

ENERGY RESEARCH CENTER

LEHIGH UNIVERSITY
BETHLEHEM, PA

RECEIVED

OCT 28 1996

DOE/PC/95211-T2

OCT 28 1996

OSTI

Cermet Composite Thermal Spray Coatings for
Erosion and Corrosion Protection in Combustion
Environments of Advanced Coal-Fired Boilers

Progress Report Prepared for U.S. Department of Energy
under Grant No. DE-FG22-95PC95211

Project Period: 7/14/95-12/31/97

Semi Annual Technical Report for
The Period February 1996 through July 1996

by

S.W. Banovic, B. F. Levin, J.N. DuPont and A.R. Marder

Energy Research Center
117 ATLSS Drive
Lehigh University
Bethlehem, PA 18015

DOE Project Officer: Sean I. Plasynski
Administered by: Cynthia Y. Mitchell

MASTER

August 1, 1996

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

96-500-09-31

OK

EXECUTIVE SUMMARY

Research is presently being initiated to determine the optimum ceramic/metal combination in thermally sprayed metal matrix composite coatings for erosion and corrosion resistance in new coal-fired boilers. The research will be accomplished by producing model cermet composites using *powder metallurgy and electrodeposition methods* in which the effect of ceramic/metal combination for the erosion and corrosion resistance will be determined. These results will provide the basis for determining the optimum hard phase constituent size and volume percent in thermal spray coatings. Thermal spray coatings will be applied by our industrial sponsor and tested in our erosion and corrosion laboratories.

In the first six months of this project, *bulk powder processed* Ni-Al₂O₃ composites were produced at Idaho National Engineering Laboratory. The results of microstructural characterization of these alloys were presented in the last semi-annual report. The composite samples contained 0, 21, 27, 37, and 45 volume percent Al₂O₃ with an average size of 12 um. An increase in volume fractions of alumina in the nickel matrix from 0 to 45% led to significant increase in hardness of these composites.

During the last six months model Ni-Al₂O₃ cermet *coatings* with various volume fractions of alumina were produced. To deposit Ni-Al₂O₃ coatings, an electrodeposition technique was developed and coatings with various volume fractions (0-35%) of Al₂O₃ were produced. The effect of processing parameters such as current density on coatings microstructure was analyzed. An increase in current density lead to a decrease in volume fraction of alumina in these composites. The experimental procedure and microstructural characterization of Ni-Al₂O₃ electrodeposited cermet coatings are presented in this progress report along with plans

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

for research in the coming year.

I. INTRODUCTION

Present coal-fired boiler environments remain hostile to the materials of choice since corrosion and erosion can be a serious problem in certain regions of the boiler. Recently, the Clean Air Act Amendment is requiring electric power plants to reduce NO_x emissions to the environment. To reduce NO_x emissions, new low NO_x combustors are utilized which burn fuel with a substoichiometric amount of oxygen (i.e., low oxygen partial pressure). In these low NO_x environments, H_2S gas is a major source of sulfur. Due to the sulfidation process, corrosion rates in reducing parts of boilers have increased significantly and existing boiler tube materials do not always provide adequate corrosion resistance. Combined attack due to corrosion and erosion is a concern because of the significantly increased operating costs which result in material failures.

One method to combat corrosion and erosion in coal-fired boilers is to apply coatings to the components subjected to aggressive environments. Thermal spray coatings, a cermet composite comprised of hard ceramic phases of oxide and/or carbide in a metal binder, have been used with some success as a solution to the corrosion and erosion problems in boilers. However, little is known on the effect of the volume fraction, size, and shape of the hard ceramic phase on the erosion and corrosion resistance of the thermally sprayed coatings. It is the objective of this research to investigate metal matrix composite (cermet) coatings in order to determine the optimum ceramic/metal combination that will give the best erosion and corrosion resistance in new advanced coal-fired boilers.

II. EXPERIMENTAL PROCEDURE

II.A. Electrodeposition Method

Electrodeposition is the application of a coating on a substrate by passing a current through an electrolytic solution. The electrolytic solution is a conducting fluid in which the flow of current is accompanied by the movements of ions from an anode to a cathode. A schematic of the electrodeposition cell can be seen in Figure 1. When electric current passes between anode and cathode, metal ions in the electrolytic solution become positively charged and attracted to the cathode surface to form a coating. Processing parameters that affect electrodeposition include current density, type of electrolyte solution, cathode and anode material, time of deposition, and agitation of the electrolyte. Optimization of these parameters is required to produce quality protective coating.

II.B Alloy System

Ni-Al₂O₃ electro-composite coatings were produced with 0 to 34 volume percent hard phase (Al₂O₃) in a nickel matrix. Variation in the volume fraction of the hard phase provides a systematic change in the mechanical properties of the composites, and therefore, the effect of mechanical properties on erosion resistance can be analyzed.

II.C. Electrodeposition Procedure

The coatings were deposited on Nickel 200 substrates (99.61% nickel) with an approximate area of 450mm². Substrate material was ground to a 600 grit finish using silicon carbide paper and polished to 0.04μm finish using colloidal silica. The plating electrolyte was a nickel sulfamate bath with composition listed in Table I.

Table I. Electrolyte composition.

Sulfamate Bath	
Ni(NH ₂ SO ₃) ₂	400g
Boric acid	30g
Nickel Chloride	5g
Sodium Laurel Sulfate	0.5g
Coumarin	0.1g
Distilled Water	1l

The sulfamate bath was chosen because of its ability to withstand high current densities during deposition without burning. Therefore, coatings produced from sulfamate bath have low residual stresses [1]. The high purity α -alumina particles with a nominal size of 0.6-0.8 μm were co-deposited with nickel. For co-deposition, 150g/l of the alumina particles were added to the nickel sulfamate electrolyte and suspended in solution by a magnetic stirrer at 400 rpm. The pH of the solution was maintained at 4.0 ± 0.1 at a temperature of 50°C. To produce composites with different volume fractions of alumina particles, the current density was varied from 0.5 A/dm² to 25 A/dm². In addition, deposition times were altered to provide coating thicknesses of approximately 100 μm .

III.B. Microstructural Characterization

Microstructural characterization of the coatings was conducted using Light Optical Microscopy (LOM). To reveal the grain structure of the coatings, an etching solution of 25% H₂O, 25% acetic acid, and 50% nitric acid was used. The volume percent of alumina particles in

nickel matrix was determined through quantitative image analysis on a LECO 2001 Image Analysis System. Microhardness measurements were performed on LECO-MFT Microhardness tester by using Knoop indenter with a load of 25g and dwell time of 15 seconds. All measurements were conducted according to ASTM E-384 standard.

III. RESULTS

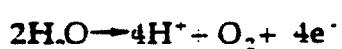
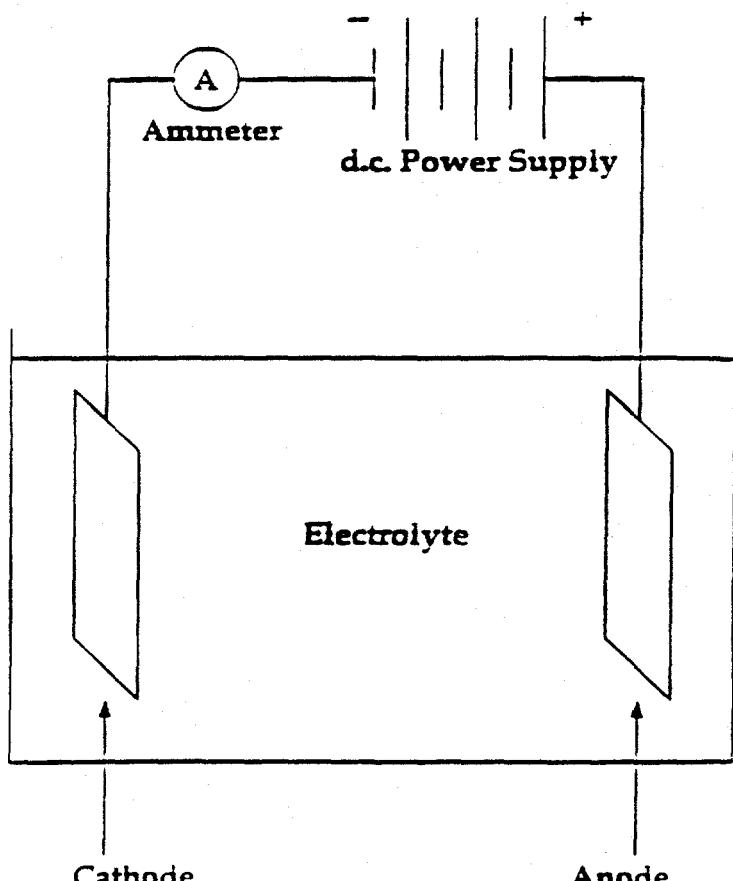
III.A. Microstructure

III.A.1. Pure Ni coating

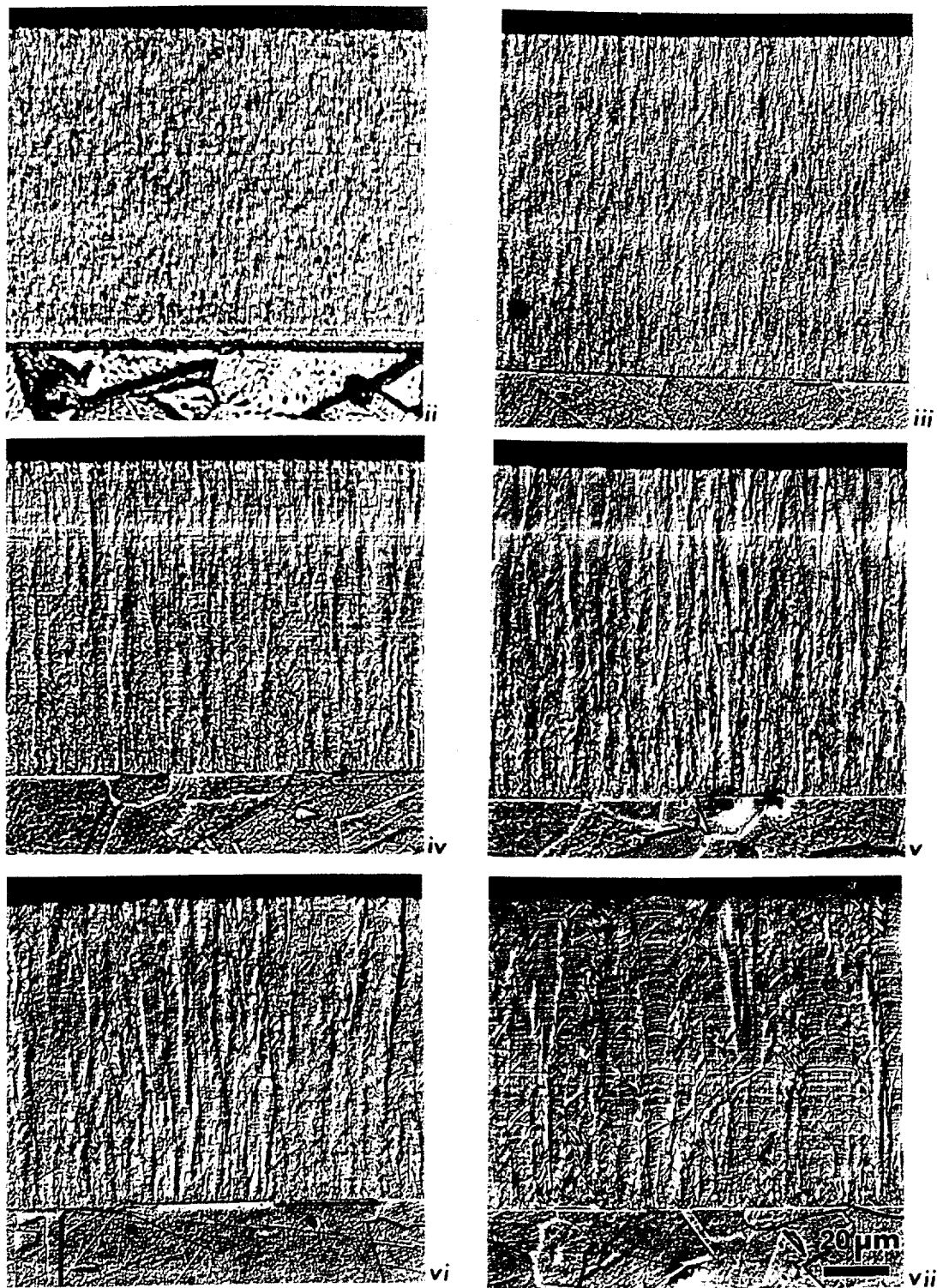
Pure nickel electrodeposits (100%Ni-0% Al_2O_3) were produced from the sulfamate bath (i.e., no alumina particles in solution). Figure 2 shows microstructure of these coatings consist of columnar grains. Also, an increase in current density during deposition leads to an increase in columnar grains width as shown in Figure 2.

III.A.2. Ni- Al_2O_3 composite coatings

$\text{Ni-Al}_2\text{O}_3$ composite coatings were produced from a sulfamate bath that contained suspended alumina particles. An unetched microstructure of the typical $\text{Ni-Al}_2\text{O}_3$ coating is shown in Figure 3. Most of the alumina particles (dark phase) are uniformly distributed within the Ni matrix (white phase). However, some agglomeration of the particles can be seen. The composite coatings contained 11, 15, 18, 21, 31, and 34 volume percent alumina. Current density has a strong influence on the volume fraction of alumina deposited in the coating. Figure 4 shows that the amount of alumina in the composites increased with a decrease of plating current density. With a slower plating rate, i.e., lower current density, the number of collisions between the particles and the cathode surface (Ni substrate) per unit volume of deposited matrix increases,



thus allowing more particles to be incorporated into the coating [2,3]. The incorporated alumina particles significantly increased hardness of the cermet coatings. An increase in volume fraction of alumina in the nickel matrix from 11 to 34 % led to an increase in hardness of these composites from 380 to 750 HK₂₅. Hardness measurements show that variation in alumina volume fraction produces significant change in mechanical properties of the composites. The effect of the mechanical properties on erosion resistance will be analyzed in the following progress reports.

IV. PLANS FOR COMING YEAR:


In the next six months, the powder and electrodeposited cermet alloys will be tested in our erosion simulator at different velocities. From these results we expect to determine the effect of hard phase constituent size and volume percent on the steady-state erosion rate. These results will form the basis for determining thermal spray coating hard phase constituent size and volume percent.

V. REFERENCES

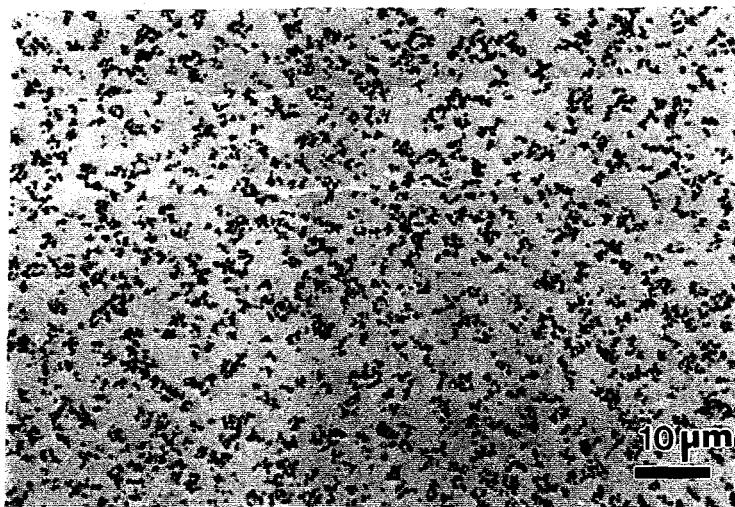

1. American Society for Materials, Intl. 1979. Metals Handbook, 9th ed., Vol 5, 199-218.
2. Ding, X.M., Merk, N., and Ilschner, B. 1994. In 3rd International Symposium on Structural and Functional Gradient Materials, ed. B. Ilschner and N. Cherradi, Swiss Federal Institute of Technology of Lausanne, Switzerland: 365-70.
3. Brandes, E.A. and Goldthorpe, D. 1967. Metallurgia, 76 (457): 195-8.

Figure 1. Schematic diagram of the electrodeposition set-up.

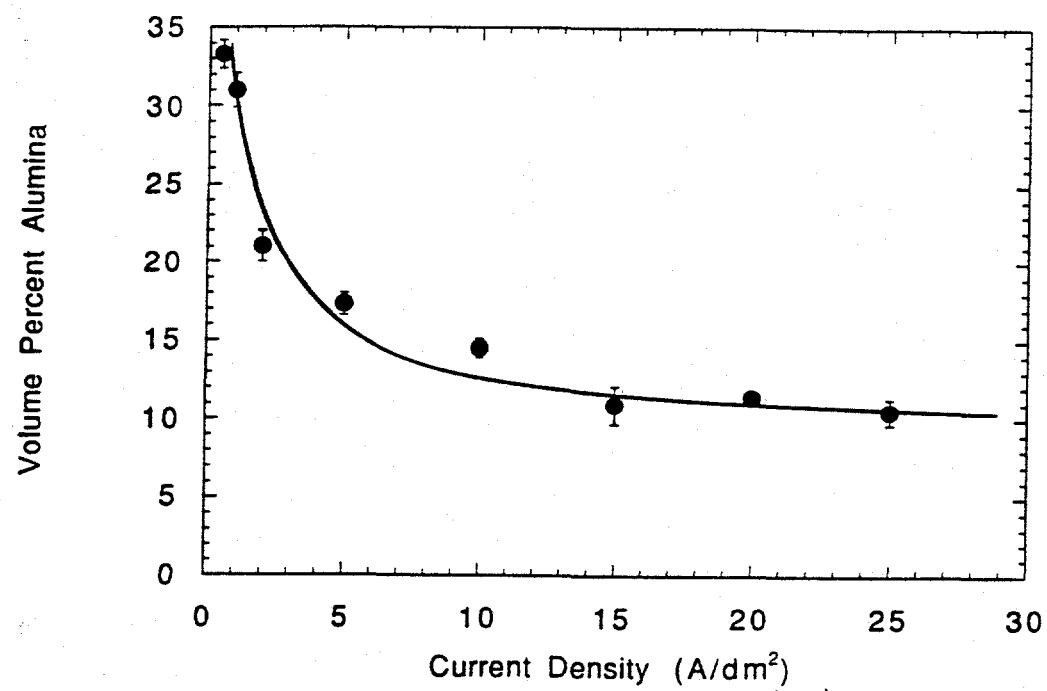

Figure 2. Etched cross-sections of electrodeposited nickel. Current densities: ii) $1\text{A}/\text{dm}^2$, iii) $5\text{A}/\text{dm}^2$, iii) $5\text{A}/\text{dm}^2$, iv) $10\text{A}/\text{dm}^2$, v) $15\text{A}/\text{dm}^2$, vi) $20\text{A}/\text{dm}^2$, vii) $25\text{A}/\text{dm}^2$.

Figure 3. Polished cross-sections of $\text{Ni}-\text{Al}_2\text{O}_3$ electrocomposite (dark phase is Al_2O_3 ; white phase is Ni).

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Figure 4. Volume fraction of alumina as a function of current density