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Abstract

Analytical and numerical calculations of the structure and burning rate of a deflagrating porous energetic
material are presented for the limiting case of merged condensed and gas-phase reaction zones. The reac-
tion scheme is modeled by a global two-step mechanism, applicable to certain types of degraded nitramine
propellants and consisting of sequential condensed and gaseous steps. Taking into account important effects
due to multiphase flow and exploiting the limit of large activation energies, a theoretical analysis may be de-
veloped based on activation-energy asymptotics. For steady, planar deflagration, this leads to an eigenvalue
problem for the inner reaction-zone, the solution of which determines the burning rate. Numerical solutions
give a reasonably complete description of the dependence of the structure and burning rate on the various
parameters in the problem, and show excellent agreement with analytical results that are obtained in a more
limited parameter regime in which most of the heat release is produced by the condensed-phase reaction
and the porosity of the solid is small. These calculations indicate the significant influences of two-phase
flow and the multiphase, multi-step chemistry on the deflagration structure and the burning rate, and thus
serve to define an important parameter regime that supports the intrusion of the primary gas flame into the
two-phase condensed decomposition region at the propellant surface.

*Work supported by the U. S. Department of Energy under Contract DE-AC04-94A185000.
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EIGENVALUE ANALYSIS AND CALCULATIONS FOR THE DEFLAGRATION OF
POROUS ENERGETIC MATERIALS IN THE MERGED-FLAME REGIME

1. Introduction

There is a rapidly growing interest within the fields of propulsion and pyrotechnics in the combustion
behavior of porous energetic materials. In these types of problems, the porous nature of the material arises
from a certain degree of metastability which, after either a prolonged existence and/or exposure to an
abnormal thermal environment, leaves the material in a degraded state that is characterized by changes in
chemical composition and a significantly higher porosity relative to the original pristine propellant. As a
result, the gas-phase species occupying the voids consist of various products of decomposition, and various
two-phase-flow effects associated with different velocities and properties of the condensed and gaseous species
have a significant effect on the structure and propagation velocity of the combustion wave.

Although a number of relatively complete formulations have been proposed for analyzing combustion
phenomena involving multiphase flow,! they generally involve one or more constitutive relations that are
required to close the model, and are difficult to analyze, both because of the wide range of physical phenomena
associated with such systems and the highly nonlinear nature of any two-phase-flow combustion problem.
Accordingly, early two-phase work in this area tended to alleviate some of the difficulties by treating the
two-phase medium as a single phase with suitably “averaged” properties.2® Unfortunately, such models
effectively require the velocity (and temperature) of each phase to be identical, precluding any analysis of
two-phase flow effects on the combustion process. More recently, however, it has proven possible to analyze
deflagration models for porous energetic materials that explicitly involve multiphase flow.4~!! These studies
have largely been applicable to nitramine propellants, such as HMX and, in some cases, RDX, that are
characterized by a liquid melt region in which extensive bubbling in an exothermic foam layer occurs. In
some cases,~6 two-phase flow effects were confined to this layer, while in the more recent of these studies,” 1!
the solid material was assumed to be sufficiently porous such that two-phase flow effects were significant
throughout the multiphase preheat region. In order to focus clearly on the effects of two-phase flow in these
problems, chemistry was first generally confined to a single-step overall reaction R(c) — P(g) representing the

510,11 sllowing

direct conversion of the condensed (melted) propellant to gaseous products. Generalizations
for a separate (primary) gas flame following the initial multiphase decomposition region were given by
R(c) — P(g), R(c) < R(g), Rlg) — P(g), where R{g) is a gaseous reactant, and by the sequential scheme
R{c) — I(g), I(g) — P(g), where I(g) distinguishes the intermediate gas-phase products from the final
products P(g). These schemes were applied to the nonporous case to determine both the structure and
propagation velocity of steady, planar nitramine deflagrations, while stability results for these two-phase-
flow models have thus far been confined to the case of a single-step mechanism.5%° ‘

The present work seeks to continue with the analysis of the limiting case in which the primary gas flame

intrudes upon the multiphase decomposition region,!0-11

a tendency that is often observed experimentally
as the pressure increases. Thus, the single-step case previously analyzed” is extended by incorporating both
condensed- and gas-phase reactions in the thin multiphase reaction region previously represented by the
simple one-step mechanism R(c) — P{g). In particular, as indicated above, a global sequential reaction
mechanism is assumed, where the first step consists of an overall condensed-phase reaction that produces
gas-phase intermediates, and the second step consists of the global reaction of these gas-phase intermediates

to produce final gas-phase products. While this simple mechanism is still an extreme approximation to the
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actual chemistry that transpires during nitramine deflagration,!?!3

it enables us to fully incorporate two-
phase-flow effects into the analysis, and to assess the role of such effects on the structure and propagation of
the deflagration in the merged-flame limit just described. The present work complements and extends recent
analytical studies of this merged-flame regime!®! by computing numerical solutions of the inner reaction-
zone eigenvalue problem that may be derived by an asymptotic analysis in the limit of large activation
energies. These numerical computations significantly extend the parameter regime that was considered

previously, and serve to further characterize the merged-flame limit for these types of problems.

2. The Mathematical Model

We consider the case of an unconfined, steady, planar deflagration, propagating from right to left, into
a degraded (porous) energetic solid. Melting of the solid is assumed to occur at a (moving) spatial location
% = %,,(f) where the solid temperature is equal to the melting temperature 7},. Subsequent to melting,
gas-phase intermediates are assumed to be produced directly by condensed-phase reactions, and these, in
turn, react to form the final combustion products according to

R(c) = I(g), I(g9) = P(g), (1)

where R(c) denotes the condensed (melted) reactant material, /{g) stands for the intermediate gas-phase
species, and P(g) represents the final gas-phase products. The pores within the damaged solid are assumed
to be filled with a mixture of the intermediate gas-phase species and final gas-phase products, with the mass-
fraction ratio ¢ of the two specified far upstream. The present analysis considers the merged regime in which
both reactions occur within a single reaction zone (necessary conditions for which are to be determined)},
in contrast to a previous (nonporous) study® in which these reactions were spatially separated. Thus, the
deflagration wave consists of a solid/gas preheat region, the melting surface across which the condensed
component of the two-phase mixture undergoes a phase change, a liquid/gas preheat region, a relatively thin
{due to the realistic assumption of large activation energies) reaction zone in which all of the condensed-phase
material and gas-phase intermediates are converted to gaseous products according to Eq. (1), and finally,
the burned region which, in reality, usually corresponds to a dark zone that separates the primary flame
region from a secondary gas flame downstream that has little effect on the burning rate.

A reasonable model, appropriate for describing this type of multiphase deflagration wave, was derived
previously.»1%11 Here, we shall simply state its nondimensional version in a local coordinate system attached
to the melting surface Z,,, with only a brief explanation of the origin of each equation. For simplicity, we
restrict our attention to the single-temperature limit of this model, in which case the rates of heat transfer
betweer phases are sufficiently large such that all phases at a given location may be considered to have the
same temperature. Thus, before proceeding, we introduce, in terms of dimensional quantities (denoted by
tildes), the nondimensional variables

pscsU . psCsU? ~ i p,
PO - i S T R Y R @
As : As Ty U 9
where the (unknown) propagation speed U = —dz,, /dt is a convenient characteristic velocity for the problem.

Here, 5, & and T denote density, velocity and temperature, respectively, and the subscripts s, [ and g denote
the phase (solid, liquid, gas) to which a quantity refers. For simplicity, constant values for heat capacities
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(¢) and thermal conductivities (}) are assumed constant for all phases, as are 5, and 5;. In addition, the

nondimensional parameters

T=£l'1 7':=£:g‘a l=~il': i='~_ga bzf_‘, 8‘::27 Vs = ’Yi ’
Ps Ps As Ag Cs Cs N
A ) ) E, E,
L€=~/\~g~, Q1=~£ R Qg=~g, Nl=%, Ng=~g~, (3)
peDEg S CsTy, ReT;, R°T
w = il— s A= ~Afgj e—N g = As‘:A'Z(ﬁg " N, ,
Wp pscsU chsUZ

are defined, where n is the reaction order of the gas-phase reaction and Le is the Lewis number associated
with the gas phase (having assumed a constant value for :\g, we also assume that 5, D is constant as well,
which implies a constant Lewis number). Here, D is the mass diffusion coefficient and E, A and @ denote
activation energy, pre-exponential rate coefficient and heat release, respectively, where the subscripts indicate
whether these quantities refer to the liquid-phase or the gas-phase reaction. Finally R° is the gas constant, 7,
is the heat of melting and W; and Wp denote the molecular weights of the intermediate and product species,
respectively. The subscript or superscript u (e.g., P> Tu) implies that these quantities are evaluated far
upstream in the unburned region. We note that r and 7 are density ratios (liquid-to-solid and upstream gas-
to-solid, respectively}, [ and [ are thermal conductivity ratios, b and b are heat capacity ratios, w is the ratio
of molecular weights corresponding to the two gas-phase species, v, is a heat-of-melting parameter (negative
when melting is endothermic), @, and @, are heat-release parameters associated with the condensed and
gas-phase reactions, respectively, N, and N, are the corresponding nondimensional activation energies, and
A; and A4 are the nondimensional rate coefficients, or Damkohler numbers. Finally, we remark that either A;
or Ay, may be regarded as an appropriate burning-rate eigenvalue, since the determination of either provides
an expression for the propagation speed U. Indeed, since Ag/A; = f(/ig//is)(ﬁ‘g‘)"‘leN"Ng, we shall, for
definiteness, regard A, as the burning-rate eigenvalue.

To analyze the case of a steadily propagating deflagration, it is convenient to transform to the moving
coordinate £ = z +t whose origin is defined to be z,,. In the upstream solid/gas region, the volume fraction
o of gas is assumed constant (& = a;), and the solid phase is assumed to have constant density and zero
velocity {with respect to the laboratory frame of reference). Continuity of the gas phase, on the other hand,

is given in the usual fashion by

%mw+m=ms<m (4)

LY
dez

where the first is an overall continuity equation for the gas phase and the latter is the mass conservation

d i
% [FpgY (ug + 1)} = E;'Le £<0, (5)

equation for the mass fraction Y of the intermediate gas-phase species. In the liquid/gas region to the
Tight of the melting front at £ = 0, overall continuity, continuity of the liquid phase, and continuity of the
intermediate gas-phase species are given as

1 =)+ 1) +apyuy + 1] =0, €>0, (6)

d% [(1— o) (w +1)] = —Ai(1 — @) exp [N, (1 - %)] , €>0, ™
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2 oY (g + 1)+ (1 — el + 1) = 1L o (a5
& b ®)
— Ag(apgY)" exp {Ng (1 - %)] , £€>0,

respectively, where Eq.(7) has been used to eliminate the condensed-phase reaction-rate term that would
have otherwise appeared in Eq. (8). Finally, in the single-temperature limit described above, overall energy
conservation in the solid/gas and liquid/gas regions is given by

ar .. d d ~ . dT
(1- as)—(zg— + fbasag lpo(ug + 1)T] = pr2 [(1 — a5+ las)d—g} , €<0, 9)

2 [0 = )+ D@+ @y T) + Fapy (g + (@Y + )]

7 (10)
d . 1dT  §. _, dY
=%{[l(1—-a)+la]d—g+ngLe 1ad_§}, £>0,

respectively, where Eqs. (7) and (8) have been used to eliminate the reaction-rate terms that would have
otherwise appeared in the latter. We remark that, owing to the assumed smallness of the Mach number,
which, for an unconfined deflagration, implies a constant pressure, contributions to Eqs. (9) and (10) that
arise from pressure effects are absent.”

The above system of equations is closed by adding an equation of state (assumed to be that of an
ideal gas) and an expression for the liquid velocity «;. As indicated above, an approximate analysis of gas-
phase momentum conservation implies, for an unconfined, small Mach-number deflagration, that pressure is
constant, thereby allowing the equation of state to be expressed as

pTIY +w(l V)= ¢+uw(l-¢) =, (11)

where ¢ is the specified value of Y at £ = —oo. An analysis of condensed-phase momentum and the

assumption of zero velocity for the solid phase, on the other hand, leads to the kinematic approximation
1
w=_(1-7) (12)

in the limit of small viscous and surface-tension-gradient forces.*” Equations (4) - (12) constitute a complete
set, which are to be solved subject to the boundary conditions

a=o, for £<0; u;—>0, Y—-¢, T—o1a £— —c0, (13)

a—=1, Y0, T->1T, as £ > 400, : (14)

where 0 < ¢ < 1, and the melting-surface (£ = 0) conditions

g=0% g=0t _ig=0t gy |&=0"
Tleeo=Tm, T|. =u| =Y[ =22 15
o =Ty T, =l =] = | (15)
. 1dT o dT
[a-e)+ia] | —(-oatio)S|  =(-a)l-%+G- DTl (16)
3 £=0+ 3 £=0-

We remark that the final burned temperature T} is to be determined, as is the burning-rate eigenvalue A;.
The latter then determines the propagation velocity of the deflagration according to its definition given in
Eq. (3), and is the main result to be determined from the analysis that follows.
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3. Determination of Ty and ug e

The solution in the region & < 0, where chemical activity has been assumed to be absent, as well as
expressions for Ty and ug,c0 = ug I oo T obtained from the above model as follows. From Egs. (4) and
(13), we have

polug +1)=1, £<0, Q7)

while an integration of Eq. {5) gives, upon use of Eq. {17), the integral

) dy
Y—-¢p=—Lel—, £<0. 18
=t <% (18)
Similarly, integrating Eq. (6) implies
(1 —a) + Fapy(ug + 1) = fpd(uge0 + 1), £€>0, (19)

where pb = (wT};)™! is the burned gas density. Thus, evaluating Eq. (19) at £ = 0 using Eq. (17) and the
fact that all variables are continuous there, an expression for the burned gas velocity ug o is obtained as

A1 .
“g,ooz_l.ﬂf_(:_.l_1=ﬁa_i_@_l)wq’b_1_ (20)
Tpg 7o
Turning attention to the overall energy equations (9) and (10), we may readily perform a single inte-
gration on each using the preceding results to obtain

(1 — o + 7bas (T = 1) =(1—as+fas)%, £<0 (21)

and

[b(l - a)+bla - a, + asf')] T+ (a—as+o;7)QY
= [l(l —a)+ fa} % + Qg%Le‘la% ~(1-a)(Qi+Qy) +b(1 — a5 + a;)T, £>0,

Thus, subtracting Eq. {21) evaluated at £ = 0~ from Eq. (22) evaluated at £ = 07 and using the melting-
surface conditions (15) and (16), we derive for T, the expression

(22)

7y = (L= (@it Qo+ 1+%) +7os(¢Qp +5) (23)

bl 4 os(7 ~1)]

We note that this identical result can be derived from a more general two-temperature model’® and is
independent of the particular form of the equation of state for the gas. In the limit @, — 0, Eq. (23)
collapses to the result obtained for the corresponding single-step model analyzed previously.” Equations
(18), (21) and (22), which are first integrals of Egs. (5), (9) and (10), now take the place of the latter in our
model.

We note that there are significant variations of the final burned temperature and gas velocity with pres-
sure, since these quantities depend on the upstream gas-to-solid density ratio #, which in turn is proportional
to the pressure py according to 7 = p5/ps = WIﬁ; /Ps R°Tu$. As discussed previously,” this important effect
arises from the thermal expansion of the gas and the two-phase nature of the flow in the solid/gas and
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Yiquid/gas regions, where significant gas-phase convective transport of enthalpy relative to the condensed
phase occurs. In the limit 5 — 0 (i.e., # — 0), we see that ug e — co and T — 2= =1Q, +Qg+1+47s).
Since there is effectively no gas-phase enthalpy content in this limit, 7Y is also the value of T} in the limit
of zero porosity (os — 0). For nonzero values of both pressure and porosity, some of the heat released by
combustion must be used to help raise the temperature of the gas-phase intermediates within the porous solid
from unity to T;. Consequently, both T, and the final gas velocity ug o, are typically decreasing functions
of the nondimensional gas-phase density 7, which increases with pressure according to the above relation.
An additional effect that is revealed by the two-step reaction mechanism is that 7} does not depend just on
the total heat release Q; + Q4 = @ associated with the complete conversion of the energetic solid to final
gas products, but also on the heat release Q, specifically associated with the gas-phase reaction. This, too,
is a two-phase-flow effect that arises from the fact that the reactive intermediate gas-phase species occupy
the voids in the porous solid, and the heat released by these pre-existing intermediates affects the final
burned temperature. In particular, for a given total heat release @, the burned temperature increases as the
fractional heat release associated with the gas-phase reaction increases.

4. The Asymptotic Limit and the Outer Solution

Further analytical development, leading to the determination of the burning-rate eigenvalue A, requires
an analysis of the reactive liquid/gas region £ > 0. Equations (7), (8) and (22) constitute three equations for
Y, T and « in this region, with u, then determined from Eq. (19) along with the equation of state (11), and
the eigenvalue A; determined by the boundary conditions. In order to handle the Arrhenius nonlinearities in
Egs. (7) and (8), we exploit the largeness of the nondimensional activation energies N, and Ny, and consider
the formal asymptotic limit Ny, N; > 1 such that

%:;/, B=(-T;HN > 1, (24)
where v is an O(1) parameter and the Zel’dovich number £ is the large activation-energy parameter that
naturally emerges in the analysis that follows. For simplicity, we shall eventually assume v & 1, in which
case Eq. (24) implies that we are considering the regime in which the two large activation energies differ by
an approximately O(1) amount. The relation (24), along with a corresponding order relation for the ratio
Ag/A, to be introduced shortly, helps to insure that both the condensed and gas-phase reactions are active
in a single thin reaction zone. Departures from Eq. (24) allow for separated reaction zones,® but in the
present work we shall focus on the merged case just described.

In the limit 8 — oo, the Arrhenius terms are exponentially small unless T is within O(1/8) of T;.
Consequently, all chemical activity is concentrated in a very thin reaction zone whose thickness is O{1/8).
On the scale of the (outer) coordinate &, this thin region is a sheet whose location is denoted by &, = 2 ~z,,,
where z, > z,,,. Hence, the semi-infinite liquid/gas region is comprised of a preheat zone (0 < £ < &) where
chemical activity is exponentially small, the thin reaction zone where the two chemical reactions are active
and go to completion, and a burned region £ > £,.. Denoting the outer solutions on either side of the reaction
zone by a zero superscript, we conclude from Eq. (7) that

<-{0 EE )
and from Egs. (11), (17), (19) and (20),
ug+1=g_—ii?——§f%[Y+w(1-—Y)]T (26)




for all £. We observe that there is a jump in a°, and hence also in ug, across the reaction zone. Similarly,

in obtaining the complete outer solution for Y and T, it is necessary to connect the solutions on either
side of the reaction zone by deriving appropriate jump conditions across £ = &-. This will ultimately entail
the introduction of a stretched coordinate (see below) appropriate for analyzing the inner structure within
the reaction zone, whereupon an asymptotic matching of the inner and outer solutions will yield not only
the aforementioned jump conditions, but also the burning-rate eigenvalue as well. In connection with this
procedure, it is convenient, and physically appealing, to attempt a representation of the reaction-rate terms
in Egs. (7) and (8) as delta-function distributions with respect to the outer spatial variable £.1%1! As a
result, using the results (25) and (26), the governing system of equations for the outer solution variables Y°
and T° become '

~

A0 -g) =Lt B e <o, | @7)
d ¢ o w0 01 L. pd [ odY®
Z [(@® — ag +7a,)Y? — o] = Z—Le Z (a 7d§_> - P —-&—-H), £€>0, (28)
1dof
;_£=35(§_5,), £>0, (29)
~T 0 ~ dTO
(1 — as + 7bas)(T —1):(1——as+las)¥, £<0, (30)
and
- R R -~ o1 AT
[b(l - +b(a® —a, + asr)] T+ (a® - a5 + a,M)Q,Y° = [l(l -+ lao} E
. (31)
0
+Q9%Le‘1a°——dd}; —(1-a®)(Qu+Qg) +B(1 — aw + auF)Ty, £>0,

where P, and P, are the source strengths of the reaction-rate distributions placed at £ =&, and £ =&+ H,
respectively. These quantities, along with the separation constant H, are to be determined, where the ability
to do so validates the delta-function representation of the reaction rates, at least to the order of analysis
considered here. We note that the O(1/8) width of the merged reaction zone implies that H is of this order
{or smaller) as well, and in fact we will eventually seek H as an expansion in inverse powers of 5.

The solution of Eqgs. (27) — (31) subject to the melting conditions at £ = 0 and the boundary conditions
at £ = *co is straightforward and given by

pt:%(l—as), Py =1-oas+Ffas¢, (32)
( (1-¢)(1-a;) 1—o,+7fasé s
o { T—o, +fas  1—as+7a, P [_(1 T % +Tas)bLeH/l]}
PO=1 x exp [fbLe(e — £)/1] , €<&r, a9
: _o:s +r:z;s {1 ~ exp [(1 — g + Fag)bLe(€ — €, — H)/Z]} e <E<E+H,
0, £>6+H,
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{ ~
] Ab 8
14+ (Tm — 1) exp [-1-———9———'—-—11—&5] , £<0,
1—-a,+las
| B (T — B)exp [bl(1l-as)+ribas } ’ o<e<t.
0(¢) = 4 (1= o)+l (34)
b N
By + (T, — By) exp [7(1—as+ras)(§—€r—H)] , & <E<E&+H,
1 — s+ Fas¢
To =B+ , >&+H,
L b ! b(l—-as+f‘as)Qg £>§
where R .
B= (1 = as)(1 + 7s) + Fbas B = (1 — as)(Qi+ 1+ ,) + Fbas . (35)

= N 1 =

b(1 — a;) + Fbas, b(1 — as + Fas)
The location & of the reaction zone, which appears as a sheet on the scale of the outer variable £, is thus
determined by Eq. (34) from continuity of T at £ = H as

&=

= . (36)
b(1 — ag) + Fbas

11 — o) + faes { By - B+ (Tt — By)exp [~5(1 — as + o) H/l] }
In .
Tm — B
A sketch of the outer solution is shown in Figure 1 for ¢ = 1 and typical values of the remaining parameters.
We remark that since H S O(1/8) in magnitude, the interval £ < £ < H lies within the merged
reaction zone, which, on the scale of the outer coordinate &, is a sheet at £ = £.. Consequently, that portion
of Egs. (33) and (34) that actually represents the outer solution is the solution for £ < £ = min(&,& + H)
and £ > & + H =~ &, where (small) H may be either positive or negative. Thus, Eqs. (33) and (34)
imply an O(1/8) jump in the outer solutions Y? and T° across the reaction zone. This can be motivated
directly by noting that for H small, an expansion of the delta-function 6{(¢ — & — H) in Eq. (28) about
H = 0 introduces the derivative of the delta-function, §(€ — £,),14,15 where the latter implies a higher
order singularity (discontinuities in the variables Y° and T° themselves) at £ = £, than that which occurs
when H is identically zero. The actual values of these discontinuities, as determined here by the value of
the separation constant H, as well as the burning-rate eigenvalue A;, are calculated by matching the above
outer solution to the inner solution of the reaction-zone problem, which we now consider.

5. The Reaction-Zone Problem

To analyze the chemical boundary layer that lies in the vicinity of &, we introduce a stretched inner
variable 7 and a normalized temperature variable © defined by

n=pE-6&), ©=171, (37)

where the Zel’dovich number #>> 1 was defined by the second of Egs. (24). We then seek solutions in the
form of the expansions

a~ag+ B lor+B 2o, ug~ugHfrur + B Rug o,
Y~ By 4+ 82y 4 o, O~ 14872042004+, (38a)
A~ BAo+ B A1+ B2 +---), He~B Ry +8%hy+---,
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where the coefficients in the expansion of u4 are calculated in terms of the o4, y; and 6; from Eq. (26), which
is also valid in the reaction zone. At this point, we also order the nondimensional rate-coefficient ratio Ag/A;

as

Bs _ p(ary-122 expl(1 — )N = 7, (38b)
Al g Al

where v is the activation-energy ratio defined by the first of Egs. (24) and A is an analogous O(1) parameter
that defines the scaled value of the rate-coefficient ratio. The scaling embodied in Eq. (38b) is required,
given Eq. (24), to construct an inner solution that corresponds to a merged reaction zone. As discussed
below Eq. (24), different scalings are permissible, but would generally correspond to separated reaction
zones for the condensed and gas-phase reactions.®

Substituting the above inner expansions into Egs. (7), (8) and (22), the governing equations for the

leading-order inner variables ag, y; and 8; are given by

dao

& = rho(1—e0) ™, (39)
- do, iQ, dyy _ (-0 +Qi+Q,
I+ (- Dag| 2 + —28 -2 = 1—a), 40
[+ E-teo] bLe(T, — 1) © dn T,-1 O 40
i -1 d dy1 _ doyg 5 " n_vé;
gLe o (ao dn) =& + A (wa Ao{eoy1)" et . (41)

Solutions to these inner equations as 7 — oo must match with the outer solution (25), (33) and (34) as
£1& and as €| (& + H)T, respectively. This leads to the matching conditions

aﬂ'—)ly 01_)01 yl—’OaS"l—"*'Ooy (42)

b
ag = g, 0~ El’I] + E2h1 y i ?LC [—T"\’f] + (1 — s + 7“‘a5¢)h1] as n— —oo, (43)
where the coefficients E; and Es in the second of Egs. (43) are defined as

_To=B b-a)+ibey, o Tb—Bl..;;(l_as+fas). (44)

B = b L8
YT -1 (1 - a,) +las Ty -1

Solution of the complete inner problem given by Eqgs. (39) — (44) will only be possible for certain values
of hy and Ag, where the latter is the scaled leading-order coefficient in the expansion of the burning rate
eigenvalue. We note that Egs. (39) — (41) may be simplified somewhat by employing og as the independent
variable. Thus, using Eq. (39), Eqgs. (40) and (41) may be written as

. doy iQ dyy  (b-HTh+Q+Q
I+ -1 o1 5l L = Z, 45
[ + ( )ao] € dao bLe(Tb - 1)aoe da() (Tb — I)TA() ( )
I _,d dy AP\ (cop) (-
Ag=Le t—- _ 6,291 2 ) A0 (D6 6
r Ob € dog [ao(l ao)e dao] 1+ r ('wa 1—qag € (46)

Although a closed-form solution to this system is not readily apparent, further analytical development may
proceed through a perturbation analysis of Egs. (45) and (46) in the limit that Qg is small relative to
Q1,"%1! which, to leading order, decouples Eq. (46) from Eq. (45). This limit corresponds to the assumption
that most of the heat release occurs in the first stage of the two-step reaction process, which realistically
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implies that at least some of the initial exothermic gas-phase decomposition reactions should be lumped
with the overall reaction (1a), regarding the resulting decomposition products as the gas-phase intermediates
I(g). This analysis is summarized in the Appendix. Here, we avoid any further approximations by seeking
numerical solutions of the double eigenvalue problem (39) — (43), thereby greatly expanding the parameter
regime to which our previous analytical analysis was restricted.

6. Computational Procedure

The numerical solution of Egs. (39) — (43) is facilitated by rewriting Egs. (39) — (41) as a first-order
systemn and introducing trivial equations for the eigenvalues Ag and h;. We thus obtain the equivalent

problem
do
d—n" = rAo(l — ag) e’ (47)
o _ 1 6-DL+ @+ o 1@  dn s
dn 1+ (- ao T, -1 bLe(T, —1)  dn
dyy =z
I g’ (49)
dz bLe | dag é\" n_vb;
dT} = — i [ d'r] - /\Ao <wa) (aoyl) € s (50)
dhg dh
T dn 0, (51)
subject to Eq. (42) as 5 — 400 and
IE E 7L
ag — as, 91+AAL1 y1~’:E2+—1§1-(1-—as+fas)]h1, z~—a TZ ° as g — —oo, (52)
FbLe

where the boundary (matching) conditions as 7 — —oco have been reformulated so as to make the problem
invariant with respect to the choice of origin for the independent variable . Equations (47) — (51) constitute
a system of six first-order equations, subject to the six boundary conditions embodied in Egs. (47) and (52),
for the six unknowns aq, 81, y1, 2, Ag and hy. Thus, solution of this well-posed problem will determine the
eigenvalues Ag and h;.

The above problem represents a nonlinear coupled boundary-value problem on a doubly infinite domain.
Accurate numerical solutions may be obtained on an approximate finite domain provided internal boundary
conditions are imposed on one of the variables to ensure that the reaction zone will be positioned well into
the interior of the domain. Since Eqs. (47) - (51) and the boundary conditions (42) and (52) are independent
of the choice of origin, this can be achieved without loss of generality by specifying a value of one of the
variables (e.g., the volume fraction &) at n = 0. Then, the computational domain may be divided in half
and a new set of variables introduced for one half of the domain. That part of the domain is then mapped
onto the other half and additional continuity conditions specified for the two corresponding sets of variables
at n=0.16

The numerical code used in our computations was the routine TWPBVP,17~2° which handles an arbi-
trary system of first-order equations provided all boundary conditions are imposed at the external boundaries

of the computational domain. Partitioning the domain as described above, we thus end up with a system
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of twelve first-order equations for the two sets of six variables in each of the two subdomains that are now
mapped onto one another. The numerical method itself is an iterative deferred-correction scheme based on
mono-implicit Runge-Kutta formulas with adaptive mesh refinement. In order to achieve convergence, a
nontrivial initial guess was required. The solutions obtained from the perturbation analysis summarized in
the Appendix proved to be adeqﬁate in almost all cases. In those instances when the initial guess obtained
from the perturbation analysis was not sufficient, a continuation approach based on the previous iterated
solution for a nearby set of parameter values was used. The computational domain was approximated by
—40 < 5 < 40, where the endpoints were determined to correspond to the points at which double precision
resolution breaks down for this problem [e.g., ao(n = 40) = 1 to double-precision accuracy on a Sun 10
workstation]. The initial grid was composed of 500 equidistant points, which was usually sufficient to obtain
convergence given an absolute tolerance of 10 on all variables.

7. Discussion of Results

The solution structure of the dependent variables as a function of , and the numerical values of the
eigenvalues Ag and ki, are exhibited in Figure 2 for a set of parameter values consistent with the analytical
solution obtained previouslyl®!! (see Appendix). It is thus seen that there is reasonably good agreement
between the numerical and analytical solutions in the parameter regime where the latter is valid. The only
modest differences are in the profiles for y; and ki, which stem from the fact that the analytical expressions
for these quantities are not calculated to the same order of accuracy as ap, 6; and Ag (one-term versus
two-term expansions), as indicated in the Appendix. We have also observed that the numerical value of
h, is a relatively sensitive function of the system parameters, which may also account for the relatively
minor discrepancies evident in Figure 2. The main computational results are given in Figures 3 — 11, where
Figures 3a — 11a show the behavior of the burning-rate eigenvalue Ag, which is related to the dimensional
propagation speed U according to the penultimate of Egs. (3) [see Eqgs. (38a) and (24)], and the separation
eigenvalue h; as a function of a;. Figures 3b — 11b show plots of the corresponding unscaled dimensional
quantities U and H = (A,/ps&U)h1/B, where the latter follows from the dimensional version of H and the
last of Eqs. (38a). A set of base values for the parameters was adopted, and each figure shows the effect of
varying one of these parameters (as a function of «;), while keeping the remaining parameters fixed. The
numerical computations were performed for values of o, ranging from 0.01 to 0.9.

It is readily seen that Ag and A, are generally decreasing functions of the porosity a, of the solid.
We note, however, that although the dimensional propagation speed U is inversely proportional to 1//Ag
according to the definition of Ay, it is also proportional to e~™, which decreases with increasing porosity due
to a decrease in the burned temperature 7. The exponential sensitivity of U to the latter implies that this
thermodynamic effect usually will dominate, and hence U will generally be a decreasing function of ¢, as
well. In a similar vein, we observe that although h; is a monotoniéally decreasing function of «, its unscaled
dimensional counterpart H is also inversely proportional to I/ and the Zel’dovich number 8, both of which
are decreasing functions of «, as noted above. Consequently, H frequently exhibits a local maximum due to
changes in the relative rates of decrease of k; and SU as o5 increases. In particular, we note that the slope
of h; tends to be relatively large in magnitude for small and large o, and relatively small for intermediate
values of o, Hence, & tends to be a decreasing function in the former regions, and an increasing function in
the latter, where the increasing behavior of 1/80 causes H to increase with a, as well. We remark that as
a5 approaches either zero or unity, the absolute value of k; often becomes large, indicating a breakdown of
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the merged-flame solution due to increasing separation between the effective location of the condensed and
gas—phéLse reactions.

The behavior of hi{as) is especially sensitive to the value of the upstream gas-to-solid density ratio
7 as 7 decreases {Figure 3a). In the limit of small «,, only increasingly larger values of # are consistent
with a merged-flame solution, since otherwise there is a tendency for the gas-phase reaction to either occur
increasingly downstream of the gas-phase reaction, corresponding to blow-off (h; — o0), or for gas-phase
reaction of the intermediates initially present within the porous solid to occur upstream within the two-phase
region (hy - —~o0). The former result is consistent with the analytical analysis for small Q4 and o, (as
discussed in the last paragraph of the Appendix), but both trends are attributable to the sensitivity of the
merged-flame structure to the amount of gas-phase convective transport relative to the condensed material
(since smaller values of 7 result in larger gas-phase velocities [¢f. Eq. (20)]. We note that for fixed ay, the
dimensional burning rate U increases with decreases in the parameter 7, and that for small values of #, the
value of U can, in spite of the argument given above, actually increase with e, until o, becomes sufficiently
large (Figure 3b). This behavior is due to the fact that the decrease in T, with increasing a, is diminished
for decreasing values of 7, so that T}, and thus g, vary little with « in the limit of small gas-phase density
until o, approaches unity. Consequently, as o, increases from zero, the behavior of U2 is approximately
inversely proportional to Ag until changes in T} due to increasing values of the porosity become sufficiently
large to counteract this trend, as discussed above.

Various other effects that are readily apparent are the decrease in h; and Ag (and the corresponding
increase in U) with increasing values of the gas-to-solid rate-ratio parameter A (Figure 4), with a similar
trend observed for the changes in these quantities as the Lewis number increases (Figure 5). The behavior
with respect to changes in A corresponds to an increasing rate for the gas-phase reaction relative to the
condensed step, so it is clear that the separation constant should decrease as A increases, and that for fixed
values of the condensed reaction rate, the propagation speed should increase. In a similar vein, increasing
the Lewis number by decreasing the mass diffusivity of the gas relative to its thermal diffusivity results in
a higher concentration of the reactive intermediate gas species in the reaction zone, resuiting in a faster
burning rate. _

The effect of varying the relative heat release attributable to each of the two reactions is shown in Figure
6, where variations in the nondimensional gas-phase heat release Q, are accompanied by variations in the
corresponding liquid-phase parameter @Q; such that the total heat release Q = Q, + Q; remains constant.
Nonetheless, according to Eq. (23), the burned temperature T}, continues to increase with increasing Q,,
resulting in a critical value of &, above (below) which the burning rate I increases (decreases) with increasing
Q4. A plausible explanation for this effect is that the accompanying decrease in ); tends to slow the rate of
the condensed reaction, which essentially defines the burning rate, but the resulting increase in overall burned
temperature tends to compensate for this effect. As o, increases from small values, the decreasing scaled
separation h; between the condensed and gas-phase reactions can thus produce a corresponding increase in
temperature in the vicinity of the condensed reaction. At the critical value of ¢, this overall thermal effect
completely compensates for the effect of decreasing @;. Hence, for o, above this value, the latter effect
dominates and the burning rate thus increases with increasing Q,.

Another interesting effect is associated with increases in the upstream intermediate-to-product mass-
fraction ratio ¢ (Figure 7). In particular, although a decrease in the upstream mass fraction of intermediates
produces relatively little effect on the burning rate, the separation distance between the condensed and
gas-phase reactions is highly sensitive to changes in this parameter, especially for larger values of o,. As ¢
decreases, larger values of a; are increasingly inconsistent with a merged-flame solution, since it requires the

16




gas-phase reaction to preheat the condensed material to compensate for the decrease in T, with decreasing
¢s. As ¢ continues to decrease, there are less and less unburned intermediates in the upstream region to
accomplish this preheating, and the gas-phase reaction must therefore shift further and further upstream
relative to the condensed reaction to compensate for the reduced amount of preheating. This preheating
effect also explains the decrease in burning rate for decreasing values of the gas-to-solid thermal conductivity
ratio { (Figure 8). This reduces the amount of gas-phase diffusive heat transport from the burned to the
unburned regions, and the compensating necessity of having the gaseous reaction move closer, and ultimately
upstream, of the condensed reaction (as o, increases) so as to produce a sufficient amount of condensed-phase
preheating. This latter result is also consistent with the analytical predictions for small Qg and a,.10:11

Finally, we note that the burning rate increases with decreasing values of the gas-to-solid heat capacity
ratio b (Figure 9), since larger gas-phase heat capacities require a greater proportion of the heat released
by chemical reaction to warm the pre-existing burned products in the upstream region to the final burned
temperature. We also observe that the scaled separation of the condensed and gas-phase reactions is sensitive
to variations in the ratio v of activation energies (Figure 10). In particular, as the activation energy of
the gas-phase reaction increases relative to that of the condensed reaction, its reaction rate decreases and
consequently, the separation of the two reactions increases and the burning rate decreases, consistent with
the behavior obtained for decreasing A, as described above. A similar effect is observed with respect to
increases in the gas-phase reaction order n (Figure 11).

In summary, it is clear that although not all parameter values are consistent with a merged-flame
structure, there is a well-defined regime that supports this type of deflagration in which condensed-phase
decomposition and the primary gas flame merge in a single multiphase reaction zone. In particular, consistent
with experiments involving nitramine propellants such as HMX and RDX that generally show the primary
gas flame approaching the propellant surface as the pressure (and hence density) increases, we find that
O(1) values of the gas-to-solid density ratio and/or the porésity support such a structure for reasonable
combinations of values for the remaining parameters. This particular parameter regime is thus one in which
convective gas-phase transport, as reflected by the expression for uz given in Eq. (12), relative to the

condensed material is sufficiently reduced to permit both types of reactions to occur in the same spatial

b
g8

leading to separated reaction zones.

zone. As 7 and/or o, decrease, u° increases to the point that the gas-phase reaction is pushed downstream,

Appendix. Perturbation Solutions for Small Qg

As indicated below Eq. (46), an analytical solution of the reaction-zone problem may be obtained
as a perturbation expansion for small values of Qg.m’“ Since this solution is useful as an initial guess in
obtaining the numerical solutions described in Sections 6 and 7, we summarize these results here. Thus,
we formally introduce a small bookkeeping parameter ¢, where O(87!) < € < O(1), and write Q, = €Q],
where Q} ~ O(1). We may now seek solutions to the leading-order inner problem in the form

ao~a8+eaé+ezag+~- s y1~y?+ey%+e2y¥+--- , 91~9?+60%+629f+--- ,

(A1)
Ao~ A+ A+ AL+, hy~Rl+ehl+eR2 4+ ...

Substituting these latest expansions into Eqs. (45) and (46), it is readily seen that a subproblem for
af and 69 decouples from the full leading-order problem (with respect to €), and that it is identical in form
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10 that obtained for the single-step analysis correspohding to the global reaction scheme R(c) — P(g).” In
particular, we obtain from Egs. (39) and (45)

0
i _1\.0 o1 _ 0790 Tl GO _ _AOcq 0y 6%
[z+(l l)ao]e o= BTy gy =M e et (A.2)

subject to

ad -1, 69 —0asn—o+o0; o) —as, 8 ~E as n— —co, (A.3)

where EY is given by the first of Eqs. (44) with T}, replaced by its leading-order approximation B;. The first
of Egs. (A.2) is readily integrated from o = a, (at 7= —o00) to-any a < 1 (at g = +00) to give

- o‘0 )
(S T CEDL Y A4
° (Bi-1)rAg Jo, 1+ (I -z (44)

Evaluating Eq. (A4) at o = 1 (at which 89 = 0) thus determines the leading-order coefficient AJ in the
expansion of the burning-rate eigenvalue as

(b_B)Bl-j'Qt ln{ AlA ]’ 141

(B - 1r{l-1) I+ (-~ Das

(b—8)By +Q
(Bl —1)T'l

Ag =
(1-as), 1 =1.

Substituting this result into Eq. (A.4) for arbitrary <9 and performing the indicated integration, we thus
obtain

1n[z+(z“_z)ag]—1n[z+(z”—l)as]) o

80(ad) = ’ ( Inf—In [l+ (- l)as]

0— ~
1n<°‘°——9‘i), i=1.
1—a

The determination of o§(n), and hence 8(n), then follows directly from the second of Eqs. (A.2). For

(A.6)

example, when [ = [ (equal gas and liquid thermal conductivities), we obtain

s +exp {171 [(b— B)B1 + Qi) (1 — o)/ (By ~ 1)}
L+ exp {1=1[(6 - BBy + Q] (1 — as)n/(By - 1)}

ag(n) = (A7)

where the matching condition at 7 = —oo has been used to evaluate the constant of integration.

The first approximation, Eq. {A.5), for the burning-rate eigenvalue is independent of the effects of the
second reaction (1b), which has been assumed to have a relatively small thermal effect. Consequently, the
first effects of the two-step mechanism on the burning rate appear at O(e), which requires the calculation of
the next-order coefficient Aj. We thus proceed by first calculating the leading-order mass fraction variable
y?, which is determined from the leading-order version of Eq. (46). For additional simplicity, we restrict
further consideration to the parameter regime

as=cle, I=l+e', v=1+ea’, (A.8)
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corresponding to O(e) values of the initial porosity, O(e) differences in the conductivities of the condensed
and gaseous phases, and O(eB) differences in the activation energies of the two reaction steps. In addition,
we consider only the case of a first-order gas-phase reaction (i.e., n = 1), and assume that

g bLe

rwAdT "l Yo +edi, (4.9)

where T = (Qu+147s)/ b is the leading-order approximation to Ty with respect to e in the above parameter
regime. The parameter group on the left-hand side of Eq. (A.9) is a gas-to-liquid ratio of diffusion-weighted
reaction rates, where the latter may be interpreted as characteristic measures of the rate of depletion of
the reacting species, taking into account both chemical reaction éhd, for the gas phase, species diffusion.
Such quantities appear to arise naturally in the analysis of multi-step flames, and, based on the above
interpretation, have been referred to as consumption rates.4:1> The fact that larger gas-phase Lewis numbers
are associated with higher rates of depletion of the gaseous reactant stems from the higher concentration of
this species in the reaction zone that results from smaller values of the gas-phase mass diffusivity.
In the parameter regime just outlined, the expressions {A.5) and (A.8) for 67 and AJ simplify to

N B+ )

60 =nal, Al !
ri(Qi+1+ 7 —b)

. . (A.10)

where, for a; ~ O(e), Eq. (A.7) implies

0,y XP (rAdn) 1 ad
co(n) = 1-+exp (rAdn)’ or = rAY In 1-a8 /" (A11)

Consequently, the leading-order version of Eq. (46) for 39 as a function of o is given by

P (2 1 \df oyl bLe 1 (A12)
dog’ " \o§ T T—af)do§ " A -od? T TAS (a9)’(1-of)’ '

subject to yY - 0 as o — 1 and an appropriate matching condition as o — 0. The latter, however, cannot
be obtained directly from Eq. (43) because that equation was derived under the assumption that a; # 0,
whereas to leading order in ¢, o, is equal to zero. Indeed, at this order, the outer solution (33) for Y° has
no meaning for £ < 0, since there is no gaseous phase in this region at this order of approximation. To
derive the appropriate matching conditions on the inner mass fraction variables 39 and, for later use, ¥}, it is
appropriate to consider a new variable Z, defined as the mass fraction of the intermediate gas-phase species
with respect to the total mass of all species, gaseous and condensed, at a given point.!? Thus, Z, which is
physically unambiguous in the limit & — 0 (where it must vanish), is defined in terms of the variables already
introduced as Z = fap,Y/[fap, + r(l — @)] = fgaY/{fgpa + (1 — a)[Y + w(l -~ Y)|T}. From the outer
solution written in terms of the inner variable, it is thus seen that the required behavior of Z as i — —oco is
Z ~ e~ (FgalbLe/rwTPl)(—7¢n + hY). Hence; substituting the inner expansions into the above definition
of Z, and imposing this asymptotic behavior, leads to the matching conditions

bLe ( 7o

0.0 0, 1 1,0
agy; =0, agyy ~ —ogy1 +o,— | ——5
TAj

7 Inod + h‘f) as af — 0, (A.13)

where we have used Eq. (A.11) to write these conditions in terms of a as o tends to zero, and have used
the fact that o} — o} in this limit.
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Solutions to Eq. (A.12) can be expressed formally in terms of hypergeometric functions, but since we
desire explicit representations for use in the next-order problem, we focus instead on such solutions that may
be obtained for particular values of Ag. In particular, the solutions for Ay = 1 and Ag = 4 that satisfy the

above matching conditions are given by
1-af 1-al Inof
. 1+ 0°ln< 0°)+ 01_00, Xo=1,
0—_ ble . Qg @y ao( ao) (A 14)
V1= 72043 ') 3-08  2Inad '

) )‘0=4:
1-ag " (1~af)’

which completes our analysis of the leading-order reaction-zone problem. We observe that although o8y}

approaches zero in the limit that o becomes small, as required by the first of Eqgs. (A.13), the variable 3?
‘ itself is unbounded in that limit, exhibiting the behavior

Y2 ~ —(bLe/rIAD) - (A.15)

as of — 0.

The reaction-zone problem at the next order (with respect to €) is obtained by collecting terms of order
€ when the expansions (A.1}), (A.8) and (A.9) are substituted into Egs. (39) - (43). This results in a problem
for the next-order quantities af, y} and 6} and AJ, as well as the leading-order coefficient h9, which is still

to be determined. As before, the equations for o} and 6} decouple from the equation for y}. These are given
by

dod ‘
2 =7 (A8 — o§)0} + A3(1 - o) — ABag] ¢, (4.16)
dor . ,ded Qg - di?
=L 4oL 28 0791 . Chal +Cy(1 —al , A7
dn Cdn T Le(TO —1) Y dn 0% 1_( %) 10

subject to the matching conditions

a)—0, 6] -0 as n—+co; af —al, 0l ~Eln+EIR as n - —c0, (A.18)
where, from the last of Egs. (34) and (35) and the first of Egs. (A.8), the coefficients Cg, C; and E} are
given by

_ (- +Q _ QNTY —1) —TH(Q+b-b)

C =rlA), Cy= , A.19
1/ —b) [eMTO -1+ TH(1+7. —b) oF
El=2 s\b b s El=--__Y9 A20
S (TP - 1) 2= e -D) (4.20)
and where .
Ty~ TO 4T} ..., TO=BFL1FY T = =2~ #(T} - D)ol (A21)

We observe that T}, and hence C; and Ef, all depend on al, reflecting, to this order of approximation,
a linearly decreasing dependence of the burned temperature on the initial porosity for small values of the
latter. '
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It is again convenient to use the volume- fraction variable o§ as the independent variable, which trans-
forms Egs. (A.16) and (A.17) into a somewhat simpler form. In particular, using the transformatlon rule
d/dn = rAJa8(1 — af)d/daf according to Eq. (39), we obtain

dao 1 Aé
ol R - ol =6+ A (A.22)
0y 401 1 0 1 0 Qsla"'lAg 042 oy 90
L = —af) —ri! 1-ad) — —2—% 1-0)=2L .
7‘leao(l )dag + Coag = C1(1 — ag) T Ao%( ag) bLe(Tf -1 (ag)( aO)dag » (A.23)

subject to the matching conditions (A.18). Upon substitution of the expressions for y) given by Eq. (A.14),
this subproblem may be solved for o and 6} as follows. First, werewrite Eq. (A.22) as (d/dad)[ad/(1—ad)] =
(6} + AY/A9)/(1 = o3). Then, dividing Eq. (A.23) by 1 — af and differentiating with respect to a3, a single
second-order equation for 6] is obtained as

d26! 1 d6} o} Q; 1 d 0r2 dy1 A3/AS i

—5+ 5705+ o T ol 70 ( 0 50| — o

do®  ogdag og(l — ao) ch(T -1 d of ag(l—ag) ag

where we have used the fact that Cp = rlAJ.

Homogeneous solutions of Eq. (A.24) are 1—a and (1—ad) In [o§(1 ~ ag)_l] +1, and thus construction
of the general solution for ] may be achieved by reduction of order, and substituted into the first-order Eq.
(A.22) to determine o}. In this way, we obtain, for example, the general solution corresponding to Ag = 4 as

o Ay 0
0! = ¢ [1+(1—a8)1n( 00)]+cz(1—a8) 0+ —(1—-ad)lnad
1-og Ag 2
Q; 1 9 lnozg 51“&0 0 13 0 08
z - - =@1- A25
TRRTI D\ 1o T2 T 107 20— 2Inao + 5-(1 “°)l“<1—ag) (4.25)

+2(1 - af) [F + Lig(ag)} Inaf + 2Lis(1 — of) — 2(1 — of) [2Lis(af) + Lis(1 — of)] }

0
ad =c3(1 —ad)+ (1 —ad) [clag In (1 f ) + 20 + £ (ozo Inof - ag)]

Q;(l - of) 1 In o 1440 2 13 (A.26)
- 1—23-(,20 In(1 — af) + 2aLiz(af) Inad — 2Lix(1 — af) — 408Liz(ad) — 2afLis(1 — ao)}

where ¢, ¢z and c3 are constants of integration, and where we have introduced the polylogarithm functions
Lin(a), n > 2.2! These are defined recursively for all complex a by

Line) = f LUSIPE Z R =TT ST VE
Jj=1

where the latter form of the representation is convergent for |a| < 1. In the real domain of interest here
(0 £ & € 1}, Liz(a) and Liz(«) are monotonic functions that range from Liz(0) = Li3(0) = 0 to Liz(1) = #%/6
and Lig(1) = 1.20205690, respectively. We also note the identity Liz(@) + Liz(1 —a) = 7?/6 —Ina In(1 - a),
which was used in obtaining Eqs. (A.25) and (A.26). Application of the matching conditions (A.8) then
determines Al, ci, ¢ and c3 as

1 2
7 1 it
Aé:r g <__”)+;E} L ag | (A.28)




o ), B L
Qslr w2 : Qg 0
9% (1
c3 =0+ rlAg(Tl? 3 —35) (A.31)

where E} was defined by Eq. (A.20), and we note that c; is given in terms of AS.

An expression for £ may be determined by continuing with the analysis,'® but its value can be deduced
directly from the second of the matching conditions (A.13) as follows. Substituting the second line of Eq.
(A.15) into Eq. (A.13) leads to the condition that

Y~ al bgﬁ, : 10 [(1 — 7¢)Inad + rAJhd + §] , =4, (A.31)
ol

as o — 0. Since 1/ad ~ exp(—rAJn) as the inner variable n — —co, Eq. (A.31) implies that y} grows expo-
nentially as 7 — —oo unless the right-hand side of Eq. (A.13) is identically zero. Since only algebraic growth
of the inner solution is compatible with an asymptotic matching with the outer solution, as indicated in Eq.
(43), we conclude from Eq. (A.13) that #¢ = 14+ 0O(e) and that A = (=3/2)/(rA$). This required restriction
of # to values that are relatively close to 1/¢ > 1 corresponds to the assumption of high upstream gas-phase
densities, or pressures, and may be interpreted as a compatibility condition, required for the existence of a
merged-flame solution, that accompanies our ordering of the activation energies and consumption rates when
gas-phase heat release is small. According to the expression (26) for the gas-phase velocity, it essentially
limits the two-phase-flow effect (the rate of gas-phase convective transport relative to the condensed phase)
to that associated with thermal expansion of the gas. Larger rates of gas-phase transport with respect to
that in the condensed phase would cause the gas-phase reaction to occur increasingly downstream of the
condensed reaction, leading to a breakdown in the merged flame structure analyzed here, but the numerical
results presented in the main body of the paper suggest, since k; is a decreasing function of A, that larger
gas-phase consumption rates allow for larger gas-phase convective transport arising from smaller upstream
gas densities. A similar calculation can be performed for Ag = 1, which leads to A = 0 and an expression
for A} identical to Eq. (A.28) except for the factor 7/2 — 72?/3, which is replaced by the factor #2/6 — 1.10
Profiles of the two-term perturbation solution (one term in the case of y; and h;) are exhibited in Figure 2
for Ag = 1, in which case the second-order terms 6! and o} are given by

aO Al il
0l = [l +(1-ad)ln (1 )] +c2(1 — o) - (1 al)Ilnaf
g
Q} In o ao T .
+ 5730 (j(w;o — 1){ 08 —(1-ad)n (1 —oag) —1- [? + 2L12(a8)] (1-ad)nal

+ 2agInog + 2(1 — af) [2Lis(af) + Lis(1 — of)] — 2 [Liz(1 — of) + (1 — af) In(1 - og)]

‘ (A.32)
0
b =c3(1 - ad)+ (1 -af) [clag In (1 f ) + cpa + (ao Inad — ao)]
Qi1—-0of) f[8a8-2 7] 4 o, 1.0 0 (A.33)
-+ FIAS(TY = 1){ [2(1 — o0 - —6—} oglnag + -2—(3a0 -1 In(1 —ag)

— adInaf Liz(af) + Liz(1—0af) + 2adLis(ad) + adLia(1 —ag)},
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Figure 1.

Figure 2.

Figures 3-11.

FIGURE CAPTIONS

Outer structure of a leftward-propagating deflagration wave. The solid/gas region lies to
the left of £ = 0, and the liquid/gas region to the right. The shaded area denotes the
region & < € < & + H, which, despite the explicit representation afforded by the outer
delta-function formulation, actually lies within the inner reaction zone. The region to the
right of the reaction zone consists of purely gaseous products. Parameter values used were
b=r=Le=l=¢=1b=r=1=80a,=.25Q =5 Q,=H=25,v=-2T,=2

Comparison of the asymptotic numerical and analytical solutions for the inner structure and
eigenvalues of a leftward-propagating deflagration wave for parameter values consistent with
the latter, as described in the Appendix.

Plots of (a) the eigenvalues k3 and Ag as a function of o, for several different values of one
additional parameter, where the arrows denote the appropriate vertical axis for each family
of curves. Base values for the parameters were takentobe r = .75, = b={=b= X =
Le=¢=v=n=1,7=.6 w=w/wp =1.157, Q4 = 1.159, Q, = 3.413, vy, = .7429 and
N; = 64.59/T,. Also shown are (b) corresponding plots of T = (A, A;/psCsBMAo)}/% e Nt/2
and H = (:\s / 5553(7 )hy /B as a function of «;, where H and U are the nonscaled dimensional
separation constant and propagation speed, respectively. Dimensional values used to evaluate
Ny and 8 = (1-T; )N, include T;, = 360°K and E; = 46.0 kcal/mole, and other dimensional
values used in the evaluation of U and H include X, = 5 x 10~* cal/°K/cm/sec, ps =
1.9g/cm®, & = 0.35¢al/g°K, and A; = 1 x 101! /sec, where the above solid properties were

kept fixed as the gas-to-solid ratios ratios A, # and b were varied.
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