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. .X- ray .ana lys i s  and e l e c t r i c a l  conduct iv i ty  measurements 

( 8 0 0 - 1 0 0 0 ~ ~ )  on y t t r i a - h a f n i a  s o l i d  s o l u t i o n s  between 2 and 
-, 

20 m/o Y203 "eke made t o  l o c a t e  t h e  cubic  phase and s e l e c t  f o r  

f u r t h e r  i n v e s t i g a t i o n s  t h e  composition b e s t  s u i t e d  a s  a s o l i d  

e l e c t ' r o l y t e .  The phase boundary i s  loca ted  near  7 m/o Y203. 

T o t a l  c o n d u c t i v i t i e s  obtained from t h e  cubic  phase s o l i d  so lu-  

t i o n s  appear t o  be i o n i c .  The 8 m/o Y203-Hf02 composition 

0 showed t h e  h i g h e s t  conduc t iv i ty  ( log  q = -1.57 a t  1000 c ) ,  

and lowest a c t i v a t i o n  energy (16.9 kcal/mole) ,- and was 

s e l e c t e d  a s  t h e  optimum composition f o r ; a  s o l i d  e l e c t r o l y t e .  

Open c i r c u i t  emf, e l e c t r i c a l  conduc t iv i ty ,  and Wagner 

0 
d-c p o l a r i z a t i o n  measurements between 800 and 1000 C were made 

t o . d e t e r m i n e  t h e  e l e c t r o l y t i c  domain of t h e  8 m/o Y203 compo- 

s i t i o n .  The e l e c t r o l y t i c  domain width a t  1 0 0 0 ~ ~  extends from 

. l o g  Po2(atm) = -16.6 t o  4-0.4. The 8 m/o y t t r i a  s t a b i l i z e d  
: .......c.... . . - . -  - 

. h a f n i a  composition does appear s u i t a b l e  as a s o l i d  e l e c t r o -  
\ .  . . 

-2yte. - I t s  e l e c t r i c a l  p r o p e r t i e s  a r e  very s i m i l a r  t o  t h o s e  of 
. - 

c a l c i a  s t a b i l i z e d  z i r c o n i a .  
. . 
. - . . 
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,- - - .  .,. 
INTRODUCT LON 

.Wi th in  t h e  p a s t  decade i n t e r e s t  has  been focused on t h e  
.-.... , . 

e l e c t r o l y t i c  behavior  of c e r t a i n  s o l i d  oxide ceramics wi th  t h e  

" o b j e c t i v e  of c h a r a c t e r i z i n g  and u t i l i z i n g  s o l i d  oxide e l e c t r o -  
. . 

l y t e s  i n  p o t e n t i a l  t echno log ica l  a p p l i c a t i o n s .  
.-:. . . . . 
. , Nernst (1) c a r r i e d  out  t h e  f i r s t  sys temat ic  i n v e s t i g a t i o n  
.-.I . .  

c?n - .  t h e  . e l e c t r i c a l  conduc t iv i ty  of oxides i n  1899. By appl-ying 

" an e l e c t r o s t a t i c  p o t e n t i a l  ac ross  an oxide sample and i n v e s t i -  

g a t i n g  . the r e a c t i o n  products  occurr ing  a t  t h e  ca thode  and 

anode, he concluded t h a t  oxygen ions  were p r imar i ly  respons i -  

brle f o r  t h e  e l e c t r i c a l  conduction through a z i r c o n i a - y t t r i a  

s o l i d  g o l u t i o n .  
. . 

. I n  1933 Wagner (2) publish.ed a  theory  p e r t i n e n t  t o  t h e  

a p p l i c a t i o n  of s o l i d  oxide e l e c t r o l y t e s  when h e  considered t h e  
- .  

ox ida t ion  mechanisms f o r  a  meta l  covered with an oxide s c a l e  

surro&ded by an ox id iz ing  atmosphere. The dramatic  implica-  

t i o n  of Wagner's s c a l i n g  r a t e  theory  i s  t h e  e x i s t e n c e  of a 
i - 

measurable e l e c t r o s t a t i c  p o t e n t i a l  d i f f e r e n c e  a c r o s s ' t h e  s c a l e .  
-. 

A s  an outcome of h i s  a n a l y s i s ,  Wagner der ived an  expr.ession 
- . . -  . .  

f o r  t h e  open c i r c u i t  emf ac ross  a  meta l  oxide mixed conductor 
. . . . 

s c a l e .  

Although Nernst had observed i o n i c  conduction i n  oxide 



ceramics and Wagnzr had der ived  t h e  necessary equat ions f o r  

. t h e  u t i l i z a t i o n  of s o l i d  e l e c t r o l y t e s ,  i n t e r e s t  i n  t h i s  a r e a  

layed dormant h n t i l  1957 when Kiukkola and Wagner explained 

( 3 )  and demonstrated ( 4 )  t h e  use fu lness  of s o l i d  oxide e l e c -  

t r o l y t e s .  1n . the i . r  work ( 4 )  they  determined t h e  s tandard  f r e e  

energy of formation of s e v e r a l  simple b ina ry  oxides us ing  c a l -  
.- . 

' c i a  s t a b i l i z e d  z i r con ia l  a s  t h e  s o l i d  e l e c t r o l y t e .  Independ- 

e n t l y  P e t e r s  and Mann (5) and P e t e r s  and  obiu us (6) performed 
. . . . . - 

- .  s i m i l a r  experiments employing t h o r i a  based e l e c t r o l y t e s .  These 

two p ioneer ing  p ieces  of work s t imula ted  t h e  r e v i v a l  of i n t e r -  

e s t  i n  high-temperature ga lvanic  c e l l s  incorpora t ing  s o l i d  

oxide e l e c t r o l y t e s .  
. . 

S o l i d  s t a t e  ga lvanic  c e l l s  can be convenient ly d iv ided  

i n t o  two groups depending upon t h e i r  p a r t i c u l a r  a p p l i c a t i o n :  

1. C e l l s  i n  which information i s  e x t r a c t e d  under open 

c i r c u i t ' c o n d i t i o n s ,  such a s  those  providing thermo- 

dynamic d a t a .  

2 .  C e l l s  which a r e  cont inuously operated under l o a d  

. condi t ions  producing an e x t e r n a l  
- .  _ -  

- . c e l l s .  

c u r r e n t ,  such a s  f u e l  

1 
C a l c i a  s t a b i l i z e d  z i r c o n i a ,  y t t r i a  s t a b i l i z e d  z i r c o n i a ,  

y t t r i a  doped t h o r i a ,  and y t t r i a  s t a b i l i z e d  ha fn ia  w i l l  be 
r e f e r r e d . t o  throughout t h i s  t h e s i s  a s  CSZ, YSZ, YDT, and YSH 
r e s p e c t i v e l y .  



The e l e c t r o l y t e  requirements f o r  t h e  two a p p l i c a t i o n s  a r e  not  

n e c e s s a r i l y  t h e  same. Providing t h e  e l e c t r o n i c  conduc t iv i ty  

i s  s i g n i f i c a n t l y  smal l e r  than  t h e  i o n i c  conduc t iv i ty ,  t h e  

magnitude of t h e  i o n i c  conduc t iv i ty  should not  be an impar tant  

f a c t o r  f o r  c e l l s  of type  1. On t h e  o t h e r  hand s i n c e  t h e  e l e c -  

t r o n i c  conduc t iv i ty  c o n s t i t u t e s  an oxygen leakage c u r r e n t  with-  

i n  t h e  e l e c t r o l y t e ,  l ead ing  t o  erroneous emf va lues ;  i t  i s  a  

c r i t i c a l  f a c t o r  i n  e v a l u a t i n g  e l e c t r o l y t i c  p r o p e r t i e s  of oxides 

f o r  c e l l s  of type  1. I n  t h e  case  of oxygen f u e l  c e l l s ,  they  

requi . re  t h e  e l e c t r o l y t e  t o  possess  t h e  h ighes t  p o s s i b l e  oxygen 

i o n  conduction w h i l e  be ing  capable  of wi ths tanding  a  smal l  

e l e c t r o n i c  conduc t iv i ty .  I n  genera l  t h e  requirements f o r  a 

good e l e c t r o l y t e  are t h a t  i t  possesses  a  high i0ni.c c o n d ~ c t i v -  

i t y ,  a smal l  h o l e  'or  e l e c t r o n  conduc t iv i ty ,  a  r e l a t i v e l y  s t a b l e  

s t r u c t u r e ,  and an i n e r t  behavior  toward most e l e c t r o d e  mate- 

r i a l s .  As an added convenience, i t  would be advantageous t o  

c o n t r o l  t h e  mobiie s p e c i e s .  A s  can be  imagined t h e r e  a r e  few 

m a t e r i a l s  t h a t  meet t h e s e  requirements .  The most popular 

e l e c t r o l y t e s  t o  d a t e  c o n s i s t  of f l u o r i t e  s o l i d  s o l u t i o n s  .based 

on z i r c o n i a  and t h o r i a  i n  which t h e  dopant c a t i o n s  s u b s t i t u t e  
/ 

d i r e c t l y  on t h e . c a t i o n  s u b l a t t i c e  and induce f u l l y  ion ized  

oxygen vacancies  a s  t h e  compensating d e f e c t  (7 ,8 ,9 ,10 ,11) .  

The e l e c t r i c a l  t r a n s p o r t  i s  accomplished by t h e  migra t ion  of 



t h e  mobile -oxygen vacancies .  

Unlike pure t h o r i a  which possesses  a  cubic s t r u c t u r e ,  

z i r c o n i a  must be doped t o  comple te ly  s t a b i l i z e  t h e  cub ic  
- 

f l u o r i t e  s t r u c t u r e  e l i m i n a t i n g  t h e  d e s t r u c t i v e  monoc l i n i c  t o  

t e t r a g o n a l  phase t ransformat ion  which occurs around 1 0 0 0 ~ ~ .  

Th i s  leads  t o  one of t h e  main disadvantages of z i r c o n i a  based 

e l e c t r o l y t e s ,  s i n c e  thermal  cyc l ing  leads  t o  d e s t a b i l i z a t i o n  

(12) .' , Also t h e  z i r c o n i a  based e l e c t r o l y t e s  e x h i b i t  a h igher  

e l e c t r o n i c  conduc t iv i ty  (13,14) than  t h o r i a  based e l e c t r o l y t e s .  

The e l e ~ t r o ~ ~ t i c  domain of t h e  t h o r i a  based e l e c t r o l y t e s  i s  

loca ted  w i t h i n  a l ~ w e r ~ o x y g e n  p a r t i a l  pressure  range than  t h e  

z i r c o n i a  based e l e c t r o l y t e s  (15,16),  consequently t h e  app l i ca -  

t i o n  w j - 1 1  d e f i n e  c o n s t r a i n t s  on t h e  oxygen p a r t i a l  p r e s s u r e  

range which must be met by t h e  proper e l e c t r o l y t e .  

The i n v e s t i g a t i o n  of new p o s s i b l e  s o l i d  e l e c t r o l y t e s  has 

been in f luenced  by t h e , p r o v e n  behavlor of t h e  f l u o r i t e  s o l i d  

so~ . .u t i6ns  s f  z i r c o n i a  and t h o r i a .  F l u o r i t e  s o l i d  s o l u t i o n s  

of h a f n i a  appear a s  a  l o g i c a l  choice and some l i m i t e d  s t u d i e s  

(17,18,19) have been performed on such systems. The r e l a t i o n -  

s h i p  between t h e  cubic  f l u o r i t e  s t r u c t u r e  and t h e  C-type r a r e -  

e a r t h  oxide s t r u c t u r e .  (20-23) suggest  poss ib le  e l e c t r o l y t i c  

behavior f o r  C t y p e  r a r e - e a r t h  oxides ,  



- . , LITERATURE SUItVEY 

. - . . . .  : ' Appl ica t ions  of S o l i d  Oxide E l e c t r o l y t e s  

. . . .  
The employment of z i r c o n i a  and t h o r i a  based e l e c t r o l y t e s  

has l e d  t o  advances i n  k i n e t i c  and thermodynamic experimenta- 
. . . . .  

t i on .p roduc ing  impetus f o r  new a p p l i c a t i o n s .  High temperature 
. . 

galvanic .  c e l l s  involv ing  s o l i d  oxide e l e c t r o l y t e s  have been 

used t o  i n v e s t i g a t e  t h e  n a t u r e  of i o n i c  and e l e c t r o n i c  d e f e c t  . . .  . . . . . .- -. .. 

- s t r u c t u r e s ,  determine s to ichiometry  l i m i t s ,  monitor r a t e  proc- 
....... . . 

esses,and oxygen contencs of ho t  gases and l i q u i d  me ta l s ,  and 
. . -  - .  

y i e l d  thermodynamic information concerning numerous systems. 
- .  . .. . . - . - -  -..- . - 

Rather than  g ive  an ex tens ive ' r ev iew,  . . . . .  . . only r e p r e s e n t a t i v e  

examples and unique a p p l i c a t i o n s  w i l l  be covered t o  f u r n i s h  
. . . . 
t h e  reader  wi th  t h e  types of experiments being performed i n  

t h e  f i e l d  of s o l i d  e l ec t rochemis t ry .  Excel len t  reviews per -  

t a i n i n g .  t o .  solid - e l e c t r o l y ~ e s  and t h e i r  a p p l i c a t i o n s  ' have been . . 
- .  . . 

published by Alcock (24) and Raleigh (25) .' ..................... - . .  . 

. .  . -  -..  Sol id  e l e c t r o l y t e s  possess  t h e  property of t r a n s p o r t i n g  

e . l e c t r i c a 1  charge s o l e l y  by i o n i c  conduction, tion - .- . 
> 0 . 3.9. 

. Applying t h i s  cond i t ion  . t o  Equation 16A ( see  Appendix A) a 
- .  . - -  . . . . . .  

. s impl i f i ed  equat ion now resu1t . s .  
. . 



T-he n&berlof charge equ iva len t s  c a r r i e d  by t h e  mobile i o n i c  

s p e c i e s . i s  represented  by n .  I n  t h e  case  of one mole o f  d i -  

atomic oxygen, n  = 4 .  I f  a l l  of t h e  a c t i v e  condensed phases 

,.:of t h e  e l e c t r o d e  m a t e r i a l s  a r e  i n  t h e i r  s tandard s t a t e s ,  then  

.-.Equation 1 can be r e w r i t t e n  a s  

0 
Where bGcell i s  t h e  s tandard  Gibbs f r e e  energy change f o r  t h e  

c e l l  r e a c t i o n .  
- . .  

.--probably t h e  most f r e q u e n t l y  employed s o l i d  oxide ga l -  
*. .- - . , Li:y.<: -- .' .. . !...!.' . - 

-.L ': :. : .' +r - . . 

vanic c e l l  i s  t h e  displacement c e l l .  

The e lec t rodes  can be metal-metal  oxide compacts (26) which 

- a r e  predominantly e l e c t r o n i c  conductors and f o r  smal l  c u r r e n t s  
. . -  .. . 
of l imi ted  dura t ion  a.re r e v e r s i b l e  t o  oxygen i o n s .  The e l e c -  
.., . .  . . . - .  C : .  . - .  
t r o d e  f i x e s  a  s p e c i f i c  chemical p o t e n t i a l  of oxygen a t  t h e  

. , . . . < . - .  
C"': ... . . . .  L 1.. .. 

&l .ec t rode /e lec t ro ly te  i n t e r f a c e  s o  long a s  t h e  two phase equi-  
:. .. 9 . . . . . . .  . . . - - .  . . .. 

c l i b r i u m  ' i s  maintained.  S ince  u n l i k e  e l e c t r o d e s  f i x  d i f f e r e n t  
... . . . . 

oxygen p o t e n t i a l s ,  a  d i f f u s i o n a l  f l u x  of oxygen i o n s  w i l l  

-proceed down t h e  g r a d i e n t .  Since no e l e c t r o n s  can flow under 
. .  . ,,; ,;: ; - - ; ' - . . .  . - - .  - . .  . . . 

'open c i r c u i t  cond i t ions  t o  count,cr balance the 'oxygen ion  
- .  . . . . . 

. . . . 

f l u x ,  t h e  s t eady  s t a t e  cond i t ion  produces a  space-charge which 
. . . . . . .  

p r o h i b i t s  any f u r t h e r  d i f f u s i o n .  The p o t e n t i a l  d i f f e r e n c e  



c r e a t e d  by - the  space-charge i s  t h e  open-c i rcui t  emf. 

The displacement c e l l  i s  t h e  s imples t  t o  c o n s t r u c t ,  t h e  

e l e c t r o l y t e  i s  sandwiched between two d i s s i m i l a r  metal-metal  

oxide e l e c t r o d e s  and t h e  c e l l  arrangement placed w i t h i n  a high- 
c . .  . . 

temper.ature i n e r t  atmosphere. . The c e l l  emf i s  measured wi th  a . -. - .  

potent iometer .  
.... 

The c e l l  r e a c t i o n  f o r  C e l l  I i s  
L . . . . . . . . .  . . . . - . . .  

The open c i r c u i t  emf corresponds t o  t h e  s tandard  f r e e  energy ...-,17......>..... ........... r-----.. L__ ? . .  , - .. . - - - . . , . . . 

change f o r  t h e  . . c e l l  r e a c t i o n  given by Equation 2 .  The c e l l  
Li:: - .:: . .  * . .  . . . . : .  

r e a c t i o n  i s  t h e  combination of two formation r e a c t i o n s .  
i s .  - . . ...... - - .  . . . 

. . B O . 3  B + 502 
-. . . - .  

( 4 )  

Providing good thermodynamic d a t a  i s  a v a i l a b l e  f o r  one of t h e  

above r e a c t i o n s  4 o r  5 ,  t h e  e l e c t r o d e  invvlv ing  t h e  the-hno- 
: -. .. . .  . . . . . .  . . . .  . - - .  . . . .  

dynarnically,defined~.c~ompound i s  chosen as t h e  r e f e r e n c e  e l e c -  
!:: -. . . . .  . . .  . . - - 

t rode . .  The d i f f e r e n c e  between t h e  c e l l  f r e e  energy and t h e  

r e fe rence  e l e c t r o d e  f r e e  energy i s  t h e  s tandard f r e e  energy of . . 

formation -. - . of t h e  d e s i r e d  compound i n  t h e  oppos i te  e l e c t r o d e ,  

providing C _ . .  t h e  p o d u c t s  and. r e a c t a n t s  a r e  i n  t h e i r  s t andard  

s t a t e s .  . I f  t h e  l e f t  e l e c t r o d e  of C e l l  I i s  chosen a s  t h e  
: . .  - .  

r e f e r e n c e  -.- e l e c t r o d e ,  - . . . . .  then  . . .  



. . 
0 

( 6  A G ~ ~  = AGAO - nFE , 

I . i . . 
L - 

Displacement c e l l s  were used by .Kiukkola and Wagner (4) 
. . . . . . . . .  . . 

t o  determine t h e  molar f r e e  energy of formation of COO, N i O ,  

: and Cu20 us ing  CSZ as t h e  e l e c t r o l y t e  and an i ron-wi is t i te  mix- 

. - -  t u r e  a s  t h e  r e f e r e n c e  e l e c t r o d e  based on we l l  e s t a b l i s h e d  
. - :. . - 

thermodynamic d a t a  (27). ~a~~ (28) measured t h e  f r e e  energy 
- ...... . . .  . , - - 

of formation of Moo2 u s i n g  n i c k e l - n i c k e l  oxide and i r o n -  
. . C s  - : L-: . . L-,: 

. - w i i s t i t e  a s  t h e  r e fe rence  e l e c t r o d e s .  Thor ia  based e l e c t r o -  
C .  

l y t e s  have been employed i n  displacement c e l l s  t o  determine 
,- . . . . . . . . - - . . - . . . 

t h e  f r e e  energies  of formation of MnO ( 2 9 ) ,  ,Ta205 (30,31) ,  and 
c .  ' .. - .  - - .  i - " -  .. " 

. . . . .  - 7  .- . . 

var ious  oxides of niobium (30-33). 
. . < . . . . . .  . . . .  . . 

. Elect rodes  need not  be confined t o  t h e  s o l i d  s t a t e .  The 

f r e e  energy of formation between a l i q u i d  metal  and i t s  oxide 

has been measured (34) wi th  r e s p e c t  t o  N i - N i O  equi l ibr ium.  
C, ,T7 .  7 . . -  .... - . . -. . . . . . . .  - . . .  

The l i q u i d  meta l  was contained i n  a c r u c i b l e  made wi th  a CSZ 
. . - . .  

L - . .  . . . . . . . . . . .  

%bottom and s i l i c a  s i d e  w a l l s .  
. : .- . 
. . . .  . . 

Gaseous e l e c t r o d e s  have been used a s  r e f e r e n c e  e l e c t r o d e s  

i n  displacement c e l l s  t o  i n v e s t i g a t e  gas phase equi l ibr ium 

r e a c t i o n s  involv ing  carbon, carbon monoxide, and carbon d i -  
- - . . . . . .  . . . .  
oxide ( 5 , 6 ) .  The employment of gas e l ec t rodes  does o f f e r  a 

. . .  . . . .  . . 

method f o r  t h e ' d i r e c t  de terminat ion  of t h e  f r e e  energy of 

formation of a compound from a s imple formation c e l l  i n  which 



t h e  compound i s  fonned from i t s  elements.  Bidwell  (35,36) 

determined t h e  f r e e  energy of formation of cuprous oxi.de us ing  
. . 

.the fol lowing c e l l .  
- .  

. . .  . Cu,Cu2O/CSZ/O2 ( 1  atm) I1 

  he c e l l  r e a c t i o n  i s  .. . . -  . .  

. . 

 he. open c i r c u i t  emf, owing t o  t h e  s i m p l i c i t y  of t h e '  c e l l ,  

 orr responds d i r e c t l y  t o  t h e  f r e e  energy of formation of 

cuprous oxide.  
. . 

. - - .  . . . C e l l s  u s i n g  ,gas e l e c t r o d e s  a r e  more d i f f i c u l t  t o  con- 
L . . , ; - . . t .  .... . . - 

s t r u c t ,  s i n c e  t h e  e l e c t r o d e  compartments must be separa ted  by 

.a gas t i g h t  s e a l  t o  prevent  in . t e rac t ions  between t h e  e l e c -  
< 

t rodes  through t h e  gas phase.  

The f r e e  ene rg ies  of formation of t e r n a r y  compounds have 

been detennined from t h e i r  b ina ry  compounds. Schmalzried (37) 
. . 

employed t h e  fol lowing c e l l  
I . - .  . - - . .  . 

A,AO/CSZ/AB~O~ ,B2O3 , A .  

w i th  t h e  corresponding c e l l  r e a c t i o n  
- .  

A 0  + B203 3 AB204 . (8) 
. . 

t o  . s t u d y , t h e  f r e e  energy of formation of var ious  s p i n e l s .  
C . .  . :. -.- 

Using s i m i l a r  c e l l s ,  Benz and Wagner (38) s t u d i e d  t h e  thermo- 

0 
dynamics of calcium s i l i c a t e  compounds a t  700 C .  Levine and 



Kolodney (39) determined t h e  s tandard  f r e e  energies  of fonna- 

t i o n  of t h e  tantalum s i l i c i d e s  from emf measurements on c e l l s  

w i t h  YDT e l e c t r o l y t e s .  The d i s s o c i a t i o n  pressures  of numerous 

f e r r i t e  compositions have been measured by Car te r  (40) who 

used wi is t i te  and c o b a l t  oxide a s  t h e  r e fe rence  b ina ry  com- - ..- 

pounds and a CSZ e l e c t r o l y t e .  . . - 

.Modif ica t ion '  of t h e  non-reference e l e c t r o d e  t o  incorpor-  

a t e  'a meta l  a l l o y  i n  t h e  simple displacement c e l l  al lows t h e  

de terminat ion  of  meta l  a c t i v i t i e s  i n  s o l i d  s o l u t i o n s .  A 

t y p i c a l  c e l l  f o r  t h i s  type  of measurement i s  

A,AO/Electrolyte/ABalloy,AO. IV 

General ly  t h e  a c t i v i t i e s  o f .  A and A0 i n .  t h e  r e f e r e n c e  e l e c -  

t r o d e  a r e  t aken  t o  be  u n i t y  providing t h e r e  i s  n e g l i g i b l e  

'oxygen s o l u b i l i t y  i n  t h e  pure meta l .  The element B should be 

more noble than  A o r  p resen t  a t  a low enough a c t i v i t y  s o  a s  

no t  t o  reduce t h e  compound AO. The c e l l  r e a c t i o n  i s  simply 

A(pure) 2 A(al1oy).  ( 9 )  
- 

Since  A0 of ,  e s s e n t i a l l y  t h e  same chemical p o t e n t i a l  i s  p resen t  

b n b o t h  s i d e s  of t h e  ' c e l l  and t h e  s tandard  s t a t e  of A ( ~ u r e )  

and A(al1oy) are i d e n t i c a l ,  Equation 1 i s  reevalua ted  t o  g ive  



The . - a c t i v i t y  of t h e  o t h e r  a l l o y i n g  component i s  usua l ly  

obtained by i n t e g r a t i n g  t h e  Gibbs-Duhem equat ion.  

Use of t h i s  technique has lead  t o  t h e  determinat ion of 

t h e  a c t i v i t y  of i r o n  i n  t h e  systems i ron-gold ,  i ron-pal ladium, 

and. i ron-plat inum (41) and t h e  a c t i v i t y  of n i c k e l  i n  t h e  

nickel-pal ladium (42) and nickel-copper  (26) a l l o y s .  
.. . . . 

A p r a c t i c a l  a p p l i c a t i o n  of t h e  above descr ibed c e l l s  has  

b e e n . t h e  development of an oxygen pressure  gage. Weissbart  
--.. . . . -. - 

and Ruka (43) developed such a  gage which u t i l i z e s  t h e  follow- 
---- -;C ;.'> - .---; '.--.... . - 6 :  ... - - 

i n g  c e l l  
r -  ._ 
. - 

and permi<s t h e  measurement of oxygen pressures  i n  a  vacuum o r  

gaseous media. The unknown. oxygen p ressu re ,  Po2, can be 
. . . - 
\ .  

d.etermined . . from Equation 11, 

* 
where - . . - - - - Po2 . . i s  . t h e  oxygen p ressu re  f i x e d  by t h e  r e f e r e n c e  e l e c -  - 
t rode ;  t h e  o t h e r  symbols r e t a i n  t h e i r  normal d e f i n i t i o n s .  

Schmalzried (44) has  descr ibed  a  s i m i l a r  c e l l  u s i n g  N i 7 N i . O  - .  
. - -. 

e-quilibrium as  t h e  r e f e r e n c e  e l e c t r o d e .  A t  t h e  p resen t  t ime 

s e v e r a l  oxygen p ressu re  gages a r e  commercially a v a i l a b l e  which . - .  . . 

a r e  based on t h e  r e l a t i o n s h i p  expressed by Equation 11. 

- , .  ,..,The.T..ohviaus extens ion  of t h e  oxygen gage i s  t h e  measure- 



ment of oxygen a c t i v i t i e s  i n  meta l  m e l t s .  Assuming t h a t  

oxygen d i s s o l u t i o n  i n t o  t h e  l i q u i d  meta l  obeys ~ i e v e r t ' s  Law, 

Equation 11 can be  r e w r i t t e n  i n  terms of t h e  a c t i v i t y  of 

monatomic oxygen . i n  . t h e  l i q u i d  meta l ,  

where P: aga in ,  r e p r e s e n t s  t h e  oxygen p ressu re  a t  t h e  r e f e r -  
2 

en.ce e l e c t r o d e .  Th i s  technique i s  very appeal ing t o  t h e  s t e e l  

: making i n d u s t r y  and has  prompted cons iderable  r e sea rch  i.n t h i s  

a r e a  (45-48). . . 

. The p r i n c i p l e s  f o r  determining meta l  a c t i v i t i e s  i n  s o l i d  

s o l u t i o n s  can be used t o  determine t h e  phase l i m i t s  of non- 

s to ich iomet r i c  con~pounds. Aronson and B e l l e  (49) measured t h e  

oxygen a c t i v i t y  i n  theU02+, system f o r  0 > x >  0.20 between 

0 
1150 and 1350 C ,  t h e i r  c e l l  be ing  

Fe,FeO/CSZ/U02+x , P t  . V I  

The i n c r e a s i n g  oxygen a c t i v i t y  a s  shown by t h e  decreas ing  open 

c i r c u i t  emf wi th  i n c r e a s i n g  x i n d i c a t e d  a one phase composi- 

t i o n  w i t h i n  t h e  range  of x .  Blunienthal -- e t  a l .  (33) used a - 
s i m i l a r  c e l l  t o  determine t h e  compositional phase l i m i t s  of 

nons to ichiometr ic  Nb205-x. Markin -- e t  al-.  (50) used t h e  c e l l  

N i  , N i O / E l e c t r ~ ' l ~ t e / ~ O ~ + ~  ,U40g-y V I I  

t o  determine t h e  phase boundary between t h e  two components of 



t h e  non r e f e r e n c e  e l e c t r o d e .  I n v e s t i g a t i o n s  i n  t h e  one phase 

U02+x region  were c a r r i e d  out  by e l imina t ing  t h e  second phase 

U4°9-y from c e i l  V I I .  A technique of coulometr ica l ly  t i t r a t i n g  

oxygen ions  from t h e  r e f e r e n c e  e l e c t r o d e  t o  t h e  uranium oxide 

was . used . f o r  t h e  r eg ion  c l o s e  t o  s to ichiometry .  I n  t h i s  man- -.,. 

v,er.,.the composition was changed over a wide range by adding o r  . . 

removing . .  . oxygen e lec t rochemica l ly .  Following each t i t r a t i o n ,  

t h e  -. - .  open ' c i r c u i t -  emf was. measured a s  a  funct ion  of temperature.  

Coulometric .. . - . . - - . - . t i t r a t i o n  techniques have been used t o  i n v e s t i g a t e  - .--" - .--. - - -  

t h e  nons.toichiometric .,_ . oxides of Ti02, V02, Nb02, Moo2 and U02 

-(51) . . and FeO (52) .  

. . .  - The success  of t i t r a t i o n  experiments suggested t h e  pos- . . - .  - - .  . . 

s i b l e  a p p l i c a t i o n  of s o l i d  oxide e l e c t r o l y t e s  a s  s o l i d  s t a t e  

oxygen i o n  pumps. An app l i ed  v o l t a g e  across  t h e  e l e c t r o l y t e  

e s t a b l i s h e s  an oxygen. i o n  c u r r e n t  'which changes t h e  oxygen 

p o t e n t i a l ,  . . -  - ... . a t  t h e  non-reference e l e c t r o d e .  Although t h e  i o n  

pump i s  s t i l l  i n  i t s  in fancy ,  t h e r e  have been s e v e r a l  i n v e s t i -  

ga t ions  . . which have shown promise. Yuan and KrEger (53) have 

removed oxygen from s t a t i o n a r y  and f lowing gases u s i n g  a CSZ 

- - e l e c t r o l y t e  and an a i r  r e f e r e n c e  e l e c t r o d e .  While determining 
. . .  . . . 

t h e  lower e l e c t r o l y t i c  boundary f o r  8 m/o YDT, Tretyakov and 
L - 

Muan (54) cou lomet r i ca l ly  pumped oxygen from a gas t i g h t  corn- 
. . .  - ... 



partment us ing  an  a i r  r e f e r e n c e  e l e c t r o d e  and a double e l e c -  

t r o l y t e  composed o f  a CSZ l a y e r  adjacent  t o  a YDT l a y e r .  

- . The a p p l i c a t i o n  of s o l i d  e l e c t r o l y t e s  which has rece ived  

t h e  most a t t e n t i o n  w i t h i n  th6  p a s t  decade has been t h e  . a rea  of 

Euel : c e l l s .  Weissbart  'and :Ruka (55)- r epor ted  t h e  ' p o s s i b i l i t y  . 

of. -using CSZ : i n  & - f u e i  c e l l  f o r  :convertirig t h e  Chemical energy 

o f - r e a c t i o n  'between a carbonaceous f u e l  and an ox'idant - d i r e c t -  
. . -- 

l$:f o e l e c t r i c a l  :energy.  - -era1 l a b o r a t o r i e s  a r e  p r e s e n t l y  

pursuing r e s e a r c h  along these '  l i n e s .  - -. - . .  . . - . . 

. . .  
;,L. Recent ly ..galvanic c e l l s  :with s o l i d  .oxide . e l e c t r o l y t e s  

have- 'found a p p l i c a t i o n  : i n  k i n e t i c  s t u d i e s  involv ing  d i f  fu -  
. . 

s ion-con t ro l l ed  and phase boundary r e a c t i o n s .  R icker t  - ( 5 6 )  

measured t h e  oxygen ' d i f f u s i v i t y  i n  s i l v e r  by means of t h e  

fo*llow2ng c e l l :  . 
. . . .. . .  

. . 
. - 

. . -. . . .  - .  . .  . Ee,FeO/YSZ/Ag + O(disso1ved) . . VIII 

The open. :ci-rcuit &f y ie lded  : the  : i n i t i a l  oxygeii :concentrat ion 

ii-i-'sZl+er .'. Orice t h i s  had 'beeri es tabl i shed , .  oxygen was'- t i ' -  

Crated by means .of an . ex te rna l '  app l i ed  vo l t age  from t h e  s i l v e r  

e l e c t r o d e  t o  t h e  r e f e r e n c e  e l e c t r o d e .  S ince  t h e  oxyg& d i f f u -  

s i o n  'through t h e  s ' i l ve r  was the,  r a t e  l i m i t i n g  s tep , .  the..meas- 

uked e l e c t r i 6 a l  - .  .current-  i s  equi-valent' t o  t h e  oxygen which, i s  

d i f f u s i n g  out  of t h e  s i l v e r .  Thus t h e  oxygen d i f f u s i o n  coef-  



., f i c i e n t  can be c a l c u l a t e d .  

A, s l i g h t  modif ica t ion  of C e l l  V I I I  has  allowed Tare  and 

~ c h m a l z r i e d  (5.7) t o  determine t h e  phase boundary r e a c t i o n  r a t e  

c o n s t a n t ' f o r  t h e  ox ida t ion  of i r o n  f o i l s  i n  var ious  C 0 2 / C 0  

atmospheres. A t h i n i r o n  f o i l  was s i n t e r e d  on a  CSZ e l e c t r o -  -- 

l y t e  tube.  The . re fe rence  e l e c t r o d e  was maintained a t  one 

atmosphere of oxygen. I n i t i a l l y  t h e  C 0 2 / C 0  r a t i o  was f i x e d  t o  

mainta in  t h e  Fe meta l .  The r a t i o  was then  increased  and t h e  

open c i r c u i t  emf w a s  recorded wi th  t ime.  By choosing a t h i n  

f o i l ,  t h e  phase boundary r e a c t i o n  was t h e  r a t e  l i m i t i n g  s t e p  

r a t h e r  than  t h e  d i f f u s i o n a l  process through t h e  f o i l ,  conse- 

quent ly  t h e  measured emf r e f l e c t e d  t h e  phase boundary r e a c t i o n  

r a t e . '  It i s  i n t e r e s t i n g  t o  no te  t h a t  i n  t h i s  way Tare  and 

Schmalzried were a b l e  t o  measure t h e  supersa tu ra t ion  necessary 

t o  nuc lea te  t h e  f i r s t  wi is t i te  n u c l e i  on t h e  i r o n  f o i l .  

I m p l i c i t  i n  a l l  of t h e  a p p l i c a t i o n s  f o r  s o l i d  e l e c t r o -  

. l y t e s  i s  t h e  assumption t h a t  t h e  i o n i c  t r a n s f e r e n c e  number i s  

u n i t y .  Therefore  i t  i s  imperar ive when i n v e s t i g a t i n g  a new 

. . 
m a t e r i a l  a s  a  p o s s i b l e  e l e c t r o l y t e  t o  determine i t s  e l e c t r o -  

l y t i c  domain and i f  necessary  t ake  i n t o  account depar tu res  

from tion = 1 by applying t h e  r u l e s  of de fec t  chemistry.  



. . .L Previous Studies on Undoped Y t t r i a  

Yttrium does no t  belong i n  t h e  lan thanide  s e r i e s ,  how- 

ever  owing t o . i t s  e x t e r n a l  e l -ec t ronic  conf igura t ion ,  it i s  

. . 
commonly a s s o c i a t e d  wi th  t h e  r a r e  e a r t h s .  Yttrium sesqui -  

. oxide ,  Y203, i s  t h e  only known s o l i d o x i d e  of y t t r ium.  A t  

room' temperature and under one atmosphere pressure  i t  posses- 

ses t h e  cubic  r a r e  e a r t h  type  C s t r u c t u r e  (Ia3)  (58,59) wi th  
. ,, . . - . -. . 

16 sesquioxide folmula u n i t s  per  u n i t  c e l l .  

The C type  r a r e  e a r t h  s t r u c t u r e  i s  c l o s e l y  r e l a t e d  t o  
. . .... 
the-ca lc ium f l u o r i d e  s t r u c t u r e  (22,23) w i t h  one f o u r t h  of t h e  
. . . 4.r -.. 

, a n i o n s  missing i n  o rde r  t o  ba lance  t h e  t r i v a l e n t  c a t i o n  charge 

and a s l i g h t  displacement of t h e  i o n  p o s i t i o n s .  The f l u o r i t e  

s t r u c t u r e  can be rep resen ted  a s  an a r r a y  of cubic  MOB coordin- 

a t i o n  groups wi th  a c a t i o n  loca ted  a t  t h e  cen te r  of t h e  
. . 

s i m p l e  cubic  anion c e l l .  The MOB groups sha re  edges p r o d w i n g  

.'an. o v e r a l l  face-centered-cubic symmetry. The C type  s t r u c t u r e  

c o n s i s t s  of MO6 coord ina t ion  groups pos i t ioned s i m i l a r  t o  t h a t  

of t h e  f l u o r i t e  a r r a y .  A s  a r e s u l t  of t h e  oxygen vacancies  
. 
and t h e  s l i g h t  i o n  displacements ,  t h e  u n i t  c e l l  possessed a 

body-centered-cubic symmetry. The oxygen vacancies a r e  

loca ted  i n  such a'manner a s  t o  fonn r e l a t i v e l y  open pathways 

through t h e  oxygen s u b l a t t i c e ,  consequently m a t e r i a l  t r a n s p o r t  



would be expected t o  be enhanced i n  t h e s e  m a t e r i a l s .  F igure  

1 A  shows an example of t h e  unimpeded pa ths  throLgh t h e  C type  

r a r e  e a r t h  s t r u c t u r e .  

E l e c t r i c a l  conduc t iv i ty  s t u d i e s  and open c i r c u i t  emf 

'measurements on r a r e  e a r t h  sesquioxides and y t t r i a  have been . -  

few i n  number. Noddack and co-worker~  (60-62) determined t h e  

e l e c t r i c a l  conduc t iv i ty  of y t t r i a ,  many of t h e  r a r e  e a r t h  

oxides ,  and s e v e r a l  r a r e - e a r t h  oxide b inary  s o l i d  s o l u t i o n s  

and z i r c o n i a - y t t r i a  s o l i d  s o l u t i o n s .  Conductances were d e t e r -  
. -7' . . ... , 

mined from dc p o t e n t i a l - c u r r e n t  and current - tempera ture  meas- 

urements. T h e i r  - samples .had -been-  previous ly  s i n t e r e d  a t  

0 
1300 C f o r  t h r e e  t o  s i x  hours .  ,The.measurements were c a r r i e d  

out i n  a i r  and i n  vacuum of unknown oxygen p o t e n t i a l .  The 
. -. 

absence of observing a  decomposition p o t e n t i a l ,  s e p a r a t i o n  of 

. m a t e r i a l s  a t  t h e  e l e c t r o d e s ,  'and a  p o l a r i z a t i o n  c u r r e n t  i n d i -  

ca ted  t h a t  t h e  i n v e s t i g a t e d  .- m a t e r i a l s  exh ib i t ed  only e l e c t r o n -  . . -- . - . - - . . - - . . , . , . . . . .. .. .. .. - - 

i c  conduction between 600 and 1 2 0 0 ~ ~ .  Ac t iva t ion  ene rg ies  

were r epor ted  f o r  t h e  conduction processes .  
I . . 

- The.most r e l i a b l e  conduc t iv i ty  measurements on y t t r i a  

have. been made by T a l l a n  and Vest ( 6 3 ) .  The e l e c t r i c a l  con- 
. - .. . . . .  

. -  . . ,  . 
d u c t i v i t y  o f  v e r y  pure ,  p o l y c r y s t a l l i n e  Y203 was obtained 

from guarded measurements wi th  an ac b r idge .  The oxygen 



Figure  LA. Unimpeded pathways along 110 d i r e c t i o n s  
(RE203 type  C s t r u c t u r e )  



p o t e n t i a l  i n  t h e  gas phase was contro. l led by us ing  pure oxygen 

a t  var ious  p ressu res ,  CO and C02 mixtures ,  o r  H2 and H20 mix-. 

. t u r e s .  The d a t a  i n d i c a t e d  t h a t  y t t r i a  i s  an amphoteric semi- 

I 
conductor over t h e  temperature range 1200 t o  1 , 6 0 0 ~ ~  and oxygen 

. . 

p a r t i a l  pressures  of 10-I  t o  10- at,. W i t h i n  t h i s  r eg ion  . .. . 

t h e  i o n i c  c o n t r i b u t i o n  t o  t h e  t o t a l  conduct iv i ty  was l e s s  than  

l % , a s  determined by t h e  blocking e l e c t r o d e  p o l a r i z a t i o n  tech-  

nique.  I n  t h e  r eg ion  of predominant h o l e  conduction, t h e  

conduc t iv i ty  could be expressed by t h e  fol lowing r e l a t i o n s h i p .  

. T h e  observed p ressu re  dependence was a t t r i b u t e d  t o  f u l l y  ion-  

i z e d  y t t r ium vacancies . .  Measurable p o l a r i z a t i o n  was de tec ted  

a t  lower temperatures .  The i o n i c  t r ans fe rence  number was 

0.15 a t  8 0 0 ' ~  and .an oxygen p a r t i a l  pressure  of 10-l5 a t m .  

0 A t  t h e  same oxygen p ressu re  and 700 C ,  t h e  i o n i c  t r a n s f e r e n c e  

number had inc reased  t o  0 .3  i n d i c a t i n g  mixed conduction i n  

0 
y t t r i a  below 900 C .  

While  i n v e s t i g a t i n g  t h e  d e f e c t  s t r u c t u r e  of Tho2-Y203 -_ 
s o l i d  s o l u t i o n s ,  Subbarao -- e t  a l .  (9) measured t h e  e l e c t r i c a l  

- - 
conduct iv i ty  of pure y t t r i a  i n  a i r  between 800 and 1 4 0 0 ~ ~ .  

The a c t i v a t i o n  energy f o r  conduction agreed q u i t e  w e l l  w i th  

t h a t  r epor ted  by T a l l a n  and Vest. 



- .  Schmalzried (64) measured t h e  open c i r c u i t  emfs a t  tem- 

pe ra tu res  between 800 and 1 0 0 0 ~ ~  across  s e v e r a l  r a r e  e a r t h  

sesquioxides u s i n g  a ga lvanic  c e l l  of t h e  form: 

. . F ~ , F ~ O ! R E ~ O ~ / N ~  , N ~ O  . I X  

. . 

'The  .observed open c i r c u i t  emfs were i n  agreement wi th  theo-- . ...- 

r_e t i ca l ly  -. ...- -.... c a l c u l a t e d  .- .... - - -. -. values  .. - . . . .  demonstrating . . . .  predominant . . i o n i c  

conduction. These r e s u l t s . w e r e  encouraging enough. to promote 

f u r t h e r  i n v e s t i g a t i o n s  ..by Tare  and Schmalzried (21) over more 

extended oxygen p a r t i a l  p ressu res .  ' A  galvanic  c e l l  of t h e  

' ' was employed by carefu l ly :  a t t a c h i n g - s i n t e r e d  d i s k s  of t h e  

r a r e  e a r t h  oxides onto a CSZ open end impervious tube .  The 

i n s i d e  of t h e  tube  was maintained a t  1 a t m  pure oxygen whi le  

che e x t e r n a l  oxygen p ressu re  w a s . c o n t r o l l e d  by N2-02, C02-CO, 

o r  H2-H20 mixtures  . . , , A l l ,  . the : . ra re  e a r t h  oxides .  i n v e s t i g a t e d  

wi th  t h e  except ion of c e r i a - e x h i b i t e d  predominant i o n i c  con- 

d u c t i v i t y  o v e r - a n  intermediate .oxygen p a r t i a l  p ressu re  

' reg ion .  The parameters Pa and Po which a r e  c h a r a c t e r i s t i c . o f  

. t h e : m a t e r i a l  were. def ined a s  oxygen pressures  a t  which t h e  

i o n i c  conduct iv i ty  equals  t h e  h o l e  conduct iv i ty  o r  t h e  excess 
. - .  . . .  7 .  . - . ~ " .  

e l e c t r o n  conduct iv i ty  r e s p e c t i v e l y .  Only one de terminat ion  
. . . . . . . . . . . . . .  . . . . .  ! .  ' - . , . . , _ .  . . . . 



f o r  y t t r i a  was repor ted .  A t  8 2 5 ' ~  t h e  Pa va lue  was 10- 4 .2  

and t h e  Po va lue  was 5. P@ and Pe va lues  f o r  o t h e r  

r a r e  e a r t h  oxides were r epor ted .  

..Macki (65) i n v e s t i g a t e d  t h e  e l e c t r o l y t i c  behavior  of 
- - 

doped and undoped Dy203 and Gd203 by e l e c t r i c a l  conduc t iv i ty  

s t u d i e s  and open c i r c u i t  emf measurements. The doped oxides 

contained va r ious  percentages of ThoZ and CaO. Undoped Gd203 

and Tho2-doped Gd203 exh ib i t ed  predominant i o n i c  conduc t iv i ty  

over a smal l  in t e rmedia te  oxygen p o t e n t i a l  reg ion ,  thus  n u l l i -  

fy ing  t h e i r  use fu lness  a s  s o l i d  e l e c t r o l y t e s .  The d a t a  i n d i -  

'cated - t h a t  CaO doped Gd2O3 could. be  used a s  a s o l i d  e l e c t r o -  

l y t e  i n  regions  of low oxygen p ressu res .  The conduc t iv i ty  

behavior of Dy2O3 and CaO-doped Dy203 could no t  be des'cribed 

by a simple d e f e c t  model. Both t h e  undoped and doped Dy2O3 

did  not  show any apprec iab le  i o n i c  conduc t iv i ty ,  consequently 

they were c l a s s e d  unacceptable  a s  s o l i d  oxide e l e c t r o l y t e s .  

Bhattacharyya (66) s t u d i e d  the .  e l e c t r i c a l  conduc t iv i ty  

of p o l y c r y s t a l l i n e  and s i n g l e  c r y s t a l  Er203 between 450 and 

- 1 4 5 0 ~ ~  and oxygen p ressu res  of 10' t o  atm. The conduc- 

t i v i t y  could be expressed as 

0 = 00 p:Lm exp ( -E /M)  

wi th  t h e  observed behavior  analyzed i n  terms of two d e f e c t  



models, meta l  vacancies  and anion i n t e r s t i t i a l s  . The var ious  

p ressu re  dependencies r epor ted  were a t t r i b u t e d  t o  t h e  ion iza -  

t i o n ' s t a t e s " o f  t h e  meta l  vacancies .  E l e c t r i c a l  conduc t iv i ty  

and the rmoe lec t r i c  power measurements i n d i c a t e d  predominant 

: h o l e  conduction w i t h i n  t h e  s t a t e d  temperature and oxygen pres-  
. . 

. . -. . . 

. su re .  reg ions .  

McPheeters -- e t  al. (67) have pa tented  an e lec t rochemical  
- - 

c e l l  which uses  h igh  p u r i t y  y t t r i a  as t h e  e l e c t r o l y t e  t o  con- 

t i n u a l l y  monitor t h e  oxygen content  i n  a  l i q u i d  sodium r e a c t o r  

, -coolant .  The p a r t i c u l a r  c e l l  employed was 

Y t t r i a  was chosen a s  t h e  e l e c t r o l y t e  m a t e r i a l  because of i t s  

predominant ' ionic  conduc t iv i ty  a t  temperatures and oxygen 

. p o t e n t i a l s  p resen t  i n  t h e  sodium coolant  loop of a r e a c t o r .  

It. a l s o  exh ib i t ed  i n e r t  behavior .  toward l i q u i d  sodium and 

could be f a b r i c a t e d  i n t o  an imp-ervious s t a t e .  Observed open 

' c i r c u i t .  emf measurements were on t h e  order  of 80 t o  100 mv 

'which corresponded t o  7 t o  30 ppm oxygen i n  sodium. 
._ . . 

. Previous S tud ies  on Doped Hafnia 
. . 

. . A s  i n  t h e  c a s e  of t h e  r a r e  e a r t h  oxides ,  t h e r e  have been 

a l imi ted  number of i n v e s t i g a t i o n s  on doped h a f n i a .  Johansen 

and Cleary (19) measured t h e  e l e c t r i c a l  conduc t iv i ty  of CaO- 



: H f o ~  so l id .  s o l u t i o n s  from SO0 t o  2 0 0 0 ~ ~ .  The conduc t iv i ty  was 

"assumed t o  be  i o n i c  based on previous ly  repor ted  i n v e s t i g a -  

?iti.ons of CaO-2rO2 s o l i d  s o l u t i o n s .  The oxygen p o t e n t i a l  was 

.not - repor ted  bu t  .must have been l i m i t e d  t o  low o r  in te rmedia te  

.oxygen p a r t i a l  p r e s s u r e s ,  s i n c e  a g r a p h i t e  r e s i s t a n c e  furnace  -. . A 

- with*: :an::argon ;atmo.sphere. was used .  The maximum conduc t iv i ty  
. . '  

..-,was found t o  be a t  12 .5  m/o CaO o r .  6.25% anion vacancies .  

- . , - .  . 
-\ .,-. . . ~ d d e d  . i n s i g h t  i n t o  t h e . e l e c t r o n i c  conduct iv i ty  i n  c a l c i a  

: s t ab i l i zed  h a f n i a  can be obtained from t h e  oxygen permeabi l i ty ,  
. . 

s t u d i e s  :by smith (17,).. . A. 2 - ~ o w e r  oxygen p ressu re  dependence 

.:o.f_.the ,..permeabili.ty. was .found f o r  13.5 m/o CaO-Hf02 wkth an 

. ac t iva t ion  energy . for  h o l e  conduction of 58.5 kcal/mole.  The 

; . transport  mechanism was a t t r i b u t e d  t o  t h e  migra t ion  of oxygen 

vacancies  and e l e c t r o n  h o l e s .  

- ..Most of t h e  s t u d i e s  involv ing  t h e  r a r e  e a r t h  oxides and 

.:hafnia d e a l  wZth t h e  s t r u c t u r a l  determinat ion of va r ious  s o l i d  

- so lu t ions , .  i nc lud ing  t h e  ex i s t ence  of a pyrochlore compound 

Re2Hf 207, and t h e  genera l  det,ermination of phase diagrams (68, 

6 9 ) .  C a i l l e t  -- e t  a l .  (70) have done a  s t r u c t u r a l  s tudy of t h e  

Hf02-Y203 system from 0  t o  50 m/o Y203. From x-ray d i f f r a c -  

t i o n  analyses ,  a two phase region  e x i s t e d  between 0 and 8  m/o 

Y2O3 and only t h e  cubic  f l u o r i t e  phase was p resen t  above 8  m/o 



Y2o3 .  T h e - l a t t i c e  parameter showed an anomaly a t  3 3 . 3  m/o 

Y203: Along wi th  t h e  e l e c t r i c a l  conduct iv i ty  s t u d i e s  by 

Besson -- e t  a l .  '(18) which showed a  minimum i n .  conduc t iv i ty  and 
. . .  - - 
a maximum i n  a c t i v a t i o n  energy a t  1 0 0 0 ~ ~  f o r  t h e  3 3 . 3  m/o Y203 

- -  . - - , .  . . . - .  

-compos~ition, t h e  e x i s t e n c e  of t h e  pyrochlore compound Y2Hf207 - 
. . -  . . 

was' p red ic ted  bu t  never  r e a l l y  observed. . An a-c  two probe . . . -. .. . . ~ . -  - .  . - 

.method was 'used t o  measure t h e  e l e c t r i c a l  conduc t iv i ty  of 
. . .  

var ious  y t t r i a - h a f n i a  s o l i d  s o l u t i o n s  i n  a  c o n t r o l l e d  atmos- 

phere.  The 8 m/o Y 0 composition exh ib i t ed  a maximum con- 
. . .....-. ..- -:-,,-., ?-.-" ..-...?-y. --_- =.-- 2  -.-3 r..-. :.,,-.. -:. ................... , 

. . . . 

d u c t i v i t y  . . which was p ressu re  independent and a  minimum a c t i v a -  . . .  . . . . . . . . .  . . . . . .  . . . .  F L  :.:. . . . . . . . . . . . . . .  . - .  . . . . 

t i o n  energy. An  oxygen p ressu re  dependence w a s  observed wi th  
. . . . . .  . - .  . . . .  . . . . . . . . . . . . . . . .  . . -  , 

compositions con ta in ing  l e s s  than  8 m/o y203  and was i n t e r -  
. . . - 

pre ted  a s  t h e  e l e c t r o n i c  c o n t r i b u t i o n  ,from t h e  monoclinic 
&. - . . 

s o l i d  s o l u t i o n  w i t h i n  t h e  two phase region .  Open c i r c u i t  emf 

va lues  ac ross  va r ious  cubic  f l u o r i t e  compositions between 
, . scL .. ' . . .  . . . _ . . . . : . . .  .._ 
. N i - N i O  and Fe-.FeO e l e c t r o d e s  agreed wi th  thermodynamic va lues  

' . . --. _ . _. . . . . . .  . - . . . . . . . . . . . . .  -. . - . . . .  . .  .. - . -  -. - . . . . . . . . .  - . .  
. . .  L 

v e r i f y i n g  . t h a t  t h e  e l e c t r i c a l  conduct iv i ty  remains i o n i c  down 

to-oxygen p ressu res  . . f i x e d  by t h e  e l e c t r o d e s .  



STATEMENT OF PURPOSE 

This. i n v e s t i g a t i o n  involved t h e  measurement of t h e  e l e c -  

t r i c a l  conduct iv i ty  of undoped y t t r i a - o v e r  an-oxygen p a r t i a l  
. . . . 

p r e s s u r e  range of 1 t o  10-16 atrn and a temperature range o f .  
, . 

.. - -. 
700 t o  1 0 0 0 ~ ~ :  Open ci;cuit e i f s  were measured over t h e  same 

. . .  . . - - .  . * ... 
temperature i * t e r v i l  and 'oxygen- 'par t ia l  -pressures  of 10- 6 I;; 

10-50 atm. . . . - . - .. . . . . . .  . . . .  

- -. 
- .  E l e c t r i c a l  conduc t iv i ty  measurements on y t t r i a - h a f n i a  

-----c.omposi.tions .between-: 6.-and :20' m - o l - e ~ - p e r ~ c e n t . ' . ~ ' t t ~ ~ a  ~ ~ e ~ - ~ ~ . ~ - p & ~ -  

. . . . . .  
formed b e h e e n  :800 - and 10doOc and oxygen p a r t i a l  p r e s s u r e s  of 

1,:t.o' -lo-'* . atm t o  determine t h e  optimum cornpoiition f o r  f u r t h e r  

i n v e s t i g a t i o n s  as a p o s s i b l e ' e l e c t r o l y t e .  Open c i r c u i t  emf 

measurements, coulometr ic  t i t r a t i o n . e x p e r i m e n t s ,  and polar i .za-  . . 

t i o n  s t u d i e s  were performed t o  determine t h e  e l e c t r o l y t i c  

behavior :  of : t h e  chosen composition. 
. < 

The purpose of -- t h i s ' i n v e s t i g a t i o n  was t o  determine th,e - . 
. .  ... ......... - .  .- . - . . .  

e l e c t r o l y t i c  domains (tion y . 0 :  99) of undoped y t t r i a  and y t t r i a  

s t a b i l i z e d  h a f n i a .  w i t h i n  t h e s e  .domains, t h e s e  oxides could be 
- .  

Gsed a s  s o l i d  e l e c t r o l y t e s  i n  high-temperature ga lvanic  : c e l l s .  



. -  . 
- "  . . .  - .. . . . .  

THEORY 
. - 

. . 
. . -. 

Conduction Domain Theory 
- . . "  - . . . . .  - . -  

: It has al;eady been pointed out  i n  t h e  l i t e r a t u r e  survey 

t h a t  a mixed conductor i s  regarded a s  a s o l i d  e l e c t r o l y t e  when 

f t s  , ionic  transference. .number exceeds 0.99: i .  e.. , . . 

. . 
w h e r e  oion r e p r e k e n t i  t h e  t o t a l  c o n d & t i v i t y  which may a r i s e  

irorn-both c a t i o n  o r  anion d e f e c t s  and oa* and og r e p r e s e n t  khe 

.. p o s i t i v e  h o l e  and e x c e s s  f r e e - e l e c t r o n ;  c o n d u c t i v i t y - r e s p e c -  
. 

reducing ~ a g n e r ' s  genera l  r e l a t i o n s h i p  (Equation 16A), 

t o ,  the .  s i m p l i f i e d  ve r s ion  . . . . . . . . . .  . .  _ . _ . r _ _ .  . . .  
c.. ? .  . . . .  - . .  . . .  

- - 

Equation 17, because of i t s  s i m p l i c i t y  and usefu lness  i n  ana- 
- .  

l y z i n g  galvanic  c e l l s ,  has  found more - a p p l i c a t i o n  than  Equation 
- .  . . . . . - . . 

.... .. 1f t h e .  oxygen chemical  p o t e n t i a l ,  po2, and t h e  tempera- 
. . .  \ .  - .  . . . .  . . .  

t u r e  T dependences of oion, oa,  q d  oe. can be e s t a b l i s h e d  . ? I . - 



exper imenta l ly ,  t h e n  t h e  i n d i v i d u a l  conduct iv i ty  express ions  
,- , . 

can be i n s e r t e d  i n t o  Re la t ion  15 t o  deduce t h e  po2 and T  range 

2 ..' . I n  which a  m a t e r i a l  behaves a s .  an e l e c t r o l y t e .  This  range 

corresponds t o  t h e  e l e c t r o l y t i c  domain of t h e  mixed conductor.  

For mathematical  convenience, t h e  v a r i a b l e s  log  Po2 and 

i ~ + ( O K )  a r e  p r e f e r r e d  over. p o  and T , - . . therefore  conduc t iv i ty  
2  

domains w i l l  be descr ibed  i n  terms of log  Po v s .  1/T diagrams. 
2  

The' change i n  v a r i a b l e s  i s  e a s i l y  accomplished s i n c e  t h e  

oxygen chemical p o t e n t i a l ,  PO2 9 i s  r e l a t e d  t o  t h e  oxygen 

p a r t i a l  p ressu re ,  Po2, and t h e  abso lu te  temperature,  T,  by 

0 . . - m2 - Po2 + RT In  Pop v: : . .. . . . . (18) 

where R i s  t h e  u n i v e r s a l  gas cons tant  and pg i s  t h e  chemical 
2 

p o t e n t i a l  of oxygen i n  , i ts  s tandard  s t a t e .  It should be 

pointkd out h e r e  t h a t  r e t e n t i o n  of t h e  p o  v a r i a b l e  would 
2  

allow . t h e  d a t a  t o  be p l o t t e d  d i r e c t l y  on a  Richardson and 

J e f f e s  .diagram (71) . 
1- ~t e leva ted  temperatures  s o l i d  e l e c t r o l y t e s  e x h i b i t  an 

. i o n i c  conduc t iv i ty  which i s  v i r t u a l l y  independent of oxygen 

p ressu re .  I n  c o n t r a s t  and 09 a r e  found t o  be p r o p o r t i o n a l  

. l / n  - l / n  
6.b .Po,- . and Po r e s p e c t i v e l y  a t  cons tant  temperature.  The 

L 2 

6 a l u e c o f  n  i s  d i c t a t e d  by t h e  e x i s t i n g  de fec t  s t r u c t u r e  wi th in  
I 

t he  mixed conductor.  A t  cons tant  Po2, a l l  t h r e e  c o n d u c t i v i t i e s  I 

I 
I 



e x h i b i t  an.Arrhenj.us-type temperature dependence wi th  apparent  

a c t i v a t i o n  ene rg ies  Qion, Q@,and Qo. By d e f i n i t i o n  t h e  t o t a l  

conduct iv i ty  i n  a mixed conductor can be w r i t t e n  as:  

CT T = a ion  'a + "8 ' (19) 
- -. 

However, from experimental  observa t ion  t h e  fol lowing empi r i ca l  -- - 

dependencies. .. .- . - a r e  found: .- . 

CT = a 0 

i o n  i o n  ~ X P  (-Qion/RT) 
.. . 

. . 
nE . . .. - . . .  * . - .  

0 '  . ~ 0 0 where t h e  parameters uion, Q@, 08, n ,  Qion, Q, and Qo a r e  Po 
2 

and T independent.  T h e o r e t i c a l  j u s t i f i c a t i o n  of t h e s e  empir- 

i c a l  formulas f o r  Oion, o@, and a8 w i l l  be d iscussed  l a t e r .  

The e l e c t r i c a l  behavior f o r  a mixed conductor i s  summar- 

i z e d  g raph ica l ly  i n  F igure  1 B .  . Surfaces corresponding t o  

log  oion, log  og, and log  0~ p l o t  a s  p lana r  - s h e e t s  i n  l o g  0, 
. .. 

l o g  Po2, 1 / ~  space because of t h e i r  f u n c t i o n a l  form. Figure  

1 B  may be thought of a s  a t h r e e  dimensional ~ r b ; ~ e r  and Vink 

diagram (72 ) .  Regions A ,  C ,  and D i n  F igure  1B e x i s t  where 

) o n l y  one conduction mode dominates t h e  t o t a l  conduc t iv i ty .  
. . 
. .  . 

Pro jec t ions  o;f th'ese regions  onto t h e  'log P g  1 / T  p l a n e '  a r e  2' 
. 

c a l l e d  t h e  p o s i t i v e  ho le ,  excess e l e c t r o n ,  and e l e c t r o l y t i c  



REGIONS OF LOG a; PO2, T)  SURFACE 

LOG Bim 

Figure  1B. Schematic r e p r e s e n t a t i o n  of log  su r faces  over 
l o g  Pop, 1 / ~  space f o r  o = uion,  ua, 00, and. 

"tot a1 



conduction -domains f o r  a  mixed .conductor. Thus t h e  e l e c t r o -  

l y t i - c  .domain f a l l s  w i t h i n  t h e  i o n i c  domain which i s  def ined  

by t h e  cond i t ion  

u > oa o r  ee 
I .  i o n  - 

then  

Various domain boundaries ,  which rep resen t  t r a n s i t i o n  
I 

1 

condi t ions  f o r  a mixed conductor,  can be determined by equat ing  

appropr ia t e  conduc t iv i ty  express ions .  I o n i c  domain boundaries 
. . 

can be determined hy equat ing  oi-on t o  and oe r e s p e c t i v e l y  

and taking,  t h e  logarithm of t h e  r e s u l t s ,  

0 

Qion - '4 1 '0 l o g  Pa = -n i o n  - -  + n log  - 
2.303 R T Q: 

Q i o n  - Qe . I  
o0 

log  Pe = n - - - i o n  n log  - 
. . 2 . 3 0 3 R  T o0 

8 

where t h e  parameters Pa and Po r e t a i n  t h e i r  d e f f n i t i v n s  as 

proposed by Schmalzried ( '64). I n  genera l ,  t h e  main i n t e q e s t  

i s  . l imi ted  t o  a p p l i c a t i o n s  of mixed conductors w i t h i n  t h e i r  

e l e c t r o l y t i c  domains. According t o  t h e  d e f i n i t i o n  of an e l e c -  

t r o l y t e  a s  given above (Rela t ion  15) t h e s e  boundaries can be 

determined by ,equat ing  uion t o  100oQ and 1 0 0 0 ~  r e s p e c t i v e l y ,  



7k - l o g  P@ - l og  P@ - 2n 

, (2 7) 

l o g  P; = l og  P@ + 2n 

-1. .r, 

where, and P& r e p r e s e n t  oxygen p a r t i a l  p ressu res  correspond- 

i n g  t o  t h e  above cond i t ions .  Any a p p l i c a t i o n  of a  mixed con-- 
- 

duc to r  r e q u i r i n g  e l e c t r o l y t i c  behavior  must correspond t o  

log  Po2, 1/T condi t ions  which l i e  between t h e  l i n e s  def ined  by 
- 

:Equations 26 and 27. F igure  1 C  shows t h e  r e l a t i o n s h i p s  among 

t h e  var ious  domain boundaries .  
r. 

I f  t h e  parameters Oion) ue, %, n ,  Qion, Q, and QQ remain 

cons tan t ,  Equations 26 and 27 can be ex t rapo la ted  beyond t h e  

l i m i t e d  ranges determined by d i r e c t  measurements. Such ext rap-  

o l a t i o n s  can prove a  tremendous advantage i n  p r e d i c t i n g  t h e  

success  of a  mixed conductor when used a s  an e l e c t r o l y t e  i n  a  

. s p e c i f i c  a p p l i c a t i o n .  Also t h e  domain theory  provides a  means 

f o r  comparing and c r i t i c a l l y  . e v a l u a t i n g  d a t a  among va r ious  . .  

i n v e s t i g a t o r s .  

Experimental ly ,  t h e  foregoing  domain concept appears  very 

a t t r a c t i v e  because e l e c t r i c a l  conduc t iv i ty  and open c i r c u i t  emf 

s t u d i e s  g ive  complementary, y e t  independent,  informat ion  con- 

cern ing  t h e  conduction domain boundaries .  E l e c t r i c a l  conduc- 

t i v i f y  measurements may be used t o  e s t a b l i s h  a  p a r t i c u l a r  loca-  

t i o n  and o r i e n t a t i o n  f o r  a  conduc t iv i ty  shee t  i n  log  Po2, l / ~  



.:F i g u r e  1 C .  Re la t ionsh ip  between e l e c t r o l y t i c  and i o n i c  
domain boundaries i n  t h e  log  Po2, 1 / ~  plane  



3 3  

space .  The i n t e r s e c t i o n s  between d i f f e r e n t  s h e e t s  a r e  simply 

r e l a t e d  t o  t h e  va r ious  conduc t iv i ty  domain boundaries .  I n  t h e  

c a s e  of open c i r c u i t  emf measurements, i n  which c e r t a i n  e l e c -  

. . 
t r o d e  conditions '  a r e  s a t i s f i e d ,  t h e  depar ture  of t h e  measured 

' ' .  

emf from t h e  thermodynamic va lue  i s  used t o  ga in  informat ion  

regarding  t h e  i o n i c  and . e l e c t r o l y t i c  boundaries.  

Theory o f .  P a r t i a l  E l e c t r i c a l  Conduction 

In t roduc t ion  

Experimental methods have been developed t o  measure 

p a r t i a l  c o n d u c t i v i t i e s  d i r e c t l y  . Consequently t h e  n a t u r e  of 

t h e  p a r t i a l  c o n d u c t i v i t i e s  has  been r a t h e r  w e l l  e s t a b l i s h e d  

p a r t i c u l a r l y  wi th  r e s p e c t  t o  t h e i r  dependence upon chemical 

p o t e n t i a l s  and temperature.  T h e o r e t i c a l l y  t h e  p a r t i a l  conduc- 

t i v i t y  f o r  a given charge c a r r i e r ,  o i ,  i s  t h e  product of t h e  

c a r r i e r  concen t ra t ion ,  n i ;  i t s  mobi l i ty ,  u i ;  and i t s  charge,  

General ly ,  d i r e c t  measurement,of t h e s e  q u a n t i t i e s  i s  much more 

d i f f i c u l t  than  measurement of t h e  c o n d u c t i v i t i e s .  For i o n i c  

compoun2s, p resen t  understanding . . of t h e  dependence of i n d i -  

v i d u a l  c a r r i e r  concent ra t ions  and e s p e c i a l l y  of c a r r i e r  

m o b i l i t i e s  i s  q u i t e  l i m i t e d .  Although t h e  Arrhenius tempera- 



i 
1 ture .dependence i s  commo~ly observed f o r  i o n i c  and e l e c t r o n i c  
1 

1 c o n d u c t i v i t i e s ,  i t  i s  no t  p r e s e n t l y  poss ib le  t o  s e p a r a t e  t h e  

temperature dependence due t o  t h e  mobi l i ty  from t h a t  due t o  

I t h e  c a r r i e r  concen t ra t ion .  R e a l i s t i c a l l y ,  i t  would seem plaus-  
! 
I I 

i b l e  t o  regard  both  t h e  migra t ion  process  and t h e  d e f e c t  form- 

! 
j a t i o n  process a s  be ing  thermal ly  a c t i v a t e d .  Consequently, i n  
! t h i s  .work c a r r i e r  concen t ra t ions  w i l l  be converted t o  conduc- 

t t i v i t i e s  u s i n g  t h e  assumption t h a t  t h e  mobilzty can be 

expressed a s  ..- 

Defect e q u i l i b r i a  and e l e c . t r i c a 1  conduct iv i ty  i n  undoped y t t r i a  

Various d e n s i t y ,  x- ray ,  and d i f f u s i o n  s t u d i e s  (20,22,23, 

73,74,75,76) on y t t r i a  and r a r e  e a r t h  oxides i n d i c a t e  t h a t  

dev ia t ions  from s to ichiometry  a r e  l i m i t e d  t o  d i s tu rbances  on 

t h e  anion s u b l a t t i c e ,  namely t h e  formation of oxygen vacancies  

and i n t e r s t i t i a l s .  'Normally, t h e  presence of oxygen i n t e r -  

s t i t i a l ~  i s  e l imina ted  from cons ide ra t ion  f o r  most s t r u c t u r e s  

based on geometric arguments. I n  t h e  case  of Y2O3, t h e  l a t t i c e  
- _  _ . 

corresponds t o  t h e  ' f l u o r i t e  s t r u c t u r e  except t h a t  one- q u a r t e r  

of t h e  anion s i t e s  remain vacant .  S ince  these  vacant s i t e s  

would remain unoccupied a t  abso lu te  zero ,  they a r e  considered 

t o  be i n t e r s t i t i a l  s i t e s  (75).  Thus geometr ical ly  t h e  C-type 



r a r e  eartli .  oxide s t r u c t u r e  can ad.equately accommodate oxygen 

i n t e r s t i t i a l s .  

~ a s e d  on 'previous' i n v e s t i g a t i o n s  i n  t h e  temperature range 

involved, 700 t o  ~ O O O ~ C ,  t h e ,  de fec t  e q u i l i b r i a  considered i n  
. . 

Y203 w i l l  be l i m i t e d  t o  f u l l y - i o n i z e d  oxygen vacancies ,  Vo, -... 
I t  

and i n t e r s t i t i a l s ,  Oi - .. 

.The i n t r i n s i c  equi l ibr ium which c o n t r o l s  t h e  genera t ion  

of anion d e f e c t s  under s t o i c h i o m e t r i c  condit ' ions i s  t h e  d i s -  

s o c i a t i o n  reactLon invo lv ing  normal oxygen s i t e s  and i s  

descr ibed by t h e  an t i -F renke l  r eac t ion :  

The incorpora t ion  e q u i l i b r i a  c o n t r o l  t h e  formation of t h e  

e l e c t r o n i c  d e f e c t s  and a l s o  t h e  anion d e f e c t s  under nons to i -  

chiometr ic  cond i t ions .  These allow t h e  c r y s t a l  t o  change 

s to ichiometry  by t h e  a d d i t i o n  o r  removal of oxygen according 

t o  t h e  fol lowing r e a c t i o n s :  

Since t h e  concen t ra t ion  of d e f e c t s  i s  q u i t e  s m a l l , . t h e  . 

thermodynamic a c t i v i t i e s  can be ?.pproximated by t h e  concentra-  

t i o n .  The concent ra t ion  of d e f e c t s  generated by React ions 30, 

31, and 32 a r e  r e l a t e d ,  under equi l ibr ium cond i t ions ,  through 



: the  . app l i ca t ion  of t h e  l a w  of mass a c t i o n  a s  fol lows:  

.. 1 I 

- : K1 = C V ~ I C O ~ I  ( 33  

where, . .- t h e  . - equi l ibr ium - - .  - c,ons t a n t s  , Ki , conta in  . . t.he energy r:e- 

qu i red  f o r  t h e  formation of t h e  p a r t i c u l a r  d e f e c t .  A f u r t h e r  
. . - .  

- cons t ra in t  on t h e  c r y s t a l  r e q u i r e s  t h a t  o v e r a l l  e l e c t r i c a l  

n e u t r a l i t y  be maintained.  . 
. . . .  _-, . _ _ _ . _ - ? . .  : . . -  ..< _ .-: --- .- , r-9 ..-T.- .r. 

< . -  . .  

. . . . . -  . .  - .  . . . .  .. - -  . . . . . . .  . -  . .  - . . .  . . .  C.. I... : - .  i. ; . . - . .  

A t  s u f f i c i e n t l y  . . high oxygen p ressu res ,  the '  predominant 
. . . . . . .  . . . . . . .  . . . . .  ~. . . . . . . . .  .c:: :, .. ,. : .>; : , . . . . . . . . .  . . . . - - .  . . .  . . .  

1 1  - 
- .  

d e f e c t s  a r e  presumed t o  be Oi and 8. This  allows t h e  e l e c t r o -  
... . - .  

n e u t r a l i t y  cond i t ion  t o  be approximated by 

. . . . . . .  . . I . ,  . .  , .  , - - . -  -.- .  . -  -- , -  

s u b s t i t u t i o n  ~ £ ' E q u a t i o n  37 i n t o  ' 3 4  shows t h a t  t h e  h o l e  con- 
- .  . , .. . - . . .  
c e n t r a t i o n  i s  p r o p o r t i o n a l '  t o  t h e  1 / 6  power of t h e  .oxygen 
. . . . .  . . .  . . . .  . - . . . . . . .  . . . . . . .  
pressure .  

- I  . . 

Since  t h e  e l e c t r o n i c  d e f e c t  m o b i l i t i e s  a r e  much g r e a t e r  than 

t h e  i o n i c  d e f e c t  m o b i l i t i e s ,  no .  s i g n i f i c a n t  i o n i c  conduction 

- i s  - .  a n t i c i p a t e d . a t  . . t h e s e  h igh  oxygen p r e s s u r e s . -  Consequently, 

..the e l e c t r i c a l .  canductj.vi-ty f o r  Y203 i n  high Po . r eg ions  can 
2 .  



be expressed as 

0 where oQ is a material constant independent of P o  and T. The 
2 I 

activation energy, Qa, consists of the defect formation and 
. . 

migration energies. 
. - , .  - - - - -  . 

. Application of similar arguments for the low Pop region 
. . 

where 0 and Vo are presumed to be dominant leads to an expres- 
. . 

sion for the excess electron conductivity. 

.- o -116 
+. --Do, = 00 Po  exp (-Q@/RT) 

I .  2 .  (40) 
- - .  

I 

. - . . - . . . 
At intermediate oxygen pressures , the concentrations of 

, . 

oxygen vacancies and interstitials are essentially independent 

of Po and are determined only by 
2 . . 

Substitution of Equation 41 into 34 and 35 and subsequent use 

of these defect'concentrations to compute the individual*con- 

ductivities results . -. in the following expressions: 

0 

"ion = Oion exp (-QionIRT) 

The defect equilibria in undoped Y2O3 over all Po ranges are 
2 

summarized in Figure ID. Note that only Zone I1 is included 



- EXCESS ELECTRON ' IONIC DEFECTS , 1 ,  POSITIVE HOLE - 
COMPENSATION , 1 PREDOMINATE I COMPENSATION 
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02 

Figure D. Defect equil ibr ia  i n  pure ,Y2O3 



i n .  Figure -1B. 

It i s  important  t o  n o t e  t h a t  t h e  f u n c t i o n a l  fonns of t h e  

i n d i v i d u a l  c o n d u c t i v i t i e s  a s  der ived  from defec t  e q u i l i b r i a  

a r e  i d e n t i c a l  t o  t h e  f u n c t i o n a l  forms of t h e  empi r i ca l  conduc- 

t i v i t i e s  used i n  t h e  e l e c t r o l y t i c  domain theory .  

. . When t h e  concen t ra t ion  of charge.  c a r r i e r s  i s  determined 

by impur i t i e s  o r  dopants r a t h e r  than  by thermodynamically 

c r e a t e d  d e f e c t s  w i t h i n  t h e  c r y s t a l ,  t h e  impuri ty  o r  dopant  

l e v e l  can c o n t r o l  t h e  conduction. I n  t h e  case  of Y203, an 

a l i o v a l e n t  impur i ty  c a t i o n  i s  assumed t o  occupy a  normal 
- 
c a t i o n  s i t e  producing a  compensating anion d e f e c t .  The n e t  

e f f e c t  might b e  t o  render  t h e  anion d e f e c t  concen t ra t ion  inde-  

pendent of l o g  Po2 a s  w e l l  as temperature s i n c e  t h e s e  d e f e c t s  

a r e  not  thermal ly  genera ted ,  but  r a t h e r  a r e  f i x e d  only by t h e  

a l i o v a l e n t  i o n  concen t ra t ion .  An example of t h i s  would be t h e  
1 

i ncorpora t ion  of a  d i v a l e n t  c a t i o n  on an y t t r ium s i t e ,  My, 
.- . 

wi th  being t h e  compensating d e f e c t .  S u b s t i t u t i o n  of t h e  

e l e c t r i c a l  n e u t r a l i t y  cond i t ion  
. . -- I CvoJ = ~ C M ~ I  = ~ C M O I  = cons tant  (45)  

i n t o  Equations 34 and 35 l eads  t o  expressions f o r  t h e  e l e c -  

t r o n i c  d e f e c t  concen t ra t ions  



- .  - .  

where C M O S  r e p r e s e n t s  t h e  concen t ra t ion  of d iva len t  meta l  
. . 

oxide added t o  Y203. Thus t h e  same va lue  of n ,  namely n = 4., 
. . - .  . . 

may c h a r a c t e r i z e  t h e  Po2 dependence of 111 and [el and hence 
-~ . . . .  . . . . . - . . .  

. o f  0~ and 00 f o r  doped Y2O3 a s  w e l l  a s  undoped Y2O3 i n  i n t e r -  
.,. - .  

-. 
. . - .  ...- - . . -  . . . . . . . . .  --..-.-.-.-..-.. - . . -  c L 

mediate Po ranges .  
2 . .  -. . ..... . . . . .  . . . .  

I n  g e n e r a l .  any of s e v e r a l  d i f f e r e n t  de fec t  equi l ibr ium 
. . . .  - . . . .  > . < - .  . . . . . .  - . .  , < . -  . . - . .  

" .  

schemes (72) can l ead  t o  t h e  same va lue  of n. '  Consequently 

. t h e  parameter n cannot-b-e used t o  unequivocally d i s t i n g u i s h  

among such cases  and independent information must a l s o  be  con.- 
. . .  . . . . ... . . . . .  .... - . -  ..I > ? . ? -  - - - . - .  . . . .  . . - .  - .  . * .  

s i d e r e d .  Examples of such independent information may inc lude  

d e n s i t y - l a t t i c e  parameter d a t a ,  which w i l l  be d iscussed  l a t e r  
. . . . . . .  . . . .  - .  . . 

. . 

f o r  YSH, a s  w e l l  as t h e  a c t i v a t i o n  energies  f o r  conduction. 

These a c t i v a t i o n  ene rg ies  may be expected t o  vary markedly 
. . .  I '  . . 

depending on which d e f e c t  e q u i l i b r i a  dominate t h e  d e f e c t  s t r u c -  
. . . . . .  . . . . . . . . . .  - .  . * - .  . -  . . - . .  
ture of th.e crysta .1.  I n  view of the l a r g e  number of d e f e c t  
- .  . 
C .. . . .  

strut-tures t h a t  may be proposed t o  r a t i o n a l i z e  t h e  Po depend- 
. . . . .  . . .  

2 

enc ies  between n = 4 and 6,  d i scuss ion  has been r e s t r i c t e d  t o  
- . _ _ .  . . .  

t h e  most p l a u s i b l e  d e f e c t  equi l ibr ium based on t h e o r e t i c a l  
. . 

models proposed by Wagner (77) and Schmalzried (64).  These 
. . . . . -  - . . C. 

proposa ls  have been favored over t h a t  proposed by T a l l a n  and 

Vest (63) f o r  Y203. 
- .. . . .  . , 

. . 



'Defect -- equi l ibr i ; .  and e l e c t r i c a l  conduct iv i ty  i n  y t t r i a  doped 

. . 
' h a f n i a  s o l i d  s o l u t i o n s  

'"Much .of t h e  p ioneer ing  work- on ' t h e  e l e c t r i c a l  conduct iv i -  .... 

- .  
t y  and d e f e c t  s t r u c t u r e  of f l u o r i t e  s o l i d  s o l u t i o n s  has  been 

done on CSZ,and YDT. Since  YSH possesses  t h e  same s t r u c t u r e  
. . 

a s  ~ $ 2  a d  YDT,  ' t h e  condubt ion  mech~nibms &d def-ect s t r u c -  

-. - - . . 

t u r e s  would a l s o  b e  expected t d  be i d e n t i c a l .  
. . .  - . . . . . . .  ~ l e c t r i c a l  conduc t iv i ty  measurements on csz ' ( 4 )  a n d  YDT 

'(9 ,-10;78) i n d i c a t e  a p0 .-independent conduct iv i ty  over a  l a r g e  2  
. . 

Pg range.  T h e  agreement of measured .ernfs (4,9,10) wi th  2  

-values p red ic ted  from thermodynamic d a t a  prove t h a t  t h i s  con- 

: d u c t i v i t y  r e s u l t s  'from oxygen i o n  migra t ion .  Density measure- 

:merits (7,9) and oxygen d i f f u s i o n  s t u d i e s  (11) i n d i c a t e  t h a t  

. t h e  presence of anion vacancies  i s  respons ib le  f o r  t h e  oxygen 

i o n  conduct iv i ty .  Thus t h e s e . s t u d i e s  confirm t h a t  t h e  oxygen 
. . 

i o n  . t .r,ansference number , i s  v5rt ;ual ly  u n i t y  over a  wide Po , .-.. - .  ..... . . . . . . .  . .  r. - .  - - : .  . . . . . . . . . .  - r .  . . . . .  . . : -  2  . . 

range.  . -  . . . . . . .  . . .  . . . , . .  . . . .  . . . . .  - - . - .  . . - .  . . . . - 

. . - .  . . As,prev ious ly  . . pointed ou t ,  t h e  e l e c t r o l y t i c  domain i s  
. . 

' l imi ted  by t h e  onse t  of e l e c t r o n i c  conduct iv i ty .  Wagner d-c 
. . .  . - . , - . - , - . - . . 

p o l a r i z a t i o n  measurements. (14 ;79) have been used t o  l o c a t e  
< - -  . . 

. . r  

2 

t h e s e  onse ts  f o r  both .  m a t e r i a l s .  The measurements a l s o  show 
- . .  

a  -% Po2 dependencdb.for ' t h e ' & x & e i s  ' e l e c t r o n  conduc t iv i ty  and 

a  +% Po dependence f o r  t h e  p o s i t i v e  ho le  conduction. Inde- 2 



.pendent oxygen permeabi l i ty  s t u d i e s  (17) support  t h e  +k Po, 

;dependence of t h e  h o l e  conduc t iv i ty .  Empir ica l ly  both CSZ and 

:YDT possess  l a r g e  e l e c t r o l y t i c  domains which a r e  terminated by 

t h e  onset  of h o l e  and e l e c t r o n  c o n d u c t i v i t i e s  possess ing  a 1-k 

and -4, Po dependence, respect i .ve ly .  - .. 2 

, - .  . ; - . - :The . accepted . model which p r e d i c t s  t h e  above behavior  

requ-ires  ... t h e  . a l i o v a l e n t  dopant i o n  t o  occupy a normal c a t i o n  

-1si.te.- . Since t h e  c r y s t a l  i s  cons t ra ined  t o  maintain e l e c t r i c a l  

n e u t r a l i t y , ,  it does s o  by forming anion vacancies .  

i ~ . - .  
The term' [y203! i n d i c a t e s  t h e  dopant concent ra t ion  of Y203 i n  

. . 7 ; .' ' . 

Hf 02. Deviat ions from s to ichiometry  a r e  expressed by t h e  

fol lowing ' incorpora t ion  r e a c t i o n s :  

%02 + V; 2 0; + 2 8  (49) 

Appl ica t ion  of t h e  law of mass a c t i o n  and t h e  d e f i n i t i o n  of 
r(' . ' -  . - - 
e l e c t k i c a l  c o n d u c t i v i t y  l eads  t o  t h e  fol lowing express ions  f o r  

t h e  i n d i v i d u a l  c o n d u c t i v i t i e s :  

0 - 
"ion - "ion ~ X P  (-QionIRT) 



Again, f o r - t h e  case  of YSH, t h e  f u n c t i o n a l  forms of t h e  con- 

d u c t i v i t i e s  der ived  from d e f e c t  e q u i l i b r i a  a r e  i d e n t i c a l  t o  

. . . . . . . .  t h e  funct ional '  forms of t h e  observed c o n d u c t i v i t i e s ;  

- .  - I n  genera l ,  t h e  dopant concent ra t ion  genera tes  such a. 
. . 

l a r g e  number of oxygen vacancies  t h a t  t h e  i o n i c  conduct iv i ty  
. . . . . . .  - .  . . . .  . . -  . . - .  - 

&ex%helms t h e  e l e c t r o n i c  - con t r ibu t ions  ' r e s u l t i n g  i n  e l ec t ro - -  

l y t i c  behavior  in t h e  sense  of  elation 15 over a f a i r l y  l a r g e  
.. - -  . .  . . . -  . .  h . . . . . . .  . .  - .  . - .  . P O ~  . range.  . 

. , . - . . _ . . - - _. . 

Theory of open. . . . . .  C i r c u i t  Emf Measurements . . . - . . - .  . . 

--,: ::.. ;:Wagner (2,77,80) . . -has  shown t h a t .  t h e  . . open c i r c u i t  . . emf . . 
-- - . 

measured a c r o s s  an oxide.mixed conductor .between d i s s imi l -a r ,  

. v i r t u a l l y  r e v e r s i b l e  e l e c t r o d e s  i s  given by Equation 16A, 
. . 

. . . . .  
. ' ~ h 6  i o n i c  t+a&f&r&nke f i b i b e r ,  tion, i s  defined b y  Equation 15, 

ZO i s  ' the  a b s o l u t e  va lue  of t h e  oxygen ion  valence,  and F i s  

Faritday's c o n s t a n t .  The oxygen chemical p o t e n t i a l s  ,: p o 2 ,  : a t -  

each 1 o c a t i o n . x  = 0 i n d - x . =  L a r e  he ld  c o n s t a n t b y  t h e ' i l e c -  

t r o d e s  such t h a t .  PO (0) ;> poi@). The e lec t rochemical  c e l l  
2 

being  



. - PO (0) /mixed oxide conductor/po (L) . 
. . 2  2 

XI1 

- x=O x=L 
- .  

I n  view of t h e  g rad ien t  of chemical p o t e n t i a l s ,  anions migra te  

from t h e  l e f t -hand  t o  t h e  r ight-hand s i d e  of t h e  above c e l l  a t  

$ r a t e  t h a t  i s  l i m i t e d  by t h e  migra t ion  r a t e  of e l e c t r o n s  i n  

t h e -  oppos i te  d i r e c t i o n .  The p o t e n t i a l  d i f f e r e n c e  under a  

s t e a d l ' s t a t e  cond i t ion  c r e a t e d  by t h e  r e d i s t r i b u t i o n  of ca r -  

r i e r s  w i t h i n - t h e  mixed conductor i s  t h e  open c i r c u i t  emf. 

It has a l r eady  been shown t l ~ a t ,  i n  t h e  case of predomi'- 
. . 

nant  i o n i c  conduction,;. Equation 16 s i m p l i f i e s  t o  Equation 1 7 .  
. 

. Schmalzried (64) has  examined t h e  consequences o f  tion depar t -  ... . . . . . . . .  . . . . .  . .  6.- -- - . . . - - < . -  .-.-. &.. .-- : -.-.: . . .  . . 

i n g  from u n i t y .  The i n i t i a l  s t e p  and most c r i t i c a l  p a r t  of 
. . .  

h i s  theory  involves  express ing  tion as  a  func t ion  of boy 
. . . . . . . .  

once' t h i s  i s  known t h e  i n t e g r a l  i n    qua ti on 16 can be  eva l -  

u a t  ed . 
. . . . ...---.. L ...... - . . . . .  . . . .  < .  . . .  

. For convenience &d compl iancewi th  conduc t iv i ty  d a t a ,  
- .  , . - .  . . . .  . . . . . .  . . ~ . .  5- , . .  . . . . . . - - ,-. , .  . "  - .  _ , .  .... 

. . 
-. -. . . . .  ..-. . -  - . . -  

t h e  variab-re b f  i n t e g r a t i o n  .Po i s  6har;ged t b  Po by &ans of 
' 

. . 
2 2 

 quat ti on 18. ~ a s e ~  on empir ica l  r e s u l t s  and d e f e c t  e q u i l i b r i a  

involv ing  anion .defec t<in- .a  mixed oxide conductor, Schmalzried -. . - 
chose t h e  fol lowing f u n c t i o n a l  forms f o r  t h e  i n d i v i d u a l  conduc- 

. . . .  
% _  . .  

t i v i t i e s  a t  a  cons tan t  temperature:  . . , . .  
. . .  

- 'ion - Kion = cons tant  (54) 
. - 

I . .  - .  - 
-. - 



It should be noted t h a t  these  expressions a r e  i d e n t i c a l  t o  

those used i n  t heconduc t ion  domain theory under t he  condition 

of constant temperature. 
-- - 

s u b s t i t u t i o n -  of ~ ~ u a t i o n s  54, 55, and 56 i n t o  Equation 15, 
. . 

and in t roduct ion of t h e  parameters .Pa and Pe, .where 
- - -. I .  r 

. . 

allows tion t o  be  expressed as  a  funct ion of P O ~ .  , 
. . . - . . .  ...- . . .  . . . . . .  . . .  " .  - .. 

The.conductivi ty parameters Pe and Pg a r e  the  oxygen p a r t i a l  

pressures where oion = and o i on  = a@, respect ively .  Sub- 

s t i t u t i n g  Equation 59 i n t o .  16 and in t eg ra t ing  between the  
. . . . - .  ... 

l i m i t s  of Po (0) and Po (LP-resuit!, i n  ~ c h m a l z r i e d ' s  most 
2 2 

general  expression f o r  t he  open c i r c u i t  emf, 

where, . . . . 



Equation 60 can be  s i m p l i f i e d  f o r  t h e  u s e f u l  case  where Pa and 

Pe d i f f e r  from .each o t h e r  s u f f i c i e n t l y  t h a t  

. . 

(P@/P@) 'In ( 0 .01  3 (64) 
. . 

' i n  t h i s  case  
. - - - . . -- . ' 

p , / n  -- +-p i in (L)  : l / n  l I n ( 0 )  

- nRT Fn Pe + P o 2  
, . . . E  - - - + I n .  I, , - -  - - .  ... 41' - l / n  - l / n  l / n  . l /n(L)  ' (65) 

p@ + PO2 (0)' pe . Poq 

,By -. . judicio,us choice  of e l e c t r o d e s ,  Equati.on 65 can b e  f u r t h e r  
. - .. - - . . 

.,simpl-ified -and. sepa ra ted  . - in to .  f o u r  d i s t i n c t  cases .  .. - .......... . . . . . . . . . . . _ . . . . . . . . . . . . . .  C _ _  

..Case I , r e s u l t s  _when t h e  Po va lues  f ixed  by t h e  e l e c -  .T':: . . . . . .  . . . - .  . - : : 2 -  

.trades l i e  w i t h i n  t h e  e l e c t r o l y t i c  domain. This  cond i t ion  can . . 

b e  represen ted  by P e  >> Po (0) >> PO2(L) >> Pe. The r e s u l t i n g  
. . 2 .  

express ion  f o r  t h e  open c i r c u i t  emf i s  

. . . .  , . - . . . . .  -. . .  
-... . .  - . .  . . . . - . , , . "2; -: RT : .'E = - 

. . . . . .  
(66) 

, .  - . . , - -  : _ . . . . . _ .  . .  . .  Po* (L? . .  - .  
:. ... :. . . .--... .  r . .  i L. . . .  . . . . . . . . . . .  - .  

. . 

. :and i s  i d e n t i c a l  t o  Equation 17. 

. . -  Case 11 repr .esents  t h e  maximum a t t a i n a b l e  emf of an e l e c -  
.- . . ...... 

-.. 

t r o l y t e .  Th i s  r e s u l t s  when t h e  e l ec t rodes  f i x  t h e  Po2 va lues  

ou t s fde  of t h e  e l e c t r o l y t i c  domain such t h a t  Po (0) >> P.3 >> 
. . . . 

2 -. 
. . 

P, >> 'poi (L) g i v i n g  
. . . . . .  . . P* . . - .  RT E ' =  - I n  - . 

4F 
(67) 

Po -. .- 



. . .: : Case -111 occurs when one e l e c t r o d e  f i x e s  a Po va lue  
2 

w i t h i n  t h e  e l e c t r o l y t i c  domain and t h e  second e l e c t r o d e  es t ab -  

l i s h e s  a Po ;slue much lower than  Pe. The requ i red  condi t ion  
2 

i s .  Pa >> PO2(0).>> Pe >> Po (L) which allows Equation 65 t o  be 
. . 2 

reduced t o  . . 
. . .  - . .  ... 

Equation 68 provides an experimental  method f o r  determining Pe 
.-.. , . - .  - .  - . .  . - .  . . . . - .  . . . .  

providing t h e  implied approximations a r e  v a l i d .  The determina- 
-. . . . . 

t i o n  of Pe a t  d i f f e r e n t  temperatures  would prdvide informat ion  
. . .--*.. ..... - - - .  . .  
concerning t h e  i o n i c  and e l e c t r o l y t i c  domain boundaries a t  low 

oxygen po te* t i a l s .  : . Severa l :  i n v e s t i g a t o r s .  have used t h i s  

method t o  determine t h e  e l e c t r o l y t i c  domain boundary f o r  CSZ . '  

(44) .  and YDT (15,54) , a t  low oxygen potent - ia l s  . 

2 .,' - 
Case I V ,  which i s  analogous t o  Case 111, i s  used t o  

... . - 

e x t r a c t  informat ion  concerning ehe h igh  oxygen p o t e n t i a l  
, . . . . . . . . . . .  . . - . . - . - . . - .  . . . . - .  . ,. . 

l i m i t s  of t h 6 : i o n i c a n d  e l e c t r o l y t i c - d o m a i n s .  The requirkb.. 
. . 

e l e c t r o d e  c o n d i t i o n s  a r e  Po (0) >> P* >> POZ(L) >> Pe and t h e  
. . 2 - - -3 - 

r e s u l t i n g  emf i s  
. . . . -. . . -. - . - . =. ... . - ... 

E = R T l n - - ,  
. . . .  ... . . . . .  . . 

. . . ., - 4F ' . . . . . .  Po* (L) - . . . . . . .  . . . . .  . . - ? (69) *, - . . .  . . 

. . . . . . 
The c h a r a c t e r i s t i c  f e a t u r e  of open c i r c u i t  . emf 'measure- 

. . . . . . .  - . -  * .  . - .  . . . -  . .  

m e n t s - i s  t h a t  they  can be used t o  e s t a b l i s h  t h e  presence of 



i o n i c  conduction,. When t h e  measured emf equals  t h e  thermo- 

dynamic emf, Equation 17, t h e  conduction mechanism i s  t o t a l l y  
. . 

' . i o n i c  and t h e  m a t e r i a l  i s  c l a s sed  a s  an e l e c t r o l y t e .  S imi la r -  

/ .  l y ,  a zero emf wouxd suggest  predominant e1ecr:ronic' conductiv- 
j 
I 
i i t y .  In termedia te  emfs imply mixed conduction, t h a t  i s ,  t h e  . 

presence .of both  i o n i c  and e l e c t r o n i c  conduction c o n t r i b u t i n g  

1 tq : the  t o t a l  conduc t iv i ty .  Ana lys i s  of d a t a  obtained i n  t h i s  

reg ion  se rves  t o  l o c a t e  t h e  va r ious  conduction domains and 

determine t h e  temperature dependence of c e r t a t n  conduc t iv i ty  

parameters.  

-' Theory of D-c P o l a r i z a t i o n  Measurements 

The e l e c t r o n i c  conduc t iv i ty  of mixed conductors has  been 
- . .  

success fu l ly  i n v e s t i g a t e d  by d-c p o l a r i z a t i o n  techniques a s  

suggested by Hebb (81) and Wagner ' (77).  The c e l l  
.. . . . . . .  . -  

. . . . . . . . 
Revers ib le  Oxide Mixed Nonreversible 

I - _  1 _ . _  . _  :Elec t rode  Conductor E lec t rode  I I XI11 

x=o - .  . - -  . . - x=L 

i s  subjec ted  t o  a d-c emf below t h e  decomposition v o l t a g e  of 
. . - .  . 

. the oxide specimen. , The emf may be  appl ied  so' t h a t  t h e  

i n i t i a l  migra t ion  of t h e  mobile i o n  i s  towards t h e  r e v e r s i b l e  

e l e c t r o d e  where it i s  consumed. This  r e q u i r e s  t h e  r e v e r s i b l e  - . . . .  , . . . .  

e l e c t r o d e  t o  a c t  a s  a s i n k  t o  t h e , m o b i l e  ion  and r e t a i n  a 
. . -. . 



- known clzemical p o t e n t i a l  of t h e  mobile ion .  The blocking 

e l e c t r o d e  prevents  mobile i o n s  from e n t e r i n g  t h e  specimen a t  

x=L. A t  s t eady  s t a t e ,  t h e  migra t ion  of ions  due t o  t h e  

app l i ed  emf i s  counterbalanced by t h e  back d i f f u s i o n  of ions  

down t h e  chemical p o t e n t i a l  g r a d i e n t .  Hence, t h e  n e t  i o n i c  

f l u x  i s  zero  and t h e  measured cur ren t  corresponds t o  t h e  

e l e c t r o n i c  conduc t iv i ty  only.  . According t o  Wagner, t h e  t o t a l  

s t eady  s t a t e  c u r r e n t  can be  expressed i n  a n ' i n t e g r a l  form 1 

which f o r  t h e  case  of oxide mixed conductors i s  equiva lent  t o  

. Using t h e  f u n c t i o n a l  forms of t h e  i n d i v i d u a l  conductiv- 

i t i e s  a s  s t a t e d  i n  Equations 54, 55, and 56 where Q and Ke 

r e p r e s e n t  t h e  h o l e  and excess  e l e c t r o n  c o n d u c t i v i t i e s  a t  1 a t m  

of oxygen, r e s p e c t i v e l y .  I($ and K g  can be r e w r i t t e n  i n  terms 

of t h e  h o l e  and e l e c t r o n  c o n d u c t i v i t i e s  a t  t h e  r e v e r s i b l e  

-L 

e l e c t r o d e ,  0'' and 06 @ 

bee Equat ion 2 5  on page 368 i n  re fe rence  (77) .  
-, - 
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The above d e r i v a t i o n  i s  v e r y  s i m i l a r  t o  Wagner's (77), 

however t h e  r e s t r i c t i o n  t o  a  s p e c i f i c  type of d e f e c t  equi-  

l ib r ium has b e e n ' r e l a x e d  by i n s e r t i n g  genera l  pressure-  

dependent h o l e  and e l e c t r o n  c o n d u c t i v i t i e s .  
. . .  . . . . . . . . . . .- . . . .  . . 

The measured e l e c t r o n i c  c o n d u c t i v i t i e s  a t  t h e  r e v e r s i b l e  
. ,. 
e.. - _  . . .  - 

e l e c t r o d e  allow t h e  h o l e  and e l e c t r o n  conduction s h e e t s  t o  be  
. . . . . .  
C..  . . . .  - .  . . .  . . . - . . . . .  . . .  . - .  

l oca ted  i n  l o g  0 ,  l o g  P o p ,  1 / ~  space.  Ex t rapo la t ion  of t h e s e  

:shee,ts' t o  - i n t e r s e c t  t h e  i o n i c  .conduction shee t  determines t h e  - . . . . . . . .  . . . - - . .- . . . .  - .  

i o n i c  domain boundaries and hence l d c a t e s  t h e  e l e c t r o l y t i c  
. . . . .  - , .. . .... 

- . .-. . '  - . . . .  -. ..... - . - -  . . . . . .  - . . . . .  .. 
domain of t h e  roxide mixed conductor.  ,.., 

. . 
. . . . 



. . 
- .  . - I EXPEKXENTAL EQUIPMENT AND PROCEDURE 

. . 
P r e p a r a t i o n  of t h e  Undoped Y t t r i a  Samples 

The y t t r i u m  sesqu iox ide  used i n  t h i s  , s tudy  was s u p p l i e d  
. . . . -  . . . .  . - . . 

by t h e  ~ m e s  Laboratory a s  the oxide c l i n k e r  r e s u l t i n g  from t h e  
- .  

. . . .  . . .  
c a l c i n a t i o n  of t h e  hydra ted  o x a l a t e .  A spec t rog~raph ic  - 
- . . - .  . . . . . . . .  . . .  . . . .  . . . . .  . . .  , . . - - .  . . . . . . . .  - _ . _ _ .  - . - - . i - - - .  - . . .  - .  . . - - -  
a n a l p i s  of t h e  y f t r i a  a s  rec'eived i s  gibe* i'n Table  1. 

. . . .  . . . . .  . .- - -  . -. .--.. 1-..- . . . . . . . . . . . . . . . .  __. .  . . . < - '  

Tab. le  1. Spec t rographic  a n a l y s i s  of Y203 powder  , -.--: - --, - - 

. . .  Element Concent ra t ion  - . . .  

( P P ~ )  

. . 
. 35 

f a i n t  t r a c e  
20 

. 30 
(200 

100 
. .  (35 . . . . 

. - < 100 
. .- .. . . <loo. : . . . . .  . 

. . . . . .  <GO'..  
. . . . . . .  < 10.0 . .  . . .  - - - - -  - - .  . . . .  - 

<.10-0- . . - L A  

(200 
. . .  

(250 - 
- .  

The. s o f t  c l i n k e r  was wet ground f o r  one h q u r  i n  a  p o r c e l a i n  

ba l l : -mi l l  u s i n g  d i s t i l l e d -  water, a s  t h e  l%qu.id medium, and d r i e d  

t o  a  powder. 



< . .  Spectrographic a n a l y s i s  of t h e  powder f a i l e d  t o  d e t e c t  

any contamination incur red  dur ing  t h e  m i l l i n g  opera t ion .  

P a r t i c l e  s i z e  a n a l y s i s  showed t h e  average agglomerate s i z e  t o  

be 5-10 microns and x-ray d i f f r a c t i o n  l i n e  broadening tech-  

niques ind ica ted .  a c r y s t a l l i t e  s i z e  of 0 .1-0.2 microns. A 

t h e o r e t i c a l  d e n s i t y  of 5.030 gm/cm3 f o r  pure y t t r i a  was ca lcu-  

0 
l a t e d  from a l a t t i c e  parameter of 10.60668 which was determined 

from. s e v e r a l  x-ray d i f f r a c t i o n  p a t t e r n s .  The x-ray equipment 

and procedures w i l l  be d iscussed  l a t e r .  The cha rac te r i zed  

y t t r i a  powder was used a s  t h e  s t a r t i n g  m a t e r i a l  f o r  t h e  undoped 

y t t r i a  and t h e  y t t r i a  s t a b i l i z e d  h a f n i a  samples. 

-.f Y t t r i a  samples which were t o  be cold  pressed and s i n t e r e d  

were prepressed a t  1800 p . s  .i. i n  a 314 i n .  diameter double 

a c t i o n  s t e e l  d i e  l i n e d  w i t h  tungs ten  ca rb ide .  This  opera t ion  

produced t h e  d e s i r e d  shape and green s t r e n g t h  necessary  f o r  

handling. The prepressed  y t t r i a  d i s k s  were i s o s t a t i c a . l l y  
. . 

pressed t o  50,000 p.  s .i. A 6 kw induct ion  furnace ,  Ajax Elec-  

t ro thermic  h igh  frequency conver te r ,  was used t o  s i n t e r  t h e  

samples a t  1 8 5 0 ~ ~  f o r  1 h r .  a t  temperature.  An ox id iz ing  

atmosphere was maintained i n  t h e  hot  zone by p lac ing  an imper- 

vious alumina tube  which.was open t o  an a i r  atmosphere between 

tfie : g raph i t e  susceptor  and t h e  samples. ~ u r i n g  t h e  . f i r i n g  



:operat ion,-  t h e  samples were contained i n  a  covered y t t r i a  

- c ruc ib le .  Water immersion determinat ions of t h e  bulk dens i -  

. t i e s  of t h e  s i h t e r e d  d i sks  were 85 t o  90% of t h e o r e t i c a l  

dens i ty . .  . I n  g e n e r a l  t h e  p o r o s i t y  was open.. 

. . 
A r e s i s t a n c e  tungs ten  h e a t i n g  element furnace (Centorr 

. 
. . 
~ s s o c i h t e s  , Inc-. , suncook, New 'Hampshire) .opera t ing  . i n  a pro- 

. t e c t i v e '  atmosphere of f lowing argon was used t o  s i n t e r  samples 

-. 
. .for 1 h r  . a t  2 0 0 0 ~ ~  t o  achieve d i s k s  o f  g r e a t e r  d e n s i t i e s .  

:Bulk ' d e n s i t i e s  were 90 t o  95% .of t h e o r e t i c a l  wi th  a  s i g n i f i -  
. . 

, . .  
. . . . . . <cant :amount .of c losed  p o r o s i t y . '  . -. - - . . .. - . 

. . < .  c .  - - Severa l  y t t r i a  'samples were  ho t  . p ressed  t o  a c h i e v e  densl-  
- .  . . .  

Y i e s  'appr6aching t h e  t h e o r e t i c a l  dens i ty .  'The -hot p r e s s i n g  

:opera t ion  was c a r r i e d  out  i n  a  double a c t i n g . g r a p h i t e  d i e  wi th  

la l ' i n .  diameter  x 314 i n .  sample c a v i t y  placed i n  a  g raph i t e -  

-csu.sceptor induc t ion  furnace .  ' .Dens i f ica t ion  -was . c a r r i e d  'out a t  

%:-ternper5tur@ of 1 6 0 0 ~ ~  a n d  he ld  under a  .pressure  of 3300 
. . 

- .  . . 
s i . f o r  15 m i  T h e  :samples :were cooled . a f t e r  r ' re l ief  of 

- p r e s s u r e  and e x t r a c t e d  from t h e  d i e  a t  room temperature.  It 

-was.not uncommon f o r  t h e  samples t o  f r a c t u r e  upon e j e c t i o n  

f rom' the  d i e ,  consequen t ly  a  c o ~ s i d e r a b l e ~ n u m b e r  of runs were 

! requi red  t o  produce an acceptable  sample. -The'few r e s u l t i n g  

'samples were b lack  i n  c o l o r  i n d i c a t i n g  p a r t i a l  r educ t ion  by , . 

' contac t  wi th  t h e  g r a p h i t e  d i e .  The samples were annealed 



: in  a i r  i n  a  globax furnace a t  1 2 0 0 ~ ~  , f o r  one week. Water 

.immersion dens i ty  measurements i n d i c a t e d  t h e  sample d e n s i t i e s  

.were g r e a t e r  than 99% of t h e o r e t i c a l  dens i ty .  

. . . A s l i p  c a s t i n g  technique was used t o  f a b r i c a t e  s e v e r a l  

y t t r i a  d i s k s .  This  method e l imtnated  some of t h e  disadvan-  
. . -- 

t a g e s  . . of t h e  above two methods while  r e t a i n i n g  t h e  high dens i -  

t i e s  and convent ional  f i r i n g  opera t ion .  The c h a r a c t e r i z e d  .- . 

.yt.tria.powder was d isso lved  i n  concentrated H C 1  and d i l u t e d  t o  

' 5 gm. YZOg i n  4 N  HC1/100 m l .  s o l u t i o n .  Ammonium hydroxide was 
. -1 - . . . .- - 

used t o  p r e c i p i t a t e  t h e  hydroxide which was subsequently c a l -  

c i n e d ' a t :  1 ' 1 0 0 ~ ~  f o r  1 h r .  The r e s u l t i n g  oxide c l i n k e r  was 
- .  
b a l l -  mi l l ed  f o r  15 min. i n  40 gm. batches wi th  13 m l .  of so lu-  

11 t i o n  conta in ing  0 .021 m l .  Darvan 7"/ml. d i s t i l l e d  wa te r .  The 

s l i p  was poured i n t o  a  mold t h e  shape of a  1 /4  i n .  x  314 i n .  

diameter d i s k  and allowed t o  s t and  1 min. The d i sks  were pre-  

f i r e d  i n  a i r  a t  1 0 0 0 ~ ~  t o  develop handl ing s t r e n g t h  and 

f i n a i l ?  s i h t e r e d  in t h e  Centorr  furnace  f o r  1 h r .  a L  1 9 0 0 ~ ~ .  

.Measured bulk d e n s i t i e s  were g r e a t e r  than  97% of t h e o r e t i c a l  

d e n s i t y .  

. . R e p r e c i p i t a t i o n  and r e c a l c i n a t i o n  of t h e  i n i t i a l  oxide 
- - 
powder td t h e  hydroxide and back t o  t h e  oxide produced a  more 

- .  

s i n t  ekable powder. This  procedure produced new c lean  and 

-, , . -. - .- .. . 
a c t i v e  su r faces  which enhanced s i n t e r i n g .  Fur ther  j u s t i f i c a -  



t i o n  f o r  t h i s  procedure i s  based on t h e  i n v e s t i g a t i o n s  of 

Furlong and Domingues (82) i n  which t h e  b e s t  s i n t e r a b l e  powder 

of Y 2 0 3  was obtained from c a l c i n a t i o n o f  t h e  hydroxide.  .The 

method of s l i p  c a s t i n g  y t t r i a  d i sks  proved t o  be t h e  most 
. . 

reproducib le  and d e s i r a b l e  from t h e  s tandpoint  of d e n s i t y .  I n  -. . 

genera l  t h e  s l i p  c a s t  samples were very c l o s e  t o  be ing  t r a n s - .  

l ucen t .  F igure  2 i l l u s t r a t e s  t h e  t y p i c a l  mic ros t ruc tu res  of 

. t h e  var ious  YpOj samples used i n  t h i s  i n v e s t i g a t i o n .  

P repara t ion  of t h e  Y t t r i a . ~ o ~ e d  Hafnia Samples 

Spectrographic grade hafnium oxychloride obtained from 

Wah Chang Corporat ion (Lot SP10684B) and t h e  previous ly  

descr ibed y t t r i a  powder were t h e  s t a r t i n g  m a t e r i a l s  used i n  

t h e  p repara t ion  of t h e  y t t r i a - h a f n i a  s o l i d  s o l u t i o n s .  Spec- 

t rograph ic  a n a l y s i s  suppl ied  wi th  t h e  hafnium oxychloride i s  

given i n  Table  2 .  

The hafnium oxychloride powder was d isso lved  i n  d i s t i l l e d  

water  and t h e  hafnium oxide content  was determined a n a l y t i -  

- c a l l y .  The i n s o l u b l e  hafnium hydroxide p r e c i p i t a t e  was formed 

by p i p e t t i n g  5 m l .  of s o l u t i o n  i n t o  an equal  amount of'. 1 O N  

NH40H. The p r e c i p i t a t e  has f i l t e r e d ,  washed, d r i e d ,  and 

ca lc ined  a t  1 0 0 0 ~ ~  i n  a Kanthal muff le  furnace f o r  1 h r .  The 

ca lc ined  product was weighed and the  hafnium oxide content  per  



(a) Air induction fired; 400X 50P ' 

(b) Hot pressed; 400X 

(c) Slip cast; 400X 

Figure 2. .Microstructures of Y203 samples 



. m l .  of s o l ~ t i o n '  c a l c u l a t e d .  The s t a n d a r d i z a t i o n  of t h e  h a f n i a  

s o l u t i o n  based on s i x  de terminat ions  was 0.0958 gm. ~ f O ~ / m l .  

s o l u t i o n .  

Table  2 .  Spectrographic an.al,ysis of hafnium oxychloride 
spec t rograph ic  grade powder . . -  

. . : . .  c - . . - .Element .. Concentrat ion 

7 . .  . . . .  
( P P ~ )  

. . . - T o t a l  635.2 

The , y t t r i a '  powder was dissol.ved i n  ho t  concentrated H C 1  

and then d i l u t e d  w i t h  d i s t i l l e d  water  t o  produce a 4 N  H C 1  

s o l u t i o n .  An i d e n t i c a l  procedure previous ly  descr ibed  f o r  t h e  

h a f n i a  s o l u t i o n  was used t o  s t andard ize  t h i s  s o l u t i o n  which 



was found t o  c o n t a i n  0.0489 gm. yp03/ml. The t k o  s o l u t i o n s  

were mixed i n  t h e  r equ i red  propor t ions  t o  prepare t h e  d e s i r e d  

s o l i d  s o l u t i o n  compositions.  The mixed so lu t io l l  was slowly 

added t o  an equa l  volume of 10N NII4OH. A magnetic s t i r r e r  

. kept  t h e  NH40H s o l u t i o n  i n  cons tant  a g i t a t i o n ,  dur ing  and f o r  

. a  s h o r t  t ime a f t e r  t h e  a d d i t i o n  of t h e  mixed s o l u t i o n .  The 

i n s o l u b l e  hydroxides of y t t r ium and hafnium formed a coprecip-  

i t a t e  which was allowed t o  s e t t l e  f o r  1 h r .  'The ge la t inous  

n a t u r e  of t h e  c o p r e c i p i t a t e  seemed t o  e l imina te  any segrega-  

t i o n .    he c o p r e c i p i t a t e  was ' f i l t e r e d ,  washed, d r i e d ,  and 
. . 

ca lc ined  . f o r  1 h r .  a t  1 0 0 0 ~ ~ .  
. . 

The c a l c i n a t i o n  temperature appeared t o  have a  s i g n i f i -  

c a n t i n f l u e n c e  on t h e  f i n a l  s i n t e r e d  s t a t e .  Dried p r e c i p i -  

t a t e s  were ca lc ined  a t  600, 800, and 1 0 0 0 ~ ~  f o r  va r ious  

lengths  of t i m e .  Those.  ca lc ined  a t  1 0 0 0 ~ ~  possessed t h e  high- 

e s t  s i n t e r e d  d e n s i t i e s  whi le  those  ca lc ined  a t  6 0 0 ~ ~  possessed 

t h e  lowest s i n t e r e d  d e n s i t i e s .  Ca lc ina t ion  t imes d id  not  o r  

were no t  c o n t r o l l e d  s u f f i c i e n t l y  t o  produce an observable  

e f f e c t  on t h e  s i n t e r e d  samples. 

X-ray d i f f r a c t o m e t e r  t r a c e s  of ca lc ined  compositions 

known t o  be w i t h i n  t h e  s i n g l e  phase region i n d i c a t e d  t h a t  t h e  

c a l c i n e d  m a t e r i a l  was a  one phase f l u o r i t e  s o l i d  s o l u t i o n .  

The d i f f r a c t i o n  peaks were q u i t e  broad a s  would be expected 



from a very f i n e  gra ined  m a t e r i a l  and produced t h e  t y p i c a l  

f a c e  centered  cubic  p a t t e r n .  

The c a l c i n e d  c l i n k e r  was ground t o  -325 mesh wi th  a 
... 

Diamonite mortar  and p e s t l e  (Diamonite Products Manufacturing 

Co., Shreve, Ohio). The powder was prepressed t o  1800 p .s . j - .  

i n  a ' 3 1 4  i n .  diameter  tungs ten  ca rb ide  l i n e d  s t e e l  d i e .  The 

green d i s k s  were t h e n  i s o s t a t i c . a l l y  pressed t o  50,000 p . s  .i. 

. A l l  compositions were subjec ted  t o  i d e n t i c a l '  f i r i n g  c y c l e s  i n  

t h e  Centorr  fu rnace  f o r  1 h r .  a t  2 0 0 0 ~ ~  and 30 min. a t  1 5 0 0 ~ ~ .  

The lower temperature anneal  was employed t o  s t a b i l i z e  t h e  

expected anion vacancies  a s  demonstrated i n  t h e  c a l c i a - z i r c o n i a  

system ( 7 ) .  Disks of i d e n t i c a l  composition were placed i n  a 
- - 

covered y t t r i a  cruc. ible  and rhenium meta l  was used t o  s e p a r a t e  
. 

t h e  i n d i v i d u a l  d i s k s  w i t h i n  t h e  c r u c i b l e .  The h a f n i a  s o l i d  

s o l u t i o n s  i n v e s t i g a t e d ,  2 t o  20 m/o Y203 i n  2 m/o i n t e r v a l s ,  

were l i g h t  brown  in c o l o r  a f t e r  f i r i n g  i n d i c a t i n g  p a r t i a l  

. ' r educ t ion  by t h e  furnace  atmosphere. Annealing t h e  d i s k s  f o r  

s e v e r a l  hours i n  a i r .  a t  1 0 0 0 ~ ~  produced a co.lor change t o  

whi te .  Water immersion bulk d e n s i t i e s  determined on t h e  

y t t r i a - h a f n i a  samples v a r i e d  between 80 and 94% of t h e o r e t i c a l  

d e n s i t y  depending upon c a l c i n a t i o n  temperature.  F igure  3 

shows t h e  t y p i c a l  'mic ros t ruc tu re  of an 8 m/o Y203 sample. 

Apparent d e n s i t i e s  used t o  i d e n t i f y  t h e  de fec t  model were 



(a) 8 m/o Y2O3-92 m/o Hf02; 400X 501-1 

(c) 15 m/o' CaO-85 m/o Zr02, nuclear grade 
powder; 400X 

Figure 3 .  Microstructures of fluorite solid solutions 



obta ined  from samples possess ing  low bulk d e n s i t i e s  i n  o rde r  

t o  . e l imina te  coniplications a r i s i n g  from closed p o r o s i t y .  

- Both t h e  undoped y t t r i a  and t h e  y t t r i a  doped h a f n i a  d i sk  

f a c e s  were ground p a r a l l e l  on a diamond wheel s u r f a c e  g r inder .  

Hot pressed. .and s l i p  c a s t  Y203 ,samples requi red  t h e i r  c y l i n d r i -  

c a l  , s u r f a c e s  t o  be  ,ground uniform i n  -order to-  e l imina te  i r r e g -  

u l a r i t i e s  a r i s i n g  from the '  f a b r i c a t i o n . p r o c e s s e s .  This  was 

accomplished by a f f i x i n g  t h e  Y203 d i sks  t o  a 112 i n .  d r i l l  

s tock  .. . _ k i t h  _ __ .  Loc-Wax-ZI, - -. -1Ge0sc~ienc.e 1ns.tyumen.ts.  or^..-, Mount 

yernon, .-New ,York-).-.- .- The drc-ll- . s tock was- - then :chucked - i n t o  a 

m a l l  l abora to ry  l a t h e  which was a t t ached  t o  t h e  bed of t h e  

s.urface g r i n d e r  and a diamond wheel was used t o  g r i n d  t h e  

c y l i n d r i c a l  sur faces ' smooth  and uniform. The f l a t  s u r f a c e s  of 

each dis-k were f u r t h e r  ground smooth on 600 g r i t  S i c  paper .  

A l l  . . sample's t o  .be  used f o r  conduct ivi ty , ,  open c i r c u i t  emf, 

p o l a r i z a t i o n ,  I . < .  .. ,. . .  . and . . . x-ray - - . :studies.  . . . . .  wer-e - machined . . . . . . . .acc,ording . . t o  

t h i s  - .  .procedure. . .  . . . .  General dimensions . . of t h e  .samples fo l lowing 

t,hi.s t rea tment  were 15 t o  19 mm. i n  diameter and 1 .2  t o  1 . 5  mm.  
fl . . 

t h i c k .  The exact  dimensions were taken using a  micrometer and 

measuring t o  t h e  n e a r e s t  0 . 0 1  mm. Severa l  undoped Y203 Sam- 
- -. . .- 

pies were ground t h i n n e r ,  0 . 6  t o  1 . 0  m m . ,  t o  shor ten  e q u i l i -  
. .... . 

. .. . . 
a - . . .. . .  - 

b i i i t io l l t i ines  dur ing  experimental  runs .  
- .  

An x-ray a n a l y s i s  of t h e  y t t r i a - h a f n i a  system was made t o  



de te rmine- the  l a t t i c e  parameter a s  a  func t ion  of composition. 

A composition dependent l a t t i c e  parameter would i n d i c a t e  a  

s i n g l e  phase region ,  while  a  composition independent l a t t i c e  
d 

:parameter would support  evidence of a  two phase region .  YSH 

d i s k s  were analyzed before  and a f t e r  each conduct iv i ty  run  

-!on. a Norelco d i f f r ac tomete r  us ing  a  copper tube a t  40 kv and 

-20 m a  wi th  a  N i  f i l t e r  and a  scanning r a t e  of lo 28/min. 

- P r i o r  t o  t h e  a n a l y s i s  t h e  d i f f r ac tomete r  wag a l igned  and 

,,..checked wi th  a s i l i c o n  s tandard .  L a t t i c e  parameters were 

determined by Cohen's e x t r a p o l a t i o n  wethod as  modif ied 'by  

: Nogel. and Kempter (83). The monoclinic ha fn ia  s o l i d  s o h -  

* t i o n  was i d e n t i f i e d  by comparing t h e  d i f f r a c t i o n  p a t t e r n s  

wi th  t h e  monoclinic H f O 2  ASTM card .  The f l u o r i t e  s t r u c t u r e  

of t h e  YSH s o l i d  s o l u t i o n s  was confirmed by comparing i n t e n -  

s'it'ies and 28 va lues  t o  those  obta ined  f o r  e r b i a  s t a b i l i z e d  

'hafnia s o l i d  s o l u t i o n s  which h,ave been i d e n t i f i e d  as possess-  

i n g  t h e  calcium f l u o r i d e  s t r u c t u r e  wi th  anion vacancies  
- 

according t o  Johnstone. 
1 

. , .  . .  ' 1  . . . . Johnstone, J. K . ,  Ames Laboratory,  Ames, Iowa. S t ruc -  
t u r e s  of e rb ia -ha fn ia  s o l i d  s o l u t i o n s .  P r i v a t e  communication. 
1970. 



. Experimental  Apparatus f o r  C e l l  Assemblies 

The appara tus  shown i n  Figure  4 was used f o r  a l l  e l e c t r i -  

c a l  conduc t iv i ty ,  open c i r c u i t  emf, and p o l a r i z a t i o n  measure- 

ments. The c e l l  assembly (A) was pos i t ioned  above t h e  alumina 

support  tube  (C). A l l  ceramic p a r t s  of t h e  apparatus  were 
- 

made of impervious alumina (McDanel AP35, McDanel Refrac tory  

Porce la in  Co., Beaver F a l l s ,  Pa. ) An alumina cap (B) which 

was connected t o  t e n s i o n  sp r ings  (L) loca ted  i n  t h e  cool  zone 
- .. 

kept  t h e  c e l l  under compression and helped maintain good 

e l e c t r i c a l  con tac t  between var ious  components of t h e  c e l l .  

Four platinum leads  (G) were a v a i l a b l e  f o r  e l e c t r o d e  connec- 

t i o n s  and e n t e r e d  t h e  furnace  through F u s i t e  feed through 

connectors (M) ( F u s i t e  Corporat ion,  C inc inna t i ,  Ohio). Two 
- -. .- 

a d d i t i o n a l  l eads  were f o r  t h e  Pt  v s .  P t ,  10% Rh thermocouple 

(P) which was pos i t ioned  i n s i d e  - the cap adjacent  t o  t h e  c e l l .  

The thermocouple was c a l i b r a t e d  aga ins t  a Nat ional  Bureau of 

Standards thermocouple and checked & s i t u  aga ins t  t h e  mel t ing  

po in t  of s i l v e r .  

-. . - The alumina tube  (E) w,as secured t o  t h e  b r a s s  f l a n g e  ( J )  

wi th  Apiezon wax forming an a i r  t i g h t  chamber. The f l a n g e  was 

water  cooled by means of t h e  copper cool ing c o i l  ( H ) .  Flanges 

( J )  and (K) were b o l t e d  toge the r  and an O-ring s e a l  prevented 
- -. . 
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Figure 4.  Schematic diagram of experimental  apparatus  f o r  
e l e c t r i c a l  conduc t iv i ty ,  open c i r c u i t  emf and 
p o l a r i z a t i o n  s t u d i e s  

C e l l  assembly 
Alumina cap 
Alumina support  tube  
Alumina tube  t o  c o n t r o l  flow of c o n t r o l l e d  
atmosphere 
Outside alumina tube  which forms gas t i g h t  
enc losure  
Grounded Inconel  s h i e l d  
P t  l ead  wires  f o r  c e l l  connections 
Water cooled Cu c o i l s  
Out l e t  va lve  f o r  t h e  system 
Brass  f l a n g e  which i s  removable t o  load c e l l s  
Brass f l a n g e  which remains s t a t i o n a r y  
Tension sp r ings  
F u s i t e  f eed  through connections 
Chromel-alumel c o n t r o l  thermocouple 
PC- lO%Rh, P t  temperature measuring thenno- 
couple 
Marshal l  non-induct ively wound, Nichrome 
element furnace  
To gas p u r i f i c a t i o n  t r a i n  and Matheson Gas 
Propor t ioner  
Veeco vacuum va lve  
To mechanical vacuum pump 





any gas leakage.  An Inconel  sh. ie ld (F) was s l ipped  down over 

t h e  o u t s i d e  of alumina tube  (E) and gr,ounded. I t s  purpose was 

twofold; t o  e l imina te  induced vo l t ages  and t o  even out temper- 

a t u r e  g rad ien t s  w i t h i n  t h e  hot  zone. The alumina tube  (D) 

insured  t h a t  c o n t r o l l e d  atmospheres flowed pass t h e  c e l l  

-- - .  assembly. 

A Nichrome, noninduct ively wound, .Marshall furnace  (Q) 

was .used t o  a t t a i n  temperatures  of 600 t o  1 0 0 0 ~ ~ .  Shunting of 

t h e  e x t e r n a l  t a p s  from t h e  furnace  winding was, used t o  e s t ab -  

l i s h  .a uniform h o t  zone. A ~ O C  temperature g rad ien t  e x i s t e d  

ac ross  a 3 i n .  h o t  zone a s  measured by a d i f f e r e n t i a l  thermo- 

couple.  S ince  c e l l  assemblies occupied only t h e  middle inch  

o f . t h e  hot  zone, thermal g rad ien t s  were expected t o  be n e g l i -  

g i b l e .  This  was confirmed by open c i r c u i t  emf measurements of 

l e s s  than  1 mv. across  CSZ between i d e n t i c a l  r e v e r s i b l e  e l e c -  

t r o d e s .  
.. . 

The furnace  was mounted .on a ' m e t a l  guide s o  t h a t  i t  could 

be r a i s e d  and r o t a t e d  t o  one s i d e .  The assembly which i n -  

cluded t h e - f l a n g e  (J) and .alumina t,ubes (D) and (E) was l i f t e d  
C. C. 

o f f  t h e  s t a t i o n a r y  f l a n g e  (K) t o ' a l l o w  access  t o  t h e  c e l l .  
- - 

A West s t e p l e s s  s i l i c o n  c o n t r o l l e d  r e c t i f i e r  i n  conjunc- 

- t i o n  wi th  a West p ropor t iona l  c o n t r o l l e r  provided a tempera- 

t u r e  c o n t r o l  of - + 1°c. The c o n t r o l l e r  operated from t h e  output  



of a chromel-alumel thermocouple (N) l oca ted  near  t h e  furnace  

windings. 

~ l e c t r i c a l  l eads  were connected between t h e  P t  furnace  

leads  a t  the F u s i t e  feed  through connectors (M) and a c e n t r a l  

switch box. The i n p u t s  and outputs  of t h e  var ious  measuring 

instruments  were connected t o  a panel  box. Connections 

between . t h e  two boxes allowed c i r c u i t s  t o  be cons t ruc ted  with 

a minimum of complicat ion and a maximum i n  f l e x i b i l i t y .  A l l  

e l e c t r i c a l  l eads  were made wi th  Tef lon  i n s u l a t e d ,  s i n g l e  
. . 

conductor c o a x i a l  c a b l e  (Al l i ed  #55D9997, RG180 B / U ,  A l l i e d  

Radio, Chicago, I l l . ) .  . A l l  s h i e l d s  were grounded i n  such a 

b manner t h a t  ground loops were kept  t o  a minimum. 

The system was evacuated through o u t l e t  (T) w i th  a mechan- 

i c a l  vacuum pump which could be i s o l a t e d  from t h e  system by a 

Veeco vacuum va lve  (S) .  . A c o n t r o l l e d  atmosphere was i n t r o -  
- 

duced i n t o  t h e  system through (R) and e x i t e d  through (I) i n t o  
- 

a minera l  o i l  bubbler  and f i n a l l y  exhausted out  of t h e  bu i ld -  

i n g  through a l abora to ry  hood. A p i c t u r e  of t h e  experimental  

appara tus  i s  shown i n  Figure  5 .  

. - - 

Gas Handling System 

C e l l  assemblies  employing r e v e r s i b l e  metal-metal  oxide 

e l e c t r o d e s  were contained i n  an i n e r t  atmosphere of p u r i f i e d  







helium. The tank helium was passed through a conventional gas 

glass.  The pur i f ica t ion  involved 
- 

passing the  gas through act ivated BTS Catalyst a t  160°C; a 

mixture of activated alumina, Dr ie r i t e ,  and Anhydrone; Ascar- 

f t e ;  and a l iqu id  nitrogen cold t r a p  i n  tha t  sequence. The 

glass  purificationtrain~was~connected t o  copper tubing by 

+ Genco sea l s ,  . - - ' 

,:.&.,.., - * 

.  for controlled atmospheres - 

dried tank oxygen, dr ied air ,  and He/02 r a t i o s  of 10 and 100 

w e f  e. used. -:.The oxygen-and - af r ..gases, weye dried by passing 

.- them though Drie r i t e ,  Anhydrone, activated alumina, and 

Ascar i te , .  The He-07 mixtures were -obtain-ed by passing t h e  - &:;gy$;ii&v5;Tq - - - 
- .,f!!k*p 

gases through a Matheson Gas Proportioner w i c  permitted 

metering of the  individual  gases t o  make two component mix- 

tures,.  The- gas proportioner was used w&th Matheson f lowmeter 

tubes 600, 601, and 610. - - . .  

;._; - Lw. oxygen p a r t i a l  prcosures-were obtained from C02-CO 

mixtures based on the  following dissociat ion react ion.  

The standard Gibbs- f r e e  energy. f o r  t h i s  reaction (84) i s  given 



From equi l i b r i u i  thermodynamics the oxygen p a r t i a l  pressure 

can be calculated from Equation 80. 

if conditions are maintained so tha t  the temperature i s  con- 

'st&!& .and, knot& and the-  C02/C0 r a t i o  i s  constant and known. 

I n  t h i s  investigation, C02/C0 ra t ios  were varied between 100 

and 0-. 1.. : The.$02-CO mixtures -were obtained by passing the two 

*gases through the gas .proportioner . Bone dry ,carbon dioxide 

'iind c.P,- carbon monoxide were. the grades of gases used i n  t h i s  

Znirestigation. - The -error i n  oxygen pressure due t o  impurities 
.. < >.- - 
.I., ' - -* .'! 
. .8 ;'?,,-&.:.l: ..v8.. -1:; ; . iln .. the . gases . based' on $typical tank walyses was 0 3 of an 

. .. - ,. +,' ,,,;:,,s ,$.. -v., .., ,, -,,: ,! 8 . ,:%.. : - . . . - . . . % _ I  . . .I_ . . . 

, 
. , , . , > .  . . . , : . ,  5 ,  

. , .  I '  - ! - . ' ,  ' j j l .  ,; '.. -' 
+.zj G G , ,  .. , &; ,: : C L . 2  n. ~ . "  : '..Z,.LS - - *. ; ; -;: ,: ! ', ' _ . .  . ,  ,:.*- - . -  .. ,.,. .. . . 

., - , . ... '1 ' ' -8..':-&'l . i ,  ,L ' 
. . - 4  = & ,  

-1, .: .%':-:Ti,,.1:- '. 
..,, 

i , -8r i~, : .orderof  magnitude in. Fb2 f o r  t h e w o r i t  possible ra t io ,  Conse- 
L;:?. .:;;kh',+ . ,? .. .ullIL~ 

- 
* - 
7 , ' o . r  $rfZ,L 

m - . quent ly  these gases were not purified . 
\ . , J'J,@-- 

c " ,  

- ,  * I -  

- ~2 .&;:+ .:Each flowaecer tuba was'cali-brated fo r  a parti.culax gas ,- * L Y -  , . 
' ) _,. .', c. . - , .-> .,?[ $ 

,A ,-3 

" , fll.::.' by- -measuring the' displacement of an- air-water in ter£  ace with 
;$ ,$ *, %," 

>;, * . 1 a.T4 , .;'> 
;?- t, i :+ time: i n  a- graduat od cyLiude~-  far. lszge flow ra tes  (80 . oc[rrdn. ) 

, . , 2 . * T c! , , t,.. . : 
1 , - , b 2 .  

. )*',,' 
*. 

:., , ' i .,.n:-. . . \  'p - -2 - - 
j l  . ..,! hnd a graduated buret& f o r  lower flow ra tes  (5 cc/min.) . - . , -  - < - , .- ,&+;-< , x:4- . "&:' ' 

..- - ..I~,~, s Water heads of less than 6 in .  were used- in  the cal ibrat ion 
";!I 1 \. > % 

and the  overall- reprodu_cibility of . a - part icular  se t t ing  w a s  

Buch that  pressure . . correclf uns- were neglected. 



Open Circui t  Emf Measurements 

Open c f r c u i t  emf measurements were made using diss imilar  

revers ib le  
&*$; ' I  

type @ 
4- 

~t M , M O / M ~ O ~ / M  XEV 
. - 

where M-MO and Mf-M'O represent diss imilar  electrodes and Ma% 

i s  e i t h e r  Y203 

The metal-m ectrodes were 

prepared t o  give a 10/1 molar r a t i o  of metal t o  metal oxide a t  

equilibrium. Powders were dry mixed and pressed i n  a 1 / 2  i n .  

tungsten carbide l ined d i e  a t  3000 p . s . i .  and then i s o s t a t -  

i c a l l y  pressed t o  50,000 p . s . i .  The electrodes w e r e  not 
I .* L 

s in tered  p r i o r  t o  fabr ica t ion  of the  c e l l ;  s in te r ing  occurred 

during the  experimental run providing good t i g h t  interfaces  

between the  e lectrode and oxide specimen and good e l e c t r i c a l  

contact between t h e  electrodes and the  platinum lead wires. 

For low Po2 r.uns, two zirconium ge t t e r  buttuns were placed 

above and below t h e  c e l l .  Figure 6 shows a picture  of a 

typ ica l  emf c e l l  construction employing the  following c e l l s  

Co,CoO/Y203/~i , N ~ O / Y ~ O ~ / C U , C U ~ O .  XV 

Equilibrium oxygen a c t i v i t i e s  f o r  the  revers ible  metal-metal 

oxide e lectrodes  used i n  t h i s  invest igat ion are  l i s t e d  t n  





cell assemb 



. . .  

Table  3 .  Equilibrium oxygen a c t i v i t i e s  f o r  r e v e r s i b l e  
e l e c t r o d e s  

Elec t rode  Standard f r e e  -Log Po2 (Atm) Reference 
energy change ( ~ a l )  - - a t  1 0 0 0 ° ~  - 

- .  . The c e l l  assemblies were cons t ruc ted  o u t s i d e  of t h e  . - 

f.urnace, t r a n , s f e r r e d  t o  t h e  support  tube ,  and placed under 

c,ompression. C e l l  .assemblies normally cons i s t ed  of two i d e n t i -  

c a l  c e l l s .  The platinum leads  from t h e  e l e c t r o d e s  were welded 

. . t o  t h e  platinum. instrument,  leads ,  t o  complete t h e  e l e c t r i c a l  

connections.  .. . A l l  l eads  were checked f o r  e l e c t r i c a l  c o n t i n u i t y .  

The system was s e a l e d  and t h e  furnace  lowered I n t o  p o s i t i o n .  

The system was evacuated by t h e  fore-pump t o  -20p a t  a tempera- 

0 
t u r e  of 200 C and. he ld  t h e r e  f o r  s e v e r a l  hours .  The system 



75 

was f lushed  twice  and then  f i n a l l y  f i l l e d  wi th  p u r i f i e d  

0 
helium. The fu rnace  temperature was increased  t o  1000 C 

p l a c i n g  t h e  c e l l  under a p o s i t i v e  pressure .  S t a t i c  i n e r t  

atmospheres were chosen because of convenience a f t e r  v e r i f y -  
- .  . . .  

i n g  t h a t  measuremeilts were independent of flow r a t e s .  
. * . - .  . . . . - . . . . . . - .  - . -  0 . ' 

The c e l l s  were allowed t o  e q ~ l i l i b r a r e  a t  '1000 C . Open 

k i r c u i t  emf measurements were made wi th  'a Leeds and Northrup 

'7554' T y p e  K;4 potent iometer :  i n -  conj tmet ion  with-  a ~ e i t h 1 . e ~  

6 1 0 ~ .  Electromete; employed a s  t h e  n u l l  d e t e c t o r .  The high 
. . 
i npu t  impedance (1014 ohms) of t h e  e lec t rometer '  prevented t h e  . 

. . .. . . 
, . . c e l l  'f ran, becoming d u r i n g  t h e  h u l l i n g  opera t ion ;  

. .  . . . . 

The same po ten t iomete r  wi th  a Hewlett Packard 419A DC Nul l  

Voltmeter was used t o  measure t h e  thermocouple output .  The 

output  of t h e  e l ec t romete r  was recorded wi th  t ime t o  determine 
- -_ _. -1 . . . ,- . . - - .  . . .. . .- 
h s t eady  s t a t e  va lue .  ~one&e. l i .  E'lectronik '18 .and 1 9  ' ~ t r i . ~  

. - . . - - 
7- - c h a r t  r ecorde r s  and a Moseiey Model 2DR X-Y r ecorde r  were 

. .  . 
~ i e d  f o r  t h i s  purpose.  . ~ ~ u i l i b r a t i o n  t imes v a r i e d  between 3 

'and 24 h r s .  depending upon m a t e r i a l  and temperature.  The tem- 

E ' 0 
p e r a t u r e  was lowered i n  50 C increments and then  recyc led  i n  

- .  . . . . . . . . 
equal  increments back to '  1 0 0 0 ~ ~ .  

. . . .  . 

. . .  
' Problems a r o s e  i n  c e l l s  involv ing  a low Po e l e c t r o d e .  

2 

E i t h e r  t h e  platinum lead  wires  became b r i t t l e  and b'roke o r  



t h e  h i g h  P i2  e l e c t r o d e  would reduce and/or t h e  low Po2 e l e c -  

t r o d e  would ox id ize .  .The d a t a  per  c e l l  was g r e a t l y  l i m i t e d  

by t h e  advent of t h e s e  malfunct ions.  

D-c P o l a r i z a t i o n  Measurements 

E s s e n t i a l l y  t h e  same procedure was followed f o r  t h e  

p o l a r i z a t i o n  experiments.  One of t h e  r e v e r s i b l e  e l e c t r o d e s  

was rep laced  by a blocking e l e c t r o d e  .of gold.  The gold was 

vapor depos i ted  onto t h e  oxide specimen a n d ' t h e n  backed wi th  

5 m i l  gold £ o i l .  The r e v e r s i b l e  e l e c t r o d e  was Cu-Cu20. 
. . 

The d-c v o l t a g e  was app l i ed .  across  t h e  c e l l  by means of 

a 6 v o l t  b a t t e r y  and a  v o l t a g e  d i v i d e r .  The appl ied  v o l t a g e  

was measured w i t h  a  Systron Donner D i g i t a l  Multimeter Model 

7050. The c u r r e n t  through t h e  c e l l  was determined by measur- 

i n g  t h e - v o l t a g e  drop w i t h  t h e  K-4 potent iometer  us ing  t h e  

Hewlett Packard Voltmeter a s  t h e  n u l l  d e t e c t o r  ac ross  a 1 K  

p r e c i s i o n  r e s l s t u r  wllicll was i n  series with t h e  c e l l ,  T h e .  
.- 

n u l l  output  was recorded wi th  t ime t o  determine a s t eady  

s t a t e  va lue .  Measurements were taken a t  only two tempera- 

t u r e s ,  850 and 1 0 0 0 ~ ~ .  Currents  were measured f o r  b o t h  

i n c r e a s i n g  and decreas ing  app l i ed  vo l t ages .  



. . -. E l e c t r i c a l  Conduct ivi ty  Measurements 

- - .  

The cons t ruc t ion  of e l e c t r i c a l  conduct iv i ty  c e l l  assem- 
, - 

b l i e s  wi th  r e v e r s i b l e  metal-metal  oxide e l ec t rodes  i s  s i m i l a r  

t o  t h a t  f o r  t h e  emf c e l l s .  I n  t h e  case  of c o n t r o l l e d  atmos- 

pheres ,  coa t ings  of porous platinum p a s t e  (Englehard Indus- 
' 

. . .. . . . . . .  

t r i e s ,  Inc .  , No. 232) were pa in ted  on t h e  f l a t  su r faces  of t h e  
.+. 4 . - - 
oxide specimens t o  s e r v e  as r e v e r s i b l e  e l ec t rodes  wi th  t h e  

- .  .-. - - . . .  - 
atmosphere. General ly  t h r e e  coat ings  were requi red  t o  produce 

a r e s i s t a n c e  of l e s s  than  0 .5  ohm between any two po in t s  on . 

. . 
- . -  . .  
t h e  . su r face .  ~ a c h  coa t ing  was f i r e d  a t  950 t o  1 0 0 0 ~ ~  f o r  a 
.. . . - . . . .- . - . . 

minimum of 1 hi-:' For- 2 probe measurements t h e  samples were 

backed wi th  1 m i l  platinum f o i l  and t h e  a r e a  was determined 

by measuring t h e  specimen diameter wi th  a micrometer. For 3 

b;obe measurements (87) guard r i n g s  were formed by sc rap ing  
. . . . .. . -  

away a p o r t i o ~ l  of t h e  platinum coa t ing  wi th  a  p l a s t i c  template  
- . - .  . 
<. . - - .  
and a diamond s t y l u s  forming an i n s u l a t e d  r i n g  between t h e  
. .  . 
.- . & .. . .- .. _. _ _ _ __ . . _ . - . 

c e n t e r  e l e c t r o d e  and t h e  o u t e r  guard r i n g .  This  opera t ion  
. .  . 

was done a f t e r  t h e  t h i r d  platinum coa t ing  had been f i r e d .  A 
.. .- , . . 

sample along wi th  a  p iece  ,of machined d r i l l  s tock  of known 
. .  - . .  . .  . . 

. - 
diameter were photographed t o g e t h e r .  Eight  measured diameters  
. . 
, . - -  . . 

of t h e  c e n t e r  e l e c t r o d e ,  obta ined  from a l a r g e  p r i n t  o f  t h e  
. .  . -. . - . .- - . . - . . - - . 

photograph were averaged and t h e  a r e a  c a l c u l a t e d  from t h e  mean 



diameter. . .A t y p i c a l  3  probe conductivity c e l l  wi t11  an 8 m/o 

YSH sample i s  shown i n  Figure 7 .  

The a-c conductivi ty measurements were made with a Wayne- 

Kerr, Model 221 ,  Universa.1 bridge,  which balances t h e  conduc- 

tance against  s tandards of conductance and capacitance. The 
- - 

bridge measures t h e  equiva.lent p a r a l l e l  conductance and 

capacit'ance of t h e  samples and leads a t  a frequency of 1592 
. . 

hz. . Previous inves t iga t ions  on y t t r i a  ( 6 3 )  and r a r e  ea r th  

oxides (65) ind ica ted  t h a t  conductances were independent of 

frequency above 100 hz, consequently t he  frequency was not 
. . 

var ied i n  t h i s  inves t iga t ion .  

The system was outgas-sed a t  2 0 0 ~ ~  under vacuum. The 

flowing control led  atmosphere was 'introduced and t h e  system 

heated t o  1 0 0 0 ~ ~ .  Conductances' were measured per iod ica l ly  

u n t i l  the re  was a change of l e s s  than 1% i n  the  reading.  over 

a period of an hour. The temperature cycling was i d e n t i c a l  

t o '  t h a t  described f o r  t he  emf s tud i e s .  

Since the  conductivi ty was so high f o r  the  YSH samples, 

lead r e s i s t ance  cor rec t ions  were required.  To determine t h e  

lead r e s i s t ance ,  two platinum leads contacted the  porous 

coat ing of one surface  and a small vol tage  was 

impressed across  t h e  leads which were disconnected a t  the  

bridge.  The vol tage  across t h e  leads and across a precis ion 
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r e s i s t o r  i n  s e r i e s  wi th  t h e  leads  were measured wi th  t h e  K - 4  

po tent iometer .  A l e a s t  squares  f i t  of t h e  d a t a  f o r  f i v e  runs 
. - 

between 800 and 1 0 0 0 ~ ~  gave 

The l ead  r e s i s t a n c e  w a s  added t o  t h e  i n t e r n a l  r e s i s t a n c e  of . .  - 

t h e  b r idge  and t h e  meakured conductances were co r rec ted  a s  

o u t l i n e d  i n  t h e  opera t ion  manual f o r  t h e  br idge .  
. . 

The conductance va lues  were co r rec ted  f o r  lead  r e s i s t a n c e  

where a p p r o p r i a ~ &  and: .mult ipl ied by t h e  th ickness  and divided 

by t h e  c r o s s  s e c t i o n a l  a r e a  -of the. .e lectr 'odes t o  g ive  t h e  
- .  

e l e c t r i c a l  &onduct ivGy of t h e  sample. 
, - 

. . 

coulometr ic  '  itr ration-Open C i r c u i t  Emf Measurements 

A new c e l l  assembly w a s  designed based on t h e  combination 

of a po la r i za - t ion  ce l -1  and two open c i r c u i t  emf c e l l s .  F igure  
.. 

8 i s  a schematic diagram of t h e  coulometric t i t r a t i o n - o p e n  
. ,  . 

.pa ' . , 
I 1 

c i r c u i t  emf.,.cell. A v o l t a g e  w a s  app l i ed  across  a  CSZ (15 m/o 

CaO) e l e c t r o l y t e  between a metal-metal  oxide e l e c t r o d e  and a 

platinum sc reen .  S ince  t h i s  p o r t i o n  of t h e  c e l l  c o n s t i t u t e d  

a p o l a r i z a t i o n  ce l l ,  changes i n  t h e  app l i ed  vo l t age  produced 

a change i n  t h e  oxygen p o t e n t i a l  a t  t h e  platinum sc reen  i n t e r -  

f a c e .  The metal-metal  oxide e l e c t r o d e ,  CSZ e l e c t r o l y t e ,  and 

platinum sc reen  formed a s o l i d  s t a t e  i o n  pump and funct ioned 



. , . . SPLIT A I ~ O  j INSULATOR ! 
,e ,, ' . , 

PLATINUM LEAD WIRE 
SPLIT METAL-METAL OXIDE 

ELECTRODE 

E O ~  ( ~ e f )  SAMPLE ( , ELECTROLYTE . I 
, . ,  

, .  FIRED ON PLATINUM GRID , 

. ELECTROLYTE, 

METAL-METAL OXIDE 
ELECTRODE 

PLATINUM LEAD WIRE 

Figure 8. Schematic diagram of a coulometric titration-open circuit 
emf cell 



as a v a r i a b l e  Po e l e c t r o d e .  The upper p o r t i o n  of t h e  assem- 
2 

b l y  cons i s t ed  of two open c i r c u i t  emf c e l l s .  The c e l l  employ- 

i n g  t h e  CSZ e l e c t r o l y t e  served a s  a r e fe rence ,  i t s  open c i r -  

c u i t  emf r e f l e c t e d  t h e  Po s e t  a t  t h e  sc reen  i n t e r f a c e .  The 
2 

. open c i r c u i t  emf a c r o s s  t h e  sample was compared t o  t h a t  
. .-. - 

across,the~electrolyteeto determine t h e  e l e c t r o l y t i c  behavior 

of t h e s a m p l e  as a f u n c t i o n  of Po2. Appl ica t ion  of t h i s  type  

o f .  c e l 1 . i ~  l i m i t e d  t o  t h e  e l e c t r o l y t i c  domain of t h e  r e f e r -  

ence. e l e c t r o l y t e  .' 

; ~ ; . ~ , N c e a r g r a d e ,  .-325\mesh, CSZ (15 m/o CaO) powder and 

impervious CSZ (15 m/o CaO) d i s k s ,  718 i n .  diameter and 118 

j.n. t h i c k ,  were . . purchased from Zircoa Corp. The powder was 

f a b r i c a t e d  i n t o  314 i n .  diameter  by 118 i n .  t h i c k  d i s k s  

according to.  t h e  procedure o u t l i n e d  f o r  p ress ing  and f i r i n g  

. the-YSH samples. - B.oth types of d i sks  were v e r i f i e d  a s  e l e c -  

t r o l y t e s  -. . . . by ,genera.ting.Lthermodynamic emf s when placed between 

@I-Cu20, Fe-FeO-, and- . . N i - N i O .  . .  - e l e c t r o d e s .  Typica l  micros t ruc-  

t u r e s  f o r  both  types  of CSZ a r e  shown i n  Figure  3.  . . 
The platinum s.creen was imbedded i n '  t h e  pump e l e c t r o l y t e  

.surface. .  . - . .  . . - This  . .  s u r f a c e  was then  ground f l a t  t o  provide a 

f l u s h  contac t  wi th  t h e  ad jo in ing  su r faces  of t h e  emf c e l l s .  

A f t e r  t h e  s u r f a c e  of t h e  pump e l e c t r o l y t e  had been ground 

f l a t  with a diamond gr inding  wheel, one c e n t e r  groove of 20 



I m i i s  and s e v e r a l  7 m i l  grooves were c u t  i n  a sc reen  p a t t e r n  

i n t o  t h e  s u r f a c e  w i t h  a diamond saw. A 20 m i l  platinum w i r e  

was placed i n t o  t h e  c e n t e r  groove and served a s  an e l e c t r i c a l  

. l ead .  The grooves were completely f i l l e d  with platinum by 

repeated  a p p l i c a t i o n s  of platinum pas te .  F i n a l l y  t h e  pump -. 

s u r f a c e  w a s  ground smooth on 600 g r i t  S i c  paper.  

The c e l l  c o n s t r u c t i o n ,  i n i t i a l  hea t ing ,  and open c i r c u i t  

emf measurements were i d e n t i c a l  t o  those  f o r ' t h e  s impler  c e l l s .  

The i o n  pump was opera ted  s i m i l a r  t o  t h e  p o l a r i z a t i o n  c e l l s .  

Unexpected behavior  was observed i n  t h a t  t h e  app l i ed  v o l t a g e  

acro'ss t h e  pump always exceeded t h e  open c i r c u i t  v o l t a g e  

ac ross  t h e  r e f e r e n c e  e l e c t r o l y t e ,  t h e  d i f f e r e n c e s  be ing  as 
. . 

h igh  a s  100% i n  some i n s t a n c e s .  The behavior could he ex- 

p la ined  by i n t e r n a l  ohmic r e s i s t a n c e  l o s s e s  i n  t h e  pump e lec -  

t r o l y t e  and e l e c t r o d e  and/or oxygen leakage a t  t h e  common 

i n t e r f a c e .  A t  a cons tan t  temperature t h e  d e s i r e d ' P 0  range . 2  

was scanned by va ry ing  t h e  app l i ed  vo l t age ;  t h e  open c i r c u i t  

emf c e l l s  were allowed t o  e q u i l i b r a t e  and t h e  emfs recorded.  

F igure  9 i s  a p i c t u r e  of an a c t u a l  coulometric t i t r a t i o n - o p e n  

c i r c u i t  c e l l .  





Photograph of an ac tua l  coulometric t i t r a t i o n -  
open c i r c u i t  e m f  c e l l  



, . ... - ,  - .  Sol id  S t a t e  Oxygen Gage 

- . A  s o l i d  s t a t e  oxygen gage was constructued t o  monitor the  

con t ro l l ed  atmospheres and check the  ca l ib ra t i on  of t h e  gas 

proport ioner.  The c e l l  consis ted  of a  r eve r s ib l e  Cu-Cu2O 

e lec t rode  t h a t  was sealed wi thin  a 318 i n .  I.D. by 1 1 2  i n .  . . .  

' -'tall--CSZ (15- m/o. CaO) - c ruc ib l e  ;. Porous platinum served as  t h e  

-- - ..* 
r eve r s ib l e -gas  e lec t rode  .'- Thee c e l l  being 

- .  -.,--.. - - . - .  . . . . - . C G , C U ~ O / C S Z  i r u c i b i e / o 2 , p t . '  XVI 

 he open c i r c u i t  emf measured t h e  oxygen po ten t i a l  i n  t h e  

-htmosphere w i t h  respect.= to: the. oxygen po ten t i a l  a s  esf abl ished 

. -. ... :. 
by t h ' e . c u - ~ u i ~  keferenke.  eqiiTlibrium. 

The gage was c 0 n s t r u c t e d . b ~  f i r s t  f i r i n g  seve ra l  coat ings 

~ f : ~ - l a t i n r u n  pas t e  on the  outs ide  bottom of the  c ruc ib le .  An 
.... 

unsintered 318 i n .  diameter Cu-Cu20 disk which had been i so -  

b t a t i c a l l y  pressed was in se r t ed  i n t o  t he  c ruc ib le .  A platinum 

lead'  l a y  across  t h e  t o p  of-  the:  C U - C U ~ O  d isk  and ex i ted  from 

, . th&' c ruc ib l e  aIong- a  Side h a l l .  Another Cu-Cu20 d i sk  covered 

t h e  lead and an impervious 1 1 2  i n .  by 114 i n .  diameter A1203 
A .  - - - . - 

rod was set atop t h e  d i sks .  The A1203 rod protruded above the  
. . -  

c ruc ib l e  and ' se rved  as a push rbd to -keep  force  on t h e  gage 

* .  

T h e  sea'l' between t h e  rod and' c ruc ib le  was most t rouble-  



some and t h e  probfem was never r e a l l y  solved.  Of t h e  man,y 

s o l u t i o n s  attempted., t h e  fol lowing proved t h e  b e s t  but  not  

r e a l l y  s a t i s f a c t o r y .  A z i r c o n i a  c a s t a b l e  (Zircoa Cast 28D, 

- Zircoa  Corp.) was forced  down i n t o  t h e  c r u c i b l e  between t h e  

s i d e  w a l l  and rod .  .The c a s t a b l e  was allowed t o  dry  a t  room 
* .  . .  - - .  - . - . " .  - . . 

temperature and t h e  j o i n t  coa teh  wi th  an impervious alumina 

cement (Ceramabond, Aremco Products ,  I n c  . ) . The gage was 
. - 

pos i t ioned  on t o p  of t h e  r e g u l a r  c e l l  assemblies .  A s  t h e  Cu- 

Cu2O disks.  s i n t e r e d ,  t h e  compressive .-., f o r c e  on t h e  push rod 
'L . .. . . 

. . 

caused , the  Cu-Cu20 t o  deform producing an except ional ly  t i g h t  
, 

i n t e r f a c e  wi th  t h e  elecirolyt;: 

The 'data  obta ined  from t h e  gage d u r i n g  s e v e r a l  'conductiv- 

i t y  runs i s  presented  i n  F igure  10. The low oxygen p ressu re  

p o r t i o n  of t h e  graph i n d i c a t e s  t h a t  t h e  gas propor t ioner  was 

c a l i b r a t e d  a c c u r a t e l y  w i t h i n  experimental  e r r o r  a s  shown by 

t h e  span i n  d a t a  a t  a p a r t i c u l a r  .thermodynamic v o l t a g e .  A s  
i - 

expected t h e  l a r g e s t  d i s p e r ~ i o n  occurred a t  a  c O ~ / C O  r a t i o  of 

100 (-228 mv.) where a  smal l  e r r o r  i n  CO flow would s i g n i f i -  

c a n t l y  in f luence  t h e  oxygen p a r t i a l  p ressu re .  A t  a r a t i o  of 

1 (-480 mv.) 9 both - -  flowtubes -... -... were opera t ing  i n  t h e i r  optimum - . . - - -. . . -. , , - . . - - - . - - .--- --. . . - 

ranges a s  demonstrated by c l o s e  grouping of t h e  d a t a  p o i n t s .  

Oxygen p a r t i a l  p ressu res  i n  p u r i f i e d  helium were measured 
. . 

w i t h  t h e  gage over .  a temperature range of 700 t o  1 0 0 0 ~ ~ .  A s  



Figure ' 10.' Comparison of t h e  open c l r c u i t  emf measured from t h e  oxygen 
wi th  that computed f o r  t h e  input  atmosphere 



predicted by theory,  t h e  c e l l  emf decreased with decreasing 

temperature and t h e  oxygen pressure remzined constant a t  10 -11 

t o  10- l2  atm.  he temperature behavior of t he  gage proved i t  

.. was operat ing s a t i s f a c t o r i l y .  

In the high oxygen pressure region of the  graph (270-398 -- - 

rnv..) , t he  da t a  a r e  considerably l e s s  - r e l i a b l e .   or the  He-O2 

mixtures t h e  c a l i b r a t i o n  does appear t o  be off but  t he  e r r o r  

i s  t o l e r a b l e  when compared t o  t he  C02-CO mixtures. Ce l l s  

operat ing i n  a i r  and pure oxygen always f a i l e d  and, more of ten  

than no t ,  t h e  da ta  represented the  highest  emf p r i o r  t o  f a i l -  

u r e .  After  e s t ab l i sh ing  a low oxygen pressure with a C02-CO 

mixture; pure oxygen o r  a i r  was introduced i n t o  t h e  system. 

Normal-ly t h e  emf reversed s ign  and s t a r t e d  increas ing t o  a  

peak value below t h e  thermodynamic value f o r  a  minute o r  two 

and then decreased r ap id ly  t o  zero. Two gages did  generate 

t he  thermodynamic emf i n  pure oxygen, one gage survived f o r  3 

hrs. while the second went for 24 h r s .  The a i r  da t a  point  and 

t h e  four  low pure oxygen data  points  were peak values during 

c e l l  f a i l u r e .  

The f a i l u r e s  r e su l t ed  from the  oxidation of t h e  Cu-Cu20 

e lect rode which el iminated the  required two phase equil ibrium. 

Fa i lu res  were .t.raced t o  cracks i n  the  s e a l  between t h e  A1203 



rod  and . the  c r u c i b l e ,  and from cracks i n  t h e  e l e c t r o l y t e  

c r u c i b l e  i t s e l f .  I n  view of t h e  f a b r i c a t i o n  problems, t h e  

f a i l u r e s  were no t  unexpected. 

P r i o r  t o  f a i l u r e ,  t h e  gages responded n e a r l y  ins tan tane-  

ous ly  t o  changes i n  oxygen p ressu res .  Over-al l  gage response .. 

depended on t h e  t ime cons tan t  of t h e  gas system f o r  handl ing  

t h e  c o n t r o l l e d  atmospheres. For a C 0 2 / C 0  r a t i o  of 100 t h i s  

was approximately,  15 min. Time cons tan t s  f o r  .other  c o n t r o l l e d  

atmospheres were l e s s .  .. . . , 



RESULTS AND DISCUSSION 

' ~ l l  t h e  d a t a  r e p o r t e d  i n  t h i s  i n v e s t i g a t i o n  a r e  presented  

i n  t a b u l a r  fonn i n  t h e  Appendices. 

., E l e c t r i c a l  Conduct ivi ty  of Undoped Y t t r i a  

The p o s s i b i l i t y  of predominant i o n i c  conduct iv i ty  i n  Y203 

was i n v e s t i g a t e d  by open c i r c u i t  emf and e l e c t r i c a l  conductiv- 

i t y  measureinents . Conduct ivi ty  isotherms a s ;  a f u n c t i o n  of 

po2 
a r e  shown i n  Figure  11. 

.Conduc t iv i t i e s  c a l c u l a t e d  from measured conductances 

based on i n d i v i d u a l  l eng th  t o . a r e a  (L/A) r a t i o s  were s c a t t e r e d  

w i t h i n  an o r d e r  of magnitude. S ince  Runs 2 ,  3 ,  4 ,  5 ,  a.nd 7 

d i d  produce a  n e a r l y  ' i d e n t i c a l  1 0 0 0 ~ ~  isotherm, t h i s  isotherm , 
. -- 

was used  as a  r e f e r e n c e ' f o r  c o r r e c t i n g  R u n s ' l ,  6, 8 ,  9 and 10. 

A mul t ip ly ing  f a c t o r  was c a l c u l a t e d  f o r  each specimen (1 ,6 ,8 ,  

9, and 10) t o  make t h e i r  c a l c u l a t e d  c o n d u c t i v i t i e s  ag ree  wi th  

t h e  1 0 0 0 ~ ~  i so thenn  a t  one temperature a n d  p ressu re  (63) . 
Descr ip t ions  of t h e  e l e c t r i c a l  conduc t iv i ty  samples a r e  given 

i n  Table 4 .  Runs 6,  9 ,  and 10 requ i red  an upward s h i f t  t o  

f o r c e  t h e  i n d i v i d u a l  c a l c u l a t e d  c o n d u c t i v i t i e s  t o  equa l  t h e  

i so the rmal  conduc t iv i ty .  These runs employed porous platinum 

e l e c t r o d e s .  Examination of t h e  electrode-specimen i n t e r f a c e s  



Figure 11. E l e c t r i c a l  conductivl ty isotherms as  a funct ion of oxygen p a r t i a l  
pressure f o r  undoped Y203 



Following t h e  run i n d i c a t e d  t h a t  t h e  e l e c t r o d e  con tac t  may 

have been ques t ionab le .  The o v e r a l l  e f f e c t  of t h i s  would be 

X-0- decrease  t h e  o r i g i n a l  a r e a ,  A,  causing t h e  c o n d u c t i v i t i e s  

c a l c u l a t e d  from t h e  conductances t o  be too  low. Thus t h e  

.upward s h i f t '  of t h e  d a t a  f o r  Runs 6 ,  9 ,  and 10 does have some .. . 

. - .  . . 3 u s t i f  i c a t i o n .  - 
. . 

_: - 
T a b l e - 4 .  Desc r ip t ion  of e l e c t r i c a l  conduc t iv i ty  samples 

Sample E lec t rodes  % T h e o r e t i c a l  F a b r i c a t i o n  
d e n s i t y  . 

Cu-cu20 
Porous P t  

I I 

N i - N i O  
Porous P t  

11 

A i r  i nduc t ion  
Hot pressed  
Hot pressed  
A i r  i nduc t ion  
S l i p  c a s t  
S l i p  c a s t  
S l i p  c a s t  
S l i p  c a s t  
S l i p  c a s t  
H0.t  press:ed 

. .  . 

. .  .- The o p p o s i t e  w a s  t r u e  f o r  t h e  conduct iv i ty  runs ilzvolv- 

ing-meta l -meta l  oxide e l e c t r o d e s .  Runs 1 and 8 requ i red  a  

downward s h i f t  i n  t h e  d a t a  t o  match t h e  1 0 0 0 ~ ~  conduc t iv i ty  

isotherm. Run ,l requ i red  a  l a r g e r  s h i f t  than Run 8 .  J u s t i -  

E ica t ion  f o r  t h e  s h i f t  i s  based on t h e  ' s i n t e r i n g  

t h e  e l e c t r o d e s .  S ince  t h e  metal-metal  oxide e l e c t r o d e s  had 
.. - .  

not  been previous ly  s i n t e r e d ,  t h e  o r i g i n a l  L/A . r a t i o s  were 



' .obtained f  rorn a11 u n s i n t e r e d  compact. A s  t h e  temperature 

i n c r e a s e d ,  t h e  e l e c t r o d e  m a t e r i a l s  s i n t e r e d  and flowed under 

p ressu re  i n c r e a s i n g  t h e i r  a r e a .  The Cu-Cu20 e l e c t r o d e  showed 

:a g r e a t e r  i n c r e a s e  i n  a r e a  than  t h e  N F - N i O  e l e c t r o d e  which 

.necessi ta ' ted t h e  l a r g e r  downward s h i f t  of t h e  .da ta  f o r  t h e  
.- - 

.,, Samples 3 and 5 possessed almost no poros i ty ,  whi l e  

Sample 4 contained 20% p o r o s i t y .  Sample 3 was h o t  pressed  

{and possessed a very  f i n e  g r a i n  s t r u c t u r e  whi le  Sample 5 was 

s l i p  c a s t  ,.and . . .  .possessed , e n o v o u s  g ra ins  . ( ~ i & r . e  . 2) . One of 

t h e  s u r p r i s i n g  - . .. observat ipns  . .  , . . was t h e  lack  . . . .  of g r a i n  boundary 
- - . . . .  - .  ... 

and . p o r o s i t y  e f f e c t s ,  s i n c e  Runs 3 ,  4 ,  and . . . .  5 produced iden-  
f :  ' .  . . . .  . . -  

t i c a l  r e s u l t s .  There i s  no . explanat ion  . a s  t o  why t h e s e  
. - .  . . - .  . - 

e f f e c t s  were n o t  observed. 

- .  
The h igh  oxygen p ressu re  d a t a - d o  i n d i c a t e  t h e  presence 

. . . . . . . . . .  . . . . . . . . . .  .. - . - - .  - -  . 

of an oxygen p r e s s u r e  dependent conduc t iv i ty .  A l e a s t -  -. . . . .  . . .  . . . . . . . . . . . . . . . . . . .  . . .  , - .. - .  . . -  , i-. -,.... ... . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . .  _ .:. . 

squares  a n a l y s i s  of 9 h igh  oxygen p ressu re  p o i n t s  a t  1 0 0 0 ~ ~  . . . . . .  

gave a  s l o p e  of 0.228 + . O . 1 1  which i s  very c l o s e  t o  t h e  +1/4 

. 
dependence f o r ' h o l e  conduction p red ic ted  by t h e  fo l lowing 

. . .  . . - .  

equi l ibr ium: 

*. . 
. . I 1  . ;  

where t h e  [0:3 i s  f i x e d  by,  t h e .  impuri ty  content  i Th i s  

appears  reasonable  s i n c e  t h e  impuri ty  content  of t h e  undoped 



Y203 ' (Table. 1)  i s  s u f f i c i e n t l y  high t o  c o n t r o l  t h e  conduc- 

t i v i t y .  

. i.. . The apparent ac t iva t ' i on  energy f o r  ho le  conduction was 

47.9 kcal!mole a s  determined from an Arrhenius p l o t  of t h e  

d a t a  f o r  pure oxygen between 700 and 1 0 0 0 ~ ~ .  This  va lue  

agrees  ,fairofably wi th  44.7 kcal/mole obtained by T a l l a n  and 

Vest .(63) -and 43.8 - kcal/mole obtained by Subbarao -- e t  a l .  (9) .  
- - 

The;:posi t ive h o l e  conduc t iv i ty  can be represented  by t h e  
. . 

fol lowing expression: 
. . 

- : 
. .. . - - .  3 k -1 -1 

O~ = - 2 . 8 ~ 1 0  Po2 exp(-47,90O/RT) ohm cm . (82) 
. ..- . . 

4 ,  :- . .  . . - - -..:'. . .  

The i c a t t e r  i n  t.he d a t a  i s  such t h a t  no s p e c i f i c  d e f e c t  
- .  . . . .  . - .  . . . .  

equi l ibr ium can be confirmed. I n  ' f a c t ,  t h e  p ressu re  depend- 

ence of t h e  conduc t iv i ty  i s  a c t u a l l y  between t h a t  p red ic ted  by 
. . 
. .. 
t h e  f u l l y  ion ized  oxygen i n t e r s t i t i a l  model and t h e  d e f e c t  
, , .,. . . - - -... - * . -. . . < - 

model proposed by T a l l a n  and Vest '(63). I n  the, l a t t e r  pro- 
. .-  . .  - . . .. . . . 
* .  . . .  . 

posa l ,  - t h e . h o l e  conduc t iv i ty  a r i s e s  from f u l l y  ion ized  c a t i o n  
- - . . . . . . . 

.. vacancies as 'foiiows: ' 

. .  - 1 1 1  

502 2 0; + 213 Vy + 203. , 
.- . - . . (83) 

- .  

It i s  i n t e r e s t i n g  t o  note  t h a t  t h e  h o l e  conduct iv i ty  expres-  
. . . . - - . - . . 

s i o n  . . of Ta l l an  and Vest (63) 
. . 
. . . .  . .  

3 3/16 1 -1 
0~ = 1 . 3 ~ 1 0  . . Y o  exp(-44,7001R~) ohm- cm 

- .  . . 2 (84) 
- - 



i s  very similar t o  Equation 8 2 .  

. . A t  lower oxygen p r e s s u r e s ,  t h e  conduct iv i ty  isotherms 

show an oxygen'yressure ind.ependent conduc t iv i ty ,  sugges t ing  

. t h e  presence of i o n i c  conduction. This  i s  c o n s i s t e n t  w i t h  
d 

' . o the r  i n v e s t i g a t i o n s  (9,63) which de tec ted  t h e  presence- o~f 

i o n i c  - - - - - - . . -  conduction b -  - - - . - - - . . .  ..- under s i m i l a r  condi t ions  of temperature and 

. . - ~ x y g e n  pressure .  The 1 0 0 0 ~ ~  isotherm shows a  s l i g h t  p ressu re  

dependent . - .  conduc t iv i ty  a t  very low oxygen p ressu res ,  poss ib ly  

i n d i c a t i n g  t h e  onse t  of excess e l e c t r o n  conduc t iv i ty .  I f  s o ,  
- .  

0 
. t h e  i o n i c  p l a t e a u  i s  very narrow a t  1000 C .  Data from t h e  

lower' t empera ture  isotherms a t  'low oxygen pressures  a r e  t o o  

l j l in i tkd tb: 'y ikld t o  any i n t e r p r e t a t i o n .  

t .  . An a c t i v a t i o n  energy c a l c u l a t e d  f o r  i o n i c  conduction a t  

a  constant  oxygen p ressu re  def ined  by t h e  minimum i n  t h e  

- 1 0 0 0 ~ ~  isotherm ( l o g  Pop = -9.5)  was 27.9 kcal jmole.  This  

Galue' i s  h igher  than  t h a t .  r epor ted  by Berard -- e t  a l .  (75) of 
. - 
I 9 . 6  kkal/&ole f o r  oxygen i o n  d i f f u s i o n  and much less than  

- .  

69.2 kcal/mole f o r  c a t i o n  d i f f u s i o n .  Although good agreement 

i s  I.acking, i t  i s  assumed t h a t  t h e  i o n i c  . conduc t iv i ty  r e s u l t s  

% n .  oxygen i o n  migra t ion  a& pred ic ted  by t h e  chosen d e f e c t  

model. The i o n i c  conduc t iv i ty  can be expressed as :  



. I n  s u m a r y ,  undoped y t t r i a . e x h i b i t s  a  p ressu re  dependent 

conduc t iv i ty  a t  h igh  oxygen p ressu res  which can be as soc ia ted  

wi th  e l e c t r o n i c  d e f e c t s ,  i. e .  p o s i t i v e  h o l e s .  A t  lower oxygen 

p r e s s u r e s ,  t h e  presence of i o n i c  conduction i s  suggested by - .. 

t h e  appearance of an.oxygen p ressu re  independent conduc t iv i ty .  
z. . 

These conclusions a r e  of a  genera l  .na ture  s i n c e  t h e  d a t a  a r e  

somewhat s c a t t e r e d  due t o  s t r a y  conductances a s  h igh  a s  10% of 

t h e  measured sample conductances. 

Open C- i rcui t  Emf Measurements on. Undoped Y t t r i a  

. .- - . - - 
3 .  

Open ci2du5.t emf . .  . measurements were made t o  v e r i f y  t h e  - 
presence of predominantly ion ic . conduc t ion  i n  Y203 as sug- 

ges ted  by t h e  e l e c t r i c a l ' c o n d u c t i v i t y  s tudy.  The raw d a t a  

obtained from t h r e e  d i f f e r e n t  types  of c e l l s  a r e  presented  i n  - . .  

Figure  1 2 .  ' A  N i - N i O  e l e c t r o d e  was chosen a s  t h e  r e f e r e n c e  

e l e c t r o d e  based on l i m i t e d  d a t a  from i n i t i a l  runs .  These runs  
. __-- 

i nd ica ted  t h a t  the N i - N t O  equilibrL<m defined a Po t h a t  was 
-. . . _ _-. 

.- . .2 
centered  w i t h i n  t h e  presumed i o n i c  domain of y t t r i a .  Fe-FeO 

was e l iminated  as a  p o s s i b l e  e l e c t r o d e  m a t e r i a l  s i n c e  it re- 

ac ted  wi th  'Y203 t o  form t h e  compound YFe03. Co-COO was a l s o  
.. . . - . .  

_ _ . -  _ .  - 
t r i e d  as  a  . re ference  e l e c t r o d e ,  however i t  funct ioned worse 

than  N i - N i O  .as shown i n  Figure  1 2  by t h e  s c a t t e r  i n  t h e  d a t a  
. -. . . . .  . . 
' f o r  t h e  c e l l  



THERMODYHAkllC EMF WITH 
NI,WIO REFERENCE 

F i g u r e  1 2 .  Open c i r c u i t  e m f  data f o r  undoped Y203 



Ni,Ni0/Y2O3/~o,coo. - .  X V I I  

Post  run examination of t h e s e  c e l l s  genera l ly  i n d i c a t e d  t h a t  

f a i l u r e s  c o u l d ' b e  t r a c e d  t o  oxida t ion  of t h e  Co i n  t h e  Co-COO 

e l e c t r o d e s .  

. .. The c e l l s  u s i n g  a low Po Y-Y203 e l e c t r o d e  were employed 
2 

t o  determine - .  PQ f o r  Y203, t h e  c e l l s  being 

and 

X V I I I  

X I X  

One o r  two platinum wires  were spo t  welded t o  an y t t r ium meta l  " . ;. ,. . . .' - . 
d i sk  which s e w e d  a s  an e l e c t r i c a l  l ead  connection. S ince  t h e  -- . . - - - - - 

electrode-specimen i n t e r f a c e  formed t h e  r equ i red  two phase 
I . . .  

equi l ibr ium, moderate ox ida t ion  of t h e  y t t r ium meta l  was not  . 

de t r imen ta l  t o  t h e  c e l l .  

. - Steady emfs were d i f f i c u l t  t o  o b t a i n  i n  c e l l s  us ing  low 

. P o 2  e l e c t r o d e s .  E l e c t r i c a l  con tac t s  f r equen t ly  l o s t  t h e i r  
- . " .  

i n t e g r i t y  and o f t e n  platinum embrit t lement r e s u l t e d  i n  pre-  -- . - . .  

mature te rminat ion  of , t h e  runs  due t o  a  break . i n  an e l e c r r i c a l  
. . 

l e a d .  Another ser i .ous problem a rose  sinc.e e l e c t r o d e s .  were no t  

i s o l a t e d ,  by gas t i g h t  compartments, consequently many of t h e  
. .  . . 
L . .  . - 

runs-were  te rminated  by f a i l u r e  of an e l e c t r o d e  t o  mainta in  a 
.. . 

f i x e d  oxygen p o t e n t i a l .  This  was p a r t i c u l a r l y  t r u e  f o r  c e l l s  



with  1arge .grad ien ts  i n  oxygen chemical p o t e n t i a l .  I n  t h e  

case of Ce l l s  XVIII and X I X ,  t h e  presence of zirconium g e t t e r  

d isks  f u r t h e r  promoted f a i l u r e  of the  reference e lec t rodes ,  

even though the  exposed sur face  o f , t h e  e lec t rodes  was coated 

with Ceramabond. - .- 

The , t h i r d  type of c e l l  - 

Ni , N ~ O / Y ; O ~ / C U , C U ~ O  . XX 

- produced some very i n t e r e s t i n g  r e s u l t s  as shown i n  Figure 1 2 .  

Below 800 '~  t h e  open c i r c u i t  emf almost para l le led  the  themo-  

dynamic emf based on Cu-Cu20 equilibrium, while above 8 0 0 ~ ~  

t h e  measured emfs gradually decreased with respect  t o  t he  

thermodynamic values .  Within t h e  temperature range of 700 t o  

0 
1000 C ,  t h i s  behavior s t rongly  indicated t h a t  Pa w Po2(Cu, 

cu20) and, i n  f a c t ,  t h a t  Pa crossed the  Po (Cu,Cu20) l i n e .  
2 

This behavior d id  e s t a b l i s h  t h a t  the  measured emfs r e su l t ed  

f rom.the  Y203 specimen and not from spurious e f f e c t s  wi thin  

t h e  furnace. 

Equations 68 and 69 were used t o  determine rough approx- 

imations of Pa and Pe. I n  t he  case of P@, t h e  r e s u l t s  were 

extremely misleading. Although the  r e s u l t i n g  p l o t  of log Pa 

vs  1 / ~  was l i n e a r  a s  predic ted by the  conduction domain 

theory,  i t  exhibi ted  a negative s lope.  Such a negative slope 



impl ie s  t h a t  Qion > Qa which i s  d i f f i c u l t  t o  j u s t i f y .  Conse- 

quent ly ,  Equat ion 69 could no t  be used'  f o r  even a rough e s t i -  

mate of Pe s i n c e  t h e  necessary approximations were no t  v a l i d .  

On t h e  o t h e r  hand, ,Equat ion  68 d i d  provide a r e l i a b l e  f i r s t  

o rde r  approximation of PQ and t h i s  represented  t h e  s t a r t i n g  
* .- 

po in t  f o r  e v a l u a t i n g  t h e  open cjrcuif-*emf d a t a .  
_-- 

The va lues  of.Pe determined from Equation 68 were i n -  

s e r t e d  i n t o  a computer program which represented  ~ c h m a l z r i e d ' s  

most genera.1 s o l u t i o n ,  Equation 60, and Pe was allowed t o  vary  
-, -, - 

u n t i l  t h e  c a l c u l a t e d  emfs of t h e  program matched t h e  'observed 
. . 

emfs of C e l l  m. These v a l u e s  of P@ were then  i n s e r t e d  i n t o  
8 .  

t h e  program and PQ w a s  allowed t o  vary u n t i l  t h e  c a l c u l a t e d  

emfs matched t h e  observed emfs of C e l l s  X V I I I  and X I X .  The 

above i t e r a t i o n .  process  was repeated  u n t i l  t h e r e  was l e s s  than  

a .  0 . 1  change i n  l o g ,  Pa and log  PQ compared wi th  t h e  previous 
. . 

c y c l e .  
. . , - .  . . , 

a . -  .. . 

A s  pr$dic ted  by t h e  conduction domain theory,  a p l o t  of - 

' l og  Pa and/or  l o g  Pg vs  I/T i s  l i n e a r .  Figure 13 shows such 

a p l o t  f o r  undopcd Y2O3. The i o n i c  domain boundaries can be 

expressed a s  : - .. . - . . 
. . . .  - - .  - .  



. . . . 

Figure  13. I o n i c  domain boundaries f o r  undoped Y203 



- - .. 
Fur the r  a n a l y s i s  of Equations 86 and 87 t o  ob ta in  a c t i v a t i o n  

energies  w i l l  be  de fe r red  u n t i l  t h e  open c i r c u i t  emf and t h e  

e l e c t r i c a l  - .  conduc t iv i ty  d a t a  a r e  compared. - 

- , , . , . . . ,Since . -. - . . the.chosen . . d e f e c t  model, r e q u i r e s  t h a t  n = 4 ,  a 

displacement o f  8 (2n) i s  requ i red  t o  l o c a t e  t h e  e l e c t r o l - y t i c  

domaim boundaries wi th  r e s p e c t  t o  t h e  , i o n i c  'domain boundaries . . . . 

according . .  - t o  Equations 27. Such a t r a n s l a t i o n  shows t h a t ,  
. . . . . - .. _i_. . . 

- w i t h i n  .the..experimental-- temperature range,  t h e r e  i s  'no e l e c -  
( 

.. . . . . . . . 

l r o l y t i c .  ... . domain. for:undoped . . Y203.. .However, based on extrapo-  

l a t i o n s  ... . . . .  of .... Equations . . . . 86 . - .  and 87,  an e l e c t r o l y t i c  domain f o r  
- .  . 

Y203 i s  i n d i c a t e d  a t . l o w e r  temperatures .  

.- . . The s o l i d .  s t a t e  oxygen gage descr ibed by McPheeters e t  - 
a l .  (67) f o r  measuring oxygen contamination i n  l i q u i d  sodium - .  . . . .  . 

u s i n g  . . - a- . . pure . . . Y203 . - . .. elec t r .o . ly te  - - .  . has been operated a t  a lower 

t e m p e r g t u r e ( 4 0 0 ~ ~ ) - .  . . .  . Figure  24 shows proposed i o n i c  domain 
.-. 

boundaries f o r  var ious  r a r e  e a r t h  oxides,  Y2O3, and s e v e r a l  

s o l i d  e l e c t r o l y t e s  e x h i b i t i n g  t h e  f l u o r i ' t e  s t r u c t u r e .  Also 

inc luded - . .  . on . .  t h i s  ' p l o t  . .- . i s  . t h e  . Na-Na20. equi l ibr ium wi th  var ious  . . 

. i so-concent ra t ion  - . . . .  l i n e s  . f o r  oxygen d isso lved  i n  l i q u i d  sodium. . . 

Assuming . . t h a t  an e x t r a p o l a t i o n  . . of log  Pe i s  j u s t i f i a b l e ,  it 
-- - 



becomes obvious t h a t  t h e  i o n i c  domain of Y203 i s  loca ted  

above t h e  Na-Na20 (88) equi l ibr ium.  The conclusion i s  t h a t  

t h e  undoped Y203  of t h i s  r e sea rch  could never by used as an 

. e l e c t r o l y t e  (tion > - 0.99) t o  measure oxygen a c t i v i t i e s  i n  

l i q u i d  sodium. Furthermore, even i f  Y203 could be used,  t h e  - 

i 
. . 

i o n i c  conduc t iv i ty  i s  s o  low t h a t  e q u i l i b r a t i o n  t imes would 

be  p r o h i b i t i v e l y  long. 

The y t t r i a  used a s  an e l e c t r o l y t e  i n  t h e  e lec t rochemical  

c e l l  pa ten ted ,  by McPheeters -- e t  a l .  (67) i s  descr ibed  a s  "high 

11 p u r i t y  y t t r i a  (less than  1/100% i m p u r i t i e s ) .  Previous inves-  
. . 

t i g a t i o n s  (21,63) along wi th  t h e  p resen t  i n v e s t i g a t i o n  i n d i -  
. . 

c a t e  t h a t  t h e  e l e c t r o l y t i c  domain of y t t r i a  broadens wi th  i n -  

c r e a s i n g  impur i ty  con ten t .  Although t h e  impuri ty  content  of 

t h e  y t t r i a  used i n  t h i s  r e sea rch  was h igher  than  t h a t  de- 

s c r i b e d  by M,cPheeters -- e t  a l .  (67), t h e  e l e c t r o l y t i c  domain was 

s o  smal l  t h a t  it d i d  not  inc lude  t h e  Na-Nag0 equi l ibr ium.  , 

, - 

This  assumed t h a t  e x t r a p o l a t i o n  of Equation 87 t o .  lower temper- 

a t u r e s  i s  v a l i d .  One p l a u s i b l e  explanat ion  f o r  t h e i r  measured 

open c i r c u i , t  .emfs i s  t h a t  t h e i r  y t t r i a  e l e c t r o l y t e  became 

contaminated w i t h  sodium from t h e  e l e c t r o d e s .  The increased  

impuri ty  concen t ra t ion  would lead  t o  enhanced i o n i c  conduc- 

t i o n .  ,The f a c t  t h a t  McPheeters e t  a l .  (67) d i d  observe s i g -  -- 



n i f i c a n t  e l e c t r o n i c  conduc t iv i ty  a t  5 0 0 ' ~  i n d i c a t e d  t h a t  t h e  

lower l i m i t  of t h e  e l e c t r o l y t i c  domain f o r  t h e i r  y t t r i a  was 

very  c l o s e  t o  t h e  Na-Nag0 equi l ibr ium.  
. . 

. . McPheeters -- e t  a l .  (67) a l s o  implied t h a t  CSZ has been 

used a s  a s o l i d  e l e c t r o l y t e  bu t  i t s  e f f e c t i v e n e s s  was l i m i t e d  -. -. 

,by.. a r g a c t i o n  w i t h  sodium ., .. .. Pa t t e r son  (16) has  evalua ted  t h e  

e x i s t i n g  d a t a  concerning t h e  e l e c t r o l y t i c  domain f o r  CSZ. H i s  

r e s u l t s  a re -  shown i n  Figure  24 and i n d i c a t e  t h a t  CSZ would 

:a lso be ques t ionab le  a s  an e l - e c t r o l y t e  much below t h e  Na--Na20., . , 

equilibrium.: . In.:'.fact., . according '  t o .  F igure  24, : t h e  only mater i -  

.lal. ,wl-rich- appears  s a t i s f a c t o r y  f o r  t h i s  purpose i s  YDT and 

i n v e s t i g a t i o n s  concerning such measurements a r e  c u r r e n t l y  

be ing  pursued a t  va r ious  l a b o r a t o r i e s .  

. . Figure  24 a l s o  inc ludes  Tare  and ~ c h m a l z r i e d ' s  determina- 

0 t i o n . ( 2 1 )  o f  l o g  Pa and log  Pe f o r  Y203 a t  825 C .  The i o n i c  

domain def ined  by t h e s e  - two .. po in t s  i s  l a r g e r  than  t h e  i o n i c  
.. , . _ I- . 

domain determined by t h i s  r e sea rch .  T a l l a n  and Vest (6.3) have 
. - .  

1 .  

suggested . . t h a t  such d i f f e r e n c e s  may r e s u l t  from d i f f e r e n c e s 6 i n  
. . 

t h e  impur i ty  con ten t  of t h e  Y203. 
- .  - - -  . 

The f i n a l  l eas t - squares  va lues  of log  Pe and log  Po were 
. - - .  

i n s e r t e d  i n t o  another  computer program which p l o t t e d  Schmal- - _ - .  . . .- - .  . . . -  
. . . . .  . 

z r i e d ' s  most g e n e r a l  s o l u t i o n ,  Equation 60, of emf a s  a  func- 
> ,  . .  . - -- 



t i o n  of log  Pop bctween log  Po = 0 and -54. The, r e s u l t i n g  
2 .  

curves a r e  shown i n  Figure  14 f o r  var ious  temperatures .  The 

l a r g e r  maximum'ernfs wi th  decreas ing  temperature i n d i c a t e  t h e  

wideni-ng of t h e  i o n i c  domain i n  accordance wi th  Equation 67.  

The computer program a l s o  evalua ted  tion a t  each p a r t i c -  - . -  

u l a r  Po va lue  based on Equation 59 i n  which n  was assumed t o  
2 

be 4. The r e s u l t s  a r e  summarized i n  F igure  15 and g raph ica l ly  

i l l u s t r a t e  t h a t  tion i s  l e s s  than  0 .99 between 700 and 1 0 0 0 ~ ~ .  

Ex t rapo la t ion  of t h e  d a t a  t o  4 0 0 ' ~  i n d i c a t e s  t h e  presence of 

an e l e c t r o l y t i c  domain, however it i s  loca ted  w e l l  above t h e  

Na-Na20 equi l ibr ium.  

Provided t h a t  a va lue  of t h e  e l e c t r i c a l  conduc t iv i ty  i s  

known f o r  a  p a r t i c u l a r  temperature and oxygen p a r t i a l  pres-  

s u r e ,  a  complete conduct iv i ty  vs  log  Po curve can be calcu-  
2 

l a t e d  from t h e  i n d i v i d u a l  va lues  of tion as  follows: 

w.here eion i s  cons tant  a t  cons tant  temperature.  . A' comparison. 

of t h e  measured e l e c t r i c a l  conduct iv i ty  d a t a  wi th  t h a t  der ived  

from open c i r c u i t  emf measurements i s  shown i n  Figure  16.  The 

re fe rence  conduct iv i ty  f o r  each temperature was t h a t  of Y 2 0 3  

i n  pure oxygen s i n c e  i t  compared favorably wi th  o t h e r  i n v e s t i -  

. ga t ions  and represented  t h e  most reproducib le  d a t a .  There i s  
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Figure  14. ca lcu la ted  and measured open c i r c u i t '  emfs a s  a func t ion  of 
. . 

p a r t i a l  pressure  f o r  undoped Y2O3 . . 
. .  . 

oxygen 



Figure 15. Ion ic  t ransference number a s  a funct ion of oxygen p a r t i a l  
pressure f o r  undoped Y203 
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Figure 16. Comparison of the measured electrical .conductivity with that. 
derived from open circuit emf measurements for undoped Y203 
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ve ry  good agreement between t h e  1 0 0 0 ~ ~  isotherms.  Th i s  i s  

p a r t i c u l a r l y  g r a t i f y i n g  s i n c e  emf and conduc t iv i ty  measure- 

ments involve  completely independent experiments.  The l i m i t e d  
. . 

, amount of conduc t iv i ty  d a t a  a t  t h e  'lower temperatures mak.es i t  
. . . .  

- . . impossible  t o  draw any conclus ions ,  however depar tures  do be- .- - -. 

come wor,se .with dec-reasing -temperatures.  - c.,-. - 7 n - r . -  . . . . .  

. . . . A  u s e f u l  a c t i v a t i o n  energy, w h i c h a c t u a l l y  r e p r e s e n t s  t he  
. . 

d i f f e r e n c e  .between Qa and Qion can be obtained by equat ing  t h e  
c. . %. - .  - -  . 

. terms invo lv ing  1 / ~  i n  Equations 25 and 86: 
>---.I- - - - ' - - - - .  .. . - - A  -.--- - - - 9 . i . .  --..l.l- ., .... -... .-y... .... . . 

.: T h i s  . v a l u e  compares s a t i s f a c t o r i l y  wi th  18 .2  kcal/mole ob- 
. . 

t a i n e d  . . from t h e  conduc t iv i ty  d a t a .  A s i m i l a r  t rea tment  of 

- Equations 26 and 87 leads  t o  . . - .  . . 

: which when combined w i t h .  Q i o n  f rom t h e  - e l e c t r i c a l  conduc t iv i ty  

i . s tud ies  and from t h e  open C i r c u i t '  emf :kea~urements  g ives  a 

?bracket  f o r  Qo of 68.0 t o  75.7 k c a l / i o l e .   he f a c t  t h a t  

':.QQ > ~ ~ . : s u g g e s , t s  a s h i f t  . i n  t h e  p-n junc t ion  w i t h  r e s p e c t  - t o  

: l og  Po2 a s  i l l u s t r a t e d  i n  F igure  1 C .  T a l l a n  and Vest ( 6 3 )  

. . . . . . . . .  . . 
:* .have jobserved : t h i s  ' behavior .  - ' . . 



X-ray and Density Studies  of Y t t r i a  Doped 

Hafnia  S o l i d  Solu t ions  

Hafnia s o l i d  s o l u t i o n s  wi th  2 t o  20 m/o Y203 were sub- 

j e c t e d  t o  x-ray a n a l y s i s  t o  determine t h e  s o l u b i l i t y  l i m i t  of 

. - Hf02 i n  t h e  cubic  f l u o r i t e  s t r u c t u r e .  The presence of both  

t h e  monoclinic HfOz and* t h e  cubic  f l u o r i t e  c h a r a c t e r i s t i c  

peaks on t h e  d i f f r ac tomete r  t r a c e s  ind ica ted  t h a t  t h e  system 

c o n s i s t s  of two phases between 2  and 6  m/o Y203 For composi- 

t i o n s  between 8  and 20 m/o Y203 only t h e  cubic f l u o r i t e  phase 

appeared, consequently t h e  phase boundary l i e s  between 6 and 
, 

. . . . 
8  m/o Y203. 

I 

The v a r i a t i o n  i n  f l u o r i t e  phase l a t t i c e  parameter wi th  

composition i s  shown i n  Figure  17. This  v a r i a t i o n  can be 

accounted f o r  by t h e  r e l a t i v e  s i z e  of t h e  ions ,  s i n c e  t h e  
0 

i o n i c  r ad ius  of Y ' ~  (1.02 A) (89) i s  l a r g e r  than t h a t  of Rf 4-4 

(0 .83  x) (89) .  The l a t t i c e  parame,<ers i n  t h i s  s tudy were 

determined by t h e  e x t r a p o l a t i o n  method of Cohen a s  modified 

by Vogel and Kempter (83) and a-re based on a l l  t h e  observed 

- peaks f o r  t h e  two phase compositions and only those  peaks f o r  

. . 

which 2 0 >  60' f o r  t h e  s i n g l e  phase compositions. The l a t t i c e  

parameters obtained i n  t h i s  i n v e s t i g a t i o n  a r e  i n  good agree- 

ment wi th  publ ished va lues  (70) .  
. - 
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Figure 1 7 .  Variation of the  f l u o r i t e  phase l a t t i c e  parameter 
.with composition i n  the Y203-HFO2 system 



. . AS Y2O3 i s  added t o  H ~ O ~ , '  t h e  charge n e u t r a l i t y  i s  main- 

t a i n e d  by one of two d e f e c t  s t r u c t u r e s .  E i t h e r  t h e  c a t i o n  

s u b l a t t i c e  remains completely f i l l e d  and t h e  a p p r o p r i a t e  

.number of anion vacancies  a r e  c r e a t e d ,  o r  t h e  anion s u b l a t t i c e  

remains f i l l e d  and t h e  excess c a t i o n s  occupy i n t e r s t i t i a l  

s i t e s .  The d i f f e r e n c e  between t h e  two models i s  t h e a d d i t i o n  

of e x t r a  c a t i o n s  o r  t h e  absence of oxygen ions  w i t h i n  a u n i t  

.volume and should be r e f l e c t e d  by a  d i f f e r e n c e  i n  d e n s i t i e s .  

A comparison between t h e  measured apparent d e n s i t i e s  and t h e  
-. .. . 

t h e o r e t i c a l  d e n s i t i e s  f o r  each model c a l c u l a t e d  from t h e  
.. ... 

l a t t i c e  paramet& d a t a  i s  shown i n  Figure 18. On t h e  b a s i s  

of t h e s e  d a t a  and t h e  s i m i l a r i t y  between YSH and CSZ,  i t  w s s  

concluded t h a t  t h e  s i n g l e  phase cubic  s o l i d  s o l u t i o n s  possess  

a  f l u o r i t e - t y p e  s t r u c t u r e  wi th  a  f i l l e d  c a t i o n  s u b l a t t i c e  and 

anion vacancies .  - 

- . Apparent d e n s i t i e s  were determined on s in ter ' ed  d i s k s  con- 
, .  .. . - . .  . 

t a i n i n g  10 t o  15% t o t a l ' p o r o s i t y  by a water  displacement 

method. Assiiming t h a t  t h e  d i s k s  were s t i l l  w i t h i n  t h e  open 

pore s t a g e  of s i n t e r i n g ,  t h e  apparent d e n s i t i e s  should be very  

c l o s e  t o  the pycnometric va lues .  
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Figure  i8. T h e o r e t i c a l  and measured d e n s i t i e s  of Y2O3-HfO2 
. '  s o l i d  s o l u t i o n s  



. E l e c t r i c a l -  Conduct ivi ty  of Y t t r i a  Doped Hafnia S o l i d  So lu t ions  

The e l e c t r i c a l  c o n d u c t i v i t i e s  of t h e  y t t r i a  doped h a f n i a  

s o l i d  s o l u t i o n s  were measured as  a  func t ion  of composition and 

oxygen p a r t i a l  p r e s s u r e  t o  determine t h e  optimum composition 

f o r  f u r t h e r  i n v e s t i g a t i o n  a s  a  p o s s i b l e  e l e c t r o l y t e .  F igure  
. - 

19 i s  a  p l o t  of l o g ' o ~  V S ~ / T ( ' K )  f o r  compositions from 6 t o  
..- 

20 m / b  Y203; a c t i v a t i o n  ene rg ies  a r e  included f o r  each compo- 

s i t i o n .  The c o n d u c t i v i t i e s  shown i n  Figure 19 were measured 

i n  dry  a i r  us ing  a  3--probe'method (87) wi th  porous ~ l a t i n u m  
.. . 5 '  -. . ' --. . 

. , ele,ctrodes:  ~ . . ,  

A t  a  c o n s t a n t  temperatu;e of 1 0 0 0 ~ ~ ~  t h e  c o n d u c t i v i t i e s  

remained unchanged i n  atmospheres of pure oxygen, a i r ,  ~ e / 0 ~  

a t  r a t i o s  of 10 and 100, and p u r i f i e d  helium i n  which l o g  Po 
2 

was found t o  be (-10 as measured by an i n - s i t u  s o l i d  e l e c t r o -  -- 
l y t e  oxygen gage. . This  t y p e  of bchavior  i n d i c a t e d  t h a t  a l l  

t h e  compositions - i n v e s t i g a t e d  were ionic  conductors.  Conduc- 

t i v i t i e s  measured i n  c o n t r o l l e d  CO 2-CO mixtures were s i g n i f i -  

c a n t l y  lower than  t h o s e  measured i n  t h e  above desc r ibed  atmos- 

pheres .  No explanat ion  f o r  t h i s  type  of behavior i s  o f f e r e d ,  

p a r t i c u l a r l y  s i n c e  o t h e r  independent experiments supported t h e  

presence of a  p r e s s u r e  independent i o n i c  conduc t iv i ty .  
. . . . 

The e l e c t r i c a l  c o n d u c t i v i t i e s  agree w e l l  wi th  va lues  



Figure 19. 
. I o ~ / T ( o K - ' )  

To.tal .conductivity in dry air as a function of tem- 
perature for different cbmpositions in the Y203- 
Hf02 system 



previous ly-  r epor ted  by Besson e t  a l .  (18) wi th in  t h e  common 
. . -- 

temperature range of 900 t o  1 0 0 0 ~ ~ .  However, a c t i v a t i o n  

. . energ ies  r epor ted  by Besson -- e t  a l .  (18) a r e  approximately 0 . 2 5  

ev h igher  than  those  obtained from t h i s  work. 

Since t h e  8  m/o Y203 composition possessed t h e  h ighes t  . -  

conduct iv i t?  and i h e  lowest a c t i v a t i o n  energy a s  shown i n  
. - -  

' 

. Figure  20, i t  was chosen f o r  f u r t h e r  i n v e s t i g a t i o n  a s  a pos- 

s i b l e  e l ec t ro l -y te .  The f a c t  t h a t  t h e  6 m/o composition had 

t h e  same a c t i v a t i o n  energy a s  t h e  8 m/o composition but  a  
' 

. . 

- l o w e r  t o t a l  conduct iv i ty  suppor ts  t h e  x-ray s t u d i e s  i n  p l a c i n g  

3 - 
t h e  phase boundary between t h e s e  two l i m i t s .  I f  t h e r e  a r e  two 

- .  

phases present  a t  t h e  6 m/o compos i t ion , ' t he  monoclinic H f 0 2  

s o l i d  s o l u t i o n  would be p resen t  a s  smal l  i s l a n d s  i n  a  c o n t i n -  

uous cubic  f l u o r i t e  hos t  wi th  a  composition corresponding t o  

t h e  s o l u b i l i t y  l i m i t  of H f 0 2  i n  t h e  f l u o r i t e  s t r u c t u r e .  I n d i -  
- - 

c a t i o n s  a r e  t h a t  t h e  conduct iv i ty  i s  much lower i n  t h e  mono- 

c l i n i c  p h a s e  (18) than  i n  t h e  f l u o r i t e  phase,  consequently t h e  

measured conduct iv i ty  and a c t i v a t i o n  energy would correspond 

t o  t h e  continuous f l u o r i t e  hos t  wi th  a  s l i g h t l y  reduced e f f e c -  

t i v e  c ross  s e c t i o n a l  a r e a .  Thus t h e  e f f e c t  of t h e  nonconduct- 

i n g  i s l a n d s  would be t o  decrease t h e  t o t a l  f l u x  and thereby 

decrease t h e  apparent t o t a l  conduc t iv i ty  without a l t e r i n g  t h e  
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Figure 20. .. Activation energy and 1 0 0 0 ~ ~  isothermal conductivity as a 
function of composition in the Y203-Hf02 system 



a c t i v a t i o n -  energy. 

Figure 20 shows a t r e n d  of i n c r e a s i n g  a c t i v a t i o n  ene rg ies  

and decreas ing  c o n d u c t i v i t i e s  f o r  i n c r e a s i n g  Y2O3 content  

above 8 m/o. Th i s  t r e n d  has  been previous ly  observed f o r  t h e  

f l u o r i t e  phase of t h e  Y203-Hf02 system (18,90) and o t h e r  - - 

s i m i l a r  systems (10,19,32) . It has b e e n  suggested t h a t  t h i s  

t r end  i s  due t o  o rde r ing  of anion vacancies which a r e  then  no t  

a s  f r e e  t o  p a r t i c i p a t e  i n  t h e  conduction ( 8 ) .  

. - - -  -- - --. .. . - +- 

Open C i r c u i t  Emf Measurements on 8 m/o Y203-Hafnia 
--- .. .. .. . -. ... . 

Stra ight forward  open c i r c u i t  emf measurements were made 

on t h e  fo l lowing c e l l s :  

C U , C U ~ O / Y S H / N ~ , N ~ O  X X I I  

t o  check f o r  e l e c t r o l y t i c  behavior of t h e  8 m/o Y2O3 composi- 

t i o n .  The r e s u l t s  of . t hese  measurements as a func t ion  of 

temperature a r e  g i v e n ' i n  F igure  21. The measured.emfs a r e  

s l i g h t l y  lower than  t h e  thermodynamic emfs given by Equation 

The p r e s s u r e  independence of the conduct iv i ty  i n  the 

high oxygen p r e s s u r e  region  and t h e  magnitudes of we and 00 

from p o l a r i z a t i o n  experiments suggest  t h a t  t h e  low emf va lues  

: a r e  no t :  t h e  : r e s u l t  of a p e r c e p t i b l e  e l e c t r o n i c  t r a n s f e r e n c e  
. . . . - - .. 

. . 

number ( t e  > 0.01) .  
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. . Open c i r c u i t  emf c e l l s ,  such as  

. . ' Cu,Cu20/YS~/Fe ,FeO XxIIi 

- - 
. . Fe,FeO/YSH/Kf,Hf02 . X X I V  

xxv 

which.involved l a r g e  oxygen p o ~ e n t i a l  g rad ien t s  d i d  no t  pro- 
. .- 

... duce . s t ab le . .  emf s . . .It was: be l ieved t h a t  . t h e  l.arge amqunt of . 

..open poro.sity . i n  t h e  samples .allowed molecular o r  atomic 

-,oxygen t o  .be t r a n s f e r r e d  through t h e  e l e c t r o l y t e  l ead ing-  t o  

: f a i l u r e  of t h e  e l e c t r o d e s  t o  maintain a  f i x e d  oxygen poten- 

: t iaL,.  .- Tp_ combat this -problem .and rejuvenat-e. . t h e ,  c e l l ,  an 
.. 

i.appropriate.-voltagewa$ app l i ed  t o  t h e  c e l l  t o  t i t r a t e  oxygen 

:from t h e  low t o  t h e  h igh  oxygen p o t e n t i a l  e l e c t r o d e .  The 

1 I ; t i t r a t i o n s  were d e l i b e r a t e l y  designed t o  over r e s t o r e "  t h e  

apparent ly  po la r i zed  e l e c t r o d e s .  The t i t r a t i o n  c u r r e n t  leads  

.:were - t hen  removed and ' t h e  open c i r c u i t  emf was recorded . a s  a  

-..£unction of time.. . The open c i r c u i t  emfs decreased t o  a s teady 

' v a l u e , w h i c h  remained e s s e n t i a l l y  cbns tant  f o r  . p e r c e p t i b l e  

:per iods  of time before  s t a r t i n g  t o  decay again.  I n  a l l  cases ,  

:the emf vs  time p la teaus  corresponded very c l o s e l y  t o  t h e  

':themqdynami.c emf s . a s  i l l u s t . r a t e d  for ,  example by C e l l  X X I I I .  

:Oxygen was t i t r a t e d  away from t h e  Fe-FeO e l e c t r o d e  and i n t o  

,,the C U - ~ U ~ O  e lec t rode .  - The c e l l  was .open c l r c u i t e d  and 'two 



p l a t e a u  emfs were observed a t  7 0 0 ' ~  wi th  r e s p e c t  t o  Fe-FeO. 

equi l ibr ium; t h e  f i r s t  one corresponded t o  Cu2O-CuO equi-  

l ibr ium (810 mv) and t h e  second one corresponded t o  Cu-Cu20 

equi l ibr ium (533 mv) . 
.Another  i n t e r e s t i n g  observat ion concerning t h i s  c e l l  . ,. 

t i t r a t i o n  was t h a t  t h e  emf i n i t i a l l y  decayed (4 mv) below t h e  
- .  

Cu-Cu20 p la teau  v a l u e  be fo re  r ega in ing  t h e  p l a t e a u  va lue .  

Tare  and Schmalzried (57) observed t h i s  type  .of behavior when 

they  i n v e s t i g a t e d  t h e  decomposition k i n e t i c s  f o r  C02 during 
. . 

t h e  oxida t ion  of i r o n  t o w G s t i t e  by C02-CO gas mixtures .  

F o l l o w i n g . t h e i r  i n t e r p r e t a t i o n ,  t h e  4 mv d i p  mentioned above 

i s  a measure of t h e  oxygen chemical p o t e n t i a l  d i f f e rence ,  r e -  

qui red  t o  n u c l e a t e  Cu i n  Cu20. 

The d a t a  f o r  C e l l  XXIII a s  represented  i n  F igure  21  were 

obtained from s teady  p l a t e a u  emfs wi th  t ime fol lowing coulo- 

me t r i c  t i t x a t i o n  of t h e  c e l l .  

S imi la r ly ,  emf d a t a  were e x t r a c t e d  from C e l l s  XXIV and 

XXV fol lowing oxygen t i t r a t i o n  t o  r e juvena te  t h e  e l e c t r o d e s .  

Both c e l l s  suppl ied  l i m i t e d  information a t  ' 1 0 0 0 ~ ~ .  be fo re  a 

break i n  an e l e c t r i c a l  lead  terminated t h e  runs .  C e l l  XXV 

produced an emf p l a t e a u  between 640 and 620 mv as  compared t o  

. a  thermodynamic emf of 639 .mv. This  i n d i c a t e s  t h a t '  t h e  8 m/o 



Y2O3 composition remains very n e a r l y  an e l e c t r o l y t e  a t  oxygen 

p a r t i a l  p ressu res  a s  low as l o g  P = -21.9. 
02 

The open c i r c u i t  p l a t e a u  emf f o r  C e l l  XXIV was a t  595 mv. 

Since t h e  ne.cessary approximations a r e  v a l i d ,  Equation 68 was 

used t o  c a l c u l a t e  t h e  lower l i m i t  of t h e  i o n i c  domain, i . e .  . ... - 

l og  Pg = -24.4. It i s  i n t e r e s t i n g  t o  n o t e ,  a s  shown i n  Figure  

24, t h a t  t h i s  po in t  i s  very  c l o s e  t o  log  Pe f o r  CSZ. - 
Representa t ive  samples taken a f t e r  t h e  s ' in ter ing  process ,  

t h e  coriductivity,  and t h e  emf i n v e s t i g a t i o n s  were submitted 

f o r  e l e c t r o n  microprobe and wet chemical analyses  t o  v e r i f y  

t h e  composition of t h e  s o l i d  s o l u t i o n s  and t o  check f o r  con- 

taminat ion r e s u l t i n g  from t h e  e l e c t r o d e s  used i n  t h e  emf 

s t u d i e s .  Resu l t s  showed t h a t  t h e  compositions remained.un- 

changed and equal led  t h e  c a l c u l a t e d  compositions based on t h e  

s tandardized y t t r i a  a n d  h a f n i a  l i q u i d  s o l u t i o n s .  A s  expected, 

t h e  microprobe a n a l y s i s  i n d i c a t e d  t h a t  t h e  Fe-FeO e l e c t r o d e  

r e a c t e d  s l i g h t l y  wi th  t h e  f l u o r i t e  s o l i d  s o l u t i o n s ,  probably 

due t o  t h e  presence of Y2O3. ,No r e a c t i o n  zones could be 

de tec ted  f o r  t h e  o t h e r  el.ectro.des used. 

D-c P o l a r i z a t i o n  Measurements on 8 m/o Y?0?-Hafnia .. ,- 

An e l e c t r o l y t e  of 8 m/o Y2O3 was subjec ted  t o  Wagner d-c 

p.olar izat ion mea,su~.emen,ts t o  determine t h e  magnitude of t h e  



e l e c t r o n i c -  conduc t iv i ty .  . A v o l t a g e  was appl ied  across  t h e  

c e l l  

Cu ,Cu20 /~SH/~u ,P t  XXVI 

f o r c i n g  t h e  oxygen i o n s  t o  migra te  t o  t h e  r e v e r s i b l e  e l e c -  

t r o d e .  The s t eady  s t a t e  c u r r e n t ,  which i s  assumed t o  be .-- -. 

e n t i r e l y  e l e c t r o n i c  i n  n a t u r e ,  was recorded as a func t ion  of 

t h e  appl ied  v o l t a g e .  The d a t a  were analyzed through t h e  u s e  

of Equation 77 and t h e  r e s u l t s  a r e  shown i n  Figure  22, where 

and 00 rep resen t  t h e  h o l e  and excess e l e c t r o n  conduc t iv i ty ,  

r e s p e c t i v e l y ,  a t  t h e  Cu-Cu20 e l e c t r o d e .  

. . The t o t a l  c o n d u c t i v i t i e s  of t h e  8 m/o Y2O3 composition 

measured i n  t h i s  i n v e s t i g a t i o n  were assumed t o  be t h e  i o n i c  

c o n d u c t i v i t i e s .  The h o l e  and excess e l e c t r o n  c o n d u c t i v i t i e s  

given i n  F igure  22 were ex t rapo la ted  based on a  +1/4 and a  

-114 oxygen p r e s s u r e  dependence u n t i l  they  i n t e r s e c t e d  t h e  

i o n i c  conduct iv i ty .  These i n t e r s e c t i o n s  d e f i n e  t h e  i o n i c  

domain and a r e  represented  by log Pa and log  Pe. Resu l t s  from 

t h i s  type of a n a l y s i s  a r e  summarized i n  Table 5.  

 able 5. Log Pe and log  Pe f o r  8  .;n/o Y203-Hafnia 

Temperature 1% p@ 1% PO 
. ( O c )  (atm> (atml 

i000 +8.4 -24.8 
850 +5.. 1 -28.7 
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Figure 22. Converted da ta  p lo t  according t o  Pat terson (14) 
f o r  d-c po la r i za t ion  measurements with t he  c e l l  
~ u , ~ u ~ O / 8 r n / o  Y203-Rf02/AuLu, Pt 



The 8 5 0 ~ ~  d a t a  appear ques t ionable  when analyzed according t o  

Wagner's theory  (77). Although t h e  d a t a  showed t h e  expected 

nonohmic behavior  when 'p lo t t ed  on a Im vs  E graph, doubt 

a r i s e s  when t h e  d a t a  a r e  p l o t t e d  on a log  IW v s  E graph. A t  

h igh  a p p l i e d  v o l t a g e s )  (E > 300 mv), t h e  1 0 0 0 ~ ~  d a t a  possessed . 

t h e  t h e o r e t i c a l  s l o p e  of F/(2.3RT) whi le  t h e  8 5 0 ~ ~  d a t a  gave 

h a l f  t h e  t h e o r e ' t i c a l  s l o p e .  The l e s s  than  t h e o r e t i c a l  s l o p e  

a t  8 5 0 ' ~  could i n d i c a t e  a change i n  conductibn mechanism, 

however t h e  open c i r c u i t  emf and e l e c t r i c a l  conduc t iv i ty  

s tudies '  do no t  support  t h i s  i d e a .  Therefore ,  only t h e  1 0 0 0 ~ ~  

d a t a  a r e  used w i t h  any confidence.  
. . 

Analysis  of t h e  p o l a r i z a t i o n  d a t a  a t  1 0 0 0 ~ ~  d i d  l o c a t e  

t h e  upper and lower l i m i t s  of t h e  i o n i c  domain. I n  f a c t  t h e  

lower domain l i m i t  of log  Po = -24.8 i s  i n  e x c e l l e n t  agreement 

wi th  t h a t  of l o g  PB = -24.4 obtained by open c u r c u i t  emf meas- 

urements on C e l l  XXIV. The i o n i c  domain boundaries from t h e  

1000"~ p o l a r i z a t i o n  r e s u l t s  a r e  shown i n  Figure  24. 

.Coulometric Ti t rat ion-Open C i r c u i t  Emf Cell. Resu l t s  

The c e l l  p i c t u r e d  i n  F igure  9 was used t o  compare t h e  

electrolytic behavior  sf Y3H w i t h  that of CSZ. The r e s u l t s  

of t h e  measurements a r e  represented  i n  Figure 23 and can be 

very simply summarized by t h e  fol lowing expression:  



$FEZ 
-LOG Po (ATM)=- 

2 2.3RT 
+ LOG P (Cu,Cu20) 

02 

Figure 22. Open c i rcui t  emf of 8 m / o  Y203-HfO2 as a function.of oxygen p a r t i a l  
pressure b ~ s e d  on the reference electrolyte  ca lc ia  s tabi l tzed 
zirconia 

. . 



Since CSZ i s  an accepted ' e l e c t r o l y t e  (4.)' over t h e  e n t i r e  Pg 
- .  

2 

range scanned, Re. la t ion 91  impl ies  t h a t  YSH i s  a l s o  an e l e c -  

t r o l y t e  over t h e  same Po, range.  The d i f f e r e n c e  between t h e  

two measured open c i r c u i t  emfs f o r  a given appl ied  p o t e n t i a l  . 

i s  be l ieved t o  r e s u l t '  from con tac t  and e l e c t r o d e  problems a t  

t h e  common i n t e r f a c e ,  r a t h e r  th.an from n o n e l e c t r o l y t i c  behav- 

i o r  of e i t h e r  t h e  CSZ o r  YSH specimens. The f a c t  t h a t  t h e  

. app l i ed  vo l t age  a c r o s s  : t h e  oxygen pump was s i g n i f i c a n t l y  

grea. ter  than  t h e  measured open c i r c u i t  emfs a l s o  suppor ts  
. . 

. t h i s  b e l i e f .  

s i n c e  t h i s  i s  t h e  f i r s t  t ime a c e l l  o f  t h i s  type  has  ever  

been u s e d , . ' t h e r e  a r e  c e r t a i n  experimental  d i f f i c u l t i e s  asso-  

c i a t e d  wi th  i t s  opera t ion .  However, i t  does appear t o  o f f e r  

an experimental  method f o r  determining i o n i c  domain boundaries 

of var ious m a t e r i a l s .  . , 
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' F i g u r e  24. I o n i c  domain boundaries f o r  var ious  oxide 
m a t e r i a l s  

1. Na,Na20 equi l ibr ium,  Wicks and Block (88) 
,. 

2.  ,Pa, Y203, t h i s  r e sea rch  

3 .  PQ, Y203, t h i s  r e sea rch  I 
, A Pa, Y203, Tare  and ~ c h m a l z r i e d  (21) 

, 4 .  . P a ,  

5 .  . PQ, 

6 .  pa, 

7. pe, 

- - 
Y203, Tare  and Schmalzrincl (71) 

CSZ,, P a t t e r s o n  (16) 

CSZ, Pa t t e r son  (16) 

YDT, Lasker and Rapp (10) 

YDT, Hardaway (15) 

GdqOg, Tare  and Schmalzried (21) 

SmpOg, Tare  and Schmalzried (21)  
.. - 

Sm203, Tare  and Schmalzried (21) 

DyZ03, Tare  and Schmalzried (21) 

Dy203, Macki (65) 

YSH, t h i s  r e sea rch  

0 Pg, YSH, t h i s  r e sea rch  



TEMPERATURE (OC) 



CONCLUSIONS 

1. Undoped Y203 i s  a mixed conductor showing a narrow 

i o n i c  conduction domain (tion > 0.5)  but  no e l e c t r o l y t i c  - 
domain (tion > 0.99) w i t h i n  t h e  temperature renge ( 7 0 0 - 1 0 0 0 ~ ~ )  - - - 
s t u d i e d .  The i o n i c  domain boundaries f o r  ~ 2 0 3  may be  rep re -  . 

-. 

sented  by . '  
- 

. . . . 

l o g  Pa = 119030 - 15.84 
T (OK) 

. - .  . . 
and 

l o g  P@ = 
-353300 + 15-59 .  ,. 

T (OK) 
. . . . . . . - 

. 2 .  , A t  high oxygen p a r t i a l  p r e s s u r e s ,  t h e  t o t a l  conduc- 

t i v i t y  behavior f o r  undoped Y203 was i n d i c a t i v e  of p o s i t i v e  

h o l e  conduction. 

3 .  Previous claims regarding  t h e  use  of pure Y203 as a 

s o l i d  e l e c t r o l y t e  t o  o b t a i n  an accura te  e lec t rochemical  meas- 

urement of oxygen p o t e n t i a l s  ' i n  l i q u i d  sodiuun a r e  exaggerated.  

4.  The .cubic  f l u o r i t e  phase of y t t r i a  s t a b i l i z e d  h a f n i a  

remains s tab l -e  from about 7 m/o Y203 t o  compositions g r e a t e r  

than  20 m/o Y203 which was t h e h i g h e s t  composition used i n  

t h i s  i n v e s t i g a t i o n .  

5 .  The f l u o r i t e  phase i s  an anion d e f e c t i v e  s t r u c t u r e  

wi th  s u b s t i t u t i o n a l  replacement of hafnium wi th  y t t r ium. ,  



Charge n e u t r a l i t y  i s  maintained by f u l l y  ionized  anion vacan- 

c i e s .  

6 .  . A l l  y t t r i a - h a f n i a  s o l i d  s o l u t i o n s  between 6 and 20 
-., 

' m/o Y203 e x h i b i t  a predominant i o n i c  conduct iv i ty  a t  e l eva ted  

temperatures  a s  evidenced by t h e  oxygen p ressu re  independence . _  

of t h e  t o t a l  conduc t iv i ty .  - 

7. Within t h e  y t t r i a  s t a b i l i z e d  h a f n i a  f l u o r i t e  phase,  

a c t i v a t i o n  energies  i n c r e a s e  and t o t a l  c o n d u c t i v i t i e s  decrease  

wi th  i n c r e a s i n g  Y203 content .  These t r ends  suggest  a tendency 

toward anion vacancy ord.ering . 
8 .  . The 8 m/o Y203-Hf02 coniposition i s  a s o l i d  e l e c t r o -  

l y t e  over f i n i t e  oxygen p ressu re  and temperature ranges .  The 

e l e c t r o l y t i c  domain width (tion > 0.99) f o r  t h i s  composition - 
a t  1 0 0 0 ~ ~  i s .  from log  Po2 (atm) = -16.6 t o  +0.4 and i s  ve ry  

s i m i l a r  t o  t h a t  of c a l c i a  s t a b i l i z e d  z i r c o n i a .  
. , 
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APPENDICES. 



Appendix A.  Der iva t ion  of t h e  Open C i r c u i t  Emf 
. . 

Across a Mixed Conductor 

Consider a b ina ry  oxide s c a l e ,  MaOb, formed on a metal., 

M,  subjec ted  t o  an ox id iz ing  atmosphere a s  shown i n  Figure  25. 
I - - .. 

The most genera l  case  of conduction behavior f o r  t h e  s c a l e  i s  

assumed; i t  e x h i b i t s  s i g n i f i c a n t  i o n i c  and e l e c t r o n i c  conduc- 

t i v i t y  under cons tan t  temperature and t h e  p r e v a i l i n g  chemical 

p o t e n t i a l s  of t h e  me ta l  and 'gas  phase dur ing  t h e  ox ida t ion  

process .  

An express ion  f o r  t h e  open c i r c u i t  emf of a c e l l  involv-  

i n g  phases.  of l o c a l l y  v a r i a b l e  composition may be der ived  

wi th  t h e  a i d  of i r r e v e r s i b l e  thermodynamics. The equat ion f o r  

t h e  t o t a l  c u r r e n t  assuming a system a t  cons tant  temperature is: 

i=l ' - 
.. . 

where Ji i s  t h e  flu of t h e  i t h '  component expressed i n  p a r t i -  

cles/crn2 and q i s  t h e  t o t a l  charge c a r r i e d  by t h e  i t h  type  i 

p a r t i c l e .  T h e i n d e x  i r e p r e s e n t s  t h e  type  of charge c a r r i e r s  

a s  s p e c i f i e d  i n  Table 6 .  A i s  t h e  c r o s s - s e c t i o n a l  a r e a  ex- 

2 pressed i n  cm . 
A t  any genera l  l o c a t i o n  x ,  t h e  f l u x  Ji of t h e  i t h  type  



Figure 25. Schematic diagram represent ing the  oxidat ion of a metal, which c a n ,  
be thought of as  a galvanic c e l l  with a mixed oxide conductor 
placed between two un l ike  r eve r s ib l e  e lec t rodes  



p a r t i c l e  is- given by t h e  v iscous  medium d e s c r i p t i o n  of d i f f u -  

s i o n a l  f luxes ,  

where c i  i s  t h e  concen t ra t ion  of t h e  i t h  spec ies  i n  p a r t i c l e s /  

. . 
cm3, N i s  ~ v a g a d r o ' s  number, B i  i s  t h e  abso lu te  m o b i l i t y  

- - 
2 

- 
expressed i n  pa r t i c l e s -cm / c a l - s e c . ,  and qi i s  t h e  e l e c t r o -  

ch,emica.l p o t e n t i a l  and i s  def ined  a s  fol lows:  

where p i  i s  t h e  chemical p o t e n t i a l  i n  cal/mole and 0 i s  t h e  

e l e c t r o s t a t i c  p o t e n t i a l  u s u a l l y  expressed i n  v o l t s .  I f  t h e  

t e r m  involv ing  t h e  e l e c t r o s t a t i c  p o t e n t i a l  i s  di'vided by t h e  

constant  4.186, t h e n  t h e  term has t h e  same u n i t s  a s  p i .  

One of t h e  macroscopic v a r i a b l e s  t h a t  can be measured i s  

t h e  e l e c t r i c a l  conduc t iv i ty .  

S u b s t i t u t i o n  of Equations 2A and .4A i n t o  1A leads  t o  a new 
I 

expression f o r  t h e  t o t a l  c u r r e n t .  
1 

i 

i 
. Since most s o l i d  oxide e l e c t r o l y t e s  d e r i v e  t h e i r  unique I 

I 



proper ty  from t h e  presence of a  d e f e c t i v e  anion s u b l a t t i c e ,  

only those  e q u i l i b r i a  involv ing  t h e  anion l a t t i c e  w i l l  be  con- 
- 

s i d e r e d ,  however d e f e c t s  on t h e  c a t i o n  l a t t i c e  can a l s o  be 

accounted f o r  i f  r equ i red .  
n 

- 
Table 6 .  Index n o t a t i o n  

Index Species  Symbol 

1 ion ized  oxygen vacancy v 0 
2 ion ized  oxygen i n t e r s t i t i a l  . Oi 

e l e c t r o n  

h o l e  

The i n t r i n s i c  e q u i l i b r i a  in f luenc ing  t h e  d e f e c t  s t r u c t u r e  

o f . t h e  mixed conductor a r e  

Equation 6A r e p r e s e n t s  an e l e c t r o n  i n  t h e  valence band t h a t  

has  been e x c i t e d  i n t o  t h e  conduction band and leaves  a r e -  

. s u l t a n t  p o s i t i v e  h o l e  in. t h e  valence band. Equation 7A r ep re -  

s e n t s  t h e  formation of an t iFrenke3 d e f e c t .  The incorpora t ion  

e q u i l i b r i a  t h a t  c o n t r o l  t h e  formation of h o l e s ,  excess e l e c -  

t r o n s ,  and anion d e f e c t s ,  and allows t h e  c r y s t a l  t o  change 



s toichiomet.ry.  a r e  

. -  + 

. Equation GA normally predominates i n  h igh  oxygen p r e s s u r e  
. . 

r eg ions ,  w h i l e .  Equat ion 9A a p p l i e s  t o  t h e  low' oxygen p ressu re  

regions. ,  The above e q u i l i b r i a  allow c e r t a i n  e lec t rochemical  

p o t e n t i a l s  t o  be  r e w r i t t e n  i n  terms of o the r  more d e s i r a b l e  
t.-- 

elec t rochemical  p o t e n t i a l s  and/or chemical p o t e n t i a l s ,  such a s  

: Ustng t h e  r e s u l t s  of t h e  equi l ibr ium 'condi t ions,  ~ q u a t i o n s  ~ O A  

can be s u b s t i t u t e d  &nto Equation 5 A  t o  y i e l d  t h e  t o t a l  c u r r e n t  

a t  a l o c a t i o n  x 

where t h e  i o n i c  and t o t a l  conduct iv i ty  a r e  def ined a s  

0 ;  
1 on = 01 + a2 



Under open c i r c u i t  condi t ions  t h e  t o t a l  cu r ren t  through t h e  
. . 

mixed conductor i s  zero .  The i o n i c  t r ans fe rence  number i s  

defi.ned as  t h e  f r a c t i o n  of t h e  t o t a l  conduct iv i ty  which r e -  

s u l t s  from i o n i c  movement. 
a - i o n  

, - 'ion - -  - 

=T 

S e t t i n g  Equation 11.A equal  t o  zero and i n s e r t i n g  t h e  d e f i n i -  

t i o n  given by Equation 13A, t h e  r e s u l t i n g  equat ion i s  

Considering a unidimensional flow of f l u x e s  between two reve r s -  

i b l e  e l ec t rodes  on e i t h e r  s i d e  o f .  t h e  mixed conductor loca ted  

a t  x = 0 and x = L as  shown i n  Figure  25 ,  Equation 14A can. now 

be  . in t eg ra ted .  

Po, (L) 
- 1 

-tioil f i ~ ~  = q3N[flPt (L) - flPt ( 0 )  = FE . . 2 (15A) 
2q;/q3 . -. . - - 

where opt (L) and gPt (0) a r e  t h e  e l e c t r o s t a t i c  p o t e n t i a l s '  i n  
- 

t h e  platinum leads ,  vO2 (L) and pO2 (0) a r e .  t h e  oxygen chemical 

p o t e n t i a l s  a t  . the  appropr ia t e  i n t e r f a c e s ,  F i s  Faradayls  

cons tant  and i n  t h i s  case  i s  equal  t o  23,080 ca l /vol t -mole ,  



s o ' t h a t  t h e  open ~ i r c u i t  emf, E ,  w i l l  be  given i n  v o l t s .  

Equation 15A assumes t h a t  t h e r e  a r e  no r e a c t i o n s  o r  

p o l a r i z a t i o n  e f f e c t s  occurr ing  a t  t h e  electrode/mixed con- 

ductor  i n t e r f a c e s .  Rearrangement of Equation 15A leads  t o  

t h e  more common form, -- . , 

From Equation 16A i t  can be seen  t h a t  t h e  open c i r c u i t  emf 

ac ross  t h e  oxide s c a l e  of a mixed conductor i s  s e n s i t i v e  t o  

t h e  amount of c u r r e n t  c a r r i e d  by t h e  ions  and t o  t h e  chemical 

p o t e n t i a l  g rad ien t  of ' the n e u t r a l  spec ies  across  t h e  s c a l e .  

Equation 16A can be expressed i n  t e r n s  of oxygen p a r t i a l  

p ressu res ,  which a r e  more measurable q u a n t i t i e s .  

The above d e r i v a t i o n  i s  based on t h e  s c a l i n g  r a t e  theory  as  

pro.posed by Wagner (2,80) . 



. Appendix B-. E l e c i r i c a l  Conduct ivi ty  Data f o r  Undoped Y t t r i a  

Run 1. . A i r  i nduc t ion  Y203 

Run 2. Hot pressed Y203  

, - 
Run 3 .  Hot pressed Y203 

Run 4 .  A i r  i nduc t ion  Y 2 0 3  

0 
T 
C 

-Logo -Log Po2 
(olm - cm) (atm) 

991 4.74 . 0.00 
991 4.86 0.68 
992 5 .21  2.00 
992 6.26 9.98 
991  4.86 ' , 0.68 
950 5,07 0.68 
907 5'.30 0.68 
851 5.65 0.68 
794 6.02 0.68 
744 6.39 0.68 
6 98 6.77 0'. 68 
,9 94 6.23 9.95 
951 6.50 ' 10.76 
903 6.74 11.73 
850 7.00 12.92 
801 7.22 14.13 
748 7.45 15.55 
7 0.2 7.65 .16.93 
997 6.20 9.88 
9 93 6.25 .11 .96  
9 94 6.25 13.95 
9 93 6.07 15.96 
9 93 4 .61  .. , 

0.00 

Run 5 .  S l i p  c a s t  Y203 



T -Logo -Log Po2 T .  
O c  O c  -Logo -Log Po2 

(ol~m-cm) (atm> (ohm- crn) - (atm) 

Run 6 .  s l ip  c a s t  Y203 Run 10. Hot pressed  Y203 

992 41 75 0.00 998 6.29 9.87 
' . 897 5 . 5 1  0.00 9 98 6.27 11.87 

796 6.39 0.00. 998 6.18 13.87 
701. 7.24 - .  0.00 998 6.23 15.87 

Run 7. 

Run 8 .  

S l i p  c a s t  Y203 

S l i p  c a s t  Y2O3 

Run 9. S l i p  c a s t  Y203 



Appendix C .  Open C i r c u i t  Emf' Data f o r  Undoped Y t t r i a  

Cel l :  ~i , N ~ o / Y ~ o ~ / Y  .y203 

,Measured 
emf (mv) 

152 
162 

: 180 
201 
2 14 
229 
173 
169 

. 164 
168 
165 

. T  ' Measured 
OC emf (mv) 

1007 26.5 
953 36.6 
901 44.7 

C e l l :  Ni , N ~ O / Y ~ O ~ / C O , C O O  

T Measured 
OC emf (mv) 

Thermodynamic 
emf (mv) (8 6,84) 

- - -  
17 1.3 
1717 . 

- ' 1722 
1724 
1728 
1733 
1712 
1717 
1 7  20 
1724 
1729 

The~modynamic . 
emf (mv) (4,84) 

1615 
1623 
163 1 

Thermodynamic 
emf (mv) (86,4) 



C e l l :  N ~ , N ~ O / Y ~ O ~ / C O , C O O  (continued) 

T M e a s u r e d  T h e r m o d y n a m i c  
OC e m f  (mv)  e m f  (mv) (86,4) 

C e l l :  C U , C U ~ O / Y ~ O ~ / N ~  , N i 0  

M e a s u r e d  
e m f ,  ( m v )  

T h e i - r n o d y n a m i c  
e m f  (mv) (36,86) 



' . Appendix 'D. E l e c t r i c a l  Conduct ivi ty  Data f o r  Y t t r i a  Doped 
* -- - . .  . 

. . ,Hafnia  i n  Dry A i r  

T 
OC - ~ o g  a OC - ~ o g  ep 

T 

(ohm-cm) (ohm-cm)-l 



- .  

14 m/o Y2O3 - 86 m/o H f 0 2  20 m/o Y203 - 80 m/o H f 0 2  
(continued) - 



' Appendix E .  Open C i r c u i t  Emf Data f o r  

C e l l :  Cu,Cu20/8-92 Y S H / N ~  , N ~ O  

Measured  
e m f  (mv) 

258 .0  
257.9  
258.3  

. 258 .3  
261.0  
; 261.3  

264 .4  
264 .9  
2.64,. 8, 
264 .8  
2 6 6 . 9  
267 .2  
270 .2  
269 .9  
273 .8  
273.5  
276.6 
276 .2  

C e l l . :  N i  ,NiO-8-92 YSH/Co ,COO 

T . .  Measured  
OC e m f  (mv) 

Thermodynamic 
e m f  (mv) (36 ,86)  

Thermodynamic 
e m f  (mv) (86,  4 )  



Measured 
emf  (mv)  

Thermodynamic 
emc (mv) ( 3 6 , 8 6 1  

- * -  

545.7  
545.6  
5 4 4 . 1  
542 .5  . 

540 .9  
539 .4  
538 .0  
5 3 6 . 4  



- Appendix F. P o l a r i z a t i o n  d a t a  f o r  8 m/o Y203 - 92 m/o Hf02 

Applied vo l t age  Current Applied vo l t age  Current  
E~ (mv) I, (PA> E~ (mv) I w (PA) - - - - 

Run 1PJ; CU,CU~O/YSH/AU,  P t  Run 1P' cu , C U ~ ~ / Y S R / A U ,  P t  
1 0 0 0 ~ ~  8 5 0 ' ~  



Applied voltage . . Current Applied voltage Current 
En (mv) I a3 (PA) EA (mv) I_(PA) 

. ,.. .. 
Run 2F:* CU,CU~O/YSH/AU,P~ Run 2Fi* CU,CU~O/YSH/AU,P~ 

850°C 10oo0c 

2 **A(cm )/L(cm) = 7.56(cm) for Run 2P.. 
- -  . . . ,- 



AppendixG.  L a t t i c e  Parameter  and ~ e n s i t y  Data f o r  Y t t r i a  

Doped Hafn i a  

. T h e o r e t i c a l  d e n s i t y  
,. L a t t i c e  Vacancy I n t e r s t i t i a l  Apparent  

Composit ion paramete r  model model d e n s i t y  
d o  ~ 2 0 3  a@ (B gm/cm 3 grn/cm3 gm / cm3 



Appendix H.  Coulometric Titration-Open Ci rcu i t  Emf Ce l l  Data 

Cel l :  CU,CU~O/CSZ/ (Pt)  / Y S H / C U , C U ~ O  
- ~/CSz/Cu,Cu70 

- L. 

T r i a l  1 . 

. . 

Applied 
' vo l t age  
EA (mv) 

Open c i r c u i t  
' emf YSH 
- EH (mv) 

Open c i r c u i t  
emf CSZ 
EZ (mv) . .. - 
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