
e

SANDIA REPORT

e

t

Issued by Sandia National Laboratories, operated for the United States Depart-
ment of Ikergy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express
or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or
any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37’831

Prices available from (703) 605-6000
Web site: http: //www.ntis.gov/ordering. htm

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: AO1

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

SAND98-2737
Unlimited Release

Printed February 1999

*

9

9

●

Managing Errors to Reduce Accidents
in High Consequence

Networked Information Systemsa

John H. Ganter
Decision Support Systems Software Engineering

Sandia National Laboratories
P. O. BOX5800

Albuquerque, New Mexico 87185
jganter@mdia.gov

ABSTRACT

Computers have always helped to amplifi and propagate errors made by people. The emergence
of Networked Information Systems (NESS), which allow people and systems to quickly interact
worldwide, has made understanding and minimizing human error more cfitical. This paper
applies concepts from system safety to analyze how hazards (from hackers to power disruptions)
penetrate NIS defenses (e.g., firewalls and operating systems) to cause accidents. Such events
usually result fi-om both active, easily identified failures and more subtle latent conditions that
have resided in the system for long periods. Both active failures and latent conditions result fi-om
human errors. We classifi these into several types (slips, lapses, mistakes, etc.) and provide NM
examples of how they occur. Next we examine error minimization throughout the NIS lifecycle,
from design through operation to reengineering. At each stage, steps can be taken to minimize
the occurrence and effects of human errors. These include defensive design philosophies,
architectural patterns to guide developers, and collaborative design that incorporates operational
experiences and surprises into design efforts. We conclude by looking at three aspects of NISs
that will cause continuing ch~lenges in error and accident management: immaturity of the
industry, limited risk perception, and resource tradeoffs.

‘ This paper is based on a presentationat the Workshop on InformationAssurance and Trustworthy Networks, held
by the Cross IndustryWorking Team (XIWT) and Bellcore in Washington D.C., 17-18 November 1998.

Acknowledgements

o
Thanks to the following people for their comments on drafts of this paper: Bryon Cloer,
William K. Storage, Barry M. Leiner, Charles C. Howell, Patty G. Guyer-Stevens,
Ann L. Hodges, and Craig Dean. The opinions expressed herein are those of the author and do
not necessarily reflect those of any other individual or organization.

9

ii

Table of Contents

●

9

9

●

*

●

●

e

9

Introduction .. 1

Concepts for Describing Failures and Accidents in Systems ..2

Some Terms for Describing Human Effects in Systems ...4

System Defenses and Accident Trajectories ..5

Paradoxical Defenses: Defenses that Have the Potential To Be Hazardous6

Defenses Throughout the System Lifecycle ..8

The design phase ..8

~eoperations phase ..9
Maintenance phase ...9

Continuous Safety Management Challenges in NISS ..10

Conclusions .. 11

References ..l3

. . .
111

This page intentionally left blank.

iv

Introduction

Networked Information Systems (NISs) are heterogeneous computing systems consisting of
multiple computing nodes linked by networks. NISS have two primary roles: (1) for
communication between individuals and organizations, and (2) as monitoring and control
systems for other systems and infrastructures. In these roles, NESS are increasingly critical to the
operation and integrity of domains such as finance, transportation, energy, and healthcare. NBs
are becoming as large, complex, dynamic, and important as older industrial, transportation,
weapons, nuclear, and space exploration systems – and they are increasingly part of such
systems. As a result, the failure or corruption of NISs can have large consequences as measured
in money, customer and public confidence, and lives.

NISS must be trustworthy, an aggregation of attributes such as correct, reliable, safe, secure, and
survivable (Schneider 1999, p. 14). Trustworthiness is a challenging design goal because of
complex interrelationships among these attributes. For example, increasing reliability through
redundancy can reduce security, or it can have other effects that are difficult to anticipate. Most
effort to increase trustworthiness has been aimed at technical elements. For example, formal
methods help to ensure that designs are complete and valid, testing helps to confirm correct
construction, encryption provides security during operation, and fault-tolerance increases
survivability under extreme operating conditions.

Trustworthiness also depends on human and organizational factors that are ubiquitous but that
have received less systematic investigation. These factors are described by terms such as
accident analysis, human error, lessons learned, safety practices, and operating procedures.
Traditionally, these issues have been addressed in simple and symptomatic ways. For example,
an error is discovered during operation, and then a rule is developed that attempts to prevent
recurrence.

Ii’’stem safety is a more holistic perspective that views systems as having life spans from design
through development, operation, and reengineering. Sallety is considered an emergent property of
the whole system over time, rather than any specific design feature, operating procedure, or
human error that is successfully resolved. System safety emphasizes two analytical techniques:
(1) Hazard anaZysis is first used to discover threats to systems that may not have been
experienced yet. (2) Risk analysis is used to discover consequences of failure that may not be
obvious to managers, designers, and operators. Both of these techniques can help avoid actual
ftilures and accidents.

The purpose of this report is to document opportunities to transfer existing system safety
knowledge into the domain of NISs. NIS design, development, and operation may be able to
benefit from these lessons learned. This has the potential to reduce costs, save time, and increase
user confidence in the fiture development and operation of NISs.

In the next section we will look at concepts for describing failures and accidents in systems. We
will then consider categories of human error that weaken or penetrate the defenses of systems to
cause or allow these events. A key idea is the accident traj ectory that penetrates several layers of
defenses because of relatively small actions overtime. For instance, an error that occurred during

1

past maintenance may combine with an error occurring during operation to allow an accident.
Maintenance is a paradoxical defense because it is necessary in all systems, yet it can also cause
or exacerbate problems if it includes errors that are not detected. We will then take a broader
look at errors, and their prevention, throughout the system lifecycle. Design philosophies and
architectural patterns have good potential for making system developers more aware of system
challenges and successfid solutions. We conclude by examining the continuous challenges to
safety, in particular risk perception and investment decisions that do not prioritize safety. While
safety is a laudable goal in NISS, the up-front costs are a significant deterrent to those with short
time horizons.

Concepts for Describing Failures and Accidents in Systems

Systems operate by virtue of timing, proximity, and coordination of components. A failure is the
inability of a component or a whole system to achieve its intended fimction. A failure maybe a
consequence of the failure(s) of subcomponents. For example, an operating system kernel may
crash as a result of a network card failure. The failure may in turn produce consequences in other
components or the overall system that depends on it. A failure maybe the result of a human
error. To continue the example, an NIS may fail as the result of the kernel crash on one of its
nodes.

A ftilure that results in loss of system output and/or damage is an accident (Perrow 1984, p. 64).
In our example, the failure of the NIS might result in an accident when the gas turbine engine
that the NIS is controlling cannot operate without it. Undesirable situations do not always result
in losses. An incident is “any event that could have had bad consequences but did not” (Reason
1997, p. 118). Typically, an incident occurs when hazards get within one defensive layer of
causing damage or loss. Incidents can be valuable because they foreshadow accidents and open “
the possibility of prevention.

Time is not always linear throughout systems. Failures maybe so brief that they have small
effects. Or small failures may wait silently to produce larger failures, as in the case of a worn
bolt that eventually fails.

In many systems, failures and even accidents are routine and tolerated because they have low
consequences.1 In a small email system, for example, it maybe less expensive to accept and
correct occasional accidents @erhaps with insurance) than to try to prevent them. People may
perceive significant opportunity costs of not using systems in risky ways, e.g. waiting for a
system to be made secure may result in loss of revenue (Schneider 1999, p. 188). But in high
consequence systems, accidents must be minimized because of their very high costs in lives,
national security, or money. With their expanding reach and impact, many NISS are beginning to
move into zones of high consequences.

Many failures are the result of physical laws: things wear out and break. For example, a resistor
in the network card example may have lost electrical conductivity horn many cycles of heating
and cooling. Other failures result Iiom the actions, or inactions, of designers, builders, operators,

●

●

●

1Softwareis particularlynon-linear,however.Small failures can become large failures under slightly different
conditions or environments of operation.

2

or maintainers involved with systems. This nonmalicious human error has been blamed for 80
percent or more of industrial system failures (Reason 1997, p. 42) and is the focus of this paper.

When systems ftil, we look for whatever is closest: a defective part, an unexpected interaction,
or a person. This “proximity bias” produces quick results, but it often addresses only symptoms.
As a result, the problem may continue or recur at some later date. In the last twenty years, system
designers and critics have begun to look at system accidents more holistically or even to see
them as an inherent part of the life spans of very complex systems (Perrow 1984).

The systems safety community,has developed terms that help to take a longer view of accidents.
Active failures, those resulting from front-line individuals (or components), are most visible and
receive most attention and blame.

To redirect our example towards people, consider an alternative to the failure of the resistor. A
system operator enters an invalid value in an application dialog box. This active failure causes
the ftilure of the operating system that causes the failure of the NM that causes the failure of the
turbine that causes an accident, resulting, for instance, in the loss of ship propulsion.z At first
glance, the operator, like the resistor, is to blame.

More penetrating analysis often shows, however, that active ftilures are actually consequences of
latent conditions that have existed for long periods (Reason 1997, p. 10). Latent conditions can
include unrecognized component weaknesses and silent failures (including loss of warning
systems), design and implementation errors, maintenance errors, mistaken policy, poor training,
and excessive production pressures.

So blaming the operator may do little to prevent the next accident. Operators will always enter
invalid values; it is the job of designers to limit the opportunities to make these errors and then to
limit their effects when they inevitably occur. Blaming the operator for the failure of the NIS is
unproductive also because it does nothing to prevent the next fhilure. In our example, it is more
productive to examine the latent conditions in the system. Latent conditions include applications
that accept invalid values and thus permit divide-by-zero and other classical computer faults.
Other latent conditions are operating systems that allow one application to cause others, or the
OS itself, to fail.

Both of these latent conditions come from human errors, but they are not close to the active
failure. Instead, they are located “upstream” in the system design and development process and
in management practices and decisions. As such, they are “parent errors” that will continue to
combine with local conditions to produce “child failures” in many forms (Reason 1997, p. 120).
Thus there is high value in focusing on reducing or eliminating the parent errors instead of active
failures after they occur.

In the next section, we will examine types of human errors that produce both latent conditions
and active fhilures.

2This is the apparentsequencein an accidentinvolvingthe USS Yorktown, an AEGIS guided-missile cruiseq see
Slabodkin 1998.

3

Some Terms for Describing Human Effects in Systems

People conceive, design, assemble, test, operate, and maintain systems through their individual
and group actions. Most actions are positive; they are beneficial to the effectiveness and
efficiency of the system. Some actions are negative; they have a detrimental effect by causing
failures and accidents. Other actions are uncertain; it is not clear what effect they will have. In
this section, we will consider the fragile relationship between intent (what a person wants to do),
action (what a person actually does), and the system (whether the action was appropriate at the
time). When this relationship breaks down, failures and accidents are the result.

A human error is the failure of intentions “to achieve their desired ends – without the
intervention of some unforeseeable event” such as being struck by lightning. (Definitions in this
section are ilom Reason 1997, p. 71.) Errors can be further classified by the deviation between
intent and action. A slip occurs when the plan or intent is adequate, but the action ftils. The
person wants to do the right thing but does not succeed. For example, an operator at a keyboard
intends to enter 9, but inadvertently pushes Obecause it is a neighboring key (see Table 1). A
lapse is a failure of memory. The person intended to do something, but forgot. For example, the
operator intended to start or stop a process but was distracted by something else and forgot to
take the action that was intended.

Table 1. Types of human errors and examples from the lifecycle of a hypothetical NM.

I

Mistake Rule-based

Ir==-
. Violatiosr fail to apply

I =oodrule
I . Erroneous

r

Designer/developer Operator Maintainer
Keyboarderror Keyboardor Cablingerror,

field error wrong field or
value

Forgets to make a Forgets to make Forgets to restore
change, forgets code a change or state, forgets step
context, bounds startlstopa in procedure,
checking process, version version control

control
Follows process, \Follows tiaining, [Follows training,
methodology SOPS SOPS
Unaware of change in Uses obsolete Unaware of
system design SOP change in system

cor@uration
Improves code, does Gives user Shuts down whole
not perceive impact wrong system for minor
on other code permissions reason
Does not follow Reveals sensitive Sets system to
validationprocedure information vulnerablestate
Unawareof good Unawareof new Unawareof new
practice procedure procedure
Skips stepsto save Passwordmisuse Partialrepair to
time save effort
Algorithm has flaw; Cannot explain cannot
does not understand novel symptoms troubleshoot
limits of a validation novel problem
procedure

●

*

4 ●

On the other hand, a mistake occurs when actions succeed, but the plan was inadequate or
wrong. The person did the wrong thing well. There are two subcategories of mistakes depending
on whether rules or problem solving is involved.

Rule-based mistakes center on the appropriateness of rules to situations.3 A bad rule is a rule that
is wrong, obsolete, or inappropriate. A good rule, but used in the wrong situation, is another way
of making a mistake. A violation occurs when a good rule is not followed. Violations can be
either erroneous (did not know the rule was in effect) or deliberate (knew about the rule but
chose to ignore it).

Knowledge-based mistakes occur when a person cannot solve a problem or dilemma. Often, the
stage is set when the situation is novel and there simply is no rule available. As Reason
(1997, p. 74) puts it:” . . the requisite variety of the procedures necessary to govern safe behavior
will always be less than the possible variety of unsafe situations.” At this point, people must rely
on their expertise and that of others. They may need to use anomaly recognition, analogy, and
mental simulation to determine what is actually occurring and to synthesize a novel response.
(Examples of such real-time expertise are discussed in Klein 1998.) Often there is little time and
significant performance pressure, which causes slips and lapses in this unrehearsed sequence of
problem solving steps.

Errors and mistakes are the seeds of system ftilures and accidents. In the next section, we will
consider how systems resist these effects and show that accidents almost always result from
“causal contributions from many different people distributed widely both throughout the system
and over time” (Reason 1997, p. 8).

System Defenses and Accident Trajectories

The problems that errors and failures can cause are seldom fm from the minds of system
designers. In the case of NISs, designers are cognizant of a variety of haz~ds that can cause
damage to the far-flung, yet interdependent, components (Schneider 1999, p. 15). External
hazards include casual computer vandals, filly malicious attackers, misbehaving outside
applications, the physical environment (earthquakes, hurricanes), and irdiastructures on which
the NIS depends (power and telecommunications services). Internal hazards are failures
resulting from various errors, mistakes, and violations in the design, development, operation, and
maintenance phases of the NIS.

In response, designers place defenses between the system components and perceived hazards,
both external and internal (Figure 1). (Figures are located at the end of the report.) In an NM, the
fmt line of defense is often a firewall, which limits the extent of communications between one
network (e.g., a company LAN or intranet) and the hazardous outside world (the Internet).
Firewalls are often one-way valves or diodes that only allow network protocols to be outbound.
By limiting access, the firewall protects against many actions regardless of intent (errors,
mistakes, and especially violations). Other defenses are raised against internal hazards. For
example, detailed logging may be used to track changes made by authorized users so that errors

3There are several combinations of rules and outcomes thatare not considered here. For instance, rules maybe
violated successfully, which can lead to overconfidence and underestimation of hazards (see Reason 1997, p. 75).

5

and mistakes can be detected (or at least their effects determined if they are discovered). Some
defenses act against both internal and external threats; for example, operating system accounts
and file system access control.

Defenses are never perfect; they contain holes. Some holes are known. They may be intentional
tradeoffs between system attributes. For example, “trapdoors” are often installed in systems to
facilitate maintenance at the expense of security. Other holes are only suspected, or they are
unknown until discovered. Many holes are ephemeral; they open and close with the passage of
time and changing conditions. For example, in one study it was found that a workstation became
insecure after six weeks because of changing configuration (Schneider 1999, p. 44).

Since no single defense can be perfect, they are arrayed in multiple layers: defense in depth. The
reasonable assumption is that a hazard that penetrates one kind of defense will likely be stopped
by another kind of defense.

Accidents occur when hazards penetrate multiple holes that are in unfortunate alignment. This
accident trajectory (Reason 1997, p. 11) occurs when some holes contributed by latent
conditions, and other holes contributed by active failures, coincide with a hazard (Figure 2). An
investigation of such a accident might proceed along a backwards pathway. For instance, the
active failure was an operator error; the operator forgot to set a software switch in the firewall (a
lapse). The frost latent condition was a maintenance mistake: applying the wrong patch to the
firewall software (good rule, wrong situation). The parent of this condition was overworked staff.
The parent of this condition was in turn an organizational decision about allocating resources.
And, finally, the hazard was provided by a passing hacker.

Most NIS accident reports focus on the beginning and the end of the trajectory, that is, the
operator lapse and the attacker. Ironically, these are the least productive areas for accident
understanding and prevention. The question is “not why an error occurred, but how it failed to be
corrected” (Reason 1997, p. 25) or otherwise caught by defenses. In this case, the organization
would be wise to look for other latent conditions that have resulted from&e same and similar
organizational decisions. These holes will be available for fiture accident trajectories unless they
are identified and closed.

Paradoxical Defenses: Defenses that Have the Potential
To Be Hazardous

In addition to having holes, some defenses “designed to protect against one type of hazard can
render their users prey to other kinds of danger, usually not foreseen by those who created them,
or even appreciated by those who use them” (Reason 1997, p. 41). These paradoxical defenses
are inherent in technological systems, from Reason’s classical example of English knights
rendered immobile by their heavy armor to a safety device that breaks off and plugs coolant flow
in a nuclear reactor (Perrow 1984, p. 53). We will consider two paradoxical defenses of
particular relevance to NESS: automation and maintenance.

Designers often try to reduce or eliminate the roles of humans in systems through automation.
Automation has many benefits. Cellular telephones, network switches, efficient heating and

●

●

☛

●

●

6

cooling, medical devices, and many other technologies would be impractical without automation.
But in systems that are not single-purpose, automation can introduce subtle hazards inside
system boundaries and defenses.

In NISS, automated defenses (such as firewall alarms, “smart” filtering, and attack profile
detection) can reduce accidents because people are too slow to respond or too easily bored to be
continuously vigilant. Industrial experience, however, shows several common weaknesses of
similar defenses.

Layered, automated defenses may hide latent conditions by eliminating their symptoms. For
example, a defective network device maybe sending bad packets, but a “smart” router
automatically dumps invalid packets. Later, the router changes state, the dumping stops, and the
packets cause a higher level failure in an application.

Because automation encapsulates the thinking of a designer into a machine, there are

opportunities for conflicts with the other thinkers – human operators and maintainers – in the
fielded system.

A common problem is misunderstanding the current operating mode. The operators think the
automation is oft on, or doing one thing, but they are wrong. For example, misunderstandings of
autopilots have caused a number of aviation accidents. Another problem is false alarm rates that
cause protections to be disabled or ignored by operators. This latent condition sets the stage for
an active failure to cause an accident – while the automation, correct for once, is ignored. The
real latent condition, we wiIl suggest below, is a design process that does not fit the automation
into the operational environment.

Maintenance is essential to the long-term health of all systems. Maintenance is also implicated in
many industrial accidents. In one study, for example, 55 to 65 percent of performance problems
in the nuclear power industry were related to maintenance (Reason 1997, p 92). Systems are
relatively easy to take apart, but reassembly is difficult. Correctness can fall victim to slips,
lapses, mistakes, and violations. Maintainers omit both actions and components and restore the
system to wrong states after maintenance. Holes opened in defenses maybe left open, for
example, when a maintainer leaves an NIS component in debugging mode. Defenses maybe
removed entirely if a maintainer leaves out a command line setting or leaves a service or daemon
in the wrong state. Again, we suggest that it is more productive to look upstream at high-level
errors that result in latent conditions. Such high level errors include weak design, weak
installation, time pressure, resource allocations, poor teamwork, and lack of training.

In the next section, we will look at the system lifecycle in more detail to see where attention to
reducing errors and failures, and the lessons of accidents, can be most profitably applied.

7

Defenses Throughout the System Lifecycle

Systems have lifecycles, typically with the following phases: requirements analysis, design,
implementation and testing, operation, emergency operation, routine maintenance, and
reengineenng or replacement with anew system. The phases are often treated as independent.
For example, a vendor may develop a system, then turn it over to others to operate. The problem
with such an approach is that lessons learned during operation, where defenses in depth are
tested against real hazards, may not be incorporated into designs. Responses to hazards, new
hazards, and interactions between defenses must be known by designers to avoid creating, or
recreating, latent conditions. The following discussion will emphasize the importance of the
design phase in NISS, both in avoiding latent conditions and reducing opportunities for active
failures in operations and maintenance. Also important is feedback from the operations and
maintenance phases to ensure that next-generation systems incorporate lessons learned in the
field.

The design phase

Design philosophies. The fundamental attitudes and approaches of designers are critically
important to NIS safety. What do the designers consider important? How do they approach their
work? Consider two nuclear power plant control systems. The first system addresses only
shutdown; it is independent of the normal control system. It consists of “about 6000 lines of code
and uses only the simplest, most straightforward coding techniques” (Leveson 1994, p. 4). The
second system attempts both normal control and shutdown and has 100,000 lines of code. All
other things being equal, it is much easier to validate and trust the first “system. The second
system is more likely to contain latent conditions, including unknown connections between the
two fimctions (control and shutdown). Thus the philosophy of the designers, even before they
begin to design, can have a large effect on the latent conditions that will be introduced into the
system.

Architectural patterns. In mature technologies, such as building design, knowledge of,
successful designs is stored and transmitted through architectural patterns. For example, curtain
wall buildings did not always exist.4 They were invented, and the pattern has spread worldwide.
The HTTP protocol can be seen as a similarly successfid pattern for NISS.5

Patterns are drawing significant attention in the software industry (e.g., Fowler 1997) because
they help to familiarize developers, who may work in many different domains, with known
problem-and-solutions sets. Patterns present the essence of a solution in such a way that the
solution can be tailored by a developer. Most significantly, patterns emphasize important and
unobvious aspects of problems. NIS patterns might, for example, show reliability vs. security
tradeoffs and explicitly state decisions that must be made. For a developer with no experience in

●

●

●

●

4 Traditionally, buildings were supportedby theirwalls. In a curtainwall design, the building is supported by
internal pillars, and the outside walls are simply facades: they hang like curtains. This approach would not be
intuitive to an architect of the 1700s.
5Unfortunately, many NIS trustworthinessattributessuch as security are “non-functional requirements” with
significant costs (Schneider 1999, p. 71), so there is less impetus for their spread than attractivenew features.

8

such tradeoffs, this could be of great assistance in avoiding bad assumptions that would lead to
latent conditions.

Possible NIS patterns might include high consequence intranet,firewall status board, and
maintenance reminder board.6 The high consequence intranet pattern might emphasize the real
consequences that have resulted from intranet failures and the commensurate investment needed
in reliability. The status board would show overall system state-of-health in an understandable
way. This could help to both restore state properly after maintenance and to understand state in
novel events by showing a conceptual model of the system (Schneider 1999, p. 44). Innovative
approaches to industrial process control displays (e.g., Vicente 1996) maybe adaptable to NISS.
The maintenance reminder board would help maintainers to remember actions and components.

Collaborative design. System designers must always make assumptions about how systems will
be used. These assumptions are mature and realistic in many domains (e.g. electrical generators)
but much more uncertain in complex systems like NISS that maybe applied to a variety of
domains (Ilom Internet “chat” to military command and control). Tradeoffs are inevitable, and
the only way to make good decisions about them is to cooperate with users. Collaborative design
can capture specific hazards and needs learned from operational experience that may be
completely unobvious to designers. Emergency operations such as attacks or component failures
offer rich insights into both defenses and hazards.

For example, the “critical decision method” captures worst-case situations that experienced
operators have faced in using a particular system (Klein 1998, p. 189). This method can provide
insight into paradoxical defenses, such as what assistance can be given to operators and what can
hinder their success. Thus collaborative design is particularly valuable in determining
appropriate automation and how it should interface with human operators.

The operations phase

The incidence and effects of latent conditions can still be reduced in the operations phase. For
example, standard operating procedures and rules that are developed and maintained by
operational teams tend to be of better quality and are more likely to be followed than those
simply passed down fi-om management. Procedures like “plan, do, act, test” can be quite
effective if they are enforced by peer pressure and not excessively burdensome (Reason 1997,
p. 146). Checklists area timeless and highly effective tool for reinforcing rules and avoiding
slips.

Maintenancephase

The paradoxical nature of maintenance as both defense against, and possible source of, failure
can be reduced even in systems with latent conditions. One key lesson from industrial experience
is good reminders. Even the NIS equivalents of the “lock-out/tag-out” procedures used by
electricians could prevent active fhilures. Checklists on clipboards and physical tags are still
highly effective.

6 It is interestingto note thatthe latterideas reuse the patternof an industrial control panel or board.

9

Both the operations and maintenance phases must have feedback loops to the design phases so
that system evolution or reengineering reflects both lessons experienced and lessons transferred
fi-om others. Often these loops are difficult or impossible for operations and maintenance
personnel to establish, so they must be established formally by management or instigated
informally by designers.

●

Continuous Safety Management Challenges in NISS
●

The management of NISs is a moving target because market demands and technology are
evolving quickly and unpredictably. Three factors will make the reduction of errors and
accidents through safety a continuing challenge.

1. Immaturity of NIS technology and industry

Consider the following quotations on high consequence systems:

“The safety features designed for the [systems] did not work as well as predicted because they
were not based on scientific understanding of the causes of accidents” (Leveson 1994, p. 7)

“Most designs for [systems] and safety features were based on the assumption that owners
and operators would behave rationally, conscientiously, and capably. But operators and
maintainers were poorly trained, and economic incentives existed to override the safety
devices in order to get more work done. Owners and operators had little understanding of the
workings of the [systems] and the limits of [their] operations.” (Leveson 1994, p. 3)

These statements could be about NISS today, yet they describe the engineering and operation of
high-pressure steam engines 150 years ago. It is clear that engineering, and society at large, goes
through learning processes with new technologies. These processes, which lag behind
demonstrable technology by years or decades, include increasingly refined perceptions of the
costs, benefits, and risks of new technologies. Sometimes the learning process must be repeated
when a false sense of security results from an absence of incidents or accidents (Reason 1997,
p. 112).

2. Limited riskperception

Decisions are often made on the basis of risk perception. For instance, management may decide
that survival and profit are higher risks than NM reliability and allocate resources accordingly.
While risk perception is sensitive to many economic and social factors, it has significant
vulnerabilities and biases. In settings where consequences appear to be large, it maybe prudent
to perform quantitative risk assessments.

High-pressure steam engines were unprecedented technology. Analytical methods for dealing
with gas dynamics were very limited, and risk assessment and system safety techniques were
unheard of. In the case of NISs, we have extensive resources on which to draw. For example, it
may be possible to transfer techniques and technologies from high consequence, high reliability
systems such as nuclear weapons to NISS. These systems have traditionally been designed to

10

●

●

achieve surety, a near optimal combination of safety, security, and reliability (Kuswa 1998; Van
Devender 1998).

3. Resource tradeofls

Protection processes like those discussed in this paper compete with production processes for
resources (Reason 1997, p. 4). Thus high level decisions made to optimize one can have impacts
on the other. For example, an MS service provider may invest in additional capacity rather than
a surety assessment of their existing capacity. Again, this relates to perceived risks and
opportunity costs. Even though an accident may have high consequences, more short term
consequences (loss of market share, next-quarter profitability) may loom larger in manager’s
minds. As one NIS manager at a large bank said, “Money spent on protection is spent, but loss is
probabilistic.”7 There appear to be fundamental conflicts between cost reduction and
commoditization of NISS and our increasing reliance on them in high consequence domains.

Conclusions

Just like other large and complex systems before them, NISS are vulnerable to human errors such
as slips, lapses, mistakes, and violations. These errors are most visible as active failures at the
hands of front-line people, typically operators and maintainers. But such errors alone are often
insufficient to cause accidents. Systems are too well protected by layers of defenses. But when
less obvious errors have occurred, latent conditions may reside in the system. These combine
with active failures to allow accident trajectories to penetrate the defenses.

Defenses can also be paradoxical; they may introduce their own hazards. Two paradoxical
defenses are automation, which can surprise humans into making errors, and maintenance that
contributes latent conditions.

Errors can be reduced by defenses in the system lifecycle, particularly during the design phase.
Design philosophies (e.g., tendency to build big and complex vs. small and simple) can have a
large effect on latent conditions and the chances for humans to successfidly recover from
accidents. Architectural patterns have considerable promise in helping designers to see hazards
that may be unobvious and to reuse successful solutions. Collaborative design is particularly
valuable because it allows designers to benefit from the real-life lessons learned by operators and
maintainers. Often, these front-line individuals have unique insights into both external hazards
and system behaviors.

As NESS and the demands placed on them evolve rapidly, they will produce novel – but also
foreshadowed – errors and accidents. The “meta-systems” of many interacting NBs may be
particularly challenging. Fortunately, there are techniques and approaches that can be transferred
from system safety work in more mature domains. NISS do not have to be the exploding steam
boilers of the early 2000s.

7Statementmade by a panel member at the Cross-Industry Working Team (XIWT) Symposium on Information
InfrastructureRobustness, held 3-4 Nov 1998, in Crystal City VA.

11

A
External
Hazards

~ystem

m
I v- ”-l

Internal
Hazards

I

●

apted from Reason 1997, p. 3). In the

Defenses

Figure 1: Hazards penetrate defenses to cause damage (at
case of NISS, hazards can be both extermd (e.g., malicious attacks) or internal (e.g., user
mistakes). Defenses such as firewalls and file access control provide barriers to internal, external,
or both types of hazards,

‘rganiza’i”nayxOverworked staff

/

Wrong firewall patch applied

Operator lapse I

/
Investiaatioh I

QE!v

—

!. --

Figure 2: An NIS accident trajectory that penetrates holes in multiple defenses (after Reason
1997, p. 12). Some of the holes are from active failures, and others are from latent conditions.
The investigation path works backwards along the trajectory to discover latent conditions that
will likely permit other accident trajectories if not corrected.

12

References

Fowler, Martin. 1997. Analysis Patterns. Addison-Wesley.

Klein, Gary. 1998. So~~rces of Power: Howpeople mkedecisions. MIT Press.

Kuswa, Glenn W. 1998. Corporate surety: A lifeline to survival. Strategy & Leadership
(Strategic Leadership Forum) 20:5, November/December 1998.

Leveson, Nancy G. 1994. High-pressure steam engines and computer software. Presented as a
keynote address at the International Conference on Software Engineering in
Melbourne Australia, 1992 and published in IEEE Computer, October 1994. Available at
h~://www.cs.washington. edu/resemcWprojects/safety/www/papers .html

Perrow, Charles. 1984. Nornzal Accidents: Living with high-risk technologies. Basic Books.
[second edition from Princeton Univ. Press in 1999]

Reason, James. 1997. Managing the risks of organizational accidents. Ashgate Publishing.

Schneider, Fred B. (Editor). 1999. Trust in Cyberspace. Report of the Committee on Information
Systems Trustworthiness of the National Research Council. Washington, D. C.: National
Academy Press.

Slabodkin, Gregory. 1998. Software glitches leave Navy Smart Ship dead in the water.
Government Computer News, 13 July 1998.

Van Devender, Pace. 1998. Sandia Surety Program White Paper. Available at:
htt~://www.sandia. Eov/SuretW%rWP.htm

Vicente, Kim J. 1996. Improving dynamic decision making in complex systems through
ecological interface design: A research overview. System Dynamics Review 12:4, Winter 1996,
pp. 251-279.

13

Distribution:

0428
0445
0449
0449
0451
0451
0455
0490
0490
0490
0490
0490
0535
0619

0630
0635
0638
0639
0741
0747
0766
0769
0829
0829
0830

2 0899
0977
1137

59 1138
1138
1138
1138
1138
1138
1140
1145
1202
1207
1425
1425
9018

William Norris, 12300
Michael J. Skroch, 06232
Brad Wood, 6234
Judy Moore, 6234
Ron Trellue, 6238
Jennifer E. Nelson, 6235
Laura Gilliom, 6232
Perry D’Antonio, 12331
Richard Smith, 12302
John Covan, 12331
Arlin Cooper, 12331
Paul Werner, 12331
Larry Dalton, 2615
Review & Approval Desk, 15102
For DOE OSTI
Pace Van Devender, 4010
Glen Kuswa, 12365
Mike Blackledge, 12326
Robert Goetsch, 12303
Samuel G. Varnado, 6200
Alan Camp, 6412
Dori Ellis, 6300
Dennis Miyoshi, 5800
Kathleen Deigert, 12323
Chris Forsythe, 12323
Janet Sjulin, 12335
Technical Library, 4916
Bill Cook, 6524
Kenneth E. Washington, 6534
John H. Ganter, 6533
Larry J. Ellis, 6531
Bruce N. Maim, 6532
Sharon K. Chapa, 6533
Bryon Cloer, 6531
Craig Dean, 6531
James K. Rice, 6500
Ted Schmidt, 6430
W. Earl Boebert, 5901
Jim Yoder, 5909
Richard Cernosek, 1315
Robert Hughes, 1715
Central Technical Files, 8940-2

14

