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1. Definition and Some Properties of G

Brueckner's reaction operatorl for the interaction of two identical Fermions
in a mediun of the same kind of Fermions is defined by
. 0 - a .
G(I:) =V+V—-—-—6(J(I:S). . (1)
> E_-H
S
Here v is the two-body interaction, the Pauli operator Q forbids either Fermion

from being scattered into a normally occupied single-particle (SP) state, and i°
is the unperturbed pair Hamiltonian

12(12) = T() + U(L) + T(2) + U(2),

where U is the SP potential which should be determined self-consistently in tenms
of G. 1In the early work the energy ES was regarded as determined by the state
(ket vector) on which G operated (to the right). Then, effectively, Es is an
c¢rerator, and in G+(E;) Eg would have to operate to the left in order to avoid
making the G-matrix nén-Hérmition.z This complication is removed and greater gen-
erality is attained by regarding ES as a paramcter held constant for all matrix
elements. We chus deel with a continuous family of reaction operators, parame-
Sk,

4 5. : . :
randow has shown that the generalized-time-ordered form of perturbation

trized by the "'starting energy",

theory for finite systems leads most directly to a non-Hermitian U, Iowcver, we
shall 2ssume that U is lermitian, as it is in all shell-model and sclf-consistent
field calculations knmown to us. The full interaction and Q are invariably

Hermitian, so we expect that G(ES) is Hermitian. This is the case because Eq. (1)
implies fflu
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and from Eq. (1) G+(ES) also satisfies (2b). Thus, if

vio= v, Q+ = Q, ut = U, E, = real parameter (3a)

thew G*(us) = G(E). (3b)

In the Bbszkowski-Scotts separation method v = Vet vy where the separation dis-
tance, d, dividing the short- from the long-ranged part of the interaction, de-
pends on the state (ket vector) on which v acts. 1In G; (calculated from VS) d
would have to act to the left in order for GS to be liermitian.. Alternatively, d
may be recgarded as a paramcter.

lbbocmanﬁ has showr that basing many-body perturbation theory on a related
reaction operator

S = (v - Uy + (v - Uy E_%ﬁa GCE,)
s
or on cven more general oncs, has certain formal advantages. But G would be more
difficult to calculate than G because U2 depends saparately on Ty ang Tss whereas
v depends on Tyoe Thus, although G has been discu:sed occasionally,’ no calcula-
tions of it have been reported. Also, the Couloml: interaction is almost always
omitted from v in Iq. (1) because its long range wiuld cause calculational diffi-
culties, and it can Le treated adequately as a perturbation.

Initially the greatest problem in computing G had to do with the strong
short-range repulsive core. But this was quickly overcome by several methods.
Much of the remaining difficulty arises from the Pauli operator. In degenerate
perturbation theory, in which the wnperturbed ("molel') wave function consists of
more than one configuration, there are three classzs of SP states: normally occu-
pied or "hole" states (h) with model occupation nuwbers n o= 1; "valence" or
"active" states (v) with 0 <, < 1; and normally empty or 'particle’ states (p)
with np = 0. 'There is great latitude in the choice of the active subspace in
which the shell-model diagonalizations are carried out.

In the nen-degenerate {(closed chell) theory, in which there are no valence
SP states, the Pauli operator is defined by

ND L emp »
QT(2) = QY@ , Q= [ lp><pl. CEY
p




Ve shall also define

occ _ .
Py = % [h><h| = 1, - Q (4b)

and
PPz = 102) - QPa2) = py P2 + P @) * QP (4

Ql and P1 are Hermitian projection operators, i.e.

-+ 2 + 2 ‘
Q=Q=9 » H=h=5 (4d)

. ND
and these properties carry over to QND and P

In the degenerate (open shell) theory with valence 'particles' only (no
valence holes) we let Q1 and P1 be defined as above, and

val. .
Al = g: lvp><vp[ (5a)
p
so that
P+ A +Q =1, (5b)
Then QD is defined8 by
a2y = Q@ *+ A MQ ) + QWA @) (6a)
= (A @)+ QITIAL(D) + Q)] - A (1A (2) (6b)
ard ’
PP12) = 112) - Q°(12) (6c)

= P (WP () + PL(DIIR)-P@)] + [TW-PDIP(2) + A (DA (D). (6d)

These regions are shown in Fig. 1, from Ref. 7, The definition (6a) is most ap-

propriate to the case in
which there are few valence
particles relative to the

i number of valence states, so
VALENCE b

FILLED

that scattering into pair
FILCED VACERCE EMbTY FILLED VALENCE EMPTY states of the form IVP> is
seldom blocked by the normal

occupancy of state |v>. When

Fig. 1. Pauli projcction operatnr P before and

L there are more than two
after truncation.

valence particles, the ef-
fective interaction differs from the G-matrix by valence-blocking corrections in
addition to other corrections.

In the seldom discussed degenerate theory with valence holes only, the non-

A e L e e TR e 4T St T e L T



degenerate Pauli operator (4a) can be uscd, because only particle-particle ladders
arc swmed by the G-matrix. However, because of (5b), the P's in (4c) must be re-
placed by (P+A)'s. Finally, if there are both valence particles and holes, we de-

fine
h _ P 7
A = VZ ]vh><vh| » A VZ ]vp><vp| (7a)
so that h P
p+al el =1 (7b)

Then Q° may be defined by (6) with A, replaced by +P and P, by P, + Al

The Pauli operator may be regarded as providi: g a dependence of G on the
particle density near the interacting particles. =0 the non-degenerate case

G QP LTy = G TD - o (T (66,1 - 0 Gptp)  (82)

where P is the SP density matrix (in position spa:e) of the model ground state,
N . occ _
o () = <l EUED 19 = [Pl = L < ealry, @)
1

often called the "mixed density'' as distinguishec rom its diagonal part, p(?l),
the particle density at ?1. An expansion about t1: mixed density of nuclear matter
has been given.g Approximating the entire propaga or, Q/(E-HO), by that of nuiéear
matter of density pC%[r1+r2]) is called the local «ensity approxiTation (LDA).
The reaction operator, as defined so far, has singularities ~ as a function

of ES. In the non-degenerate case

1
qP _ ewp Iplpz><p;gz_ ] ©)
E_-H° Eg-e
s P1P; P1P;

where e =e +e_, with e the SP energy of stuie |p>. It is clear from (9)
P1P, P Py p

that the perturbative expansion of G has singularitiz: for Es equal to any e

P1P>
Similarly, from (2a), it is seen that a non-perturbai:ive solution has a singularity
at the eigenvalues of Q(Hg + v)Q, which lie near th= ¢ . In the Brueckner-

P
Gold-,tone12 non-degenerate perturbation expansion, in i%szrearrangement by
generalized-time-ordering,13’3’4 and in the degenerite perturbation expansions,8
the self-consistent ES is always less than the lowest singularity (for non-
superfluid systems). But in the SP Green's function approach to nuclear structure14
and in the calculation of the optical potential, a transition operator is needed.
The Brueckner rcaction matrix must then be analytically continued to highcr ES as

a lleitler reaction matrix containing a principal value operator as well as the



below the lowest Cp Dy’ which is the case for interactions [ar off the cnergy
12 . . . . .
shell where Eq = e + Ck> - &E with SE the excitation of the medium. Iowever,
) ) . o oo
for on-shell interactions between valence particles or high-lying holes, L, 1s

just below the lowest singularity and there is a strong energy dependence.'®  This
is seen clearly in the G-matrix elements for the s-d shell valence nucleons in 18F

shown in Fig. 2, taken from Barrett, lewitt, and htCarthy.lG

In summary, unlike the bare interaction v, the

S —- e ] reaction operator is dependent on the medium through
af 3 Q (density dependence) and through the self-energy
' z:ﬁ .1 U (dispersive or spectral dependence), and is ener-

gy (or velocity or nomentum) dependent through Eq.

.
e o The latter gives rie to a "state' dependence of
-2F % . y
-f\\\\\\\\\\\\ W the effective inter ction because the self-

-3}

Energy {Mev )

consistent ES for ¢ particular matrix element de-

-5b

pends on the pair ¢ ates involved in the matrix

element.

-iok

II. The Bethe-Golcd.tone Wave Function

t

e : If v contains . hard core, Eq. (1} is singu-

~i0 0 30 50 0 a0 " . . . .- . .
: w (Mev) + lar. This difficul:y is overcome by working with
Fig. 2. T=0 spectrun in the equation for u" : Moller wave operator  associ-
L8F calculated (Ref. 16) ated with G by
with the G-matrix as ef-
fective interaction. The GL)=v Q(Es), (10a)

dashed line indicates the
self-consistent value of
. )
the starting energy, w, Q(ES) =+ —-5—6-v Q(Eq). (10b)
E -H :

which satisfies

s
Acting to the right on an unperturbed pair state 3 it yields the correlated
Bcthe-Goldstone17 pair state v,

VE = 80 = 6+ —Lov iy (10¢)
s

vuich vanishes inside the hard core. A weak singularity of vy remains, but gives
no trouble as it is integrable. 'n relative coord:nates, for the Lth partial wave

vy = ALd(r—c) + kar) (11)
wvhere fL(r) is fini‘te.17

It is convenient also to define the defect operator

Y = Ta : - Q : i
x(LS) I Q(LS) oo v Q(LS) {12a)
S

and the Jdnfoct vave finction

—




8]

i) = X(E0 = o (Eg) = 5L v y(EQ). (12b)

S

In infinite nuclear matter the ''small parameter' k of the compact cluster ex-
. 4.
pansion’ is

K = pW (13a)
wvhere p is the nuclear density and W is the "‘wound integral”18
W= fe@]? dr, (13b)
19

which is a very characteristic quantity for the interaction, V. The transfor-
mation from G to @ is very useful even if v does nct have a hard core.

In infinite matter where the hole state spectium is continuous and the un-
perturbed pair states are taken to be plane waves, it follows from (10b) that the
BG wave function for two normally occupied states :nd for Es =.ehlh7 has no phase
shift, It "healsn18 to the unperturbed wave funct:on because the fznal states
permitted by Q are of higher unperturbed energy thin Es' In fact the defect func-

tion in the Lth partial wave decays as

" const

Ty, cos(kFr +1‘)

vhere kF is the Fermi wave number.17 In a harmonic potential, U, the BG wave

function oscillates about ¢ and "heals" to it befor : »» becomes negligible beyond

the nuclear surface where it tunnels into the poter :ial. This rapid decay is the

most important property which any approximate defe ¢ ‘unction must have. ’
In their calculations for infinite nuclear ma- te-, Brueckner and Gammel20

solved the integral equation (10c) numerically after approximating the Green's

function for a fixed average momentum of the pair, K?

> &

ik*(r-r'")

) :
PRI Sk

8 = 7 a3k Qk+k, K-K;k

> ol Q
<Tr,K
lH"-E

first by '"angle-averaging'' over the angle between K and K;21 which restores
spherical symmetry and uncouples different partial waves, and second by truncating

at some kmax' The angle-averaged, nuclear-matter Fauli operator is21

. 2...2 2 .

1., .. 0 if kK"+K® < ki and 1 if k > k.+K

MM, k5 kp) ={ 22 2. o O : (14a)
(k“+K -kF)/ZkK, otherwise

where

B e > -

k=7 (pp) and K =14 (3%,). (14b)
It has been found to be a quite accurate approximation.22 In their excellent re-
view of methods (through 1967) for calculating G in nuclear watter Dahll, Ostgaard,




R Ar - . - N .
and Brandow=" found Brueckner's method could be very accurate, and round ways to

improve it.

ITI. Representations of G in Tems of P Rather thin Q

The operator Q is of infinite dimensionality for both particles, whercas cach
term of P is of infinite dimensionality for at most one particle. ‘Two wavs of ex-
pressing G or € in terms of P rather than Q are known. 'The first is to multiply

Fq. (10c) by HO-ES, which leads to the Bethe-Goldstone integro-differential
cquationl7

(H°+V-Es)¢ = (HO-ES)¢ + P vy, (15)

Several ways of solving this equation, when P is truncated, will be described be-
low.

. . 7. . A
A second, more complicated formulation, " can bc derived from a familiar

. .,.24 . . L . . \
identity™  for a matrix partitioned by the projection operators P and G:

(M"l)QQ = g - MQP(MPP)‘l MPQ]'1 = [BFBW(MPP)_lpM]-l. (16)

With M = (E-h)'l, where h is H® or H+v, the inverse of (16) is -

9 - e Ll ol o I |
aeg- e CeR PP Em Pl OP Oy (17)

where once again 4 stands for the Cauchy principal value. The equation for G in
terms of the full Green's function, Eq. (2a), becomes
_ ol I% R
G(E) = G (E) - x” " (E) P A(E}P X" (E) (18)

where we have let GI(E) denote the reaction matrix for two interacting particles
in the potential U but isolated from the medium (Q - I), which satisfies

GI(ES) =v+v € é —V =V +vV G’——la-GI(E_)
E-H -v E-I >
(19)
I, . It
= v[I-x (EJ] = [I-x" (E)]v,
and where
-1
. (20)

A(E) = | |6 —Fr
E_-Ho-v
5 Jpp.

The inversion in Eq. (20) can be done easily becausc the space P is of -finite
dimension. However, the evaluation of | @ 1

E_-H -v
mately, in terms of a truncated set of eigenfuncticns of the two-particle
Schroedinger equation,

can be done only approxi-




8

IV. ‘The Inteyral Fquation Relating Two Reaction Operators

As it is not possible to solve for G or y exactly, various approximation
methods have been developed. These involve simplifying the interaction or the
propagator. We should like to know in principle how the exact G is related to an
approximatec one so we can estimate correction terms. Fortunately, different re-
action matrices are related exactly by idenvtities. If the spectrum is continuous,
these identities are integral equations. The rigorous version of a comprehensive
identity of Moszkowski and Scott,5 which allows all quantities to vary, can be de-

tived as follows:z’3
. Q,\ .
Q(E) - T - E—Taa Gp(Ep) =0 (21a)
A A
o s [ 7 )
IB(kB) -I- GB(hB) =l = 0. (21b)
EB-HB

Multiplying (2la) on the left by GE(EB), subtracting it from (21b) multiplied on
the right by GA(EA)’ and using (10a), one obtains

N " " ' Q Q
GalEy) = GpEp) + By(Ey) (v vy, (By) + G(Ey) {15 l}Ho "3 _ﬁo?}GA(EA)' (22)
| At EpHp

ot 1%
Incidentally, a special case of this in which only ES varies yields“s’b’26

- Co 2 _
T - s [—(—’?j GE) = -x ©xE. (23)

"

Cne sees that the diagonal matrix elements of G are non-positive. The p:opagator-
correction temm in (22) sometimes is split5 into a Pauli and a spectral (disper-
sion) term:

Q Q-Q,
Q - A - A I _ I . G i}
g Bty E-1° Y R LE-HO E-HA"']’ 11 [QA’“ ]=0 (24a)
El E-HO EHp AT (24b)

V. Two Simple Approximations Which Provide Insight

A. The Moszkowski-Scott Separation of the Interaction. Different parts of
the interaction produce quite different effects. The strong repulsive core must
be treated to all orders, whereas a weak interaction need be kept only to low

orders. Regions of rapid variation induce high Fourier components in the defect

function, whereas slowly varying parts induce only low components. [Iden and

. 2 - . .
Frowy 27 Gamne Walerkn . and Weicskanf, 18 and others considered separation of the
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hard core, the tensor force, etc. In the Moszkowski-Scott® separation method, with

=y +V 25
A\ \S L? { )

the short-ranged part, Ve, includes, along with the repulsive core (which may be

~ soft), the strone, rapidly varying attraction just beyond the core. The remaining
’ long-ranged part, Vo, is weak and slowly varying. A reaction matrix, Gq, abtained

from v, is defined. Since Vg produces the short-range correlation in the BG wave
- function, which involves primarily admixtures of high-lying unperturbed states,
it is a good approximation to replace Q by I in the equation for GS, so that

ctey =v_ + v c?-—- Gl Lm. (26)
s S E-HO

The especially clever feature of the method is that the separation distance, d, is -
chosen in principal such that cach diagonal element of GS, proportional to tan §,

is zero for the self-consistent value of the starting emergy. The BG wave func-

tion, ws' then heals to ¢ at the separation distance (sece Fig. 3, from Ref. §).

Since v, is too weak to produce much wave

distortion, ws may be used as a good ap- >
proximation to the correct . The .
identit; (22) yields
G(E) = G;(E,d) + Q;(E,d)+vg(d)Q(E)
(27a)
+ G (E,d) G’-—bLL)
HO-E -
{ ; ' with diagonal eclements (for the self-
? E consistent values Ea and da’ where
i / o § ) labels the pair state)
S ]
. :
Fig. 3. Illustration of the MS
separation method (Ref, §).
<alG(E) o> = <alv,(d) + vy (d,) ;E_Ql:l— v ) + 2v,(d ) H° GLE,,d ) + ... o>, |
I a (27b) L
For simplicity in the evaluation of Gs the free particle Hamiltonian, T, was used, :
and corresponding dispersion corrections were included in the formulation: 'r;

I b2

F ..
Gs(h) =V, + Vg 6’ G (I) (28a)
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and g o e o
G(E) = Gy (E) + o ()" v, (5)Q, (1)
(28b)

. G () c’u_—— G(E) + G () o'[————-- —1—] G(E).
-E E-i°  E-T

In triplet even states Scott and Moszkowski found a large contribution in
(27b) from the quadratic term in the long-range tensor force,

Vg = T(r) 6(r-d) 512’ (29)

where S, is the tensor operator. In their calculations with the separation
method for finite nuclei, Kuo and Brown28 used the free-particle spectrum and the

angle-averaged, nuclear-matter, Pauli operator, Cﬁﬁﬁﬁkk .), with a fixed Fern1 wave

nuaber, kF = 1.36 fm'l, appropriate to the saturation den51ty Because Q‘ com-
mates with T

Q 5. 3 i JUGRk)
Vig, T Vg I 47k d°K VTlek> -————-—————-<kklvT2. (29a)
ES-H E ﬁ h )

They found that this could be fairly accurately ap roximated in a closure approxi-
mation

g}
AN [ (€920 (r-d)
T EL‘”TJ%“Bl"T ¥ Vg I s Vg = (8425 —pmes——  (29)
: eff 2 s Pess

In a later paper Kuo29 evaluated

<url\ QAAhml Vo, le>

TL L I2'™s

again finding closure to be accurate. However, Dahll, g&_gl:23 showed that in
nuclear matter the infinite series of terms in the tensor force converges slowly,
because there is no separation distance beyond which the coupled distortions in
the - S1 and Dl partial waves both vanish, and l\ohle*'5 discovered that the MS ex-
pansion does not treat the large dispersion effect adequately. In the "modified
scparation method" (N.\IS)3 the equation for Gs contains Q, and Eq. (28b) is modi-
fied accordingly.

B. The Reference Spectrum. We have seen that the exact BG wave function

heals to the unperturbed function because the Pauli operator keeps the intermediate

state spectrum above the self-consistent values of Es’ i.e. above twice the Fermi

energy, cp. If Q is replaced by I, the intermediate spectrum extends further

downward, overlapping the self-consistent Es
But if E

, and the "healing'' property is lost.
< 18 chosen off-shell, below the hole-pair spectrum, the healing property
is regained. Alternatively, the healing property is regained if the hole-pair

canstasman 30 wanlacnd b oan gmvweard-chifred siviTiarr canctrim . Taine ahears




2 ep (Ref. 30 and page 111 of Ref. 5). In the "reference spectrum' (RS) method

of Bethe, Brandow, and Petschek,3 such an auxiliary spectrum is introduced. Tiien

)
ka, which satisfies

SE) = 1+ —Lo v S m, (30a)
E-H

can have the main qualitative behavior of the correct @, wnile being much easier
to calculate because it lacks Q. Then

6E) = R + RSm) [-—R—SI«- ) -39—] v Q(E). (30b)
HSE WOk

The RS method works for all partial waves, unlike the separation method. It shows
very simply that the repulsive core contribution grows rapidly as ES goes off
shell. For example, in nuclear matter with an interactien containing a hard core
of radius c, for the Lth partial wave

2 C ‘
<ol 5> = B P | 9,000 gy e
< m o
° (1)
G eag G R JC [, (kr) LK v, @ (r)dr

where %L andffL are Riccati-Bessel .and Riccati-Hankel functions, and UES is the
RS radial wave function. The matrix element contains contributions from inside
the core, the core edge, and outside the core. The imner core contribution is

proportional to 5; YZ, which is the negative of the relative-state starting energy
m
plus a constant,

Bethe, et al. carefully worked out the parameters of a reference spectrum in

nuclear matter of the form
egl = AR, p12/2m* | (32)

which would approximate closely the off-energy-shell Brueckner-lartree-Fock
spectrum for 2kF <k« 4kF where the Fourier transform of the defect function is
large.. A similar reference spectrum is illustrated in Fig. 4, taken from Ref. 31.
In the "compact cluster' expansion of Brandow,4 in which U contains only self-
energies which are placed on the energy shell by generalized time ordering, the
SP poten:ial of "particles' is nearly zero, so that Q psto Q z QTQ. Then GRS be-
comes just the reaction matrix for free, isolated particles, similar to Gi, Eq.
(28a),

F,. _ . 1 F A
G(B) =v+v gy G (B). (33)




Sprung, et gl.sz have made many calculations
AESLBENY SPLCTRUN . of nuclear matter with the RS methog‘é
; The earliest calculations of G~ for finite
nuclei were those of Day, of Brandow, and of
33

5
C. W. Wong. Kuo and Brown"8 evaluated GRS

a for reiative p-states (where v is not attractive
enough for the separation method to be used)
: 34 . .
in 180. Later angb calculated Pauli and

spectral corrections, which can be expressed as

AG(E) = GO(E) [ - —09-][6115(5) + 0G(E)|
Fig. 4. The BBP (Ref.3 ) H™-L  H-E !
reference spectrunm in nuclear (34)
matter. The dashed line is - [A.;(E)]+[GRS(E) + AG(E)],

an interpolation. From Ref. 31. 1"

-1 RS... Q .
Ay (E) = —5=— G 7 (E) + —/—— G(E)
HS.g 2-E

QO L~
A,x(E) + —— AG(E).
1 WO-E

llere the leading correction to the defect operator, Alx, can be separated into
Pauli and spectral parts as

Q P .. . .
BB = |-+ ;J}d§@)=ﬂﬂﬂu*ﬁ%ﬂﬂ (36)
Lifop 0k
with
? RS S. .
X (E) = P = GO = P W) (37)
H™-E
and i
8@ = =L 60w - oxPm. (38)

Wong used the free-particle reference spectrum and a local, angle-averaged,
nuclear-matter Pauli operator

Ty . -
Qk,K) = @M K (R) sk () (392)
with
3 30 2 .2 ]
kF(R) == p(R) , keff(R) n 0.3 kF(R)' | (39b)

This Q commutes with the relative kinetic energy, and its variation with R gives
a distinct improvement in the nuclear surface. Wong also introduced another ap-
proximate Pauli operator {denoted by Qw below), defined in the relative and
center-of-mass (rel-cmj oscillator representation. It is an approximation to the

single-oscillator-configuration, two-particle Q. He found that his local Q gave
results similar to the more accurate shell model one, thereby justifying his
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- ~ - - - . L2 L2 10
somewhat refined version, Eq. (39), of the local density approximation,

VI, Accurate Calculations with an Approximate Q in Oscillator Relutive States

LY

For finite nuclei one would like to calculate a G-matrix for which Q and U
correspond to the self-consistent orbitals. In light nuclei the orvitals corres-
pond closely (except in the surface) to those of the harmonic oscillator potential.
Moreover, the harmonic potential contains the only spatial dependence which sepa-
rates in both 2-particle and rel-cm coordinates. For these reasons the oscillator
basis-is a vreferred basis in which to calculate a finite-nuclear G. It is special

in comparison with more realistic potentials such as the Woods-Saxon in having no

continuous spectrum. A two-particle harmonic-oscillator state lnlﬂlml, n212m2>
is expressible35 as a linear combination of rel-cm states |n&m, NIM> with
p = ﬁl+ﬁz =n+tN , n = 2n+R, 40)

The states of given p lie on a line of angle -45° in a plot such as Fig. 1.
Moshinsky and Brody36 have tabulated the coefficients of this transformation with
the angular momenta coupled to total orbital argular momentum, A. For the re-
duction of G to relative states we need a prop: zator which is both a good approxi-
mation to the self-consistent (SC) propagator ¢1d diagonal in N, L, and %.

Ti:ere are two common choices of approximai.z Hamiltonian. One is the shifted

oscillator (SO),°7’°8 which can be generalized to include an effective mass,39
2,2 -2
so _ -hA°V Kr
H = __ZTH_*- -C+ -—2*—. (41)

The other approximate Hamiltonian, HQTQ, is de: ined such that40’4l’4

SOC I SOC _ .S0C I S0C
Q T Q s Q (42)

where SOC stands for ''single oscillator configuration'. It is based on two as-

sumptions: that U = 0 for virtual particles, a good approximation for the compact

cluster expansion;? and that Qic = QiOC. Unlike the cruder approximation’® 34
SOC I ,SOC
T, (42a)

Eq. (42a) preserves the orthogonality of the particle and hole states (similar to
the orthogonalized-plane-wave approximation in solid state theory); and unlike
Kohler's approximation,

SoC I soc
Q7 —Q, (42b)
1 HOSC-E

Eq. (42) allows for the non-diagonality of T in the oscillator basis.

_ However,
the additional approximation of keeping only diagonal elements of TCm




- 5C_ny-1
<NL|QIQTQ-E] T QIN'E'> = 8,6, <NLIQIQT, o Q * F ey -E] 7T QINL>,  (42¢)

is still made in the calculations.

S0C

Two approximations to P have been widely used. Eden and Emery27 proposed

1, 02 pma.x (43)

p" (p)-lo >0
It is diagonal both in 2-body and in rel-cm oscillator states. 'Wong‘534 approxi-
mation is defined in the ra2l-cm oscillator basis for closed L-shell configura-
tions, by '
8,040

W - £4'"LL' N T maNL n'eN'L
(MNL[P"[n'&'N'L") = =gy eaT z (2A+1) Z_ M] AL (D)Mo ()
n,{ n,2 272 ™Mte*2
177272
(44)
wvhere M is a Moshinsky coefficient and the sum i. over pair states [nlzl,nzl >
for which (see Fig. 1) PSOC is unity. The averaing over A is just an angle-

averaging in the classical (vector model) limit. Pw is more accurate than pEE and
is preferable if one is not going to caiculate " -esidual Pauli correct;;ons“38 in-
volving P‘Prel—cm. Moreover, Pw can be easily p nerilized to j-j coupling, to
non-oscillator radial functions, and to fractio: . occupancy. 34 However Pw shouid
not be used if residual Paulil corrections are tc be made, because P is not de-
fined in the 2-body escillator representation; v ereas Prﬁ is defined there, and
by Eq. (40) takes the same simple form, Eq. (43 A related dlfflculty with P

is that it is not a projection, i.e. is not idem otent, (P“)2

dropping of the off-diagonal elements.

# P , because of the

In (44) N'#+n' = N+n. Kohler and I\'icCarthyzl"‘43 have made the additional trun-
cation in which N' = N:

anL [P nerNeLny = 56 PY(NLnR) . (45)

NN' 2,9,'
Kallio and Day44 also have required full diagonality, but have kept a dependence
on A by omitting the average over A:

i —— ?
(nENLIPm(A)]n’SL'N'L’) =88y o S S L {angl‘n 2 d)} (46)
n, 4. n,2

ny bty L2
They show that even small differer_.es in the Pauli operator significantly affect
the asymptotic behavior of the defect function and hence such quantities as U in-
sertions and the mms radius.
Next we turn to the methods for calculating G with a propagator diagonal in
N and L. We let g = <NL|G|NL>. All the methods involve truncating the projection

operator P (as in Fig. 1) or Q to a firite number of states. As the oscillator
pair-energy parameter p increases, the fraction of the line p=ccnst for which
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P = 1 decreases rapidly. Moreover, Wong,34 has shown that PW(QL,p) falls off, as

p increases, even more rapidly than this geometrical argument would suggest.

45

Sauer > found that g-matrix elements calculated with the maximum relative radial

R anl b

quantum number equal to 5 agreed with the matrix eiements for R s 15 to within

@

oM

i
) We shall describe four nearly exact methods for solving for g with a truncated
P or Q: two for solving the BG equation, one involving gI and the reaction matrix
identity, Eq. (22), and one involving expansion in eigenfunctions of the

Schroedinger equation for an isolated pair.

RS

The BG equaticn (15) may be regarded as an :nhomogeneous equation in which
the inhomogeneity is a linear combination of osc llator orbitals. Eden and Emery27
suggested calculating Green's functions for each of these inhomogeneities and
taking that linear ccmbination which satisfies t e boundary conditions. MacKellar
and Becker37’38 further developed this Green's f inction method, including the first

exact treatment of the tensor force through coup ed partial waves. Figure 5 shows

:
|
‘E
b

the 3Sl~ D1 dcofect function for several
i ' values o the starting energy.46
A Kal io and Day44 solved the BG

I equatic by iterating the inhomogeneity,

v R PKD(A)vw They also applied this

ﬁ g inhomoge .eity-iteration method to nuclear
E L matter. Siemens®’ has done extensive cal-

1 ‘;ngff =229 culation : of nuclear-matter matrix elements

] ez

N with the Iteration method. Its only draw-

back is - hat convergence becomes slower as

kF increiases and is not efficient for cal-

6 a9 culations at higi density.

42,43

Kohler and JcCarthy first calcu-

Fig. 5. Triplet relative defect late the reference matrix
functions for N=L=2=0, n=5 for

- : I

the Hamada-Johnston interaction Ty _ rel I :
for several values of the shifted gE)=vrv E-<1® > -0 g (E)(47a)
starting cnergy E{ = B, + 2C, " am NL C'rel

|

1/2 - -1
= 2R =0, =5, . . .

%réﬁwéeg) 46.0 4 fm =, and Pax > and then sclve either in perturbation B
theory42 o1 more accurately by matrix in- é

version, ~ in a truncated basis of relative oscillator states,

KM .
I
I8 () —5 tr“;g 3B = g @), (47b)
L HepnyHre1

K . . . . . . i
Here Ptrunc is the approximation of (45) in which the sum over (nlll,nzlz) in (44)

doddesl o AR
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is truncated, By energy conservation (40) this implies a truncation of n and %.

In Ref. 42 they have uscd, instead of the QIQ prescription, 4 H 3¢ (42b); and in

-y

the other papers4° an oscillator spectrum. Both of these are diagonal in relative
oscillator states, so the propagator is

\nl) Py NI [<HD >+ <n2[HO [ne> - B} L e, (48)

trunc

The reference matrix has singularities in the desired ranee of stérting energies,
so one must be careful to calculate gI(E) for values of E well removed from these
singularities in order to avoid loss of numerical accuracy in the matrix inversion.
The method is mathematically equivalent to th. method of Green's functions de-
scribed above; however, the work is arranged diflerently.v

Sauer45 has applied the matrix inversion me.hod to the QTQ problem,

I

SOC
G(E) = v+ V —geos—— == G(E) (49)
SCE-1q ©

where it involves additional approximations, bec:i use Trel is not quite diagonal in

relative oscillator states, and some arbitrarine s, because after truncation Q is
no longer a projection operator. In terms of th. reference matrix,

I
g@)—v+vEﬁ—Ei« g (®), (50)

Z NLT'r 1

Sauer's approximation is to solve in a truncated space of (nf) states

n n
nax max
ST né o _ L
e L G L (nzlgI!nz)(nlAEIn' ba'klgin'e') = (nk]g'n'2') (51)
? n n

where the Pauli-correction kernel is

@la_lan) = 'ovaly <ala YA fena'dy - <afs ta
with L . L
(mlagn) = E - Ley - QW(Nan)(nz;Trelln'z)Qw(NLn'z; (52a)

i (n|By[n') = E - %'eNL - (T, (n'e). (52b)

Notice that as n + o, 0 (NLnl) + 1 and (n]A n') » (n[B [n') fairly rapidly.
Butler, et al. 48 have suggested that an expansion of a BG wave function in
terms of eigenfuncticas of the Schroedinger equation49 o

OSC SC
+ HOoT Vivg, 5 = (e e *E

1e1
)pNL i (53)

should converge rapidly. Barrett, Hewitt, and McCarthy 16 have implemented this
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idea by expanding the reference BG wave function in wi's and then using the matrix

inversion method. The reference BG equation corresponding to (53) is

0scC osc osc_.rel

(Hom * Hpap * V- Eliy e (B) = Nt BV = g "E oy nes GO
Then TN (N R
I _ .0sc rel NL,i “'NL,1'"NL,nR
Uning (B) = (e B 7D ) prel_prel ’ (55)
i
and
( rel 0S¢ )
I el i n'a! .
(n'g’ IGNL(E) |n2,) = (egic_ﬁle ) Z _(E;-el.——]:rel] (¢NL,n'SL' IwNL,i) (wNL,il(pNL,nQ,)
. 1 N -t
i ,
(56)
0sC_ rel 5 s - ( osc rel Z (¢1L ,n' z"wNL l)(th 1leL nz
= (eng ) n',n"g',% n'et’ prel_prel
i

In practice one truncates the sum over eigenfunc:ions i. Equation (56) has the
advantage that the dependence on the starting en'rgy is explicit. It can provide
a very accurate energy derivative.

VII. Accurate Calculations in the Two-Particle Iscillator Basis

Finally, we discuss the case in which a pro agator defined in terms of indi-
vidual particle states is used. The only known wethod is to use Eq. (22) again in
a truncated basis, i.e. the matrix inversion met od. The equation to be solved is

RCM

. .0 '
®& + "My | L it | 6 (57)

RCM
G(E) = -
E-H E-H

pa

where RCM labels the approximate quantities defined in terms of rel-cm states. In
(57) these quantities are assumed to be re- exprered in terms of two-particle

oscillator states. We recall that I and Q can be expressed in two-particle
T
states, but Q“ cannot.

The first use of (57) was with QRCM QEE, IRCM = HSO, Q= QS(JC and G(E) on
_the right-hand side approximated by GRCM.38 Lat'r the full matrix inversion was
used.50 The case Q = QSOC has also been treated by calculating GRCM with QRCM =1

and HRCM oS¢ by the eigenfunction expansion mthod. 16 Equation (56) transforms
to the two-particle oscillator basis a,B,... as
imax b., Db.
3 = (€550 |6, - (3%-p) | B e (58a)
where 1 1
= W;le,)- (58b)

The H° in (57) can be allowed to contain 1eve1—shifts,27’38’16
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W = 150 ; (e,meq Iog><e, !, (59)

o o

so as w0 have self-consistent energies of the low-lying ''particle’ states.,
Self-consistency of the Pauli operator with the orbitals of a self-consistent

field calculation can be obtained by expanding the SC orbitals in a truncated

basis of oscillator states and then solving {(57) with Q = QSC, or, if GS C has al-

ready been obtained from (57), by solving

SC SOC
G(E) = SOC(E) + 5% | 2=~ - L om. (60)
E-T-U"~ E-H

Macl\'ellarSl initiated the first residual Pauli corrections from Eq. (60) with
USC = USO. This refinement of G made enough di: ference in the saturation proper-
ties of 16O to warrant its inclusion in other czlculations.sz’53 It is expected
to become more important the heavier the nucleu: . Spectral corrections, USC # USO
were also included in Ref. 53. Equation (58) cc ild be applied easily, with ¢a in
(58b) becoming a self-consistent pair state exp: ided in oscillator pair states.

We have now reached the stage where G is e:sentially exact, limited only by
the truncation of the oscillator basis and the . icertainty in the best definition -
of the potential U for Virtual particles,
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