

NAA-SR-5045
CHEMISTRY-GENERAL
13 PAGES

THE FREE ENERGY, HEAT, AND ENTROPY OF FORMATION OF THORIUM OXYFLUORIDE

By
A. J. DARNELL

ATOMICS INTERNATIONAL

A DIVISION OF NORTH AMERICAN AVIATION, INC.
P.O. BOX 309 CANOGA PARK, CALIFORNIA

CONTRACT: AT(11-1)-GEN-8
ISSUED:

JUN 1 1960

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DISTRIBUTION

This report has been distributed according to the category "Chemistry - General" as given in "Standard Distribution Lists for Unclassified Scientific and Technical Reports" TID-4500 (15th Ed.), August 1, 1959. A total of 600 copies was printed.

CONTENTS

	Page
Abstract	iv
I. Introduction	1
II. Experimental	2
A. Materials	2
B. Apparatus and Procedure	2
III. Results and Discussion	3
References	9

TABLES

I. Equilibrium Pressure of ThF_4 for the Reaction: $2 \text{ThOF}_2(\text{s}) \rightleftharpoons \text{ThO}_2(\text{s}) + \text{ThF}_4(\text{g})$.	5
II. Thermodynamic Data	7

FIGURES

1. Pressure of ThF_4 above ThO_2 - ThF_4 System Compared to Pure ThF_4 i.e., P/P° at 980°C	3
2. Pressure of ThF_4 from the Decomposition of $\text{ThOF}_2(\text{s})$ and Vapor Pressure of $\text{ThF}_4(\text{s})$ <u>vs</u> $1/T$	7

ABSTRACT

Thorium oxyfluoride, ThOF_2 , decomposes at elevated temperatures to ThO_2 (s) and ThF_4 (g). The equilibrium pressure of ThF_4 from the decomposition of ThOF_2 was measured in a Knudsen effusion cell from 1109 to 1286°K. The pressure of ThF_4 from the decomposition reaction is

$$\log P_{(atm)} = - \frac{17,630 \pm 370}{T(^{\circ}K)} + 9.363 \pm 0.302$$

The free energy, enthalpy, and entropy of formation of ThOF_2 (s) at 298°K are -371.2 kcal/mole, -389.6 kcal/mole, and -62.0 cal/deg-mole, respectively.

ACKNOWLEDGMENT

The author wishes to express appreciation to Dr. S. J. Yosim for many helpful discussions and to Mr. W. A. McCollum for assistance in carrying out this work.

I. INTRODUCTION

The preparation of thorium oxyfluoride from partial hydrolysis of thorium tetrafluoride in moist air at elevated temperatures has been reported by Chauvenet¹ and D'Eye.² However, no thermochemical data are reported in the literature for thorium oxyfluoride. Chauvenet¹ obtained the heats of formation of thorium oxychloride, oxybromide, and oxyiodide from a study of the reactions of the corresponding tetrahalides with water. However, he was unable to obtain the heat of formation of thorium oxyfluoride by this method because of the inertness of thorium tetrafluoride to water.

A method similar to that employed for uranous oxybromide³ and uranous oxychloride⁴ has been used in this work to determine the thermodynamic stability of thorium oxyfluoride with respect to its decomposition products thorium dioxide and thorium tetrafluoride. Data derived from the results of this decomposition reaction and thermochemical data for thorium dioxide⁵ and thorium tetrafluoride^{6,7} were used to calculate the free energy, enthalpy, and entropy of formation of thorium oxyfluoride.

II. EXPERIMENTAL

A. MATERIALS

Thorium oxyfluoride was prepared by a method similar to that used by D'Eye.² The starting materials ThO_2 and ThF_4 were of the same purity as described in a previous paper.⁷ Thoria and thorium tetrafluoride of small particle size were thoroughly mixed, then compressed into pellets with a hydraulic press at a pressure of two tons per square inch. These pellets were then heated at 900°C in an atmosphere of purified argon for 16 hours. This procedure yielded ThOF_2 which gave X-ray diffraction patterns which agreed with the diffraction data for ThOF_2 reported by D'Eye.²

B. APPARATUS AND PROCEDURE

The pressure of ThF_4 from the decomposition of ThOF_2 was measured by the Knudsen effusion method. The rate of effusion of gaseous ThF_4 from the reaction cell was determined from the weight loss of the cell during a known time interval. The pressure of ThF_4 was calculated from the Knudsen effusion equation:

$$P_{(\text{atm})} = \frac{0.02255 \text{ g}}{\text{°K at}} \sqrt{\frac{T}{M}} \quad \dots(1)$$

where,

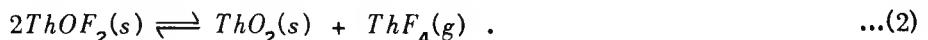
g = weight loss of cell (gm)

K = Clausing factor

a = area of orifice (cm^2)

t = time interval (sec)

T = temperature ($^\circ\text{K}$)


M = molecular weight of vapor (previous work⁶ indicates that ThF_4 (g) is monomeric).

The apparatus which was previously used⁶ to measure the vapor pressure of solid ThF_4 was also used in this work.

III. RESULTS AND DISCUSSION

Thorium oxyfluoride was found to decompose at elevated temperatures in the following manner:

Evidence for this is based on chemical and X-ray analyses of condensed samples of the effusing vapor and of the residue in the cell. Further, pure ThOF_2 when decomposed completely, yielded equimolar amounts of ThO_2 and ThF_4 .

Thorium tetrafluoride pressure measurements were made over a wide range of compositions of ThF_4 and ThO_2 . Figure 1 shows the pressure of ThF_4 at 980°C from a sample which initially contained 20 mole % ThO_2 ^{*}. The results of the effusion experiments at 20 and 34 mole % ThO_2 yield ThF_4 pressures which are in good agreement with⁶ those of pure ThF_4 at this temperature.

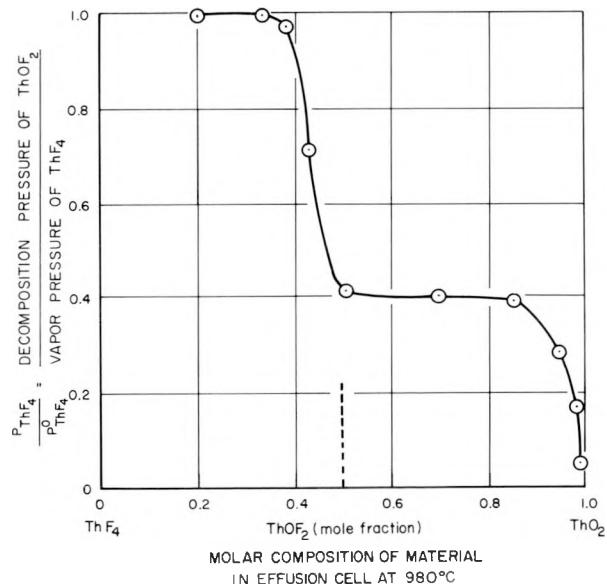


Figure 1. Pressure of ThF_4 above ThO_2 - ThF_4 System Compared to Pure ThF_4 i.e., P/P° at 980°C

The pressure-composition curve exhibits a plateau which starts at about 50 mole % ThO_2 and extends to about 85 mole % ThO_2 . The break in the pressure

* Compositions are defined here in terms of the original materials, ThO_2 and ThF_4 .

curve occurs at 50 mole % ThO_2 and indicates that ThO_2 and ThF_4 react to give ThOF_2 . In the composition range 50 to 85 mole % ThO_2 , in which there are two solid phases, the partial pressure of ThF_4 was constant. Similar experiments at other temperatures also indicated that the pressure of ThF_4 was constant in this composition range. The pressure of ThF_4 above the system changed rapidly with a change in composition in the composition ranges 35 to 50 mole % ThO_2 and 85 to 99 mole % ThO_2 . The pressures were probably not measured under equilibrium conditions since diffusion may have been the rate determining factor.

Equilibrium pressures of ThF_4 from the thermal decomposition of ThOF_2 were measured over the temperature range 1109 to 1286°K. The ThF_4 pressures were calculated from the effusion rate by use of Equation 1. Only those data in which less than 50% of the initial amount of ThOF_2 had been decomposed were used in order to remain well within the composition range of the pressure plateau of Figure 1. Orifices of four different sizes were used in carrying out the effusion experiments. The pressure calculated for the reaction cell remains constant, even though the orifice area is changed by a factor of 9, thus indicating that equilibrium exists between the vapor and the condensed phases. Calculations with the pressure-temperature data in Table I to determine slope by the method of least squares gives:

$$\log P_{\text{ThF}_4(\text{atm})} = -\frac{17,630 \pm 370}{T(\text{°K})} + 9.363 \pm 0.302 \quad (1109\text{--}1286\text{°K}) \quad . \quad \dots(3)$$

If it is assumed that the activities of the solid phases are unity and that ThF_4 behaves as an ideal gas, then the change in free energy for Reaction 2 is

$$\Delta F^\circ = -4.576T \log P_{\text{ThF}_4} \quad . \quad \dots(4)$$

TABLE I

EQUILIBRIUM PRESSURE OF ThF_4 FOR THE REACTION:

Tempera-ture (°K)	Time Interval (sec)	Effused ThF_4 (gms)	Orifice *	P_{ThF_4} (atm)
1109	2.25×10^5	0.0268	c	3.12×10^{-7}
1109	2.29×10^5	0.0271	c	3.10×10^{-7}
1127	7.06×10^4	0.0140	c	5.25×10^{-7}
1128	5.85×10^4	0.0119	c	5.38×10^{-7}
1151	2.17×10^5	1.0294	b	1.20×10^{-6}
1156	5.97×10^4	0.0281	c	1.26×10^{-6}
1188	6.55×10^4	0.0748	c	3.09×10^{-6}
1193	5.76×10^4	0.0150	a	3.11×10^{-6}
1194	6.01×10^4	0.0163	a	3.23×10^{-6}
1212	3.36×10^5	0.1943	a	6.95×10^{-6}
1224	6.00×10^4	0.0509	a	1.03×10^{-5}
1232	1.74×10^4	0.0179	a	1.25×10^{-5}
1244	5.65×10^4	0.0286	d	1.77×10^{-5}
1269	7.38×10^4	0.1841	a	3.07×10^{-5}
1283	1.56×10^4	0.0184	d	4.17×10^{-5}
1286	6.60×10^4	0.2347	b	3.33×10^{-5}
1286	5.61×10^4	0.2365	a	5.23×10^{-5}

* The area and Clausing factor respectively for each of the orifices are as follows:

a) 0.00490 cm^2 , 0.757
b) 0.00633 cm^2 , 0.780

c) 0.0177 cm^2 , 0.923
d) 0.00196 cm^2 , 0.664

The vapor pressure equation for the sublimation⁶ of ThF_4 i. e.,

$$\text{ThF}_4(s) = \text{ThF}_4(g) , \quad \dots(5)$$

is

$$\log P_{atm}^\circ(\text{ThF}_4) = -\frac{16,860 \pm 190}{T(\text{°K})} + 9.105 \pm 0.160 \quad (1055-1297\text{°K}) . \quad \dots(6)$$

The free energy of sublimation is

$$\Delta F^\circ = -4.576T \log P_{\text{ThF}_4}^\circ : \quad \dots(7)$$

Subtraction of Equation 5 from 2 gives

$$2\text{ThOF}_2(s) = \text{ThO}_2(s) + \text{ThF}_4(s) . \quad \dots(8)$$

The free energy for Reaction 8 is then

$$\Delta F^\circ = -4.576T \log \frac{P_{\text{ThF}_4}^\circ}{P_{\text{ThF}_4}} \quad \dots(9)$$

Substitution of Equations 3 and 6 into 9 gives

$$\Delta F^\circ = 3,524 - 1.181 T . \quad \dots(10)$$

No heat capacity data are available for ThOF_2 . The ΔC_p for Reaction 8 was taken to be zero, since only solid phases are involved. This assumption would also appear reasonable by comparison with the analogous case of UOCl_2 where heat capacity data of $\text{UO}_2(s)$, $\text{UCl}_4(s)$ and $\text{UOCl}_2(s)$ (References 8, 9, and 10 respectively) show that $\Delta C_p \sim 0$.

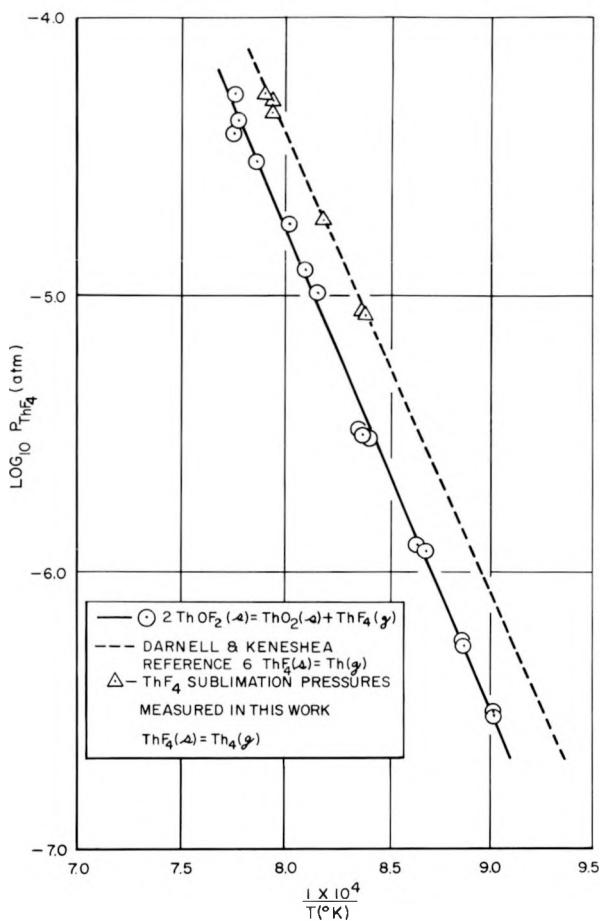


Figure 2. Pressure of ThF_4 from the Decomposition of $\text{ThOF}_2(s)$ and Vapor Pressure of ThF_4 vs $1/T$

TABLE II
THERMODYNAMIC DATA

Source	$\Delta H_{298}^\circ(f)$ (kcal/mole)	$\Delta F_{298}^\circ(f)$ (kcal/mole)	$\Delta S_{298}^\circ(f)$ (cal/deg-mole)
Reference 5, $\text{ThO}_2(s)$	-293.2	-279.2	-47.0
Reference 7, $\text{ThF}_4(s)$	-482.4	-459.9	-75.8
<u>Reaction</u>			
$2 \text{ThOF}_2(s) = \text{ThO}_2(s) + \text{ThF}_4(s)$	3.5	3.2	1.2
$\text{ThOF}_2(s)$	-389.6	-371.2	-62.0

The thermochemical data obtained for Reaction 8 at 298°K are given in Table II. These data are combined with thermochemical data for $\text{ThO}_2(\text{s})$ and $\text{ThF}_4(\text{s})$ (References 5 and 7 respectively) to obtain the enthalpy, free energy, and entropy of formation of $\text{ThOF}_2(\text{s})$, which are also given in Table II.

Figure 2 shows the pressure of ThF_4 from the decomposition of ThOF_2 and the vapor pressure⁶ of ThF_4 vs $1/T$. The ratio of these pressures P/P° , at a given temperature, is approximately 0.4 thus indicating that ThOF_2 is not very stable with respect to its solid decomposition products.

REFERENCES

1. E. Chauvenet, Contribution A., L-Etude des Derives Halogens et Oxy-Halogens du Thorium, Ann. Chem. Phys. 23, 425 (1911)
2. R. W. M. D'Eye, "The Thorium Dioxide - Thorium Tetrafluoride System," J. Chem. Soc. Part I, 1958, p. 196
3. N. W. Gregory, "The UOBr_2 Disproportionation Equilibrium," U. S. Atomic Energy Comm. Report BC-18 (1946)
4. J. J. Katz and E. Rabinowitch, The Chemistry of Uranium, (McGraw-Hill Book Co., Inc. New York 1951)
5. J. P. Coughlin, "Contributions to the Data on Theoretical Metallurgy, XII Heats and Free Energies of Formation of Inorganic Oxides," U. S. Bureau of Mines Bull 542 (1954)
6. A. J. Darnell and F. J. Keneshea, Jr., "Vapor Pressure of Thorium Tetrafluoride," J. Phys. Chem., 62 (1958), p. 1143
7. A. J. Darnell, "The Free Energy, Heat, and Entropy of Formation of Thorium Tetrafluoride," NAA-SR-4924, Feb. 15, 1960
8. G. E. Moore and K. K. Kelley, "High-Temperature Heat Contents of Uranium, Uranium Dioxide, and Uranium Trioxides," J. Am. Chem. Soc. 69 (1947), p. 2105
9. D. C. Ginnings and R. J. Corruccini, "Heat Capacities at High Temperatures of Uranium, Uranium Trichloride, and Uranium Tetrachloride," J. Research Natl. Bur. Standards 39 (1947), p. 309-16
10. E. Greenberg and E. F. Westrum, Jr., "Heat Capacity and Thermodynamic Functions of Uranium (IV) Oxychloride and Uranium (IV) Oxybromide from 10 to 350°K," J. Am. Chem. Soc. 78 (1956), p. 5144