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FOREWORD

The following manuscript was originally formulated over a number
of years as three separate memoranda. Because of the interest in the
development of the theory of thick target bremsstrahlung from high-energy
electrons (> ~c2) for radiographic purposes, these memoranda are repro-
duced as three separate chapters in essentially their original form. The
final result is developed in Chapter III, Eq. (96), with the subsequent
approximations being more useful depending upon the geometry of the
problem. Although the work covered in Chapter II is preempted by the
development in Chapter III, it is included in this manuscript because
of its value in the later generation of the more accurate approach. The
nomenclature used is defined in Appendix H and, where applicable, the

source is noted.



ABSTRACT

Chapter I contains the calculations for thick target bremsstrahlung
in the forward direction. The theory presented is complete with regard
to such details as multiple electron scattering, electron-energy degrada-
tion in the target, bremsstrahlung angular distribution, wvariation of
bremsstrahlung distribution with a decreasing electron energy, and target
self-absorption. Past theories have accounted for some, but not all, of
these effects. The approximations presented here are for heavy elements,
particularly tungsten; they should also apply to the lighter elements but
perhaps not with the same degree of accuracy.

Chapter II covers for the off-axis theory the same details presented
in Chapter I for the on-axis theory. It accounts for the angular displace-
ment of the detector frcm the axis. The off-axis theory is useful in
determining the optimum target-object distance for certain densitometric
or radiographic observations. The distinguishing characteristics of this
theory are that it is continuous for all thicknesses of target, zero to
infinity; it is continuous for detector angle displacements, zero to values
greater than the half-intensity angle; and it introduces a new energy-
dependent parameter t', which is the lesser of either thickness or the
distance traveled by an electron in the target and emitting a photon of
energy k at the end of its range.

Chapter III presents improvements in the development of the off-axis
theory covered in Chapter Il including the effects of plural scattering,
the transitional region between multiple and single scattering. The need
for such improvements was indicated by the discrepancy between previous
off-axis theories and the published experimental results. A surprising
result is that terms added to account for plural scattering contribute

only negligibly to the angular radiation distribution, which is in



contrast to predictions. The long tail to the angular distribution is
primarily a result of the convolution of the multiple-scattering angular
distribution and the bremsstrahlung angular distribution. A weighting
function is developed and compared with the experimental results; agreement

with theory is within the experimental error.



CHAPTER I

A THICK TARGET ON-AXIS BREMSSTRAHLUNG THEORY

A. Problem Formation and Geometric Considerations

The first assumption made is that all the electrons in the incident
Beam are normal to the target. In practice, this usually is not the case,
hut the effect is small and tends to reduce the on-axis intensity accord-
ing to the angular distribution of the incident electrons. The effect on
the bremsstrahlung energy distribution is correspondingly small. In Fig. 1,
the electron beam is incident upon a target of thickness t. At the depth
x, radiation is produced in the differential thickness dx, and a small
portion of this radiation will reach an on-axis detector.

Consider the electrons which strike the element dx at a depth x and
with an angle Oe. In this theory, all energies are considered to be
relativistic and all angles of importance are assumed to be small; for
example sin 9¢ = 9e' The fractional number of electrons having the
direction 0Oe at the depth x will be expressed as 9! x, E~O"dO™

The differential bremsstrahlung intensity Tier steradian that will reach

the detector will be
di(k,x.0 0 ) ™Mk fle x.E_ )0 do_ S(k,x,0_.E ) dxdk, )
ey P e”77076 6 Y o

where S(k.,x,0™,Eo0) is the differential bremsstrahlung cross section. Because
this is a cylindrically symmetrical theory, the usual third dimension,
d”™, need not be explicitly considered.

The differential intensityper steradian reaching the detector,

integrated over all possible angles Oe, is



f(0e!X’Eo) Ge dOe

f(0e,x,Eo) €0d0e S(0i,k,x,E0o) dxdll

On-axis
detector

Thick target geometry.



di(k,x) 2

Integration over the 6e parameter is taken to infinity as a mathematical
convenience, but no practical error will result because the integrand
rapidly approaches zero as 6" increases past 10° for our range of investi-
gation. Not included in the above formulation is the self-absorption of
the produced gamma rays as they penetrate the remainder of the target, s.
To account for this, the simple narrow-beam absorption coefficient u(k)

is used. The intensity becomes

(0

dli(k,x) = -~/ f(ee,x,Eo) S(k,x,6",Eo0) expj-p(k)s| e~de"dxdk. 3)

The intensity, as seen by a perfect on-axis detector ft:om a target of

thickness t, is given as a function of the photon energy, k.

—~ ~
di(k,t) o f(eeoyEo) s(k;x,e oE )

X=0 ¢ =0
(S
expl-pL (k)s|eedeedxdk. 4)

This expression can be simplified from geometric considerations if the
detector is far from the target and is small in size. Then, as d >> t,
the electrons that are deflected by an angle 6e at the depth x must
produce photons at the angle 6* = 6* for the detector to respond. Thus,
the simplification is made that and the intensity per

steradian is expressed by



AT T
di(k,t) - J J f(e,x,Eo) S(k,x,e,Eo) exp]|-i(k)s|ededxdk. &)

x=0 €=0

Equation (5) is the formulation of our basic problem and will be solved

in several steps in the next few sections.

B. Multiple Scattering

The multiple scattering as a function of the depth x is given by
the function f(6.x,Eo) in Eq. (5)- The most accurate account of this
fractional electron distribution is given by the Moliere theory.'' Only
the first term, which is Gaussian and normalized, is used and is quite

accurate for our purpose. The error is less than 2$ in relative magni-

tude as a function of angle.
f(e,x,Eo0) = gig exp|-e2/e"Bj, 6

2
where Sj and B are constants for the 0 integration.

1. 6" Ewvaluation.
i
The theory departs from the usual treatment to include the effect
of the electron energy decreasing with target penetration. The relati-
. 2 . . . .
vistic Mott formula for scattering, but neglecting screening, is used

as the basic equation,

K dodx

= -Ji -
fm(e,x,eo)d6dx Jpp 7

X



where

K = Bnnz(Z+l)zae4.

1

The parameters involved are defined by Segre. The assumption is now

made that the kinetic energy of the electrons at the depth x is
= £og(x), where g(x) is a monotonically decreasing function of the
thickness.

©2 1is defined in such a way that many collisions occur in

the foil for 6 < 6%, but not many occur for 0 > 0”. In particular,

only one collision occurs for all angles greater than 0. The probability

of a collision occurring at the angle 0 in the thickness x will be

X
:F fra(e>x>&0)d0odx>

or

Pc = K f(x)d0/03fi2u2, where f(x) = / g"a(x)dx.

This probability, P», is set equal to unity for all angles 0 > 07, that is,

S

K f.Cx)do
9
e3e3yl
When solved for Oi s
0i = Ki f(x)/,2p2£% 10)



2. B Ewvaluation.
The B parameter is rather complicated. However, B can be accurately

approximated by the following function where the error is less than 1$

for the entire range- of interest.

B 4n{l.1 ?a in L.b X}

£ = 7800 - s(Z+D)z
A(1+3.35 QY

3
Again, the nomenclature used in this formula is that used by Segre. The

approximation in Eq. (11) is developed by a simple perturbation theory and

is presented in Appendix A.

C. Bremsstrahlung Angular and Energy Distributions.
Schiff has developed the following formula for intrinsic bremsstrah-

lung intensity at small angles from the direction of the incident electron

beam.
27212 E2  16e2EE (Ex+E)2
s(k,e,E ) o h
137" kK (i+e2E2)4  (1+e3E3)3E2
X X X
r E2+E2 UeaE E
X X in M(k,0,Ex) 12)
(i+e2E2)3E2  (i+e2E2)4
L x X X x'
where
" \a,
M"l (K, 6 ,Ex)

'2E E/ \ni(E2e3+i) /
X X



The only photons that will survive to contribute significantly to the
total intensity, because of the double process of multiple scattering
and bremsstrahlung, are those whose angle 6 is less than the order of

Using this as a basis, Schiffs equation can be further simpli-

fied and the wvariables separated:

s(k,e,EX)dk 6de = s 1(kaEX)dk sa(e,Ex)ede 13)

where is the energy distribution evaluated for 6=0,
27212 ((E2+E2) (E +E)2 ) E2dk
SI(L,E )dk = - £n M(k,0,EY) - , i3)
1371 (  E2 X E2 k

X X

and § is the angular distribution

s2(e,Ex) = (15)
D. Bremsstrahlung Weighting Function - the 6 Integral
1. Exact Expression.
The foregoing section has separated the variables k and 6, and now
it is desirable to evaluate the 6 integral. Gathering all the functions
related to 6, tha; is, f(6,x,EO) and 82 (6,EX), the 6 integral becomes
W(x,Eo) f(e,x,E0) Sa(e,Ex)6de, (16)

where W(x,Eq) can be interpreted as the weighting function for the production

of bremsstrahlung at the depth x of the target per unit solid angle of



the detector. Substituting Eqs. (6) and (15) into Eq. (16), the weight-

ing function becomes
0

W(x,Eo) =J" c?(ctte2) 2 2p exp|-p62|6de a7

where

a = E"2, p = I/Be2.

Fortunately, this integral is directly reducible as a Laplace transfor-

mation and yields for the weighting function

(18)

where E~(-ap) is the exponential integral.

2. Approximate Expression.

The weighting function has already become a complicated function of
thickness x and with the target thickness integration to perform, it
would be convenient to express Eq. (18) in terms of directly integrable

functions. By using the usual approximation for g(x),

(19)

and its derived counterpart

£ £ P p2t.
RIS - Z L e 20)

where a is the intercept on the ordinate, and p is the slope of the



electron differential energy loss VB incident kinetic energy curve for
tungsten, the weighting function, W(x), has been graphed as a function
of thickness, x, (Fig. 2). It is fortuitous, but not surprising, that

W(x) is closely related to the form

WE) = d + ax)-1. 1)

Here a is a constant. This fom has the advantage of being a sectionally
rational function that is Laplace transformable, leading to the spectral

distribution in a closed form. This and other similar expressions have

mations. The main approximations are: (1) the energy of the electron is
not degraded in its travel through the target, and (2) the bremsstrahlung
angular distribution is of a type that can be represented by a series of
Gaussian terms. The accuracy of the expression in Eq. (21) is far better
than these approximations would lead one to expect as the errors are
largely self-canceling over the 6 integration.

In order to use the expression in Eq. (21), the constant a must
be evaluated. The best fit for the approximate expression to the exact
expression should be evaluated in the region of interest, that is, in

the region of the effective depth, T (Appendix B).

22

where Op is evaluated at T. Thus,

(23)

11



W(x)

12

Fig. 2.

Bremsstrahlung weighting

function.



Using the wvalue of the effective depth, 0.06 g/cm2, the value of a for

tungsten is 165.3 cm2/g.

E. Bremsstrahlung Energy Distribution-Approximation

1. At Depth x.

Fran the preceding section, and in reference to Appendix C, it is
evident that the useful bremsstrahlung from a thick target is generated
in a very thin layer near the front and the effective depth, in terms of
energy degradation, is very small. Some authors have assumed no energy
distribution wvariation with depth. However, although half the intensity
is generated at a depth less than the effective depth, t, the other half
is generated between T and at least as deep as the optimum depth,
Therefore, a penetration correction is made to the distribution even

though it may at first appear to be slight.

Equation (13) allows removal of the angular dependence from the
spectral distribution. The energy distribution function S”CkjE”), which
is evaluated for 0 = O, is left. Again, to ease the complicated
x-integration yet to be performed, the function Sa (k,EX) , which is the

bracketed portion of S (k.,Ex) in Eq. (U), is represented by

S

r>

(k>EX) = SlS k.E ) exp{A)x}, (24)

o
where A(k) is a function to be determined. Because of the extremely sharp

weighting function, W(x), in the region of very small x, Eq. (24) may

be solved for A(k) as x 1 0

asB(k;Ex) . dE

Ak) = Ak = dE SL(K,E ) dx
x->0 X B o

X (25)

making A(k) independent of x, but a function of energy k.

13



2. Thick Target.

Using the above expression and inserting it and W(x) from Eq. (21)

into Eq. (5), the measured intensity distribution is

t'
dik,t) = Tk /m E'S (KE ) oxplA-(0x - y(K)s}dxdk, (26)

P (1 + ex x > o

x=0

where

2-72x2
(o)
1371

The upper limit, t', replaces t to account for zero
spectral distribution for photon energies k > at

t' is derived as follows:
inasmuch as g(x) = (o + P£0) ?xpl|-6xj-
k <~ F(o + 6£0) exp-j-px

then

or, which is equivalent.

o+pL
o

n CT+pk

hus, the upper limit will be 6 1ln| (a + 3£0)/(a + pk)

is smaller. To formalize,

contribution from the

depth x. The function

al

2?7

or t, whichever



lo-tpS |

£ -t for t <p'l J-
and
(o-"e . |atpe,

P 1 I 1 in

t "y TOrtEp o g (28)
For the purpose of evaluating the integral in Eq. (25), Eq. (26) can he
considerably simplified. The justification for this canes from the very
shallow effective depth indicating that, for the most part, the brems-
strahlung will be formed by electrons of nearly the same energy as the
impinging electrons. Thus,

gx) v + peo) (29)
where
5 =p + c/eo.
Therefore,
£o expj-£xj and E*
£ PJ-£XJ
X E o 30)

Making the substitutions indicated by Eq. (30), and that allowed by

x = t - s, the intensity becomes

di(k,t) = a p si(h,Eo)e ™ * in'+Ax exp{(A + Vi - 2~)x|dxdk,

x=0

15



where

aghilid  ~i ey

dE SB(k,.E®) ¥ ' S~Kk~J dE 3D

Fortunately, this can be reduced directly as a Laplace transformation

and yields for the spectral distribution

dI(k,t) = —~ Si(k,EQ) exp|-d(K)t| exp{(25-p A)i |

Ei - E1L (32)

This differential intensity is expressed in units of mQC

The above expression can be simplified and expressed by more familiar
functions. First, (2?_p_A)J << 1, so that the exponential of this argument
can be equated to unity. Second, the exponential integrals can be expanded
and combined into functions of natural logarithms to an accuracy greater
than 0.1% for the region from zero to several times optimum thickness, and

to better than 2.28% for any thickness. That is.

Eir(;+ "OK-25 Eir(s)K-2

in(l1+atl) - 2£n(l+mH, (2c-d-A)

(33)
See Appendix D for a derivation of this approximation.
Making these substitutions,
dl(k.,t) (kE He~ot jinU+at’) - 2in(I1+"Dt’)w, G4

a. p 1 [0} v J



where

D = 25- n(k) - A(K).

The essential characteristic of the distribution is given by the first

term

dli(k,t) = S~ENe" 1 4n(l+at"),

and is sufficient for rough approximations (approximately 10 to 20*a too
high, depending on k); however, the correction term, containing A(k),

can contribute considerable detail, especially in the region where k -*

F.  Summary

The important result contained in the expression in Eq. (3*0 gives
the spectral distribution as seen by a detector far from the bremsstrah-
lung generating target of a given thickness, t. The theory is complete
in that it is valid for any thickness of target from zero to ro. It is
difficult to attach an error specification to the equation. However,
all the approximations are good to a few percent. Many of the approxi-
mations have little effect on the final results, and it is felt, in
developing the theory, that the overall equation should be accurate to
better than 3 or 48$.

Also of great interest is the optimum target thickness which should
be used to generate the maximum intensity at the detector after the
x rays have traversed a thick piece of some high-Z material. Figure 3
gives the spectral distribution from a tungsten target of optimum thick-
ness, 2.08 g/cm2. Also, for comparison, the differentially thin target
spectrum is displayed.

Figure b shows a plot of the 3-5 MeV bremsstrahlung intensity as a
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function of tungsten target thickness. Because it is near the minimum
absorption region for most high-Z materials, 3*5 MeV was chosen. The
curve for the total intensity vs thickness would be slightly different
because of the energy dependence of the various parameters such as
absorption coefficient, spectral distribution, etc. Once the tungsten
target thickness increases past 7*38 g/cni2» the only detected influence
on the bremsstrahlung is an exponential decay due to absorption because
the electrons have been completely stopped at this depth. The parameter
t' accounts for this effect.

It is interesting that the effective depth is so shallow compared to
the optimum depth. This gives justification for not ignoring the pene-
tration effects, namely, scattering, energy degradation, bremsstrahlung

angular dependence, and self-absorption.



CHAPTER 11
THICK TARGET OFF-AXIS BREMSSTRAHLUNG THEORY

A. Geometric Considerations

As in the on-axis theory, the electrons in the incident beam are
assumed nomal to the target. Figure 5 indicates the off-axis geometry
where is the angular displacement in radians of the detector, Ce is
the angular displacement of the scattered electron at the depth x, and
6" is the angular displacement of the emitted gamma ray relative to the
emitting electron.

If one assumes that 6®, €=>and 6" are all small compared to a unit

radian, then

67 = 6d +6e ' 2V d C°S

where ¢ is the angle between the plane containing the axis and the scat-
tered electron and the plane containing the axis and the emitted gamma

ray.

B. Weighting Function
Equation (17) can be rewritten in terms of the newly defined angles.

All development prior to Eq. (17) is valid for the off-axis analysis.
00 T

w(x,Eo,ea) = Y l..]r‘j—S? 2p exp{-pe=} eedee™,.

©e=0 cp=0 "' 7

Substituting Eq. (36) into Eq. (37) and carrying out the indicated ¢

integration,

w(*,Eo,sa) =Y 26 66 .
3/2 (] (§

22
_ 1+ 2 Lo
€0 a’d Z 60 +

(36)

(37)

(38)

21



Off-axis detector

Fig. 5 Thick target geometry.



For convenience, let

6( e(
p' = Op, a % a(;i+6o)) 6, then = a(l+o0))d6,
(39)
and the weighting function becomes
u«<>)3
1 +5
WEE .oy = *
x, &) 1+ Shiiiil Zb3 P (140
l+cu
6=0
-p’ (1+0))6|d6.
exp|-p’ (1+0))0| ~0)
This equation is not analytically integrable except for o) = 0. However,
an accurate approximation can be obtained. By rearranging the terms of
Eq. (40),
WE.E ,0) = 12/ L+ P
° (1-H0) (+&)  Fy L 2(1-0) ¢ ., ca By
L 1+0) J
6=0
expl|-p' (1+0))6j-d6. 41)

A close inspection of the factor,

23



shows that it is a resonant type, where the resonance occurs for & = 1.
The larger the a), the sharper and higher is the resonance. The integra-
tion over this resonance can be performed accurately if the integrand
is accurately expressed in the region of resonance, and only approxi-

mately expressed elsewhere. Thus, we can rewrite our integral as

co

V&x,E J0) = ——— / —-- i— p'(l+oo) exp{-p'(1-KJo)6jd6
° (1kB) J (I+&)2
6=0
L p' (I+o)
(1-137); Cl + 6 + a+s
60 1+0J J
expl-p'(I+cu) ] expj-p'(i+o) (5-1)|d6 . (*2)

The term, expl|-p'(lI+o0)) (&-1)j, can be approximated several ways in the

region near & = 1.

Approximation a

expj-p'(I+u)) (6-1)j- = 1.

Approximation b *3)

exp{-p' (I+0) (6-1)] = 1 + p' (I+o00).

The second approximation is more accurate in the region 6=1 because
both the value and the derivative match. However, either approximation

will produce the same integrated result. Therefore, using either approximation,

Eq. (®2) can be integrated and yields



— _p
1 p* (l+o0] ¥+ FF'CI-kKU) €5 "l+a)"E. f—p'(1+0)) )
(I+0) 1 J i\ /

+ u*’(1™M)e-p’(14<H!. (bk)

This equation reduces to Eq. (18) for a) = 0. Here W(x,E0,0) can be
interpreted as the weighting function for the production of detected
bremsstrahlung at the depth x of the target per unit solid angle of
the detector, where the detector is oriented at an angle of 0" off-axis.
Figure 6 shows three graphs of the weighting function for values of
0Q = EM0" of 0, 1.0, and 4.0. In contrast to the on-axis bremsstrahlung
(a)o =0), where the bremsstrahlung is generated in the leading edge of
the target, the off-axis bremsstrahlung is generated at a deeper level.
The effect seen in Fig. 6 of the resonant term for ® = 1 and > = 4
shows the peak generation becoming deeper as the observation angle
increases. The physical significance of this resonance term can be
explained intuitively. For a given angular displacement of the detector,
a very thin target will produce a response given only by the angular
bremsstrahlung distribution. As the thickness is increased, the electron
scattering becomes greater, and a greater proportion of the more abundant
forward-generated bremsstrahlung (forward with respect to the scattered
electrons) will reach the detector. As the thickness is further increased,
a distribution equilibrium is established and the detected intensity falls

off monotonically. This effect can be more easily visualized by reorgan-

izing the terms of Eq. (44).
W(x,E0,0)) = Ip' d+o) + Tp'd+o)]™ ~MES-p'(I+wm0)/ i

v 20 pro)ep _ p'(i+o))

(H+0))2 f

Fp' (I+0)) ep (M<D)Ei(_p. (1KkD)J]|. (45)
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The first term is a monotonically decreasing function for x increasing,
while the second term has a resonant characteristic, then falls off

much faster than the first term.

C. The Weighting Function - An Approximation

Equation (©5) is a complicated function of the thickness x. How-
ever, as shown in Chap. I, a simple, accurate approximation (~ 3f«) can
be made that will lead to integrable results. At first inspection, it
seems coincidental that such an approximation can be made; however, a
similar result would have appeared at this stage if a resonable Gaussian
approximation to the bremsstrahlung angular distribution had been made
early in the theoretical developrnent.8 Waiting until later to make the
approximation revealed how accurate the approximation really was.

The term

can be rewritten in the following form

where

7 = Yo (1xp) |

in the nomenclature of Chap. I. The term enclosed by the brackets in
Eq. (4?) is a slowly varying function of x in the region where x

contributes significantly to the x integration. Thus,
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a X
Wi (%.E () ; (48)

1-KJO_

where a is an average value. It is also interesting to note that c is
x-dependent, cu = exp| - 27x|; however, as £ << a, for any value of x
which is large enough to cause a significant change in oo, the oo-dependence
of will disappear. Thus,

1 -1

ax
Wi GOE 07 g 1Y o, (*9)

Using the same type of arguments stated above, the second term of Eq. (45)

becomes

»2U,Eo,mo) (50)

D. Thick Target Bremsstrahlung
Having developed the weighting function into an integrable form,

the intensity at the displaced detector, by analogy to the development

generated in Chap. I, becomes

1 1 00

1400
} o 1+ ax
1400
TN 0
1-+0
1 e DX dxdk. 51)
ax ax
1 + _
1+0),,

Both terms decrease rapidly when increasing x. Again, as D << a, the

; . . ; —Dx
integration for the second term is essentially complete before e

deviates from unity. With little loss in accuracy.
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dl(k.t) =!1%61(lc)Eo)e-1°Wtj" 1 -Dx 0)O

€ ;
1+0D
° ' 1 + TIT" oy
I+cu
- 1
________ e \ ax //' - 1 cbeelk. (52)
ax 1 + ax
I-KD -

Equation (52) can now be integrated directly, and leads to

dik,0) = tysSi(kEoertikre P At v i
a ' \a /
I-KD (D 1-KD
_E. E. - a(fFsy  dk (53)
alKD ) |1 at

The exponential integrals in the first term can be accurately approxi-

mated according to the development in Appendix D, then

di(k,t) = (k.Eoye 409t i1 + —2Xn(l + Dt’/2)
apl
D (D atl 1-KD " (5*0
coel 4+ ° “n 1 + Eii-
1+CD 1KD 1KD e

where C is Euler's constant. This development is based on the assump-

tion that either (-KKDo)/a << t' or Dt' <<: 1, a condition that is always

met in the practical case. The second term is a correction that is negligi-
ble for (I-KKDo)/at' << 1; thus it needs only to be evaluated for photon
energies approaching the energy of the incident electron energy or for

very thin targets.

E. Optimum Target Thickness

Equation (5") reveals that the optimum target thickness will be

dependent upon the detector's angular position. Consider the practical
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use of electron accelerators to radiograph high-Z materials. The target
will be tungsten or gold, and the absorption cross section for the object
will have a minimum of about 3*5 MeV. It is desirable to calculate the
target thickness that will give the maximum detected intensity for a
given angular position of the detector. The optimum thickness can be
calculated by using Eq. (C-2), Appendix C. Table I lists the wvarious
pertinent parameters and the results for gold and tungsten for electron
energy of 25 MeV.

Fortunately, the detected intensity near optimum target thickness
is extremely flat and the optimum thickness can be taken anywhere between
2 and 3 g/cma for either tungsten or gold targets with the assurance
that the intensity for any angular position of the detector will be
within a few percent of its maximum value. The target thickness can
be designated as 2.42 g/cm2, which is equivalent to 0.129 c¢m (about
50 mils).

The calculations for optimum thicknesses are not particularly good
because the maximum intensity is very sensitive to the approximation
made for W(xac>0), especially for large values of x near the optimum.
However, because of the extreme flatness near the peak, this deficiency
is not particularly important and any value of x near the calculated
optimum will give the optimum response. Various factors that are
ignored in this theory could easily influence the optimum thickness
calculations; for example, the increased distance traveled by the
electrons due to scattering prior to their emergence from the target.
However, this effect, and probably others not included in this discussion,
will not affect the spectral distribution or the angular dependence to
any practical degree (probably less than a few percent). Therefore, no
attempt is made to increase the accuracy of the optimum thickness

determination.



Target Eo(MeV)

w(z=Tit) 25

Au(z=79) 25

Detector Position

(o)

16

25

= E20"
cn 207

TABLE I

OPTIMUM TARGETS

n(k) (ana/g) 5(ana/g)
0.041 0.195
0.042 0.203

W

2.06

2.25

2.51

2.72

2.90

3.06

Aem*g)

-0.026

-0.027

Optimum Thickness (g/cma)

Au

1.99

2.18

2.43

2.62

2.79

2.97

D(cma/g)

0.375

0.391
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P. Angular Intensity Distribution for Optimum Target
Equation (5*0 shows that the only factor affecting the relative

angular distribution is

This function can he evaluated for gamma rays of energy k = 319 MeV and
thickness t = t' = 2.42 g/cm2. Because the only term which is a function
of k is D(k) and its effect is quite small for small angles, the distri-
bution in the approximation is fairly independent of k. Figure 7 shows
this angular distribution evaluated for optimum thickness of target, for
values of a given in Appendix F, and for the value of D given in Table I.
'The relative distribution for a differentially thin target is also plotted

for comparison.

G. Variation of the Spectral Distribution with Angle

Because the parameter D = 25(k) - p(k) - A(k) is energy dependent,
there is a small variation of the spectral distribution with a change
in wo, the angular position of the detector. This variation is greatest
at the high-energy end of the spectrum. Figure 8 shows the spectral
distribution for = 0 and for = 9, the approximate half-intensity
angle, for an optimum thickness target. For a better comparison, each
curve has been divided The two
curves have a nearly constant difference, thus making the percentage

change at the high energy end considerably larger.

H. Summary
Although many theories have been presented in the literature (Refs.

4, 5, 6, 8, 9), all have a range of validity, and the assumptions are not
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Fig. 7. Bremsstrahlung angular distribution for 3.5-MeV photons.
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all-inclusive regarding parameters now considered important in determining
the useful detail of the bremsstrahlung angular and spectral distributions.
The theory presented here has a range of validity for target thickness

from zero to infinity, and for angular position from zero to angles larger

than the half-intensity angle. The final equation is

_ " v ' U)
dli(k,t) = —S (k.E )e"M(k)t *n 1 + I_S;)j 2inf1 + D2t L+0
ap
0) 1+0
0 fenl + atl +
+ jien (56)
140 to,

Although the formula looks rather complicated, the second term is
small except when (1 + >> at'. This occurs only at large angles, when
k is close to its maximum value ;6(‘) , or when t' becomes small. The condi-
tions for the validity of the first term is that (1 + << at' or_
(I/2)Dt', « 1, a condition that is alwpys met in the practical case.

The leading term in this expression is

di(k,t) ~ Si (k,E0)e-,I(k) 11,(1 (

and can be compared with results obtained by others. The main differ-
ences in this expression are the new parameter t', which has been intro-
duced to replace t, and the angular dependence (1 + ~Q)+ Chapter III
compares these theoretical results with those previously obtained by

others.
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CHAPTER IIT

IMPROVEMENTS IN DEVELOPMENT OF OFF-AXIS BREMSSTRAHLUNG THEORY

A. Improved Approximations

1. The Weighting Function.

In Chap. II only the first term of Moliere's theory for electron
scattering was considered. In some cases, however, experimental results
have been obtained in the region of large angles where multiple scatter-
ing might play a lesser role, and plural scattering could account for
most of the electron intensity. Examining this effect on the angular
radiation distribution for a finite thick target, more accurate Born-
approximation corrections have been applied to Moli&re's theory by Nigam,
Sundaresan, and Wu.®

Rewriting Eq. (UO), using the corrected Moliere's theory as it applies

to relativistic electrons, the results are

/ (1+6)d6 J Cy™AT)

\ ., 2d-uo0__, 0
1 ——— 5

6=0 ’ y=0

Y1+ geny - eyt

+ higher order terms My, (58)
B. E I
P

X

Not being satisfied that the various terms in Eq. (58) are analyti-
cally nonintegrable, many attempts have been made to solve them exactly.
These attempts have failed. However, in the mathematical exploration, an
approximate derivation has been found that gives results similar to Eq. (37)
and which agree more closely with the experimental data. This convincing

derivation follows. Consider only the 6 intergral of Eq. (58)



d=+6) - 2Jo<® )d6 (59)

ar 5
24D . ¢)

6=0
EoL= 97 A = d-a))/d+u)) for o < 1, and

and let 6T
A2 = (a)-1)/(o)tl) for w > 1.

Making these substitutions, the integral becomes

. (i+E2)E1 J (d:)(I£)T dB*
S 2
/ 1 b4+2A2E2 + Ey °

E=0 ' '
where b is introduced as a free parameter.

Because

(b4 + 2A2E) + E4)“ ~ = (b4 + 2A2E2 + E4)"~

and

+ 2A £31(b41 2a2z2 + z4r = E2(bl+ + 2a2™2 + £4)'

Equation (60) can be rewritten as

Lim 1/,+

_ _ _ P
o Ao T J (LE)AE): dZ. (61)

db
0
E=0

This can be directly integrated using Hankel11 transforms

bLi* r -4 - p—idKo{<k2 J ~2)MJb {(I<21 i*2——— (62)

Carrying out the indicated differentiations, collecting like terms.
letting b 1, and substituting for A2 and L, the integral becomes
(I+<D) J ("Gj"p"y™) K p'"*y™) 2piy”. (63)

Substituting Eq. (63) back into the expression for the weighting function.
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Eq. (58) then becomes

v -7 PJ0Q2-W) K1 2pyizp~yre y

T ¥g o3 y + higher orders of "‘];L dy. (64)
BPEX

This expression for the weighting function represents the convolution
of the electron-scattering angular distribution and the bremsstrahlung
angular distribution as a function of the thickness ( ™ 1/p). This expres-
sion has not been analytically solved; however, the various terms have been
evaluated by computer, and the terns in the various powers of 1/B contribute
only a few percent to the weighting function for small angles less than 10°.
These small contributions will be ignored in the light of the approximate
nature of the bremsstrahlung distribution for larger angles. The results
indicate that the long, angular-distribution tail of the electron scatter-
ing contributes only slightly to the angular-distribution tails of the
thick target bremsstrahlung.

Thus , the weighting function reduces to

WV - 3 p Jo2wpiy”™ KI2pry™"2ptyTe ydy. (65)

y=0
2. Weighting Function - An Approximation.
Being unable to integrate Eq. (65) analytically, an approximate means
of arriving at a simple, accurate solution was used. First, this equation

was solved for zero angle (I0 = O), which can be done exactly.
0
Wa)=0 = . PKx(Z2p™"2pe-ydy = p + p2ePEi(-p), (66)

y=0

where E~(-p) is the exponential integral. However, this form is very

difficult to manipulate; therefore, to simplify it, the terms are rearranged.



p (66a)
Wu)ZO :

+
p + p2ePE.(-p)

The term in brackets is a slowly varying function of p, which varies from
2 for p 0 to 1 for p 0. However, as W is little influenced by the
bracketed term for large wvalues of p, an average value can be chosen with
only a small error introduced in the region that will prove important
W(Jd=0 p+V v = 1.15. (67)
A better approximation, which was considered but complicated some of the
succeeding mathematical operations, is given here for reference. The

error is only a few percent over the entire range of p.

=~
Il

3+ /T)/2
w PP + 1

D=0 @ T K@+ X (672)

X =@ -
Next, consider the integral of Eq. (65) in the region where p >> 1. This

is the region of greatest contribution to the transmitted intensity. The

integral is rewritten as

co

WP+ 00 — y' p JO(/\ " ) 2p/\dy. (68)

y=0
Note that p1 has been substituted for p to approximate the effect of the

term e_y for the smaller values of p, and is evaluated in the following

development. Equation (68) can be solved exactly and reduces to

W (69)

If one demands that Wp—+00 = WU) _— for w = O, then p;=p tv and
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- ) P(P + a) 2 p (TO)
p 0 I~ + Cdyp + wvj2 (1 + wyp + V _ i~ + wyp + Vj
Equation (JO) is not a bad approximation for p -* 0. This can be seen
by letting
where p1 is now chosen to approximate the effect of the K1
term for small p. Or, upon integrating Eq. (T1),
- “P/P-L
W
P o © 72)
If one demands that Wp 8 = Wco for « = O, again p1 p + v, or
c 02P2
W _E wP/(p+Vv) P (02
p~>0 P+y A+ ocop+v L (T H (73)

The second terms of Eqgs. (70) and (73) are nearly the same. Because the
second term is only a correction to the identical first terms for W, then
consider a new second term which will, in the limits stated, reduce to

values indicated in Eqgs. (70) and (73). Consider

cop
A+ cop +v ;/ (™™

and allow the v term in the numerator to be zero, then

(p(1 + (o)p2 0

Lm pa v op + vz 4
P 00



and
g)(1 + uQp2 1 + oi)top? 75

1A mp ( o1) top 1P pl (75)

-1

1) large

Lim

<o

Thus, the equation for the weighting function can he approximated closely

for all values of p, that is,

i(1 + a))p2
L Ty e [(al1 + to)iaa v X2 (76)

3. Relationship of p to the Thickness x.
In order to prepare Eq. (76) for integration over the thickness

parameter, x, one must find the x-dependence of p. Drawing from the

previous parts of this report,

-1
p I LA (77
1 X
where B = £n{l.1z28&n Li+c2},
) = K2(e25it - 1)/28
K2 = 2200Z7Z + 1)/A.,
02 = K17™e25x - 13/25 « 2U2E2 ,
and
Kl = 0314+Z(Z + 1)/A ,
E2 = E2e 2°X .

These equations are based on the fact that the electron's energy falls
off exponentially in the region of importance. One can further simplify

Eq. (77) by assuming an average value for B because it is a slowly varying
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function of x in the region where p will have its effect on W. Also,
2 x << 1 for any practical thickness which contributes to the intensity

from a thick target. Making these good approximations yields

p = 2p2/Kl1Bxe = u/axe (78)

One evaluates a by choosing an approximate value of p which represents

the effective depth of bremsstrahlung. The previous chapters show this

to be in the region of p = 0.1. Using this value for p, v = 1.155 assuming Ex + 0
for this depth, and using the relationships shown by Eq. (77), a can be

solved.

a= 11.15K2/22 ,

where Cg i-s determined by

ANEN{1.1<<;2Jln 1.2} = 52017/ (79"

Graphs of this function, Appendix F, can be used for solving for a for the
particular material used as the target. For example, gold has a value of
166.9 cm2/g. In contrast to the Chap. II results, this derivation finds
a to be independent of to, thus simplifying the results.

4. Thick Target Bremsstrahlung.

Having developed the weighting function into an integrable form, now
write the intensity at the angularly displaced detector by analogy to the

development generated in the previous parts of this report.

(80)

x=0



Recalling that p - 1/ax and that

a > 1, the integration of the second

term is essentially complete before exp(-Dx) deviates appreciably from

unity.
in the second term; thus, the

written

_F<cz — »)p +-ve'DXdx
x=0

Consider the first term and make
) = whe z As 5 << a, for any

cause a significant change in w,

disappear. Thus, the first term
crror +t
1 v
1 +w b
(¢]
x=0
D'=D- 5=1¢%£

By analogy to the development in

term becomes

1 atl \
Y e ]
a o/

By the same line of reasoning, w = w ¢
0

can be replaced by

integral portion of Eq. (80) can be

ccOU * “t>3 A

[G + wQp + VF

+

dx. (81)

x=0

X

the substitution p = v/axe & and again
value of x, which is large enough to
the w-dependence of this term will

can be rewritten with essentially no

The second term is straightforward and, after integrating, becomes

B -1
ax -D 'x
1, e dx
- y&) - AK). (82)
the two preceding chapters, the first
+ 0) )/a
0 (83)
atl \ ! (84)
L + “oj
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The final equation can now be written

eD' a+ a)0 )/a

at'  \ 2
+ (85)
1+0)_J

This equation is similar to Eq. (5") of Chap. II, except that now a is

not to -dependent and the final term is simpler and more accurate. It

is comforting that the approach used in developing these two equations

is completely different, yet, to better than a first order, the results

are the same.

B. Experimental Verification

1. Comparisons of Experimental Results.

The comparisons are restricted to the experimental results obtained
by Lanzl and Hanson.0 Their results were obtained from a well-designed
experiment using the 20-MeV University of Illinois betatron. The theoreti-
cal equation must be corrected for the geometrical arrangement of Lanzl
and Hanson.

The most important correction is to compensate for the condition of
the beam incident on the target. The theory, as developed in part A of
this chapter, was based on an incident beam of parallel rays. In the
experiment, the beam from the betatron traversed the thin aluminum walls
of a monitor, presenting an incident beam estimated by Lanzl and Hanson%
to have an /e width of 0.78°. The scattering theory incorporates a Gaussian

function in MoliSre's leading term for electron multiple scattering, the
g p g

incident angular dependence can be approximated by allowing Molifre's



Gaussian term to generate this angular spread without allowing Eq. (85)
to contribute any bremsstrahlung. This is done by replacing the zero

lower limit of Eq. (85) by t™, obtained from Molifre's Gaussian term.

_e2/e2B
¢ T (86)

by letting 02/O%B = 1, and by using the various relations of Eq. (77)

to derive

t. = S2/K_. (87)
1 e 2

The upper limit then becomes t' + t. to properly account for the thickness

of target traversed by the electrons.

Let Eq. (85) be rewritten in the form

Bl L oy) = DN (RE Dey(OU LCt

where

L(tv , U)O) — tn eDl (1 + uO)/a

A , “o . | V2
21 +m ) 2rtP OO LD ) 88
o \ o/
Thus, the geometrically corrected differential intensity as a function

of photon energy, k, thickness, t, angular displacement of the detector,

a)o, and the geometrical correction factor, t., becomes

17
dl(k,t a) ) = R(k) =—S (kKE )e~v "5t
0 corr ap 1 0
{Kt't.,™) - L(tmo)} ° (89)

The R(k) multiplier has been added to account for the spectral response

of the detector. Although a correction for the finite entrance aperture



of the detector ( ~ 0.9°) would slightly ( < 2%) improve the results,
the complications involved preempted making the calculations. The

intensity as seen hy the detector becomes
k=E
I(t>w0) - SY IO (e ey LD ik (90)
k*o
It is Eq. (90) that will be compared with the experiment of Lanzl and
Hanson as a verification of the correctness of Eq. (85).
2. Angular Distribution.

The relative angular distribution can be obtained from Eq. (90).

1(t,co0)
i = (C2))
ALGOO) = | oy
Consider the condition where the thickness t < 1 gm/cm2 for a gold
target. Under these conditions, t' = t for practically all values of k.
ki L(t + t. - L(t.,p> tially ind dent of k, thus
making ( ,f.b) ( ,f.o) essentially independen
Lt + €, ) - L ,u "
ont < 1 " L(t + t.,0) - L(t ,0) (92)

Figures 9, 10, and 11 show the angular distribution for gold thicknesses
of 51-5 mg/cm2, 21+7.1 mg/cm2, and 967.0 mg/cm2, respectively. For the

smaller thicknesses, the agreement is remarkably good. Here the theory
of Lanzl and Hanson fails for the larger angles, primarily because their

two-Gaussian approximation for the bremsstrahlung is not accurate enough.

For the thicker target ( v 1 g/cm2), both theories agree with the experi-
mental data.

For the very thick targets, the theory of Lanzl and Hanson does not
apply because there is no provision for apparent thickness, t', as a

function of photon energy, k. The angular distribution, in this case.
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can be written

{L(t' + t,,0.) - L(t.a) )idk
L 1270 fl 0 93)
At o)t > 1

(L(t' + ti,0) - L(ti,0)}dk

In order to evaluate this expression, some knowledge of R(k) is necessary.
For the ion detector used, the response is more nearly proportional to
the number of quanta rather than the intensity because the ion detector
is very thin compared with the mean free path of the secondary electrons
involved. Consequently, R(k) is not a very sensitive parameter, and it
is assumed that R(k) is proportional to 1/k. Thus,

E
__7 S1(k,Eo)e"y(k)t {L(f + t.,u>0) - L(t.,u)o)}dk

AGSi) g 94)
37°S1(kEo)ke y(IOt {L(t- + ti,0) - L(t.0)}

k=0

Figure 12 shows four points calculated by using Eq. (94). The integra-
tion indicated was computed graphically for the four points shown, and
the experiment and theory agree within experimental error. No comparison
could be made with the theory of Lanzl and Hanson since their theory is
not valid for this thickness.

3. Central Yield.

Another interesting comparison of theory and experiment is the central

yield as a function of thickness. Consider Eq. (90), with m = 0 and

R(kk) v 1/k
E
I/,O
Kt,0) ~ / Sl(kEo)e-,, ()t {L(f + t.,0) - L(t..O) ak. (95)
k=0
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Figure 13 is a plot of the central yield, as calculated by Eq. (95)
indicating the experimental points of Lanzl and Hanson. The experi-
mental and theoretical curves are normalized near the peak value.
Again, the agreement is well within the experimental tolerances.

i*.  Spectral Distribution.

Although there are no experimental data on the spectral distribution
as a function of angle, it might be interesting to plot the intensity
distribution that one could expect from a thick target. Using Eq. (85),
the spectral distribution for a 7250.7 mg/cm? gold target is displayed
in Fig. 14 for various angular positions. It is evident that the
spectral distribution is essentially independent of angle, except for

the high-energy tip.

C.  Summary
It has been demonstrated that the differential intensity from a target

of any thickness can be represented by the equation

eD'(l + v, )/a

(96)

It is estimated that the error in Eq. (96) is a few percent. This
equation assumes that the rays in the incident beam are parallel.
Corrections can be accurately made for an incident beam having a Gaussian

angular distribution in the manner developed in Chap. Ill, part B.
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For most practical purposes, Eq. (96) can be simplified by letting
D' be equal to zero. Thus, ignoring the second-order effects of the
electron-energy gradient, absorption coefficient, and differential
bremsstrahlung, Eq. (96) can be simplified to

dik,t,bu) ) ™S (E )e ukt
0 ap 1 7o

at \rvno at

e 20t T it dk.  (96a)

The error in Eq. (96a) is estimated to be about 10 to 158.

D.  Thin Target Approximation
For thin targets Egs. (96) and (96a) reduce to

1(k.t = —— k.E ot odk

B%Ng——%ka i, (96b)

where n is the number of incident electrons, o is the number of atoms
or scattering centers per cm25and ko” is Schiff's bremsstrahlung cross

section (cm?2).

E, Thick Target Approximation

For most practical cases, the target thickness is chosen to produce
optimum intensity. This is in the region where t > 1 gm/cm2 for high-Z
material. In this range an approximate equation is

) - aSsUK-E )e-'j(k)t!H at’
dl(k,t « N o . 2a n dk (96¢)

The error is probably 10 to 20%. 55



APPENDIX A

B - Approximation

Moliere's theory gives an equation defining the parameter B as:

B - tnB = ~n™2 - 0.15U.

(A-D
By inspection, the asymptotic value for B as ? is B = JU1?2. Thus,
assume
B = £n?72 + A(c2), (A-2)
and substitute back into (A-1) and solve for A(c2).
AU2) = tn|"0.85T3{tn?2 + A(?2)} (A-3)
As A(c2) is a very slowly varying function of £2, one can further
assume that A(?2) has the following form
A(£2) = jyija In(b?2)} (A-U)
or
B = An"™2{"n(bc2)}1. (A-5)

Values for a and b are chosen to give a best fit to the wvalues
derived by Moli&re (Table A.l1). The error of this approximation is

less than [% over the entire range.



TABLE A.l

Values
a="1.1
101 102 103 104
Moli&re 3.36 6.29 8.93 11.149
Approxi-
mation 3.37 6.29 898 11. 56

of B

b= 1.

105 106 10
13.99 16.146 18.90
11+.08 16.146 18.92

*This value as tabulated by Segrfe is probably in error.

21.32

21.35

109

23.71%*

21+.07
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APPENDIX B

Effective Depth of Bremsstrahlung Generation

Fortunately, as can be inferred from the derived weighting
function W(x) (Fig. 1), the primary contribution to the detected
bremsstrahlung is generated in the thin layer of target material
facing the incident electron beam. The effective depth, X, can be
approximately calculated by use of the weighting function W(x).

Examination of W(x) and ST’(k’E ) show
X

WX = (1 + ax) 1, (B-1)

and
S.(k.E ) dk ~ E- 3-5
1 X

If one arbitrarily defines the effective depth of bremsstrahlung,
x, to be the depth at which one-half of the total detected intensity
is generated, ignoring absorption, then

~ E 33 E 3-5
X ik (B-2)

1 + ax 1 + ax
k=0 X-T
It is assumed that E* varies exponentially, which is a good approxi-

mation comnsidering the thin layer in which most of the primary radi-

ation is generated. Then

I
< gX£izUgx}t ™ =/ exp{-3.7x] d (B-3)
1 + ax 1 + ax X
x=0 X—X



Here £ is the electron decay parameter as defined in Eq. (29).

Equation (B-3) can be directly reduced, that is,
2Ei (B-U)

Because the arguments of these exponential integrals are both << 1,

Eq. (B-4) can be simplified.

C + Hn- (H3' 55 C + to 1:51 (B-5)

whereC is Euler's constant, 0.5772.

Solving for the effective depth,
X (B-6)

Example: For tungsten,

5 = 0.1956 cm2/g (value obtained from Venable12 and Eq. (29))

o
Il

165.3 cm2/g

G = £nc = 0.5772

Therefore, T 0.06U g/cm?2.
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APPENDIX C

Optimum Thickness

The optimum thickness target would he that thickness which pro-
duces the greatest intensity at the detector after passing through an
object. As high-Z materials of considerable thickness have a minimum
absorption cross section in the region of 3.5 MeV, it is desirable to
calculate the target thickness that will give the maximum intensity
at this energy. From the development of Eq. (5*%0, the detected inten-

sity 1is approximately proportional to

Q=c¢ (tn( + at/(1 + Oj- 2&£n( + D2~ | . (C-D

The maximum intensity will occur when

D
dt 71 * ffo)+ ax 1 + Dx /2

1 + axo/(1 + wo) - 2£n(l + DxH = V~xJ. (C-2)

- u<fn

The equation is solved by using Newton's approximations, knowing

approximately the optimum thickness. Thus,

ikl

To to dv, (C-3)

where x is the optimum thickness, and t is an approximation. Should
o o

the first approximation be too great in error, the process may be iterated

for increased accuracy.

Example: For tungsten at energy 3.9 MeV,
a = 165.3 cm2/g

A = 03717
y = 0.0U08 cm2/g
t = 2.0 g/cm2
a)°= 0.

0



Using these parameters x - 2.0776, by iteration x~ = 2.083H.

Therefore, x =2.08 g/cm2, which is equivalent to 0.1112 cm of
0

tungsten.



APPENDIX D

Exponential Integral Approximation

The terms

However, 1/a << t' except when t'(y + A - 27) << 1, again simplifying

/ N/ L2ty - )

£ E =toll + av | + 1A +y -2+ ——  ——+ (D-3)

or



The series in the brackets now appears as an approximation to the

expansion of a logarithm function, thus

A~ Ei =20 + atj - 2608 + A € (22 - y - A)).

(D-M
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APPENDIX E

Useful Data

Spectral Distribution

Optimum Infinitely
Photon Thickness Thin
Energy Intensity* Intensity™**
0.00 MeV 0.00 0.0419
0.1+49 3.99 0.2765
1.149 4.43 0.3806
2.149 431 0.4437
3.149 4.16 0.4861
1+.149 3.99 0.5166
5.49 3.83 0.5399
6.49 3.67 0.5591
7.49 3.53 0.5781
8.49 3.40 0.5924
9.49 3.28 0.6086
10.49 3.17 0.6254
11.49 3.06 0.6431
12.49 2.96 0.6620
13.49 2.87 0.6824
14.49 2.78 0.7043
15.49 2.70 0.7278
16.49 2.60 0.7531
17.49 2.46 0.7801
18.49 2.32 0.8089
19.49 2.14 0.8395
20.49 1.92 0.8720
21.49 1.64 0.9064
22.49 1.26 0.9426
23.49 0.74 0.9807
24.49 0.00 1.0000
nNTE%) 0
~ntensity in \mits of ---—----- m
ap 0
nNTE6
**Intensity in units of T adx m

3.5 MeV Bremsstrahlung
Intensity (Tungsten)

Thickness

0.00 g/cm2
0.02
0.04
0.06
0.10
0.40
0.80
1.00
1.20
1.40
1.80
2.00
2.10
2.20
2.40
2.60
3.00
3.50
4.00
5.00
6.00
7.00
7.38
8.00
9.00
10.00

Intensity™®

0.00
1.27
1.75
2.06
2.46
3.49
3.90
4.00
4.06
4.11
4.15
4.16
4.16
4.16
4.15
4.14
4.U
4.05
3.99
3.84
3.69
3.53
3.47
3.38
3.24
3.12

Intensities will have the same dimensions as assumed for m c2.

Optimum

Maximum
Electron
Penetration



APPENDIX F

Calculation of a

To analytically calculate an average value of a(x) is very
difficult. A calculation of a in the region where p = 0.1 will
he considered sufficient. This is in the proper region of x
that approximates the effective depth of generated bremsstrahlung

(Appendix G). The value of a allows the weighting function to be

accurate to a few percent in the region where the weighting function

contributes the greater part of the x integration.

Equation (79) is needed to calculate a.
a=11.5K2/?2}§ (F-D

where o is determined by

C2£n|1.122tn 1.1+e21= 5.20K /K . (F-2)
e e e ( 2 1
casiest way to determine a for the above equation is by
graphical means. Figure 15 is a plot of the function given by
Eq. (F-2). Using this graph, the value of a for gold has a value

166.9 c¢m /g.
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5.2 (I+Wn) KL/K

2.5

Multiply both scales

1—.i |

6 78910



APPENDIX G

Effective Depth of Bremsstrahlung Generation

Following the pattern outlined in Chap. I (Appendix B), the
effective depth of bremsstrahlung, x, is defined to be the depth
at which approximately one-half of the total detected intensity is

generated. The equation, which includes the effect of the angular

displacement of the detector, is
1 - 3.58x (Ito) )a -3.5£x
s & A o
dx
to + ax \1 + U)// 1 +0 + ax
0 \ o 0
x=0 x=0
-3.5Cx
ac dx. (G-1)

1+ + ax

X=X

The second term accounts for the resonance effect. The solution to

this equation is obtained in a straightforward manner similar to that
used in Chap. I.

0) /(1 + 0) \Jr
(1+o0))2° <\ 1+
0

X (G-2)
355 ca

where “n ¢ = C = 0.5772 (Euler’s constant). Using the values of a
from Eq. F.I, the values of effective depth vs angular displacement
for tungsten are tabulated in Table G.I. Practically the same values
would be wvalid for gold.

TABLE G.I

EFFECTIVE DEPTHS FOR TUNGSTEN

t = 0.06 0.10 0.16 0.22 0.27 0.31
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APPENDIX H

Nomenclature

a Roughly proportional to the mean square deflection
gradient and is given by Eq. (23) and Eq. (79).
Units: cm2/g.

a Reciprocal of the electron total energy squared a = E* 2.

6 A constant used in approximating the electron energy
degradation in the target. 6 is the slope of the
electron differential energy loss vs incident kinetic
energy curve.

B,O% Constants defined by Segrfe® to express details of the
Molibre theory for particle electron distribution, Egs.
(6), (10), and (11).

C,c C = tnc = Euler's constant = 0.5772.

d Distance of detector from target. Units: g/cm?2.

dx Differential thickness of target. Units: g/cm?2.

6 Defined by 6 = 02E2/(1 + w).

D Defined by D = 2£ - y(k) - A(k).

D' Defined by D' = £ - y(k) - A(k).

A = A(k) Related to bremsstrahlung gradient and given by Eq. (31)
Units: cm2/g.

Eo’Ex Total energy of the incident electrons and of the
electrons at the penetration x. Units: mOc2:

£fo>€Ex Kinetic energy of the incident electrons and of the
electrons at the penetration x. Units: m0c2.

Sf(ee,x,Eo) Fractional electron angular distribution, fm(d.x,,_/,\o

] 0
is Mott's formula.

Angular displacement of the incident electron with respect

to the axis. Units: radians.



Angular displacement of the emitted photon with respect
to the axis between the direction of the electron and the
photon. Units: radians.

Angular displacement between the axial planes containing
Oe and Od. Units: radians,

Angular displacement between the axial planes containing
0e when O, = Oe’ Units: radians.

d
N

Photon energy. Units: m c™.
o

Linear absorption coefficient. Units: com2/g.

Number of incident electrons.

Number of atoms in target. Units: atoms/cm3.
The electron energy loss gradient in the target, given
by £ =3 + (o/™). Units: cm2/g.

Defined by 1/B02.
1

Defined by ap.

Density of the target. Units: g/cm3.

Thickness of s = t - x. Units: g/cm2.

A constant used in approximating the electron energy
degradation in the target. The zero energy intercept
on the ordinate is a.

Differential bremsstrahlung cross section. Units: cm2.
Thickness of the target. Units: g/cm?2.

The lesser of the following: t., the thickness; or

1 ° + 7ol

the target with initial kinetic energy £ and emitting
a photon of energy k at the end of its range.
The effective depth for bremsstrahlung production. One-half

bremsstrahlung intensity is produced at a depth less than
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IN

W(x, )

X, one-half at penetrations greater than x. Units: g/cm2.
The optimum thickness. The depth of penetration at which
the greatest intensity will be observed at the detector.
Units: g/cm?2.

Angular displacement between the axial planes containing
Oe and Od' Units: radians,

Interpreted as the weighting function for the production
of bremsstrahlung at a given angle at the depth x per unit
solid angle.

Thickness of the electron penetration depth.

Defined by Ve T dx Mo T 02];3

Atomic number of target material, of impinging particle

(electron, z = 1).
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