0

and if

P(E±) < r i = 0, ... M-l (A. 4)

where P(EQ) = 0 . 0 ,

then the energy of the neutron lies between E. and E. .. The energy

can be further specified by linearly interpolating between P(E.) and

P(E.+1) (see Figure A.13) resulting in

- v
El

(r-P ) (E,-E )
(A.5)

where r is the same random number used in equation A.4.

P(E)
P(E.)

i i+1

Energy

Figure A.13 Linear Interpolation to Determine the Energy
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A. 2.4 Time

Source neutrons are generally considered to be emitted at

time t = 0; however, there are instances in which the source is time

dependent. An example of this is the emission of delayed neutrons

which are emitted as

dn(t) = Xnoe"
Xtdt (A. 6)

where dn(t) = the number of neutrons emitted between

time t and t + dt

n» = the number of precursor nuclei at time

t = 0

X = the decay constant of the precursor

The probability that a neutron is emitted between t and t+dt is given

by

p(t)dt = Ae"Xtdt (A.7)

The probability distribution function is given by

|p(t')dt' = 1 - e-At (A. 8)
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Sampling this distribution results in

_ ln(l-r) ln(r)
(A.9)

for the time of emission.

A.3 Collision or Escape from the Present Region

After a collision or after being emitted from the source a

neutron is positioned at (x,y,z) and headed in the direction indicated

by (u,v,w). The geometry of the problem is divided into cells or

regions (see Appendix J) which are bounded by surfaces. The equations

of the N. surfaces bounding the i'th cell are given by

i± ^x.y.z) = 0.0 (A.10)

± 2(x,y,z) = 0.0

fi>Ni(x,y,z) = 0.0

where N. = total number of surfaces bounding the i'th cell.

If the neutron lies in the i'th cell then the first operation that must

be performed is to find the intersections of the neutron's present line

of flight [as given by (u,v,w) and (x,y,z)] with the M. surfaces as
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given by Equation A.10. Only positive real intersections are of inter-

est and of these the one that yields the shortest distance from the

neutron's previous position is used. This distance d is the maximumr r max

distance the neutron can travel before it leaves the present region.

The probability that a neutron undergoes a collision between

c and c + dc is given by

-i2tc
p(c)dc » z^ e dc (A.11)

where .£ is the total macroscopic cross section of the

material in the i'th cell

c is the distance as measured from the current

position (x,y,z) of the neutron to the point

of collision

Using equation A.11 the probability distribution function is given by

P(c) = f p(c')dc' - 1 - e-i£tc (A.12)

(T

Sampling this distribution for the distance to the point of collision

results in
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- V r - -.••• -n..i:-~

The decision as to whether the neutron either collides or escapes can

then be made as follows:

if c ^ d
max

then the neutron undergoes a collision at

(A.14)

where xf

y'

z'

= X

= y

= z

4-

+

+

uc

vc

we

if c > d
max

then the neutron escapes the present cell at the point

(x'.y

where x' =

y' =

z1 =

x -

y J

Z H

1- udmax

1- vdmax

h wd

(A. 15)

max

A.4 Entering a New Region

When a neutron is crossing an intersection, the time must be

updated as given by
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t1 = t + d /Vel (A.16)
max

where t1 = new time

d = distance traveled since t was calculated
max

/2EVel = velocity of the neutron =A / —\/ mV n
m = mass of a neutron.
n

The decision as to which region is being entered is made by comparing

the sense (see Appendix J) of the neutron's present position (x',y',z')

with the senses of points in neighboring cells (the sense with respect to

the surface which the neutron is on is not checked). Since the senses

of a cell are unique, only one cell will agree with this sense check.

This cell and its material are used as the next cell.

A.5 Collision Type

After it has been determined that a collision has occurred (see

Appendix A.3) the time of the particle must be updated as given by

equation A.I except that c (see equation A.13) is used instead of d
TRdiX,

The following decisions must be made:

(1) which nuclide is the neutron interacting with (for mater-

ials composed of more than one nucllde)

(2) what type of reaction occurs.
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If the total cross section of nuclide j of the i'th cell is

given by . .E , then the probability that the neutron interacts with

nuclide j is given by

where ±%t is defined by equation A.11 and M. is the number of nuclides

making up the material in cell i. Adding the probabilities given by

p. results in the probability distribution function

j

p. = y p±. (A.

The P. is sampled by selecting a random number r and

if Pk < r < Pfc+1 k = 0,...f M±-l

where PQ = 0.0

then the neutron interacts with the (k+1) nuclide.

The probability of reaction 1 occurring is given by

X i>lJj (A.19)

where L. = the number of possible reactions for the j'th

isotope
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a. - = the microscopic cross section of the l'th reaction of

the j'th isotope

O, = the microscopic total cross section of the j'th isotope
J»*

The resulting probability distribution is given by

L.

P1 = > Px (A.20)

1=1

and is sampled by the random number r where

If \ < r < p k + 1 k = O,...,M±-1

where PQ = 0.0

then the neutron undergoes the (k+1)'th reaction

A>6 Scattering

In this section both elastic and inelastic scattering events

are described. A scattering event results in a new set of (u,v,w) and

a new E. These new coordinates are dependent only upon the scattering

angle of the neutron in the laboratory system, (see Figure A.14) and

the original (u,v,w). Because scattering is often isotropic in the

center of mass (COM) coordinates, the scattering angle in the COM

system, 6, is usually used instead of <j>.
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Direction After
Scattering

Origin Neutron
Direction

Figure A. 14 Scattering in the Lab System

A.6.1 Elastic Scattering

For isotropic scattering in the COM system the scattering

angle 8 can be sampled by

cos 0 = 2r - 1 (A.22)

which when converted to the laboratory system results in

cos
Acos9

V A 2 + 2Acos6 + 1

where A is the mass of the target nucleus in units of

the mass of a neutron

(A.23)
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The angle C (see Figure A.14) is sampled by

Z = 2-nr (A. 24)

The above £ and cos <j> can then be converted to a new (u',v',w') by

using suitable transformations and the (u,v,w) before the collision.

The emerging neutron energy in the lab system is given by

E1 = | [(1 - a) cos 6 + 1 *• uj (A.25)

E - incoming neutron energy in the lab system

In the event that scattering is not isotropic in the COM system

(i.e. a (8) # a /4ir) tables of a (0) vs. 6 are usually supplied and can
s s s

be used in the same manner as the source energy tables (see section

A.2.3). Once a value of cos 6 has been sampled the process is the same

as for isotropic scattering.

The above descriptions have assumed that the bombarded nucleus

is stationary in the lab system. If this is not true, a thermal scat-

tering treatment rust be used as is described in reference 9.
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A.6.2 Inelastic Scattering

The sampling of cos 6 and £ is the same for inelastic scatter

ing as it is for elastic scattering; however, since the nucleus is

excited, equations A.23 and A.25 are no longer valid. The energy of

the emerging neutron in the COM system after an (n,n') reaction is

given by

ECOM " (ATI) 2 E + « ( A ) * <A'26>

where E is the energy of the incident neutron in the lab system and 0

is the 0 value of the reaction (0 • rest energy of the nucleus before

collision - rest energy after). The value of 0 is determined by the

particular (n,n') reactions; however, for heavy nuclei the levels of

(n,n') reactions can become very dense. As a result 0 may in some

cases have to be sampled. Once E' , has been determined, the emergent

energy in the lab system can be found by the relation

1]

and the scattering angle in the lab system is given by

cos * - V S r 1 cos 6 + W~
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After determining $ and C the new (u,v,w) is found in the same way as

for the elastic scattering case.

A.7 Other Reactions

Other reactions that can occur besides scattering events are

capture, fission, (n,2n), etc. The capture event is treated differ-

ently than any other reaction and involves the concept of the neutron

"weight". The weight of a neutron can be thought of as representing

a fraction of a neutron. Although only an integer number of neutrons

can be transported, a fraction of a neutron can be represented by a

neutron with a weight less than one (weights are further discussed in

section 2.2). Whenever a neutron undergoes a collision with a nucleus

the weight of the neutron is multiplied by

Ct " Cc
- ^ (A. 29)

where 0 is the capture cross section. The reason for this treatment

of capture will be given in section 2.2.

Of the other possible reactions only fission will be described

in this section. Three features must be sampled for the neutrons

emitted from fission:

(1) the number of neutrons emitted
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(2) the energy of the neutrons emitted

(3) the directions of neutrons emitted.

The neutrons are emitted isotropically in the lab system resulting in

the same sampling scheme shown in Figure A.12 for the new (u,v,w).

The average number of neutrons emitted per fission for an in-

coming energy E is given by * 8

V (E) - VQ + aE. (A.30)

where vQ and a are experimentally determined constants which depend on

the fissioning nucleus. It is possible to sample the distributions for

each reaction based on af(n,n), o.(n,2n), af(n,3n), etc. and follow the

corresponding number of neutrons. However, it is unnecessary since a

single neutron can be created with a weight equal to v(E).

The energy distribution of neutrons emitted from fission can be

approximated by 16

X(E')dEf « .453e A-UJOil sinhv
/2.29Ef , (A

where x(E')dE' is the probability that a fission neutron

is emitted with energy between E and E'+dE'

(lab system)
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The value of E is found by sampling the probability distribution

function

JE
r •

0
/ X(E')dE' . (A.32)

The method for performing this sampling is non-trivia] and is given

in references 41 and 42.

A. 8 Tallies

A Monte Carlo tally can be anything the user wishes to specify.

Some commonly used tallies are:

(1) the current of neutrons crossing a specified surface

(2) the number of neutron collisions in a cell

(3) the number of fissions in a cell

(4) the flux of neutrons at a point.

In most cases, the neutron can contribute to the tally more than once

during its lifetime. If each contribution to the tally <:f the n'th

neutron is given by x. then the total contribution of the n'th neu-
i,n

tron is given by

Cn
x 'Yx. , (A.33)
n Zw *-*n
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where C is the number of times the n'th neutron contributes to the
n

tally. It is the value of x that is used to calculated the mean and

variance of the tally.

The tally x is evaluated when the neutron has escaped the

system (see Figure A.2). The system is defined as that region of

state space which is of interest to the tally or tallies under con-

sideration. For example,consider a single tally that consists of

counting the number of neutrons with energies between E^ and E 2

(E ?>E 1) crossing a surface. For this example, whenever a neutron's

energy falls below E1, the neutron can no longer contribute to the

tally and therefore has left the system. Similar situations exist

for the other state space variables.

The individual contributions x, must be saved whenever they

occur. For the example tallies presented earlier, this is done

(1) When a neutron crosses a surface bounding two cells, this

surface is checked. If the surface corresponds.to a tally

surface, x. is calculated.

(2) When a new cell is entered, a check is made to see wheth-

er or not the cell is a tally cell. ~f it is, then x.

is calculated each time a collision occurs in the cell.

(3) Same as (2) except for fissions.
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(4) After being emitted from the source and after each colli-

sion, the probability of being scattered toward the unit

area of the point detector is calculated. This probabili-

ty is multiplied by the probability of the neutron arriv-

ing at the point detector uncollided and weight of the

neutron prior to the collision resulting in x. . (The
i,n

point detector is described further in section 5.1.3).
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/j>pendix B. Statistical Errors in Monte Carlo

Section B.I derives the expression for the variance of the

sample mean. The central limit theorem is discussed in secticn B.2.

B.I Derivation of the Sample Mean

Let x(s) be any integrable function of s and p(s) be the prob-

ability density of s. The mean or expected value of x is given by

00

<x> = j x(s)p(s)ds (B.I)
—oo

The variance of x is given by

O2(x) = J (x(s)-<x>)2p(s)ds

—00

00 00 00

x2(s)p(s)ds -2<x> x(s)p(s)ds + <x>2 J p(s)ds

—00 —00 — CO

2 2
= <x > - 2<x>

- <x>2 (B.2)
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Khen N values of the random variable s, s1 ,s~, ,s ,

are choosen according to the probability density p(s) the resulting values

of >:(s.) are given by x(s.),x(s2) ,x(s ) . The sample mean is given

by
K

(B.3)

The expected value of the sanple mean is given by

_ / 2LS^ \
<x> = \ i=l /

3.
N
—CO -CC

*t 3

where each s. has been treated as an independent variable. Using

(B.4)

p(Si)dSi = 1 (B.5)

Equation B.4 reduces to

« N

-"> ±-1
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(B.6)

Using Equation B.2, the variance of the sanple mean about <x>

is giver, by

0~(x) = <x > - < > (B.7)

where the first tern is given by

_2
<x >

CO CC OO

^1 \"\

CO OO OO

(B.8)
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Using Equation B.5, Equation B.8 reduces to

—2 - L[

N

H

N H

•]

<x2> (N
N N

(B.9)

Substituting Equation B.9 into Equation B.7 results in

a (x)
<x2> (N-l) <x>2 2 <x2> - <x>2 *> (B.10)

which is the desired resultt
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^ f i - ; ^ " ' * " ^ " " ^

B.2) The Central Linit Theorem

I 7

The central limit theorem states:

If x is any random variable which has a mean and a

variance, then for X sufficiently large, x, the mean

of a random sample of size X, has approximately a

nomal distribution.

A nornal distribution is given by

f(s) = „.*=- exp^-^- (s-)/a \ (B.ll)

3
•8

where C is the is the standard deviation and V is the nean of the

distribution. For Monte Carlo calculations

a = a(x) I|

V = < X > ' \:(

S = X >|

The probability that x" falls within the interval |

I

I
where a<g is given by M

I

| dx
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Substituting

and

dt =

into Equation B.12 gives

prob faa(x) < x -<x> < 6a(x)J - * I exp(-t2/2) dt (B.15)

a

which is the desired result.
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Appendix C: FORTRAN Coding for the One Dimensional Homogeneous Slab
Monte Carlo Problem

The following computer listing has had all input - output and

other extraneous coding removed. The significant FORTRAN variables are

defined below.

M = number of source particles

X = distance particle has travelled since leaving the source

WTN = weight of particle

L = thickness of slab

SIGT = total macroscopic cross section, 2 t

FRAC = non-absorption probability, (£,.-£)/£,_

RAT = estimate of the fraction of particles that leave the source

and cross the surface at X=L, (the Monte Carlo Tally)

RE = relative error of the estimate due to Monte Carlo statis-

tics (at the- la level)

NMAX = maximum number of particles to be started
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C SOURCE
40 co:m:a'E

K=UA:;F(O)

VTK=!.0

C TRACK T.r:rGTH
50 co:rn:;i-E

R=ro.:."r(0) _

IFTD.GT'.'D:L\X) GO T O eo

C»**S*rEDT:CH: VEiGHT BV ALSOKPTIOK

GO TO 50

C TALLY

60 co'.rrrsvz

EHP.OR CALCULATIONS

IF (SIG2.E1.-0.03 SIG2=0.0
RE= SOP.TC SIG2) ,• R.4T
iFii'.z<i.:-:vco G O T O ISI

GO TO 40
131 C05T1SCE
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Appendix D: FORTRAN Coding for the Fractional Correction Rule
Deterministic Classifier

The following computer listing has had all input - output and

other extraneous coding removed. The term "TEACHER" in the comment

statements refers to the classification that a track appears to belong

to after observing the importances created by the last source particle.

The term "STUDENT" refers to the classification given by the current

discriminant function. The Monte Carlo parameters are the same as those

described in Appendix C. Significant pattern recognition parameters are

given below.

INC = the number of tracks created by the last source parti-

cle (also used to number the prototypes)

WTREM(I) = the weigh; of the particle after the I'th collision

(the source is the first collision)

NXREM(I) = the distance from the source to the I'th collision

(source is the first collision). These values are

used as the prototypes for the pattern classifier.

G = the discriminant function, g(Y)

WT(1) = the I'th component of the weight vector, W=w^

SEP2 = upper limit of the importance buffer zone used to

separate classes, I,

SEP1 = lower limit of the importance buffer zone used to

separate classes, I-

SUBTOT(I) = number of prototypes belonging to the I'th. class

(as seen by the "TEACHER")
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LAMDA = learning parameter, A

KTN = weight of the particle when it is either lost or

tallied

SCORE = Irnporter.ee of the prototype, 1^

c sor?.~E
4 0 CONTINUE

R=RA:;FCO>

yn<-1. o
K- o. o
i:;c=i
VT?Z:K I;;C

C TRACK LITTGTH
so co:;Ti'n."E

R=FJLT(0)
D= ALOGi 1. -'R) /SIGT

IF O.GT.DJL4X) GO TO t

VETCHT BY AHS0PJTI05

GO TO 50

C TALLY
69 CO:."TIKUE

AI'S = A7rs+VT:j
A5S2 = Ai." S2+ VTK«* 2

Ci'-*:?rs:is>:?:«s:ss:;:* ADJUST VEI GETS - PAT7Z?5 CLASSIFIER **S

DO 141 1 = 2 , IliC

C CALCULATE VALUE Or PRESENT DISCRIMirJAI.T FTfCTIOIi'
G= VT( i ) :.:;;MRZ:K I ) + vr: 2 >

C SEE V7IICH CLASS THE TEACHER SAYS PARTICLE IS Hi
sco?o=v"n.vv."mE::( n
iF(Scoiu: .GT.sr;p2) I D O . C O

90 IF(SCOili:.LT.SEPn 110. 1-40

c TEAcnrn SAYS CLASS 2
100 CONTINUE

SUBTOT< '2> = SraTOTC 2 ) - 1 .
R\T0T-Sl'CT0T( 1) /5VBToT( 2)

IF (G) 130 ,130 ,140
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c i~\arz s.ws CLASS I

>;':,! OK i >-?ri:Tr'T( n + i .
] V'.:-:. 3"?0•;''.:: :• . Z'i. 0 . CO CO TO 11 I
IlAT''''i'=:?U:sTOT-: 1J -••s?U2T0T( 2 )
GO TO l!Ci

11 1 r-\YOT= 1. 0
1 fC lFi C-i 14tK 1 2 0 , 120

C TT.-CI-Xtl > 1VS' STT'EVT F:\~
c ::v:<:L:.~s\r]"i CL;SS I I:.TO CLASS 2

vTf.! > = " T r i ) - c - : ; :Tz: :r i )
iT'i^^i 2>-C
CM TO 131

c TEACHER SAYS STUDEST HAS
c :'i>cL.'.?sirnr' CLASS 2 I>'TO CL.-i55
loo co::T::;rz

c=LA:zo."?^70T^.-i
ii:s(G)/'( :

VTf 2* ="-Tf. 2 i -C
VT( 1) = VTC 1 ) -C;-VS?XM( I )

1 3 ! CONTT'TE
141 cc:,'Ti:;i"E

C-:
O^ :::t*:!::««x:-:^«s;.v.-:sssK ^ \ Q OF PATTERZi CL-A

EPJ".'>H. CALC~LATIO:<S
S IG2= (;i2r!Ari-P.-;T::^2) /N"
IF (? !G2.1 : 1 ! . -0 .0) SIG2=C.O
RT= ?OTLT( 51C2J x r.AT
IF<:.• .• /! . :•":IAX> GO TO I S I

r.n TH 40

181 co:rii:."ui
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Appendix E ; Derivation of .?> for Various Loss Functions

An approximation to the risk VES given by Equation 3.15

and is repeated here as

N,

R(M) (E.I)

k=l n=l

where: M. = nunber of prototypes in class C,
R. jC

Y = n'th misclassified prototype of class C,

k k
S(V.T,Y ,C.|C,) = loss incurred vher. prototype Y actually

n i K. n

belongir.5 to class C, is placed in class C.

The gradient of R(W) for one dimensional feature space is given by

VR(W)

3R

3R
3w

1

2_
k=l n-1

n-2
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VR(W) (E.2)

Equation E.2 will r.ow be evaluated for several different loss functions.

Loss Function S «= d

The distance d fron a prototype , Y, to the decision surface g(Y)

= 0 in feature space is given by

W«Y*

VI
(E.3)

where W' is the weight vector W with w^^. = 0 and Y* is the augumented

feature vector as given by Equation 3.5. For S = d, the gradient of

S for prototypes belonging to class C- but misclassified into C« is given by

3d
Sw,

3d

_3W2

(E.4)
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Substituting Equation E.3 into Equation E.% and using the relatiop

3d
(E.5)

results in

3d
3w.

3d

w

w,

w,

(E.6)

where y is the single component of the feature vector Y (Equation E.I)

and w. and w? are the components of the weight vector W which exist

at the time prototype Y is misclassified. Similarly for prototypes

belonging to class C- but misclassified into class C,, the gradient

of S is given by

w

w

_ 1
w

2
2
1

1

(E.7)
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Loss Function S = id

For this loss function

is = liiS
3d hd

(E.8)

For Equation E.3 <=.nd g = W«Y*, Equation E.8 reduces to

1/2

(E.9)

For Equations E.9 and E.6, Equation E.4 reduces to

1/2

CE.1O)

Sirilarly, for prototj'pes belonging to class C. but rcisclassified into

class C. , the gradient of S is given by
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1/2

w.

w.

(E.ll)

Loss Function S = d

This loss function results in

3S
3 dd

2d - 2 £- (E.12)

which when substituted into Equation £.4 along with Equation E.6

results in

w,

w,

L W1J

(E.13)
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and siidLlarly for class Ĉ  prototypes

w.

(E.U)

Loss Function S = D

The distance in weight space fron the weight vector W to the

pattern hyperplane defined by Y is given by

jY*»Y*|
(E.15)

This is the sane distance that is used by the deterministic fractional

correction rule as described in section 3.2.1 and implemented in

Section 4.2.1. Using Equations E.3 and E.15 the relationship between

D and d is given by

D -
D ~

(E.16)

which for one dir.ensional feature space reduces to
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D - d (E.17)

For >'?>! (which is usually the case for the unnormalized runs nade

in this research)

h (E.18)

Equation E.18 indicates that for y,»l, when using loss=D, prototypes

with small y-̂ will have more effect on the classifier than those with

large y^.

For one dimensional feature space and S = D

3D_
3w,

3D

2 J

(E.19)

and since

3D
(E.20)

284



the resulting expression for the gradient of S is given by

(E.21)

and sinilarly

-i

(E.22)
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Appendix F: FORTRAN Coding for the Statistical Pattern Classifier using
Loss = d

The following computer listing has had all input - output a J.

other extraneous coding removed. The parameters defined in Appendices

C and D are the sama here with the below additional parameter.

GTRISK(I) = •— (see Equation 4.6)

1=1,2

ADJUST WEIGHTS - FATTETO5 CLASSIFIER'a***'*

BO CONTINUE
DO 141 1=2,IHC

C CALCULATE VALUE OF PRESENT DISCIUIIIHANT FOTCTTOIf
)

C SEE VHICn CLASS TIE TEACHER SAYS PARTICLE IS II?
scoRi:=T.Ti\vTrrra:.-Tc i )
!F(SCORE.GT.SEP2) 109,90

90 IF(SCORE.LT.SEP1) 110,140

G TEACIIER. SAYS CLASS 2
100 COUTIKUS

SUBT0T(2)=5\TBT0T(2)-f 1.
IF (G) 130 ,130 ,140

C TEACHER SAYS CLASS I
n o CONTIUVJS

SUBT0T< 1) = St'3T0T( 1) + 1 .
113 1F(G) 140 ,120 ,120

C TEACIIER SAYS STUTsEKT HAS
C IIISCLASSIFIED CLASS I IfiTO CLASS 2

i20 COHTINUE
o.c i ,2)=a< i , 2 ) + i .y\m n
OC 1 . I) = Q( 1 , 1 > -V>T( 2) /-VT( 1) **2
CO TO 131

C TEAC1TEK PAYS STUDENT HAS
C ni i?CL^SIl ' IEI) CLASS 2 lliTO CLASS 1

130 COUTIHUE

O<2,2)=Q(2,:>)-1./VT( I)

131 C0KT1NUK
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STATISTICAL CORRECTION HETHOD 1
!!•"(:"UI/l'Orr( t) .LE.O.O) GO TO 133
GUT;:;:( I ,2>=<K I .^/STTBTOTC i)
GUI'?::C( 1. 1) =d( 1. 1)/SuIJTOT* 1)

103 rc'<S'.lTrOT(O) .LE.O.O) r.n l o 134
G ill SX( 2 , 2 > = Q( 2 , 2 ) / S U3TOT( 2)
CUT3'«2, 1) = G(2 , 1) /SI'BTOTC2)

134 co:rrn;uE
GTHISK( 2) -Gf l ISI« 1 ,2 ) +CRIPKC 2 , 2 )
VT< 1) = \rn 1) -LA:-OA-.-GTR! ?K( 1)
V.T( 2 ) - VT< 2 ) -LAriDA:::GTI»TSlC( 2 )

132 coriTii;us
141 CONTINUE

c» *
c» *
Css!*««**sss:f:ss»«ss«:.'S END OF PATTERII CLASSIFIER * * S ! » * : s « « * w
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Appendix G: FORTRAN Coding for the One Dimensional Multi-Region Slab

The following computer listing has had all input - output and

other extraneous coding removed. The parameter IA denotes the region

that the particle is in. The parameters FRAC(I) and SIGT(I) have the

same meaning as in Appendix C only with respect to the I'th region.

Additional parameters are listed below.

NIA = number of regions, also the number of the region

containing the tallying surface

TL(I) = the boundary of the I'th region TL(I)>TL(I-1)
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40 COKTJiiUK

VT!:= 1.0
>£= 0 . 0
IA= !

C TP.ACTC LEKGTII
GO CCI-iTTHUE

U=I\::-T(0)
n-ALOG( 1 ./Jl)/PIGT( IA)

?F CD.GT.D:L\;.') GO TO 3 I

c
51

C
60

vr'ir= FR
KMRITK

GO

EKTEH
IF<IA.
IA=IA+

GO' TO'

TALLY
CC;;TJH

. KE
AC(
J;.TC
TO

IIGRT
IA):"'

SO

BY
"TN

ABSORPTION

>\ DiFFERETiT HJTGIO7}
EQ.1IIA) GO TO 60
1

5 0

UE

CALGU'.ATIOKS
SI G2= I >2BAH- HAT
IF (SIC2.nO.-0 .0) SIG2=0.0
Ei:= 5 0RT( V: G2 ) -' HAT
IFCK.EO..n;rvx) GO TO ISI .

GO TO 40
101 COKTISUE
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Appendix H: FORTRAN Coding for the Two Dimensional Multi-Region Slab
with a Deterministic Pattern Classifier

The following computer listing has had all input - output and

other extraneous coding removed. The parameters required in addition to

those described in Appendices G, D, and C are listed below.

PHI = angle of track with the x-axis, <j> (see Figure 4.30)

U = cos 4>

NPREM(I) = the value of u after the I'th collision of the last

source particle (source is the first collision)

c
40

C
30

C
52
54

C
5?

55

C
58

SOURCE
COIiTili'UE
PHI=0.0
U=CGS(PHI>

VTK=1.0
X=0.0
IT\G= 1

KPREiK IIIC)=:U
1.4=1

TP.ACIC LEHGTH
CONTINUE
n=n.i:;F<o>
B=ALOG( 1 ./F.)/PIGT( IA)
IF(U.LT.O.O) ."0,03

CACICii'AUD DIPXCTION
IFtlA.EQ.1) 54 ,33

RO TALLY
ViTK=0.0
CO TO CO

Dir\X= - (X-Ti-( ! A-1) > /U

EKTFA\'niVrer.iiin* IVZGIOX
IA=1A-1
X=TLv I A)
CO 10 5 0

290



C FOVAUD DK
53 B:iAX= ( TL( I A) -K) /U

IFID.GT.P:!AX> 3 1 . 0 6

36 *»:-T!xV

c«w**s?,r.r.'i::n vs-icnT SY AESOPJTIO:? PROBABILITY-****

PCATT; :RII ;G AKCLE
R= RA :•':-"( o)

c
51

CO

E-TTR
IFC IA
X=TU
I A= ' A-

GO TO

TO

A
, rr>
I A)
•>1

5 0

5 0

DIFFERED
.HIA) GO

T RSGIO'i
TO 60

G TALLY
60 CCO'TL'HJE

C*-:xn*r-.*:-^"*:"s« ADJVST EIGHTS - PATTERN CLASSIFIER
C=< *
c« *

80 CO:;TI:<UE
DO 141 1=2,IHG

C CALCH.ATE VMJUE OF PPJHSEiTT DISCRIKn.*.4IIT TUKCTIOS
irPFZ:!( I) - ( RPREIK I) * 1. 0) / 2 .

G= i-TC 1) :.SKK02:K I) +iTPREI« ! ) »VT( 2> + VT( 3)
C SEE '-IIIC-H CLASS THE TEACHER SAYS PARTICLE IS IH

sconzso.o
!F( VT:<. KE. 0 . 0 ) SCORE= VTN/^vTllElK I)
rc=o
IF(SCOnE.LE.eEPl) IC=]
IF(SCCIffi.GT.SEP2> 1G=2
IF(10-2) 110,100,140

C TTACiTiH SAYS CLASS 2
TOO corT?:;uE

SirBT'JK 2) = SUBTOT( 2) + J.
RATOT=SUBTOT< I) ̂ 'SUHTOTt 2)

IF (G) 1S0.1G0,140

c TEAcrr-n SAYS CLASS I
110 COVTIMJE

51-}T. ••,•( 1) =SVDTOT( i ) + 1 .
insr:;Tor(2).r.:i.o..-» co TO H I
nATCiT=SH3T0Tt 1) -'SUIlTOTi 2J
CO TO HO

111 nvroT= i. o
113 IF<0) 140,120.120
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C TEACHER SAYS STUDENT HAS
C NI^CI.AKS IKIED CLASS 1 INTO CLASS 2

120 C0,Ti!?iUE
C=L.-VOXVSAH3( G) /-< TJXP.Em I) :.-=:.-:2+KPREH( I) a«2+ t . )
v n i»= UT( i ) - c : c;::nii.ii( i >
VH :-') =T.'T( U) -Cv:IiPIU2IIC I)

GO TO 131

C TEACUKR. SAYS i?TODE:tT HAS
G in3'.:L^SIFIZD CLASS 2 iKTO CL«iSS 1

130 co;rrn;uic
C= LA;3ASA3S< C-) :::'»ATCT/( If^j^KC I) :
vnx n=OT( i)+r:--i"rnEi:< n
V.T(2) = ̂ T(2) +C«::PREH( I)

131 CONTINUE

141 CONTIIiUE

C *

:*!!:S«**s»«^*****aaft EITD OF PATTER." CLASSIFIER

ERP.Oa CALCULATIONS
S1 G2= ( ?2DAH-R4T:S2) H
IF (SIC2.EQ.-0.0) SIG2=0.0
IFdUT.EQ.0.0) GO TO 142
RE=SOriT( 8 ?G2- xluT

142 IF(".Ea.R?L'LH) GO TO 181
GO TO 40

101 COKTINUE
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Appendix I: FORTRAN Coding for the Statistical Classifier with
Two-Dijnensional Pattern Space

The following computer listing has had all input - output and

other extraneous coding removed. Parameters are defined as given in

Appendices H, F, D, and C.

C«a*::::;:««*at-;aa:j:» ADJUST VEI GIFTS - PATTERN CLASSIFIER »**#»*»#»***«*
Ctt *
c« *
(10 COKTINUE

DO 141 1=2,!KC

C CALCtXATE VALUE OF PR25ENT DISCIlirilMKT FUNCTION
irpnrrK i ) - ( VP;'.Z:X i ) * i . o) sa.

G= ';,T( i ) :.-;i."":?;ii( i > +nBnr*-ft i> WVT< 2) + V T ( 3 )
C GZK VHIG.a CLASS THC TEACEER SAYS PARTICLE IS IN

soon"=o.o
1 F< \rrti. KG. 0 .0) SCOUEs T.—;/VTREMCI)
1G=S
IFfSCORE.L2.SS??) IC=1
IF(SC0P.Z.GT.5i,?2) 1^=2
IF(IC-2) 110,100. KO

C TF.ACH2R SAYS CLASS 2

ioo coirnnuE
SUBTOT( 7.) = SliBTOTC 2) + 1 .

IF (G) 130 ,100 ,140
C TEACHER SAYS CLASS 1

110 CONT'KUE
S03T0T(1)= SUSTOT( 1) + 1 .
IF(G> 140 ,120 ,120

C TSACIIER £?AYS STiTDEHT 1IA5
C H!SCi.M?Sir!^;) GLASS 1 HiTO C L ^ S 3

120 COKTTNUE
AV,'= ̂ ,T< 1) ••.--2+ KVi 2) s*2
SIU= 1. XSQV.Tt A")

« ( i . i > »Q( i . n +v!Ri«(:;:rar.:K i)
0( 1.2)=C!( 1.2)+SilI:s(i;PR!;r!< I)-AVG*VT(2)>
G( i .a)=a<i ,3)+5«i
GO TO 131

C TEACHER STAYS STUHF-KT H'-i?
C HISr.l.A?SlFJED CLASS 2 1ST0 CLASS 1

100 C0NT1KUE
AV= VTl 1) :::-::2+VT< 2) *S2

Q< 2. 1 > = 0< 2. J > -SRI * (!l̂ a:?K 1 > -AVCsVrc ! )
0( 2.2) =«( .'> .2)-SRI «< IIPRE.-K 1)~AVC«VTt 2)
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131 COKTINUE

C STATISTICAL CCAP.ECTION METHOD 1
IF<i«TJ3T0T( D . L ^ . O . O ) CO TO 1UO

GilK-Kt 1. 1) =O( 1. 1) •SUBTOTt 1)
CHisa 1,3) =Q( i,S)/J?I;BTOT( D

133 1F(:":nT0T(2>.LS.0.0) CO TO 1S4
ISK(2,1)=Q< a,I)•PUBTOT<2)

OHISIX 2 . a ) = QC 2,3)/SUBTOTl 2)
134 COIiTINUE

CTRISJCC 1) =GUISK( 1,1) +GRrSK( 2 . 1 )
GTRISK(2)=GR1SK( 1.3)+Gl\ISK< 2 . 2)

KT( 2)=UT( a > - L.V :D.WGTH I ?;:< 2)

VT(O> =VT(3)-LA?3A«GTRISS( 3)

CCHTIHUE

141 CONTINUE

C«
-"'w*ww::~*:;::s«:s;^.!: EIID OF PATTERI? CL:iSSIFIEH «!*
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Appendix J; Geometry Description Used in the Neutron Monte Carlo
Code MCN

This appendix contains a description of the geometry used in the

MCN code at Los Alamos Scientific Laboratory. The code is designed to

handle any number of first, second, and some fourth degree surfaces

(limited only by computer storage) which divide the geometry of the prob-

lem into geometric cells (a cell is defined below).

If f(x,y,z)=0 is the equation of any surface in the problem, then

for any arbitrary point in space (xg.yQjZg), the sign of the quantity

f(xQ,yQ,ZQ) is defined as the sense of the point (xQ,yg,zg) with respect

to the surface f(x,y,z)=0.

A geometric cell is defined such that:

(1) all points within a cell must have the same sense with

respect to the bounding surfaces of that cell

(2) the senses of points within a cell roust uniquely determine

that cell from all other cells.

The cell corresponding to any point in space can be determined by

comparing the senses of the point (with respect to the surfaces bounding

each cell) to the senses that define each cell. The point belongs to the

cell for which the senses agree. Cells do not necessarily correspond to

material regions and are frequently specified (along with additional sur-

faces) for the purpose of splitting and Russian roulette. Each cell is

assigned an importance which is used for splitting as described in

Section 5.3.1.
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APPENDIX K. DERIVATION OF S.+1 FOR THE

STATISTICAL CLASSIFIER AND LOSS = d

Let S. be the decision surface location as determined by

3. —

J "Li
(K.I)

where w. . (i = l,2) is the i'th component of the j'th weight vector W .

The first weight vector, W-, is provided as an initial guess. There-

after each W.+1 is determined by (see Equation 3.16)

(K.2)

where R.(W) is the j'th approximation to the risk (see Equation 3.19).

The weight adjustment as given by Equation K.2 is performed only after a

prototype has been misclassified. Therefore

j * (total number of misclassified prototypes) - 1

Using Equation 3.17 it follows that

r v F If A
n n i. J.

3s(Wn»Yn»Cl/C2>

(K.3)
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where M . and N. . (1*1,2) are the number of prototypes and number of

misclassified prototypes respectively of class C. after the (j-l)'th

misclassification occurred (N. . + N. . • j - 1). Substituting the ex-

pressions for the partial derivatives of the loss function (see Table

4.4) into Equation K.3 results in

(W)

V fcM^ It { <.
(K.4)

where w. (i*l,2) is the i'th component of the n'th weight vector Wi,n n

that existed when the n'th prototype of the corresponding class was mis-

classified.

Defining the variables

(K.5a)

*2,l.j (K.5b)
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Vl,2,j ' M
(K.5c)

2,2,3 fe (K.5d)

Equation K.4 reduces to

Vg (W) -

A 2.2.J .

(K.6)

where (K.7a)

T2,j 2,2,j
(K.7b)

Consider the case when the j'th misclassification consists of a

prototype that has been misclassifled from class C. into C_. For this

case

A2,2,j+1 = A2,2,j
(K.8a)

(K.8b)
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N

(K.8c)

2L,
n=l

Equation K.8c can be expanded resulting in

-w-

(K.8d)

(K.9)

where p = N. .+1. Similarly Equation K.8d becomes

= mlf.+D [Mi,jAi,2,j + ^ J (K.10)

Again assuming that a prototype belonging to C^ has been misclassified

into C?, Equation K.7a becomes

(K.ll)
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Substituting Equations K.9 and K.8b into K.ll results in

Ll,j+1 (J^ +1)
-w.

•l, pj

+ An (K.12)

However since

P Y (K.13)

Equation K.12 becomes

r !_[„ A
1,3+1 (M1 .+1) l,j 1,1,j

+ 2
(K.14)

Similarly T« . is given by

(M1,J
+ A 2,2,j (K.15)

Substituting Equation K.15 and K.14 into Equation K.6 results in

VRj+1(W)

CM

M

(K.16)
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Using Equation K.16 and Equation K.2 gives

w.l.j+l
w, - A

(M,
(K.17a)

w,2.J+1 (K.17b)

where the j subscripts have been dropped on the right hand side of the

equation. Using Equations K.17a and K.17b in Equation K.I results in

-w
j+1 w.

2,j+l .

i.j+i

v l

T 2 " CMXH
1

*!%+].)_

W 1 ( M 1 + 1 ) .

(K.18)
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Equation K.18 is true only when a prototype belonging to C^ has been

misclassified. If a class C_ prototype is misclassified, a similar

treatment results in

SJ+1

s j w l

w l

+x

-X

T 2 -

y hi

,2

,1

w l

wl<

1 ]
^1+1)J

:M2+DJ

(K.19)

In summary, if a prototype belonging to C, is misclassified, the next

value of the decision surface is given by

S J W I

w i

+x

-X

A
T — —
l2 (M

Ak,i_ +

(-i)k+1 1
w1(Mk+l) J

-'j

(K.20)

which is the desired result.

302



References

1. J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, John
Wiley & Sons, Inc. (1964).

2. M. Clark and K. F. Hansen, Numerical Methods of Reactor Analysis,
Academic Press (1964).

3. A. S. Householder, Ed., "Monte Carlo Method," Proceedings of a
symposium held in June and July 1949, National Bureau of Stand-
ards Applied Mathematics Series, Vol. 12, issued June 11, 1951.

4. B. I. Spinrad et al., "An Alignment Chart for Monte Carlo Solu-
tion of the Transport Problem," in Ref. 3.

5. G. W. Brown, "History of RAND's Random Digits - Summary," in
Ref. 3.

6. E. D. Cashwell, Los Alamos Scientific Laboratory, personel commu-
nication, March 1975.

7. E. D. Cashwell and C. J. Everett, A Practical Manual on the Monte
Carlo Method for Random Walk Problems, Permagon Press, New York
"(1959).

8. E. D. Cashwell et al., "Monte Carlo Code Development in Los
Alamos," Presentation at the Monte Carlo Conference at Argonne
National Laboratory, Argonne, Illinois, July 1-3, 1974. (Also
available as LASL report LA-5903-MS).

9. J. Spanier, "A New Multi-Stage Procedure for Systematic Variance
Reduction in Monte Carlo," Proceedings of Conference on New De-
velopments in Reactor Mathematics and Applications, CONF-710302,
pg. 760-770 (1971).

10. D. B. MacMillan, "Optimization of Importance-Sampling Parameters
in Monte Carlo," Nuclear Science and Engineering: 48, 219-231
(1972).

11. J. Spanier and E. M. Gelbard, Monte Carlo Principles and Neutron
Transport Problems, Addison-Wesley, Massachusetts (1969).

12. R. Baldini-Celio et al., "A Multistage Self-Improving Monte
Carlo Method," Nuclear Instruments and Methods 72 (1969), 317-320.

13. M. H. Weik, Standard Dictionary of Computers and Information
Processing, Hayden Book Company (1970).

303



14. L. L. Carter and E. D. Cashwell, A Review of Particle Transport
Simulation with the Monte Carlo Method to appear in the AFC Criti-
cal Review Series, USAEC Technical Information Center, Oak Rirfpe,
Tennessee.

15. N. J. Nilsson, Learning Machines. McGraw-Hill, Ketr York (196S).

16. H. C. Andrews, Introduction to Mathematical Techniques in Pattern
Recognition, Wiley-Interscience, New York (1972).

17. W. Mendenhall and R. L. Scheaffer, Mathematical Statistics with
Applications, Duxbury Press, Massachusetts, 1973.

18. J. R. Lamarsh, Introduction to Nuclear Reactor Theory. Addison-
Wesley Pub. Co. (1966).

19. E. D. Cashwell, et al., "MCN: A Neutron Monte Carlo Code," Los
Alamos Scientific Laboratory report LA~4751 (1972).

20. L. L. Carter, "MCNA: A Computer Program co Solve the Adjoint
Neutron Transport Equation by Coupled Sampling with the Monte
Carlo Method," Los Alamos Scientific Laboratory report LA-4488
(1971).

21. C. E. Burgart, "A General Method of Importance Sampling the Angle
of Scattering in Monte Carlo Calculations," Nuclear Science and
Engineering: 42, 306-323 (1970).

22. K. Fukunaga, Introduction to Statistical Pattern Recognition.
Academic Press, New York (1972).

23. K. S. Fu, Sequential Methods in Pattern Recognition and Machine
Learning, Academic Press, New York (1968).

24. C. Chen, Statistical Pattern Recognition, Hayden Book Company, New
Jersey.

25. T. Y. Young and T. W. Calvert, Classification. Estimation and
Pattern Recognition. American Elsevier Pub. Co., New York (1974).

26. R. L. Kashyap, "Algorithms for Pattern Classification," in
Adaptive. Learning and Pattern Recognition Systems. J. M. Mendel
and K. S. Fu, Eds., Academic Press, New York, Chapter 3 (1970).

27. Y. C. Hu and A. K. Agrawala, "On Pattern Classification Algo-
rithms - Introduction and Survey," Division of Engineering and
Applied Physics Technical Report No. 557, Harvard University,
March 1968.

304



28. C. Blaydon and Y. C. Ho, "On the Abstraction Problem in Pattern
Classification," Proc. National Electron. Conf.

29. Y. A. Shrcider, Ed., Hie Monte Carlo Method, Pentagon Press, New
York (1966).

50. P. H. Clark, "The Exponential Transform a* an Importance Fanplinp
Device, A Review," Oak Ridge Sattonal Laboratory (0RKL-RSIC-U)
(1966).

31. S. Ansri, "A Theory of Adaptive Pattern Classifiers," IEEE Trans-
actions on Electronic Computers, Vol. EC-16, i'o. 3, pg. 299 (June
196?).

33. M. it. Italos, tit al,t "Automatic Confutation of Importance Sampling
Functions for Monte Carlo Transport Codes-Phase III,*' BXA 2890F
(1972).

33. E. D. Cashwell, ee *l.t "Monte Carlo Photon Codes: MCG and MCP,"
Los Alamos Scientific Laboratory report LA-SI57-MS (1973).

34. W, L. Hiotspson, "Camma-Ray and Electron Transport by Monte Carlo,"
Doctoral Dissertation, University of Virginia, Charlottesvilie,
Virginia (August 1974).

35. S. H. Seiby, Ed!., Standard Hatheamtlcal Tables, Seventeenth Edition,
The Chemical Rubber Co., pg. 547 (1969).

36. A. Solem, "$ECOND~Dlapserf CP Tine for this Job," available fron Los
Alamos Scientific Laboratory program library, report 0110A (March
1970).

37. B. Sutttz, "Least Squares Polynomial Fitting FORTRAN IV Subroutine,
with Coefficients of Orthogonal and Legendre Polynomials Optional,"
Available from Los Alaaos Scientific Laboratory program library,
report E208A Ofay 1967).

38. J. L. Macdonald, "Heuristic Learning Control for Kuclear Reactors,"
M.S. Thesis, University of Texas at Austin (August 1972).

39. B. L. Buzbee, "OOTPRO - Inner Product of Two Vectors," available
fron Los Alamos Scientific laboratory program library, report
F124A (October 1972).

40. 8. L. Buzbee, "AJ)DVEC - Vector Addition," available from Los Alamos
Scientific Laboratory program library, report F139A (August 1973).

305



41. C. J. Everett and E. D. Cashwell, "A Monte Carlo Sampler," Los
Alamos Scientific Laboratory report LA-5061-MS (October 1972).

42. C. J. Everett and E. D. Cashwell, "A Second Monte Carlo Sampler,"
Los Alamos Scientific Laboratory report LA-5723-MS (September 1974),

43. C. J. Everett, Los Alamos Scientific Laboratory, personal communi-
cations, March 1975.

ft U.S. GOVERNMENT PRINTING OFFICE: 1975-877-343/17

306


