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PREFACE

This collection of critical data is intended for the conven-
ience of those who wish to evaluate nuclear safety problems. It
is made available in the present form pending consideration as a
supplement to TID 7016, THE NUCLEAR SAFETY GUIDE. Major sources
of information outside of the Los Alamos Scientific Laboratory

are:

The Argonne National Laboratory

The Dow Chemical Company, Rocky Flats Plant

General Electric Company, Hanford Atomic Products Operation
Lawrence Radiation Laboratory, Livermore

Union Carbide Corporation, Oak Ridge National Laboratory

U K Atomic Energy Research Establishment, Harwell

U K Atomic Weapons Research Establishment, Aldermaston.
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INDIVIDUAL UNITS

Homogeneous, water-moderated systems

Figures 1 and 2 represent critical masses and critical volumes of

homogeneous, water-moderated spheres of Oy(93.2), both bare (except for

4. (1-6,31)

thin-wall container) and water-reflecte Estimates of corre-

sponding diameters of infinite critical cylinders appear in Figure 3,

and thicknesses of infinite critical slabs in Figure 4.(4’6’11’12’32)

Effective extrapolation lengths of Figures 27 and 28 are used for the

shape conversions that are involved. Similar data for water-moderated

Pu239 appear in Figures 5—8,(4’6_8’32’33) and for U233 in Figures

9_19, (4,6,8-10,34)

The idealized metal-water mixtures of Figures 1-12
(> 2 kg/liter) are denser, hence more limiting, than usually encountered.

Inhomogeneous water-moderated Oy

Figure 13 shows how the minimum critical mass of a water-moderated,

water-reflected lattice of Oy(93.5) pieces (optimum spacing) depends

(26,35) Though measurcments were on 1" cubes, 1/2"

upon size of piece.
cubes, and 1/8" diameter rods, data appear in terms of approximate
diameters of equivalent spheres. Surface-to-surface spacings that
correspond to minima in critical mass vary from 0.7" for the 1" cubes
to 0.6" for the 1/8'" rods.

35

Oy at reduced U2 content

Minimum critical masses of homogeneous, water-moderated, water-

reflected Oy are given as functions of U235

(24,36-38)

content of the Oy in Figure

1l4a Also shown are minimum critical masses of water-moder-

ated lattices in the enrichment range through which these critical masses

(29,39)

are less than those for homogeneous systems. Similarly, Figure

14b displays minimum critical volumes. Critical masses of unmoderated

235

Oy (93.5) metal vs. U concentration appear in Figure 15.(6)
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Kg U-235 IN A MINIMUM CRITICAL MASS Oy (93.5)

n
N

26 ] T 11 1 r 17T | 11
o= -~ e ]
/1
/ ko)
/ SOLID SPHERE T
|
= LATTICE OF I' CUBES | _|
18
g /
a5 LATTICE OF 172" CUBES o
10 /
6 — 77 LATTICE OF 178" RODS
b — / /' —t
— — — A'
2 P et
< MACHINE TURNINGS B
0 ] l | _1 L l— -I-0 L O T | | 1 |85
00! 002 004 006 al 02 04 06 08| 2 4 6 810

EFFECTIVE DIAM. OF Oy UNIT (APPROXIMATE)- INCHES

Minimum critical mass of flooded Oy (93.5) metal lattices as a
function of oralloy unit size.
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Poisoned solutions

The influence of excess nitrate on critical mass of water-re-

239 (7)

flected Pu solutions is presented in Figure 16. Observations

235

on effects of heterogeneous poisons in U solutions are summarized

(40-43)

in Table I and Figure 17. The figure shows the influence of

various degrees of Pyrex poisoning on the critical height of 20"-diam.

aqueous solutions of U235, both bare and water-reflected. The Raschig

rings with which one point was obtained were 2.375" OD x 2" ID x 2.375"

long and were packed randomly throughout the solution volume.

(36)

Data from the Physical Constants Testing Reactor establish

the quantity of uniformly-distributed boron that is required to reduce

to unity the koo of a fissionable mixture. For 0y (3.04% U235

235

)03 -

235)

polyethylene mixtures, 0.37 atom B per atom of U (17 gm B/kg U

protects against criticality for the entire range of H/U235; at

235)p  _

H/U235 = 1430, ka>= 1 without boron. In the case of an Oy(2% U
235 _ 235

4

paraffin mixture at H/U 195, 0.25 atom B per atom of U gives

k_ = 1, from which it is estimated that 0.26 atom B per atom of

a
235 235

U235(~ 12 gm B/kg U ) protects for all H/U .

Systems with nonhydrogenous diluents

Some effective cross sections from reactivity coefficient data
and resulting dilution exponents for bare Oy(94) (Godiva), Oy(94) in
an 8-1/2"-thick U reflector (Topsy), and bare Pu (Jezebel) are listed

in Table II.(44)

In terms of the dilution exponent n(x) for the
material x, the critical mass of fissionable material diluted homoge-

neously with the volume fraction F of the material x is

; -n
m, = mco(l—F) M Dl by

where m,. is the critical mass of the undiluted system. In the cases
of D20, graphite (po = 1,67 gm/cm3) and BeO (p0 = 2.86 gm/cms) diluting
unreflected Oy (~ 93),(45‘47) data exist over an extended range

_24-
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TABLE I.

v235 SOLUTIONS WITH HETEROGENEOUS POISONS

Container Solution Reflector Poison Critical Height
Oy (~ 93):
15" diam. s8 0y02F2 water 136 steel rods,
cylinder B/u235 - 73.0 7/8"diam. (49.2v/0 of core) 37.5"
30" x 60" Al 0yO,F, water 10 boral partitions £
tank H/0235 - 78.7 (half-reflected) 2.3" wide (258" boral, :
i © ~ 0,3 gmB/cm®)
10" diam. Al 0y02F2 water 33.7v/0 Cu~0,15" thick, 60"
cylinder in H/U235 _ 52 6 outside min. spacing ~ 3/4"
1/4"-thick ° 1/4" Cu
Cu
42" diam, ss cyOZ(Nos)2 concrete random-packed. subcritical
tank 235 (on sides) Pyrex raschig rings at 460 liters
< 360 gm UZ35/1iter 1.5"0Dx1.5"highx7/64"wall solution
(17.8 v/o Pyrex containing
12-1/2 w/o 8203)
Oy (~ 87):
20" diam. Al 0oyo (N03)2 water on Pyrex tubing, or
”
cylinder B/u235 - 81.4 sides, bottom ?iéfs'§°28)fn
7.8 v/o glass 9.75"
9.45 v/o glass 11.6"
11,5 v/o glass 13.6"
13.3 v/o glass 19.6"
13.95 v/o glass 30.1"
16.7 v/o glass subcritical at
36" depth
5 same %fcept " same,
H/U235 = 141 7.8 v/o glass 12.5"
44 sang gxcept L same, subcritical at
H/U<3° = 276 7.8 v/o glass 36" depth
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TABLE II.
SELECTED MATERIAL REPLACEMENT RESULTS FOR TOPSY, GODIVA, AND JEZEBEL

Topsy {(Oy 94% in U) Godiva (bare Oy 94%) Jezebel (bare Pu)
Element Density Ea(x)a U—tr (x) Eig::g: Ea (X)‘ E’_tr (x) 2;;:::2:!’ ga (X)a 3t’.r (x) gigfxig:b
(x) gm-atom/cm barn barn n(x) barn barn n(x) barn barn n(x)

c 0.185 -0.022 2.13 0.86 -0,028 2.17 1.02 0.016 2,15 1.30
0 -0.013 2.20 0.023 2.22

Al 0.100 -0.006 2.12 1.04 -0.006 2.14 1.51 0.033 2.30 1.61
cr 0.138 0.015 2.41 0.98

Mn 0.135 0.009 2.70 0.95

Fe 0.137 0.020 2.29 1.01 0.006 2.29 1.28 0.050 2.44 1.45
N 0.152 0.066 2.77 1.02 0.056 2.65 1.22 0.111 2.7 1.39
Cu 0.141 0.035 2.68 0.99 0.022 2.73 1.18 0.074 2.83 1.37
Zr 0.071 0.022 3.87 1.02 0.070 4.10 1.51
¥b 0.092 0.068 3.99 1.01

Mo 0.106 0.032 4.58 0.89 0.105 3.99 1.33
Ta 0.092 0.155 3.91 1.12 0.232 4.34 1.48
v 0.105 0.097 4.40 0.99 0.182 4.60 1.30
Th 0.0495 0.069 4.48 1.08 0.017  4.92 1.46 0.141 5.00 1.66
y233 0.080 -3.22¢

u235 0.080 -1.894° -1.86,° -1.82g 5.3

y238 0.080 -0.228 5.10° -0.299  5.0° -0.238 5.18

pu239 -3.63¢ -3.56 -3.600* 5.3

pu240 -2.58 -2.34

Void 1.20 2.00 2.00

(Footnotes on next page)



TABLE II Footnotes

Ea(x) = Eé(x) - Ei(x) - &yo (x), where 8& and o, are capture and fission cross-sections (suitably
averaged), A&y is the increase in neutron effectiveness per central scattering and Es is scattering
cross section.

L The critical mass of a system diluted by the volume fraction F(x) of element x, mc(x), is related
to the critical mass of the undiluted system mc(o), according to m_(x)/m_ (o) =[1-F(x)] "%;
if F(x) << 1. VWhere po(x) is the normal density of x in gm—atom/cmS,
n(x) = 1.20 - p_(x) [0.735 G . (x) - 12.82 Ea(x)], for Topsy;
n(x) = 2.00 - p (x) [2.25 G, _(x) - 14.27 5,(x)], for Godiva;
n(x) = 2.00 - p_(x) [1.846 0, (x) - 9.964 Eg(x)] , for Jezebel.
C

These values are used for normalization.




(Figure 18). Figure 19 gives critical masses of bare and U-reflected

cylinders of Pu diluted by Al, Fe, U, and Th, 48

Systems at reduced density

The dependence of critical mass (mc) upon core density (p) has

been determined for several spheres or nearly equilateral cylinders.(6’13)

Values of n in the relation m,6 = const (p/po)—n are

1.20 for Oy(94) metal in 8-1/2" U reflector

C in 8" thick U reflector
235

1.57 for Oy(93) H3

1,88 for Oy(93) 02F2 solution at H/U = 230 in thick water
reflector (possibly influenced by void geometry)

239

~ 1.1 for Pu metal in a reflector corfesponding to thick U

(from Figure 22)
Where density of both core and reflector of a spherical system are
changed by the ratio p/po, and the ratio of reflector thickness to
core radius is maintained, then n = 2 (the value for an unreflected
spherical core).
In the case of an infinite slab, the critical mass per unit
area is necessarily independent of p.

Spherical systems with various reflectors

Critical masses of unmoderated Oy (93.5) metal spheres are given

for various reflectors as functions of reflector thickness in

(6) Figure 22

239

Figures 20 and 21, with supplementary data in Table III.

233 239

gives critical masses of U metal, d -phase Pu and a-phase Pu

in terms of the critical mass of Oy (93.5) metal in a reflector of

(34,49-51) 0 +he existing data

the same composition and thickness.
show no distinction between nonmoderating and moderating reflectors
(of limited thickness), these curves provide a basis for estimating

critical masses of the other materials from the abundant data for Oy.

- 130 ~
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TABLE III.
CRITICAL MASSES OF SPHERICAL ORALLOY (93.5 w/o U-235) WITH VARIOUS REFLECTORS

Data Adjusted to the Following Standard
Reflector Thicknesses.

1 in. 2 in. SRR finite  “Toctlve

Reflector (p—gn/cns) Critical mass - kg U-235 at p(Oy)=18.8 gm/ci3 Otr—cm
Be (QMV, p = 1.84) 29.2 20.8 14,1 ~0.25
BeO (p = 2.69) 21.3 15.5 ~ 8.9

WC (p = 14.7) 21,3 16.5 ~16.0

U (p = 19.0) 30.8 23.5 18.4 16.1 0.25
W-alloy (~92% W, p=17.4) 31.2 24,1 19.4 ~0.25
Paraffin (32.6) 21.8

320 (33.5) ~24.0 22.9 22.8

D20 (27) 21,0 ~13.6

Cu (p = 8.88) 32.4 25.4 20.7 0.23
Ni (p = 8.88) 33.0 25.7 (21.5) 19.6 0.23
A1,0, (p = 2.76) 35.1

Graphite (CS-312, p=1.69) 35.5 29.5 24,2 ~16,7 0.18
Fe (p = 7.87) 36.0 29.3 25.3 23.2 0.19
Zn (p = 7.04) 29.8 25.0 0.18
Th (p = 11.48) 33.3 ~0. 14
Al (28, p = 2.70) 39.3 (35.5) (32) <30.0 0.13
Ti (p = 4.50) 39.7 0.12
Mg (p = 1,77) 41.0 0.10
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No such range of reflector data exists for solutions. It has
been observed that the same thickness of iron is essentially equiv-

alent to the inner two inches (or less) of a thick water reflector

235 (13)

about U solution. Similar replacements show that plexiglas

is a slightly more effective reflector than water. Figure 23 shows

235 235

critical height of a 10'"-diameter U solution (0.337 kg U /liter)

as a function of thickness of lateral water reflector and of lateral

furfural reflector.(b) The critical height of a slab of U235 solution

235

(0.483 kg U /liter), 4' wide x 6" thick, vs. thickness of Al re-

flector on each face is given by Figure 24.(11)

Cylinders of various height/diameter ratios

Ratios of critical masses of cylinders (height h, diameter d) to

235 solutions(2)

those for spheres appear vs. h/d in Figure 25 for U
and in Figure 26 for Oy (93.5) metal.(6’32) ForAextrapolation to broad
slabs and long cylinders, the following alternative representation is
more convenient. The interrelationships between critical cylinders of

various height/diameter may be given in terms of effective extrapolation

lengths, J;, which satisfy

2 2
2.405 )° | T S o2
(% +d (h HilE J;) °

where Bs2 is an assumed constant buckling (e.g., that of the corresponding
sphere). Such extrapolation lengths are shown by Figure 27 for families
of solution cylinders that are either bare or water-reflected, and
similarly by Figure 28 for metals.(®2)

Other shapes

Investigations of the possibility of large-volume solution storage
in annular cylinders led to the data of Figures 29 and 30, which apply
to critical annuli with inner cylinder Cd-lined and water—filled.(5’53)
Similar data exist for solution annuli with internal water but no Cd,

and without either water or Cd.
— Q9
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Table IV gives results of a few observations on critical Oy(~ 93)
metal annuli in various reflectors.

Critical and subcritical data on several solution-filled crosses
(5)

and diagonal pipe intersections appear in Table V.,

Metal-sclution systems

Figure 31 shows the relation between critical thickness of a

235 concentration of a uranyl

(54)

10" x 16" slab of Oy(~ 80) metal vs. U
nitrate solution in which the slab is immersed. The solution is

a cylinder 30" diam. x 28" high. From these data and measurements on
16" x 20" slabs, the curves of Figure 32 for slabs in infinitely-thick

solution have been deduced. With the 10" x 16" slab, 1 gm Cd per liter

235

of sclution (as cadmium nitrate) compensates for 7 gm U per liter.

The critical thickness of a 5" x 8" slab of Oy(~ 90) metal on
the axis of a 9.45" diam. x 16" cylinder of uranyl nitrate solution

235 (55)

appears in Figure 33 vs, U concentration in the solution.

Some subcritical observations

Numerous multiplication measurements, while not establishing
actual critical configurations, have been sufficient to show that
certain systems are subcritical. A few conservatively subcritical
systems that help fill gaps in critical data follow (others appear in
Tables I and V).

la) Close-packed array of 4 polyethylene containers (7-1/4" ID x

235

1/4" wall) containing 7"-deep Oy (~ 93)02F2 solution at H/U = 260

(480 gm y233

d.(56)

per contaiprer), standing on stainless-steel floor of a
hoo

1b) Close-packed array of 6 of the units of la) after precipitation
of the uranium as a 2-1/4'"-deep peroxide layer at H/U235 ~ 75; 5"-thick

uranium-free solution above the peroxide. Apparently less reactive

than la).

- 46 -



OF OY (~ 93)

TABLE IV.
CRITICAL MASSES OF 12-1/4" OD x 6" ID ANNULI

METAL

reflector

(material, thickness)

1!'

3'?

3!'

2"

2"

1"

1"

normal U, complete
(some excess)

normal U, complete
polyethylene, complete

CS-312 graphite (inner
cyl. completely filled)

graphite crucible, same
as last except without
top reflector (wall
extends 5" above base
of Oy)

normal U in 2" polyethylene,
complete

normal U in 2" polyethylene,
no reflector in inner
6" cyl.

critical mass

(kg Oy)
8212 0.3
55.9 0.3
60.6 0.3
78.5 0.3
97 2
54.5 0.3
60.8 0.3

critical height

(in.50y)

3100

2.03

2.20

2.86

RN =



TABLE V.
CRITICAL PARAMETERS OF ENRICHED U SOLUTIONS IN
CYLINDRICAL 60° "Y" AND 90° "CROSS" GEOMETRIES

235

diameter 235 238 critical
of cylinders H/U kg U height
(in.) geometry atomic ratio per liter (in,)2

effectively infinite water reflector except at top:

4 cross 44.3 0.538 b

5 Cross 44.3 0.538 5.75

5 cross 73.4 0.337 7.8

5 Y 73.4 0.337 15.6
no reflector:

5 Y 73.4 0.337 b

5 cross 73.4 0,337 b

7.5 cross 44.3 0.538 b

7.8 cross 72.4 0.342 b

% Above the intersection of the center lines.

b Extrapolation of the reciprocal source-neutron multiplication curve

from an observation taken at least 36 cm above the intersection
of the center lines indicates that this vessel will not be critical
at any height,

- 48 -
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2) Close-packed array of 17 porcelain filter boats (4" diam.)

containing 3-1/2"-deep Oy (~ 93) peroxide at H/U235

(56)

~ 18; reflected
on 3 sides by thick water and concrete,.
3) Slab on concrete floor, made up of 23 - 2-3/4" x 2-3/4" x

3-3/4"-deep units of (Oy ~ 93)308 containing water such that

235 (56)

H5/U23% = 12 (705 gm U235 per unit in milk carton).

4a) Oy (~ 93)-metal slab 8" x 8-1/2" x 1-3/32"-thick, reflected

by 6'-thick salt eutectic consisting of 55 w/o K200 and 45 w/o

3

L12C03. (16" x 17" x 1-3/32" slab also subcritical but at high

nultiplication).(se)
4b) Stack of four 8" x 8-1/2" x 1-3/2"-thick Oy-metal slabs
separated by 2"-thick layers of the salt of 4a), essentially unreflected.

Data also exist for Oy (~ 93) sheet distributed in 65 w/o K,CO,4,

(57)

30 w/o Li,CO, and 5 w/0 Na,CO

23 23
5) Four 30" x 6'-high cylinders of condensed Oy (2%)F6 at

H/U235 ~ 4, in contact, water reflected.(ss)

INTERACTING UNITS

Three-dimensional arrays

Critical data for cubic lattices of fissionable metal units are
summarized in Figure 34, where the ordinate is critical capacity of
the array in terms of number of bare, spherical critical masses of
the material, and the abscissa is volume-fraction F of the lattice

that is occupied by the unit.(sg)

(Consistent densities of units
are used for determining coordinates.) Though data do not exist for
cubic lattices of nearly equilateral solution units, information
about clusters of solution cylinders or slabs can be forced into the

form of Figure 34 by confining attention to roughly equilateral

lattices (1/2 < h/d € 2). The data of Figure 35 represent this sort
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of compromise for 3-3" slabs and 7-6" diam. cylinders.
In the cases of 8"-diam. and 9-1/2" diam. cylinders, where data exist
for clusters of different numbers, shape is preserved (assuming lattice
extrapolation lengths equal to one-half of the surface-to-surface
separation of units).

Each slope, -s, of Figures 34 and 35 corresponds to a density
exponent if the lattice is thought of as a single low-density unit.
Figure 36 is a correlation of s with quantity of reflector about the
lattice and reactivity (fraction critical) of an individual unit.

It has been observed that 1'"-thick pléxiglas between all pairs
of 1" x 8" x 10" Oy (~ 93)-metal units decreases the critical number
in a cubic lattice by the factor ~ 5.(60)

Linear and planar arrays

Figure 37 gives cross-multiplication daya for linear,énd two-
dimensional arrays of Oy (~ 93)-metal units.  It suggests that inter-
actions for large linear or planar arrays can be predicted from
measurements on a few units, provided 1--1/Mx is an undistorted measure
of reactivity.(sg)

The influence of spacing on interaction between various numbers

of bare in-plane solution cylinders is shown in Figure 38.

Pairs of water-immersed units

Figure 39 gives a measure ofviﬁteraction between pairs of units
immersed in water vs. separation of units. Whereas 4"-thick water
effectively isolates small spheres, about 8" is required for long
cylinders and large éiabs that are face>to'fa¢e;(5;6’20’21’61)

Effects of incidental reflectors

Figure 40 shows the critical height of a 9'"-diameter Uz35 solution

e

as a function of distance from a concrete sla Effects of carbon

=550 =
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and firebrick as reflectors on the base of a 20"-diameter U235 solution

cylinder are given by Figures 41 and 42.
The influence of a concrete wall about 8-1/2" from a vertical plane
array of Oy-metal units appears in Figure 43 as a function of concrete

(22) Figure 44 shows the degree to which a concrete wall of

thickness.
various thicknesses isolates plane arrays of the Oy units 8-1/2" from
each side of the wall, The ordinate is ratio of multiplication of the

two arrays, with wall between, to that of a single array.

o)
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