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A STUDY OF METHODS FOR SELECTION OF
QUOTIENT DIGITS DURING DIGITAL DIVISION

Daﬁiel Ewell Atkins,.III; Ph.D.
Department of Computer Science
University of Illinois, 1970

This study concerns a class of non—réstoring division schemes in
which redundancy is introduced into the representation of the quotient thereby
permitting quotient digits to be selected from highly truncated versiohs of
the divisior and partial remainders. The mechanism for selectibn of quotient
digits is a limited precision model of the full précision division which it
controls by the generation of simplé micropgoéram instructions. A major
advantage of tﬁis approach to division is a high'degree of congruity with
commonly used multiplication structures, including those making use éf limited
propagation. adder-subtracters, for example, carry-save adders.

A cost versus performance énalysis for a large class of quotient
selection mechanisms (model divisions) is developed. The class is défined iﬁ
terms df a block diagram and a set of ten design parameters. By varying'the
structure of the sub-blocks and the values of the parameters, the model
division scheme ranges from that of forﬁing quotient digits by multiplying the
dividend by the inverse of the divisor, to that of a direct table look-up of:
the qudtient[digit. So called hybrid structures exist between these two cases.
Algorithms are describedAwhich synthesize'near.minimal cost realizations of the
‘most complicated sub-blocks: a combinatorial logic network to produce appro-
priate estimates of the reciprocal éf the divisor, and a coﬁbinatorial logic
network to genérate a quotient digit directly as a function of the bits in 7

estimate of the divisor and partial remainder. Formulés are given for the

cost of the remaining sub-blocks. For a given type structure the primary



determinant of performance ié the radix of the model diviéion, r= 2k s where
k is the number of bits of quotiént producéd per access to the model division.
A FORTRANAimpléméntation of thé'synthésis routinés is used to obtéin
the near minimal cost for-se&efal different structures and sets of design
pérameter values. The numéricgl results, togéthér with thé insighﬁ gained in
obtaining them, are appliéd to hyﬁothesizé a formula fof minimal cost. The
analysis includes a multi-variable éxpréséion which rélatés cost td thevradix
~of the model division, r, the degree of rédundancy in thé quotiént répresenta—
tioﬁ, and the magnitude and direction of thé maximum ffﬁncation érror in the
divisor and partial remainder estiﬁatés. The cost formulas, togéther with
easily deriﬁed perfbrmance formulas, are used to tabulate expectedAcost and -
éerformance for a variety of structures. It is found that for most schemes
the cost varies exponentially with perforﬁahcé'and‘consequently, that many of
the higher radix'schemes are not practicable. A radix h,,direct table look-up,
However, can be built with about ten, 10-input gates, and assuming 10 ns.
logic, couid produce 60 bits of quotient in about h)ﬁs. The.study is concluded

with suggestions for further investigation.



1. INTRODUCTION

1.1 Background

Since divisi§n is the mathematical inverse of'mulﬁiplicétion, one
v'might.hope that thé coétvdeiﬁpleﬁenting both a multipliéatién and division .
operation would not be mﬁch different than the'éast of implementing multipli-
cation alone. Furthermore, for a giveﬁ oéerand length, one might expect the
executions times for tﬁé 6berations to be about ﬁhe éame.' In aétual practice
this hope has not'beeﬁ re;lized; largely due to tﬂe faét that diviéion; un-" -

like multiplication, is inherently'a tridl—and—efrdf pchess.

In multiplication, a product is accumulated By the successive
addition of multiples of the multiplicand to a partial product. The selection
of which multiple to add is dependent upon a digit, fédix r, of the multi-
plier --a quantity which is known apriori.

Now consider a recursive relationship for a class of division

techniques based upon subtraction. This relationship is defined by

Pjgp = TPy = Qyuqds 3% Osdsenoomel o (1.1)
in which ’ 3

Py is the dividend,

pj is the‘partial'remainder used in the ij recursion,

o is the remainder,

j is the recursion index,

. .th . .
qj is the J quotient digit,
d is the divisor, and. .

r is the radix.



..In forming the partial remainder, pj+l’ a multiple of the divisor
is subtracted from the previous partial remainder shifted left by one digital
position. The selection of which multiple to subtract is dependent upon a
digit of the quotient; but it is precisely this quotient Qigit thﬁt we muét
compute. It is ggg_kno&n apriori. As it stands this relationship for divi—
sion’does not adequately specify how qj+l is selected until we add a restric-
tion such as lpj+l| < |d|. The important point here.is that.division not .
only requires an addition or subtraction as in multiplication, but also the
selection of a qﬁotient digit such that the wvalue of thé contents of the ac-
cumulator after the‘subtraction ié within a specifiéd range. If it is not

within this range then some correction is required.

Several effgctive techniques have been develoéed for.acceieréting‘
the execution of multiplicatién. Foremost among theﬁ are the.foliowing:'

1. Use of adders or sﬁbtractérs which postpone carfy'or
borrow-propagation until a terminal step.

2. The use of a higher radix (greater than 2) so that
several bits of the multiplier ure retired in one
iteration.

3. Tﬁe introduction of redundancy* into the multiplier

by multiplier recoding.

The success of such techniques in multiplication raises the question
of their applicability to division. A significant contribution to the answer

was made with the discovery of SRT division.

¥Redundancy or rédundant representation refers to a number representation ih
which each radix r digit may assume more than r different values.




In the middle 1950's D. Sweeney of IBM, J. E. Robertson of the
University of Illinois [‘l]*, and T. D. Tocher [ 2] of Imperial College,
London,'independgntly discovered a binary diyisionvtechﬁique especially suited
for implementation in an electronic digital computer. SRT division was named
by C. V. Freiman of IBM in a paper discussing its statistical properties [3].
although an example of the technique may actually have been presented by
Nadler [ 4] in a 1956 paper describing a éomputer designed and built by the
Institute of Mathematical Machines of the Czechoslovak Academy of Science.
under the direction of Dr. Antonin Svoboda. Whether'of not the Nadler work
is equivalent to SRTvis obscured by the.faqt that it is discussed in.conjunc—

tion with a stored-carry adder and accumulator.

The basis of SRT division is the discovery that introducing redun-
dancy into the ;epresentation of the quotient yields more freedom in the'
selection of a quotient digit at each step of the recursion. "In SRT,divisioh
this freedom is used to increase'fhe'probabilityuof a zero quotient digit, for
which the next partial remainder is produced merely by a shift rather'than by
a subtraction followed by a shift. This flexibility is in contrast to éon—
ventional restoring or non-restoring division which require a full-precision
subtractién.fof each quotienf bit generated: Even though we are considering
a binary number syétem,>digit values for SRT diviéion are 1, 0, ii(the over-

bar denotes negation, i.e. -1), and thus we have redundancy .

" In 1965, Robertson [ 5] extended the concepts inherent in SRT
division to higher radix division schemes. The fundamental. tenets of the

method remain, namely, that by introducing redundancy into the representation~

¥Numbers in brackets refer to entries under References.



of the quotient, the selection of a quotiént digit at each step of the recur-
sion need not be precise. TFor the higher radix cases, a larger set of quo-~
tient digits is necesséry and thus the probability of & zero quotient digit

is reduced to the extent that adder bypass no longer yields significant speed -
improvement. However, the redﬁndéncy may still bé put to advantege; it
permits the selection of a quotient digit based only upon high—order.digits

of the divisor and high—qrder digits of the shlfted partial remainder.

In reference. [ 5], Robertson introduces thé notion of a quotient
sélectibn meéhanism with inputs consisting of estimates of the divisor and
shifted pértial remainder. He notes that thé mechanism for selection of quo-
tient digits may be thought of as a limited preéision model of the full
precision division. The procedures in the model néed not be the same as the
procedure of thé full precision scheme which it controls. The model division
generates simple microprogram instructions to the full-precision unit. His
paper also presents an iﬁdirect, relative measure of Lhe cusl of selection of

guotient digits.

The authors Master's Thesis in 1967 is based largely upon Robertson's
work as described in references [ 1] énd [ 5]. The complete thesis, includ-
ing an example of a acfual implementatioﬁ of a modelAdivision scheme, is
available in report form [6]; the more theoretical aspects of the work are
available in journal form [7]. Implementation is also discussed in a more
recent report in conjunction with the development of the arithmetic units of

the Illiac III-Computer [8], [9].

The authors paper [T7] is largely tutorial. It presents a detailed
review of Robertson's proof of the validity of the class of division techni-

qués to whiéh’fhe model division approach is applicable. The proof will.not



be reﬁeated in the present work. The paper also describes a graphical repré;
sentation, the‘so-célled P-D plot, suggested by C. V. Freiman [5], which is -
useful‘in‘describing the division procedufe, and then,devélops expressions

for the maximum number of bits of the divisor and partial remainder which must
'bé inspected in order to determine a correct quotient digit for a given radix,
a given lower limit on the divisor, and a given amount of redundancy¥ in thé
representation of the quotient. These exﬁressions, which provide a worsf—
case measure of-costs; also acéount for redﬁndancy in the representation of
the partial remaiﬁder sﬁch as produced by a member of the family of carry-

save adders or borrow-save subtracters [10], [11], [12].

" Ve are now in a position to consider the design.Of division schemes
which afé ﬁighiy'éoﬁpatible with multiplication structures. The model aiviQ
sion determines which multiples of the divisor are to be combined with the
‘ pafﬁial remainder. In this reépect it ié analogous to the multiplier recoder
and may be‘thought of as a qudtient recoder.;_Multiplier fecoding logic is
usually entirely ééﬁbinétorial'énd grows iﬂ complexity only linearly With the
radix. The model division is complicated by the fact that the quotient digit
" is a function of both thé divisor and the partial remginder and the faétAthat
the partial remainder, unlike the divisor or multiplier, is not constant
throuéhbut a given 6peratioh;~ An analysis of the growth of the complexity of

a model division with increase of radix is one aspect of this thesis work.

~ But despite thesezcomplications, the strong analogy between multi-

plief recoding and the concept of the model division leads to & division

*¥A measure of'redundancy will be defined later in this paper.

¥ . .
" "Robertson has made a formal correspondence between multiplier recodings and
quotient recodings produced by SRT division. See Ref. [13].-



structure whiéh is potentially highly compatible with a given multiplication
scheme. The difference in the execution time between the iterative portion

of multiplication and division is essentially the difference between tﬁe total
tiﬁe iequired to recode the multiplier and that to recode the quotient. The
bulk of the logic accounting for the difference in cost of a multiplier and
the cost of a multiplier and divider mdy then be associated with the cost of

implementing the model division.

1.2 Present Work

With this background in mind, we now turn to an introduction to the
present work. Sectiqn 2 begins by defining a elass of full-precision multi-
plication-division structures. We then define a rather general block
structure of a quotient selection mechanism suitable for use as a model
division. The parameters of the model iﬁclude the rédix, the magnitude of
the largest quotient digit, the range of the divisor, and the truncation

error in the estimates of the divisor and partial remainder.

The flexibility of the model division approach and the generality
‘of the model proposed in Section 2 offer a large number of desigﬁ possibili-
ties. A major goal of this work is to investigate the cost versus perfor-
mance of various designs and attempt to extract anaiytic.résults. Such an
attemét requires the definition of a measure of cost and performance. A
useful cost measurement'shoﬁld,‘in some sense, be minimal, and therefore we
must éonsider minimi?ation criterion and a minimization algorithm. These

topics are discussed in Section 3.

The first approach'taken'to determining cost and performance of

various gquotient selectors is that of computer-aided generation of a specific



design followed by analysis. In Section 4 algorithms are described which,.
when supplied with parameter vﬁlﬁes, will generate logic definitions of the
sub-blocks of the model. Most of tﬁe*logic will be defined in & minimal sum-
of—products-fo;m which could serve as input to a lpgic design'program custom-

ized for a given class of'logig.i

'

To this point we will have developed a mechanism for generatiﬁg :'
and comparingivarious designs -for a model‘division. The approach has been
one of cbmpﬁter-aided design‘féllowed by computer—aided minimization. The
results from the computer work are tabulated in Sectioh Sf Althoﬁgh the
design and minimization programs are quite efficient,'the large ﬁumber of
design possibilities together with the;large number of terms -in the logic
equations for the highér radix models strongly discqurages an exhaustive
analysis. An additiongl result described in Section 5 has been insight which

led to development of analytic expressions for the cost of a structure.

Section 6 is a tabulation of estimates of‘cost:éhd performance
based upon the equations and computer gener;ted results described inASéction
5. Tﬁe final éeiection is a summary and some'copclusions as to the relative
merits -of various members of the family of modél division'schemes considered.

The section includes a list of suggestions for further investigation.



2. DEFINITION OF THE DIVISION PROCEDURE

2.1 Formal Definition of the Full Precision Division

The members of the class of diVision.algorithms which may be- em-
ployed to perform the full-precision division are those defined by the
recursive relationship (1.1) and the list of restrictions given below. The

recursive relationship is répeated here for convenience. .

Pjyp TPy = Qyyq do- 0 = 00lsenpm-l | S
in which
| Py is the dividend,
‘pj is the partial remainder used in the jfh recursion,
Py is the remainder,
J 1is the recursion .index,
4 is the Jth quotient digit (radi# -r),
d is the divisor, and
r is the radix.
The quantity rpj is referred to as the shifted partial remainder,

Restrictions which apply are as follows:

1. Allowable quotient digits are
-n, ;n+l, -n+2, ...,0,1,2,..., n where

n is an integer such that n Z (r - 1)/2. (2.1)
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2.. The dividend; P> must be in the range defined by

Il colal  (2e2)
where p = n/(r-1). . o - (2.3)
3. The divisor must be within a given range, i.e. the

quantities a and b must be defined such that

a = |a] b L ) - (2.4)

.h' Every quotient digit, qj+l for j‘from 0 threugh m-1,
mist be choéen such that Py, @s defined by (1.1) is
within the range

|2y4, 1 = 0 lal. o | | T (2.5)
The derivation of thése restrictions is given in
[ 6] anda [ T]. Note that the forms of rp and d have
not been limited to non—redundanf representations.

They may be in forms such as'produced by carry-save

adders or borrow-save subtracters.

2.2 Graphical Repfesentation of the Division Prog¢edure

This division procedure may be defined graphically with a.con-
strﬁction suggested By c. V. Freiman.[5 1. fhe basis for the construction is
the recursive relationship (1.1) together with the range rest;iction‘(Z.S).
The figure is esseetially'a plof of partial remainder versus divisor values

and is thus designated a P-D plot.
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Solving the recursive relationship for rpj yields
- 4 o . : s Ao
rpj = pj+l + qj+l d. For a fixed quotlent.dlglt, the upper ‘limit of rpj_as a

function of the divisor,d,occurs when Pj+l is meximum, i.e., when pj+l = pd

.and thus

rp = (p + qy,)a. l | . (2.6)

J max

Likewise the lower limit is defined by

rpj min

= (-p *qy,,)d. o (2.7)
These linear functionsAof d may be plotted as a family of‘curves with qj+l as
a parameter ranging ffom -n fhrough +n in steps of 1. The area between
P3 max and D5 min for a given U4y = i will be denoted the "q(i) reéion."

For given r, n, a, and b, the division prqcédure is specified by
the corresponding P-D plot. A given value of d and rpj will specify a point
in a q(i) area. The quotient digit 41 is therefore i and is used in
forming pj¥l' |

Figuré 1l is an example of a P-D plot with.r ; b, n=2, a=1/2

and b = 1. The equations for the lines denoted 2', 2, etc. are defined in
Table 1. Note that as a‘consequence‘of the redundancy introdﬁced into the
representation of the quotient there is overlap bgtween adjacent quotient
regions. Some pairs (4, rpj) Will-specify a point for which either
qj+l = ; or qj+l =i~ 1 is a valid choice,' it is.this overlap which permits
quotient digit selection to be made on the basis of estimates.of the full

precision divisor and shifted partiai remainder.

2.3 Formal Definition of the Quotient Selection Procedure

The quotient selection mechanism may be defined as a device that
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whén given estimates of the divisor and shifted partial remainder of "suffi-
cient" precision; will produce a quotient digit, i, such that restriction
(2.5) is satisfiea.’ The definition of sufficient precision is given in

the following.

With a,.b, n, and f given, the P-D plot‘is specified. Let D be the
set of all divisor values for a given operand length and range specified by
(a, b). Let P be the set of all values of ailowable shifted partial remain—
ders. The area of the P-D plot is the Cartesian product of P and D,‘i.e. the

area is the set
PxD={(rp,d}lrp € P and d ¢ D}. - (2.8)

Every element of P x D is contained in one or more g(i) regions;
thus each element implies a set I = {i|(rp, d@) is within the g(i) region}.
In Figure 1, every pair (d, rp) will be contained in either one or two a(i)
regions. This will be the case for all examples discussed in this study,
however, for p = n/(r - 1) greater than 1, a given (4, rp) would be contained .

within two or more q(i) regions.

The inputs to the quotient selection mechanisms are estimates of the
divisor and shifted partial remainder. Let d and rp denote these estimates,

~

respectively, and let Q(rp, d4) be the output of the quotient selection

mechanism (a quotient digit) for given estimates (rp, d).

The set of rp and d values are of sufficient precision and' the
quotient selection procedure is correct if for every pair (rp, d)e P x D,

there exists an ordered pair (rp, d4) such that Q(rp, d) = i, where i belongs

to the set I implied by (rp, 4).
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In actual pr@ctice, d and rp are formed by uniformly truncating, or
tfuncating and rounding-d and rp, respectiveiy. Assume fhat a binary repre—.
sentafion.of d ié truncated between pésition § and § +‘l to the right of the
binary. point, and that a binary representation of rp is- truncated between
- position € and € + 1 to the right of the binary point.~-iet,

A = 2’6, and » - (2.9)

Arp = 27F. ‘ B . (2.10)

The set of d-values are therefore integer multiples of Ad and the
~ . N ' ~ l

set of rp values are integer multiples of Arp.. A givén value of'd is repre-

sentative of. the rangé of full precision divisor values given by

d-a S aiaq+es, : | : (2.11)
where a =a' Ad ' (2.12)
= g' Ad (2.13)

B

Similarly, rp is representative of the range of full precision shifted partial '

remainders in the range

< <

¥p - A ~rp - rp + vy, ‘ ’ (2.14)
‘where A =)' Orp, and _ (2.15)
v = v' Arp. S ' (2.16)

;.The quantities a', B', X'; and y' are in the range O to 2 and depend

upon the truncation procedure and the form of representation of 4 and rp.

2.4 Physical Model of the Quotient Selection Mechanism

We now turn to the Question of the physical realization of a quo-

tient selection mechanism; the device which performs the operation rp/d to

produce the quotient, i, such that i belongs to the set of quotient digits, I,
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implied byb(rp, d). Since the operation time of division relative to multi-
plication is limited by the model division, the requirements for a high perfor-
mance arithmetic processor would demand the ‘design of a high-speed model
division.' One‘way to achieve this would be.to use a higher-speed class of
logic in building the model division than in building the remainder of the
arithmetic processor, but in this work we are assuming one given class of
logic and are constraining the design probleﬁ such that speed advantages must

be gained by organization.

Any valid division technique 1is a céndidate for a model division.
OneAaspeci of this étudy was a survey of known division techniques suitable
for implementation in a digital combuter. References [1k4] thfough [32] are
- some of the works consulted. In evaluating possible candidates weAshould
keep in mind the advantages of dealing with relatively short operands coupled

with the potential requirement for low operating times.

Digital divicion ochcmes may be classified as additive, wulliplica-
tive, tabular or some combination of the‘three. Additive techniques are
thoseﬁsuch as restoring and non-restoring division in which addition and
subtraction are the fundamental operations; the divisor remains invariant.
Mﬂlfiplicative schemes are those in which both the dividend and divisor are
multiplied by factors in such a manner that the modified divisor converges to
.1 and thus the modified dividend converges to the quotient. Tabular techni-
ques are those based upon a combinational network: the quotient digit is
produced by table-look-up. Note that neither of the two later techniques

produces a remainder but that a remainder is not needed for a model division.
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We have eliminated analog schemes and threshold logic fro@ consid~-
eration in this study. We have also ruled out logarithmic techniques since,
although the division is transformed to a subtraction, jthe equipment-time

ratio suffers due to necessity for'forming logs and antilogs.

We now propose é generalized_ét:ﬁcture into which will fit multi-
plicative and tabulaf techniques. Theée ééhemes appear ﬁo have a potential
for higher operating speeds than the addiﬁivehtechniques. Since it is an
additive (non-restoring) scheme which is controlled with the model division
it seems intuitively justifiable to consider a higher berfofmgnce class for
the modeli Emphasis 6n hardwired table look-up te;hniques is also justified

by trends of technology towards LSI.

Figure 2 is the generalized structure. The parameters and blocks .

are as follows:

Divisor Estimate Formation - This block accepts a full precision

<
divisor, 4, in the range a — d < b, and from it produces an estimate of the

divisor, a,‘with maximum negative uncertainty, o, and maximum positive uncer-
tainty, B. This box may also incorporate provisions for changing the form

of representation éf & from that of d. For example, if the model division
structure accepts only positive quantities; but d is in both negative and
positive range;.this box could convert d to a sign and magnitude form. The
magnitu&e would serve as~inputAto the model. The sign would be used together
with the sign of the pafti&l reméiﬁder in determining the sign of the quo-

tient digit. This block is part of the interface between the full precision

structure and the model~division5

In addition to this interfacing function, the divisor estimate

formation box also serves as a seélector. Note that the output of Multiplier 2
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is coupled back into this baox. - This feedback loop together_with the one from
Multipiier 1 to the partial remainder estimate formation box admits iterative

multiplicative schemes into this structure.

Table 1 - This blockAaccepts d as the input and produces a vaiue,
A, as a function of d, i.e. A = £(d). The quantity A is a factor by which

both d and rp are multiplied (the quotient is therefore not changed). It may

be interpreted as a scale factor uéed to trensforﬁ the range of 4 or as an

~

estimate of the inverse of 4.

Partial Remainder Estimate Formation - This block accepts a full

precision shifted partial remainder; rp, and from.it produces an estimate of
the shifted partial remainder, r;, with maximum negative uncertainty.of A aﬁd
maximum positive uncertainty, y. As with divisor estimate fofmation, the
estimate is in practice a truncated version of the full precision quantity.

The Block may also incorporate previsions for changing the form'of;the.

. representation.

In actual implementations the full precision remainder may be the
result of operations using an ad@er—subtracter which produces a redundant
representation. The estimate of the remainder,.rg, however, is restricted to
non-redundant representations. We'have assumed, although not rigorously
.demonstrated the fact, that use of a redundantly represented vaiue would un-
duly compiicate the structure of the quotient selection mechanism. Merely
determihing'the eign, for example, is of the same order of complexity as con~-
terting the value into a non-redundant form. It is impdrtant to realize, "
howevef, that the estimate consists of only the high ordef digits of the full

precision remainder. In practice this estimate is sufficientl& short to

permit conversion to a non-redundant form using full-lookahead techniques.
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The partial remainder estiﬁate formation block also enables the
ouﬁputAof'Multiplier 1 to couple back into the input side. As with the
divisor loop, this bath is necessary for the inclusion of the iterative mul-
tiplicative division scheme. |

Multipliers - Multiplier 1 and Multiplier 2 form, respectively, the
quantities ; = A r£ and 5 = A 3. The outputs of both mpltipliers aré the
inputs to the second table look—up‘structure,'Tablé 2. ﬁ may be thought of
as a transformed &ersion of ri. Tﬂe maximum négative uncertainty in P is
AAmax; the méximum positive uncertainty iS‘YAmax? wﬂére Améx = f(b).

If the product, Arp is truncated so that non-zero digits are lost, additional.
uncertainti;s Am and Yo are introduced. In this case % represents trans-—
formed rp values in the range

<.

R < -
P-A\- A -Arp-P+Ay+ Yp° (2.17)

Similarly, the maximum uncertainties in D are A___, BA with A = £(b).
m max max

ax

~

If D is truncated with maximum truncation errors (am, Bm) then D is représenta—
tive of transformed d values in the range
BEPN < (."_. '
D-Ad-oa —-Ad-D+AB + B (2.18)
m m
Table 2 - This structure is an implementation of the function

which relates quotient digits, q, to the products P and D, the scaled

remainder and divisor, respectively, for the model division.

Quotient Recode - The quotient recode block represents the inter-
face between the output of ﬁhe model division and the full precision divi-
sion. The‘output of Table 2, q, may require a recoding into a.form directly
usable by the shift gate complex which selects the next multiple of tﬁe

divisor to be used in forming the subsequent partial remainder.
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At this point we nsrrow the'scops of ths'prssenf research to exclude
iterstive multiplicative schemes: ths fesdback loops of Figure 2 will noﬁ
be used. The rsmaining structure includes what might be considered'tWO
extremes or boundary cases. In the one structure, to be designated Type 1,
Table l’is defined such that the rsunded, integer portion of the product A r;

is the correct quotient digit for the division, rp/d. For & Type 1 structure
neither Table 2 nor Multiplief 2 need be implemented. -The other e;treme
occurs when A = f(a) = 1. In this cass,-designated Type 2, Table 2 bears the
full burden'of quotientiselection and neither Table 1 .nor the multipliers

are required.

But there are also intermediate, hybrid, structures in which neither

Table 1 nor Table 2 is degenerate. In these structures Table 1 and. the

multipliers are used to transform A d into a range closer to 1 than was d.

~

The effect of this range transfsrmation is to simplify Table 2. - In the next

chapter we shall examine the design of Table 1 and Table 2 independently and
then make some observations abous hybrid structures. The shift from a Type 1
strusture to s'TypeHQ structure and accompanying tfade—off between speed and

hardware is but an examfle of the trade-offs available between,sequéntisl

networks and their combindtorial equivalent.



3. DEFINITION OF COST AND PERFORMANCE

3.1 Preliminary Remarks

To this point in the thesis we have defined a division procedure
which generates a guotient by Successive calls to a lower precision, model
division unit. A generalized structure of the model division was proposed and

.. now we begin to consider the synthesis of such a unit.

Besides the definitive aspects of this work, a major goal is to
derive useful estimates of minimal cost and performance as functions of thg
design parameters of the generalized structure in Figure 2. Design parameters
include sﬁch quantities as radix, r; magnitude of maximum quotient digit, n;
and the Point of trunéation of rp and d.. In this section, the important boxes
of Figure 2 are made sufficiently specific.to allow a measure of miﬁimal cost

and performance to be,pr0posed.

In*finding o mcaourc of coot or performence, the designer is faced
with a trade-off between generality and accuracy. Determining ébsolufe cost
orlabsoiute performance is very much dependent upon hardware and details of
impleﬁentatibn;.but restriéting the study to a specific class of logic limits
the significance of the work. Questions of minimization are further complicated

by controversy as to what to minimize.

This work makes a compromise. Since much of the emphasis is on

comparison, a relative measure of cost and performance is adequate. On the

other hand, some estimate of absolute cost is desirable. The higher-radix,

table look-up schemes offer potentially high performance but require a largef

number-of gates to construct. Whether, in fact, they are at all feasible for

20. .
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a real machine strongly depends updn the abéolute'cost}

3.2 Definition of Cost

3.2.1 Preliminary Remarks

For this study, the cost of a logic network is defined as the total
number of literals required to implement the network in two-level, sum-of-
products (AND-OR or equivalent) logic. The choice ignores fan-in and fan-out’

restrictions, but this shortcoming is outweighed by'theAfollowing considera-

tions.

1. The logical definitions of the networks are in a
canonical form which can serve as an input to a specific

minimization and/or design automation package.

2. The networks are realized in the theoretical mini-
mum number of circuit delays and thus will be an upper

bound on speed and cost.

3; The tables for higher-radix struétures are candidates
for LSI. In this case the numbef of literals is a measure

of silicon area required and power dissipation requirements.

4. A very efficient computer program for sum-of-products

minimization is available to the author.

The cost of implementing the structure shown in Figure 2 is the sum

of the costs of implementing each sub-block. Symbolically,

© = Copp * Cr1 * Gt Qe T Cprer T O T R - (3.2)

where

C is the total cost,
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CDEF is the cost of the Divisor Estimate Formation block,

CTl is the cost of Table 1,

CMl.is the cost of Multiplier 1,

CM2 is the cost of Multiplier 2,

CPREF is the cost of the Partial Remainder Estimate Formation block,

CTé is the cost of Table 2, and

CR is the cost of the Quotient Recode block.

At this point, it is convenient to introduce intermediate variables,

C and CDP ,. and group the cost terms as follows:

TMM Q

C_ =0 _+C._ +C | (3.2)
" Cong = Copi * C + C . : (3.3)

The cost terms CT are functionally related to the

2» Cmavs 84 Cppg
design parameters such as.radix, maximum quotient digit, range of divisor, and

uncertainty in the estimates of the divisor and remainders. The terms CT2 and

CTi in CTMM are the most complex and will be studied by computer synthesis.

Estimates of C,.. and the remaining terms of CTMM will be obtained manually as

PQ
required. . In most cases, the term CnPQ is dominated by CT?+CMM and may be

neglected.

3.2.2 Structure for Finding Cost of Table 2

‘Table 2 will be studied as a multiple-output logic network. It may
be represented as shown in Figure 3. The functions, fo through fn are Boolean
functions of the bit vectoré corresponding to d and rp. These vectors are

denoted d and rp, respectively.
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A —> fo(é\,?g)'
P >(3,rp)
TABLE 2 139, 7P
.| MULTI-OUTPUT | .,
LOGIC .
~ NETWORK .
- » f.(d, rp)

Figure 3. Network Definition of Table 2

In specifying the quotient selection criterion (Séction 2.3), every
pair (d, rp) has been associated with a set, I, of quotient digits which the
quotient selection mechanism may generate when given inputs (4, rp). The

functions, fo’ f . fn must be found such that for every ordered pair,

R
(d, rp) with allowable quotient digit set, I,

1 for one and only one iel, (3.4)

H
joN)
K
Le]
~—
]

and - f (4, rp)

0 for all other values of i. " (3.5)

In other words, every paif (d, rp) in the set D x P must cause one and only one
of the outputs to be true, and this output must correspond to a correct quo-

tient digit.

Due to the overlap of adjacent quotient regions produced by redun-

dancy, many élements_in D x P may have sets, i, containing more than one

element:, thus many sets of different functions are allowable.for given design
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parameters. But our wish to éompare minimal¥* costs imposes another constraint,
namely, that thé‘cost of the multiple output network (as defined in'Sectioﬁ
3.2.1) ié minimal. Symbolically stated: the requirement is that Qost (fo + f2
+f, 4 e f fn) be minimal.

In'tﬁe general minimization of two-level, AND-CR realization of a
multiple-output network, it is necessary to generate the prime implicants of
each of the individual output functions, plué‘the prime implicants of the

functions which are equal to all possible products of two output fuhctions,

three output functions, ete. Each product is a mﬁltiple-outputAprime‘implicant.

McCluskey [33], states the following theorem of use here:
: -
Theorem: For any definition of networks cost such that the
cost does not increase when a gate or gate input is removed,
there exists at least one minimum-cost, two-stage network in
which the corresponding expressions for the output functions,
fi, are all sums of multiple-output prime implicants. ALL
tﬂe product terms which occur only in the expression for T
. are prime implicants of fs;; all the product'terms which
oceur in both the expresslons for f: and fi but in no other
expressions are prime implicants of £ + Ty, etc.

But in the present case, no two functions aie ever simultaneousiy
true an@ thus none of the prime implicants of'fj are containgd in any other
funétion, fk, k‘# J. Thus, by the theorem stated above, there exists a minimum
- cost two stage network which may be found by minimizing each function indepen-
dently of the rest, i.c. ‘

Miﬁ Cost (fo +_fl + eee + fn)>é Min Cost (fo) + Min Cost

(fl) + *++ + Min Cost (fn).

¥The term minimal, implies that we wish to find any one of.poésibly”more than
one minimum cost implementations.
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3.2.3 Structure for Finding Cost of Table 1 and the Multipliers

As with Tabie 2, Table 1 will be defined as a multiple-output 1ogic
network as shown in Figure 4. The input is d, the bit-vector representation

(a), a; = g (a), ... 8y = &

of d. The outputs are the variables a_1= 8, G

(), where gi is a Boolean function. The bits, a . through a, comprise the

-1 3
binary representation of inverse of &, A. Unfortunately, in~thié case, we
cannot constrain the problem so that none .of the outputs are simultaneously
true. For purﬁose of estimation, however, it will be  assumed that the.resﬁlts
obtainedibyAminimizing'éach function independently will yield an adequate

estimate of the minimum cost, i.e. C = Min Cost g, + Min Cost 81 + ..o+ s

T1
Min Cost gj.
..__bo_i
_'.bqo
TABLE 1

—a,

x MULTI - OUTPUT |

d —» '

LOGIC . o

NETWORK .

Figure 4. Network Definition of Table 1
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We now ;consider the cost of the multipliers. It is beyond the scope
of this work to develop a cost-performance analysis for multiplication struc-
tures. The approach adopted here is to present a structure which experiencé

has shown to be efficient and to approximate C from the structure. -More

M1

information -about such a structure may be found in [8 ].

The multiplier is illustrated in Figuré 5. It consists of a cascade
of limit carry-borrow adder-subtracters together with shift-gates (8.G.) which
form the necessary multiples of the multiplicand (ri). Shift gate S5GU, in coﬁ-
Junction with pomplementing circuits, form the multiples +1 and +2 times; SG1
forms +U, +8 times; and, in general, SGi, form multiples of i?gi +l_times the
multiplicand. The mulfiples are selected by a recoding 6f a, through aj.
Appended to the output of the last adder is hardware which converts the pro-
ducts from the redundant representation produced by the‘limited—carry or

borrow device to a non-redundant format. The cost of Multiplier 1, CMl’ will

be defined by

. : 2, ,
Cyp = 3Cg + Ny Ny C, + (W, +1) Ny Cgq + N;C, (3.6)

where

C., is the cost per input digit of the recodiﬁg logic,

R

NA is the number of adders in the multiplier and is given by
N, = Integer portion of (j + 1)/2,

NB is the number of bit positions per adder and is. given by
NB =&+ log2r,

CA is the cost oif one position oi an -adder,

CSG is the cost of one position of a shift gate,

CC is the cost of converting one digit from redundant to non-

redundant form (aésuming the use of look ahead techniques).
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The quantity, Jj, is-the index of the low-order bit of A, the approxi-

mation of d ™+ (A = a, - alaz.;.aj), € is the number of bits to the right of the

radix point in rﬁ, and r is the radix of the model division. As the need
arises, esfimates of ﬁinimum values of,CR, CA’ CSG"and CC mey be obtained.

The cost of M., C, . ,is given by Equation 3.6 with € replaced by (e + logzr)

2 M2’
replaced by §, the number of bits in d.

3.3 Definition of Performance

3.3.1 Performance of the Model Division

Performance will be ﬁeasured in units Qf number of bits of quotient
generatédvperigateAdeiéyﬂ For practiéal cases, the number of bits of quotient
generated by the model division is ldg2 r. Since the divisor is constgnt for
a given division operation, the operating time of the model division is limited
by the paths driven by the remainder. Theltimé, Tq, in.gate delays, required-

to produce a quotient digit, radix r, is given by

= i‘+ + 4 .
To = Torer * T * Tro * Ty | (3.7)
where

‘TPREF-iS the number of logic delays required in forﬁing the

estimate of the remainder,

TMJ. is the number of logic delays required to form A ‘rp in

Multiplier 1,

TT2 is the number of logic delays to select a quotient digit

in Table 2, and

TR is the number of logic delays to recode the output of T2.
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Performance of the quotient selector, P, is therefore given by

Q

_ logyr | i . (3.8)

P =
Q=
Tq

3.3.2 Perforﬁanéé'of the'Fﬁil Precision Division

The measure of primary interest is the performance of the full
precision division. We shall assume a full precision multiplication structure
simjilar to that shown in Figure 5. It consists of a cascade of K adder sub-

tracters each of which is capable of retiring K' bits of the multiplier. The

Kk
M .

effective radix for multiplication is therefore r,, = 2
Let,
M be the quotient length inAbits,
TD be the nﬁmber'of logic delays required for the iterativq
steps of division,
T, be the number of logic délays required to add two full
precision numbers,
T, be the number of logic delays‘required for control after
-theKQuotient bits have been generated by the quotient .

. selector, and

N . be the number of calls to the quotient selector.

H
]

b % T, * Ny (T + Te) - (3.9)

where, if r is the radix of the model division,

= M

Yo = Tog o ' » . (3.10)
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For this study, K' = 2, thus

. Ty Tg * T (3.11)
= M|z
D : 2 loger - . .

The performance of the full precision division is defined by

_ '2logrb . ) |
bp = M =( 2 )“ « (3.12)

TD Ty 1og2r + 2(TQ + TC)




L. ALGORITHMS FOR SYNTHESIS AND. ANALYSIS

h.l Preliminary Remarks

‘The derivation of eost and performance functions by a direct,.
analytic approach is complicated by the discrete nature of these functions and
by the large nuﬁber of variables. An empiricai, constructive approaeh was
therefore adopted. The first phaee of fheAexperiment (the topic of this
section) required the formulafion of a systematic approacﬁ to the synthesis of
a minimal cost, mathematically accurate, quotient seleeﬁion mechanism for a
given set of design parameter values. Although pheAeynthesis routines in
themselves woﬁld.be of use in designing a quotient selectieg mechaniem, in
this study.they are used asAtoo;s in studying the cost and performaﬁce
funcfione.' We are performing analysis by means of eompgte?%aided synthesis.

. In the second phase of the exberiment, thelbrogrems developed‘in the
first phase were run with various combinations of parameter values in erder‘to
estimate cost and performance. The results.of each run might be thought
ef as determining a point. on a cost versus performance curve. The hope is
-that only a - few runs, relative to all possible‘parameter combinations, would
be necessary in order to find approximations which would be useful for inter-.

.polation and extrapolation.

~ But this empirieal approach is not without major practical prob-
lems. There are a hﬁge number of possibilities for parameter ¥alues, anhd the
minimization problems are'ﬁery large and demanding of}computer fime; These
problems were mitigated by restricting the values of parameters to those of

practical importance and by conCentrating on the effects of dominant parameters.

31
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As discussed in Section 3, the dominant cost term for a Type 2

structure is C the cost of Table 2, For a Type 1 structure, although the

T2°
:cost of Table 1 (CTl) may not dominate the cost of the multiplier, it is the
least studied term. The following sub-sections comprise a description of
‘algorithms which generate logic equationsAwhigh define Tablé 1l and Table 2
for given values of design parameters, The algorithms do not produce a defi-

nition of the other blocks of Figure 2, but-do place some constraints upon

their structure.A

4.2 Deriving a Minimal Cost Design for Table 2

Conceptually, Tablé'2 in Figure 2 is a direct implemenfation of a
P-D plot. To implement a given P-D plot, a relation must be defined from the
se£>D x P to a éubset‘of DxP, 5 x ﬁ, such that each element of D x P'maps
into an-element of D x P and with error bounds for each element (a,‘ri)Asuch
that the quotient selection criterion is satisfied. Note that'we hayve not
required ‘that the relation be a function, sincg, due to redundant representa-
tion, the same rp-value or d-value may map into different rﬁ or 4 valués;
uniqueness is not guaranteed. For practical reasons the relation is restricted
to those which may be defined by the successive operations of truncation and
assimilation (conversion to a non-redundant form). Even within this restriction,
however, there are many pqssible alternatives. The maximum amount of trunca-
tion error which may be tolérated for a given pair (&, rg) depends upon the

location of. the point. There is also trade-off between ¢ and §, the points of

truncation of rp and 4, respectively.

" The tollowing is a list of the steps in the process 6f deriving a

minimal cost design for Table 2.



33

1. Set the values for design-parametgrs:

n, r, a, bs d'a B" Yv's, }\'3 €, §.*

2. PRun the program QS3 (described in Section 4.2.1) to produce
& sum-of-products (minterm) definition of each output function

of Table 2. -

3. Run‘the program,‘PI, with each set of minterms produced by
QS3'as input. The program PI finds all prime implicants of
the functions, identifies thé essential prime implicants, and
generates the cOﬁstraints which must be satisfied in order to

cover the function.

L, 'Run an Integer Liﬁeér Programming roﬁtihe to find a minimal
cdst_sgt'of prime impliéants which satisfy thé-constraints
Apréduced in step 3. The cost.of a’prime impliéant is the
ﬁumber of litérals. The combination of the prime impiicanté
selected in this.sfep, togethef with the essential prime’

implicants identified in stép 3, define the Boolean function.

5. Tabulate the total number of literals required to define
each output functions. TQe total of these values wiil be

taken as the cost of implementing Table 2.

4.2.1 Defining the OQutput Functions
As described in Section 3.2.2, Table 2 is treated as a multiple out-—

put network. This section describes an algorithm for spedifying these

¥TInitially, Table 2 is studied apart from Tl, M1, and M2.. A = F (4) = 1.
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functions as sums-of-products‘of minterms, The minterms are formed by con-
catenating bit vectors, rﬁ, with bit vectors, a. A Fortran program called QS3
(Quotient Selection Program 3) was written to accept design parameters and to

produce the minterm definitions of each of the output functions, f_ (rp, d),

~

cees T (rp, 4).

The derivation will be restricted to the first quadrant (positive
rp and d) of the P-D plot. The full P-D plot is symmetric about both axes and
thus the cost of implementing one quadrant is a good estimate of the cost of

implementing ény other.

Eigure.é illustrates a portion of the first quadrant of a P-D plot.
Three adjacent quotient regions, g (i+l), g(i), and q (i-1) are designated
together with the horizonal line, rp = ré = mArp. Every line of this form will
be designated an "rp-line". The quantity, m, is an integer, and Arp = 2 °.
The task of defining the output functions for Table 2 may be reduced to that 6f
assigning adjacent sections of every'rp—line to one and only one.q—;egion. For
exémple, the'segment of the rp-line between d = a and d = b must be subdivided
into three segments: one in each g-region shown. The dividing line between
adjacent line segmeﬁts assignea to q(i) and é (i+1) will be called the

' A divisor transition value

"4ivisor transition value between q(i) and q(i+l1).'
between q(i) and q(i+l) may be picked from a sub-range of the divisor between
the intersections of the rp-line and the boundaries of the overlap region.

The range in which the divisor transition value may'be chosen is determined

as follows.
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«—UPPER BOUND OF gq(i)

«—LOWER BOUND OF gqli+1)

«—UPPER BOUND OF q(i—i)'-

4 «—LOWER BOUND OF q(i)

rp=rp=mlArp =
qu =

d=a . d=b

Figurev6. Portion of P-D Plot Illustrating Segmentation of rp-line

Let dt be the divisor transition value for rp = rp, between q(i) and

a(i-1). Then the ordered pair (rp, dt) will be representative of all (rp, 4)

~ ~

in the rectangle shown in Figure 7. Since 4, is a transition value, (dt’ rp)

implies a qﬁotient digit of i-1 and (dt - Ad, rp) implies a quotient digit of i.

The rectangle corresponding to-(dt, rp) must belcompletely within the
q(i-1) region. The strictest bound is therefore at the ubper, lefthand corner
of the rectangle in-Figure T, and thus the following must hold.

N . (k.1) .
rp f‘y € (i -1+ p) (dt - a) '
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UPPER BOUND OF qli-1)
rp=(i-1+p)d

LOWER BOUND OF qli)

“(3+B, Bry)
| / rp=(i-p)d

qli-1)

Figure 7. Portion a P-D Plot Illustrating Constraints in

Finding Divisor Transifion Interval

Similarly, the rectangle corresponding to (dt - Ad, rp) must be com-
_pletely within the (i) region. The strictest bound in this case is at the

lower, fighthand corner of the reétangle where the following must hold.

rp - A 2 (i-p) (3,-4d+8) o (k.2)

In practical cases, to insure that all d values map into at least

one d value, Ad = B and thus (k4.2) becomes

~

rp - A 2 (imp)d, | ' (4.3)

Combining (4.1) and (L.3) yields a range restriction on ét’ namely,

(xp + y)/(i-1%p) + a € a_ £ (zp - A)/(i~p) (b.4)

Note that the strategy is to select the size of the rp-steps, Arp,
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and to allow the algorithm to find the maximum size steps allowable for 4.
Theoretically, the program.could be designed such that Ad would be specified
and the precision réquirements for the partial remainder would be-determined.
"The formef.approach is taken due to the fact that control of'Arp is.more
critical. The precision of the estimate of tﬁe partial remainder (the number

of bits) should be kept low in order to keep down the time required to convert

A

from a redundant to a non-redundant form. The logic paths involving rp as

-~

opposed to those involving d, are changing with each call to the model

division. For this reason there is motivation to simplify the logic involving

~

only rp at the expense of.complicating the logic involving only d. It should
also be realized that the precision requirements on the estimate of the par—'
tial remainder are based upon worst case calculations. Although QS3 uses

this worst case precision uniformly in generating the division precision

@

requirements, the minimization routines will remove unneeded precision.

The quantity, d , may be any value in the range defined in Equation

t

L.4. Since the design goal is to-minimize the total number of literals

~

1

is picked to be a humbef which can be
represented with the fewest bits. In other words, if all numbers in the range

required to implement the table, d
specified by (4.4) are represented as the ratio of two integers in the form

v/2%, the a,

selected is one satisfying (4:4) and with the minimum value of M.
Using the algorithm of selecting the simpliest binary number in the
" allowable divisor transition ranges, the rp-line in Figure 6 is divided into
three segments, as follows:

Segment . ‘ Assigned to

< - : :
a —.d < dtl q(i+1)
< 1
d €4 <d., | q(i)
d,.£d“hb q(i-1)

t2
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The segments are next defined as minterms and the minterms are assigned to the

appropriate output function,'fi f., fi-l’ etc.

+1° i

The'completevfamily of rp—lines is producgd by stepping along the
rp-axis (beginning at 0) in increments of Arp. By segmenting the rp-lines at
the boundaries of the P-D plot and the divisor transition yvalues, each quotient

region, q(i) for i=0 through n, is defined by a set of triplets of the form -

(dl,m’ dr,m’ wArp)
where ‘ ‘

4,  is the left end of the segment of the mth rp-line
s ) .

in q(i);
d. o is the right end of the segment of the mth rp-line
b
'in q(i); and

~ -

m+Arp defines the values of rp.

Rather than being stored as triplets, each segment is stored as a set of min-

terms.

.éiven the ordered pair, (a,‘réj, the minterm equivalent isi;; r| g
whe;e ll dénoﬁes bit string cqncatenation. The minterm ma& be represented as
a bit-string or as décimal integer equivalent of‘;; || g; treated as a binar&
integer; Eaéh tripiet, (d d mArpj is transformed into a pair of

> 9
l,m” "r,m

minterms, (MINTRN&,MINTRMr). Under this transformation, each segmentl of the

rp-line is logically defined by MINTRM. v (MINTRM

+1) v ... Vv MINTRM .
1 r

1

The triplets are converted to minterms as follows.

- and dr,m are all divisor transition values and

The qugntlt;es dl,m

are therefore of the form N/26. For a given a(i) region, find the largest §,

8 , required to represent 4 or 4 . Then 2-6max is- the maximum precision

max 1,m r,m
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s d = Nr/Dr (both- fractions

required to represent d. Given d = Nl / Dl s 4 m

1l.,m
in reduced form) rp = mArp, and NBDL = the number of bits of the divisor to

the right'of the radix point, then

MINTRM, = no{’mex + NEDL) , (25?"”‘, N,)/D (L.5)

1 1

MINTRMI._ = (mo(%max * NEDL) . (> dmax N)/MD) -1 .- (4.6)

AvuSeful estimate of the number bf minterms required to define a
given q (i) region may be derived. The QS3 algorithm will actually select the
upper and lower boundary of each g (i) region which will be a stairstep in the
transition-region between q (i), q (i + l).and q (i - 1). For purposes of-
this estimate, assume that the dividing line between q (i) anq o (i +1) is
.'the average value ﬁetween the upper boundary of q (i) and the lower boundary
of q (i + 1). The boundary between q (i) and q (i + 1) is thus defined by
rp= (i + 1/2) 4. The area of each q (i) region will be defined as the are#
between the lines d = a, d = b, rp = (i + 1/2) 4, and rp = (i - 1/2) 4. Thus,

. . b 2 5 .
Area (q (i) ) = j’ x dx = (v©.- a%)/2. ‘ (b7

a

The area is independent of the vaiué of the qﬁotient digit. Let e
be the number.of>bité to the‘rigﬁt of the radix point in r£ (Arp = 2 " e) and»
§ be the number df bits to the right of the radix point in &. Note that the
minimum vélue of § may increase~with i. If thé worst case}?alue of § is
applied uniformly in defining all quotient regioﬁs, the bits of excess>pre-
cision will'become>doﬁ't care literals in the course of minimization. To
reduce the minimizatidn problem, § may be treated as a fﬁnction of i by
defining § (i) as the minimum number of bits required in d in order to

correctly define the d (i) region for the given value of e. The number of
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minterms for each q (i) region, M (i), is thus given by

(1) = (bP=a?) 2 (e+6(1) - 1)

Figure 8 is an annotated flowchart of the program (QS3) which

following assumptions and conventions should be noted:

1. The program was written in Fortran and thus Fortran

notation and variable names are used in the flowchart.

2.  In most cases, the Fortran Variablé names ‘differ’
from that used in Section 2. Included in the comments
are statements which related the Fortran name to that
used in the derivations. For example, DLEFT = a (2.1).
The number in parentheées is the section number in
which "a" is defined.

3. Thé_divisor is restricted to positive values in é.
noﬁ—redundant representation and thus o« = 0 in

Equation U4.k.

L. Single circles on the flowchart denote entrances;

double concentric circles denote exits.

(L.8)

actually produces the definition of the output functions for Table 2. The



'READ DLNUM,
DLDENO, DRNUM,
DRDENO

DLEFT = DLNUM/DLDENO
DRIGHT = DRNUM/DRDENO

_READ ERR RP P,
ERR RP N

L1

The endpoints of the divisor
interval are read in a fractional
form. DLNUM and DLDENO are the
numerator and denominator,
respectively, of the left end.

. DRNUM and DRDENO are the

numerator and denominator.,
respectively, of the right end.

" DLEFT = a (2.1)

DRIGHT = b (2.1)

ERR RP P is the maximum positive
truncation error in rp; ERR RP N
is the maximum negative truncation

error in rp.

ERR RP P =.Y (2.3)
ERR RP N = A (2.3)

N is the maximum allowable
quotient digit. R is the radix.

N =n (2.1)
R=r (211)

=

o (221) -

Note: NR is REAL

Figure 8. Flowchart of QS3 Program



DELRP = 1./DENOM

JMAX = (N + NR) ¥ DENOM ¥

DRIGHT + 1
DO 20 J = l,JMAX:>
Fg=Jd-1
RP = F.J/DENOM
RPU = RP + ERR RP P
RPL = RP ~ ERR RP N
JM1 = J -

Lo

DELRP is the increment between
successive values of rp. DENOM

is defined by an assignment state-
ment prior to this step.

DELRP = Arp

JMAX is the upper limit on the
index use to step along the

rp-axis.

This is the beginning of the outer
loop which steps along the rp-axis.

Compute the present value of RP
to be used as rH and also the
upper (RPU) and lower (RPL)
bounds of the rp values
represented by rp.

Initialize two control variables.
If IZCK remains at O through the
inner-loop, which varies the
quotient digit, then no divisor
lransilion lnbervals occur bLelween
(a,b). IWHICH = 1 indicates that
we are looking for the first
divisor transition interval for
the present value of rp. In this
case, a =DLEFT, will be used as
the left end of the segment.

Figure 8 (continued). Flowchart of QS3 Program



QI = (RPU/DLEFT) + 1 - IR

I=Ql +1 .
ID (I.GT.N) I =N
Ql = 1

Y

DUL = RPU/{QI - 1 + NR)

IZCK = 1

- Is
DUL > DRIGHT
.9

No

©)

Figure.B.(continued).' Flowchart of QS3 Program

L3

QI, the quotient digit value, is
initialized at the greatest value’
such that the part of the line
segment formed by RP + FJ/DENOM

_and the end points of the divisor

interval, (a,b), is in the

- QI-region.

DUL is the left endpoint of the
divisor transition interval
between QI and QI ~ 1.

This tests whether or not the
transition interval is to the

left of the left boundary of the
P-D plot. - If so, QI is decremented.

A divisor transition interval within
(a,b) has been found.

This tests whéfher or not the

divisor transition interval is to the
right boundary of the P-D -
plot. If so, continue with new

- RP-value,



‘DUR- = RPL/(QI-NR)_

CALL DT (DUL, DUR, NN, MM)

CALL MINTAL (IWIIICH, NN, MM,

J-1, QI)

IWHICH = O

b

DUR is the right endpoint of
the divisor transition interval
between QI and QI ~ 1.

Subroutine DT selects the
divisor transition value between
DUL and DUR. The value selected
is returned in a fractional form
(NN/MM). MM = 2®, where m is the
smallest integer such that

DUL < NN/MM < DUR.

» Subroutine MINTAL creates the

minterm definition of the rp-line
segments. If IWHICH = 1, then
DLNUM/DLDENO is the left end of
the segment and NN/MM is the
right end. If IWHICH = 0,

".then the value of NN/MM on the

previous call to MINTAL ie the
left end and the present NN/MM
is the right end. J-1 denotes
the rp-line and QI, the quotient
region. '

Set IWHICH = 0.

Figure 8 (continued).. Flowchart of QS3 Program



hs.

QI = QI - 1 o ' Decrement QI

Check Whether or not all
. QI-regions have been accounted
for. ' '

Does

IZCK.NE.O
?
No
QI = 0
®
NN = DRNUM ' .
MM = DRDENO .Use DRNUM/DRDENO as the right end

1 of the last rp-line segment for
¢ the present. '

CALL MINTAL (IWHICH,NN,MM,
J-1 9QI)

End of DO-Loop which increments rp.

Figure 8 (continued). Flowchart of QS3 Program
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4.2.2 Minimizing the Output Functions

A diséussion of thé-minimization of two level switéhiné circuits is
beyond the scope of this thesis. Howevér, this section sketches“the approach
ﬁsed~in this work and“reféfencés a detailed description of the élgorithms.
These algorithms are noteworthy due to the fact that they Qill minimize
functions of many variables involving many mipterm;. _In the present work
they have been used to minimize functioné of 19 vériables Wiph over 3100

mintcrmso.

The program QS3 generates a sumrof—products-(each product is a min-
term) definition of each output function. For each function, the remaining
tasks are: 1) to obtain all the prime implicants of the function; and 2) to -

select a minimal cover which consists of some subset of all prime implicants.

The program used to accomplish step 1 was recenily developed Dby
V. G. Tareski [34]. It is an extension of an algorithm developed by Carroll
et. al. [35] in late 1968. Tareski has coded his improved version of the

algorithm in both PL/1 and Fortran IV on the IBM 360/75.

~ The output ‘from the program (PI for Prime Implicant) is a list of

prime implicants, each in the form:
TTTTTT, where T is

1l if the corresponding variable appears in the true form;‘

0 if the corresponding.variable appears in the complement
form ; and |

X if the cdrreéponding variable is not present.

Each prime implicant is éssigned an identif'ication number. The PI program

also partially solves the covering problem in that'it identifies all éssential
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prime dimplicants. A prime implicant is essential (must be selected for the
covering) if it covers a.cell in the n-cube representation of the-function.

which is not covered by any other prime implicant.

The program generatéé 4 set of conétraint équatioﬁs whiéh must be’
simulféheously satisfied to guarantee covering. The constraints are
specified by a set of equations, each of Which is a Boolean sum of prime iﬁ;
pliéant identification nuﬁbers. The identification number is "true" if the
prime impiicaht~is selected; félse otherwise. For example, two such equations
might ve | |

' 2v5v7T="1

5v-9v1ll = '1'

The set of constraint equatioqs pose a cbvering:problem, i.e. the
problem of fihding a set of prime implicanfs which satisfy every equatién.
The problem is further constrained by the réqﬁirement that the sum of‘the
literals of the selected prime implicants be minimal. Fortunately, Liu [36 ]
and Ibaraki et. al. [37 ] recently develébed a very efficient algorithm and
computer program which will solve this problem. The'program‘accepts the
constraint equations together with the number of the literals’ in each prime
.implicant, ﬁnd produces a:minimal eost covering. - These prime implicants
together with the esgential'prime implicants found by the PI program con-

stitute the total function. An example is given in Appendix B.

It must be noted that the minimization prbgram is not making explicit

use of "don't care" minterms. If e' is the total number of bits in rp and §'

~

is the total number of bits in d, then the total number of minterms which can

~ A 6' + €|

be formed by concatenating rp and d is 2 . Many of these minterms may

not correspond to area within the range of the P-D plot and therefore are don't
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cares in the sense that theyAmay_be arbitrarily édded'to,or.deleted from a
function depending upon which yields the simplest function. - In the cases
actually Aesigned, the number of don't- cares far éxceeds the number of true -
minterms. Fpr example, with a divisor in the range 1/2 té 1,. the number of
minterms required to definé a P;D plot with p = 2/3 and a uniform grid of

o8 4 o7

d+e

. -+ .
is .25 r'26 e, and the number of don't care minterms is

.75 r 2 . Since in cases studied &+c may be as great as 1l, the don't care
minterms would severely tax the minimization routines. They have, therefore,

not been included explicitly. The potential effect of thé don't cares can be

approximated in specific cases considering the following observations:

1. For 4 in the rénge 1/2 €4 ¢ 1, the don't care
minterms correspondingAto area of the P-D plot’tb the
left of 4 = 1/2 would eliminate the a bit of weight
1/2 from all output functions of Table 2. The cost
in }iterals, therefore, ?edugéd by the number of
. Prime impliéants. |
2. If the don't care minterms above the upper
‘boundary of the g (n) rcgion arc combined with fhe
true minterms defining q (n), the.output function
for q (n) is greatly minimized.. The cost of q (n)
will, therefore, be neglected in estimating the total

cost of Table 2.

3. If-the don't care minterms above the upper
boundary of q (n) region are combined with the true
minterms defining q (i), i # n, then some literals

may drop out of the bit string corresponding to the
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~

inteéger poftion of rp, but none areAremoved from the
" fractional part of r;~or’a. This reduction may be
approximated by studying the‘problem of minimizing a
decoder of the integers:O through n, each of'bit
length, ;ogér.x The minterm; n + l'through r-1
should be treated aé don't cares. It has beenvestimatéd
that this effect will reduce the total cost of Table 2 .

by about 15%.

4.3 Deriving a Minimal Cost Design for Table 1

This section describes the algorithms used to synthesizé'a design
for Table 1 of a Type 1 sfructure. The approach can yield only an estimate
bf minimal cost since the'minimiZation aigorithm is applied to each oﬁtput
lfunction independent of the otheré. Furthermore it has not been demonstrated
" that the algorithm used to define the output function necessarily produces g
minimal cost design.'(Despite'these éhortcomings, the algorithms appear to
produce sufficiently éécurate results for purposes of cos£ comfarison and for

studying trade-offs between the cost of Table 1 and Table 2.
' The following is a list of the steps in the process of generating
Table 1 and evaluating the cost:
1. Set the values for design parametefs =n, r, a, b, a, 8, Y,A.A;

2. Run the program QSL (described in Section 4.3.1) to produce a
sum-~of-products (minterm) definition of each output function of

Table 1.

3. Run the program PI (Section 4.2.2) with each set of minterms

produced by QSk as input.
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Run' an' Integer Linear Programming routine to find a minimal cost

set of prime implicants which satisfy the constraints produced

“in step 3.

Tabulate the total number of 1iterals‘required to define each
output.function.‘ The total of these values will be taken as the

cost ofhimplémenting Table 1.

4.3.1 Defining the Ougput_Funcfions

Generating a quotient digit using a Type 1 structure'is accomplished

as follows: .

d.

R

The

A ~

Given d, form an estimate of 4, d, and from 4 form an. estimate

“of 1/d4, A.

Formy = rp * A"+‘l/2.

Take the integer pbrtion of y as the quotient digit, i. e.

qa=1I (y).
algorithm consists of two steps:

For a given Afp, Y, A, n, ry &, B, find a D such that the

selection critereonvis satisfied everywhere on the P-D, plot.

~

" The d-values are of the form j Ad, where j is an integer. ZFach

A A

a rcprcocntb o divicor intcrvel 4 to d& + Ad. For every 4, we.
must find a value of the function A (d) such that if (4, rp)

implies q = i, then I (A(d) rp + 1/2) = i.
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The strictest bouhds occur in the vicinity of’the transitions
between adjacent quotient regions. For a given & éonsider rp lines in the
vicinity of the intersection of d and the upper boundary of q (i-1) and lower

boundary of q (i). See Figure 9.

~rp=(i-1+p)d

_— rp=(i-p)d

C§dead

Q>

Figure 9. Portion of P-D Plot Illustrating Constraints in Finding A(a){
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Each rp-line has a division transition range between i and i-1 with

left end given by

a, (rp) = ( (zp+y)/(i-1-p) )+ e - (k9)
and right’énd given by
8, (xp) = (xp- 1)/ (ip) | (4.10)

This derivation is given in Section k4.2,1.
If d < 4 (rp) ‘ (k.11)
then a quotient digit of i must be selected and thus a value of A(d)

must be found such that (i-1/2)/rp = A(d) < (i+1/2)/rp.  Similarly, if

d +4ad>d (rp) 4 (4.13)
then a quotient digit of i-1 must be selected and thus an éstimatevmusf "
be found such that

(i-3/2)/rp € A(d) & (i-1/2)/rp »} O (had)

~ ~

For a given value of I aud d, L£ind the wminimum value of rp such that
Equation 4.11 is true. Denote this quantity rptdp' Also find the maximum value

of rp such that Equation 4.13 is true. Denote this value TPyot”

‘Substituting these quantities into Equations L4.12 and 4.1k,

respectively, yields

n

(1-172)

rhyop € AR € (i1/2)/rp, (.15)

(i-3/2) ¢ A(@) ¢ (i-1/2)/rp, o (4.16) -

Prot
A value of A (d) is needed which satisfies both Equations L4.15 and

4.16. Such a value must be within the range

(1-1/2)frp,, & AM) < (1-1/2)/rp, - (haa)
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Denote the lowef bound of this range, LB(i), and the upper bound,
UB(i). Now for all i, find maximum value of LB(i) and designate it LB max.
Find minimum UB(i) and designate it UB min. Then select A(d) such that

LB = A(d) = UB_, and A(d) is the simplest binary number in the range.’
max : min . : . ’

Every value of 4 is of the form mAd where m is an integer and 4 is

a negative, integer power of 2. The index; m, is therefore a unique, minterm

definition of 4. Let a_l'ao . al.....aj be a bit string repreéentation of

A(d). Each bit corresponds to a Boolean function of d and thus a Boolean

function of m.

a-_l = g_l m
& = & (m)
2) =g (u)
a, = . m

3 = 8; (m)

Each funotiqn, 8; 5 is defined as the OR of all éeminterms for WhiCh.
2; is 1 in the bit string version of A(a). In other ﬁordé; the set bf'min—
terms, Mi’ corresponding to giAis
M, =  {m[ai in A (mAd) is 1}
Figﬁre iO is éﬁ énnotated flowchargtof the program (QS4) which ~

actually produces the definitions of the output functions for Table 1.

pv3
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For given values of r, n,% , B,
A, Y find the maximum Ad which
will satisfy the precision
requirements everywhere on the
PD-Plot.

Generate the array NDT (I)

where NDT (I) is the numerator
of the Ith value of 4, where

d = (I - M) «Ad, M is a constant
determined by the minimum value
of d. Let MMl be the number of
elements in NDT.

DELD = Ad -

This loop. increments the
value of d. MMl is the
number of 4 values.

Set quotient digit
value at N. Work

- from Q@ = N down to
Q= 1.

Figure 10. Flowchart of QSh Algorithm
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ERPP = 1./DELRP ‘
ERPN = O i Define maximum
truncation error
in rp.
ERPP = 1./DELRP
ERPN = ERPP
NP1 =N + 1
NM1L =N-1
H
_ _ Work from Q = N
Q=1NP1-K DOWN to Q - 1.

|

J =D % (Q-NR) * DELRP

Figure 10 (continued). Flowchart of QSh Algorithm

Find minimum rp for which-
transition interval could
intersect dt'

Note: DELRP = 1/Arp.
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RP = J/DELRP ' Find left end, DL, of divisor
RPU. = RP + ERPP : transition interval for present
DL = RPU/(Q-1+NR) - * RP.
ERPP = v
) . DL = dl
. ¢ ‘a=0
IS . - :
DL> D? J=J+1
Yeé
IQ = Q . : ' RPTOP has been found .
DIMIN(IQ) = (Q-.5)/RP _ IQ is an integer version
$‘ - of Q. :
J=J -1 ’ Move down to next lower

; rP.

RP = J/DELRP
RPL' =. RP-ERPN
DR = RPL/(Q-NR).

Find right end, DR, of divisor
transition interval for present-
RP.

DR < D + DELD

o

'

-

Yes

Figuré 10 (continued). Flowchart of Qsk Algoritim
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DIMAX (IQ) =.(Q-0.5)/RP , RPBOT has been found. |

For J =1, N
Find
LBMAX = max (DIMIN(J))
UBMIN = min (DIMAX(J))
Subroutine DT finds a value for
. g : the inverse of D, DI, such that
CALL DT (LBMAX, UBMIN, DIN (I),.DID (I)) ‘DI = DIN (I)/DID (I),
: LBMAX < DI < UBMIN, and DI is
: the simplest binary fraction in
l the interval.
TN = DIN.(I)
TD = DID (I)

Figure 10 (continued). Flowchart of QS Algorithm
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DO 68
\ K=1, 12

TN = TN - TD

58

This DO-Loop assigns each
minterm corresponding to

a d value to the appropriate
output functions. '

TN = TN + TD

IP(K) = IP(K) + 1
A(K,IP(K) = NDT(I)

v

IP(K) = IP(K) + 1

A(K,IP(K))= NDT(I)

@ '

END

1t D = NpI (L) * DELD implies
bit K of the output is 1, the
NDT (I) is added to the

minterm list for A(K). IP(K)
the pointer for the Kth list.

Figure 10-(continued). Flowchart of QS4 Algoritim

is
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4.,3.2 Minimizing the Output Functions

The same techniquesused to minimize the output functions of Table 2
are used to minimize the output functions of Table 1. These were described

'in Section k4.2.2.



>. RESULTS FROM DESIGN PROGRAMS .

5.1 Preliminary Remarks .

o

- The series of computer runs of the-design and anélysis routines
described in the last chapter géve rise to four types of results. Fifst,‘the
Table 2 for various values of design parémeters. But in retrospect it appears
that the value of the computer was more insight than numbers. Studying the

the problem of determining cost without actual desigh.

A third result was a discrepancy. For some parameter values the
theoretical results and the'results,obtained from the computer—aided’synthesis
. were 1in disagreemenﬁ. Closer study revealed a weakness in the QS3 algorifhm.
The fourth and finai result of the work to-date was therefore an'improved

algorithm for designing Table 2.

5.2 Numerical Results from‘Design Programs

5.2.1 Cost of Table 2 for Type 2 Structure

'Considering the large number of possible combinations of parameter
values, éven'if restricted to practical cases, very few designs were actually
generated in this present work. vAfter generating the cost data for Table 2
with r = 16, n =10, a = 1/2, b =1, y = A =1/16, o = 0, and B = 1/256,
suftficient insight was gained to propose an analytic expressidn for the cost
of implementing each quotient region of the table. Two additional runs of

the Table 2 routines with different parameter values tended to substantiate

60
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- the predicted cbsts, but several points stood out as discrepancies. In

attempting to reconcile the disagreement, a flaw in the QS3 algorithm was

discovered: the selection of divisor transition values as the simplest binary

number in the transition interval does-'not necessarily produce & minimum cost

design. In view of this fiaw, furthér runs of thé algoritim were not Justi-
fied; The major emphasis was shiftéd to that of déféloping a Teasonable
deri#ation of an analytic cosﬁ.expréssion‘and to developing an algorithm which
would in fact yield correct results which could be used ﬁo‘vérify the ex-
pression. The pérameter valués selected correspond to practical casés. Lgt
r, denote the radix and assume'a multiplication structure in which the follow-
ing multiples of the multipland are available: + 1l or + 2, + L or + 8, + 16
or + 32, ... , i“(r—2) or + (r-1). Each of the groups such as + L4 or + 8,

correspond to a two-way shift gate. Only one of the two multiples may be

selected simultaneously. The magnitude of the maximum multiple which may be

formed, n, is therefore 2 + 8 + 32 + ... + (r - 1) = 2 (r - 1)/3. Since the
same structure is used for division, the maximum quotient digit is also n dnd
therefore in the cases studied, n = 2 (r - 1)/3 and thus the redundancy ratio,

p, 1s 2/3.

As mentioned earlier, the study was restricted to the first quadrant
of the P-D plot. The divisor ranges considered were the binary normalized
case in which 1/2 < 4 < 1, and a second case for which 3/4 < 4 < 9/8. This

second case corresponds to a case in which a divisor in the range 1/2 s d <1

is multiplied by 3/2, if 4 < 3/bL.

The maximum truncation errors in rﬁ, Yy and A, are initially set to
the maximum value for which the criterion in Section 2.3 is satisfied, 1/16.

Error was assumed in both directions so that the results would be applicable'
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to symmetric.adders or subtracters [10].

The divisor is strictly positive and non—redundantiy represented
thus o # 0. The positive truncation error was the maximum'necessary to
satisfy the selection criterion (Section 2.3) everywhere on the P-D plot for

the given value of y and A.

Tabie 2'summerizes the costbcomputations fer a Taple 2 structure with
r=16,n=10,8=1/2,b=1, y = 1/16, A = 1/16, = 0, and 8 = 1/256.
Radix 16 was selected as sufficiently 1§igé te be interesfing but notvso Lsrge
as to demand greet expense of computer time. Table'h presehts“corresponding
results for divisorslin the'range 3/h €4 < 9/8 No-cest vaiues are giveu'for
the upper quotient reglon, q (n). These reglons were not mlnlmlzed since the
results would be hlghly inaccurate without the ablllty to 1nclude don't care
minterms, The upper boundarv of g (n) need not be 1mplemented since the range
restfictions imposed byithe div1s1on algorithm would prohlblt (d, rp) values
to occur ebove‘the q‘(n) pegiou. Ail minterms corresponding po points above
the liue rp = (n + pj d are therefore don't care minterms.which sharply

minimize the cost of implementing the adjacent q (n) region.

Note thalt the cost of & Table 2 structure for r = 4, n =2 is also
contained within fTable 2. Neglecting the upper region q(2) the cost is the
cost of q (0) + q (1) for radix 16 less 2 literals per required prime

lmplicant.
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Table 2.. Summary of Cost Calculations for Table 2 with

1, y = 1/16,

r =16, n=10, a=1/2,b =
X =1/16, a = 0, 8 = 1/256.
Min. No. . Min .No Min. No.
A of Bits of 'Minl ~ of Prime
No. of Required % " Impli- R

. . A erms No. of Literals Average

Regi Bits in d to . cants to R R g
egion . rp Define to Define Define to Define Reglop Fan~in

' the Ehe. Region ,(.) F'(')

Region . .Region M' (1) c'(i i

Est. Act. - rp 4 Total
0 8 2 12 12 L 25 6 31 T.75
1 8 I 96 99 .13 82 27 109 8.38
2 8 5 192 195 21 138 62 200 9.52
3 8 6 384 384 36 236 129 365  10.1lL
L 8 6 384 385 45 296 190 L86 10.80
5 8 7 768 765 60 389 269 658 10.96
6 8 . T 768 TTU 72 hes 334 798  11.08
7 8 7 768 T64 84 . skl L2k 965  11.L9
8 8 7 768 TT1 . 96 627 507 113k 11.81
9 8 8 1536 1526 109 711 584 1295  11.88
Totals 540 - 3509. 2532 60L1
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Table 3. Summery of Cost Calculations for Table 2 -

with r = 16, n = 10, a = 3/4, b = 9/8, v = 1/16,

A =1/16, o = 0, B = 1/128.
Min. No. . Min. No.
of Bits  an- No. e Prime
No. of Requirea ©OF Min- Impli-
: Seal terms P No. of Literals Average
: . Bits in d to . cants to . . B
Region . . . to Define X to Define Region Fan-in
. in rp Define the i Define :
the Reszion Region - .
Region € M (1) c'(i) F'(i)
' Est. Act. rd d Total
0 8 b 2h 2k 2 10 7T 17 8.50
1 8 4 45 Lh 7 40 26 66 9.43
2 8 5 90 91 1k © 8+ 57 14 10.07
3 -8 6 180 180 - 23 139 101 20 10.h3
L 8 6 - 180 181 27 166 127 293 10.85
5 8 T 360 359 32 199 160 359 11.22
6 8 T 360 362 40 oke 212 W58 11.45
T 8 7 360 358 5k 332 301 633  11.72
8 8 T 360 363 5, 339 305 644 11.93
9 8 T

360 358 61 383 351 73k 12.03

Totals 31k 1938 1647 3585
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5.2.2 Cost of Table 'l fof‘Type 1 Structure

The design of Téblé 1 is conéiderably less complicated fhaq that of
Table 2 since it is a function of only one input rathér thén two;” The costs
-for-raaix ﬁ; 16, and 6L weré géneratéd'and éummaxizéd in Table L. The com-
plexit& of'the table is adéquéte to proaucé a qudfiént digit in thé leadihg

a. . a

o " 8 ---

bits of the product A * rp, where A = £(d) and is of the form a_;

Table 4. Summary of Cost Calculations for Table 1 with

a =1/2,b=1, y = 1/16, A = 1/16, a = O.

Note: NPI = Minimum Number of Prime Implicants
) NL = Minimum Number of Literals

e . .
Output ‘r=k, n=2 "r =16, n=10 r =64, n=4h2

Bit B =1/16 B = 1/256 B = 1/102k4
NPI NL " NPI - NL NPI . NL
ao 1 1 1 1 ol
ag 2 L 8 ‘ 13
a, 3 T 8 29 9 38
ag ' 3 T . 12 56 18 91
ah , ) 16 T9 28 - 153
as 19 95 R TS 239
a 18 - - 109 63 Lo1
ar 80 554
ag 80 - -?79
a9 9 T0

Totals 9 19 7 377 333 2139
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5.3 Analytic Results Concerning Cost of Table 2

5.3.1 Preliminary Remg.rks

Figure‘;l is‘a:plot of cost in literals of implemeﬁting q(i)'veréus
i for results given in Tablé 2. To a first approximation the cosf variééa
linearly'with i. 'This observation led to a comparison of the empirical results
with the theoretical, indiréct méasure'of the cost of seléction'uf quotient
digits suggested by Robeftson [5]. This cost function also exhiBits é similar
behavior with i.‘ In £he followiné we WillAfeviéw aépecté of Robértson‘s work,

suggest extensions and then propose an expression for the eost of implementi‘ng.

Table 2 as a function-of design parameters.

1400

1200 /

1000 ' :
4 , 4

800

€00 /
400 ‘
— 17~

%

Cy2 (i) - MINIMUM COST (LITERALS!

200 //

) 2 3 4 5 6 7 8 9
i~ QUOTIENT REGION, q(i)

Figure 11. Cost of Implementing q(i)-Begion vs. i for Data in Table 2.
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t

5.3.2 Definition of s., s', .and.s"
. 1 1 1 .

In Robertson's work the design problem is presented as that of
choosing comparison constants against which er is compared and of determining
'the divisor range for which each comparison constant is valid. The proposed

measure of cost of selecting between q(i) and q(i-1) is the minimum number of

comparison constants required to cover the given range of the divisor.

The selection ratio, Oy is first defined. It is the ratio of the
slope of the line defining the lower boundary of q(i) to the slope of the line
defining the upper boundary of q(i-1), i.e.,

Os _ i-p
i-1+p

The selection ratio is a relative measure of the width of the divisor interval
for which a Single comparison constant is valid. The minimum number of divi-
sor intervals required to correctly distinéuish between q¢ = i and q = i~-1
corresponds to the number of treads in the staircasé between the upper boundary

of q(i-1) and lower boundary of q(i).

Let S; denote'the minimum number of steps required to span the over-
lap region between q(i) and q(i-1) for the divisor range a to be as shown'in
Figufe'l2. The slope of the upper boundary is v = i;l+p and the slope of the
lowef boundary is w = i-p. Let Al be the width gf the righfmost tread, A2 bg'
the width of tﬁe second tread (moving from right to left); etc. ‘The quantity,

h, is the height of the riser between tread 1 and‘tread 2.

By definition

v % n/b, (5.1)

| | w = n/b) (5.2)
and thus, '
A, =0, AL . - (5.3)

2~ %% "1
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rp
446 A
. R i
L -
h
B, | a8
Q
Az
t-1
—» d
v=i1i-1+p w=i_=p'
Figure 12. Graphical Interpretai';ion of s..
in generaul, _ (kel) .
: By = g b = e (57‘4)
Py definition
Z (k-1) - o .
.Ui Al - b -a. (505)
k=1 : -

A N b-a. - (.5-6).
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Since A) = b(1-0,), s, is the smallest integer that satisfies

. T £ a/b . ; : - (5.7)

1

For present purposes, consider o to be a continucus variable, rather

than an integer. Then,
si = lOg(a/b) /logo-i . ) (5-8) '
. We will now change the expression for 85 into a form which makes apparent the

" linear behavior with i. By the properties of logarithms

log (0;) = log (i-p) - iog (i-1+p) . (5.9)
= log (i+x) - log (1-x)
where x = (1-2p) / (2i?i).

With p restricted-to_ﬁhe range 1/2 € p < 1, then -1 < x'€ 1l and thus a

series form of log(l+x) - log(l-x) may be used. Therefore,

x3 x5 ' x2m—l ‘ 3
log 0, = 2| x+3—+ St h ot e | (5{10)

2x + h.o.t.,

and thus,

s; = log(b/a) (i-1/2) / (2p-1). o (5.11)

~The quantity, éi’ as defined so far is based upon the assumption-éf
full precision in théirgpresentation of the divisor and partial remainder. The
expression for s will néw be modified to yield the miniﬁum number of steps
required to transerve the transition region between q(i):and q(i-1) when.only
estimates of rp and 4 are available, rﬁ and 4 respéctively. Assuﬁe as before
_that rp is reéresentative of rp-values in a range given by rp ~ A £rp £ rpty ,

N

and that 4 is representative of d-values in the range ia-o £4¢ d + g.  For
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the. time being, aésume that rﬁ and a.may assume any value, not merely discrete

values.

If we consider the staircase to be the upper Boundary of the (a, ri)

—l)’ defining

values defining the q(i-l) region, then for all pairs, (&i;l, rii
the risers and treads, the restriction

by £ v, , - | .
must hold. Thinking of the staircase as the -lower boundary of values defining'

the q(i) region, then for all pairs (ai, rii) defining the. risers and treads,

the restriction

rp, - A = w(d; +8) ' (5.13)

must hold.

- Since adjacent values of rﬁ are separated by Orp and adjacent values

of d are separated by A4,

. = 4. - A4, and (5,14)
i i-1 :

rp, = rii_l + Arp. | (5.15)

The staircase must satisty both restrictions 5.12 and 5.13 subject to
equations 5.14 and 5.15. Substituting Equations SFlh and 5.15 into 5.13 yields _
another regtriction in terms of rii—l and di—l’ namely

Core rii—l + drp - A= w(&i_ - 84+ B). (5.16)

1
For a given value offrpi;l the meximum tread width is therefore the .distance

between the intersection of the line rp = rps_q and the lines

yp = w(d -ad+B8)+X-Arp, and . (5.17)

;rf = v(d - a)- O o © 7 (5.18)
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Y |
J
1
2
l 3
4
[
i-1
l
[}
i
|
|
! .
. |
o L - d
0 d
v = i-1+p - w = 1-9p
<:> rp = vd o (:) rp = w(d - Ad + B) +'A -'Afp
(:) rp = v(d - a) -~y '(:> rp = wd .

Figure 13. Graphical Interpretation of si.

Figure 13 is a graphical interpretation of the minimum step boundary
between q(i) and q(i-1l) for this non-precise case.
The effect of the imprecision on silmay be thought’of as shifting

the divisor range of the P-D plot by an amount, d' given by

arv = A+ y - Arp + va + w(B - Ad) )  (5.19)

20 - 1

The value of 84 in this case, denoted si, is‘given by

. _ log( (a-a")/(b-4a" )" ' o
5 T £ log o, N - (5.20)
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Note that this equation is equivalent to replacing a by a-d' and b by b-d' in

Equation 5.8. This may be verified by replacing 8,

in Equation 5.6 by the

appropriate expression in the present case, namely by

b, = b- w(b + B - Ad) ; (y + A = Arp) + o ) (5.21)

Geqmetrically, d' is the value of 4 at the intersection of the lines
detined by kquations 5.l( and 5.18.

Equation 5.19<implies.that it is not mefely the impreciéion but
 rather the redundancy in the rep?ésentation of rﬁ and d which increases the
number of freads in the boﬁndary staircase. Firsé; note that to insure cover-
ing, i.e. that every value of rp and dlmap into atileasf'bne fi‘and a,lrespec-

tively, the inequalities ' ' e .

o

A+ y-Arp 20, and. L . (5.22)

o+ B8 -0d20 ' : (5{23)

must hold. This restriction forbids 4 from'being negative and thus s; being
less than si.' If A+ Y‘- Arp = 0, a =0, and B - Ad = O, then s{ = si;‘ This
corresponds to the case in which every rp and d value map into one and only one

rﬁ and &, respectively.

In ‘terms of the P-D plot this means that there is no overlap between
the area represented by the pairs (4, .rp). -.In this case, even though rp # rp,:
and d # d,. the selection is theoretically no more complicated than in the full

precision case.

For the cases treated in this study A = AMArp, vy = Y'Arp, o = 0,

B = Ad, and thus

a' .= T (5.24)



The analysis-so far has allowed for an error in representing d ana rp.
but hag not restriéted the value of d and ri. In practice these are formed by
truncafion'and therefore are restricted to inﬁegral‘multiples of Ad = 2—6 and
AArﬁ = 27% where 6 and € are the number of bits to the right of the binary point
in the representation- of a‘and rﬁ respéctively. The location éf the tfeadg.and :
risers of the‘actual staircase which can be implemented may therefore simulta-
neously differ by as much as Ad and Arp, ¥espectively. The maximum number of

steps (taking into account both error and discrete effects) required to define

the boundary between q(i) and q(i~1) may therefore be given by

w _ log( (a-4") / (b-4"))
5i T log o, ' (5.25)
i 4
where
4 e s

g = Aty-odrp+2  +v(e+27) +w(p - Ad) . (5.26)

N 20 - 1
The actual number of steps required, S act is therefore bounded by

Y e ra ', 1t : .

Si i act 5i - 4 (SigT)

Equation 5.26 ﬁay be used to determine the minimum values of € and §
required for a given P-D plot. The qﬁantity, sg,'and thus the cost, will tend
to infinity as 4" approaches a. To insure that every region of the P-D plot
may be ‘correctly defined for éiven values of A, v, a,‘B, the"quantities € and

§ therefore must be selected such that a" < a.

5.3.3 An Estimate of Cost as a Function of si

In this section we will hypothesize an expression for the cost of
implementing the a(i) region of a given P-D plot. Consider the region to be

defined by a set of minterms corresponding to thé set of ordered pairs (&, rﬁ)A
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for which q = i. Let Ad for the région be 2_6(1) and Arp for the region be
2—8(;).* The number of minterms to define the regibn.willgbe.
M(i) = (b2 - o2) o8(1) *8(i) -1 (5.28)

The fan-in to each minterm, F(i) is given by:

F(1) = e' +8' (5.29)
where - A“ - e! = logév; + ¢e(i), ana B “ , ' (5.30).
§' = I(l,og.z (b - 2‘6(1)) +1) + 8(i). (5.31)

The term I (log2(b—2—6) + 1) is merely .the number of bits of the divisor to
the left of the radix pointf Recall that I(x) has been defined as the integer

portion of x.
The cost before minimization is given by

Cpli) = M(i) F(1) +M(1) (5.32)
The term MF is the number of literals in.the AND gates,.the term M is the

number of literals in Lle OR gate.

: .Aftér,minimization . . .
cpli) = Mr(i) (Fr(1)+1) . (5.33)
where M'(i) is the number of prime implicants and F'(i) is the average fanin

to each prime implicant.

In order to obtain approximations of M'(i) and F'(1), we now approsi=

mate the effects of minimization by the following algorithm.

‘Figure 14 illustrates a portion of a quotient region. Note that it
may be defineéd by a set of adjacent rectangles (denoted by heavy lines) each
of which is defined by a set of minterms (denoted by small squares). ‘Consider

one of the recténgles of width W ahd‘height H. Assume that minimization
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Figure 14. Model of the q(i) Region Used in

Approximating Effects of Minimization

procedes first in the d-direction by combining adjacent minterms'which differ .
by iny the low order bit.” If there were initially M.minferms in the recfan—

gle, after the first step,tﬁere are M/2 implicants. ‘Next, the implicants whi;h
differ only in the next to low-order position may combine to produce M/4 impli-

cants, etc. The minimization in the d-direction pontinueé for kd =1 (Iog2 W)
k . . ~ . . g

steps to form M/2 d implicants, Similarly, combinations take place in the rp-

: kd + krp '

.direction, further réducing the number implicants to M/2 where

-Krp =T (log2 H).
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The minimization of the quotient region will be characterized by an

average rectangle of dimensions WH. = The width is defined by
5 -
W=2(b-a)/ si : (5.34)
there,
ST = 14 oot
s} (si + si+l) / 2. (5.35)

The quantity. W, is therefore the average width of the minimum-number treads

defining the upper and lower boundary of q(i). The height is defined by
€ ' ‘ .
H =2 (v+ta) / b4 . (5.36)

which is the average value of the distance between rp = (i + 1/2) d . (nominal

upper boundary) and rp = (i - 1/2) & (nominal lower boundary).

The preceeding afgument suggest & cost expression of the following

form: ¥

f, M(iy (F(i) - k * 8,) - _(5Q37)

2

c' (i)

where

M and F are defined by Equations 5.28 and 5.29, respectively,

and k is defined by

= log, WH | : | (5.38)
The factors ¢l and ¢2 are‘constants which will be determined
empirically. Equation 5.37 may be rewritten as
cer(i) = M'(L) FU(4) (5.39)

where

M'(i) = 2 ¢l gz-, and 7 T {5.40)

*¥Note that C'(i) is the number of literals in the AND .gates;
C%(i) = C'(i) + M'(i) is total number of literals for the region.



T

L ¢2 T si

F'(i)=1ogé'~ + I (1pg2 (b-2%) +1). ” (5.41)

b2—a2

M'(i) is the minimal number of prime implicants required to.implement the
Boolean function for q(i) and F'(i) is the éverége fanin to each prime impli-

cant.

- We now use ﬂumerical results frdm fables 2 and 3 to find values for‘
¢l and ¢2.and to test the predicti&e wérth of Equation 5.39. The value of ¢i
is obtained by a:least'squares fit of the actual valueé pf M'(i) to Equation
5.&0. The value ofv¢2 is oﬁtained‘by a least squares fit.of the actual v§lues
of F'(i) to Equation S.Ml. Values-of ¢l = é.12 and ¢2 = 1.68 were. |

obtained.

Table 5 summarizes the results of the fit. Figures 15, 16, and 17
display the results graphically with Ezvas the independent variable. The héavy

line denotes the predicted values; the circles denote actual #alues.

Note that Equations‘S.hO and 5.41 do not explicitly.account»for the
discrete effects resulting frém the fact that thé treads and risers of the
g-region boundaries are restricted to integer multiples-of 2% ana 2?6,
‘respectively. The effect is included empirically in the choice of ¢l and ¢2.
AThere‘are indications that a more explicit cost function of both si and‘s;,
which does include discréte eftfects, might be found. For present purposes,
however, tﬁe'estimates given by Equations 5.L40 and.S.hl were judged to be

adequate.
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Table 5. Results of Least Squares Fit of M'(i), F'(i), and C'(i)
for Data.from Table 2..

a=1/2,b=1 .
i st M(4) . F'(i) | c'(i)
.Equation.. @S3° . .Equation. - @83 .Equation Qs3
0 1.38 5 b4 7.6 7.7 Ly 31
1 . 2.83 12 13 8.6 8.4 103 109
2 '5.72 2L 21 9.6 '9.5 234 200
3 8.59 36 36. 10.2 10.1 373 365
L 11.46 48 45 10.6 10.8 519 486
5 14.33 60 60 1.0 - 11.0 668 658
6 . 17.20 T2 72 1.2 11.0 821 798
T 20.06 85 8L 11.4 11.5 977 -965
8 22.93 97 96 - 1n.6 11.8 1135 113k
9 25.80 109 109 11.8 11.8 1296 1295
a=3/k, b =9/8
0 0.7k 3 2 7.8 8.5 2k 17
1 1.51 6 7 8.9 9.4 56 66
2 3.06 13 1k 9.9 10.0 127 141
3. 4. 60 19 23 10.5. 10.4 203 - 240
4 6.13 26 o7 10.9 10.9 282 293
5 7.66 32 32 11.2 11.2 363 359
‘6 9.19 -39 Lo 11.5 11.5 LLé 458
T 10.72 ks . Sk 11.7 11.7 531 633
8 12.26 52 54 11.9  11.9 617 6Ll
9 13.79 58 61 12.0 12.0 70L T3k
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Figure 15. M'(i) versus ~sTl
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5.3.4 Discrepancies

The two cases for which numerical results Were‘presenfed in Section
5.2.1 différ only in the range of the divisof. We should also consider thé
effédt of varying the precision in the éstimafes of the operands. The program,
QS3, was therefore also run for thé same parsmeter values as listed in Table 2
| (Section-2.5.1) except that Arp, vy, and A were decreased frdm l/i6 to 1/32.
‘The minimized results are:shown in Table 6. Numbers.ﬁnder the heading
'Equation' are from the evaluation of Equation 5.39;‘numbers under the head-

ing 'QS3' are from the QS3 and minimization programs.

Table 6. Comparison of Results from Estimating Equation

and the QS3 Program for Arp = 1/32.

i 57 L) B IC c' (1)

Equation QS3 - Equation QS3 Equation QS3
0. 1.16 5 3 T.37 T.66 36 23
1 2.38 10 10 8.kl 8.20 8l 82
2 4. 80 .20 20 9.43 9.65 191 193
3 T.21 31 . 3k 10.01  10.02 306 . 3b6
Y 9.62 hi - LY 10.43 10.8 425 476
5 12.03 51 62 10.75  10.9 548 679
6 1k bl 61 67 11.02 1.4 ¢ T49
T 16.85 71 8Y S1m.2k 115 802 970
8 19.25 82 90 11.43 11.9 933 1067
9 21.66 S92 110 11.60 11.8 1065 1303

In Figure 18, the data from the C'(i)-QS3 column of Table 6 have
been added (denoted by X's) to Figure 17(a).” Note that these X-points start
near the predicted values (solid line).but increasingly fall above the

expected values.
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Figure 18. C'(i) versus s,

for Arp = 1/16 and Arp = 1/32.
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The source of this discrepancy turns out not to be the predictive
equations, as might be first suspected, but ratﬁef the QS3 algorithm; speci—
fically the decision to pick divisor transition values as the simplest binary
fraction in the allowable interval. This choice was made in the early stages.
of the research when other meésures of cost were being used and in changing
to the minterm appréach it was not evaluated critically. Fortunately, as
will be explained, it was péssible to salvage the numerical results produced
by QS3. A correct algorithm has also been found and is described in the

~ Appendix.

The essence of the problem is the failure to fully appreciate the
two-dimensional nature of the minimization problem. For several of the g-
regions which produced doubtful results, the areas corresponding to the prime
Vimplicants of the reduced function were drawn on a P-D plot. The upper and

lower stairstep boundaries were therefore made apparent.

By close inspection of the boundafies, it could be seen that the
decision to force the.location of risers to the simplest binary fraction some-
times over-constrainted the location of the tread. In other words, in some
cases for which a divisor interval would have been spanned with one tread, the
algorithm generated two treads. Furthermore, each qf these extra treads
required an ex£ra prime implicant to define it. Thus, although the output
function was minimal for thg given definition of the g-region, the given
definition of the g-region was unduly complicéted and fherefore not truly
minimal. By manually revising the boundary to eliminate the superfluous prime
-implicants, it wés found that the cost was reduced to close agreement with

the predicted values.
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But the constants in the equation for estimating cost, ¢l and‘¢2,
‘were specified based upon results from the QS3 progfam.' Why should'théy be

trusted? The answer to this question is found in the following argument.

If we think of the transition region between q(i) and q(i-1) as
being‘défined by.a grid of vertical spacing, Arp, and horizontal spacing, Ad,
then the set of all boundaries between q(i) and q(i-1) is all stairsteps
which can be dfawﬂ along theée grids and still remain inside the transition
region. As Ad and Arp’are decreased the number of different boundaries:
increases exponentially. The problem is to pick boundaries that will mini-
mize the number of litéfals in the Boolean function defining the area enclosed .
by the boundaries. (Such an ‘algorithm is described in the Appendix.) For—;
tunately for the parameter values used to derive the constants ¢l and ¢2,
there was very little choice iﬁ selecting the boundaries due tb thé dimen-~
sions of the transition regions. If is, therefore, -asserted that_the boundary
' prdduced by the QS3 élgofithm and a correct algorithm would be very nearly fhe
same. A graéhical spot check of several of'the~boundafies confirmed this
assertion. When however, Arp was reduced from 1/16 to 1/32 the numbér of

possible boundaries increased and thus the discrepancy becéme apparent.

There is one othér casé for which a discrépangy is apparent. In
Table 5 for a = 3/4, v = 9/8, and i = T, noticekfha£ M'(i) from QS3 is‘5h’
while the‘éredicted value is 45. This difference accounts for the high poinps
at E§'= 10.72 in Figureé 15 and 17(b). The prime implicant covering for this
case (q(7) ) was drawn and it was thus discovered that six extra prime impli—
cants had been generated. In this case, although Arp is also 1/16, the
shifting of the'divisor range to the right increases the width of the transi-
tion region to the extent that the QS3 algorithm may fail badly for d values

near the upper limit, b. Fortunately, it did not except in the one region.
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5.4 Analytic Results Concerning Cost of Table 1

5.4.1 Preliminary Remarks

The program, QS4, produces a cost estimate of Table 1 for a Type 1
structure for which the précision of Ad.is such that the roundéd, integer
poftion of Ad is a correct qﬁotient digit. ‘As mentioned in Section 2.4, we
are ‘alsd interested in Kybrid structures in which 'taplée 1 and the multiples
are used to transform the divisor and remaindersAbefore they are applied to
Table 2. In the following sections we consider the effect df the transfor-
mgtion on the design parameters for Table 2 and then propoée an expression to

~

" estimate the cost of implementing Table 1 for given precision in A and 4.

5.4.2 Worst Case Bourids on Transformed Paraméters

As in Section 2.2, assume that we are given d which is representa-

~ ~

tive of divisor values in the range d - o € a ¢

£ d + B and are given rp

which is representative of remainders in the range rp-A £ rp £ rp+y:

Let A = F(d) be generated by Table 1. The range of the transformed divisor,
dT, now represented is given by
Ad - Ao £ 4% £ AQ + AB : (5.42)

and the range of the transformed remainder rpT is given by

Arp - AA £ rp' £ Avp + Ay (5.43)
The divisor range which must be accommodated by Table 2 is (aT, bT),
where
T _ ; . : '
a~ = (Ad)min =A% and (5.44)
LT " .
b" = (Ad) + A B. (5.45)

max max
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The wo?st-case t?ansformgd values of a, B, A, and y are merely Amaxa’ Amaxs’
A\, and A _y. If 29 'is the weight of the low order bit in A, then
max max A

adT = a4 279, ana : | _ (5.46)

ArpT = . Arp o3, - (5.47)

Assuming that A = 2, then d' (Equation 5.19) becomes

Co- 2t 2y - 5~ (e*3) oy w(op - 2 (8M) '
¢ - (5.48)
2p -1
‘ ' ’ ’ s ’ . * _‘ +
Assume that o = O and that j-is sufficiently large to permit.the terms 2 Ke 3)
and 27(%*3) 4o be neglected relative to A, v, o, and B; then
2 Arp (A" + y') + 2wB., . ' ' _
[} . . |
¢ 2o -1 . - (5:49)

This value of 4! fo% given X', y', Arp, and B is greatér than a' ;s defined'
in Equation 5.2k. .Furthermore, d"increaseé with i due to the 2w6.term.
This comparison indicates that although the transformation reduces cost by
narrowing the divisor-range for Tablé 2, it increases cost by increasing

restrictions on the g-region boundaries.

The most difficult terms to evaluate in this analysis are (Ad)min'
in Equation 5.4} and (Aa)max_in Equation 5.45. This is the subject of the
remainder of this section.

The design probiem fdr.Table 1 may be viewed as that of imple-

df}. In the following analysis

menting an estimate of the function f(4d)
we shall treat divisors in the range 1/2 £ 4 < 1. Thg approach adopted here
is to specify the precisidn in A, the éstimates of d—l,:and then.to determine
the preciéion in d reqﬁired to guarantee that aA is within a certein interval
in the vicinity of one. The preciSion of A is selected as the,independent‘

variable since it determines the number of additions required in forming the
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product dA. The number of additions is the dominant factor in determining

the operating time of the Tl, Ml, M2 part of the Quotient selector.

Let the set of discrete values of the output of Table 1 be defined

by N . ‘ ) . '
A = {mt} (5.50)
whereAr = Q*J for some positive integer, j, and m is an integer ranging from
1/t through 2/t. The tick marks on the ordinate of Figure 19 designate such

b
a set for 1 =2

, |

(m+{)r

(m-1)t

1

0.5 d 1.0

1

Figure 19. Geocmetry for Derivation of Estimates of d
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For every elemént of A we must define a divisor interval for which"
mt is usedias’thé ésfiméte-of the recipfocal 6f divisor vglues in‘the inter—h
%al. Iﬁterpfeted-graphically, fhe elemenés of.A détermine the lqcétion.ofh‘
the tfeads of a stairstep approximation fé d-l. The remaining task'is”té

specify the location of the risers (the dotted lines in Figuré 19).

Let 4, _and 4
r

l,m s

p denote the left and right ends respectively of the
divisor interval for which A = mt is taken aé the inverse of divisor values

in the i'a.nge'dl m'é da < dr o It may be shown that the optimum values
=9 b . . . . .

for 4 and 4
r

1.m in the sense of minimizing the maximum value of Il—&Ar are
2 .

2

2

_dl,m = m., and o (5-51) .

2

dr,m T (2m - 1

(5.52)

These equationé correspond to the reciprocal of the average .value

of ™m and t(m+l), and m and t(m-1). For divisor values, d, in the range

. . . .
dl,m = 4 < ‘dr,m’ the range of dA is given by |
1 -¢(m) « dA < 1+ ¢ (m) » ~ (5.53)

where

+ 2 - S

e {m) = 1/ (om-1) . (5-54)

e(m = 1/(m+1). (5.55)
The negative error is maximum for m = m, = 1/t, but since 1/2 £ 4 < 1,
the positive error, e (m) is maximm at m = m .~ + 1.

In practice 4

and 4 are also discrete values and thus in
1l,m r,m ) .

3
. general, cannot be placed precisely as specified by Equations 5.51 and 5.52.
In this case the determinatioﬁ of the error bounds on the product da is more

complicated.
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Ifd and d
1l,m r,m

radix point then the actual end points can be within 2

tically optimal point. Let A = 2_(6+l) for the worst case, replace dl m
- + A,
by,dl,m A and replace dr,m by dr,m A
Now,
A : +
1-¢(m) « d4 ¢ 1+ ¢ (m) (5.56)
where
+.
e (m) = mit + 1./ (2m - 1) (5.57)
e (m) = mdit + 1/ (2m+ 1) (5.58)
Note that due to the range restriction of d,
efm . ) = m . A (5.59)
min min-
an@ ‘ : € (mMax) = mmaxA[ (5.60)
Since we require ‘
-§ 1,1 - 1
o e 2T ) (5.61)

are represented to § places to the right of the

of the theore-

for all allowable m, the maximum value of 2-(S should be less than or egual to

t/4, and & should be less than or equal j + 2.
For given values of 1 and A

-1 - 8—(Hi)max

u

KAd)min

1 +‘e+(m)

(Ad)
max max

taken over all m in the range 1/t to 2/T.

(5.62)

(5.63)
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5.4.3 An Estimate of the Cost of Table'l

We now derive an expression with which to estimate the minimum cost
in literals of Table 1 when structured as‘specified in Section 3.2.3. . Let
the outputs of vglﬁe A be of the form

A = a * g a2 °°t a,

8o 81 "5 .
and considered the d axis of Figure 19 to be equally divided in units of 2—6.

After all values of dl n and dr o are specified, each bit of A may be defined
’ > - .

by a sum-of-products of minterms of the form k =8
a .a _.d.a....a,. We will-now derive an estimate of the
_o%1t® 8 a T SSLIMARE

cost of implementing a, -= fi(d). In the range 1 4 A £ 2, each bit, a»

‘Let A

is 1 in 21 intervals, each of length 2 . Let y! , be the value of the
.. , N - . .
bottom of the kth interval along the d—l axis for bit a; and let yg k'be the
. b

top of the interval.

Thus, :
ik = 1 { (2k - 1) 271 (5.64)
.yg’k = ‘1 + pxo~H | o (5.65)

p(i-1) |

for i =1, 2, ..., jand k =1, 2, ...,

Let,Xi K be the width of the corresponding interval along the d-axis,
. A
thus
-3 .
X, = . — (5.66)
1,k (b® - 2k) 2720 4 (k- 1) 27 41

Let each interval of width 2-6 alqhg the d—axis correspond to a
minterm, each with a fan-in of §. The number of minterms required to define

Xi,k is.
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. (5.67)
the number of literals is
C, ., = .86M . (5.68)
Using the same approximation to the minimization algorithm as
described in Section 5.3.3, the cost in literals, after minimization for

implementing the Xi interval is

WK
= 1 1 : ' o .
%1 x ik Tie . - (5.69)
where, with u = I (log2 Mi,k) ’
1 =
Mix My /2

is an approximation to the number of prime impiicants required and

L} . — iy — ' C
Fi,k = o P | _ ().70)

is an approximation to the average fan-in.
The cost of implementing di - fi(d) is thercforce
(i-1)

¢! = ci,k 7 (5.71)

N
(=

o
I
[

The total number of prime implicants required is
(i-1)

\V)

M} = M! . (5.72)

i,k

M

b
L

1

The cost for the entire table is therefore

. c} + M} : (5.73)

M

-
[t}
[our]



6.  ESTIMATES OF COST AND PERFORMANCE

6.1 Preliminery Remarks -

In this section wé'usé £hé'analytic tools de&élopéd in Ségtipn 5
together with the'définifions in Séction 3 to tabulaté saﬁplés of éipééfed
cost and pérformancé. Résults aré givén'for Typé 2 strﬁctures; Typé 1
structurgs, and finally for a family of h&brid struqturés: Sincé thé radix
of ﬁhe modél division is thé'prima?y détérﬁinan£ of bérfdrmance, for éach
structuré we first considér cost‘vérsus radi%, thén’péfformancé vérsué radii,

and finally cost versus performance.

Same of the résults dépénd upon assignmént of nﬁméricalfvalués to
quantities used in thé definitions of Section 3. The Valués sélectéd are
based upon experiéncé ih arithmétic unit design. A différént set of
realistic values would only shift‘the loéation of the cost—performancgs
curves.and not materially alter the shape of the curvé. Genergl conclusions

inferred from them would not change.

.2 Type 2 Structures

6.2.1 Cost versus Radix

The cost of Table 2, Cp,, is given by

. n-1 ) , . -
Cpp = z; (C'(i) + M"(1)) - (6.1)
i=0 -

where C'(i) is defined by Equation 5.39 and M'(i) is defined by Equation 5.40.

95
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Tables Ta and Tb summarize cost versus radix for several values of Arp.-

Table Ta is for a ‘divisor in the range 1/2 to 1 and Table Tb is for a divi-

sor in the range 3/4 to 9/8. .In all cases,Ap 2/3, ¥' = Al = 1, B' =1,
and o' = 0. The quantity Ad is‘2—6 where § is given for each entry in the
tables. |
The limiting cases (L and.8) are based upon the assumption that

the precisi;n in rp and d is increased such that Si = S; . A near minigal
cost should lie between Cases 1 and L4 for the first diﬁision range or between
Cases 5 and 8 fér the second division range. The cost entries are given in
the following torm: |

18 (Prime Implicants)

111 (Literals in AND Gates)
129 (Total Cost)

Table Ta. Cost of Table 2 versus Radix

‘r Case 1 Case 2 Case 3 Case L4
§ Arp=1/16 S Arp=1/32 - 8 Arp=1/6k4 $ Arp=0

b 5 18 5 15 3 -1h ® 13
111 -9 81 (LS
129 105 95 87
16 8 552 7 46k 7 430 400
6170 5064 46h6 ‘ 4291
6722 5528 - 5076 L&o1
6h 9 10470 9 8792 9 8148 o 7595
160526 T 13258 121971 , 112928
- 170996 _ 141370 - 130119 120523
256 11 174597 11 146610 11 135871 - o« > 126656
3381283 2802307 2582126 2394169

3555880 | 2918987 2717997 - 2520825
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' Teble Tb. Cost of Table 2 versus Radix

Case T’

r Case 5 Case 6 Case ‘8
§ Arp=1/16 8 Arp=1/32 . § Arp=1/6k 8 Arp=0
'y 5 10 b 8 3 8 - 7
61 52 kg 46
(F 60 5T 53
16 - 7 296 6 261 6 2k % 23
3353 2920 ‘ 2742 2583
3649 3181 2989 2817
6 8 5597 8 4953 8 168Y @ 1443
86870 75988 71481 ~ 67470
92467 80941 76165 71913
256 10 93341 10 82590 10 . 78097 - Th0go .
1825332 -1600L77 1505408 - 1424130
1918673 1683067 1583505 1598220

6.2.2 Performance versus Radix

- -

The fo;lowing equations from Section 3 are relevant to.the calcu-
lations in this section.
Operating Time of ‘Model Division:

(3.7)

= +
To = Terer * Tn * Tro * Tr-
Performance of Model Division:
.logz r
P = . .
Q 7 (3.8).

Q
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Operating Time of Full Precision Division:

o . |
p ooy A,%%% (3.11)
D 2 l°82 r ' .

Performance of Full Precision Division:

.2 log2 r
P = . (3.12)
D T, log, r+ 2(TQ + TC)
Table 8 is a summary of PQ and PD for several rgdlces with TPREF=3’
Ty = 05 TT2= 2, TR =1, TA =3, T, = L. For these values TQ = 6. Note

that we have actuaily computed a best-case for performance since we have
assumed that Table 2, even for the higher radices, can be implemented in two

delays (TT2 = 2).

Table 8. Performance of Type 2 Structure versus Radix

r Py (bits/delay) - By (bits/delay)
L o .33 - .15

16 .67 | .25

6L : ' 1.00 .32

256 1.33 ' .36

6.2.3 Cost versus Performance

Neglecting the cost terms CPREF’ CDEF’ andACR, the cost of

implementing a Type 2 structure is C Table 9 summaries the bounds on C

T2. T2

versus performance of the full precision division. The actual cost should
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lie between the lower bound (LB) and the least upper bound (LUB) correspond-
'ing to Case 1 in Table Ta and Case 5 in Table 7b.’ These.results are plotted
and discussed further in the summary and conclusions (Section T).

. . ) ) ‘ i

Table 9. Cost Bounds versus Performance-for
: Type 2 Model Division

PD ‘ : ' o CTZ'(lite;als)
‘(bits/delay) Times a ;’1/2, b=1 s a=3/4, b=9/8
. Increase. . LB. ... . .LUB . Increase. . LB . " LUB
.15 , 1.00 87 129 1 53 - T1
.25 1.67 4,691 6,722 i 2,817 3,649
.32 © ‘2,13 120,523 170,996 1385 © 71,913 92,467

.36 2.40 2,520,825 3,555,880 28975 1,498,220 © 1,918,673

6.3 Type 1 Structures

6.3.1 Cost versus Radix

prer® Cppr 28¢ Cps

and C

Neglecting the cost terms C the cost of imple-

menting a Type 1 model d;v151on is the sum OfuCTl ML° Values for CTl

are taken from the results given in Table 4. The term C is computed from

Ml

Equation 3.6, namely, .

2
Cp =9 Cg + My g €y + (v, +1) Ng Cgq * (Np)° C.

The following values are assumed:

c. =10, C

R A

Table 10 summarizes the reésults.
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Table 10.. Cost of Type 1 Structure versus Radix

r  Cp S N % Cpor

L - 28 3 .2 1230 1258
16 45k 6 , | | 3 1708 2162
64 2h72 9 - 5 2634 5106

6.3.2 Performance versus Radix

In computing the operating time for a Type 1 structure we assume

3, T =4, and T . =3 N

=3, T M1 A

that T

‘PREF 0, Tg =1, T

R A , and there—

T2 " C

fore from Equation 3.7,

TQ =30N, + L,
Table 11 presents PQ (Equation 3.8) and Py (Equation 3.12) for the cases

which werc described in Table L.

Table 11. Performance of Type 1 Structure versus Radix

r - £ (bits/delay) Py (bits/delay)
b A T .20 \ 12
16 .31 17

ol - .32 19

6.3.3 Cost versus Performance

Table 12 merges the camputations. of the previous sections.
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Table 12.. Cost'verSuS'Perfcrmanceufbr,Type 1.Model Division

P

. D Times ) . Times

(bits/delay). - .. .. .Increase ... . ..C .(literals) ... ... Increase
.12 1.000 - 1258 1.00
17 B 1.k42 2162 : 1.72
.19 1.58 4 - 5106 L.06

6.4 Hybrid Structures

6.4.1 Cost versus Radix and Number of Adders in Multiplier 1
For hybrid structures the cost is computed in several stages. First,

Cpy and the worst-case bounds on the transformed divisor range (aT, bT) are

computed for the cases of l,'2,'3, aha Y adaers:in Multiplier lL The number
of 'adders, NA’ is the,dpminant factor in the performance of the model divisioﬁ
and furthermore specifies the cost of Taﬁie 1 ﬁnder the assumptionéupresentéd
in Section 5.k.2. .Recall that the maximum uncertainty in A, %, is 2_jlwh¢ré

. , : . ' —34
where j =2 NA; that the maximum uncertainty in 4, &, is 2 J 2; and that

T and 6§ determine CTl'

Next the transformed parametérs are computed for each of the fogr
designs. The cost equation for Table 2 is evaluéted for each set of trahs—.
formed parameteré, each for four different radices, to yield a totél of six-
teen designg. Theutpta; cost for each hybrid structure is taken tq be

CT1‘+ CMl + CM? +-CT2.

Table 13 summarizes the costs for the sixteen cases. The quantities
aT and bT are defined by Equations 5.62 and 5.63, respectively, and CTl is
defined by Equation 5.73. -The terms Cwn and CM? are computedvfrom Equation 3.6

with C, = 50, CR =10, Cg, = 6, Co = 4, and € = 5, The.cqst term, Cn,, is
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- computed from Equations 5.33, 5.39, and 5.40 with the trensformed paremeters

speéified as follows: Am

T -0+1

2, ArpT = 27970, pd = 27979 .yT_= 1/16,
AT =1/16, of =0, 8T =2""%, o =2/3. |

}Table 13. Cost Computations for Hybrid Structures

Table 1 Parameters ;gse r CTl .ch CM2 CT2 ‘ CTotal
N,=1, j=2, 6=k, 1 4 17 512 332 332 10 928
oT= 27/32 2 16 17 6k8 - 332 295 3233 4525
vz 41/30 h 3 64 . 17 78k 332 5597.-8u615 | 913k45
L 256 17 920 332 93341 178713 1,882,323
N,=2, j=h, 8=6, 5 I 126 972 892 2 1k ‘2006
2T 123/128 .6 16 126 1220 892 76 - 843 .3;57
»bTF 137/128 7 6uv 126 1468 | 892 149 22059 | ?599h
8 256 126 1716 892 24169 465627 1492530
N,=3, j=6, 6=8 9 b 688 1hLk 1708 1 3 . 384k
al =507/512 10 16 588 1824 1705 19 222 kL5l
T = se1/512 11 64 688 218k 1708 367 5583 | 10530
12 256 688 25kl 1708 6121 118070 - 129131
N,=k, J=8, =10 13 b 3469 1988 2780 0 0 8237
oI 2043/2048 -1k 16 3469 2460 2780 5 45 8759
T , 15 64 3469 2932 2780 85 1286 10552

b = 2056/20L8- - -

16 256 3469 340k 2780 1426 27463  385hk2

6.4.2 'Performance versus Radix and Number  of Adders in Multiplier 1

In computing the operating time for the'hybrid structures we assume

that lPREF = 3, TTZ =2, 7T, =1, T 3, TC =4 and TMl = 3,NA’ and therefore

from Equation 3.7
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Table 1k presents PQ (Equation 3.8) and Py (Equation 3.12) for the cases in

Table 13.

Table 1kh. Perfofmance:CalculationS‘for Hybrid Strudtures ..

.Case No. : PQi(bits/delay) S PD (ﬁits/delay)' .
1 o 22 13
2 | | 45 - | .21
3 SN " -
l - .89 S 3

‘5. _ a7 _ o
6 3 o . 18

1 | 50 . ey
8 ; 1767  N .29

s - a3 | .09
0 o .27, | .16
11 .ho o 21

12 s , .26

S 13 I | o .08
o e o ".j.lh
15 33 | | 19
w 4y o Lok



10k

6.4.3 Cost versus Performance

Table 15 merges the cost and performance (PD) data for the hybrid
structures. ‘These results are plotted and discussed. further in the next
section.

Table 15. Cost versus Performance for Hybrid
Model Division Structures

‘Case No. PD Times | c : Times

(pits/delay) Increase (literals) Increase

1 .13 1.00 , 928 . 1

2 .21 1.62 L4525

3 .27 2.08 91345 98

i .32 : 2.46 1882323 2028

5 11 1.00 2006 . 1.0

6 .18 1.63 3157 . 1.6
T .2k . 2.18 25994 13
. 8 .29 ‘ 2.63 .. L92530 2k5
9 .09 1.00 3844 1.0
10 .16 . 1.78 sy 1.2
11 .21 2.33 - . 10530 2.7
12 .26 2.88 - 129131 3L
13 .08 1.00 8237 1.0
1k J1h 1.75 8759 1.1
15 .19 _ 2.37 10552 1.3

16 .2k 3.00 38542 .7



7. SUMMARY AND CONCLUSIONS

7.1 General Summary

In the summary and conclusions it is convenient to distinguish be-
tween the definitive, synthetic, and'gnalytic aspects of this study. »Séctions
2 and 3 are dgfinitive. éection 2 defines the class of division fechniques
to be studied and Section 3 defines the measure of cost and performance to‘be’
appliedf It is noted that an advanfage of the model divisiénvappfoach is
congruity with comﬁonly ﬁsed'multiplication structures including the capacit&
to form the éartial remainders using non-propagating addersvor subtractors.'
The attendant disadvantages are the necessity to store two bits per quotient
digit and the requirement for a terminal step to convert the redundant to non-
redundant form. The fact thét‘for division} unlike multiplication, thé
véelection of the jth quotient digit cannot be straightforwardly overlapped
with the formation of the jth partial remainder, prompts consideration of
high~-speed di&ision techniques for the model. Furthermore, the overﬁea&
required to "call" and "return" from.the model division prompts study of
higher radix structures which produce several Bits per call. A variable
radix block structure of a class of model division schemes is proposed for
© study.

Section U describes algdrithms with which fo synthesize the most
complidated,sub—blocks'of the family. of proposed quotient selectors: a combi-
natorial network to prodﬁce an estimate of the reciprocal of the divisor
(Tabie 1), and a combinatorial network to generate a quotient digit when given
& and r; (Table 2). Although these synthesis routines generate a logic

equation definition of the structure, the intent in this study is merely to

105
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determine the cost; essentially the number ofiliterals in the logic equations.
After the cost vs. performance behavior is sufficiently understood to permit
specification of parameters of a practicable model, the synthesis routineé
ﬁéy be applied as a first step in implementation.

Section 5 includes the bulk of the analytic work. The section opens
ﬁith a tabulation of costs for several cases synthesized by the previously.
defined algorithms. But since there exists many variants of the model divi-
sion and since even computer synthesis in this case i3 cxpensive, the numerdi-
cal results and insight are applied to hypothesize rormglas:ruLher than
algprithms with which to estimate éost. ''he tormuias take ;ucuuut ul' the
ten variables of the model division. |

' Although oné of the formulas is normalized with two empirically
definéa.quantitieé, it is assumed that these gquantities are sufficiently
constant to permit meaningful prediction of cost for cases other than those
used in the normalization. In Section 6, the formulas for both éost and per-
formance are applied to tabulate expected values of cost and performance.

The present section is an attempt to summarize the work in the ﬁre—
vious Sectiéns, to reach soﬁe conclusions abouf fhe feasibility of the
investigated quotient selection schemes, énd to suggest areas for further
investigation. .The section is subdivided into consideration of numerical
cosf and performance results, analytic results, and concludes with additional

remarks about areas for further research.

T.2 Cost and Performance
Figure 20 is a graphical summary of the cost versus performance
estimates tabulated in Section 6. The necessity for a five cycle semi-log

plot emphasizes the extreme range of costs and disappointing cost-performance
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Figure 20. Cost.versus Performance for Samples of
Model Division Structures
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behavior. It_is apparent tha£ many of the results ére negative; they indicate
what nof to attempt to implgment. The points on the graph are taken from
Tables 9, 12, and 15. . Points .coz“respondi.ng to the same type étructu.re but'
differing in radix are connected by straight-line segments. Each of these
"curVes"lis.labeled with a Roman numeral.

Curves Ia and Ib, with points from Table Tb, are the lower and upper
bounds on. the cost of a Type 2 structure (direct table look-up) for divisors
in the range (3/4, 9/8). Curves IIa and IIb, wifh points from Table Ta, are
the lower and upper bounds fo; a similar structure with divisors in the range
(1/2, 1). To a first approximation all four curves (Logloc) vary linearly
with.performance and thus

Cost = 1ok£b
where k is about 18. This exponéntial behavior is not surprising considering
that performance varies as'log r (see Eqﬁation 3.12) and that cost varies as
r?log r. This latter statement is derived f;om Equations 5.39, 5.40, and 5.41.

Thé radix 4 Type 2 structure is quite practicable, requiring about
ten,10-input gates to yield performance of .15 bits per'logiC<deiay. Aséuming-
10 ns. logic, the scheme would generate 60 bits of quotient in about 4 us. A
radix 16 Type 2 structure theoretically increases performance by 5/3, conse~'
quently reducing divide time, under the same assumptions, to 2.4 us. The
cost, however, increases over 50'times.

Statements about the radix 16 structufe must be qualified by the
observafion that due to fan-in aud fan-out rcotrioctions, the table rannot

actually be implemented in two levels of logic. Since the divisor is con-

+
~

stant, the d portion of each prime implicant can be formed in a cascade of

many logic levels without degradation of performance. But going to additional

levels to form functions of rp, although cost may be reduced, will decrease
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performance below the ideal value assumed in Figure 20. Justification for

" quo~

a radix 16 Type 2 structure isvdiséussed further in connection with a
tient lookahead" scheme mentioned in Section T.5. Type 2 structureé beyond
radix 16 are too expensive to consider further.

':Based upon Figure 20, cﬁrve.III, it appears that a Type 1 structgre
is never preferable.to a Type 2 structure. Although this is probably true,
the Type 1 structures might be studied further with the following points-in
mind:

1. The structures studied here employ a rather conventional
multiplier requiring one cascédéd adder pér two bits of
mltiplier. Perhaps faster multipliers may be found. It

. ,1s doubtful, however,‘that'théy would be‘iess expensive.

2. For all structures studied the estimate of'the partial
remainders have been converted to a conVenfional form. For
structureé requiring a éransformation of r%, the assimila-~
tion is performgdkaftér the multiplication. The conver;ion
to conventiohal form has been required as a conce;sion to
reducing the cost of Tahle 2. For Type 1 structures, Table
2 is not required and thus perhaps the redundéntly'represented_
result could be used directly by the shift gates in the

~full precision arithmetic unit. The elimination of'the
c§nversioniis roughly equivalent té‘eliminating one adder
‘from the multipliér structure. |

The cost versus performance of the hybrid st*uétures are shown in

curves IV-VII, corresponding to 1 through 4 adders in the multipiiers, M1

‘and M2. The curves initially rise slowly relative to the Type II curves but

soon become steep as the cost of Table 2 for the higher radices dominates.
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The relog r behgvior of'CT2 is not easj to suppress. Again, based upon
results shown in Figure 20, it appears that hybrid structures should not be
chosen over # Type 2 structure.

It is apparent from Equation 3.12 tpgt PD qs a function of r has‘an
uppér limit of TA/Q. This limit is the theoretical upper bound on the
performance of thé iterative steps of multiplication. With TA= 3, the
theoretiéal ratio of performance of division to performance of multipiication
for cases iﬁ Figure 20 ranges from 0.09 to 0.53. For praclicable cases, the

range is 0.225 to 0.375.

T.3 Analytic Results

Only a few of the cases studied appear to be feasible. But negative -
results are valuablé,and furthermore it should be kept in mind that the main |
purpose of this thesis is not to present an exhaustive enumeration of quotient
selection schemes, but rather to develop geperal techniques‘for analysis.

It is important to appreciate the'gehepglity of thc extension of
Robertson's cost measurement (Si) to the imprecise cases (si and‘si').
Although the estimate of cost as a function of s{ is not rigorogs and includes
empirically defined conétants, the deriyation of si is rigorops. The analysis
‘developed in Section 5.3.2 leads to a succinet statement of worst—case pre-
cisionAreqpirements in r; and 3, (a"< a) and to insight into the effect of
the parameters of the model division_on the cost of quotient selection.

The sé coét meaéurement is applicable to structurés other than those
fitting within the structure of the ﬁodel division shown in Figure 2. For
example, as mentioned earlier, the treads of the staircase boundaries between
quotient regions may be viewed as comparison constants againét which rp is

compared to determine in which quotient region it belongs. The divisor range
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is éarﬁitioned into inter?als such that for each interval there is a single
comparison constant between each éuotient regibn. The comparison constants
could be storéd in & read only memory. A given divisor'valﬁe would‘deﬁermine
a column of comparison constants ﬁhich would be read out to become one inpﬁt
to a set of cbmpératéfs; the othgr;iﬁput to the comparators woula be ré( ‘
If ¢, is the compérison constant between q(i) and q(i-1) then g=k, where k

is the greatest such that rp 3ic The number of sets of comparison

k.
constants has a lower bound of sﬁ and upper bound of s;. The number of
comparison constanté in each set is n (assuming implementation of only the
first quadrant of the P-D plot).

Among others, the analytic resﬁlts prompt the following observations:

1. There are minimum- requirements for the precision in the

estimates of r£ and 4.

2. For given preéision aﬁove the minimum required, there is a -
limit, si, to the miﬁimum numper of comparison cqnstant;
required betweéﬁ'q(i) and q(i-1).

3. The actual number of steps, s, ié'greater than s; due to

' i act,
discrete effects, i.e. due to the fact that the locations of
treads and risers are restricted to_discrete values.-

- 4. The upper bound on s, _.i> including the discrete effects,
is s".

- i
A~ ’ A

‘5. Increasing precision in d and rp moves S5 closer to Ss and

S.. closer to s!, but by a decreasing amount.
i act i : A
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7.4 Suggestions for Further Investigation

The following topics for further investigation have emerged in the

course of this study. The order of listing does not imply any priority.

l.

Compare the cost and performance of the model division approach
to other division aigorithms such as the Wallace algorithm [32] as
implemented in the IBM 360/91[14], and division schemes in other

large machines such as the CDC T600.

Consider the use of a radix hz T&pe 2’structﬁre in a pipeline arith-
metic unit. Assuming that the divisors and quotients may be streamed
along with the partial remainders, it appears that a set of the
inexpensive radix h; Type 2 model division structures may be used

to effectively pipeline the division operation. Multiplication and
division could be intermixed‘}g the same pipeline; however, assuming
synchronous contfol, the clouk frqu?ncy is limitcd by the quotient

selection time and thug the multlply Lliwe is degraded.

Consider a "quotient lookahead" scheme. Assuﬁe that each addef in
a cascade of adders is capabie of pgrforming a multiplicatioﬁ rédix
2k. Then the shift gates for each adder may be controlled by a
model division of the same radix. If the radix of the model is

greater than 2k then more quotient digits are formed than can be

~used in forming the present partial remainder. It is conceivable,

however, that as soon as they are formed they could be used to act

shift gates to form the next partial remainder thus overlapping

control time. For example, if k=2 but the model division is radix

16, control signals for the shift gates of two successive adders
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are generated simultaneously. If a radix 16 quotient selector is

coupled to the output of every adder in the cascade, then for each .

addition/subtragtion four bits are formed, two of which overlap with

the previously formed bits. The formation of the Jth partial re-

mainder may thereéfore be oveflapped with formation of the j+1,

radix 4 quotient digit. After startup, the effective control time
per addition would be the quotient selection time minus the add
time. If the times were equal, then division could proceed at

multiply speed.

Study the variation in cost of the entire arithmetic unit as a
function of p, thé redundancy ratio. Reééll that p is one variable
in the equation\for si. In~all numerical work produced in this
study p = n/(r-1) = 2/3. 'The decision to keep p constant excluded

the explicit study of radix 8, 32, and 128 for which thefe is no

~

integer, n such that o' 2/3.

Study a model division structure based upon simultaneous comparisons

of rp with comparison constants selected by the value of the divisor.
- : 4

Consider the engineering details of a radix 16, Type 2 structure.

Program the correct algorithm (Appendix A) for producing the minimal
cost definition of a Table 2 structure. Reference [34] defines the
minimization algorithm. Compare the results with those broduced by

the QS3 algorithm (Section k).
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APPENDIX A

Algorithm'for Generating Minimum Cost Sum-of-Products

Definitions of the g-Regions of Table 2

Consider the P-D plot to be qovered by a uniform_grid wifh spa;ing of Ad
along the d-axis and with spacing Arp along the rp-axis.. The.infer-
section of each’ grid line‘i; defined by the order pair (&, ri) where &

is an integer multiple of Niand.r£ is an integer multiple of Arp. Evefy
pair, (&, r;) is representative of full precision quanfities inlihe ranges
defined by Equations 2.11 and 2.14. Sufficient condition for the cholce
of A, Y, a,'B,:Arr, Ad, §, and’e is that a" (Equation 5.26) be greater:
than‘a; the lower bound of the divisor range. If Ad and/or Arp are
sméller tﬁan.ﬁécessafy, fhe excess precision is removed by minimization.
However, the smaller Ad and Arp,'the closer the boundaries between the
g-regions may approach the theoretical 1limit., i.e. the smaller Will.be
the discrete effects. ' ‘

Every pair, (&, rg) corresponds to a minterm, ;;1|§: (see page 38 fof
definition of the notation.) , “

L;t R, be the set of minterms which are required to define q(i), i.e.

which must be assigned tq the output fuﬁction fi. Thus,
'Ri =.{;;]|§.l all or any part of the area corresponding
to (é, rg) is completeiy within the area defined by
the lines rp=(it+l-p)d, rp=(i-1+p)d, d=a, and a=b.}
Let Ti be the set of minterms which lie completely within the overlap

region between q(i) and q(i+l). Thus,
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T, = {rp|]|d | the area corresponding to (d, rp) is
completely within the area defined by the lines

rp=(i+p)d,'rp=(i+ljp)d, d=a, and d=b.} . .

Let DAbe'the éet of all minterms ﬁhich correspond to (&, rﬁ)'which do not
représent area within the boundaries of the P-D plot, i.e. area not '
Within any g-region. N

Assume a minimization algorithm such as described in Section 4.2.2 which
will éccept both true mipterms,'e,‘and a set of don't care minterms, 4,
of.a given functi§n. The result of the mihimization process is a miniﬁal
set of prime implicénts, I. Let Q be the set of minterms'implied by H?
i.e. 'all minterms for which the function.defihed by the OR of the ele- |

ments of II is true.

. The following is the proposed algorithm for defining the output.functions,

fi, for i=0, 1,..., n. : rd 6

a) Let © =Ry, A =T, U D.

O’

b) Execute the minimization algorithms to produce P, = II, and

0
construct My = ©. Output function, f,, is the OR of the elements

of PO.

¢) For i=1,2,...,n do the following:

(T, N M __)),and & =T, UD. Execute

Let @ = R, U (T iop VM)

-1 -

the minimization algorithms to produce Pi = Il and construct

Mi = Q . Output function fi is the OR of the elements of:Pi.
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APPENDIX B

Example of Results of QSl4 and Minimization Program;
Note:

r=k, n=2, a=1/2, b=1

;;Qpl P, . P P Py Pé

d=.dl d2.d3 dh.

In the following 'l' implies that the variable is present in true form;
"'0' implies that variable is present in complemént form; 'x' implies that

variable is absent. Variable di is deleted by inspection.

Minimal cost prime implicants for q(0):

'Pl P2 P3 Ph P, P, d. 4.

5 b 1 2

0 0 0 x O 0 x x

000 0 0 x x ”2,12

0 0 0'x x 0 x _i

0 0 0 x 0 x x 1

Minimal cost prime implicants for q(l):

P) P, Py By Ps Fgd;rdy a3 qy
o001l x1lzx 0 x x
Q 001 1 x x-0 x x
0 0 x 1 1 1 x 1 x x
0 01 0 x x x x X X
0 0 1 x x 0 x x 1 x
0 01 x 0 x x x x 1
0 01 x x x x x 1 x
, 0 0 1 X X x X 1 x x
061 0000 x x 1 1
0 1 0 0 x x x 1 x x
0 1 0 x x.0 x 1 1 x
0 1 0 x 0 x x 1 1 x
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