q" . . . . B . “ . PR . k 2

[ . Coufy 7509274

DEGRADATION SPECTRA AND IONIZATION YIELDS OF ELECTRONS IN GASES

By

Mitio Inokuti, D. A. Douthat § A. R. P. Rau

For Presentation at

5th Symposium on Microdosimetry
9/22-26/75
Varbania Pallanza, Italy

(Committee of European Commmities)

NOTICE
This repost was prepared as an account of work
sponsored by the United States Government. Neither
the United States mor the United States Energy
Research and Development Administration, nor any af
their cmployees, not any of their contractors,

ot theiv P makes any
warmanty, express ot implied. or assumes any legal
Liability oz 1esp: ility for the accuracy’,
o1 of any i tus, product or

procexs disclosed, of represcnts that its we would not
infringe privately owned rights.

st 5 MITEDR
PISTRIBUTICN CF THIS DOCUMENT 1S UNLIMIT D7

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOISJ ]

UotC-AUA-USERDA

operated under contract W-31-109-Eng-38 for the
U. S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION




*
Degradation Spectra and Ionization Yields of Electrons in Gases

Mitio Inokuti
Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.

D. A. Douthat
Kennedy-King College. Chicago, Illinois 60621, U.S.A.

and

A.R.P. Rau
Department of Physics and Astronomy
Louisiana State University, Baton Rouge, Louisiana 70802, U.S.A

Abstract Fﬁsﬁs ?Et?

Notable progress in the microscopic theory of elactron degradation in
gases recently made by Platzman, Fano, and co-workers is outlined. The
theory consists of two principal components: First, the comprehensive
cataloging of all major inelastic-collision cross sections for electrons (in-
cluding secondary-electron energy distribution in a single ionizing collision),
and second, the evaluation of cumulative consequences of individual electron
collisions for the electrons themselves, as well as for target molecules (the
so-called bookkeeping problem). Although current atomic physics offers a
considerable volume of pertinent cross-section data, one must assess the
data consistency and reliability through every possible means of critical
analysis, and then to extrapolate the data to ithe ranges of variébles (such
as electron encrgy) left unexplored by individual measurements. It is pre-
cisely to this end that a series of plots devised by Platzman turns out to be
especially powerful. By the use of realistic cross~section data thus estab-
lished, the electron degradation spectra have been obtained through numer-
ical solution of the Spencer~Fano equation for all electron energies down to
the first ionization thresholds for a few concrete examples such as He and
Ne. Remarkable systematics of the solutions thus obtained not only have led
to the recognition of approximate scaling properties of the degradation spectra
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Development Administration.
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for different initial electron energies, but also point to new methods of more
efficient treatment. At the same time, certain systematics of the ionization
yields and their energy dependence on the Initial electron energy have been
recognized. Finally, we shall point out a close relation between the
Spencer-Fano equation for the degradation spectra and the Fowler equation
for the ionization and other vields; the two equations are tightly linked with

each other by a set of variational principles.




1. Introduction

The purpose of this speech is to introduce to the microdosimetrist
some developments recently accomplished by Platzman, Fano, and co-~
workers in the analysis of initial events in the action of ionizing radlatlons. >

———

These developments are primarily concerned with the dismbution of initial
events in energy transfer to molecules, and therefore only implicitly with
their spatial dist;ibution, i.e., the theme of microdosimetry. The reason
for the emphasis on energy transfer is two-fold. First, the motivation for
those developments is to characterize in detail the kinds and yields of
chemical species (lons, excited states, radicals, etc.) that lead to radia-
tion chemistry. To carry out the most detailed and sound analysis, we
choose the simplest possible situation, i.e., gases in which we can

take full advantage of the current knowledge about elementary processes
provided by atomic physics. Second, the elucidation of the pure energy-
transfer distribution is an essential preréquisite for the understanding of
the combined spatial and energy-transfer distribution. In other words, one
has no real hope of solving a complicated problem until one knows how to
deal with a simpler problem that is a part of that complicated problem.

For definiteness, we shall discuss the basic case in which an electron

of a fixed initial energy T enters a chemically pure gas of low density and
completely stops within it. A typical problem is to calculate the number
N1 (T) of ion pairs generated. The result may be expressed in terms of the

average energy per ion pair
w(D) = T/N,(T) , (1

or in terms of the so-called differenticl W value
w(1) = [dN, (/3] -1 2)

The energy dependence of W(T) or « (T} is an important subject in micro-
dosimetric measurements. We can also discuss the number Ns (T) of any
specified initial products s other than ion pairs, for example, certain ex-
cited states or radicals of interest to the radiation chemistry.

*Fano (F75a) has recently written another article on the subject for a more
general audience.



2. Cross Sections for Individual Collisions

The initial step of the analysis is the comprehensive cataloging of
electron-collision cross sections for a molecule. By the word "compre-
hensive” we mean all major cross sections that account for say 99% of the
stopping power at all energies on the absolute scale. To the best of
our ability we must determine cross sections for every important energy-
transfer process, not just for a few particular processes. To this end we
search through all possible data sourcesg, both experimental and theoretical,
in the current atomic physics. This task is by no means straightforward be-
cause directly available data are seldom comprehensive. One reason for this
circumstance is that our interest is sharply different from the interest of
purely basic physicists who are looking for novel phenomena specific to a
particular process, a particular energy,or a particular molecule. Actually,
the need for the comprehensive determination of cross sections is not at all
limited to radiation physics, but is common to most of the modelling studies
of macroscopic phenomena, e.g., in plasma physics, chemical aeronomy,
and laser development. An obvious facet of our approach is the inquiry into
the nossibility of competition among different processes. Every time some-
one brought up a new interesting process, Platzman used to ask, "Does that
process effectively compete with all other possible processes?" This atti-
tude is crucial to a successful solution of our problem.

Let us enumerate the kinds of cross sections we need to find. First
of all, an electron of kinetic energy T may excite every discrete level n
whose excitation energy En is smaller than T. The cross section for dis-
crete excitation may be written as Un (T). The label n is primarily an index
of different electronic excitations (which are usually accompanied by some
vibrutional and rotational excitations). Purely vibrational and rotational
excitations, as well as elastic collisions, contribute negligibly to the
stopping power, except in the subexcitation range, (i.e., when T is lower
than the first electronic excitation threshold), and are therefore irrelevant
to the ionization yvield.

Next, an electron with T > I may ionize the molecule whose (first)
ionization threshold is I. The ionization may rasult from various values of
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energy transfer E from the electron to the molecule. Suppose for simplicity
that the molecule has the single ionization threshold I and always ionizes
when E > I. Then the ionization will lead to a primary electron with energy
T ~E and a secondary electron with energy E—~1. We may write the cross
section for ionization with energy transfer between E and E + dE as

[dcri (T,E)/dE)JdE. The function is called the differential ionization cross
section or the secondary-electron energy distribution. The total ionization
cross section Gi(T) is given by the integral

qm= [0 T o

i 1 dE !
where the upper limit implies the customary convention that one calls the
more energetic of the two electrons the primary and the less energetic the
secondary. [In general, a molecule has many ionization thresholds cor-
responding to different ionic states, including multiply ionized states, and
may not always ionize when E > I (P60, P61). Explicit enumeration of these
complications is cumbersome but straightforward. ]

The entirety of cn(T) and dci(T,E)/dE forall n, E, and T is suf-
ficient for input to the pure energy-degradation nproblem. For treatment of
spatial aspects, in contrast, we need much morz detailed input data, i.e.,
angular distributions of secondary electrons, as well as of elastically and
inelastically scattered electrons. Comprehensive cataloguing of these de-
tailed data will require many variables and must depend upon far more
fragmentary knowledge. This point already exemplifies the great challenge
of theoretical microdosimetry.

For the pure degradation problem, the total inelastic.collision cross
section

atot(T) =0 (1) + zn Gn(T) , @

and the stopping cross section
2T+ do, (T, E)
o (D) = If E — 55— dE+ZLE o (T) (5)

are most important. Consideration of stochastic fluctuations requires also
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also a sum with E2 and E: in place of E and En in Eq. (5).

How do we determine the cross sections for a given molecule? In-
spection of the literature readily shows that directly available data are
limited in scope and reliability; absolute cross sections are in general
hard to come by, both experimentally and theoretically, although the pro-
gress of research in thig area in the last two decades is quite notable.

After much thought, Platzman devised an ingeneous strategy (P67). His
idea started with the recognition that electron collision cross sections are
closely related among themselves, as well as to other properties, and are
subject to a number of general constraints. This recognition points to many
methods of testing the data reliability, and of extrapolating and interpolat-
ing data dependably. These methods rest on sound principles dictated by
theory and use suitably chosen graphical plots of data. We shall illustrate
the methods by quoting a few examples; exhaustive exposition is impossible
in a limited time period, especially because the methods devolve upon many
topics of atomic collision theory.

One general constraint on the cross sections is their asymptotic
behavior that prevails at high T. For example, % {T) should behave as

_ -1 , 2
Un(T) = An T “InT+ Bn/T + cn/'r S {6)

where A_, Bn’ and Cn are constant, according to the Bethe theory (B30,171).
In particular, An is equal to fn/En, apart from a universal constant, where
fn is the optical oscillator strength for the tfransition to state n, and there-
fore is closely related to the photoabsorption spectrum. This connection
arises because at high T glancing collisions predominate, and their influence
upon the molecule is similar to that of light having a wide spectral distribu-
tion. The parameters B and C are more complicated in nature and depend
upon hard collisions as well. For T > 10 eV, Eq. (6) requires elementary
modifications because of relativity effecis, but an (T) remains to be charac-
terized by the same parameters, An’ Bn’ and Cn' Equation (6) suggests
that a plot of TO'n (T) as a function of in T should approach straight-line be-
havior, as exemplified in Fig. 1. Such a plot is called the Fano plot (171)
after the original inventor (F54). The Fano plot is also useful for non-




asymptotic regions because Tcn(T) approaches zero at the threshold T = Bn
usually smoothly and monotonically so that one can interpolate the data
much more easily and dependably than in a direct plot of On(T) versus T.
The asymptotic T-dependence of Gi(T) and dt‘l1 (T,E)/dE at fixed E is also
glven by the same analytic form as Eq. (6), and therefore the Fano plot is
useful for these cross sections (K75b).

Another important plot concemns the E-dependence of do (T.E)/dE at
fixed T. Platzman pointed out that it is suitable to plot TE d0 (T E)/dE as
a function of 1/E, as exemplified in Fig. 2. The factor TE:2 1s in essence the
reciprocal of the Rutherford cross section, and therefore Tl?zdcri (T,E)/dE
represents the ratio of the differential ionization cross section to the
Rutherford cross section which should apply for E >> 1, i.e., for collisions
in which the electron binding is insignificant. Consequently, as E becomes
large, the ratio should approach a value fixed by the number of molecular
electrons effectively available for {onization, usually the number of outer-
shell electrons. The Platzman plot is also related to the photoionization
cross section, or equivalently, the oscillator-strength distribution df/dE
for ionization. More specifically, the E-dependence of ‘.l'Ezda1 (T,E)/4E
should resemple that of E df/dE for E ~ I and £ « T, again owing to the
dominance of glancing collisions. Finally, the choice of 1/E as the
abscissa makes the area under the curve equal to Tcr1 (T) apart from a uni-
versal constant, and thus allows one to test quickly the consistency of
dcr1 (T,E)/dE with usually better known o, (T). The Platzman plot represents
dﬂi {T,E)/dE data most concisely, and enables one to extrapolate and
interpolate the data over E, as well as over T. Notice that the naive plot
of dﬂ'i (T,E)/dE versus E usually requires use of the logarithmic scale on
both the abscissa and the ordinate, and virtually defies any convincing
extrapolation and interpolation. All these merits of the Platzman plot have
been amply demonstrated by a serles of work by Kim, who systematically
and critically examined most of the recent experimental data on secondary~
electron energy distributions (K72, K75a, b, ¢, KN75)

Other controls of data derive from sum rules (P67). For example, the
optical oscillator-strength distribution, defined as a complete set of
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(En' fn) for all n and df/dE for all E> I, obeys a number of theorams that

relate the momeorgts
s = [ E'(@t/dB)dE+ } B £ @)
1

for different integers with various molecular properties. The best known of
these theorems is the Thomas-Kuhn-Reiche sum rule: S(0) = the total number
of molecular electrons. The electron collision cross sections also satisfy
certain sum rules; the Bethe procedure of evaluating Gst(T) of Eq. (5) at high
T is an example. Likewise, Gtot('r) of Eq. {4) can be evaluated reliably
from certain molecular properties (IKP67, 1SD75).

Another kind of consistency testing may be exemplified by a rela-
tion between On (T) and dci('l‘,E)/dE at the same T. In a class of discrete
excited states (called Rydberg states), a single electron moves in a large
orbit only slightly bound to the ion core. For very high states of this kind,
the excited electron is hardly distinguishable from an electron ejected upon
ionization with extremely low kinetic energy. This circumstance can be ex-
pressed rigorously by the quantum-defect theory (570, F75b ). In the
simplest case where we consider a Rydberg series specified by a set of
quantum numbers (such as angular momenta) and continuum states specified
by the same set, we have the relation ;

@7.21e0™! um 0" o (0 = Jim do (T.E)/AE (8)

where n* = n-5, n is the principal quantum number, and éis a constant
called the quantum defect. An example of the use of this relation is s=en
in Ki73.

As for the region of very low T, say within a few multiples of 1.
Platzman stressed the need for careful critique of measurements. For this
purpose and others, he cultivated encyclopaedic knowledge of chemical
physics and maintained close contacts with many workers over the whole
world, often suggesting new and decisive experiments (F75a).

Examples of the comprehensive analysis «f the cross-section data
concern He (MSg), H2 (G 75), Ne (8 75), and Ar (E 75).



3. Bookkeeping Problems

Once a complete set of cross sections for single collisions is
established, we face the problem of evaluating cumulative consequences of
many collisions. It is easy to get an idea of the number of electron col-
lisions involved. Suppose that a 10-keV electron comes into a gas with
W= 30 eV, then the number of ion pairs is Ni = 333, which is also the
number of ionizing collisions. The primary electron and all secondary
electrons must undergo other inelastic collisions that excite discrete states,
and the num:..er of these collisions should be comparable to N i Conse-
quently, th¢ total number of inelastic collisions involved in the degradation
down to T = ! . . everal hundred.

The mo=t straightforward method of bookkeeping is the Monte-Carlo
methods, which should be famil ar to the audiance from some papers
(P 74, TP 74, and B74) at the preceding symposium. Indeed, Monte-Carlo
calculations appear to be best at present fcr treating in detail the com-
bined energy and spatial distributions of initial events.

But the pure degradation problem can be treated by analytical
methods, which we may call methods of transport equations.

3.1. The Fowler Equation

The most elementary approach uses an equation due to Fowler (F23) for

N i(‘1'). In the simplest case where a molecule has a single ionization
threshold I and it invariably ionizes upon any energy transfer E > I, the

*
Fowler equation takes the form

O, DN(D=0(D)+ ) o (ON(T-E)

3T+  do.(T,E)
+ f dE ——tli_E——

[N(T-E) + N (E-1D] . (9)
I ! 1

The right-hand side divided by otot(T) enumerates different contributions to
N i(T) classified according to the kind of first inelastic collision that an
electron of energy T makes. When that collision leads to discrete excita-
tion n, the scattered eleciron will have energy T--En. The number of ion

pairs formed subsequently by that scattered electron and all its secondaries

*Consideration of many ionization thresholds, multiple ionization, and pre-ionization
from superexcited states (P60,P62) leads to a generalized Fowler equation {I75).
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is Un(T) N (T - En)/O’ tot(T) . The sum of this contribution over n corresponds

to the second term in Eq. (9). When the first inelastic collision is joniz-
ing, N i('1‘) must increase by O’i (T)/crtot('l‘); this contribution corresponds to

the first term in Eq. (9). At the same time, that ionizing collision 12ads to

an electron with energy T —E and another electron with energy E —1. The
total contribution of these two electrons and their subsequent secondaries
to N ; (T) is represented by the integral term of Eq. (9). Provided all the
cross sections are specified, we can solve Eq. (9) by starting with the

condition N (T) = 0 for T < I and by ascending in T.
F1gures 3 and 4 show results of such calculations. We shall make

several remarks on the properties of the solution of the Fowler equation.

First of all, results of numerical solutions in several examples (KEON 53,
E54, M56, HM57, DGS58, A71, 173, G75, E75) show an approximate behavior
N,(T) = (T - U)/W, (10)
for T >> I, where U and Wa are constants having the energy dimension. Inokuti
(I75) attempted an interpretation of this observation. Equation (10) implies that,
according to Egs. (1) and (2),

wW(T) = Wa/(l - U/7) (11)
and
w(T) = Wa (12)

for T >> 1. Comparison of Eqs. (11) and (12) with measurements (G35, C69,

S73, WB75, SH75) leads to no clear-cut conclusion at present. On one hand,
measurements on air by Gerbes {G35) and by Cole (C69), as well as those on
methane and the Rossi-Failla tissue-equivalent gas by Waker and Booz (WB74)
show energy dependence of W(I) around T = 1 keV, considerably stronger than

that described by Egs. (11) or (12). On the other hand, measurements on propane
by Srdo¥ (S73) and on xenon by Samson and Haddad (SH75) show energy dependence
congistent with Eqs. (11) or (12} down to lower T.

Tantalizingly, none of the gases experimentally studied have been
theoretically treated in detail. Therefore, conclusive comparison of theory with i
experiment must await further development. Because good theoretical results are
available for helium (M56, A71), molecular hydrogen (G75), neon (S75), and argon

(E75), we recommend measurements on these gases.
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As for W(T) at lower T, we expect to see & generally non~monotonic
behavior reflecting complicated structures in electron-collision cross sections.
As an illustration, Fig. 4 shows a theoretical result for He (M56), i.e., the
simplest of all permanent gases, especially because of the absence of inner
shells. In general, inner-shell icnization should give rise to some structures
in W(T) in the neighborhood of each inner-shell threshold energy. Theoretical
results on Ne (S75) and axperimental results on methane and the Rossi-Failla
gas {WB75) provide some insight into this problem area so far little explored.

Next, let us briefly consider W(T) at high T for different molecules.

As Platzman (P61) already pointed out, the ratio W/I is 1.7—1.8 for all rare
gases and 2.1-2.5 for commonly available molecular gases, according to ex~
periments. The limited ranges of W/I might lead one to hazard a naive con~
clusion, e.g., that W/I should be 1.7-1.8 for all atoms. Actually, the lim-
ited ranges of the data are attributable to a limited variety of target species

so far accessible to experimental study. To illustrate this point, we may
quote results of theoretical calculations for atomic vapors for Z< 18, as shown
in Fig. 5 (IDS75). Clearly, rare gases have minimal W/I values because of
tight electronic structure. In contrast, alkalis and alkaline earths l:ave large
W/1 values ranging over 2.0-3.2 because cf loose electronic structure.

3.2. The Fano Pactor

Fowler-type bookkeeping is also capable of treating statistical fluc-
tuations of the number o: ion pairs, a topic of great interest to the micro-
dosimetrist. For the most detailed treatment, one sets up an equation satis~
fied by the probability P(T,n) that the incidence of an electron with energy T
results in precisely n ion pairs in the gas under consideration. The eguation
for P(T,n) is a nonlinear integral equation discussed in KEON53 and LNST63.
The connection of this equation with the Fowler equation is readiiy established;

the average number Ni(‘I') of ion pairs is simply given as

N(D= ) nP(T.n). (13)
n=0

An important index of the statistical fluctuations of n is given by the mean

square average
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0]
Ni(Z)(T) =) n? B(T,n) . (14)
n=o

The function Ni(Z)(T) cbeys a linear integral equation (KEON53) similar to the

Fowler equation for Ni (T). Further, it can be shown that the mean square

deviation
@m? = [N @77 - Ni(‘Z)(T) (15)

is proportional to Ni(T)' i.e.,

¥ L A R T g

(60 = F(r) N (1) (16)

where F(T) is a function known as the Fano factor (F47). The Fano factor has
been evaluated only for a few gases (F47, A71),

3.3. The Spencer-Fano Equation

Let us now turn to a different method of bookkeeping originally due to
Spencer and Fano (SF54). In the Spencer-Fano theory, one looks at the energy
distribution of all electrons, including primaries, secondaries, tertlaries, and
so on, present in the gas. This distribution is most conveniently expressed
in terms of the total pathlength y(T)dT of all the electrons having energies
between T and T + dT, when the gas is subjected to a stationary flux S(T)
of incident electrons. The function is called the degradation spectrum. It

ol 2ys an integral equation, which takes the form

Gtot(T)y(T) = Znan (T + En) y(T + En)

+J’ df —~——— y(T +E)

1 dEb
[¢o} dO'i(T' IT + I)
+ dT! —————— y(T') + S(T) , (17)
f2T + I a(T+1

in the simplest case of molecules with a single lonization energy I. The

left-hand side of Eq. (17) is the number of electrons leaving a unit energy
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interval around T, and the right-hand side is the number of electrons entering
that interval, in a medium of unit moiecular density. On the right-hand side,
the first term accounts for energy losses by discrete excitations, and the
second term for energy losses by lonizing collisions. The third term represents
the production of secondary electrons by ionizing collisions.

When we have a unit flux of electrons with a single energy TO incident

upon a medium of molecular number density N, then we set

-1

S(T)=N "6 (T- TO) ' (18)

and designate the solution as y(TO.T), specifically including TO as the
second variable,

To solve the Spencer-Fano equation, Eq. (17), one starts with the
highest possible T and descends in T. With the source term S(T) given by
Eq. (18), we have "

vy, 7= No_ @] (19)

for T 0 >T> TO/ 2> 1, 1,e., in the interval where secondary electrons do not
contribute to y(To,T) and each energy loss is much smaller than the current
electron energy T, Equation (19) is commonly referred to as the continuous-
slowing-down approximation. Numerical solution of the Spencer-Fano equation
is not easy because of the strong dependence of do 1(T.E)/dE on E, especially
at low E, For this reason, Spencer and Fano (SF54) had to devise ingenous
mathematical tricks in order to study y(TO,T) even for high T and TO' say
above 10 keV. More recently Douthat (D75a,b) has succeeded in solving
Eq. (17) for all T down to I in helium, using realistic cross-section data (Fig. 6).

Once y(TO,T) is obtained, the number N 1(TO) of ion pairs is readily
evaluated as an integral

T

0
Ni(TD) = N{ ¢, () (T, TdT . (20)

*An elementary deviation of Eq. (19) is to expand all quantities on the right-
hand side of Eq. {17) in powers of energy losses and to keep only the lowest~
order terms. The assumption of small energy losses is too restrictive, how~
ever; Fano (F53) derives Eq. (19) on more general grounds.
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One merit of the Spencer~Fano method is that the integrand of Eq. (20) gives
an instructive breakdown of N 1('1‘0) according to T. In this context it is suitable ‘
to plot Toi My (T0 ,T) against InT; then the area under the curve corresponds
to Ni(T)' Another merit of the same method is that the number NS(TO) of
any other initial species s can be likewise computed; we just have to replace
a i('1‘) by the appropriate cross section US(T) for s in Eq. (20) to obtain Ns (1),
Douthat (75a) discovered an approximate scaling property of y(TD,T).
When he plotted the product (T/ TO) o (D y (T, T) ln(To/I ) as a function of
ln(T/I)/ln(TO/I), he obtained curves almost independent of TO' as shown in
Fig, 7. This observation explains the well-known empirical fact that W(TO)
is insensitive to T0 so long as To > 1,
Fano and Spencer (FS75) then gave a theoretical interpretation of the
approximate scaling property. They first recast Eq. (20) by the use of Eq. (1)

” 1 Yo dr 1
Ty~ RSN, ® G v
where -
a
wdlm =0‘:t(T) 22)

is the yvield of ionization produced by an electron of energy T directly (i.e.,
rather than through its secondaries), per unit energy loss, Next, they introduce

£ = ln(T/I)/ln(TD/I) (23)
as an independent variable, and

z(g) = [In(T/D](T/T ) YTy DN 0 (D (24) ;

as a dependent variable, both dimensionless. Then, Eq. (21) is transformed
into a simple form

1

> 1
= dgz(€) . (25)
wi(T) -({ - Wy
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The integrand of Eq. (25) depends only weakly upon T., in accordance with
Douthat’s observation. The function z(§) describes how much of the energy
transferred in an ionizing collision to secondary slectrons will be used once
more by these secondary electrons for further ionization. In this sense, Fano
and Spencer called f dtz(g£) the recycling parameter, which ranges from 1.3~
1.6 for ’I'0 =2 ~ 100 ?ceV in helium. Furthermore, they transformed Eq. (17)
into a new degradation equation which determines 2(¢) directly, and suggested
a procedure of numerical solution. This method has now been used by Soong
{875), who treats electron degradation in neon specifically taking into ac-
count inner-shell phenomzna such as Auger effects.

3.4, Varlational Formulation

Finally, we shall point out a variational treatment that unifies the
two major methods, 1.e., the Fowler equation and the Spencer-Fano equation.
Although variational methods in transport theory have been known for some time
especially in the context of neutron transport in reactor physics (Po67, S74),
we believe that our variational theory of electron degradation is new; indeed,
what we present below is merely a sketch of our initial exploration. *

Let us start with the Fowler equation, Eq. (9). We may write it in

the form
2N, (D) =0(D), (26)
where QT is an operator defined as
QN,(M=0 (NN~} o (T)N(T-E)
T+1)/2
- j( dE[d 0, (T,E)/dE] [N(T-E) + N (E-DJ . (27)

I

*Our approach follows the general method of constructing variational
principles developed by Gerjuoy, Rau, and Spruch (GRS72,73).
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‘Consider now an expression

<0
V(T)) = N, (T,) - jI dTL (T, DN, (T) -0 (T)] . (28)
where Nit(T) is a trial, approximate, solution to Eq. (26), and Lt(To,T) is
a trial function for a function L(TO,T) to be specified later. If Nit(T) happens
to be the exact solution of Eq. (26), V(TO) obviously is the true value of
Ni(TO)‘ Suppose that

Nit(T) = Ni('r) + ﬁNi(T) . (29)

and

Lt(TO,T) = L(TO,T) +6L(T0,T). (30)

then
V(TO) = Ni(TO) + GNI(TO)

Q0
-{ dTL, (T, T2 N, (1) - 0,(T)]

00
-f dIL(T . TI5 N, (T)
1

Q0
-{ dTs L(T ), T2, N, (T) . (31)
The first integral on the right~hand side of this equation vanishes by definition,
i.e., because of Eq. {26). We rewrite the second integral as

[*.] e}

If dTL(To,T)QTGNi(T) = fIdT[QTTL(TO.T)] 6Ni(T) ' (32)

¥

where we have introduced a new operator QT acting on L(T0 ,T). (We shall

later show an explicit form of QTT , which we call the adjoint of QT.) The third

integral is small if Lt(TO'T) and Ni t(TO) are close to the true solutions. We shall
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write the third integral simply as O(§ L6 N). Consequently, we have

f

o0
V(Tg) = N, (T) + If dT[6(T~Ty) - @, LT, D] 6N (1)

+O(6LoN) . {33)

We are now led to choose L(TO,T) [which we call the adjoint function

Ni (TO)] as the solution of the equation

T = 5(T~
2, LT,.T=6(T~T) . (34)

In other words, if Lt(TO’T) is an approximate solution of Eq. (34), then V(To)
given by Eq. (28) is a variational estimate of Ni (TO) . better than the initial
guess Nit(TO)' In this sense, Eq. (28) is a variational principle for Ni(TO)'

As for an explicit representation of the adjoint operator Q.,', we can show

T
through changes of variables and of integration orders that

T _ .
QT L(TO,T) = atot(T) L(To,'r) ZnL(TO,T + En) an('r + En)
@ do (T + E,E)

i
—de—'f aE

j L(TO,T + E)

dci(’r', T+1I)
d(T + 1)

dT

L(TO,T') . (35)
T+1

0
r
2

Comparison of Eq. (35) with Eq. (17) shows that Eq. (34) is nothing but the
Spencer~Fano equation, and that we can identify L(TO' T) with N y(To,T)

If we multiply Ni(T) on both sides of Eq. (34), integrate over T, and
use Eqs. (26) and (32), then we immediately obtain

o0
N (T) = IdeNi(T) 8(T = T,)

Q0
= t
-{dTNi(TmT L(T,, T)
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[ve]
= Ide [@pN (D] L(T,.T)

[} .
1

an expression equivalent to Eq. (20). Thus, we have established the equivalence
of Ni (TO) evaluated from the Fowler method and from the Spencer-Fano method (for
the same set of cross-section data).
If we start the same proceduce with the Fowler equation for the yield
NS(TO) of any initial species (other than ions), then we still obtain the same
and unique equation, Eq. (34}, for L(TO. T). In other words, the Spencer~Fano
degradation spectrum is the universal adjoint function of all NS (TO).
It is also possible to begin with the Spencer-Fano equation, Eq. (34),
and to look for a variational principle for L(TO, T). Then we consider an expression
(T, T) = L(T;. T)

o0
] T LA | I ]
- Ide [ LT .T) = 6(T' = D] M(T,. T, (37)

where Mt(TO'T) is a trial function for the adjoint of L(TO, T). Then we can show
through the same procedure as before [i.e., the steps from Eq. (28) to Eq. (34)]
that M(TO,T) should satisfy

QTM(TO,T) = 6(T ~ TO) . (38)

If we replace T by T' in this equation, multiply L(T, T') on both sides, and

integrate over T, then we obtain

[+ o]
L(T, Ty) = If dT' L(T,T') 6(T" - T,)

dT L(T,T") 2 M(TO’T)

ar [2,,] LT, T M(T,,T)

N
T8 T8 =38

dT! 6{T — T") M('ro.'r') = M(TO,T) ' {39)

T it e
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by the use of Eq. (34). Thus, we see the adjoint M(TO,T) of the function

L(TO,T) is L(T,To). Note the interchange of TO and T.
We are now beginning to explore numerical applications of the theory.

4. Concluding Remarks
Having summarized the theory of the yields of initial species, we now

wish to reconsider the meaning of the term "initial species." Our treatment

so far concerns the earliest stage of radiation action — the physical stage,

in Platzman'’s words (HP61) — in which new species such as ions are generated
by collisions of energetic electrons or other particles. These are the species
we call initial species.

In most of the measurements of W values, for example, gas pressures
are rather high -—at least a few Torr and sometimes an order of one
atmosphere or even higher. Under these pressures, thermal collisions of the
initial species with other molecules are quite frequent, and may cause some
interconversion among different species. In other words, the usual W mea-
surements score the number of ions at a time later than the thermal-collision
time; during the time period, some of the excited species may convert into
ions. Platzman called attention to such additional ionizations on many
octasions and called it collateral ionization. For example, Gerhart (G75)
obtained W = 40 eV for the initial ionization in molecular hydrogen by an
elactron with 1 keV. In contrast, experiments at high pressures give
W=36.5-37.5 eV: there are about 10% more ionizations other than initial
jonization. In this example, collateral ionization comes from excited hydrogen
atoms formed by dissociation of hydrogen molecules. Gerhart evaluated the

*
number of excited hydrogen atoms H also, and showed that the process

* +
H +H,—~H, +e (40}

accounts for the 10% difference between the theoretical value and the experi-
mental value of W. More specifically, Gerhart suggests that about 50% of

the 228 and ZZP states of atomic hydrogen make H3+ at one atmosphere through
reaction (40). To be sure, collateral ionization is just an example of many
processes in which excited species change their identity during the so-called
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physico~chemical stage (HP61). Similar considerations apply to other
effects, for example, luminescence, often used as a means of dosimetry.
Because of long time periods (10-9 sec or longer) involved, most of the
luminescence observed comes from excited species that have had many
thermal collisions or have undergone molecular internal conversion.

Full elucidation of conversion processes of initial species must
await a major step forward. In this respect the progress of pulse radiolysis
toward shorter time and the advent of short-time laser techniques for

detection of various species give us much hope.
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Figure Captions

An example of the Fano plot {reproduced from K75b with permis-
sion of the author and the publisher). The data represent the total
ionization cross section 9 of helium, as well as of molecular
nitrogen, as a function of incident electron energy T. The
abscissa variable 1n [Bz/(l - Bz] - Bz, where Bc is the electron
speed, is suitable in the relativistic domain (F54), and reduces to
In T minus a constant ln(mcz/ 2) in the nonrelativistic domain,
i.e., T < 10 keV. The ordinate variable is 13201/ (41ra02a2), where
a, = 0.529 x 10"8 cm is the atomic unit of length and a = 1/137
is the fine-structure constant. This variabie reduces to T 0.
apart from a universal constant, in the nonrelativistic domain.
Note the asymptotic approach to the straight-line behavior at high

energies and the gradual approach to zero at low energies.

An example of the Platzman plot {reproduced from K75c with permis-
sion of the author and the publisher}. In the top half (a), the data
show the differential jonization cross section dai(T' E)/dE of
w?rjbz impact of electrons with T = 500 eV. The abscissa
scale is R/E, where R= 13.6 eV is the Rydberg unit of energy,
and the R/E values increase on going from right to left. The cor-
responding secondary electron energy E—1I is shown on the top
horizontal scale. The ordinate scale is TE2 {dO'i(T, E)/dE]/ (41ra02R
where a_ = 0.529 X 10_8 cm is the atomic unit of length. The flat

0
curve labeled "MOTT" represents hard-collision contributions

2

evaluated by the Mott formula. In the bottom half (b}, the optical
oscillator-strength density df/dE is shown. The abscissa scale
R/E is the same as in (@). The ordinate scale E df/dE is suitable
for comparison with TE2 [dcri(T,E)/dE] at fixed T. Note the sim-
ilarity in the shapes of the curves (@) and (b).

R
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An example of the numerical solution of the Fowler equation (reproduced
from 175 with permission of the publisher).. The average number Ni (T)
of ions produced in helium by the incidence of an electron with energy
T is plotted as a function of T. The data were taken from M56. The
broken straight line shows an extrapolation of the high-energy linear

behavior, and intercepts the horizontal axis at about T= 14 eV.
w(T) = T/Ni(T) for helium, The data are the same as in Fig. 3.

The ratio W/I for 10-keV electrons in atomic vapors plotted as a
function of atomic number Z (from IDS75). The values WF were
evaluated from Fano's theory {F46), and Wa from the theory of 175,

by use of somewhat schematic cross-section data. Squares show
better theoratical results (DG58, M56, E75) and circles show generally

quoted experimental rdsults (available for rare gases only).

Degradation spectra for helium gas at O® C and one atmosphere
{reproduced from D75a with permission of the publisher). The
abscissa scale is In{T/R}, where R= 13.6 eV is the Rydberg unit
of energy. Each curve represents y(To,T) in the notation of the

text at the three values of incident electron energy TO'

A scale plot of the same degradation spectra as in Fig. 6 (reproduced
from D75a with permission of the publisher). The abscissa variable
is In{T/1)/1n (TO/I) , and the ordinate variable is (T/TO)NUi (T) y(TO. 7
ln(TO/ 1) in the notation of the text.
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