
- l/f - 70

LA-4097-MS
(.370

LOS ALAMOS SCIENTIFIC LABORATORY
of the

University of California
LOS ALAMOS • NEW MEXICO

Thick Target Bremsstrahlung Theory

UNITED STATES
ATOMIC ENERGY COMMISSION 

CONTRACT W-7405-ENG. 36

distribution
is UNIJAHT'60

qu- THIS UOCIjMB



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image 

products. Images are produced from the best available 

original document.



------------------------- LEGAL NOTICE---------------------------
This report was prepared as an account of Government sponsored work. Neither the United 
States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accu­
racy, completeness, or usefulness of the information contained in this report, or that the use 
of any information, apparatus, method, or process disclosed in this report may not infringe 
privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the 
use of any Information, apparatus, method, or process disclosed in this report.

As used in the above, “person acting on behalf of the Commission” includes any em­
ployee or contractor of the Commission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee of such contractor prepares, 
disseminates, or provides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor.

This report expresses the opinions of the author or 
authors and does not necessarily reflect the opinions 
or views of the Los Alamos Scientific Laboratory.

Printed in the United States of America. Available from 
Clearinghouse for Federal Scientific and Technical Information 
National Bureau of Standards, U. S„ Department of Commerce 

Springfield, Virginia 22151 
Price: Printed Copy $3.00; Microfiche $0.65



Written: December 1969 

Distributed: March 31, 1970
LA-4097-MS 
UC-34, PHYSICS 
TID-4500

LOS ALAMOS SCIENTIFIC LABORATORY

of the
University of California

LOS ALAMOS • NEW MEXICO

Thick Target Bremsstrahlung Theory

by

C. Robert Emigh

--------------------- LEGAL NOTICE----------------------
This report was prepared as an account of Government sponsored work. Neither the United 

States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accu­

racy, completeness, or usefulness of the information contained in this report, or that the use 

of any information, apparatus, method, or process disclosed in this report may not Infringe 

privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the 

use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission’’ includes any em­

ployee or contractor of the Commission, or employee of such contractor, to the extent that 

such employee or contractor of the Commission, or employee of such contractor prepares, 

disseminates, or provides access to, any Information pursuant to his employment or contract 

with the Commission, or his employment with such contractor.

DISTRIBUTION OK THIS DOl ;UM£NT LNUMTHbU.



’



CONTENTS

Foreword....................................................................................................................................... iv

Abstract .................................................................................................................................... 1

Chapter

I. A THICK TARGET ON-AXIS BREMSSTRAHLUNG THEORY ............................................ 3

A. Problem Formation and Geometric Considerations ......................... 3

B. Multiple Scattering ............................................................................................... 6

C. Bremsstrahlung Angular and Energy Distributions ....................... 8

D. Bremsstrahlung Weighting Function - the 0 Integral ............... 9

E. Bremsstrahlung Energy Distribution-Approximation ....................  13

F. Summary ............................................................................................................................... 17

II. THICK TARGET OFF-AXIS BREMSSTRAHLUNG THEORY ...............................................  21

A. Geometric Considerations .................................................................................  21

B. Weighting Function ...................................................................................................21

C. The Weighting Function - An Approximation .........................................27

D. Thick Target Bremsstrahlung .......................................................................... 28

E. Optimum Target Thickness ....................................................................................29

F. Angular Intensity Distribution for Optimum Target .................. 32

G. Variation of the Spectral Distribution with Angle ..................  32

H. Summary ...............................................................................................................................32

III. IMPROVEMENTS IN DEVELOPMENT OF OFF-AXIS BREMSSTRAHLUNG THEORY. 36

A. Improved Approximations ....................................................................................  36

B. Experimental Verification ................................................................................. 1*1+

C. Summary ...............................................................................................................................52

APPENDIX A. B - Approximation ..................................................................................................... 56

APPENDIX B. Effective Depth of Bremsstrahlung Generation ..............................  58

APPENDIX C. Optimum Thickness ..................................................................................................... 60



APPENDIX D. Exponential Integral Approximation ......................................................... 62

APPENDIX E. Useful Data....................................................................................................................64

APPENDIX F. Calculation of a ....................................................................................................... 65

APPENDIX G. Effective Depth of Bremsstrahlung Generation ................................ 67

APPENDIX H. Nomenclature ............................................................................................................... 68

Acknowledgments ..............................................................................................................7-*-

References .............................................................................................................................72

iv



FOREWORD

The following manuscript was originally formulated over a number 

of years as three separate memoranda. Because of the interest in the 

development of the theory of thick target bremsstrahlung from high-energy 

electrons (> ^c2) for radiographic purposes, these memoranda are repro­

duced as three separate chapters in essentially their original form. The 

final result is developed in Chapter III, Eq. (96), with the subsequent 

approximations being more useful depending upon the geometry of the 

problem. Although the work covered in Chapter II is preempted by the 

development in Chapter III, it is included in this manuscript because 

of its value in the later generation of the more accurate approach. The 

nomenclature used is defined in Appendix H and, where applicable, the 

source is noted.
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ABSTRACT

Chapter I contains the calculations for thick target bremsstrahlung 

in the forward direction. The theory presented is complete with regard 

to such details as multiple electron scattering, electron-energy degrada­

tion in the target, bremsstrahlung angular distribution, variation of 

bremsstrahlung distribution with a decreasing electron energy, and target 

self-absorption. Past theories have accounted for some, but not all, of 

these effects. The approximations presented here are for heavy elements, 

particularly tungsten; they should also apply to the lighter elements but 

perhaps not with the same degree of accuracy.

Chapter II covers for the off-axis theory the same details presented 

in Chapter I for the on-axis theory. It accounts for the angular displace­

ment of the detector frcm the axis. The off-axis theory is useful in 

determining the optimum target-object distance for certain densitometric 

or radiographic observations. The distinguishing characteristics of this 

theory are that it is continuous for all thicknesses of target, zero to 

infinity; it is continuous for detector angle displacements, zero to values 

greater than the half-intensity angle; and it introduces a new energy- 

dependent parameter t', which is the lesser of either thickness or the 

distance traveled by an electron in the target and emitting a photon of 

energy k at the end of its range.

Chapter III presents improvements in the development of the off-axis 

theory covered in Chapter II including the effects of plural scattering, 

the transitional region between multiple and single scattering. The need 

for such improvements was indicated by the discrepancy between previous 

off-axis theories and the published experimental results. A surprising 

result is that terms added to account for plural scattering contribute 

only negligibly to the angular radiation distribution, which is in



contrast to predictions. The long tail to the angular distribution is 

primarily a result of the convolution of the multiple-scattering angular 

distribution and the bremsstrahlung angular distribution. A weighting 

function is developed and compared with the experimental results; agreement

with theory is within the experimental error.



CHAPTER I

A THICK TARGET ON-AXIS BREMSSTRAHLUNG THEORY

A. Problem Formation and Geometric Considerations

The first assumption made is that all the electrons in the incident 

Beam are normal to the target. In practice, this usually is not the case, 

hut the effect is small and tends to reduce the on-axis intensity accord­

ing to the angular distribution of the incident electrons. The effect on 

the bremsstrahlung energy distribution is correspondingly small. In Fig. 1, 

the electron beam is incident upon a target of thickness t. At the depth 

x, radiation is produced in the differential thickness dx, and a small 

portion of this radiation will reach an on-axis detector.

Consider the electrons which strike the element dx at a depth x and 

with an angle 0e. In this theory, all energies are considered to be 

relativistic and all angles of importance are assumed to be small; for 

example sin 9e = 9e' The fractional number of electrons having the 

direction 0e at the depth x will be expressed as 9e ? x, E^O^dO^

The differential bremsstrahlung intensity Tier steradian that will reach 

the detector will be

dl(k,x,0 ,0 ) 
’ ’ e’ Y

nNk
P

f(e ,x,E )0 d0 e O 6 6
S(k,x,0 ,E ) dxdk ,Y o (1)

where S(k,x,0^,Eo) is the differential bremsstrahlung cross section. Because 

this is a cylindrically symmetrical theory, the usual third dimension, 

d^, need not be explicitly considered.

The differential intensityper steradian reaching the detector, 

integrated over all possible angles 0e, is

3
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f(0e!X’Eo) Ge d0e

f(0e,x,Eo) e0d0e S(03f,k,x,Eo) dxdll

On-axis
detector

Thick target geometry.



dl(k,x) (2)

Integration over the 6e parameter is taken to infinity as a mathematical 

convenience, but no practical error will result because the integrand 

rapidly approaches zero as 6^ increases past 10° for our range of investi­

gation. Not included in the above formulation is the self-absorption of 

the produced gamma rays as they penetrate the remainder of the target, s. 

To account for this, the simple narrow-beam absorption coefficient u(k) 

is used. The intensity becomes

CO

dl(k,x) = ^J f(ee,x,Eo) S(k,x,6^,Eo) expj-p(k)s| e^de^dxdk. (3)

The intensity, as seen by a perfect on-axis detector ft:om a target of 

thickness t, is given as a function of the photon energy, k.

dl(k,t) ^ / f (e 0 -e )
P / / e y o

x=o e =oe

s(k,x,e ,E )v * * Y o

exp|-pL (k)s|eedeedxdk. (4)

This expression can be simplified from geometric considerations if the 

detector is far from the target and is small in size. Then, as d >> t, 

the electrons that are deflected by an angle 6e at the depth x must 

produce photons at the angle 6^ = 6^ for the detector to respond. Thus, 

the simplification is made that and the intensity per

steradian is expressed by

5



0 00

dl(k,t) = ^ J J f(e,x,Eo) S(k,x,e,Eo) exp|-ii(k)s|ededxdk.

x=o e=o

(5)

Equation (5) is the formulation of our basic problem and will be solved 

in several steps in the next few sections.

B. Multiple Scattering

The multiple scattering as a function of the depth x is given by 

the function f(6,x,Eo) in Eq. (5)- The most accurate account of this 

fractional electron distribution is given by the Moliere theory.'1' Only 

the first term, which is Gaussian and normalized, is used and is quite 

accurate for our purpose. The error is less than 2$ in relative magni­

tude as a function of angle.

f(e,x,Eo) = gig exp|-e2/e^B|,

2
where Sj and B are constants for the 0 integration.

(6)

1. 6^ Evaluation.
i

The theory departs from the usual treatment to include the effect

of the electron energy decreasing with target penetration. The relati-

2
vistic Mott formula for scattering, but neglecting screening, is used 

as the basic equation,

f (e,x,e )d6dx =m o
K d0dx
-Ji
eaeV'

X

(7)
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where

K = Bnnz(Z+l)zae4.
i

The parameters involved are defined by Segre.^ The assumption is now 

made that the kinetic energy of the electrons at the depth x is

= £og(x), where g(x) is a monotonically decreasing function of the 

thickness. ©2 is defined in such a way that many collisions occur in 

the foil for 6 < 6^, but not many occur for 0 > 0^. In particular, 

only one collision occurs for all angles greater than 0^. The probability 

of a collision occurring at the angle 0 in the thickness x will be

Pc

X
:J fra(e>x>&o)d0dx>

o

or

Pc = K f(x)d0/03fi2u2, where f(x) = / g"a(x)dx.
(8)

This probability, P^, is set equal to unity for all angles 0 > 0^, that is,

K f.Cx)d0

e3e3y2
(9)

When solved for 0 ,
i

0" = K f(x)/2p2£a i i ' o (10)

7



2. B Evaluation.

The B parameter is rather complicated. However, B can be accurately 

approximated by the following function where the error is less than 1$ 

for the entire range- of interest.

B 4n{l.l ?a in l.b f}
(n)

£2 = 7800 - ■(Z+I)z

A(l+3.35 Q^)

3
Again, the nomenclature used in this formula is that used by Segre. The 

approximation in Eq. (ll) is developed by a simple perturbation theory and 

is presented in Appendix A.

C. Bremsstrahlung Angular and Energy Distributions.

4
Schiff has developed the following formula for intrinsic bremsstrah­

lung intensity at small angles from the direction of the incident electron 

beam.

s(k,e,E )
2Z2r2 E2 

o x
137^ k

l6e2EE
x

(i+e2E2)4
x

(Ex+E)2

(l+e3E3)3E2 
x x

r E2+E2 
x

(i+e2E2)3E2
L x X X

UeaE e
X

(i+e2E2)4
x'

in M(k,0,Ex) (12)

where

M"1 (k, 6 ,Ex) \a,
'2e e/ \ni(E2e3+i) /

X X



The only photons that will survive to contribute significantly to the 

total intensity, because of the double process of multiple scattering 

and bremsstrahlung, are those whose angle 6 is less than the order of 

. Using this as a basis, Schiffs equation can be further simpli­

fied and the variables separated:

s(k,e,E )dk 6de = s (k,E )dk
X 1 X sa(e,Ex)ede , (13)

where is the energy distribution evaluated for 6=0,

2Z2r2 ((E2+E2) (E +E)2 ) E2dk
S1(k,E )dk = ------- £n M(k,0,EY) - , (li;)

137tt ( E2 X E2 k
x x

and S is the angular distribution

s2(e,Ex) = (15)

D. Bremsstrahlung Weighting Function - the 6 Integral

1. Exact Expression.

The foregoing section has separated the variables k and 6, and now 

it is desirable to evaluate the 6 integral. Gathering all the functions 

related to 6, tha; is, f(6,x,E ) and S (6,E ), the 6 integral becomes
O 2 X

W(x,Eo) f(e,x,Eo) Sa(e,Ex)6de, (16)

where W(x,Eq) can be interpreted as the weighting function for the production 

of bremsstrahlung at the depth x of the target per unit solid angle of

9



the detector. Substituting Eqs. (6) and (15) into Eq. (l6), the weight­

ing function becomes

CO
W(x,Eo) = J" c?(ct+e2) 2 2p exp|-p62|6de

e=o

(17)

where

a = E"2, p = l/Be2.

Fortunately, this integral is directly reducible as a Laplace transfor­

mation and yields for the weighting function

(18)

where E^(-ap) is the exponential integral.

2. Approximate Expression.

The weighting function has already become a complicated function of 

thickness x and with the target thickness integration to perform, it 

would be convenient to express Eq. (l8) in terms of directly integrable 

functions. By using the usual approximation for g(x),

(19)
o

and its derived counterpart

f(x) = “ L6"1^ + “a" in +
£ r £ P p2£
oF-i/n o „ / \ *o x - 1 (20)

where a is the intercept on the ordinate, and p is the slope of the



electron differential energy loss vb incident kinetic energy curve for 

tungsten, the weighting function, W(x), has been graphed as a function 

of thickness, x, (Fig. 2). It is fortuitous, but not surprising, that 

W(x) is closely related to the form

W(x) =- (l + ax)-1. (21)

Here a is a constant. This fom has the advantage of being a sectionally 

rational function that is Laplace transformable, leading to the spectral 

distribution in a closed form. This and other similar expressions have

mations. The main approximations are: (l) the energy of the electron is 

not degraded in its travel through the target, and (2) the bremsstrahlung 

angular distribution is of a type that can be represented by a series of 

Gaussian terms. The accuracy of the expression in Eq. (2l) is far better 

than these approximations would lead one to expect as the errors are 

largely self-canceling over the 6 integration.

In order to use the expression in Eq. (21), the constant a must 

be evaluated. The best fit for the approximate expression to the exact 

expression should be evaluated in the region of interest, that is, in 

the region of the effective depth, T (Appendix B).

(22)

where Op is evaluated at t. Thus,

(23)

11
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(x

)

Fig. 2. Bremsstrahlung weighting function.
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Using the value of the effective depth, 0.06 g/cm2, the value of a for 

tungsten is 165.3 cm2/g.

E. Bremsstrahlung Energy Distribution-Approximation

1. At Depth x.

Fran the preceding section, and in reference to Appendix C, it is 

evident that the useful bremsstrahlung from a thick target is generated 

in a very thin layer near the front and the effective depth, in terms of 

energy degradation, is very small. Some authors have assumed no energy 

distribution variation with depth. However, although half the intensity 

is generated at a depth less than the effective depth, t, the other half 

is generated between t and at least as deep as the optimum depth, 

Therefore, a penetration correction is made to the distribution even 

though it may at first appear to be slight.

Equation (13) allows removal of the angular dependence from the

spectral distribution. The energy distribution function S^CkjE^), which

is evaluated for 0 = 0, is left. Again, to ease the complicated

x-integration yet to be performed, the function S (k,E ) , which is thea x

bracketed portion of S (k,Ex) in Eq. (lU) , is represented by

S (k,E ) = S (k,E ) exp{A(k)x},
r> X 15 o

(24)

where A(k) is a function to be determined. Because of the extremely sharp 

weighting function, W(x), in the region of very small x, Eq. (24) may 

be solved for A(k) as x ->■ 0

A(k) = A(k) = 
x->0

asB(k;Ex) dE
_________ 1 ___X
dE ST,(k,E ) dx 

x B o
(25)

making A(k) independent of x, but a function of energy k. 13



2. Thick Target.

Using the above expression and inserting it and W(x) from Eq. (21) 

into Eq. (5), the measured intensity distribution is

t'

dl(k,t) = nNTk
P /■

x=0

(1 + ex
E^S (k,E ) 
x ’ o; exp |A.(k)x - y(k)s}dxdk, (26)

where

2-Z2r2
o

137tt

The upper limit, t', replaces t to account for zero contribution from the 

spectral distribution for photon energies k > at depth x. The function 

t' is derived as follows:

inasmuch as g(x) = (o + P£0) ?xp|-6xj- ~ a

then k < ^ F(o + 6£o) exp-j-px
- aJ

or, which is equivalent.

x in
o+p£

o
CT+pk

(2?)

hus, the upper limit will be 6 1ln| (a + (3£o)/(a + pk) or t, whichever

is smaller. To formalize,



lo-tpS I
f - t for t < p'1 j.

and

t’ P 1 In
(o-^e
) ff-+^k for t > p -i in

, a+pe1 c
(T4£k

(28)

For the purpose of evaluating the integral in Eq. (25), Eq. (26) can he 

considerably simplified. The justification for this canes from the very 

shallow effective depth indicating that, for the most part, the brems- 

strahlung will be formed by electrons of nearly the same energy as the 

impinging electrons. Thus,

g(x) ' + peo) (29)

where

5 = p + c/eo.

Therefore,

£
x

£o expj-£ xj and E^ Eo (30)

Making the substitutions indicated by Eq. (30), and that allowed by 

x = t - s, the intensity becomes

f

dl(k,t) = a p si(h,Eo)e ^ ^ J i'+^x exp{(A + Vi - 2^)x|dxdk,

x=0

15



where

asJ^E J CE'-

A - - B'"7"o' ^‘‘o _ __
SB(k,E^) ' ' S^k^J dE

d

dE
(31)

Fortunately, this can be reduced directly as a Laplace transformation 

and yields for the spectral distribution

dI(k,t) = ^ Si(k,EQ) exp|-d(k)t| exp{(25-p_A)i |

Ei - E.1L (32)

2
This differential intensity is expressed in units of mQC .

The above expression can be simplified and expressed by more familiar 

functions. First, (2?-p-A)- « 1, so that the exponential of this argument
cl

can be equated to unity. Second, the exponential integrals can be expanded 

and combined into functions of natural logarithms to an accuracy greater 

than 0.1$ for the region from zero to several times optimum thickness, and 

to better than 2.2$ for any thickness. That is.

Eir(;+ "OK-25 Eir(s)K-25

in(l+at1) - 2£n(l+■H, (2c-d-A)
(33)

See Appendix D for a derivation of this approximation. 

Making these substitutions,

dl(k,t) (k,E )e‘^(k)t jinU+at’) - 2in(l+^Dt’)W,
a. p 1 O v J

(34)



where

D = 25- n(k) - A(k).

The essential characteristic of the distribution is given by the first 

term

dl(k,t) = S^E^e"^1 4n(l+at'),

and is sufficient for rough approximations (approximately 10 to 20*/a too 

high, depending on k); however, the correction term, containing A(k), 

can contribute considerable detail, especially in the region where k -*

F. Summary

The important result contained in the expression in Eq. (3*0 gives 

the spectral distribution as seen by a detector far from the bremsstrah- 

lung generating target of a given thickness, t. The theory is complete 

in that it is valid for any thickness of target from zero to ro. It is 

difficult to attach an error specification to the equation. However, 

all the approximations are good to a few percent. Many of the approxi­

mations have little effect on the final results, and it is felt, in 

developing the theory, that the overall equation should be accurate to 

better than 3 or 4$.

Also of great interest is the optimum target thickness which should 

be used to generate the maximum intensity at the detector after the 

x rays have traversed a thick piece of some high-Z material. Figure 3 

gives the spectral distribution from a tungsten target of optimum thick­

ness, 2.08 g/cm2. Also, for comparison, the differentially thin target 

spectrum is displayed.

Figure b shows a plot of the 3-5 MeV bremsstrahlung intensity as a
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function of tungsten target thickness. Because it is near the minimum 

absorption region for most high-Z materials, 3*5 MeV was chosen. The 

curve for the total intensity vs thickness would be slightly different 

because of the energy dependence of the various parameters such as 

absorption coefficient, spectral distribution, etc. Once the tungsten 

target thickness increases past 7*38 g/cni2» the only detected influence 

on the bremsstrahlung is an exponential decay due to absorption because 

the electrons have been completely stopped at this depth. The parameter 

t' accounts for this effect.

It is interesting that the effective depth is so shallow compared to 

the optimum depth. This gives justification for not ignoring the pene­

tration effects, namely, scattering, energy degradation, bremsstrahlung 

angular dependence, and self-absorption.



CHAPTER II

THICK TARGET OFF-AXIS BREMSSTRAHLUNG THEORY

A. Geometric Considerations

As in the on-axis theory, the electrons in the incident beam are 

assumed nomal to the target. Figure 5 indicates the off-axis geometry 

where is the angular displacement in radians of the detector, ©e is 

the angular displacement of the scattered electron at the depth x, and 

6^ is the angular displacement of the emitted gamma ray relative to the 

emitting electron.

If one assumes that 6^, 6and 6^ are all small compared to a unit 

radian, then

67 = 6d +6e ' 2Vd C°S (36)

where cp is the angle between the plane containing the axis and the scat­

tered electron and the plane containing the axis and the emitted gamma 

ray.

B. Weighting Function

Equation (17) can be rewritten in terms of the newly defined angles.

All development prior to Eq. (17) is valid for the off-axis analysis.

oo 7T

w(x,Eo,ea) = y if j-S? 2p exp{-pe=} eedee*,. (37)

©e=0 cp=0 ' 7

Substituting Eq. (36) into Eq. (37) and carrying out the indicated cp 

integration,

w(*,Eo,sa) =y
e =0e

1 + 2 2—6a d + 2- GC\ +

3 / 2
26 6.6 . e e (38)

21
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For convenience, let

6‘ e‘
p' = Op, — = 0), ; 6 .

a ^ a(i+o)) 6, then = a(l+o))d6, (39)

and the weighting function becomes

W(x,E ,cjd) =
u«>)3 /

6=0

1 + 5
1+ Sliiiil Zb

1+cu
3^ P* (1+0))

exp|-p’ (l+o))6|d6. (^0)

This equation is not analytically integrable except for o) = 0. However, 

an accurate approximation can be obtained. By rearranging the terms of 

Eq. (40),

W(x,E ,0)) =
° (1-ho)

CC

i?/
(!+&)'

I + &

6=0

F. 2(1-0)) c . cal + ------ L 6 + 6L 1+0) J
na/a /n .R^2(l+B)1

p' (1+0))

exp|-p' (l+0))6j-d6. 

A close inspection of the factor,

(41)

23



shows that it is a resonant type, where the resonance occurs for & = 1. 

The larger the a), the sharper and higher is the resonance. The integra­

tion over this resonance can be performed accurately if the integrand 

is accurately expressed in the region of resonance, and only approxi­

mately expressed elsewhere. Thus, we can rewrite our integral as
CO

W (x,E ,0)) = —----- / -----i—
° (1-kb)2 J (l+&)2

6=0

p'(l+oo) exp{-p'(l-KJo)6jd6

(1-hjj);
6=0

1 + 6

Cl + 6 + (1+8>
I. l+OJ J

p' (l+o)

expl-p'(l+cu) j expj-p'(i+o) (5-l)|d6 .

The term, exp|-p'(l+o)) (&-l) j, can be approximated several ways in the 

region near & = 1.

Approximation a

(^2)

expj-p'(l+u)) (6-1) j- = 1.

Approximation b (^3)

exp{-p' (l+o) (6-1) j = 1 + p' (l+oo).

The second approximation is more accurate in the region 6=1 because 

both the value and the derivative match. However, either approximation 

will produce the same integrated result. Therefore, using either approximation, 

Eq. (^2) can be integrated and yields



1 !
_p

p* (l+oo) + Ff'CI-ku) e5 ^1+a)^E. f-p'(1+0)) )

I J i\ /(l+o)

+ u*’(l^)e-p’(l4<“)!. (bk)

This equation reduces to Eq. (l8) for a) = 0. Here W(x,Eo,o) can be 

interpreted as the weighting function for the production of detected 

bremsstrahlung at the depth x of the target per unit solid angle of 

the detector, where the detector is oriented at an angle of 0^ off-axis.

Figure 6 shows three graphs of the weighting function for values of 

oq = E^0^ of 0, 1.0, and 4.0. In contrast to the on-axis bremsstrahlung 

(a)o =0), where the bremsstrahlung is generated in the leading edge of 

the target, the off-axis bremsstrahlung is generated at a deeper level.

The effect seen in Fig. 6 of the resonant term for cd = 1 and o> = 4 

shows the peak generation becoming deeper as the observation angle 

increases. The physical significance of this resonance term can be 

explained intuitively. For a given angular displacement of the detector, 

a very thin target will produce a response given only by the angular 

bremsstrahlung distribution. As the thickness is increased, the electron 

scattering becomes greater, and a greater proportion of the more abundant 

forward-generated bremsstrahlung (forward with respect to the scattered 

electrons) will reach the detector. As the thickness is further increased, 

a distribution equilibrium is established and the detected intensity falls 

off monotonically. This effect can be more easily visualized by reorgan­

izing the terms of Eq. (44).
W(x,Eo,o)) = |p' (l+o) + Tp'(l+o))]^ ^^E^-p'(I+cjq) j i

+
2n j

(l+O))2 f 

Fp' (l+o))

p' (l+o))e-p _ p'(i+o))

ep’ (l4<D)Ei(_p. (i-kd)J|. (45)
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Fig. 6. Bremsstrahlung weighting function w(xlE0,w0).
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The first term is a monotonically decreasing function for x increasing, 

while the second term has a resonant characteristic, then falls off 

much faster than the first term.

C. The Weighting Function - An Approximation

Equation (^5) is a complicated function of the thickness x. How­

ever, as shown in Chap. I, a simple, accurate approximation (~ 3f«) can 

be made that will lead to integrable results. At first inspection, it 

seems coincidental that such an approximation can be made; however, a 

similar result would have appeared at this stage if a resonable Gaussian

approximation to the bremsstrahlung angular distribution had been made
8

early in the theoretical development. Waiting until later to make the 

approximation revealed how accurate the approximation really was.

The term

can be rewritten in the following form

1

where

rl = \ p' (1-kd) i

in the nomenclature of Chap. I. The term enclosed by the brackets in 

Eq. (4?) is a slowly varying function of x in the region where x 

contributes significantly to the x integration. Thus,



W (x,E ,(jo)i v ^ o’ /
a x 
1-kjo_

-i
5 (48)

where a is an average value. It is also interesting to note that cu is 

x-dependent, cu = exp| - 2^x|; however, as £ « a, for any value of x 

which is large enough to cause a significant change in oo, the oo-dependence 

of will disappear. Thus,

W (x,E ,o> ) i o o
1

1+00 1 + ax
l+co _ o

-1
(^9)

Using the same type of arguments stated above, the second term of Eq. (45) 

becomes

»2U,Eo,mo) (50)

D. Thick Target Bremsstrahlung

Having developed the weighting function into an integrable form, 

the intensity at the displaced detector, by analogy to the development 

generated in Chap. I, becomes ,

/1+U) \M.
1+0)

ax 1 +

1 1
1+00

- o 1 + ax
1+00o

1 -Dxe dxdk.
ax

1+0) -
0

oo

Both terms decrease rapidly when increasing x. Again, as D « a, the
—Dxintegration for the second term is essentially complete before e 

deviates from unity. With little loss in accuracy.

(51)
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1
o _

dl(k,t) =!f%i(lc)Eo)e-l‘Wtj'
1+OD

-Dx 0) 
e , ___ o

° ' 1 + TIT"
l+cu

d^oy

--
1

/! 1-------- e \ ax / -
ax 1 + ax

1-KD -

cbccLk. (52)

Equation (52) can now be integrated directly, and leads to

dl(k,t) = •!ySSi(k,Eo)e"ti^k^t
1 D(1+cd)/ a r /1+wo \ i

------- e E.
i

- -----2 +t’ ) D
a \ a /

- E.
1-KD “I 
-----

CD
-E.

a(l-KD ) 1 1

1-KD

at1
- £n 1 +(‘*sy dk.

The exponential integrals in the first term can be accurately approxi­

mated according to the development in Appendix D, then

d (k)tdl(k,t) = (k,Eo)e
a p 1

£ni 1 + ■2Xn(1 + Dt’/2)

(53)

CD CD

l+CD
° c J + °

1-KD ^n 1 + at1
1-KD Eii-

1-KD

at’
dk (5*0

where C is Euler's constant. This development is based on the assump­

tion that either (l-KDo)/a « t' or Dt' <<: 1, a condition that is always 

met in the practical case. The second term is a correction that is negligi­

ble for (l-KDo)/at' « 1; thus it needs only to be evaluated for photon 

energies approaching the energy of the incident electron energy or for 

very thin targets.

E. Optimum Target Thickness

Equation (5^) reveals that the optimum target thickness will be 

dependent upon the detector's angular position. Consider the practical

29



use of electron accelerators to radiograph high-Z materials. The target 

will be tungsten or gold, and the absorption cross section for the object 

will have a minimum of about 3*5 MeV. It is desirable to calculate the 

target thickness that will give the maximum detected intensity for a 

given angular position of the detector. The optimum thickness can be 

calculated by using Eq. (C-2), Appendix C. Table I lists the various 

pertinent parameters and the results for gold and tungsten for electron 

energy of 25 MeV.

Fortunately, the detected intensity near optimum target thickness 

is extremely flat and the optimum thickness can be taken anywhere between 

2 and 3 g/cma for either tungsten or gold targets with the assurance 

that the intensity for any angular position of the detector will be 

within a few percent of its maximum value. The target thickness can 

be designated as 2.42 g/cm2, which is equivalent to 0.129 cm (about 

50 mils).

The calculations for optimum thicknesses are not particularly good 

because the maximum intensity is very sensitive to the approximation 

made for W(x,ac>o), especially for large values of x near the optimum. 

However, because of the extreme flatness near the peak, this deficiency 

is not particularly important and any value of x near the calculated 

optimum will give the optimum response. Various factors that are 

ignored in this theory could easily influence the optimum thickness 

calculations; for example, the increased distance traveled by the 

electrons due to scattering prior to their emergence from the target. 

However, this effect, and probably others not included in this discussion, 

will not affect the spectral distribution or the angular dependence to 

any practical degree (probably less than a few percent). Therefore, no 

attempt is made to increase the accuracy of the optimum thickness

determination.



TABLE I

OPTIMUM TARGETS

Target Eo(MeV) n(k) (ana/g) 5(ana/g) ^(cm^/g) D(cma/g)

w(z=7i+) 25 0.04l 0.195 -0.026 0.375

Au(z=79) 25 0.042 0.203 -0.027 0.391

Detector Position _____ Optimum Thickness (g/cma)

cn = E2©^ W Au
o o d

0 2.06 1.99

1 2.25 2.18

b 2.51 2.43

9 2.72 2.62

l6 2.90 2.79

25 3.06 2.97
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P. Angular Intensity Distribution for Optimum Target

Equation (5*0 shows that the only factor affecting the relative 

angular distribution is

This function can he evaluated for gamma rays of energy k = 3 •*'■9 MeV and 

thickness t = t' = 2.42 g/cm2. Because the only term which is a function 

of k is D(k) and its effect is quite small for small angles, the distri­

bution in the approximation is fairly independent of k. Figure 7 shows 

this angular distribution evaluated for optimum thickness of target, for 

values of a given in Appendix F, and for the value of D given in Table I. 

'The relative distribution for a differentially thin target is also plotted 

for comparison.

G. Variation of the Spectral Distribution with Angle

Because the parameter D = 25(k) - p(k) - A(k) is energy dependent, 

there is a small variation of the spectral distribution with a change 

in oc>o, the angular position of the detector. This variation is greatest 

at the high-energy end of the spectrum. Figure 8 shows the spectral 

distribution for = 0 and for = 9, the approximate half-intensity 

angle, for an optimum thickness target. For a better comparison, each

The twocurve has been divided

curves have a nearly constant difference, thus making the percentage 

change at the high energy end considerably larger.

H. Summary

Although many theories have been presented in the literature (Refs. 

4, 5, 6, 8, 9), all have a range of validity, and the assumptions are not
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Fig. 7. Bremsstrahlung angular distribution for 3.5-MeV photons.
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all-inclusive regarding parameters now considered important in determining 

the useful detail of the bremsstrahlung angular and spectral distributions. 

The theory presented here has a range of validity for target thickness 

from zero to infinity, and for angular position from zero to angles larger 

than the half-intensity angle. The final equation is

dl(k,t) = —S (k,E )e"M(k)t
a p

*n 1 + at' j
l-KJD ) 2i,n[ 1 + Dt'

2

U)

1+0

+
0)o

1+0o

1+0
jfcn^l + at1

l+oo
+ C (56)

Although the formula looks rather complicated, the second term is

small except when (l + >> at'. This occurs only at large angles, when

k is close to its maximum value £ , or when t' becomes small. The condi-o
tions for the validity of the first term is that (l + << at' or_

(l/2)Dt', « 1, a condition that is alwpys met in the practical case.

The leading term in this expression is

dl(k,t) ~ Si (k,E0)e-,l(k) 11,(1 (
o

and can be compared with results obtained by others. The main differ­

ences in this expression are the new parameter t', which has been intro­

duced to replace t, and the angular dependence (l + ^Q)• Chapter III 

compares these theoretical results with those previously obtained by 

others.
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CHAPTER III

IMPROVEMENTS IN DEVELOPMENT OF OFF-AXIS BREMSSTRAHLUNG THEORY

A. Improved Approximations

1. The Weighting Function.

In Chap. II only the first term of Moliere's theory for electron 

scattering was considered. In some cases, however, experimental results 

have been obtained in the region of large angles where multiple scatter­

ing might play a lesser role, and plural scattering could account for 

most of the electron intensity. Examining this effect on the angular 

radiation distribution for a finite thick target, more accurate Born- 

approximation corrections have been applied to Moli&re's theory by Nigam, 

Sundaresan, and Wu.^

Rewriting Eq. (Uo), using the corrected Moliere's theory as it applies 

to relativistic electrons, the results are

W = l (1+6)d6

6=0

\ , 2(l-u0 „ 
,1 +{

' y=o

J (2y^A^) 
o

-y V 2ttci "t" |1 + g£ny - —-J—* y + higher order terms My,
B. E I

P x

(58)

Not being satisfied that the various terms in Eq. (58) are analyti­

cally nonintegrable, many attempts have been made to solve them exactly. 

These attempts have failed. However, in the mathematical exploration, an 

approximate derivation has been found that gives results similar to Eq. (37) 

and which agree more closely with the experimental data. This convincing 

derivation follows. Consider only the 6 intergral of Eq. (58)
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(1+6) (59)

6=0

(1 +
„ (l-O)) „ . ^9

2Xi^ls + 5 ')
?Jo<® )d6

= V T — Oir^'o^’ A 2 _and let 6T = E , L = 2yTSLT, A2 = (l-a))/(l+u)) for cj < 1, and 

A2 = (a)-l)/(o)+l) for w > 1.

Making these substitutions, the integral becomes

Lim 2
b -1-3

(i+E2)El j (d: ) (I£ )T dE ^

1/ / I b4±2A2E2 + Ey °

E=0 ' '

where b is introduced as a free parameter. 

Because

(60)

and

(b4 ± 2A2E2 + E4)“ ^ = (b4 ± 2A2E2 + E4)"^

± 2A fi(b41 2a2z2 + z4r = E2(bl+ ± 2a2^2 + £4)'

Equation (60) can be rewritten as

Lim 1/,+ I-A- + -J_^
b ^ 1 A ^ + db J (le)(ie)^ dZ. (6l) 

o

E=0
11This can be directly integrated using Hankel transforms

Li 
b -*

r -4 - p-i)Ko{<k2 J ^2)MJb {(k21 i*2>(62)

Carrying out the indicated differentiations, collecting like terms.

letting b 1, and substituting for A2 and L, the integral becomes

(1+<d) J (^(jj'^p^’y^') K^p'^’y^') 2p^y^.
(63)

Substituting Eq. (63) back into the expression for the weighting function.
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Eq. (58) then becomes

W = j P J0(2-W) K1^2p^y^2p^y^j2p^y^e y

y=o

t _i_ y. 0 2 TTOt -y+ ■g - l y + higher orders of ‘LnZpBZE 
P x

B dy. (64)

This expression for the weighting function represents the convolution 

of the electron-scattering angular distribution and the bremsstrahlung 

angular distribution as a function of the thickness ( ^ l/p). This expres­

sion has not been analytically solved; however, the various terms have been 

evaluated by computer, and the terns in the various powers of 1/B contribute 

only a few percent to the weighting function for small angles less than 10°. 

These small contributions will be ignored in the light of the approximate 

nature of the bremsstrahlung distribution for larger angles. The results 

indicate that the long, angular-distribution tail of the electron scatter­

ing contributes only slightly to the angular-distribution tails of the 

thick target bremsstrahlung.

Thus , the weighting function reduces to

W - y p Jo^2w^p^y^ K1^2p^y^2p^y^e ydy. (65)

y=o

2. Weighting Function - An Approximation.

Being unable to integrate Eq. (65) analytically, an approximate means 

of arriving at a simple, accurate solution was used. First, this equation 

was solved for zero angle (10 = 0), which can be done exactly.
CO

Wa)=0 = J PKx(2p^2p^e-ydy = p + p2ePEi(-p), (66)

y=o
where E^(-p) is the exponential integral. However, this form is very

difficult to manipulate; therefore, to simplify it, the terms are rearranged.



p (66a)wu)=0
P +

p + p2ePE.(-p)
- P

The term in brackets is a slowly varying function of p, which varies from 

2 for p 00 to 1 for p 0. However, as W is little influenced by the 

bracketed term for large values of p, an average value can be chosen with 

only a small error introduced in the region that will prove important

W v = 1.15.(Jd=0 p + V

A better approximation, which was considered but complicated some of the 

succeeding mathematical operations, is given here for reference. The 

error is only a few percent over the entire range of p.

(67)

k = (3 + /T)/2
w p(p + l)

a)=0 (p + k) (p + X)
X = (3 -

(67a)

Next, consider the integral of Eq. (65) in the region where p >> 1. This 

is the region of greatest contribution to the transmitted intensity. The 

integral is rewritten as

CO

WP + 00 = y' p J0(^W) 2p^dy. (68)

y=0

Note that p has been substituted for p to approximate the effect of the 
1

—y
term e for the smaller values of p, and is evaluated in the following 

development. Equation (68) can be solved exactly and reduces to

W
P (69)

If one demands that W = W _ for w = 0, then p = p + v andp-+oo U) = 0 l
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wp °o
p(p + a) ________ 2_______  p ________ ________

|^(l + Cd)p + vj2 (1 + w)p + V _ j^(l + w)p + V j
(TO)

Equation (JO) is not a bad approximation for p -* 0. This can be seen 

by letting

where p is now chosen to approximate the effect of the K 
1 1

term for small p. Or, upon integrating Eq. (Tl),

W
P o

- “P/P-l 
e (72)

If one demands that W ^ = W
p 0 co for co = 0, again p

1
p + v, or

W
p -> o

__E__ “wP/(p+v)
P + v

P
(l + co)p + v 1

(02P2
(T^j)'2 + (73)

The second terms of Eqs. (70) and (73) are nearly the same. Because the 

second term is only a correction to the identical first terms for W, then 

consider a new second term which will, in the limits stated, reduce to 

values indicated in Eqs. (70) and (73). Consider

cop
(l + co)p + v

]
Y (7M

and allow the v term in the numerator to be zero, then

Lim 
P 00

(p( 1 + (o)p2
[ (l + (o)p + v]2

(0
1 + (0 ’
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and
(75)Lim 

p o
g)(l + uQp2 

[(l + m)p + v]
v - 1 
u) large

(1 + oi) top 2
2 2 to^p^

Thus, the equation for the weighting function can he approximated closely 

for all values of p, that is,

W - tv—--------(l + to )p + v
ai( 1 + a))p2

[ (l + to)p + X)]2 (76)

3. Relationship of p to the Thickness x.

In order to prepare Eq. (76) for integration over the thickness 

parameter, x, one must find the x-dependence of p. Drawing from the 

previous parts of this report,

where

and

= 1., 1 
P F"2’ ’

1 x

B = £n{1. Iz;2&n l.i+c2} ,

t2 = K2(e25jt - l)/2S ,

K2 = 2200Z^(Z + 1)/A,

02 = K1^e25x - lj/25 • 2u2E2 , 

K1 = 0.3ll+Z(Z + 1)/A ,

E2 = E2e_2^X .

(77)

These equations are based on the fact that the electron's energy falls 

off exponentially in the region of importance. One can further simplify 

Eq. (77) by assuming an average value for B because it is a slowly varying
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function of x in the region where p will have its effect on W. Also,

2 x << 1 for any practical thickness which contributes to the intensity 

from a thick target. Making these good approximations yields

p = 2p2/K1Bxe = u/axe (78)

One evaluates a by choosing an approximate value of p which represents

the effective depth of bremsstrahlung. The previous chapters show this

to be in the region of p = 0.1. Using this value for p, v = 1.155 assuming E,x + 0

for this depth, and using the relationships shown by Eq. (77), a can be

solved.

a = 11.15K2/?2 ,

where Cg i-s determined by

^£n{l.l<;2Jln l.*^2} = 5.201^/^. (79'1

Graphs of this function, Appendix F, can be used for solving for a for the 

particular material used as the target. For example, gold has a value of 

l66.9 cm2/g. In contrast to the Chap. II results, this derivation finds 

a to be independent of to, thus simplifying the results.

4. Thick Target Bremsstrahlung.

Having developed the weighting function into an integrable form, now 

write the intensity at the angularly displaced detector by analogy to the 

development generated in the previous parts of this report.

f

(80)

x=0



Recalling that p - 1/ax and that a >> 1, the integration of the second

term is essentially complete before exp(-Dx) deviates appreciably from

unity. By the same line of reasoning, uo = w e can be replaced by
o 0

in the second term; thus, the integral portion of Eq. (80) can be 

written

fa ~ »)p +-ve'DXdx + f “oU * “t>3 ^

[ (i + wQ)p + vF dx.

x=0 x=0

(81)

Consider the first term and make
—r x —a) = w^e z . As 5 << a, for any 

cause a significant change in w, 

disappear. Thus, the first term 

error + t
1

1 + w o

/
1 +

_ x
the substitution p = v/axe h and again 

value of x, which is large enough to 

the w-dependence of this term will 

can be rewritten with essentially no

ax *-» -1
1+0)

-D 'x, e dx

x=0

D' = D - 5 = £ - y(k) - A(k). (82)

By analogy to the development in the two preceding chapters, the first 

term becomes

1
a

+
at1 \

1 + 0) J
o/

+ o) ) /a o (83)

The second term is straightforward and, after integrating, becomes

1_
2a at1 \

L + “oj
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The final equation can now be written

D' (l + a) )/a e o

at' \ 2
1+0) Jo /

(85)

This equation is similar to Eq. (5^) of Chap. II, except that now a is

not to -dependent and the final term is simpler and more accurate. It

is comforting that the approach used in developing these two equations 

is completely different, yet, to better than a first order, the results 

are the same.

B. Experimental Verification

1. Comparisons of Experimental Results.

The comparisons are restricted to the experimental results obtained
O

by Lanzl and Hanson. Their results were obtained from a well-designed 

experiment using the 20-MeV University of Illinois betatron. The theoreti­

cal equation must be corrected for the geometrical arrangement of Lanzl
g

and Hanson.

The most important correction is to compensate for the condition of 

the beam incident on the target. The theory, as developed in part A of 

this chapter, was based on an incident beam of parallel rays. In the 

experiment, the beam from the betatron traversed the thin aluminum walls
g

of a monitor, presenting an incident beam estimated by Lanzl and Hanson0 

to have an l/e width of 0.78°. The scattering theory incorporates a Gaussian

4U

function in MoliSre's leading term for electron multiple scattering, the 

incident angular dependence can be approximated by allowing Moli£re's



Gaussian term to generate this angular spread without allowing Eq. (85) 

to contribute any bremsstrahlung. This is done by replacing the zero 

lower limit of Eq. (85) by t^, obtained from Moli£re's Gaussian term.

-e2/e2B 
e 1 > (86)

by letting 02/02B = 1, and by using the various relations of Eq. (77) 
1

to derive

t. = S2/K . (87)
1 e 2

The upper limit then becomes t' + t. to properly account for the thickness 

of target traversed by the electrons.

Let Eq. (85) be rewritten in the form

jx/i -u nNkrdl (k ,t ,to ) = -—E o ap
(k,E )e“y(k)t L(t',u>o).

where

L(t' , u)o) = tn D1 (l + u )/a e o

^ ,

2(1 + m ) 2TT
“o . it' V2
+ CO ) ( 1 + 0) ) •

o \ 0/
(88)

Thus, the geometrically corrected differential intensity as a function

of photon energy, k, thickness, t, angular displacement of the detector,

a) , and the geometrical correction factor, t., becomes o 1
dl(k,t ,a) ) = R(k) =—S (k,E )e~v^S,t

o corr ap 1 o

{Kt't.,^) - L(t.mo)} • (89)

The R(k) multiplier has been added to account for the spectral response

of the detector. Although a correction for the finite entrance aperture



of the detector ( ^ 0.9°) would slightly ( < 2%) improve the results, 

the complications involved preempted making the calculations. The 

intensity as seen hy the detector becomes

I(t >w0) =

k=E
-y (k)t 

e {l(t' + t. ,oj ) 1 10
L(t.a) )}dk- 

i o J

k*o

It is Eq. (90) that will be compared with the experiment of Lanzl and 

Hanson as a verification of the correctness of Eq. (85).

2. Angular Distribution.

The relative angular distribution can be obtained from Eq. (90).

(90)

A(t,(jOo) =
I(t,coo)
l(t,0)

(91)

Consider the condition where the thickness t < 1 gm/cm2 for a gold 

target. Under these conditions, t' = t for practically all values of k.

making L(t' + t.,u) ) - L(t.,a> ) essentially independent of k, thus 10 10

L(t + t. ,o) ) - L(t. ,u) ^
’“o^t < 1 " L(t + t. ,0) - L(t. ,0) * (92)

Figures 9, 10, and 11 show the angular distribution for gold thicknesses 

of 51-5 mg/cm2 , 21+7.1 mg/cm2 , and 967.0 mg/cm2 , respectively. For the 

smaller thicknesses, the agreement is remarkably good. Here the theory 

of Lanzl and Hanson fails for the larger angles , primarily because their 

two-Gaussian approximation for the bremsstrahlung is not accurate enough. 

For the thicker target ( v 1 g/cm2), both theories agree with the experi­

mental data.

For the very thick targets, the theory of Lanzl and Hanson does not 

apply because there is no provision for apparent thickness , t' , as a 

function of photon energy, k. The angular distribution, in this case.
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can be written

A(t'“o)t > 1

{L(t' + t. ,oj ) - L(t.a) )}dk L 1 O 1 o

{L(t' + ti,0) - L(ti,0)}dk

(93)

In order to evaluate this expression, some knowledge of R(k) is necessary. 

For the ion detector used, the response is more nearly proportional to 

the number of quanta rather than the intensity because the ion detector 

is very thin compared with the mean free path of the secondary electrons 

involved. Consequently, R(k) is not a very sensitive parameter, and it 

is assumed that R(k) is proportional to 1/k. Thus,

E

A(t,<jj )o E

f S1(k,Eo)e"y(k)t {L(f + t.,u>o) - L(t.,u)o)}dk

y’°S1(k,Eo)e y(k)t {L(t- + ti,0) - L(t.,0)} dk

k=0

(94)

Figure 12 shows four points calculated by using Eq. (94). The integra­

tion indicated was computed graphically for the four points shown, and 

the experiment and theory agree within experimental error. No comparison 

could be made with the theory of Lanzl and Hanson since their theory is 

not valid for this thickness.

3. Central Yield.

Another interesting comparison of theory and experiment is the central 

yield as a function of thickness. Consider Eq. (90), with m = 0 and 

R(k) 'v 1/k

E
r°

Kt,0) ^ / S1(k,Eo)e-,,(k)t {L(f + t.,0) - L(t..O) ak. (95)

k=0
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Figure 13 is a plot of the central yield, as calculated by Eq. (95)

indicating the experimental points of Lanzl and Hanson. The experi­

mental and theoretical curves are normalized near the peak value.

Again, the agreement is well within the experimental tolerances.

i*. Spectral Distribution.

Although there are no experimental data on the spectral distribution 

as a function of angle, it might be interesting to plot the intensity 

distribution that one could expect from a thick target. Using Eq. (85), 

the spectral distribution for a 7250.7 mg/cm2 gold target is displayed 

in Fig. 14 for various angular positions. It is evident that the 

spectral distribution is essentially independent of angle, except for 

the high-energy tip.

C. Summary

It has been demonstrated that the differential intensity from a target 

of any thickness can be represented by the equation

D'(l + w )/a e o

(96)

It is estimated that the error in Eq. (96) is a few percent. This

equation assumes that the rays in the incident beam are parallel. 

Corrections can be accurately made for an incident beam having a Gaussian 

angular distribution in the manner developed in Chap. Ill, part B.
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For most practical purposes, Eq. (96) can be simplified by letting 

D' be equal to zero. Thus, ignoring the second-order effects of the 

electron-energy gradient, absorption coefficient, and differential 

bremsstrahlung, Eq. (96) can be simplified to

dl(k,t,u) ) ^^S.(k,E )e_u(k)t 
o ap 1 ’ o

tn( 1 + at wmo
1 + m / 2(l+ m;

0/ o
1 - 1 +

at'
1 + m dk. (96a)

The error in Eq. (96a) is estimated to be about 10 to 15$.

D. Thin Target Approximation

For thin targets Eqs. (96) and (96a) reduce to

dl(k,t ,m ) = —fS (k,E ) ^
ot->o p(-*- 0 (l + wj^|

t dk

iNt l,M----->ka dk,
t P ) s (96b)

where n is the number of incident electrons , — is the number of atoms
P

or scattering centers per cm25and ko^ is Schiff's bremsstrahlung cross 

section (cm2).

E, Thick Target Approximation

For most practical cases , the target thickness is chosen to produce 

optimum intensity. This is in the region where t > 1 gm/cm2 for high-Z 

material. In this range an approximate equation is

dl(k,t ,<j
) - aSsUk-E )e-'j(k)t!H

) ap 1 ' o I \
at'

1 + w 2(1 m ) 
o

dk. (96c)

The error is probably 10 to 20%. 55



APPENDIX A

B - Approximation

Moliere's theory gives an equation defining the parameter B as:

B - t_nB = ^n^2 - 0.15U. (A-l)

By inspection, the asymptotic value for B as ? is B = JU1?2. Thus, 

assume

B = £n?2 + A(c2), (A-2)

and substitute back into (A-l) and solve for A(c2).

AU2) = tn|^0.85T3{tn?2 + A(?2)} (A-3)

As A(c2) is a very slowly varying function of £2, one can further 

assume that A(?2) has the following form

A(£2) = jyija ln(b?2)} (A-U)

or

B = An^2{^n(bc2)}l . (A-5)

Values for a and b are chosen to give a best fit to the values 

derived by Moli&re (Table A.l). The error of this approximation is 

less than 1% over the entire range.



TABLE A.l

Values of B

a = '1.1 b = 1.1+

101 10 2 10 3 10 4 10 5 10 6 Oi—
1 H O CD 10 9

Moli&re 3.36 6.29 8.93 11.1+9 13.99 l6.1+6 18.90 21.32 23.71*

Approxi­
mation 3.37 6.29 8.98 11. 56 11+.08 16.1+6 18.92 21.35 21+.07

*This value as tabulated by Segrfe :is probably in error.
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APPENDIX B

Effective Depth of Bremsstrahlung Generation

Fortunately, as can be inferred from the derived weighting

function W(x) (Fig. l), the primary contribution to the detected

bremsstrahlung is generated in the thin layer of target material

facing the incident electron beam. The effective depth, x, can be

approximately calculated by use of the weighting function W(x).

Examination of W(x) and S_,(k,E ) show
1 x

W(x) = (1 + ax) 1, (B-l)

and

/
S,(k,E ) dk ~ E- 3-5 .

1 X

k=0

If one arbitrarily defines the effective depth of bremsstrahlung, 

x, to be the depth at which one-half of the total detected intensity 

is generated, ignoring absorption, then

/

k=0

E 3. S
x

1 + ax dx
E 3-5 

x
1 + ax dx.

X-T

(B-2)

It is assumed that E^ varies exponentially, which is a good approxi­

mation considering the thin layer in which most of the primary radi­

ation is generated. Then

I
I gX£izUgx} ^ = / exp{-3.^x]

1 + ax 1 + ax dx. (B-3)

x=0 x—x
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Here £ is the electron decay parameter as defined in Eq. (29). 

Equation (B-3) can be directly reduced, that is,

2E.i
(B-U)

Because the arguments of these exponential integrals are both << 1, 

Eq. (B-4) can be simplified.

C + Hn- (H3- 55

whereC is Euler's constant, 0.5772. 

Solving for the effective depth,

C + to 1^51
a

x 1
a

(B-5)

(B-6)

Example: For tungsten,

125 = 0.1956 cm2/g (value obtained from Venable and Eq. (29)) 

a = 165.3 cm2/g

G = £nc = 0.5772 

t = 0.06U g/cm2.Therefore,



APPENDIX C

Optimum Thickness

The optimum thickness target would he that thickness which pro­

duces the greatest intensity at the detector after passing through an 

object. As high-Z materials of considerable thickness have a minimum 

absorption cross section in the region of 3.5 MeV, it is desirable to 

calculate the target thickness that will give the maximum intensity 

at this energy. From the development of Eq. (5*0, the detected inten­

sity is approximately proportional to

Q = e { tn (l + at/(l + Oj- 2£n(l + Dt/2^ j . (C-l)

The maximum intensity will occur when

dt
D

l1 * “o)+1 + (jo \ + ax 1 + Dx /2

- u <£n 1 + axo/(l + u>o) - 2£n(l + DxH = V^xJ. (C-2)

The equation is solved by using Newton's approximations, knowing 

approximately the optimum thickness. Thus,

To to dV,
ikL

(C-3)

where x is the optimum thickness, and t is an approximation. Should 
o o

the first approximation be too great in error, the process may be iterated

for increased accuracy.

Example: For tungsten at energy 3.^9 MeV,
a = 165.3 cm2/g
A = 0.3717
y = O.OU08 cm2/g
t = 2.0 g/cm2
a)°= 0. 

o
60



Using these parameters x - 2.07^6, by iteration x^

Therefore, x =2.08 g/cm2, which is equivalent to 0.1112 
o

= 2.083H. 

cm of

tungsten.



APPENDIX D

Exponential Integral Approximation

The terms

However, 1/a << t' except when t'(y + A - 2^) << 1, again simplifying

/ \ / \ (t')2(A + y - 2?)2
£ Ei = toll + at' 1 + t'l A + y - 2C 1 + ^+

or

(D-3)



The series in the brackets now appears as an approximation to the 

expansion of a logarithm function, thus

^ Ei = 2,n^l + at' j - 2£n^l + ^ t' (2? - y - A) ). (D-M
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APPENDIX E

Useful Data

Spectral Distribution
3.5 MeV Bremsstrahlung

Intensity (Tungsten)

Optimum Infinitely
Photon Thickness Thin
Energy Intensity* Intensity** Thickness Intensity*

0.00 MeV 0.00 0.0419 0.00 g/cm2 0.00
0.1+9 3.99 0.2765 0.02 1.27
1.1+9 4.43 0.3806 0.04 1.75
2.1+9 4.31 0.4437 0.06 2.06
3.1+9 4.16 0.4861 0.10 2.46
1+.1+9 3.99 0.5166 0.40 3.49
5.49 3.83 0.5399 0.80 3.90
6.49 3.67 0.5591 1.00 4.00
7.49 3.53 0.5781 1.20 4.06
8.49 3.40 0.5924 1.40 4.11
9.49 3.28 0.6086 1.80 4.15

10.49 3.17 0.6254 2.00 4.16
11.49 3.06 0.6431 2.10 4.16 Optimum
12.49 2.96 0.6620 2.20 4.16
13.49 2.87 0.6824 2.40 4.15
14.49 2.78 0.7043 2.60 4. l4
15.49 2.70 0.7278 3.00 4.U
16.49 2.60 0.7531 3.50 4.05
17.49 2.46 0.7801 4.00 3.99
18.49 2.32 0.8089 5.00 3.84
19.49 2.14 0.8395 6.00 3.69
20.49 1.92 0.8720 7.00 3.53
21.49 1.64 0.9064 7.38 3.47 Maximum
22.49 1.26 0.9426 8.00 3.38 Electron
23.49 0.74 0.9807 9.00 3.24 Penetration
24.49 0.00 1.0000 10.00 3.12

nNTE2O 0^Intensity in \mits of --------  map o

nNTE2O 9**Intensity in units of --------  adx • map o

Intensities will have the same dimensions as assumed for m c2.



APPENDIX F

Calculation of a

To analytically calculate an average value of a(x) is very 

difficult. A calculation of a in the region where p = 0.1 will 

he considered sufficient. This is in the proper region of x 

that approximates the effective depth of generated bremsstrahlung 

(Appendix G). The value of a allows the weighting function to be 

accurate to a few percent in the region where the weighting function 

contributes the greater part of the x integration.

Equation (79) is needed to calculate a.

a=11.5K2/?25 (F-l)

where is determined by e J

C2£n|l.l?2tn l.l+e2l= 5.20K /K . (F-2)
e ( e e ( 2 1

easiest way to determine a for the above equation is by 

graphical means. Figure 15 is a plot of the function given by 

Eq. (F-2). Using this graph, the value of a for gold has a value 

166.9 cm /g.
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2.5 3 6 78910

66



APPENDIX G

Effective Depth of Bremsstrahlung Generation

Following the pattern outlined in Chap. I (Appendix B), the 

effective depth of bremsstrahlung, x, is defined to be the depth 

at which approximately one-half of the total detected intensity is 

generated. The equation, which includes the effect of the angular 

displacement of the detector, is

1 - 3.5§x
ae/f

(l+o) )/a -3.5£x

dx
to + ax o

f ° -------- — dx

\1 + U)// l + o) + ax
\ o' o

x=0 x=0

-3.5Cx
ae dx. (G-l)

1+0) + axo
x=x

The second term accounts for the resonance effect. The solution to 

this equation is obtained in a straightforward manner similar to that 

used in Chap. I.

x

0) /(l + 0) \Jr
(l+o))2° °\ l + o)

o

3.5 5 ca
(G-2)

where ^,n c = C = 0.5772 (Euler’s constant). Using the values of a 

from Eq. F.I, the values of effective depth vs angular displacement 

for tungsten are tabulated in Table G.I. Practically the same values 

would be valid for gold.

TABLE G.I

EFFECTIVE DEPTHS FOR TUNGSTEN

o) = 0 1 h 9 16 25o 
t = 0.06 0.10 0.l6 0.22 0.27 0.31
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APPENDIX H

Nomenclature

a Roughly proportional to the mean square deflection

gradient and is given by Eq. (23) and Eq. (79).

Units: cm2/g.

a Reciprocal of the electron total energy squared a = E^ 2.

6 A constant used in approximating the electron energy

degradation in the target. 6 is the slope of the

electron differential energy loss vs incident kinetic

B,02
1

energy curve.

Constants defined by Segrfe^ to express details of the

Molibre theory for particle electron distribution, Eqs.

(6), (10), and (11).

C,c C = tnc = Euler's constant = 0.5772.

d Distance of detector from target. Units: g/cm2.

dx Differential thickness of target. Units: g/cm2.

6 Defined by 6 = 02E2/(l + w).

D Defined by D = 2£ - y(k) - A(k).

D' Defined by D' = £ - y(k) - A(k).

A = A(k) Related to bremsstrahlung gradient and given by Eq. (31)

Units: cm2/g.

Eo’Ex Total energy of the incident electrons and of the

electrons at the penetration x. Units: m0c2•

£o>€x Kinetic energy of the incident electrons and of the

electrons at the penetration x. Units: m c2.0
f(ee,x,Eo) Fractional electron angular distribution, f (d.x,^ )m '-'o

O
is Mott's formula.

Angular displacement of the incident electron with respect

to the axis. Units: radians.



Angular displacement of the emitted photon with respect 

to the axis between the direction of the electron and the 

photon. Units: radians.

Angular displacement between the axial planes containing

0 and 0,. Units: radians, e d

Angular displacement between the axial planes containing

0 when 0, = 0 . Units: e d e : radians.

Photon energy. Units: 2m c^. 
o

Linear absorption coefficient. Units: cm2/g.

Number of incident electrons.

Number of atoms in target. Units: atoms/cm3.

The electron energy loss gradient in the target, given 

by £ = 3 + (o/^). Units: cm2/g.

Defined by 1/B02.
1

Defined by ap.

Density of the target. Units: g/cm3.

Thickness of s = t - x. Units: g/cm2.

A constant used in approximating the electron energy 

degradation in the target. The zero energy intercept 

on the ordinate is a.

Differential bremsstrahlung cross section. Units: cm2. 

Thickness of the target. Units: g/cm2.

The lesser of the following: t, the thickness; or

1 ° + ^o0
— £n --------—— , the distance traveled by an electron in3 a + kg ’

the target with initial kinetic energy £ and emitting 

a photon of energy k at the end of its range.

The effective depth for bremsstrahlung production. One-half 

bremsstrahlung intensity is produced at a depth less than



T O

4>

W(x,)

x

0)
X

Z,z

x, one-half at penetrations greater than x. Units: g/cm2. 

The optimum thickness. The depth of penetration at which 

the greatest intensity will be observed at the detector. 

Units: g/cm2.

Angular displacement between the axial planes containing

0 and 0,. Units: radians, e d
Interpreted as the weighting function for the production 

of bremsstrahlung at a given angle at the depth x per unit 

solid angle.

Thickness of the electron penetration depth.

Defined by w = m = 0^E2.x dx o do
Atomic number of target material, of impinging particle 

(electron, z = l).
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