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I. Definition and Some Properties of G

Brueckner's reaction operator for the interaction of two identical Fermions

in a medium of the same kind of Fermions is defined by

G(E ) = v + v C(E )
sv1

Here v is the two-body interaction, the Pauli operator Q forbids either Fermion

from being scattered into a normally occupied single-particle (SP) state, and Ir

is the unperturbed pair Hamiitonian

11° (12) = T(l) + U(l) + T(2) + U(2),

where L) is the SP potential which should be determined self-consistently in terms

of G. In the early work the energy E was regarded as determined by the state

(ket vector) on which G operated (to the right). Then, effectively, E is an

operator, and in G (E ) E would have to operate to the left in order to avoid
;> s 2

making the G-matrix non-Hermition. This complication is removed and greater gen-

erality is attained by regarding E as a parameter held constant for all matrix

elements. lVe chus deal with a continuous family of reaction operators, parame-

trized by the "starting energy", E .
4 s

Brandow has shown that the generalized-time-ordered form of perturbation

theory for finite systems leads most directly to a non-Hermitian U. However, we

shall assume that U is Iiermitian, as it is in all shell-model and self-consistent

field calculations known to us. The full interaction and Q are invariably

Hemiitian, so we expect that G(EJ is Hermitian. This is the case because Eq. (1)

implies f"" '
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G(i: j = v + v - v (2aj
Q(r.s-n -v)Q

= v + G(I: ) - ^ - v C2b)
b E -11

and from Eu. (1) G+(H ) also satisfies (2b). Thus, if

v+ = v, Q+ = Q, U+ = U, E = real parameter (3a)

then G+(E ) = C(E ). (3b)

In the Moszkowski-Scott separation method v = vs + v£ where the separation dis-

tance, d, dividing the short- from the long-ranged part of the interaction, de-

pends on the state (ket vector) on which v acts. In Gg (calculated from vg) d

would have to act to the left in order for G to be liermitian. Alternatively, d

may be regarded as a parameter.

Tobocman ha:

reaction operator

Tobocman1 has shown that basing many-body perturbation theory on a related

G(H ) = (v - U j + (v - U ) - i - G(E )
s i i E _Ho s

or on even more general ones, has certain formal advantages. But G would be more

difficult to calculate than G because IL depends saparately on r, and r?, whereas

v depends on i\?. Thus, although U has been discussed occasionally, no calcula-

tions of it have been reported. Also, the Coulomb interaction is almost always

omitted from v in I:.q. (1) because its long range vjuld cause calculational diffi-

culties, and it can be treated adequately as a perturbation.

Initially the greatest problem in computing G had to do with the strong

short-range repulsive core. But this was quickly overcome by several methods.

Much of the remaining difficulty arises from the Pauli operator. In degenerate

perturbation theory, in which the unperturbed ("model") wave function consists of

more than one configuration, there are three classes of SP states: normally occu-

pied or "hole" states (h) with model occupation numbers n, = 1; "valence" or

"active" states (v) ivith 0 <_n < 1; and normally empty or "particle" states (p)

with n i = 0. There is great latitude in the choice of the active subspace in

which the shell-model diagonalizations are carried out.

In the non-degenerate (closed chell) theory, in which there are no valence

SP states, the Pauli operator is defined by

= Q1(DQ1(2) , Q1



We shall also define

occ

h

(4b)

and
P^Ci:) = 1(12) - QNTD(12) = P1(1)P1(2) + P1(1)Q1(2) + Q1(1)P1(2). (4c,

Q, and P, are Hermitian projection operators, i.e.

(4d)

ND NDand these properties carry over to Q and P .

In the degenerate (open shell) theory with valence "particles" only (no

valence holes) we let Q, and P be defined as above, and

val.

so that

Then Q D is defined by

Q°(12) -

PD(12) = 1(12) - QD(12)

Ai=

p i + A i + Qi • V

- A1(1)A1C2)

(5a)

(5b)

(6a)

(6b)

(6c)

, ̂ >V2)- (6d)

These regions are shown in Fig. 1, from Ref. 7. The definition (6a) is most ap-

propriate to the case in

which there are few valence

particles relative to the

number of valence states, so

that scattering into pair

states of the form |vp> is

seldom blocked by the normal

occupancy of state |v>. When

there are more than two

valence particles, the ef-
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Fig. 1. Pauli projection operator P before and
after truncation.

fective intei-action differs from the G-matrix by valence-blocking corrections in

addition to other corrections.

In the seldom discussed degenerate theory with valence holes only, the non-

r h



degenerate Pauli operator (4a) can be used, because only particle-particle ladders

are summed by the G-matrix. However, because of (5b), the P's in (4c) must be re-

placed by (P+A)'s. Finally, if there are both valence particles and holes, we de-

fine

(7a)

so that

A + APl + Al + Al + Ql = l- (7b)

Then Q D may be defined by (6) with Â ^ replaced by .'.p and P1 by P̂^ + A^.

The Pauli operator may be regarded as providr g a dependence of G on the

particle density near the interacting particles, .a the non-degenerate case

(8a)
X L ' XI* X X X X X £* C X U C

where p, is the SP density matrix (in position spa:e) of the model ground state,

PnCr^r') = <$|^ (r')^(r-,)|9» = <r,' |P, 11\> = I <r. |h><h|r'>, (8b)
i l l 1 1 i i . . h i l

often called the "mixed density" as distinguished :rom its diagonal part, P(r,),

the particle density at r,. An expansion about th> • mixed density of nuclear matter

has been given.9 Approximating the entire propaga or, Q/(E-H°), by that of nuclear

matter of density p(y[r,+r7]) is called the local tensity approximation (LDA).
11The reaction operator, as defined so far, has singularities as a function

of E,. In the non-degenerate case

0ND emp |p p x p _ p

o L p _e
Es-H P l p 2 s

where e = e + e , with e the SP energy of str.e |p>. It is clear from (9)
P1 P2 pl P2 p

that the perturbative expansion of G has singularity2i for E equal to any e

Similarly, from (2a), it is seen that a non-perturbative solution lias a singularity

at the eigenvalues of Q(ll? + v)Q, which lie near ths e . In the Brueckner-
Pi Po

Gold^tone non-degenerate perturbation expansion, in its rearrangement by

generalized-time-ordering, '•5' and in the degenerate perturbation expansions,

the self-consistent E is always less than the lowest singularity (for non-
1 A

superfluid systems). But in the SP Green's function approach to nuclear structure

and in the calculation of the optical potential, a transition operator is needed.

The Brueckner reaction matrix must then be analytically continued to higher E as

a Iieitler reaction matrix containing a principal value operator as well as the



below the lowest e

shell where 1; = es

, which is the case for interactions iar oif the energy

However,
2

, + e, - 6E with 51i the excitation of the medium.

"for on-shell interactions between valence particles or high-lying holes, E is

just below the lowest singularity and there is a strong energy dependence.15

is seen clearly in the G-matrix elements for the s-d shell valence nucleons in
16

This
18F

shown in Fig. 2, taken from Barrett, Hewitt, and McCarthy.

In summary, unlike the bare interaction v, the

reaction operator is dependent on the medium through

Q (density dependence) and through the self-energy

U (dispersive or specti'al dependence), and is ener-

gy (or velocity or nomentum) dependent through I- .

The latter gives ri e to a "state" dependence of

the effective inter ction because the self-

consistent E for c. particular matrix element de-

pends on the pair s ates involved in the matrix

element.

II. The Bethe-Goli .tone Wave Function

If v contains . hard core, Eq. (1) is singu-

lar. This difficul :y is overcome b.y working with

the equation for r/- > Moller wave operator fi associ-

ated with G by

Gil, ) = v

which satisfies

Fig. 2. T=0 spectrum in
161" calculated (Ref. 16)
with the G-matrix as ef-
fective interaction. The
dashed line indicates the
pelf-consistent value of
the starting energy, to,

Acting to the right on an unperturbed pair state $ it yields the correlated

Bethe-Goldstone pair state ̂,

(10a)

(10b)

(10c)

wiiich vanishes inside the hard core. A weak s ingu:ar i ty of vj; remains, but gives

no t rouble as i t i s in t eg rab le . Tn r e l a t i v e coord:nates , for the L p a r t i a l wave

vlX =

17f, (r) is finite.

It is convenient also to define the defect operator

Ho_R
(12a)

nn(l flu-1 do-Fort v.nvp fi 'nrt ion



= -£— v <HE ). (12b)

In infinite nuclear matter the "small parameter" K of the compact cluster ex-
. 4 .pansion is

< = pW (13a)
18

where p is the nuclear density and W is the "wound integral"

W= /U(?)|2 d3r, (13b)
19

which is a very characteristic quantity for the interaction, v. The transfor-

mation from G to 11 is very useful even if v does net have a hard core.

In infinite matter where the hole state spectium is continuous and the un-

perturbed pair states are taken to be plane waves, it follows from (10b) that the

BG wave function for two normally occupied states ; nd for E = e, , has no phase
s n«i n^

18shift. It "heals" to the unperturbed wave function because the final states
permitted by Q are of higher unperturbed energy th; n E . In fact the defect func-

tion in the L partial wave decays as

where k,, is the Fermi wave number. In a harmonic potential, U, the BG wave

function oscillates about cj> and "heals" to it befo: 2 •> becomes negligible beyond

the nuclear surface where it tunnels into the potei :i,il. This rapid decay is the

most important property which any approximate defei t function must have.

In their calculations for infinite nuclear ma" te-, Brueckner and Gammel"

solved the integral equation (10c) numerically after approximating the Green's

function for a fixed average momentum of the pair, it,

<r,K
H°-E

r',K> = / d3k Q(K+k,K-k;kp)
ik-(r-r')

eK+k eK-k

->. ->• 2 1first by "angle-averaging" over the angle between K and k, which restores

spherical symmetry and uncouples different partial waves, and second by truncating
21at some k . The angle-averaged, nuclear-matter Fauli operator is

v v-v 1 - 1° i£ ^^ < kj and 1 if k > k,.+K n , . I
k , K ; k p ) -\ •)•)•} I" tr (14a) y;

l(k +K -kp)/2kK, otherwise r 1
where ;1

^ = T (P^) and t = \ (p1+p2). (14b) f

It has been found to be a quite accurate approximation. In their excellent re- '£

view of methods (through 1967) for calculating G in nuclear matter Dahll, Ostgaard, <•,



and Brandov;2-7' found Brucckner's method could be very accurate, and found ways to

improve it.

III. Representations of ii in Terms of P Rather than Q

The operator Q is of infinite dimensionality for both particles, whereas each

term of P is of infinite dimensionality for at most one particle. Two ways of ex-

pressing G or Q in terms of P rather than Q are known. The first is to multiply

Eq. (10c) by H°-E , which leads to the Bethe-Goldstone integro-differential

equation17

(H°+v-E P (15)

Several ways of solving this equation, when P is truncated, will be described bs-

low.
7

A second, more complicated formulation, can be derived from a familiar
24

identity for a matrix partitioned by the projection operators P and Q:

(16)

With M = (E-h)"1
> where h is H° or H°+v, the inverse of (16) is

V = (p •*• _ (p_i__ prp pi p C~' '^71

where once again •"* stands for the Cauchy principal value. The equation for G in

terms of the full Green's function, Eq. (2a), becomes

G(E) = GX(E) - P A(E)PX
J(E) (18)

where we have let G (E) denote the reaction matrix for two interacting particles

in the potential U but isolated from the medium (Q •*• I), which satisfies

G ( V = v + v ( ?-o- v = v + v
E-i-r-v E-i

,o c Ioy
(19)

and where

A(Es) =
Es-H°-v

PP.

-1
(20)

The inversion in Eq. (20) can be done easily because the space P is of finite

dimension. However, the evaluation of <?• I

Es-H
u-v

can be done only approxi-

PP
mately, in terms of a truncated set of eigenfunctiens of the two-particle
Schroedinger equation.



IV. The Integral liquation Relating Two Reaction Operators

As it is not possible to solve for G or \\> exactly, various approximation

methods have been developed. These involve simplifying the interaction or the

propagator. We should like to know in principle how the exact G is related to an

approximate one so we can estimate correction terms. Fortunately, different re-

action matrices are related exactly by identities. If the spectrum is continuous,

these identities are integral equations. The rigorous version of a comprehensive

OWSl

2,3
identity of Moszkowski and Scott, which allows all quantities to vary, can be de-

rived as follows:

Q

EA"HA

= 0. (21b)

Multiplying (21a) on the left by Gg(Eg), subtracting i t from (21b) multiplied on

the right by G.(EA), and using (10a), one obtains

. (22)

Incidentally, a special case of this in which only E varies yields'* ' J'

^ = - G ( E ) 'Q '
E-H°

G(E) = -X+(E)x(E). (23)

One sees tliat tlie diagonal matrix elements of G are non-positive. The piopagator-

correct ion 1

sion) term:
correction term in (22) sometimes is split into a Pauli and a spectral (disper-

% Q-QA QA f-^-o • E V I '
 if% d r £ A f o EV

E-H° L HA E-H° A [1341° b HA
Q"Q.\ r i i i

= FIT + Q p-6" • E V ' i f
"A L^-H A

V. Two Simple Approximations Which Provide Insight

A. The Moszkowski-Scott Separation of the Interaction. Different parts of

the interaction produce quite different effects. The sti'ong repulsive core must

be treated to all orders, whereas a weak interaction need be kept only to low

orders. Regions of rapid variation induce high Fourier components in the defect

function, whereas slowly varying parts induce only low components. Eden and
h w i r-" r,n-ir.c. Unirv-V-i. ind Wr*i <;<;Vnnf .•

LO anr1 nfhors ronsirlpTorl ^onarnfion of the



hard core, the tensor force, etc. In the Mobzkowski-Scott5 separation method, with

(25)v = vg + v£,

the short-ranged part, v , includes, along with the repulsive core (which may be

soft), the strone, rapidly varyine attraction iust beyond the core. The remaining

long-ranged part, v,, is weak and slowly varying. A reaction matrix, G , obtained

from v, is defined. Since v produces the short-range correlation in the BG wave

function, which involves primarily admixtures of high-lying unperturbed states,

it is a good approximation to replace Q by I in the equation for G , so that

(26)

The especially clever feature of the method is that the separation distance, d, is

chosen in principal such that each diagonal element of G , proportional to tan 6,

is zero for the self-consistent value of the starting energy. The BG wave func-

tion, <i< , then heals to <J> at the separation distance (see Fig. 3, from Ref. 5).

Since vfc is too weak to produce much wave

distortion, ij> may be used as a good ap-

proximation to the correct \l>. The

identity (22) yields

G(E) = Gj(E.d)

* G*(E,d)
S

(27a)

H°-E
G(E)

with diagonal elements (for the self-

consistent values Ii ai

labels the pair state)

consistent values Ii and d , where aa a

! L.

Fiig. 3. Illustration of the MS
separation method (Ref. 5).

<ctjG(E )jo> = <a|v. (d ) + v0 (d ) —-*—v.(d ) + 2vo(d ) —-—G.(li ,d ) + . ..|a>.

a
T ° (27b)

For simplicity in the evaluation of G^ the free particle Ilamiltonian, T, was used,
and corresponding dispersion corrections were included in the formulation:

(28a)



1(1

a n d •• i; J.

= G ' O O + n'ri-)' v (E)n (ii)
3 / O

H°-E

C28b)

G(E) T \^ 1 ()~ — 1 G(H)
E-TJ

In triplet even states Scott and Moszkowski found a large contribution in

(27b) from the quadi-atic term in the long-range tensor force,

vu = vT(r) 6(r-d) S 1 2 > (29)

where S,-, is the tensor operator. In their calculations with the separation
28method i'or finite nuclei, Kuo and Brown used the free-particle spectrum and the

angle-averaged, nuclear-matter, Pauli operator, $ (k..), with a fixed Fermi wave

number, k.: = 1.36 fra , appropriate to the saturation density. . Because (f com-

mutes with T

V vn ~ ! d k d K v nl k K >
 Kz 7 \

 < k K ' v i r (29a)

They found that this could be fairly accurately ap roximated in a closure approxi-

mation

CfVW1il 361 I [v (r)]29(r-d)
vT,

 U ,; .-r vT, % v.. j ^ ^ v = ( 8+ZS,,) ' .<T> . (29b)
I " s

 l H. • U Ls <J>e£f 14 1- L s <l>e££

I* " s
 l H. • U Ls <J>e£f 14 1- L s <l>e££

29In a later paper Kuo evaluated

again finding closure to be accurate. However, Dahll, et^a^. showed that in

nuclear matter the infinite series of terms in the tensor force converges slowly,

because there is no separation distance beyond which the coupled distortions in

the '̂ Sj and "̂ D. partial waves both vanish, and Kb'hler discovered that the MS ex-

pansion does not treat the large dispersion effect adequately. In the "modified

separation method" (MMS)"5 the equation for Gg contains Q, and Eq. (28b) is modi-

fied accordingly.

B. The Reference Spectrum. We have seen that the exact BG wave function

heals to the unperturbed function because the Pauli operator keeps the intermediate

state spectrim above the self-consistent values of E , i.e. above twice the Fermi

energy, e.:. If Q is replaced by I, the intermediate spectrum extends further

downward, overlapping the self-consistent E , and the "healing" property is lost.
if

But if E^ is. chosen off-shell, below the hole-pair spectrum, the healing property

is regained. Alternatively, the healing property is regained if the hole-pair



2 e r (Ref. 50 and page 111 of Ref. 5). In the "reference spectrum" (IIS) method

of Bethe, Brandow, and Petschek, such an auxiliary spectrum if. introduced. Then

ftRS, which satisfies

^ k F (30a)

can have the main qualitative behavior of the correct fi, wnile being much easier

to calculate because it lacks Q. Then

GfEj - G (E) + G [El - ^ — — V ft(.w- 13UDJ

[H^-E H°-EJ
The RS method works for all partial waves, unlike the separation method. It shows

very simply that the repulsive core contribution grows rapidly as Cs goes off

shell. For example, in nuclear matter with an interaction containing a hard core

of radius c, for the L partial wave

2 rC
<<t)_jvj \^>> = — {(Y +k ) Q, (kr) 0-. (k r)dr
k k m 'o

° (31)

where ̂ , and//, are Riccati-Bessei and Riccati-Hankel functions, and u, is the

RS radial wave function. The matrix element contains contributions from inside

the core, the core edge, and outside the core. The inner core contribution is
R2 2proportional to —- y » which is the negative of the relative-state starting energy
m

plus a constant.

Bethe, et_ al_. carefully worked out the parameters of a reference spectrum in

nuclear matter of the form

R= A R + p 2/2m* (32)

which would approximate closely the off-energy-shell Brueckner-Hartree-Fock

spectrum for 2kp < k < 4kp where the Fourier transform of the defect function is

large.. A similar reference spectrum is illustrated in Fig. 4, taken from Ref. 31.

In the "compact cluster" expansion of Brandow, in which U contains only self-

energies which are placed on the energy shell by generalized time ordering, the

SP potential of "particles" is nearly zero, so that Q H g t 0 Q = QTQ. Then G1^ be-

comes just the reaction matrix for free, isolated particles, similar to G , Eq.

(28a), S

GF(E) = y + v- (Pg^r GF(E). (33)



Sprung, et a_l_. have made many calculations

of nuclear matter with the RS method.

The earliest calculations of G for finite

nuclei were those of Day, of Brandow, and of
'Z'Z 9 0 PC

C. W. Wong. Kuo and Brown" evaluated G

for relative p-states jwhere v is not attractive

enough for the separation method to be used)

in 0. Later Wong"3' calculated Pauli and

spectral corrections, which can be expressed as

AG(E) =
Fig. 4. The BBP (Ref. 3 "j
reference spectrum in nuclear
matter. Tne dashed line is
an interpolation. From Ref. 31.

H -E H°-EJL V '

(E) + AG(E)]

J
(34)

-I Q

HD-E
G(E)

(35)

= A,X(E) +-y-AG(E).1 H°-E

Here tlie leading correction to the defect operator, A,x> can be separated into

Pauli and spectral parts as

with

and

H i s 5
i! -E H -E

= -P

=-S_G R S(E) -
!f°-E

(36)

(37)

(38)

Wong used the free-particle reference spectrum and a local, angle-averaged,

nuclear-matter Pauli operator

with

Q(k,R)

, 2

(k,Kef£(R);kj.(R))

p(R) 0.3

(39a)

(39b)

This Q commutes with the relative kinetic energy, and its variation with R gives

a distinct improvement in the nuclear surface. Wong also introduced another ap-
Wproximate Pauli operator (denoted by Q below), defined in the relative and

center-of-mass (rel-cm) oscillator representation. It is an approximation to the

single-oscillator-configuration, two-particle Q. He found that his local Q gave

results similar to the more accurate shell model one, thereby justifying his



L3

somewhat refined version, Eq. (39), of the local density approximation,10

VI. Accurate Calculations with an Approximate Q in Oscillator Relative States

For finite nuclei one would like to calculate a G-matrix for which Q and U

correspond to the self-consistent orbitals. In light nuclei the oroitals corres-

pond closely (except in the surface) to those of the harmonic oscillator potential.

Moreover, the harmonic potential contains the only spatial dependence which sepa-

rates in both 2-particle and rel-cm coordinates. For these reasons the oscillator

basis is a preferred basis in which to calculate a finite-nuclear G. It is special

in comparison with more realistic potentials such as the Woods-Saxon in having no

continuous spectrum. A two-particle harmonic-oscillator state |n, £,m.., n,fl,.,m->

is expressible as a linear combination of rel-cm states |n£m., NLM> with

p = n1+ii2 = fi+N , n = 2n+£. ' (4C)

The states of given p lie on a line of angle -4 5° in a plot such as Fig. 1.

Moshinsky and Brody ° have tabulated the coefficients of this transformation with

the angular momenta coupled to total orbital angular momentum, A. For the re-

duction of G to relative states we need a props gator which is both a good approxi-

mation to the self-consistent (SC) propagator £ id diagonal in N, L, and %.

There are two common choices of approximai.2 Hamiltonian. One is the shifted

oscillator (SO),^ ^ which can be generalized to include an effective mass,39

< * £ £41)
The other approximate Mamiltonian, H" ", is de: ined such that ' '

OSOC I QSOC _ SOC I nSOC
Q Q Q Q

where SOC stands for "single oscillator configuration". It is based on two as-

sumptions: that U = 0 for virtual particles, a good approximation for the compact

cluster expansion; and that Q^C = Q^0C. Unlike the cruder approximation28'34

soc _i_ osoc

Eq. (42a) preserves the orthogonality of the particle and hole states (similar to

the orthogonalized-plane-xvave approximation in solid state theory); and unlike

nSOC I nSOC ,Q T^q ' (
Kchler.'s approximation

Eq. (42) allows for the non-diagonality of T in the oscillator basis. However,
the additional approximation of keeping only diagonal elements of T ,



;1<NL|Q[QTQ-E];1 Q|N'I.«> = &M<6LV < K L ^ \ e l Q + T

is still made in the calculations.
SOP 2 7

Two approximations to P have been widely used, Eden and Emery proposed

pEE f fX> p ± pmax (43)

34

It is diagonal both in 2-body and in rel-an oscillator states. Wong's approxi-

mation is defined in the rel-cm oscillator basis for closed L-shall configura-

tions, by
,> £&' LL' r(n£NL|Pv jn1

(44)
where M i s a Moshinsky coefficient and the sum i , over pa i r s t a t e s [n ,£, ,n ?£ ?>

SOC

for which (see Fig. 1) P is unity. The averaging over X is just an angle-

averaging in the classical (vector model) limit. P is more accurate than P and
38

is preferable if one is not going to calculate '' -esidual Pauli corrections" in- •
volving P-Pre cm. Moreover, P can be easily 5 neralized to j-j coupling, to

non-oscillator radial functions, and to fractio:: 1 occupancy. However, P should
W

not be used if residual Pauli corrections are tc be made, because P is not de-

fined in the 2-body oscillator representation; v ereas Ppr, is defined there, and
W

by Eq. (40) takes the same simple form, Eq. (4..V A related difficulty with P
W 2 W

is that it is not a projection, i.e. is not ideir otent, (P ) f P , because of the

dropping of the off-diagonal elements.
42 43

In (44) N'+n1 = N+n. Kohler and McCarthy have made the additional trun-

cation in which N' = N:

Kallio and Day also have required full diagonality, but have kept a dependence

on X by omitting the average over X:

CniNLlP^Wln'l'N'L') - L,i,,,im,«,,, 2 I ML'TV. 0 (*) I • (46)
, l-.n~l [ 1 1 2 2n, l-.n~ly [ 1 1 2 2

They show that even small differences in the Pauli operator significantly affect

the asymptotic behavior of the defect function and hence such quantities as U in-

sertions and the rms radius.

Next we turn to the methods for calculating G with a propagator diagonal in

N and L. We let g = <NL|G|NL>. All the methods involve truncating the projection

operator P (as in Fig. 1) or Q to a finite number of states. As the oscillator

pair-energy parameter p increases, the fraction of the line p=ccnst for which



P = 1 decreases rapidly. Moreover, Wong54 has shown that P^(£Lvp) falls off, as

p increases, even more rapidly than this geometrical argument would suggest.

Sauer found that g-matrix elements calculated with the maximum relative radial

quantum number equal to 5 agreed with the matrix elements for n = 15 to within

We shall describe four nearly exact methods for solving for g with a truncated

P or Q: two for solving the BG equation, one involving g and the reaction matrix

identity, Eq. (22), and one involving expansion in eigenfunctions of the

Schroedinger equation for an isolated pair.

The BG equation (15) may be regarded as an :' nhomogeneous equation in which

the inhomogeneity is a linear combination of osc.ll.ator orbitals. Eden and Emery

suggested calculating Green's functions for each of these inhomogeneities and

taking that linear combination which satisfies t ,e boundary conditions. MacKellar

27

and Becker37 further developed this Green's f inction method, including the f i r s t
exact treatment of the tensor force through coup .ed partial waves. Figure 5 shows

the ~S,- D, defect function for several
1 values o the starting energy.

44Kal io and Day solved the BG

equation by iterating the inhomogeneity,
XT)

P (X)vJ, They also applied this
inhomoge ieity-iteration method to nuclear

47

matter. Siemens has done extensive cal-

culation of nuclear-matter matrix elements

with the i.teration method. Its only draw-

back is hat convergence becomes slower as

kp increases and is not efficient for cal-

culations at hign density.

Kohler and McCarthy42'45 first calcu-

late the reference matrix

\
\A

i

I1-
i

i !
W i
>\
\XI

\
* t • -"ri-'" -

\&—--fa.-'

\-2

1

I

^ ^

/'y

.. J_ .

i
i

Fig. 5. Triplet relative defect
functions for N=L=ft=O, n=5 for
the Hamada-Jolmston interaction
for several values of the shifted
starting energy Ê . = E + 2C,

a=(maj/2n)1/2=0.4 fin"1

From Ref. 46.

= v + v
rel

^ N L - ^ l

gI(E)(47a)

and p =5.max and then solve either in perturbation
42

version,
43

theory " oi more accurately by matrix in-

in a truncated basis of relative oscillator states,

.J(E) = gA(E). (47b)
lcm NL rel"EJ

Here P^J^^J- is the approximation of (45) in which the sum over (n,£pn2£2) in (44)



is truncated, By energy conservation (40) this implies a truncation of n and %.

In Ref. 42 they have used, instead of the QTQ prescription, T H G S C (42b); and in

the other papers ° an oscillator spectrum. Both of these are diagonal in relative

oscillator states, so the propagator is

T n£) ?]1 (NLM)[<H° >WT + <n£|H° , |n£> - Ej'^nJlj. (48)L
n trunc J L cm NL ' rel' J v ' v

nZ

The reference matrix has singularities in the desired ran^e of starting energies,

so one must be careful to calculate g (E) for values of E well removed from these

singularities in order to avoid loss of numerical accuracy in the matrix inversion.

The method is mathematically equivalent to th^ method of Green's functions de-

scribed above; however, the work is arranged difierently.
45Sauer has applied the matrix inversion me.hod to the QTQ problem,

nSOC
G(E) = v + v _ £ ; w G(E) (49)

QbUL(E-T)Q'UL

where it involves additional approximations, bee use T , is not quite diagonal in

relative oscillator states, and some arbitrarine s, because after truncation Q is

no longer a projection operator. In terms of th- reference matrix,

gT(E) = v + v j _ r e l
T - g ^ E ) , (50)

. n~2 eNL i- 1

Sauer's approximation is to solve in a truncated space of (n£) states

'max p max

o-o 7i o I- {6^.n " ^ (n£|gI|ni0(n|A |n' }(n'i\g\n'V) = (n&lg^n'r) (51)*-*,O-* n'
 n ^ n I

where the Pauli-correction kernel is

(n|A_|n') = QW(NLni) ^ l A " 1 jn'> QW(NLn'I) - <n|B_~IL [n'>
with

(nlAjn1) = E - -|-eNL - Q
W(NLn£) (nii:Trel|n'Jl)Q

W(NLn^) (52a)

Cn|BA|n') = E - } e E - (ni|Trel|n'A). (52b)

Notice that as n •*• % Q (NLni) •*• 1 and (n|Ajn') •+ (n|B0|n') fairly rapidly.
48Butler, et_ ad. have suggested that an expansion of a BG wave function in

terms of eigenfunctic.is of the Schroedinger equation

, fV.i (53)
should converge rapidly. Barrett, Hewitt, and McCarthy16 have implemented this



idea by expanding the reference BG wave function in I|K'S and then using the matrix

inversion method. The reference BG equation corresponding to (53) is

cm rel
Then

and

NLn.i1 J ~ ^ NLnA

osce

.0 » Ce!
osc
nJL - N̂L.nK,"

E. X-Erel

(54)

(55)

r̂el osc

L el

osc

.'

J 4

(56)

Erel.Erel

In practice one truncates the sum over eigenfunc:ions i. Equation (56) has the

advantage that the dependence on the starting en orgy is explicit. It can provide

a very accurate energy derivative.

VII. Accurate Calculations in the Two-Particle iscillator Basis

Finally, we discuss the case in which a pro iagator defined in terms of indi-

vidual particle states is used. The only known lethod is to use Eq. (22) again in

a truncated basis, i.e. the matrix inversion met iod. The equation to be solved is

G(E) = -RQL .RCM, 2
RCM

E-Hu E-P,RCM
G(E) (57)

inhere RCM labels the approximate quantities defined in terms of rel-cm states. In

(57) these quantities are assumed to be re-expre^sed in terms of two-particle

oscillator states. We recall that I and Q
IVstates, but Q cannot.

EE can be expressed in two-particle

The first use of (57) was with Q R C M = Q E E iRCM H S 0, Q = Q S 0 C and G(E) on

the right-hand side approximated by G R C M . 3 8 Lafr the full matrix inversion was

used.50 The case Q = Q S 0 C has also been treated by calculating GRCM with Q R C M = I

and H = H o s c by the eigenfunction expansion method. Equation (56) transforms

to the two-particle oscillator basis a,0,... as

where

GBa ( E ) = osc max
H.-E

b. = (\b. Id) ).

The H° in (57) can be allowed to contain level-shifts,27'38'16

(58a)

(58b)



1.8

(e -e
CX Ot Ot

(59)

so as v.o have self-consistent energies of the low-lying "particle" states.

Self-consistency of the Pauli operator with the orbitals of a self-consistent

field calculation can be obtained by expanding the SC orbitals in a truncated

sc soc
basis of oscillator states and then solving (57) with Q = Q , or, if G has al-

ready been obtained from (57), by solving
.SOCG(E) = GS0C(E) (E)

E-T-IT E-H
G(E). (60)

.51MacKellar initiated the first residual Pauli corrections from Eq. (60) with
SC SO

U = U . This refinement of G made enough di: ference in the saturation proper-

ties of 0 to warrant its inclusion in other c; lculations. ' It is expectedsr soto become more important the heavier the nucleu: . Spectral corrections, U f U ,
were also included in Ref. 53. Equation (58) a ald'be applied easily, with <J> in

(58b) becoming a self-consistent pair state exp; ided in oscillator pair states.

We have now reached the stage where G is e; jentially exact, limited only by

the truncation of the oscillator basis and the ; lcertainty in the best definition

of the potential U for virtual particles.
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