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FOURTEENTH SYMPOSIUM ON ENERGY ENGINEERING SCIENCES
Mechanical Sciences; Solids and Fluids

FOREWORD

This Proceedings Volume includes the technical papers that were presented during the
Fourteenth Symposium on Energy Engineering Sciences on May 15-16, 1996, at
Argonne National Laboratory, Argonne, lllinois. The Symposium was organized into
seven technical sessions, which included 26 individual presentations followed by
discussion and interaction with the audience. A list of participants is appended to this
volume.

This was the fourteenth annual Symposium sponsored by the Engineering Research
Program of the Office of Basic Energy Sciences of the U.S. Department of Energy. The
technical areas encompassed in this year's Symposium were mostly from solid and fluid
dynamics. Each paper dealt with the research effort being sponsored by the
Engineering Research Program.

The DOE Office of Basic Energy Sciences, of which Engineering Research is a
component program, is responsible for the long-term mission-oriented research in the
Department. It has the prime responsibility for establishing the basic scientific
foundation upon which the Nation's future energy options will have to be identified,
developed, and built. It is committed to the generation of new knowledge necessary for
the solution of present and future problems of energy exploration, production,
conversion, and utilization, consistent with respect for the environment.

Consistent with the DOE/BES mission, the Engineering Research Program is charged
with the identification, initiation, and management of fundamental research on broad,
generic topics addressing energy-related engineering problems. lts stated goals are:
1) to improve and extend the body of knowledge underlying current engineering practice
so as to create new options for enhancing energy savings and production, for prolonging
useful life of energy-related structures and equipment, and for developing advanced
manufacturing technologies and materials processing with emphasis on reducing costs

with improved industrial production and performance quality; and 2) to expand the store

of fundamental concepts for solving anticipated and unforeseen engineering problems in
the energy technologies.

In achieving these goals, the Engineering Research Program supports approximately
130 research projects covering a broad spectrum of topics cutting across traditional
engineering disciplines with a focus on three areas: 1) mechanical sciences, 2) control
systems and instrumentation, and 3) engineering data and analysis. The Fourteenth
Symposium involved approximately one-fifth of the research projects currently
sponsored by the DOE/BES Engineering Research Program.

The Fourteenth Symposium was held under the joint sponsorship of the DOE Office of
Basic Energy Sciences and Argonne National Laboratory. Local arrangements were
handled by Ms. Jacquie Habenicht of ANL Conference Services. Ms. Nina Daly of the
ANL Office of Technical Communication Services was responsible for assembling these
proceedings and attending to their publication.
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| am grateful to all who contributed to the success of the program, particularly to the
participants for their excellent presentations and their active involvement in discussions.
The resulting interactions made this Symposium a most stimulating and enjoyable

experience.

Robert Goulard, ER-15
Division of Engineering and Geosciences

Office of Basic Energy Sciences
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PHOTOTHERMAL MEASUREMENTS OF SUPERCONDUCTORS

G. S. Kino, W. R. Studenmund and I. M. Fishman

Ginzton Laboratory, Stanford University
Stanford, California 94305-4085

ABSTRACT

A photothermal technique has been used to measure diffusion and critical temperature in high tem-
perature superconductors. The technique is particularly suitable for determining material quality and in-
homogeneity.

INTRODUCTION

" We have been developing a new photothermal microscope technique for studying high-temperature
superconductors. The microscope measures differential optical reflectivity (DOR) and thermal diffusivity
in thin films and single crystals of cuprate superconductors. Both normal and superconducting phases are
characterized. The spatial resolution of the DOR technique is comparable to an optical microscope and
allows us to measure small samples several microns in extent. The photothermal technique is extremely
sensitive to manifestations of optical and thermal parameters affected by phase transitions, and in particu-
1ar, to the superconductive transition in high-T; materials.

Modern technology is able to produce very-high-quality, high-temperature superconducting samples.
However, the best available high-T¢ samples have a single domain size (~100 pm). Traditional methods
of sample characterization (DC and microwave techniques) used for measurements of critical tempera-
ture, critical current, and material uniformity have a spatial resolution of ~1 mm.123 With our tech-
nique, one can measure optical reflectivity and critical temperature with the spatial resolution of an optical
microscope (1-2 pm). We can determine the variation of the critical temperature from point to point, and
measure the quality of the material, by determining its diffusivity and differential optical reflectivity as a
function of temperature. We can also determine the anisotropy of the material in small regions, and
hence determine whether it is a single crystal or twinned. Thus, we believe that we have arrived at an ex-
cellent method for testing the quality of high-temperature superconducting materials.

For the first time, we used a polarized light probe to observe the anisotropy of single crystals. With it
we observe an extremely sharp peak in the probe DOR signal near the critical temperature when the light
is polarized along the a axis, and a very different characteristic output as a function of temperature when
the light is polarized along the b axis.

THE EXPERIMENT

The basic microscope configuration is shown in Fig. 1. A He-Ne laser (632 nm), acousto-optically
modulated by a Bragg cell, is focused on the sample and used as a heating beam; this beam periodically
modulates the temperature of the sample at the focus and excites a thermal wave with a diffusion length
of the order of 50 pm. Within a few microns from the focus of the heating beam, an infrared semicon-
ductor laser (780 nm) is focused on the sample to probe the reflectivity change due to the temperature
variation caused by the thermal wave. We have chosen a semiconductor laser for its minimum noise




and select, with a dichroic (lowpass) filter, the reflected probe laser light which impinges on a PIN photo-
diode. The phase and amplitude of the modulated signal are measured with a lock-in amplifier.4

The photothermal microscope designed for measuring high-temperature superconductors consists of
three main components: (1) the optical system of the microscope, which excites and detects the thermal
wave, (2) the temperature-controlled cryostat, which houses the sample and carries out the temperature
sweep necessary for the measurement, (3) an auto-focusing feedback system, which ensures that the
sample always stays at the focal plane of the microscope objective during a temperature sweep, and
(4) computer control.4

We have combined a photothermal microscope with a high-vacuum cryostat to measure the thermal
diffusivity of high-T superconductors as a function of temperature. The micron resolution obtained by
using such a system allows us to measure single-crystal samples which are too small or irregular to be
measured by standard bulk techniques. Therefore, we have the ability to measure the full anisotropic
conductivity and measure diffusion within a single crystal or across a grain boundary.

For highest-resolution imaging, we make the two laser beams coincident and measure the amplitude
of the reflectivity change. In this manner we can obtain resolutions limited only by the spot size of the
microscope objective used for the focusing. For quantitative measurements of the thermal diffusivity ina
specific direction, we separate the heating and probe beams by a known distance and measure the thermal
phase lag between the two. For distances greater than a few spot widths, the phase lag between two
points a distance x apartis ¢, = x,/2w /D, , where @ is the heating frequency and Dy is the thermal
diffusivity in the x direction.> Measurement of thermal phase has the great advantage that it is insensi-
tive to nonthermal effects, such as laser intensities and the variation of refractive index with temperature.

The vacuum inside the cryostat is controlled to be under 2 x 10-7 torr to limit ice on the sample sur-
face to less than 1 um during the two hours needed for the measurement. A vac ion pump is used with a
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Fig. 1. System for photothermal measurements of superconductors.




gettering pump because of its small size, low weight, low ultimate vacuum, and oil-free operation. This
ensures a system free of vibration, and makes it possible to mount the cryostat on a micropositioning sys-
tem. The focused light beams are incident on the sample passing through a long working distance (7 mm)
0.3 NA objective and a 100 pm thick silica window mounted on the vacuum housing which is made thin
to reduce aberration of the focused light.

Special precautions have been taken to ensure an accurate temperature reading of the sample. We
limit the power of both heating and probe lasers to only a few tens of microwatts. A three-dimensional
theoretical simulation indicates that the dc rise in the surface temperature of the sample caused by laser
heating by the pump is less than 2 K, and that by the probe is less than 0.5 K. The temperature reading
of a silicon sensor attached to the sample mount is verified with an in-situ ac susceptibility measurement.
Undemeath the sample, two coils are embedded in a sapphire sample mount, which provides electrical in-
sulation from, but a good thermal conducting path to, the copper block of the cryostat. The larger coil is
driven with an ac current; the voltage induced in the smaller coil is measured with a lock-in amplifier. A
sharp change in the induced voltage indicates the superconducting transition and calibrates the reading of
the silicon sensor. :

During the cooling or heating of the cold finger, the tip of the stage tends to move as a result of me-
chanical contraction or expansion. Large vertical movement of the sample can result in a loss of focus
and cause an error in the photothermal signal. We therefore incorporate an autofocusing mechanism to
adjust the z-position of the objective and to ensure that the sample surface is always in the focal plane of
the objective. A focusing accuracy of 1pm is easily achieved in our measurements; the error is well
within the depth of focus (5 pm) of the 0.33 numerical aperture objective.

The lateral movement of the sample, t00, can cause noise in the signal output because of the nonuni-
formity of the sample reflectance. Therefore, the x- and y-directional movement of the sample is moni-
tored with the CCD camera and is compensated for manually with a motorized stage. The accurate lateral
definition (3 pm) of the experiment allows us to achieve measurements of the thermal diffusivity within
one domain of single-crystal high-T¢ superconductors.

Phase Measurements of Diffusion: Measurements of the diffusion as a function of temperature in
YBCO are shown in Fig. 2. A major advantage of measuring within a small volume is demonstrated by
these results, where the diffusivity measurements were conducted fora 10 um spacing between the exci-
tation and the probe areas in a single YBCO domain, and across the twin boundary. For comparison, the
diffusivity measurements for thin YBCO films using another optical technique, the transient grating
method, in a region 200 im across, are also shown. It will be seen that, above the transition tempera-
ture, the thermal diffusivity decreases slowly with temperature. The diffusivity measured over large-area
thin film samples (200 pm across), and across a grain boundary, agree with bulk measurements, but the
diffusivity measured within a grain is approximately twice as large as the measured value across a grain
boundary. This is an interesting result, for it indicates that there must be a large change in temperature
across the grain boundary, and tends to indicate that phonons (presumably optical phonons) and normal
electrons (which contribute to diffusion) are reflected at the grain boundary.

Below T, the data for different samples differs dramatically. For the single domain for T < T, dif-
fusivity increases sharply over two orders of magnitude. This diffusivity enhancement can be explained
only by removal of free carriers from the conducting state into the superconducting condensate. For
samples of lower quality, the enhancement is not that sharp, especially for the thin film sample where the
superconducting transition has almost no effect upon the diffusivity. The measurement through the twin
boundary is intermediate between the other two curves. The twin boundary, though thin compared to the
beam spacing, creates significant additional resistance for heat transfer. The diffusivity enhancement is
evidence of the phonon mechanism of heat transfer inside a single domain. This conclusion does not dif-
fer from the traditional viewpoint on heat transfer in high-T¢ materials. In thin films, additional mecha-
nisms of phonon scattering, such as scattering by point defects independent of the free carrier density,
probably dominate. The experimental results obtained show very conclusively that the scatten'n% rate of
phonons is proportional to the number density of normal electrons at temperatures below e
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Fig. 3. Temperature dependence of differential reflectivity for the probe beam polarization along the a
axis (1), and along the b axis (2), of a single YBCO domain. Inset: curve 1 in the vicinity of T¢
together with the inductive coil response indicating the transition temperature.

Furthermore, the number density of normal electrons varies with temperature much like the predictions of
BCS theory, although there is a considerable difference between the experiment and theory near T (see

Fig. 4).

Differential Optical Reflectivity (DOR) Measurements: In the visible range, the optlcal constants of
high-T, superconducting materials do not show any noticeable temperature dependence.? However, in
the vicinity of the critical temperature T, the perturbation caused by the transition, though small, is
rather sharp and may be detected by a differential technique. Here, we will descnbe photothermal mea-
surements of differential optical reflectivity (DOR) of single YBap Cu3z07-x crystals and the temperature
variation of the thermal wave amplitude response. It is worth mentioning that, though the amplitude and
the phase of the thermal wave carry different information, they are obtained in the same experiment.

One set of YBCO samples used in this study was twinned, with critical temperatures in the range of
60-93 K. The modulated signal did not show any anisotropy and polarization dependence. Another set of
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Fig. 4. Comparison of temperature-dependent DOR response in the "a" polarization (curve 1, same as
curve 1 in Fig. 1), data for thermal resistance (curve 2, open circles) calculated from thermal
wave phase,6 and for the normal component density (curve 3, solid squares) calculated from mi-
crowave measurements.]4 Inset: DOR peaks in the vicinity of T¢ for the first sample (top
curve, same as curve 1 in this figure), and for two domains of the second sample.

measurements were made with far higher quality single crystals with domain sizes in the 200-500 pm
range. In this case we used polarized light for the probe and were able to rotate the angle of polarization
of the incident light. Two samples investigated in this study were single YBCO crystals with a critical
temperature of 91.2 K. Both samples had comparatively large untwinned areas of approximately
50 x 200 pm. These areas were imaged under a polarizing microscope as dark and light domains. All
measurements were conducted in the a-b plane. Standard reflectivity measurements with polarized light
on both samples show distinct anisotropy of the reflectivity R inthe a-b plane, described by:

R=A+Bcos20 (1

with a B/A ratio of 2.56, which is in good agreement with the results obtained on similar samples by
Cooper et al? [for an optical energy of ~1.5 eV]. ‘This behavior is expected for the reflection from an a-b
plane with enhanced polarizability along the Cu-O chains oriented along the b direction.

Like the results obtained previously on heavily-twinned YBCO samples, the single-domain DOR data
for a given probe polarization in Fig. 3 consists of a continuous smooth "background” in the entire
temperature range 20-300 K, and a sharp peak in the vicinity of T¢. In earlier measurements we were
able to show that the smooth background appears to be associated with the normal component.5 For a
pe:%—to-peak temperature modulation of approximately 0.2 K, the maximum observed signals are about
104 of the average reflected intensity of the probe beam. Integration of the DOR response with respect
to temperature shows that R changes by less than 1% in the temperature range 20-120K.

Over most of the temperature range, as might be expected for an anisotropic material with zero off-
diagonal terms in the dielectric or reflectivity matrices associated with optical rotation, the DOR data
shows angular anisotropy of the same form as in standard reflectivity measurements,’ but the coefficients
A and B vary rapidly with temperature near the critical temperature. Above the critical temperature the
DOR response is a weak function of temperature. As we have already discussed, the angular dependence
of the DOR signal is of the same form as in the standard reflectivity measurements. However, unlike the
results obtained with our earlier measurements of highly-twinned samples, when the polarization vector
rotates from a to b, the DOR signal changes sign,!0 as may be seen in curves 1 and 2 of Fig. 3.




To describe this sign change and some other features of the DOR signal, we use a two-component
Drude model!1:12 with a dielectric constant € of the form:

_U-pe; __ fo,
0’ +ifio @ +ilo @

where ap, Il and I are the plasma frequency and electron collision rates for the normal and supercon-
ducting phases, respectively, and fis the fraction of superconducting electrons (f=0 for T>T¢). The
reflection coefficient is

R=|e -1)/(e +1

For small I'<< o, I'<< @, the DOR response takes the form:

EIS:M[ _pden) 4 ]
T o*-o, D= ar®" @

where o= (I} -I,)<<Tj or I3, lo—®, | >>T; or I, R is the reflection coefficient for an unmodulated
probe beam, and it is assumed that 1dI/dT\ << |d(6I)/dT]. The DOR signal sign depends on the relation
between the incident frequency @ and the plasma frequency @p. From comparison with the standard
reflectivity measurements in single domains, we expect that the probe frequency (A = 0.78 pm) is posi-

tioned between the plasma frequencies for the a and b directions.

Beyond the sign reversal, Eq. (3) also predicts that the DOR signal consists of two components pro-
portional to the rates of change of 6I" and the fraction of superconducting phase f with temperature, re-
spectively. In agreement with this prediction, the DOR response consists of a continuous smooth "back-
ground" in the entire temperature range 20-300 K, and a sharp peak in the vicinity of T. The back-
ground is associated with the normal component response. Above T¢ (f =0); only this component is
present in the DOR signal. Below T, the background amplitude decreases and at T ~ 20K practically
disappears. Equation (3) predicts that below T, the first term should decrease with temperature as
(1 - f), or the density of the normal component. This prediction allows for comparison with other experi-
ments where the density of the normal component was measured.

In Fig. 4, the densities of the normal component derived from microwave penetration depth
(curve 2)12 and thermal diffusivity (curve 3)6 measurements are compared with the DOR signal for the
"a" polarization (curve 1). The comparison shows similarity of the temperature dependencies for all three
measurements, which confirms that the Drude model may be applied, at least for qualitative analysis of
what appears to be the normal component of the DOR data. Some noticeable differences may be ex-
plained by the temperature dependence of d(8I)/dT below T¢.

We can therefore associate the “smooth” parts of the curves with normal electrons, but the peaks with
the superconductive carriers. At the present time, it is difficult to give a good explanation of the behavior
near the peaks. Fluctuation theory seems to be inadequate for the purpose, as is BCS theory, and we do
not yet have a good explanation of why the peak can change in sign, as shown in the inset of Fig. 4.

Measurement of the Periodic Temperature Variation: Differential optical reflectivity data taken on
single-domain samples shows very sharp functions of temperature. Since the resolution of the method is
dependent on the variation of temperature caused by the pump heating, there has been some question as to
whether our assumption of a small temperature variation is adequate. Our theoretical estimates predicted
a 0.2 K variation at the probe. However, there was no direct experimental evidence that our evaluations
are correct. We, therefore, developed a method for determining AC temperature variation, based on com-
parison of the amplitudes of the fundamental (®) and second harmonic (20) components in the reflected
signal. The reflection coefficient R may be written as a Taylor expansion in terms of the temperature
variation AT:




dR d’R (AT)
R=R,+—AT+ 4
R daTr ar* 2 @
where the periodic variation of temperature AT is AT =6 cost. It then follows from Eq. (4) that
dR d’R 6°
R = Ry + —0 cos )t +———cos 20t 5
Ro*ar dr* 4 ®)

The last relation provides a convenient method of measuring the amplitude of the periodic tempera-
turg variajon. The © component is proportional to 8 dR/dT ; the 2® component is Eoportional to
(6°/4)d*R/dT*. Integrating the 2@ component, we can obtain the value of (5 /4)dR/dT.
Comparison with the coefficient of the @ component provides a direct measurement of 6. In Fig. 5 the
results of these measurements are shown; curve (a) is the first harmonic signal and curve (b) shows the
integral of the 2nd harmonic signal over temperature. We measured the small amount of 2nd harmonic in
the input signal due to the chopper not being entirely symmetric, and arrived at a value of 0.01 of the 1st
harmonic. By taking account of this leakage and the larg2er rate of attenuation of the 2nd harmonic
signal, we corrected curve (b) by subtraction of 0.005 of the 1st harmonic signal from it before
integration. This process yielded curve (c). It will be seen that two curves representing the differential
reflectivity at @ and the integral of the data at 26 have similar temperature dependences, which agrees
with the results of Egs. (2) and (3).
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Fig. 5. Comparison of () 1st harmonic, (b) integrated 2nd harmonic signal, and (c) inte grated 2nd
harmonic signal with 0.005 leakage of 1-f signal with polarization along the b axis.

CONCLUSION

The photothermal technique provides information on inhomogeneity, the value of the critical tempera-
ture in small regions, and measurements of diffusion (and hence the normal carrier density below the
critical temperature). New information has been obtained on the behavior of highly anisotropic single
crystals near the critical temperature, and on the temperature varjation caused by the measurement pro-
cess itself. The apparatus is being redesigned to make it more stable and easy to use so that materials re-
searchers can make routine use of it.
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SCANNED PROBE MICROSCOPY FOR THIN FILM SUPERCONDUCTOR DEVELOPMENT *

John Moreland

Electromagnetic Technology Division
National Institute of Standards and Technology
Boulder, Colorado 80303, USA

ABSTRACT

Scanned probe microscopy is a general term encompassing the science of imaging based on
piezoelectric driven probes for measuring local changes in nanoscale properties of
materials and devices. Techniques like scanning tunneling microscopy, atomic force
microscopy, and scanning potentiometry are becoming common tools in the production and
development labs in the semiconductor industry. We present several examples of
applications specific to the development of high temperature superconducting thin films
and thin-film devices.

INTRODUCTION

Rapid advances in high temperature superconductor (HTS) technology have lead researchers to
consider replacing normal metals in several electronic applications including transmission lines, filters, and
on-chip as well as multi-chip module interconnects. HTS filters and interconnects have the advantages of
low-losses and frequency independent dispersion. In particular, Ajimine, et al.' have demonstrated the
usefulness of a yttria stabilized zirconia (YSZ) layer as a gate insulator between YBa,Cu;0; (YBCO) films
and Si substrates. Harvey, et al.? have made low resistivity contact structures between YSZ/YBCO/Ag
trilayers and Si using ion-milled, Au-filled vias with contact resistance’s of 10 Q-cm’. Ekin, et al.’ have
made significant progress towards optimizing YBCO contact processes that would be compatible with Si
integrated circuit processing.

It is clear that HTS thin-film properties are affected by nanometer-scale morphology and electronic processes
which directly or indirectly influence the performance of various HTS interconnect devices. Measurements of
roughness, critical dimensions, field patterns, and local electronic processes provide information about the

* Contribution of the National Institute of Standards and Technology, not subject to copyright.
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fundamental operation and ultimate performance limitations and are thus critical in the development process.
Scanned probe microscopies* (SPM) such as scanning tunneling microscopy (STM),* atomic force microscopy
(AFM),’ and scanning potentiometry® are examples of imaging techniques that are uniquely qualified for these
applications because of the nanometer-scale dimensions of the various scanning probes. The purpose of this paper
is to demonstrate the usefulness of SPM technology in the development of HTS interconnect devices by
presenting several example applications.

MORPHOLOGY AND SURFACE DENSITY OF STATES OF YBCO FILMS

The growth habit of the YBCO films depends on the deposition technique and substrate material.”’
For example, Fig. 1a shows screw dislocation growth on the surface of a sputtered film on MgO as imaged
by STM. Substrate dislocations seed YBCO spiral growth with an average spacing of 1 pm. Many spirals
appear to merge into each other within the surface of a single grain of several micrometers in diameter.

The STM growth step height for all of the films measured at room temperature are anomalously large
compared to the theoretical unit cell in the c-axis direction. We believe that variations in the surface
barrier, density of states, or similar electronic effects cause these anomalies and that they do not represent
the true topography of the samples. Hawley, et al. have seen similar anomalies in STM data.’® They have
shown, however, by performing AFM, which is relatively unaffected by the surface density of sates, that
the true step height is about 1 nm as expected.

The STM step height is temperature dependent. As the temperature decreases from 300 K the growth
step height decreases, approaching the expected unit cell value of 1.2 nm at 76. The origin of this striking
temperature effect is uncertain. Perhaps there is a semiconducting layer consisting of de-oxygenated
YBCO on the films that undergoes carrier freeze-out upon cooling. Carrier freeze out would have the

- effect of changing the density of states at the surface of the film. In the extreme case of complete freeze-
out, the shape of the tunneling barrier between the film and the STM tip may be affected as the layer
becomes insulating. Alternatively, at lower temperatures as the Cu-O planes decouple and conduction
becomes more 2D in character, the rate for tunneling perpendicular to the Cu-O planes may be affected.
Generally, measurements of the resistivity anisotropy for single crystals of YBCO support this possibility.
Regardless of the cause, surface density of states of effects will dominate the interface transport properties
of YBCO films which are critical to many prospective interconnect technologies.

Comparison of STM and AFM images of YBCO thin-film samples has lead to another interesting
observation regarding HTS film growth. AFM images reveal a high density of small distinct nanoparticles,
10 to 50 nm across and 5-20 nm high, which do not appear in the STM images of the same samples as
shown in Fig 1. During STM scanning of the sample, the STM tip breaks off the particles and moves
them to the edge of the scanned area. The presence of the particles, which are thought to be yttria,'* seems
to be generic for many types of YBCO thin-films regardless of film thickness or substrate. One intriguing
possibility is that the insulating nanoparticles, affectionately referred to as "sand” (as opposed to the much
larger "boulders" often observed on laser ablated YBCO thin films), might be the natural pinning sights
responsible for the high critical currents of these films. Thus far the microscopic (or nanoscopic, as the
case may be) nature of the pining sites has eluded scientists. In any case, the knowledge of the presence of
the sand is important for the development of YBCO thin films in multilayer structures for electronic
applications of HTS films.
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Fig. 1. 2) 1 um STM image of surface density of states “topography” of a YBCO film deposited on a
MgO substrate (from ref.9). b) 2.5 pum AFM image of yttria sand on a YBCO film deposited on a LaAlO;
substrate (from ref.11).

YBCO FILM GROWTH ON Si SUBSTRATES

We have studied YBCO thin films deposited on Si substrates.”® The deposition method was developed
by Fork et al. 14 and relies on a thin film of YSZ as a chemical buffer as well as a strain layer to reduce
lattice-mismatch strain between the YBCO and the Si. R-T measurements of unpatterned films show T

ranging from 85 to 87 K with a resistivity ratio Rseox/Rioox Of about 2.5. Typically, J.is 9 x 10° A/cm* at 4

K. X-ray diffraction shows that the YSZ and the YBCO are c-axis oriented with the YSZ layer having
good epitaxy on the Si and the YBCO layer having both a-axis and b-axis oriented grains within the plane
of the film.

One of the purposes of a YSZ layer is to prevent chemical reaction between the Si substrate and the
YBCO film. Ideally, the YSZ layer should be continuous. However, even if there are pinholes in the YSZ,
it is generally thought that they are small in diameter, few in number, and that the reaction product between
the YBCO and Si is itself an insulator. This means that the pinholes cannot be detected electrically by
measuring conduction leakage between the Si and YBCO. Figure 2a is an AFM image of a YSZ film that
was removed from the vacuum system before depositing YBCO. Pinholes penetrating the film are readily
visible. The pinhole density is 50/um®. The pinholes vary in size with the majority being about 15 nm in
diameter. The largest pinhole observed was 44 nm and the smallest was 5 nm. This is direct proof of the
existence of pinholes in YSZ buffer layers. Other significant aspects of Fig. 2a are that there is no
evidence of cracking in the YSZ film and that, aside from the pinholes, the film is very flat with less than 1
nm roughness indicating good epitaxy on the Si.

Pinholes may be one of several factorsalong with YBCO film strain and cracking that may cause a
reduction in T, and J from the highest values observed for films deposited on LaAlO; of T.=91.5 K and
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Fig. 2. a) 1 um AFM image of a YSZ buffer layer on Si showing pinholes (from ref. 13). b) 1 um AFM
image of completed YBCO/YSZ buffer layer.

J.(4 K) = 10" A/em®. An AFM image of the YBCO/YSZ bilayer is shown in Fig.2b. Large ablation
boulders dominate the image. Between the boulders the film appears flat (roughness less than 10 nm)
indicating predominate c-axis growth. We estimate the c-axis grain size to be 90 to 100 nm based on the
average distance between roughness peaks. A few long, narrow a-axis grains are also present along with
some round protrusions, 50 to 60 nm high and 150 nm in diameter. The density of the round protrusions is
about 30/um? which is close to the YSZ pinhole density derived from Fig. 1 of 50/um’. We submit that
there may be a correlation between the round profrusions and the YSZ pinholes and that they may well be
evidence of reaction between the YBCO and the Si.

SCANNING POTENTIOMETRY OF YBCO STEP EDGE JUNCTIONS

The AFM has been adapted for scanning potentiometry.® The main features of the modifications to the
AFM include a laser beam bounce technique for measuring the deflection of the cantilever which is excited
near its resonance frequency by ac capacitive forces between the tip and the sample. The resonant force is
minimized by adjusting the dc voltage between the tip and the sample to be the same. This voltage
adjustment is plotted as a function of x-y position giving a potential map of the surface. This technique is
useful for measuring surface potential due to changes in work function, trapped charges, or current flowing
through a device such as a contact via or along an interconnect with 50 nm spatial resolution and millivolt
voltage resolution.

‘We have performed some tests at room temperature on step edge structures for superconductor-normal
metal-superconductor (SNS) proximity effect devices. Here, YBCO is deposited at an angle over a
previously ion milled step forming a break in the film. Au is then deposited from the other side completing
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the junction. Most of the gold is ion milled away leaving a small amount between the banks of the YBCO
films on either side of the step forming the junction.

Figure 3a shows the surface potential image of a step-edge junction energized with 10 mA. The
corresponding topography is shown in Fig. 3b. Line scans as a function of position across the junction are
shown in Fig.s 3b and 3c. The data shows a linear dependence of voltage along the line as expected. Also,
a dip in the surface potential at the junction as well as peaks in the surface potential near laser ablation
boulders can be seen in the potential images. As mentioned above the technique is sensitive to surface
charging which may be the explanation for the dip near the junction. Charge accumulation at the bare
interface may have an effect on the operation of these HTS devices.
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Fig. 3 a) Surface potential image of a YBCO step-edge junction at room temperature. b) Corresponding
AFM topography for Fig. 3a. c) Line trace of surface potential vs distance across YBCO step-edge. d) Line
trace of the z-height vs distance across the YBCO step-edge.
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SUMMARY

In summary, we have shown that STM can be used to image differences in the grain morphology of as-
grown, in situ YBCO films deposited on various substrates by sputtering or laser ablation. The newly
developed long scanning range capabilities combined with the exquisite vertical sensitivity make the STM
unique for this type of application. The images are useful for determining the growth habit on individual
grains and may be helpful in determining grain boundary structures. We have also looked at STM images
of sputtered YBCO films at various temperatures. The images show anomalously large step corrugation at
room temperature compared to the expected unit cell step of 1.2 nm. The STM step height is temperature
dependent, however, decreasing to close to the expected value at 76 K. Preliminary speculations about the
cause of this phenomenon include the possible presence of a semiconducting layer at the surface of the film
that undergoes carrier freeze-out or the inception of 2D localization of electrons within CuO planes at
lower temperatures. In any case, the tunneling characteristics that effect the STM image are important for
understanding the electrical properties of the surfaces of YBCO films. Such information is needed for
development of Josephson tunneling barriers and electrical interconnect structures that would be useful for
scaleable integrated circuit applications.

The nature and chemical composition of the sand particles are at this time unknown. They may stem
from slight variations in YBCO stoichiometry. They are always present in high quality YBCO films made
under a variety of deposition conditions. YBCO sand may have significant consequences for multilayer
structures being considered in interconnect technologies. If these particles are distributed evenly
throughout YBCO films they may occur at high enough volume densities to account for high J. pinning in
YBCO films.

AFM images of YSZ/YBCO bilayers on Si indicate the presence of pinholes in the YSZ layer
bridging the Si and the YBCO. This leads to the subsequent formation of nonconducting phases near the
pinholes since YBCO and Si react during high temperature processing steps. AFM images show scattered
mounds on the completed YSZ/YBCO bilayers having about the same surface density as that of the
pinholes. Inthe future we hope to apply the information gained from STM and AFM to optimize the
transport properties of narrow superconducting YBCO lines on Si. Preliminary results show that it is
possible make 0.25 um lines which appear to be largely unharmed by e-beam lithography and subsequent
ion milling. ,

AFM potentiometry based on the force-null detection scheme described above should be useful for studies of
microelectronic devices offering better than 100 nm lateral resolution and better than 1 mV voltage resolution.
Force-detection scanning potentiometers are sensitive to charging effects. We are developing a simple image
subtraction process to minimize the effects of charging.. In addition, we have observed various charging affects
including transfer of charge between the AFM tip and the sample. We have also observed switching of the
charge state of the AFM cantilever between quasi-stable levels. Oxides on or near the surface of the tip may be
responsible. Also, the tip may be picking up charged particles from the sample surface. Several labs have been
experimenting with high bandwidth scanning potentiometry of semiconducting devices at frequencies as high as
100 GHz. """ Ultimately our goal is to extend their work to low temperature studies of active HTS devices .

NEW DIRECTIONS: MAGNETIC RESONANCE IMAGING AT THE NANOMETER SCALE

Magnetic resonance imaging (MRI) which has the advantages of being non-destructive, chemically
specific, and three-dimensional but it is unfortunately limited to the 10 pum spatial resolution level.'® This
barely qualifies MRI as a microscopic technique. Conventional MRI resolution is limited by relatively
weak field gradients of order 10” T/m and the signal-to-noise ratio of the standard pick-up coil circuits




used to detect selected spins. Scanned probe microscopies (SPM), on the other hand, have high resolution,
but only probe on or above surface structures. An example is magnetic force microscopy (MFM) which is
a well developed SPM technique currently in use by the magnetic data storage industry. MFM routinely
gives 50 nm spatial resolution images of the average fields above the surfaces of disk drive components. A
new type of SPM related to MFM and referred to as magnetic resonance force microscopy (MRFM) has
the main advantages of MRI of being chemically specific, three dimensional, and non-destructive in
addition to the high resolution of SPM. MREM was first proposed by Sidles.” It has the potential to
greatly improve the current imaging technology for investigations of magnetic resonance phenomena down
to the atomic scale.

In MRFM, a force microscope cantilever is used to detect the magnetic force exerted when spins are
brought into resonance in response to an applied rf field. In theory, it has the sensitivity required to detect a
single nuclear spin by exploiting the very large (~10® T/m) field gradient near a sharp magnetized tip
similar to those used in MFM. In contrast to MRI, the large field gradients that produce the high spatial
resolution also increase the intensity of the magnetic coupling signal between the cantilever and each
individual spin residing in the selected slice. This combination is key to overcoming the resolution limits of
conventional MRI. Additionally, the scanned probe used in MRFM simplifies the image reconstruction
process normally required for conventional MRI.

MRFM differs from other types of SPM in its ability to probe sub-surface structure. Resonant
coupling occurs when the Larmor condition is satisfied a points which lie on a surface remote from the tip
of the probe where the magnetic field is at the appropriate value. This gives MRFM sub-surface sensitivity
and a slice selectivity like that in conventional MRI experiments. Additionall, as in conventional magnetic
resonance experiments, the spin precession frequency varies for different nuclei or compounds, thus giving
MRFM its chemical specificity.

The general operating principles of MRFM are as follows: The spins in the sample are polarized by
the magnetic field from the MFM tip, which, as discussed above, also produces the field gradients needed
to generate a measurable magnetic force on the cantilever and provide spatial resolution for imaging. The
spins in the sample are then resonantly excited by an applied 1f field that is modulated at the resonant
frequency of the cantilever which producing vibrational motion of the cantilever. Magnetic force maps are
produced by measuring the vibrations of the cantilever attached to the sample while scanning the tip with
respect to the sample. Real-space imaging information can be recovered from the force maps by using the
usual deconvolution image reconstruction methods. The principles of MRFM have been demonstrated by
Rugar, et.al.”’. Their prototype microscope has achieved 1 um resolution, which is 10 to 100 times better
than conventional MRI instruments tailored for microscopy of small samples. While 1 um resolution is far
from the 10 pm resolution predicted by theory, the apparatus is relatively crude and not near the current
limits of existing technology.
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ABSTRACT

Annealing studies have been carried out for high temperature superconductor
YBaCuO;_; in a reducing ambient, in order to identify insulator layer(s) that will
effectively protect the superconducting film in the hostile environment. While a
layer of magnesium oxide (MgO) sputter deposited directly on YBaCuO7_3 film
provides some degree of protection, we found that a composite structure of
YBCO/SITiO3/MgO, where the SrTiO3 was grown by laser ablation immediately
following YBCO deposition (in-situ process), was much more effective. We also
address the need for a buffer layer between YBCO and aluminum (Al) during’
annealing. Al is most commenly used for semiconductor metalization, but is
known to react readily with YBCO at elevated temperatures. We found that the most
effective buffer layers are platinum (Pt) and gold/platinum (Au/Pt).

, INTRODUCTION
Recently there have been several demonstrations of potential applications of superconductor-
semiconductor integrated systems. One example is microwave filter subsystem made with high-
temperature-superconductor (HTS) yttrium-barium-copper-oxide (YBCO) that can be -used in

cellular base stations[1]. Combined with cryogenic low-noise amplifiers (made from °

semiconductors), these compact HTS receiver filter subsystems provide much improved
noise/interference rejection and hence higher service quality, more usable channels, and an
extended coverage area. Another example of significant potential benefits of superconductor-
semiconductor integration technology is the sensor subsystem used in magnetic resonance imaging
(MRI) systems[2], currently the biggest commercial market for superconducting technology. The
growing interest in low-cost, low-field MRI has created a challenge in MRI sensor technology that
can only be met with the development of HTS-based low-noise receiver coils and their successful
integration with low-noise semiconductor amplifiers operated at cryogenic temperatures.

The superconductor-semiconductor integration may be achieved in different levels, dependent
upon particular applications[3]. At the system and subsystem level, semiconductor wafers are
combined with chips carrying superconductor circuits, with each fabricated and processed
separately under conditions that are optimized for each of them. This is the approach being
followed now in the microwave filter applications. The next step of hybridization involves growing
semiconductor and superconductor devices and circuits on the same wafer. More fundamental
cl?mpatibility issues arise in this step, and it is with some of these issues we will be concerned in
this work.

As an example consider the metalization and contact formation process. Aluminum is the most
commonly used for metalization and interconnection in semiconductor integrated circuits. A
process called contact sintering (or contact alloying) is used to form a reliable and intimate Al/Si
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contact. This involves annealing the contact at temperatures close to 400 °C and in a reducing
ambient, provided by the "forming gas", which is a mixture of 5-10% at. hydrogen and 95-90%
at. nitrogen [4]. This typical semiconductor process will, however, seriously degrade the quality of
YBCO film. The properties of HI'S YBCO, such as T and the critical current density J; depends
critically on its oxygen stoichiometry, which is readily depleted in such a process. Moreover,
aluminum is known to react with YBCO at elevated temperatures by removing oxygen from the
latter, thus compounding the problem of oxygen loss. Proper procedures must be taken to protect
the YBCO circuits if the YBCO/Si hybrid at the chip level is to fit into the existing, well established
semiconductor processing technology.

We have taken a two-step approach to identify these procedures. First we investigate noble
metals that can serve as a buffer layer between YBCO and Al during annealing in oxygen
atmosphere. The reason for using oxygen instead of forming gas, for example, is to differentiate
the effects due to aluminum diffusion into and interact with YBCO, from that due to pure oxygen
loss from the YBCO. Second we investigate insulating/dielectric materials that can be used to cover
YBCO during argon gas annealing, to prevent oxygen out-diffusion due to the reducing ambient.

EXPERIMENTAL
Buffer Layer For Aluminum Diffusion During Oxygen Annealing

The HTS YBCO films used for aluminum diffusion buffer study were grown on (100) oriented
MgO substrates using pulsed laser deposition. Briefly, the MgO substrate was heated to 730 °C,
and a laser beam (wavelength=248 nm) with fluence of 2 mJ/cm? was focused at a target which
was about 9 cm away from the substrate. The pulse rate was 10 pulses/sec and a total of 10,000
pulses gave a nominal thickness of 200 nm. The oxygen background pressure was 27 Pa (200
mTorr) during the deposition, and was brought to S00 Torr during cooling down after deposition.
The YBCO films were predominantly c-axis oriented with a high degree of in-plane epitaxy, as
revealed by x-ray diffraction. Critical temperatures were in the range of 85-90 K, and the J's were
typically in excess of 106 A/cm? at 77 K.

Noble metal buffer layers were deposited on top of YBCO ir situ (i.e., without breaking the
vacuum) by either magnetron sputtering or thermal evaporation, immediately followed by
deposition of a top layer of Al, using thermal evaporation. Unless otherwise stated, the Al, as well
as each metal layer composing the buffer structure, was 50 nm thick.

The resistance-versus-temperature (R vs. T) measurements were taken in a standard four-probe
configuration. The T was determined as the temperature at which the sample resistance dropped to
10% of the value at the onset of the transition.

The upper panel of Fig.1 shows the results of 300°C annealing in oxygen for different buffer
layers. Buffer layers consisting of Au, Au/Cr, and Au/Ag resulted in the loss of superconductivity
down to 76K. The Ag buffer layer was somewhat more effective, but showed a steady and
significant decrease of T with annealing time. The buffer layers consisting of Pt or Au/Pt were the
most effective as barriers for aluminum diffusion. In both cases, there was an increase in T, after
the first 30 minutes of annealing, possibly due to the ordering of initially disordered oxygen atoms
on the Cu-O chain sites at this temperature. We also note that there was very little change in T¢
beyond the initial 30 minutes, for times up to 2.5 hours.

Encouraged by these results, we raised oxygen annealing temperature to 400°C for samples
having Pt and Au/Pt buffers. The results are shown in the lower panel of Fig.1. They are very
similar to those displayed in the upper panel. However, 400°C is a typical temperature used in
contact alloying in semiconductor process, therefore the significance of this result is that we have
identified buffer layers to protect YBCO from aluminum diffusion that are effective at
semiconductor processing temperatures.
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We now tum to the second step, i.e., to replace the oxygenating ambient with a reducing
ambient, e.g., argon, which is actually used in semiconductor contact alloying.

92

-0 Au/Pt

90 —

-o— It
88 —

300 °C anneal in O, .

T (K)
1

T, (K)
L

400 °C anneal in O, .
86 —

84 —

l l l l l |
0.0 0.5 1.0 1.5 2.0 2.5

Annealing Time (hr.)

Fig. 1 T, vs. annealing time of YBCO/buffer/aluminum structure for a number of
buffer layers annealed in O,. The buffer layers made of Aw/Pt and Pt were the most
effective.

Insulating Layer For Protection of YBCO During Argon Annealing
Here we focus on insulating materials, instead of noble metals, that will protect YBCO during

annealing in argon gas. The candidate material we chose was magnesium oxide (MgO) giown by
magnetron sputtering.
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We have used two types of films in this study. The first type is a bare YBCO film, of 200 nm
nominal thickness, on LaAlO3 substrates. The second type, has an overlayer of 30 nm SrTiO;
(STO) deposited in situ on top of the 200 nm YBCO film. The purpose of this overlayer is to
passivate the YBCO surface thereby preventing oxygen loss during subsequent processing and
handling. Both types of films were coated with an MgO layer with a nominal thickness of 75 nm
prior to annealing, as depicted in figures 2(a) and 2(b).

(@) YBCO(200nm)/MgO(75nm) (b) YBCO(200nm)/STO(30nm)/MgO(75nm)

Mg O

cCo® T o @ s ~

-.O'OSTO: . :E
—YB8CO—

——V\B8CO—1

Fig. 2(a) Cross-section of structure A: Fig. 2(b) Cross-section of structure B:
YBCO film coated with sputter deposited YBCO film with a (in-sif) STO overlayer,
MgO layer. coated with an MgO layer.

Figures 3(a) and 3(b) compare the effects of annealing on these two types of films. The
annealing was carried out in a bench top annealing furnace. The gas used was a mixture of 5 % at.
hydrogen and 95% at. argon, simulating the "forming gas", and the duration was 20 minutes at
400°C. The T, measurement was done using an inductive, non-contact technique.

Fig. 3(a) is for a film of bare YBCO coated with 75 nm of MgO. The T, of the YBCO film was
85.5 K before annealing. It dropped to 47 K after annealing, presumably due to extensive oxygen
loss. This is a clear indication that MgO layer alone is not adequate.
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Fig.3 Inductive T measurement of unpatterned YBCO films. (a) YBCO(200nm)
MgO(75nm); (b) YBCO(200nm)/STO(30nm)/MgO(75nm). Anneal conditions: 20 mins.
@ 400 °C in Arj (95%) + Hy (5%).
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Fig. 3(b) is for a YBCO film with 30 nm STO overlayer. In contrast to the film with MgO layer
alone, the onset of the superconducting transition of this film after annealing, close to 90 K, was
actually higher than its pre-annealing value. We note that, unlike transport measurement, in the
case of inductive measurement the onset of the transition actually signals that a large volume
fraction of the sample had become superconducting. This result was the first evidence that a
combined structure of STO/MgO could be effectively used to protect YBCO film during forming-
gas annealing. However, we also note that was a long tail to the transition, and its depth did not
reach the pre-annealing magnitude even at 76 K, indicating a non-uniform distribution of
superconductive transitions within the film.

We also patterned several films for transport measurements, in order to compare with the

inductive measurements. The pattern consists of a 20 pm wide line with voltage taps 2 mm apart.
Four-point resistance was measured using an ac technique with a lock-in amplifier. These films

were annealed in a tube furnace in flowing Arp, with no hydrogen.
Fig. 4 shows the resistivity versus

temperature behavior for a patterned film of 160 _

the type YBCO(200nm)/ STO(30nm). Before O Before annealing, d.."'
annealing, the resistivity just above the 2 140 T =87K. S
transition is only about 70 uQecm. At77K Y 120 { ¢ After annealing, :

the critical current density Jo was 3.5x106 ¢ 100 o  T.(10%)=91K {

Alem2. The film was annealed in a tube > 80
furnace at 400 °C in flowing Arp for 20 &
minutes. We note that after annealing the % 60 —

resistivity just above the transition was nearly @ 40

doubled, indicating degraded normal state & ]

transport properties. The change in the M 20 ® o

superconducting state was more interesting. 0 Jig io la, | | | '
The bulk of the transition was 91 K, up by 4 P v —
K from the pre-anneal value. However, the 7 80 8 %0 % 100
film was not fully superconducting even at Temperature (K)

77K. The resistance remained finite, at about
10% of its value at the onset of the transition,
and showed little temperature dependence

Fig. 4 Resistivity vs. temperature of a
patterned YBCO/STO film coated with 75 nm
of MgO, before and after Ar, anneal.

thereafter.

This result is consistent with that of the inductive measurement (cf. Fig.3(b)). The annealing in
argon gas environment increased the transition temperature in the bulk of the YBCO film. It had
also created a "foot" in the superconducting transition, which may be associated with localized
regions having severe oxygen deficiency. The formation of these regions may conceivably be
attributed to oxygen loss through the STO/MgO structure, possibly through pinholes in the MgO,
which provided passageways for oxygen out-diffusion during annealing.

To proceed further we modified the MgO deposition procedure. Instead of finishing it in a
single vacuum run, we did two sequential runs. We removed the chip from the chamber after the
first run, leaving it in the air overnight and then loaded it back to the vacuum chamber for the
second run. The total time was kept the same so that the total MgO thickness was the same.
However, due to the air exposure, the locations of pinholes in the second MgO layer may not align
exactly with those formed in the first MgO layer. This method may therefore enable us to get
around the difficulty of pinholes in MgO.

Fig. 5 shows our best result so far. The film was YBCO(200nm)/STO(30nm) type, and was
patterned for transport measurement. Before annealing, the room temperature resistivity was about

340 uQ2ecm, and J; (77K) ~ 3.0x10° A/cm2. After these initial measurements the film was coated
with 75 nm of MgO using the two-step sequential deposition procedure, followed by annealing in

21




flowing argon gas for 20 minutes at 400 °C. We note that the film normal state resistivity increased
only slightly after annealing. Moreover, the superconducting transition temperature, T, increased
from 87.5 K to 88.5 K. In addition the critical current density remained quite high: J; (77K) ~

2.0x106 A/em2. This result demonstrates that YBCO films, protected by an in-situ overlayer of
STO and sequentially deposited MgO double layers, is capable of withstanding annealing in

forming-gas, for temperatures and durations typically found in semiconductor processing. Ty
tends to increase slightly, and J. degradation was small.
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Fig. 5 Resistivity vs. temperature of a patterned YBCO/STO film before and after
Ar, anneal. The MgO protection layer was grown using a modified 2-step sequential
sputter deposition process, see text for details.

The importance of the STO in-situ overlayer can be readily appreciated by comparing Fig. 5
with Fig. 6, which displays the annealing results of another YBCO film. This film was without a
STO overlayer, but went through the same procedure as the sample in Fig. 5, i.e., a two-step
sequential coating of MgO, followed by annealing in argon at 400 °C for 20 minutes.
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We note that both the normal state behavior, as well as the superconducting properties changed
markedly. Ty decreased from ~ 88 K to 79 K, just above the liquid nitrogen boiling temperature.

Moreover, J¢ (77K) decreased form ~2.5x106 A/em? to a mere 3.5x103 A/cm?2, a nearly ten-fold
reduction. This result clearly demonstrates the importance of an overlayer with high crystalline

quality.
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Fig. 6 Resistivity vs. temperature of a patterned YBCO film before and after Arp

anneal. The MgO protection layer was grown using a modified 2-step sequential sputter
deposition process, see text for details.
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The Effect Of Annealing Temperature

We also studied the influence of the annealing temperature. Two more chips, one is identical to
that of Fig. 5 (identical in the sense that they were diced from same wafer), and the other identical
to that in Fig. 6, were annealed in argon gas at 450 °C for 20 mins. The results are shown in
figures 7 and 8. Neither was superconducting at 77 K after annealing. However, less damage was
done to the film with STO overlayer: its Tep was 60 K, about 10 degrees higher than the one
without STO overlayer, and the increase in the normal state resistivity was several times smaller.
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Fig. 7 Rvs. T before and after annealing of a Fig. 8 Similar to Fig. 7, except that
patterned film of YBCO/STO. It was covered the YBCO film did not have STO
with a 75 nm MgO using a 2-step sequential  overlayer.
deposition process. Ar, anneal was at 450 °C for
20 minutes.

DISCUSSION

We summarize here systematic trends observed in our Ar, gas annealing studies.

First, Ar, annealing general degraded the superconducting and normal state properties of
YBCO films, the extent depends strongly on the annealing temperature, the structure of the
protection layer, and the procedures with which these structures were made. The cause is almost
certainly the oxygen out-diffusion, which should have a strong temperature dependence. This is
supported by the results shown in figures 5, 6 and figures 7, 8. A mere 50 °C increase in annealing
temperature the had resulted in much more extensive loss of oxygen.
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Second, it is known that oxygen diffusion is highly anisotropic in YBCO crystals, with the rate
in ab-plain being much higher than that along c-axis direction[5]. In thin films the anisotropy may
not be as great, due to defects assisted hopping along the c-axis direction. We believe that in our
films diffusion in both directions are taking place and are perhaps equally important. For a
patterned film such as our J; test structure, oxygen out diffusion could proceed either along the c-
axis direction, which is perpendicular to the film, or in the ab-plain to exit through the edges of the
patterned line. However, as long as the annealing temperature is not too high (e.g., less than 400
°C in our experiments), the diffusion rate in neither direction is high, the oxygen loss through the
edge diffusion is limited to the periphery of the line. Consequently the annealing results is
determined essentially by the perpendicular diffusion, since the films are much thinner than they

are wide (0.2 pm vs. 20 um). This may explain the beneficial effects of the STO overlayer, which
is primarily effective in hindering oxygen out-diffusion in the perpendicular direction.

Third, it is also well documented that oxygens on the CuO chain sites in YBCO can be easily
displaced under influences of moderate thermal, electrical (e.g., electromigration current[6]) and
structural (e.g., strain at high-angle grain boundaries) disturbances. However, the thermally driven
oxygen displacement, as in the case of electrically driven oxygen defects migration
(electromigration), can have rather different effects on YBCO properties depending on the
magnitude of the driving force. A small driving will usually have some beneficial effects due to
oxygen reordering. Examples of this are the noticeable increase in the onset of the superconducting
transition in Fig.4, and the increase in T in Fig. 5. These are not likely due to the increase in
oxygen content in the film during annealing, since it was carried ‘out in reducing ambient. Rather,
they are due to the improved oxygen vacancy ordering in the interior of the line. Under a larger
driving force, rapid and long-range oxygen diffusion occurs, leading to extensive loss of oxygen
(mostly through the edge of the patterned lines), and drastic deterioration in film quality. In
electromigration experiments on YBCO thin film microbridges it was observed[6] that there was a
threshold in the migration current density beyond which the effects turn from beneficial to
deterious. Our annealing experiments seem to suggest that there is an analogous threshold, in
temperature, between 400 °C and 450 °C.

Forth, the in-situ deposited STO overlayer appears essential. Its effectiveness in preventing
oxygen loss from YBCO may be attributed to its high degree of crystallinity and epitaxy, a
consequence of in-situ high temperature deposition.

Fifth, MgO was chosen for its excellent electrical insulation property. Such MgO has been used
in our study of YBCO/noble metal interface resistivity study to provide isolation between the
YBCO and the noble metal overlayer, and proved to be sufficient and reliable. For example,
isolation test structures formed by sandwiching 75 nm of MgO between two metal cross strips with

0.1x 0.1 mm? overlap area showed practically infinite resistance. Moreover, their integrity was not
affected by annealing in argon gas flow for temperatures up to about 450°C. These qualities make
MgO a good choice. In spite of its effectiveness in providing electrical isolation, our MgO layers
appear to be less effective in proventing atomic diffusion of oxygen. Since they are deposited at
room temperature, they are amorpuous and may well be porous, and may possibly have randomly

located pinholes over the entire chip area (about 10x 10 mm?2 ). Therefore there exist passageways
for oxygen out-diffusion, which is accelerated by the elevated temperature during annealing. A
modified method, i.e., the two-step sequential deposition of MgO appeared to work in the way that
was anticipated, i.e., to misalign and hence seal off the pinholes formed in each of the two steps.
However a firm conclusion can not be drawn based on just this one example.
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CALCULATION AND MEASUREMENT OF THE CRITICAL STATE IN
SUPERCONDUCTING TAPES

K. L. Telschow and L. S. Koo

Idaho National Engineering Laboratory
Idaho Falls, ID 83415-2209

ABSTRACT

An integral equation approach to solving for the flux front profile in the critical
state model is described. Both nonuniform external fields and demagnetizing
geometries can be accommodated as long as cylindrical symmetry is preserved.
Results for a sphere in a uniform external field and a tape in the field of an
external coil parallel to the tape surface are presented.

INTRODUCTION

Quantitative determination of the local low field critical current density, Jo(H=0), ina
noncontacting manner is necessary for spatial uniformity inspection during fabrication of high
T, superconducting tapes. This can be accomplished by measuring the magnetic response of the
sample with small source/pickup probe coils that spatially scan over the tape surface [1-3] and
then using the Bean critical state model [4] to determine J from the measured magnetic
hysteresis. In this model, the induced currents in the sample are either at the critical value or
zero, forming a critical state region bounded by a "flux front profile". The response is calculated
by summing the fields produced by the currents within this flux front. J¢ can be inferred from
the local magnetization measurements. However, demagnetization effects of the tape/coil
geometry are not readily accounted for within the normal extension of the Bean critical state
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model. This paper describes a method for predicting the flux front profile as a function of the
external field that takes into account the demagnetizing effects of the sample surfaces. An
integral equation technique is presented that is applicable to sample/probe geometries exhibiting
cylindrical symmetry. The net magnetization signal detected by pickup coils is calculated and
compared with experimental measurements.

THEORETICAL APPROACH

Whenever a superconducting material is placed in an applied magnetic field, a region of shielding
current is induced. According to the Bean critical state model, the induced current begins at the

material boundary next to the applied magnetic field and extends inward, satisfying VxB = u.o-jc,

where B is the magnetic induction vector and L) is the free-space permeability. This leads to
the net magnetic flux density in the material decreasing to zero at the flux front boundary. The
region inside this boundary is free of magnetic field, shielded completely by the induced
screening currents. This flux front surface inside a superconducting material can be defined as
the surface on which the total magnetic field is zero; a vector equation defines the boundary [5].
However, as is proven in [6], the flux front can also be defined as a surface of zero vector
potential, A, where VxA = B. The use of the vector potential simplifies the calculations since
only one component is needed for problems of cylindrical symmetry. For problems with this
symmetry, the induced currents inside the material can be modeled as coaxial loops, each
carrying a current of constant value, J.. Hence, the vector potential due to all of the induced
currents is a volumetric integral sum of the single loops. The vector potential of a single current
loop is well known. The unknown quantities in this integral are the flux front boundary, ¥,
which forms part of the integration limit, and the current density, Jc. In addition, the flux front
boundary, ¥, is a function of both space and the applied magnetic field. To simplify the
calculations, the external applied field is normalized by J; and a characteristic length. With this
normalizing scheme, the total vector potential, A, becomes a dimensionless implicit function
of ¥(R,B), a normalized spatial variable, R, and the normalized applied field, B. Then the total
vector potential is given by A¢ot = Ap - Aj,, where Ag and A, are the vector potentials due to
the external field, B, and the induced critical currents, J.. The minus sign results from the
shielding effect. For a given B, the position of the flux front surface is determined by finding
spatial points where the total vector potential is zero. This is a difficult problem in general, but
can be simplified by reduction to a single integral equation as follows. In general, B is a function
of time. This technique deals only with the quasi-stationary states of the critical state. The
time scale for changes in the external field is typically very much longer than that exhibited by
flux line motion, so the model always assumes a sequence of stationary states uniquely defined
by the history and present value of the external field. Changes in the external field then produce
a corresponding change in the flux line profile position, but at all times the total vector potential
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on this profile is zero. Therefore, a requirement for determining the flux penetration profile is
that

IAwt(FR.BR) _ IFR,B)
3B F(‘P(R,B) 3% ) : M

Equation (1) is often a nonlinear integral equation. As suggested by the critical state model,
when the external field, B, is initially turned on, flux enters the superconducting material from
the surface. Thus the initial profile, ¥(R, p=0), is the material surface. Substitution of the
known surface profile into (1) yields a linear integral equation of the first kind for the unknown
derivative of . The algorithm analyzed by Gold [7] is used to resolve (1). As the external field
is increased to B = AP, the new flux front profile is approximated by

d¥YR,f=0) - AB.

2
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\P(R:B = AB) = lP(Rsl3 =0)+———

This approximation is acceptable as long as the increment A is sufficiently small. With this
approximation the flux front profile at § = AB is known but its derivative is yet to be
determined. This is the same situation as at the beginning when 3 = 0. The above procedure is
repeated and the new B value determined. This methodology results in a progressive

incremental numerical scheme in B and an iterative procedure for resolving (1) for each 8. Once
the flux front profile’s dependence on the external field for the zero-field cooled (ZFC) case is
known, then the response of the sample to a complete cycle of changes in the external field can
be readily calculated, knowing Mzgc(B), as follows:

M+ (B) =M zpcBmax)F 2MZFC(M) 3)

where (+) means decreasing Bmax > B > —Bmax and (-) means increasing —Bmax —> B —> HBmax
in the external field. Examples of this calculation for a spherical sample in a uniform external
field and an infinite plate in the field of an external single loop source coil are described below.

SPHERE IN A UNIFORM EXTERNAL FIELD

In this example of a cylindrically symmetric application, let the radius of the sphere be rg and the
flux front surface be described by p(z,B) where the external field dependence is included in the

normalization parameter = HgXt /(roJc). The configuration is depicted in Fig. 1. Also shown in
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this figure are two flux fronts trapped inside the sphere as a result of extending the external field
to a maximum value below the full penetration value. The total normalized vector potential at
(r,z) is given below [6], where all lengths are normalized to the sphere radius R =1/rp; Z = z/rp;

W = p/ro; etc.; and poag(R,Z; R’,Z’) is the vector potential at (R,Z) due to a single current loop
at R",Z)

fiz? .
ay®zp =B [ a7 [ " way®zR2) @

A single integral equation describing the flux front surface for a sphere results

—0¥(Z'.B) _ ¥(Z.B)
B 2

1,02 2 (2@ B.Z¥ @ B2 ©)

The initial profile of the flux front is ¥(Z, f=0) = \1-Z72. All flux fronts for the ZFC case are
obtained by following the aforementioned incremental iteration procedure. The full field
penetration value obtained yields a normalized external field $*=0.789. A value of /4 is found
analytically for a completely filled sphere. The numerical and analytical values agree to within
0.5% [6] which is consistent with the expected accuracy of the calculation procedure used. The
subsequent magnetization hysteresis curve, M(B), for the sphere due to a complete cycle of
change in the external field can be obtained through equation (3). The results are given in Fig. 2,
normalized by the full penetration magnetization M* = 3rroJ¢/32.
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Fig. 1. Flux ﬁoﬁt profiles for a sphere. 08
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Fig. 2. Magnetization hysteresis of the sphere for
various limiting fields.
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TAPE GEOMETRY

A single circular coil above a superconducting infinite plate of thickness D is shown in Fig. 3. All
geometrical lengths are normalized by the coil radius, rc. The driving coil is placed at (1,Z¢). The

normalized external field is =1/ J¢ rcz, where I is the current in the driving coil. The flux front
profiles for the ZFC case are also shown in Fig. 3. At 3 =0, ¥ = 0 coincides with the plate top
surface. As P is increased to the

next value, ¥ shows a profile that

penetrates deepest directly under
the driving coil. This deepest value

0.5 ; ! ! :
- ® drive coil :

superconducting plate

N O m— of ¥ reaches the plate bottom edge
i B ol : at B* = 0.365, for D = -0.2.
: fluk front boundafies Beyond this value, the flux front is
05 i 5 5 i broken up into two sections: an

R

1.5 2

2.5

inner section, ¥'1, which

api:)roaches R=0, and an outer
section, W5, which approaches
R=co as B increases. The
intersections between ¥, ¥, and the bottom surface, Z =D, are denoted as Rj and Ry,
respectively. Before the bifurcation of the flux front surface, the total vector potential amplitude

Fig. 3. Geometry for flux penetration in a plate for ZFC
case with B = 0.1, 0.365 and 0.865.

(normalized by [oJ crg) is

oo 0
AtRZ) = Pay®R,Z;1LZo)- jo dr’ j\y R’ dZ’ ay(R,Z;R’,Z") (©)

where Poay(R,Z; R’,Z’) is the vector potential at (R,Z) due to a unit current loop at (R’,Z’). A

single integral equation results for the flux front surface

—0¥(R',B)

Jo RaOp®FRP:RFRM— = M

2y RYRP)LZy).

The initial profile of the flux front is W(R,p=0) = 0. As P is increased beyond B*, the flux front
surface ¥ will become two separate surfaces, ¥'1 and W5. The total vector potential becomes

R
A®RZ) = Bay(R,Z1LZ)- j I(B)dR'J"P(Rﬁ) dZ' a4(R,ZR,Z)
. ®)
RZ(B) ’ , R’ 7 ’ 0 ’ D’ 7
R, (B)deDdz ayR.ZR,Z) ij oX j%(R,’B)dz ay(R,ZR’,Z")
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With ¥/ and W5 denoted as ‘¥ (R’,) and ¥, (R’,B), two coupled equations result [8]

IRI(B)dR.a (R, W,;R’ \y').ﬂ+j“ dR'ay (R, ¥; R’ ‘P’)-_a%:a R, ¥;;1,Z,) (92)
0 O ILT TR TRy 0T TP T g T e Tl b e
and

4

‘I’
=ay(R,¥2;1,Z;). (9b)

drR' aq)(R ‘Pz,R’ \Pz) B

Ri® .., . "alP
o OR ag®R¥nR ¥~ B * e

These two equations couple both flux fronts together. In the first equation, the observation
points are on ¥, while in the second equation the observation points are on ¥,. These two
equations, expressed in matrix format, are

Kii Keoffi|_(=a —0%)
= where Kj,f: dR’ a Y R, W , etc. 10

[Kzl Koy | 55) " Loy 12f2 = jR () o R, 2) T (10)
0.06 — r 1 ¢ 1.1 1 T The incremental and iterative procedures
0.05 IR f ........ ? ......... ;. ......... S, ......... :_.........;...- Were employed to resolve the tWO
00 I RTI™ et HURE N N separate flux fronts simultaneously. Two
ook i E SO SN S SV AU : simulated measurement examples are
. ....... S .......... .......... .......... .......... SRS S , ........ 4 given in Figs. 4a and 4b. In these

% ofz 054 06 08 1 12 14 15 13 2 examples, 1c = 0.5 mm, Z; = 0.4, and D =

-0.2. In Fig. 4a, the normalized screening
0.08 ; . : : ; : ; g g current vector potential amplitude, Ay, at
: PN SRS U SRS SO S the driving coil position (1,0.4) is given,
simulating the measurement results found
above the sample with a top balanced

) RS S SOV SIS SO S0 o SRR SO SRR S

o L bt B | coll InFig. 4b, the normalized total
——— i vector poten.ual an.w.phtude, Atot, 1s given
B at (1,-0.6), simulating the measurement
Fig: 4. A}, for a coil above the plate (a) and Aot for results found beneath the sample with a
a coil beneath the plate (b). single unbalanced coil. The vertical

dashed line signifies the value B* where
the flux front fully penetrates to the plate bottom surface.
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EXPERIMENTAL MEASUREMENTS
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Fig. 5. Measured bottom coil signal amplitudes for
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different temperatures.

1

The experimental geometry was that of a
single layer superconductor plate
deposited between two outside silver
layers. Tape samples of Pb-BiSrCaCuO
(2223 phase) produced by the powder-
in-tube method [3,9] were measured with
a small probe source coil (13 turns of #36
copper wire, 1 mm inside diameter).
Balanced opposing pickup coils (5 turns
each of #36) were wound over the source
coil, producing a small source/pickup
probe that could be scanned over the
sample surface in a liquid nitrogen bath.
An additional pickup coil (5 turns #36
copper wire, 1 mm diameter) was
positioned below the tape sample. Lift-
off distances for both top and bottom
coils were about 0.7 mm. Fig. 5 shows

the measured results from the bottom coil at one position on the tape for three different
temperatures. These results, which are qualitatively similar to the theoretical results of Fig. 4b,
represent the magnetization due only to the induced screening currents within the flux front. The
shielding effect is clearly visible and, by extrapolation, a unique point corresponding to full plate

(4
@m

RMS Pickup (V)
o O o o
= R W

1, T T

i i : H H t
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o ¢
™
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o
-

=

. 4 .5 4 3
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Fig. 6. Maximum signal along a tape (top) and
corresponding RMS signal amplitudes (bottom) as a
function of the source coil current.
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penetration can be estimated. The local
critical current density can then be
determined from the corresponding value
of B.

Tapes produced by the “powder in tube”
method exhibit thickness variations as
well as inhomogeneity in the
superconducting layer. Nevertheless, the
above approach can be used to provide a
measure of uniformity and local critical

“current density. Fig. 6 shows typical

results for a scan of another small probe
along a tape, produced by the powder in
tube method [9]. Significant variations
are observed due to local microstructural
inhomogeneities. Detailed information
like that shown in Fig. 6 is helpful in




locating problems associated with intergrain connections and thickness or porosity defects.

CONCLUSION

A method has been outlined for calculating the flux front profile for a superconducting sample in
either a uniform or nonuniform applied magnetic field possessing cylindrical symmetry. This
technique extends the Bean critical state model by fully accounting for demagnetizing effects.
The method relies upon finding the flux front penetration profile, which is done by resolving a
linear integral equation of the first kind. Measurement-induced voltages and the entire
hysteresis loop response can be found by extension of the ZFC magnetization response with a
changing external field. Other measured quantities relating to the critical state can be calculated
directly from the hysteresis loop if the time dependence of the external field is known.
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ABSTRACT

We investigate issues related to the equilibrium and stability of surface and
line defect morphologies in both piezoelectric and anisotropic elastic solids.
Following our previous efforts which established that mechanical stresses in purely
elastic solids can promote instability of an initially flat surface with' respect to
surface roughening, we show that the (initially flat) interface between two
dissimilar piezoelectric solids can be unstable when subjected to coupled
electromechanical loading. Quite recent cross-sectional observations of
electrodeposited thin films by Japanese and British researchers provide
experimental confirmation of these predictions. We also investigate the occutrence
of equilibrium arrangements (zero Peach-Koehler force arrangements) of line
defects (dislocations) in anisotropic elastic crystals in the absence of externally
applied stresses. Contrary to prevailing opinion, equilibrium arrangements of
dislocations under no externally applied stresses appear to be the rule rather than
the exception. The existence of such "zero stress arrangements” is fundamental to
developing micromechanical models of plastically deforming solids.

INTRODUCTION

In the present work we focus our attention on (i) surface instabilities induced by
electromechanical loading in piezoelectric bi-crystals and upon (ii) equilibrium arrangements of line
defects (dislocations) in crystals in the absence of externally applied stresses. The former problem
(i) represents an extension of our previous study of a purely elastic solid [1] and of a piezoelectric
half-space [2], which has established that mechanical stress can induce surface roughening of an
initially flat surface, while electrical loading may act to either stabilize or destabilize a flat surface.
These results may be of extreme importance for the understanding of crack formation in defect free
materials as well for uncovering possible mechanisms for misfit dislocation generation in thin films
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deposited on substrates. The present extension allows one to address the broad issue of
controlling flat surface/interface instability in materials which may be isotropic or anisotropic,
purely dielectric or purely elastic, or piezoelectric, which, quite obviously, has important
implications for the fabrication of dielectric and piezoelectric thin films. The motivation for
investigating the latter problem (ii) is perhaps best summarized in a very short presentation by
Head, et al [3], who noted that although there is total agreement about the role of dislocations in
explaining strain hardening in metals, such a vast range of dislocation behavior and arrangements
has been observed experimentally that there is little agreement as to which observations are the
more important. It seems as if the issue may have to be decided on theoretical grounds by
mathematical modeling of dislocation plasticity, and we begin by examining the simplest of such
problems, namely, the determination of self-equilibrated dislocation arrangements in solids which
are in the unloaded state (zero externally applied stress) following inhomogeneous plastic straining.

SURFACE INSTABILITIES INDUCED BY ELECTROMECHANICAL LOADING

Stress-induced surface instabilities in purely elastic media have been discussed by Gao [1]
in connection with diffusive crack formation and with misfit dislocation generation in strained
heteroepitaxial thin films. The instability (ronghening) of an initially flat surface is driven by the
release of stored strain energy due to flaw formation and is opposed by the formation of new
surface and the associated increase in surface energy of the system (Asaro and Tiller [4]). Chien
and Gao [2] have studied the surface roughening of a piezoelectric half-space when the half-space
boundary is either insulating or conducting and have shown that it is indeed possible for electrical
loading to help stabilize the initial surface against roughening. The present work treats two
dissimilar piezocrystals (half-spaces) joined by perfect ¢ “electroelastic bonding and studies the
stability of the initially flat interface between the two crystals with respect to “small interfacial
undulations. An analysis of this problem represents an important extension in two respects,
namely, (i) it allows us to study roughening of an internal interface as opposed to an external
surface, and (i1) depending on the choice of physwal properties chosen for the two crystals, either
crystal may be considered as 1sotroplc or anisotropic, purely dielectric or purely elastic, or
piezoelectric. The former, (i), is important because internal interfaces afford sites for defect
initiation in real conﬁgurations of technological importance, while the latter, (ii), allows us to study
bi-material configurations of importance in modern capacitor, transducer, or integrated circuit
fabrication. The ability to control interfacial stability through appropriately coupled
electromechanical loading is of paramount significance in these technologies.

Editorial space limitations preclude a complete presentation of the instability analysis, but

we shall endeavor to present a brief description of our procedure. The complete treatment is given
in Chien, et al [5]. The constitutive relations for a linear piezoelectric medium are [6,7]

Ty = CyuS — eEx (D)
D, =¢,,S,, + sijEj )
where lel 1 are the stiffnesses measured at constant strain, eijk the piezoelectric stress constants,

and €j j the permittivities measured at constant strain. le , Skl, Ek, and Dj represent components
of stress, strain, electric field, and electrical induction, respectively, with

1
Sy = —2-(uk_l +ul_k) and E, =-¢, (3)
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where u and ¢ represent displacement and electric potential, respectively. With no body forces or
free charges, the governing equations of linear piezoelectricity (quasistatic approximation) are

T,; =0 and D;; =0. “)

The present work considers the stability of an initially flat piezoelectric interface between
two semi-infinite dissimilar piezoelectric materials, I (the upper medium) and II (the lower
medium), subjected to arbitrary electromechanical loading conditions (Figure 1). In particular we

consider electromechanical states which are plane in the sense that all fields are independent of x;.

Figure 1. An Initially Flat Interface Between Two Piezoelectric Solids

The composite piezoelectric problem may be solved using the Stroh formalism [8],
originally developed for anisotropic elasticity, as extended to the piezoelectric case by Lothe and
Bamnett [7,9,10]. The important feature to note is that the piezoelectric problem for the two bonded
crystals is solved subject to the interfacial boundary conditions that mechanical displacement,
normal component of electrical induction, mechanical tractions, and electrostatic potential must be

continuous across the interface x, = 0. To examine stability of the flat interface with respect to
small perturbations, we imagine treating the same problem when the interface is now described by
a cosinusoidal form, say

x, = Alx,) = Acoskx,. k=2 ©)

The solution for the perturbed interface may be written in terms of two four-vector potentials
1,0(’), i = L 11, associated with the respective media, namely,

1/j(i) = w(w) +AY (6)

where AY represents the effect of the perturbation. Interfacial continuity conditions require that

[IRe%°]]= 0 and [fim(¥y°)]-0 , %

where Y() is the 4 x 4 hermitian Stroh admittance matrix for the half-space (i) and [l l] means the

"jump" across the interface x, = 0. Applying first order perturbation theory allows us to deduce
that the perturbed potentials satisfy
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[IRe All= ~A[Re(w3)] and [fim(¥A)]= -Afim ¥y ®

Using (8) it is easy to solve for the perturbed potentials in terms of the unperturbed
potentials and to compute the change in electrical enthalpy (over one wavelength) induced by the
perturbation. Integration of the electrical enthalpy density

w= %(Tijsij - DiEi) )

over the infinite slab between X, =0 and x, = A shows that the enthalpy change AW, due to the
perturbation is a quadratic form in the two 4-vectors

t’ = —Re[|1p_°2[| and € = Im“Y'tpf)z[l, namely (10)
AW, =§A2{(t°'a°t°)+(e°'b°e°)+2(t°°c'e°)} 11

where the 4 x 4 matrices a, b, and ¢ depend on Y! and YII. One notes that AW, is independent

of A. The total energy change over one wavelength is the sum of the electrical enthalpy and the
surface energy change [5] and is given by

20
AE,, = AW, + %—, (12)

where 7 is the specific interfacial energy. The question of stability of the initially flat interface is
studied by examining the sign of the total energy change, i.e., does the undulation raise or lower
the energy of the system? If AE,, > 0, the interface is stable against perturbation, while if the total
energy is negative for at least one perturbation wavelength, a wavy interface is preferred

energetically. Clearly, at short wavelengths the surface energy contribution dominates, while the
enthalpy should dominate at long wavelengths.

When the electrical enthalpy change tends to destabilize a flat surface (when AW, <0), a
critical wavelength A, exists such that

AE_(A)=0 when A sA_. (13)

Quite apart from being a criterion for stability, the critical wavelength has important implications
for the kinetics of any destabilizing mechanism. If diffusion is a possible mechanism for interface
roughening, the larger the critical wavelength, the farther matter must diffuse, and thus longer
times are required for destabilization. For large critical wavelengths, the interface may be
considered stable for all practical purposes. In [5] we have examined a variety of
electromechanical loading conditions and material possibilities for media I and I, e.g.,
vacuum/piezocrystal, dielectric fluid/piezoelectric solid, etc. In particular in [5] it is shown that for
a (thin) insulating film deposited on a capacitor plate under constant imposed voltage (a
configuration seen in the fabrication of thin film capacitors by anodic oxidation [11]), both
mechanical and electrical loading tend to destabilize an interface; for other configurations it is
shown that tangential discontinuities in D can promote interface stability in the presence of
mechanical loading.




Almost simultaneously with the appearance of our paper [5] in the March, 1996 issue of
Proceedings of the Royal Society, a paper by Shimizu, et al [12], entitled "The scope for
studies of thin surface films on metals and alloys by transmission electron microscopy of
ultramicrotomed sections" appeared in Philosophical Transactions of the Royal Society
of London. As the title indicates, these authors used high resolution analytical electron
microscopy to examine microtomed sections of films deposited on substrates. They observed that
inert markers originally delineating a flat surface in barrier oxide films later delineated a roughened
interface following new oxide growth. In addition, their electron micrographs show unmistakable
evidence of undulating interfaces between barrier oxide films formed on low voltage type capacitor
foil anodized under industrial conditions. Interfaces in electrodeposited Ni-P alloys show
undulations, compositional differences, and different layers of differing crystallinity. We believe
these experimental results provide striking and convincing evidence for the validity of the
theoretical predictions we have presented in [S].

SELF-EQUILIBRATED DISLOCATION ARRAYS

If a solid is subjected to inhomogeneous plastic deformation followed by complete
unloading, it is well known that the medium will be in a state of residual stress. On a microscopic
scale there is ample experimental evidence that, in the unloaded state, the solid is filled with
stationary dislocations, and that the residual stress state is the stress field due to the locked-in

dislocation configuration, with the dislocation density typically varying between 105 to 108
dislocations per square centimeter. These locked-in dislocation distributions are, presumably, in
equilibrium in the sense that they arrange themselves so as to minimize the potential energy of the
unloaded solid. Alternatively, we may regard the Peach-Koehler force on each dislocation (the
negative of the variation of the total energy of the solid with respect to an infinitesimal virtual
displacement of each dislocation) as vanishing. The question arises as to whether it is truly
possible to have self-equilibrated dislocation configurations in a crystal in the absence of applied
stresses. This issue is more than academic, since most direct observations of dislocations in
crystals are made on unloaded thin film specimens using transmission electron microscopy. An
interpretation of such observations depends on an understanding of either the possibility of the
existence of self-equilibrated dislocation configurations or the constraints (for example, rendering
some dislocations immobile by "pinning") necessary to ensure their existence. As pointed out by
Head, et al [3], there exist trivial examples of such self-equilibrated arrays, namely those
distributions which produce only crystal rotations, but no elastic strains; these redundant
distributions (called "impotent distributions" by Mura [13]) have no residual stress fields
associated with them.

Tighe [14] has studied analytically issues associated with self-equilibrated arrays, but until
Lubarda, et al, [15] numerically studied self-equilibrated arrays in elastically isotropic solids, no
one had dealt with the issue of self-equilibrated arrays of large numbers of dislocations. Lubarda,
et al, indeed showed that self-equilibrated dislocation structures can exist, sometimes with pinning
constraints and sometimes without. Our present work has sought to extend the methodology in
[15] by allowing for the inclusion of elastic anisotropy, and by adopting a more inclusive and
efficient method for treating doubly periodic arrays so as to account for quite large numbers of
dislocations. The latter extension is enabled by our ability to sum in closed form the interaction
energy between a single dislocation and an infinite dislocation wall, which is significant in view of
the long range nature of individual dislocation stress fields.
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As the ability to determine equilibrated dislocation configurations involves minimizing the
interaction energy between all pairs of dislocations, we have shown that in an infinite solid of

arbitrary anisotropy the elastic interaction energy between two straight dislocations at (x,, Y, ) and
(X, ¥,) , respectively, (Burgers vectors b, and b,)is

6 —_ -
Eint = ___2 +L. L b]ibz ln(xl X2)+ pa(yl Y2) (14)

1
2.71,7. & aTsa R

where p, and L, are the anisotropic elastic Stroh [8] eigenvalues and Stroh auxiliary

eigenvectors, respectively, and the = sign is the sign of Im (pa) . R is an arbitrary constant with

dimensions of length; it is of no importance as regards minimization of the total interaction energy.
As with Lubarda, et al, we note that the most natural way of studying equilibrium arrays of large
numbers of dislocations is to study doubly periodic arrangements of straight dislocations and to
focus our attentions on a single repeating "cell". Figure 2 depicts nine such cells of a doubly
periodic arrangement with three dislocations per cell, merely for purposes of illustration. In
practice we compute with hundreds of dislocations per cell.

X 2 I z
y y y
X Zlx zZ X Z
y y y
X Zlx Z |X Z
y y y
Figure 2. A portion of a doubly periodic arrangement of dislocations.

If we wish to compute the interaction energy for the doubly periodic arrangement shown in
Figure 2, it suffices to focus our attention on one unit cell and to compute the interaction of the
dislocation labeled "x" with the infinite vertical walls of "x", "y", and "z" dislocations throughout
all space. However, and this point seems to have gone unnoticed, the interactions of dislocation x
with its own wall or with all other "x" walls is independent of where dislocation "x" sits in the cell,
i.e., the variation of this interaction with a virtual displacement of dislocation "X" vanishes;
obviously a similar result holds for "y" and "z" dislocations. Thus we need only focus our
attentions on the interaction between dislocation x in one cell with all parallel "y" and "z" walls,
and on the interaction between dislocation y in the same cell with all parallel "x" and "z" walls, etc.
(being careful to count the interactions only once). The second computational savings results from
our ability to show that the interaction elastic energy between a single dislocation at (X,Y) in the
cell under consideration with a vertical wall containing a dislocation at (X',Y") in the same cell can
be expressed exactly as :




A(X-X)+p, ¥ -Y"))]

1
15
ooh J (15)

6
E.  =—>bb" Y=L L 1
int 2.7?7i 1 8 aE_l i sa n

[

|-Sin

where h is the periodic vertical spacing. The position-dependent part of the total interaction energy
per cell is computed by summing terms such as (15) with X' replaced by X' + kH (k=

+1,+2, ... ; H is the horizontal periodicity). Although these infinite sums formally diverge, we
have shown that the position-dependent part is well-defined and stems from a series whose terms

decay exponentially as [k|]—> . Thus, we have available the ingredients for an energy
minimization scheme which rigorously handles all wall dislocations in the vertical direction and
whose decay with separation along the horizontal is sufficiently rapid that only a limited number of
walls outside the cell under consideration need be considered for good convergence to be obtained.

The most significant results obtained using (15), which are presented with the lecture
accompanying this work, involved filling a unit cell of a doubly periodic structure with between
100 and 400 dislocations, distributed on equally spaced parallel horizontal slip planes, with the
number of dislocations on a given slip plane assigned by a random number generator, and with the
sign (positive or negative ) of the dislocations on any slip plane assigned at random. With an equal
number of positive and negative dislocations, under zero applied stress an equilibrium distribution
was always found using a conjugate gradient algorithm. The equilibrium distributions obtained
are apparently different for different assigned starting configurations, which illustrates the non-
uniqueness of the equilibria obtained. Once the equilibria were found, we examined the Peach-
Koehler force on each dislocation in the repeating cell at equilibrium. For typical dislocation
densities (which set the length scale for the problem) all Peach-Koehler forces were well below
accepted values of lattice friction stresses, indicating that self-equilibrated dislocation distributions
under no external stress are the rule rather than the exception. With a 50-50 mix of positive and
negative dislocations, no constraints such as "pinning" selected dislocations are necessary to
produce equilibrium. The non-uniqueness of these distributions is perhaps at the root of the non-
uniqueness of experimental observations of locked-in dislocation configurations in the unloaded
state. Like Lubarda, et al, we found that when the dislocation mix is far from a 50-50 mix of
positive and negative edge dislocations, the equilibria obtained involve separation of the initial
distribution into dislocation walls.

With significantly large numbers of dislocations present, it has yet to be shown that self- -

equilibrated dislocation distributions occupying only a finite portion of either a bounded or an
unbounded solid can be found without constraining certain dislocations by pinning. It is possible
that by dealing with partial dislocations separated by stacking faults such distributions could be
found without invoking pinning constraints. Finally, examining these same issues within the
context of the theory of continuously distributed dislocations is indeed worthy of attention, and
will be pursued in the future.
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ELASTIC-PLASTIC FRACTURE MECHANICS
OF STRENGTH-MISMATCHING
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ABSTRACT

Approximate solutions to stress-fields are provided for a strength-mismatched-inter-
face crack in small-scale yielding (SSY) for non-hardening and low hardening mate-
rials. Variations of local deformation intensities, characterized by a J—type contour
integral, are proposed. The softer material experiences a higher deformation inten-
sity level, Jg, while the harder material sees a much lower deformation intensity level,
Jy, compared to that obtained from the applied J near the respective homogeneous
crack-tips. For a low hardening material, the stress fields are obtained by scaling from
an elastic/perfectly-plastic problem, based on an effective mismatch, M.sy, which is
a function of mismatch, M, and the hardening exponent, n. Triaxial stress build-up
is discussed quantitatively in terms of M. The influence of strength-mismatch on
cleavage fracture is discussed using Weibull statistics.

INTRODUCTION

Conventional fracture mechanics deals with predicting fracture in large structures by
testing small specimens. It relies on the notion that a few parameters (eg: K1 —T,
Jr — Q) characterize the crack-tip stress and deformation fields. Crack-initiation and
growth are assumed to occur when these parameters reach critical values (which de-
pend on the geometry and loading) (eg: Kie, Jrc). In such cases, material resistance
is characterized by these few parameters. While this technology, developed for ho-
mogeneous materials, is being used for welded joints based more on empiricism than
on fundamentals, effective use of this technology is inhibited by the geometrical and
material inhomogenities in a weld. The growing concern for quantifying structural
resistance in welded structures can be seen from the formation of numerous European
and Japanese groups (EPI, FCWRP etc.) to study weld-related fracture problems.

A schematic of a weld is shown in Fig. 1. Complications in the analysis of welded joints
include the strength mismatch, location and orientation of the crack with respect to
the fusion line, and geometry of the weld. The mismatch in strength between a weld
metal and its base plate is termed under-matching and over-matching, respectively,
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Figure 1: Schematic of a weld.
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Figure 2: Contours of maximum principal stress for homogeneous and mismatched speci-
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Figure 3: Contours of equivalent plastic strain for homogeneous and mismatched specimens.
(a) Homogeneous (b) Mismatched, M = 1.5.
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if the weld metal yield strength is lower or higher than the base material. Unwanted
mis-matching can occur when either the strength of the base or the weld metals
deviate from the minimum specified. The analysis is further complicated for a crack

located near the fusion line due to the strength and microstructural gradients across
the heat affected zone (HAZ).

The variation in properties across the weld influences the development of plastic
deformation and stress, and hence the relationship between the resistance and applied
loading. At a more fundamental level, it is not clear how measures like the J-integral
and CTOD characterize the crack-tip fields in mismatched specimens, even in small
scale yielding (SSY). Studies by Kogak et al. [1] and Toyoda et al. [2, 3, 4] show that
toughness of the Heat Affected Zone (HAZ) as characterized by CTOD, decreases
with increasing weld metal strength. Due to asymmetric plastic zone development,
the slope of J vs Aa decreased for an interface crack, compared to the corresponding
base metal [1]. As stated by Kocak et al., the “apparent toughness” of the HAZ
depends not only on the microstructure of hardened zones, but also on the mechanical
properties of the adjacent material. Figure 2 shows the contours of principal stress
and strain for homogeneous and mismatched (M = 1.5) specimens at the same far-field
J for an interface crack located along the fusion line!. Higher triaxial stress builds up
in softer material, and over larger regions, compared with ‘homogeneous’ crack-tip
conditions. Deformation is preferentially focussed in a lobe within the soft material.
Hence it is not clear what parameters characterize the crack-tip stress and deformation
fields. Further, to understand how the crack-tip stress and deformation fields drive the
microstructural fracture processes (eg: cleavage, void growth, interface decohesion),
it is necessary to construct models of crack-tip fields which are informative, accurately
descriptive and tractable.

Here, stress fields near a longitudinal interface crack subjected to Mode-I loading
under well-contained yielding are analyzed for non-hardening and low hardening ma-
terials. Local measures of stress and deformation intensity are constructed, and their
effects on cleavage fracture are studied.

SLIP-LINE MODEL FOR MISMATCHED SPECIMENS
NON-HARDENING CASE

For a deeply-cracked homogeneous structure with elastic/perfectly-plastic behavior,
subjected to Mode-I loading, Du and Hancock [5] showed that the modified Prandtl
field shown in Fig. 4a provides a good approximation for the stress-field ahead of the
crack-tip. They showed that geometry-related effects characterized by the T-stress can
be modelled as a change in the fan angle, 8, from that of the Prandtl field. The peak
normal stress occurs ahead of the crack-tip and is given by 22 [p=o= (2 + 7 — 20)/ V3,
while the maximum triaxiality there is given by gk [g=0= (1 +m—28)/v/3. The classical
Prandtl field can be recovered by setting ¢ = 0.

A variation of the homogeneous slip-line field solution proposed for small mi%ma.tches
by Ganti et al. [6] is shown in Fig. 4b. Due to strength mismatch, M = %%—, which
is defined as the ratio of yield strengths between the hard (H) and soft (S) materials,
the normalized T—stresses are related by T = 750§ = 7Ho{l. The stress fields are

'Here, the HAZ is neglected in the model. This is valid for characterizing the stress and strain fields as
long as the thickness of HAZ is much smaller than the plastic zone size.
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Figure 6: Modified Prandtl field for highly mismatched specimens (M > 1.421).
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characterized by the angles 8 and v which are functions of mismatch, M (Fig. 5a).
The ratio of g12/092 at the interface increases with increasing mismatch and saturates
at a value of 1/(1 + 3% — 26). The increases in triaxial and interface-normal stresses
in the soft material near the interface are plotted in Fig. 5b. The effect of T'—stress
on the mismatch angles is of second order, as can be seen from Fig. ba, though
there is considerable reduction in the normal stress ahead of the crack tip. The fields
described by Fig. 4b exist when M < 1.421. For M > 1.421, the fan in the soft material
is completely developed, with B = 45° and a slip-line field shown in Fig. 6 exists.

The non-hardening angular stress distributions, which can be derived from the pro-
posed slip-line solutions, show three distinct regions for small mismatches (M < 1.421)
as shown in Figures 7(a) and 7(b). In regions I and III, the stress-field is same as that
of the corresponding homogeneous material, while in region II, mismatch fields differ
from the homogeneous fields. Figures 7a and 7b compare the mismatch fields (14-15)
with the finite element solutions. Details of the finite element solutions are given by
Ganti et al [6]. The slip-line solutions are in good agreement with the corresponding
finite element solutions. There is an increase in peak stress triaxiality, and more
deformation is forced into the lobe of the softer material with increasing mismatch.

LOW HARDENING MATERIALS

The J-integral gives a combined measure of deformation and stress intensities in
homogenoeus hardening materials. As noted in Figures 2-3, soft (hard) material ex-
periences higher (lower) deformation than the corresponding homogeneous material,
suggesting that different intensity parameters govern the local fields in each material.
Equivalent J-type contour integrals, Js and Jy, are developed which govern the stress
intensity in the soft and hard materials, respectively. A schematic of the contour in-
tegrals is shown in Figure 8a. Since the interface is parallel to the crack plane, Jg
and Jg are related to J by

2J=Jg+ Js. o))

In the case of homogeneous materials, Jg = Jg = J. Figure 8b shows the normalized
radial variation of Js with mismatch. The materials used have similar elastic prop-
erties and hardening exponent, n, but differing yield strengths. While J showed only -
small variation with r, the radial variation of Jy and Js extends to tens of CTODs,
giving credibility to the existence of the new fields. Characterization of local deforma-
tion intensity parameters quantitatively gives the amount of shielding in the harder
material and, conversely, the increased propensity for fracture in the softer material.
The degree of deformation redistribution increases with increasing M.

Approximate mismatch fields for low hardening materials are developed based on an
effective mismatch and defining an equivalent elastic-plastic problem for which the
angular distributions are already discussed. The differing levels of deformation on
either side of the interface due to the local J’s (and the mismatch itself) change the
effective mismatch experienced by the crack-tip. If the SSY fields characterized by
Jy and Jg are scaled to satisfy approximately interface traction continuity, we can
define effective mismatch as follows:

ooy (r/(Julofl),0 = 0°)
a5 ® (r/(Js/o§),0=0°)

each stress being evaluated in the respective homogeneous material. For non-hardening
materials, M,s; = M. Following an approach similar to that of the non-hardening

Mgy = (2)
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materials, the approximate stress distributions in the soft and hard materials are
developed. In region I, the solution is the homogeneous SSY one scaled by Jg,
and in region III, the local homogeneous solution is scaled by Js. In region II, the
deformation intensities Jy and Jg combine to scale the fields, while the angular dis-
tribution is governed by mismatch angles, 8 and +, calculated as if the materials are
elastic/perfectly-plastic with an effective mismatch of Ms;. Figures 8-9 show the
simulated and finite element results of the stress fields for different mismatches at
the normalized distance 7/(J/o5) = 2. The agreement between the finite element
solutions and the approximate fields is excellent.

CLEAVAGE STUDIES

In the brittle to ductile transition regime for steels, the material resistance is governed
by the competition between fracture by cleavage and ductile tearing. Higher stressed
volumes as in mismatched specimens (Fig. 2) can bias fracture towards catastrophic
failure. Here, neglecting HAZ, we study the effects of mismatch on the cleavage prob-
ability of the base metal using weakest link statistics. Assuming a three-parameter
Weibull distribution for the strength distribution of the carbide particles [7], the re-
lation between the critical J for cleavage of base metal with an overmatch, J}M, and
that of homogeneous base metal, J£, in contained yielding is given as

(1 ()" aa)
J{i— (fAM (m)mdA)O.S’

go

(3)

where oy, 0 and m are the parameters for Weibull distribution, A is the cross-
sectional area of the plastic zone in the homogeneous material, and Ay, is the area
on the soft side of the mismatched specimen. Equation 3 shows that the critical J
is a function of the high-stressed volume, the stress distribution and the material
parameters. Figure 11 shows the contours of the stressed areas for the homogeneous
and mismatched materials. Note that for homogeneous case, only one-half the area
is shown. Figure 12 shows the normalized J¥ for mismatched materials for different
threshold and Weibull exponents. The cleavage stress decreases with mismatch for
large threshold stresses, while there is a moderate increase in Ji. for small threshold
stress and mismatch. :

CONCLUSIONS

The applicability of homogeneous fracture mechanics to strength-mismatched inter-
face cracks is addressed. New crack-tip stress fields and relevant deformation intensity
measures are developed for interface cracks in strength-mismatched specimens. The
stress and deformation intensities locally experienced by materials are different from
those experienced in homogeneous specimens of either material, when mismatched
and homogeneous specimens are loaded to a given applied J. The crack-tip fields
in the soft material near the interface show higher normal and mean stresses than
the corresponding homogeneous material. Our analysis shows that triaxial constraint
increases almost linearly with mismatch, reaching a saturation at M = 1.421 in the
non-hardening materials.
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. Cleavage studies conducted on the interface cracks in contained yielding show con-

siderable effect of the toughness of the joint on the mismatch, M. In particular, it
decreases with increasing M, eventhough, the total area of the plastic zone in the soft
material is lower than that in the homogeneous material. This effect is prominent
for larger threshold stresses and higher mismatches. Further results in characteriza-
tion of crack-tip mismatch fields, and in modeling their effects on fracture, are also
underway and will be reported elasewhere.
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DAMAGE MECHANICS — FAILURE MODES
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Abstract

The present study summarizes the results of the DOE sponsored research program focused
on the brittle failure of solids with disordered microstructure. The failure is related to the
stochastic processes on the microstructural scale; namely, the nucleation and growth of micro-
cracks. The intrinsic failure modes, such as the percolation, localization and creep rupture, are
studied by emphasizing the effect of the micro-structural disorder. A rich spectrum of physical
phenomena and new concepts that emerges from this research demonstrates the reasons behind
the limitations of traditional, deterministic, and local continuum models.

INTRODUCTION

All failure modes during the inelastic deformation of materials are classified into two classes:
intrinsic or material failures and extrinsic or structural failures. A failure will be referred to as being
intrinsic if its threshold can be defined in terms of the effective material properties. The thresholds
of extrinsic failure modes depend also on the specimen size and shape. The threshold and type of
failure depends on many causes. Temperature, strain rate, embrittleing effect of chemical reactions
are some of the most prominently studied agents which affect the brittle to ductile transition. This
study is concerned only with the brittle and quasi-brittle failures which occur in solids with a
relatively modest cohesive strength as a result of damage evolution.

Damage evolution is caused by the nucleation of new microcracks and growth of the already
existing microcracks. The pattern and type of damage evolution is controlled by the stress con-
centrations at microstructural heterogeneities (hot spots) and/or by existence of internal surfaces
of inferior cohesive strength (weak links). In micro-heterogeneous (damage tolerant) solids made
of materials with strongly dissimilar fracture strength (fibrous and particulate composites) the mi-
crocrack growth can be impeded by the strong phase. The microcrack growth is a basic damage
evolution mode in damage sensitive materials, which are characterized by statistically homogeneous
microstructures.

A typical engineering material has a disordered microstructure. The spatial distribution of
hot spots and weak links is not deterministic. Consequently, the distribution of defects is not
deterministic either. As long as the concentration of microcracks is dilute the microstructure is
often statistically homogeneous on a rather small scale and the specimen response does not depend
on the exact locations of defects. At substantial microcrack concentrations the local fluctuations of
stress field depend strongly on the microcrack interaction and, therefore, on the distribution of the
distances separating closely spaced microcracks. Additionally, the failure can often depend on the
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largest defect or on the smallest distance between interacting defects. It seems, therefore, logical
that a purely deterministic (continuum) model of failure may in many cases lead to a poor estimate
of the failure threshold. The disorder is annealed in the case when the external stimuli (such as
temperature, earthquake and wind loads, etc.) fluctuate randomly. In summary, the disorder of the
microstructure of brittle materials is ubiquitous and its effect on the failure mode and the threshold
is as a rule significant.

CHARACTERISTIC LENGTHS

To quantify the difference between particular failure modes it is necessary to introduce several
characteristic lengths. Some of these lengths are easily singled out. For example, the specimen
size L is a characteristic length which plays an important role in brittle fractures. More than one
characteristic specimen length is needed when the failure threshold depends on the specimen shape.

The linear size L,y. of the smallest volume, referred to as the representative volume element
[1], within which the material is statistically homogeneous, is also a characteristic length. Another
characteristic length is the size ¢ of the largest cluster of interacting microcracks. The cluster is
defined [2]: (a) either as a string of concatenated microcracks or (b) an ensemble of microcracks
which are close enough to affect their growth pattern and rate by direct interaction. A macrocrack
and a shear band are two most commonly encountered examples of two respective types of clusters.
The acoustic emission test [3] is a useful diagnostic procedure for the determination of the failure
mode. The distance L, between the two consecutive acoustic signals can be used to determine the
damage evolution mode and the failure type.

For computational efficiency a system is often subdivided into many sub-systems (finite ele-
ments) within which the considered fields are determined using an ad hoc selected interpolation
rule. However, the discretization is not only the matter of efficiency since the defects in a sub-
volume see the defects in the adjacent sub-volumes only through the effective moduli. Hence, the
defects belonging to different sub-volumes are not correlated. Local fluctuations of the stress, strain
and damage fields in a sub-volume will affect the response in the rest of the specimen only if the
material within the considered sub-volume is statistically homogeneous, i.e. if the conditions

§<Lye<L and Lyye 2 Lir )

are satisfied. In (1) Ly is the wave length of the tractions applied to the external surfaces of the
sub-volume. First of two inequalities (1) renders the material statistically homogeneous while the
second condition secures homogeneous response. If the inequalities (1) are satisfied the effective
continuum, obtained by mapping representative volume elements on material points, is local.

The distribution of distances between the consecutive acoustic signals is uniform, p(Lge) =
const., in damage evolution processes controlled by microcrack nucleation, i.e. in materials with a
random distribution of weak spots. A propagation of a single crack is characterized by the fact that
the majority of signals are clustered at the crack tip. The distances between pairs of consecutive
acoustic signals are equal to the resolution length, Lse = I. The deformation process is dominated
by the interaction induced microcrack growth (cooperative effect) if the distribution of lengths Lge:
(a) favors small distances in the direction of the normal to a rather thin elongated region, and (b) is
perfectly random in the exterior of this region. The material within the localized region is non-local
and non-homogeneous while the material in the exterior volume remains local and homogeneous.
The damage evolution and the deformation process are dominated by the kinetics of the largest
cluster of interacting microcracks (shear band), i.e. by the rate at which the correlation length &
increases.
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On the microscopic scale the damage evolution depends on the outcome of the competition
between the microcrack nucleation and microcrack growth. The intrinsic brittle to quasi-brittle
transition, defined as a cross-over from the processes controlled by a single crack to processes
dominated by many microcracks, depends on: (a) sign of the long range stresses and (b) the band-
width of the distribution of fracture strengths of the constituent microstructural phases [4],[2].
The traditional, deterministic definition of the brittle to quasi-brittle transition [5], based on the
macroscopic phenomenology, is strongly dependent on the specimen size and shape and is, therefore,
not a material parameter.

EXTRINSIC FAILURE MODES

Failure of a micro-homogeneous (rock, concrete, glass or ceramic) specimen subjected to a
uniaxial tensile stress is a quintessential example of a perfectly brittle failure. The failure occurs
when the largest and preferentially oriented (perpendicular to the tensile axis) existing crack starts
propagating. The energy barriers in these materials are insufficient to trap the crack rendering the
propagation of the growing crack unstable. If the specimen is subjected to a homogeneous stress
field it will fail in an almost instantaneous cleavage mode. The force-displacement relation remains
linear until the failure is reached indicating that the accumulation of distributed damage is minimal.
The failure threshold is a variate dependent on the specimen size since the probability of finding
a large pre-existing crack is proportional to the volume. The statistics of extremes represents an
appropriate framework for the determination of the failure threshold as a function of stress and
specimen size [6],[7].

The failure of an unconfined specimen subjected to uniaxial compression in a longitudinal
splitting mode also belongs to the class of extrinsic failures. The growth of cracks, which are
roughly parallel to the compression axis, is initially marginally stable [8]. As soon as the largest
of these cracks reaches its critical length the specimen splits into two or more parts. A modest
concentration of accumulated damage does not affect the specimen failure. The failure threshold can
be predicted from Griffith’s. The specimen failure depends on the specimen shape (ratio between
its length measured along the compression axis and its width in the lateral dimension). Specimen
will split only when this aspect ratio is larger than one (slender cylinders). At small aspect ratios
the part near the lateral surface will slab off while the rest of the specimen will resist further load
increments.

INTRINSIC FAILURE MODES

The threshold of an intrinsic failure mode depends only on the average stresses, average strains
and effective material properties. For a material to fail in an intrinsic mode it must be statistically
homogeneous (invariant with respect to translations) on a scale of the sub-system, i.e. the conditions
(1) must be satisfied. Conditions (1) are satisfied in the mean-field regime, characterized by a dilute
concentration of microcracks which renders the effect of the direct interaction of microcracks on
the macroscopic response insignificant.

Tensile Failure of a Damage Tolerant Solid

The damage accumulated in damage tolerant materials subjected to a long range tensile field
can be substantial. In a stress controlled test a specimen will fail when the (1111) component
of the effective tangential stiffness (or elastic) tensor vanishes. In a elongation controlled test the
specimen response may crossover to the softening regime signaling the loss of homogeneity reflected
as the loss of ellipticity.

54

~




Numerical simulations on two-dimensional, damage tolerant, frozen lattices [9] demonstrate the
existence of the size effect. The response in the hardening regime can be very accurately estimated
by the mean field model [10] adjusted by the size effect term derived in [9]. The response in the
softening regime is controlled by large defect clusters and the stress distribution is multifractal
[2]. Large scatter of results for different physical realizations of same statistics is indicative of the
dominance of extreme statistics. Consequently, the mean field theories are useless for the modeling
of the softening regime.

Elastic Percolation

In the absence of a characteristic length the failure threshold also depends on the effective
properties since the material is self-similar (scale invariant). The self-similarity takes place when
the correlation length tends to infinity during a random crack nucleation process [2]. The failure
occurs when the largest cluster, formed by correlated defects, splits the specimen into two parts.
This class of problems is studied using the methods of the percolation theory [11].

A typical elastic percolation test [12] consists of a repetitive sequence of two steps: (1) a de-
fect (perforation or a slit) is randomly placed into an unloaded specimen and (b) the specimen is
subjected to a very small traction to determine the effective stiffness of the plate without causing
plastic deformation. These two steps are repeated until the specimen stiffness is reduced to zero,
i.e. when the cluster of correlated defects splits the specimen into two large fragments. The mea-
sured stiffness is equal to the effective secant stiffness in the corresponding, deformation controlled
deformation process during which the defects nucleate as a result of the monotonically increasing
displacements imparted to the specimen [2].

At the percolation threshold (¢ — L~) the specimen size is the only remaining characteristic
length. Due to the randomness of the defect pattern the material on the scale smaller than the
correlation length is self-similar. As a consequence of self-similarity the geometry of the largest

cluster is fractal and the scaling law for the correlation length is defined in the form § o (f — fc)” .

as f — f., where f and f. are the density and critical density of randomly inserted defects while the
exponent v is the fractal dimension. The rate at which the order parameter or a macro parameter
(the vanishing component of the effective stiffness tensor) approaches zero is controlled only by
the correlation length. Hence, the scaling law for the vanishing component of the effective stiffness
tensor is also fractal C o« (f — fc)9 as f — fo~. The exponents v and g, are universal in being
independent of the details of local fluctuations of damage, stress and strain fields.

The elastic percolation threshold f. and universal exponents, which determine the behavior
of the system near the percolation threshold, have to be determined for all elastic materials be-
longing to the same universal class only once. Some of these parameters are already available.
The percolation thresholds and scaling laws for the effective stiffness in the case of random distri-
bution of circular [13], [14] and elliptic [15] holes were determined for all homogeneous, isotropic
two-dimensional elastic solids. The percolation thresholds for two-dimensional elastic materials
weakened by rectilinear slits were determined by simulations [16] and [17]. The corresponding scal-
ing law for the effective stiffness was derived by Krajcinovic [18]. Analytical expressions for the
percolation thresholds in the case of holes [19] and slits [20] fit the simulation data extremely well.

The elastic percolation theory can be, firstly, used to compare different mean field models. The
percolation model provides the limit to which the mean field estimates of the effective stiffness must
tend as f = f.. Secondly, the random percolation is a correct model for: (a) the response of a rock
or concrete specimen subjected to the hydrostatic compression and (b) the cracks induced during
the curing of resins and solidification of metals [21].
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Localization

From a continuum viewpoint, localization (or faulting) can be, defined as a bifurcation from
a state of homogeneous strain to a state of inhomogeneous strain caused by the emergence of a
specimen spanning shear band. The strains within the band are much larger than the strains in
the exterior of the band which may even relax after the formation of the shear band. From a
micromechanical viewpoint, the deformation regime preceding the localization is controlled by the
microcrack nucleation while the microcrack growth is prevented by the lateral confinement and
the attendant absence of the singular stress fields at the tips of nucleated microcracks. As the
nucleation proceeds the probability that the direct interaction of closely spaced (correlated) cracks
may lead to the appearance of singular stress fields sufficient to cause microcrack growth increases.
The self-organization of microcracks into clusters is a synergistic process since the largest cluster
grow faster than smaller ones.

As the clusters of interacting microcracks grow the degree to which the largest cluster controls
the deformation increases. Hence, the macroscopic response is in the neighborhood of the localiza-
tion a function of the correlation length . The amplification of stress intensity factors also depends
on the angle subtended by the cluster and compression axes [22]. The angle which optimizes the
cooperative effect, varying between 20 and 30 degrees, is very sensitive to the microstructural
imperfections.

The general continuum theory of localization, based on the Hadamard’s concepts of stability,
was formulated by Rudnicki and Rice [23] and Rice [24]. The elegance of these two papers spawned
a host of analytical and computational studies. In the process of the development of several
sophisticated models the sage advice that the localization conditions *depend critically on subtle
features of (constitutive) descriptions” and that the *role of deformation field non-uniformities or
imperfections... (are)... of great importance for the initiation and spreading of localized deformation
zones” [24] was summarily dismissed. The onset of the localization was defined in terms of the
acoustic tensor, i.e. by det(n - C!-n) = 0 where C’ is the effective tangential tensor at the point
of bifurcation and n the normal to the localized band. The bifurcation is not possible in the von
Mises material and the plasticity models must be embellished either by a non-associative flow rule
or by allowing the formation of vertices in the yield surface.

The added problem related to the application of local continuum models is related to the absence
of a characteristic length. As a result the localized zone has a zero thickness and the density of
the energy dissipation is infinite. This fact triggered development of several non—local and gradient
localization models.

None of these models treats the material microstructure as being random and the process as
being dynamic. In consideration of correlation-induced (Mott) and disorder-induced (Anderson)
localizations it was concluded that the delocalization-localization is impossible in the absence of
some disorder. It is, therefore, not surprising that the deterministic models were unable to capture
the essential non-deterministic nature of the phenomenon which looms behind the tests (Lockner,
et al [3]). The localization belongs to the class of the short to long-range transitions. As the
damage concentration increases the correlation range ¢ grows from zero to the specimen size L.
The correlation length £ controls the specimen macroscopic response only in the phase preceding
the onset of localization and the post-localization regime. However, well before that point the
influence of { on the macroscopic response cannot be neglected. The onset of the localization and
exact thickness of the localized band are largely in the eyes of the beholder. In a material such as
granite and limestone the band ”thickness” varies along its length. The material in the exterior
of the band seems to be statistically homogeneous while the characterization of the interior of the
non-local material within band is not as simple.
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The localization process can be modeled using the molecular dynamics [25]. The disorder is
quenched into the lattice. To replicate the Lockner, et al. [3] tests the selected two-dimensional,
irregular, elastic triangular lattice is subjected first to biaxial compression oyt = Ooziar > 0.
Subsequently, the lattice length in the direction of the longer axis is slowly decreased in order to
be able to consider both hardening and softening regimes.

In the early stages of the simulation the damage evolution is controlled by weak spots (rupture
of links of inferior strength). As the defect concentration increases the self-organization of defects
into the largest cluster becomes evident. The increase of the correlation length £ is initially slow
and crosses over to a power law as £ — L~. The true nature of the phenomenon is reflected in
the transfer of the energy through the disordered lattice. The dynamic and stochastic nature of
the phenomenon can be illustrated using the "ant in the labyrinth” model [11]. An ant (random
walker), located within the localized band, is allowed to move randomly from a site to any of the
other nearest neighbor sites providing that the link between two sites exists. The ant must stay
in its site each time it makes an attempt to move along a ruptured link. In an undamaged lattice
the mean square distance traversed by the ant is linearly proportional to the walking time. In a
localized shear band the time the ant needs to reach the less damaged material increases with the
density of ruptured links. However, as the time of walking approaches infinity all ants, starting
their walk in different sites within the band, will eventually find their way out from the labyrinth
(shear band) assuming that the lattice is connected. Thus, the localized band ”"width” depends on
the walking time allotted to the ant.

As a mechanical analogy of this ant a link within the band can be subjected to a periodic
change of its length. The fraction of the imparted energy recorded at a point in the band exterior
depends on the damage within the band and the frequency of the imparted vibrations. At very
small frequencies (statical loads) large part of the energy percolates through the band. As the
frequency of the imparted vibrations increases the fraction of energy recorded in the exterior of the
band decreases.

In summary, the question of what is the "width” of the localized band is not well posed. In fact,
the width is a function of the correlation length and the frequency. In a purely static approximation
the band width is equal to zero.

Annealed Disorder

The creep rupture of resins is an example of failure modes attributed to the annealed disorder.
The time to creep rupture depends on the magnitude and sign of the applied tractions, temper-
ature and material microstructure. Most phenomenological and micromechanical [26] models are
deterministic in form. Random fluctuations of temperature and stress are neglected. A different
viewpoint was taken by Regel’, et al. [27] and Vujosevic and Krajcinovic [28] who treat the tem-
perature as the stimulus which enhances the mobility of atoms and increases the probability of the
dislocation motion and rupture of atomic bonds.

The microstructure of epoxy resins [21] emphasizes dense nodules interconnected by lower den-
sity material (a relatively vacuous network of cross-linked molecular chains). A triangular central
force lattice with nodules as sites and molecular chains as links is a realistic model of the described
microstructure. The quenched disorder is neglected and the lattice is in the pristine state both
geometrically and topologically regular, and all links have identical stiffness and strength.

The damage evolution, i.e. bond rupture sequence, is treated as a random process which is
activated by spatially and temporally random thermal fluctuations. The probability that a ith
link will rupture during the time interval At , was based on the absolute reaction-rate theory
[29]. The sequence of the link ruptures is determined by the Monte Carlo lottery. The simulations
demonstrate that the temperature driven damage evolution leads to the percolation transition. The
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specimen stiffness decreases linearly. The loss of stiffness becomes nonlinear and very rapid when
the specimen is subjected to tensile loads. In all cases the strain vs time curves exhibit all trends
characteristic of creep. The exponential dependence of the time to failure on the load parameter
derived from simulations is in agreement with the experimentally observed trends [27).

The simulations data in [28] were used to construct approximate analytical model which fits
the simulation data surprisingly well. A mean field model was derived to estimate the effect that
stress concentrations have on the time to creep rupture. Final, and perhaps the most important,
result was that the time to rupture does not depend on the lattice size.

SUMMARY AND CONCLUSIONS

The principal message of this research is that the disorder in macrostructure and the random
fluctuations of externally imparted stimuli cannot be easily dismissed when estimating the type
of failure and its threshold. Purely phenomenological and deterministic continuum models based
on fitting experimental data may rather often lead to wrong conclusions. Direct and careless
extensions of mean field models beyond the limits of the dilute concentration of defects is not
always a prudent strategy. Abandoning familiar and elegant mean field methods may, indeed,
be traumatic. At the same time a search of a more rational model, which acknowledges the loss
of homogeneity, may in many cases be the only avenue to a reliable analytical prediction of the
failure threshold. The development of non-local theories was in the majority of cases channeled
along the familiar deterministic routes. Preservation of mathematical elegance may, indeed, be a
virtuous goal. At the same time it cannot be the only guideline leading to the improvement of
modeling techniques. It seems to the authors of this study that physics should have a precedent
over mathematics.
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ABSTRACT

T * ¢ integral values associated with stable crack growth in thin 2024-T3
aluminum compact (CT) specimens and A606 HSLA steel single edge notched
(SEN) specimens were determined directly from the crack tip displacement field
obtained by moir€ interferometry. Stable crack growth in the SEN specimen was
also simulated by an elastic-plastic finite element (FE) model which was driven by
the experimentally determined boundary conditions. 7*¢ obtained experimentally
and by FE were in reasonable agreements with each other. Unlike the vanishing J
integrals with crack extension, 7% reached steady state values with stable crack

growth. Thus, for a given integration contour, I'g, near the crack tip, 7*¢ can be
used as a stable crack growth as well as a ductile fracture criteria.

INTRODUCTION

In a series of papers, May and Kobayashi [1] showed that the ASTM J resistance curve
does not represent the crack tip state of stress since J 1is not a path independent integral under
stable crack growth. Moreover, the near field J integral vanished after reaching a maximum value
at the initial phase of stable crack growth. Brust et al [2,3], on the otherhand, showed through
finite element (FE) simulation, that the near field T* integral [4] remained a steady state value
under loading, unloading, reloading and under stable crack growth.

Unlike the J integral, the T* integral is based on the incremental theory of plasticity, T*g |
and is defined by Stonesifer and Atluri [4] as
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AT, = Ir,[AW"h =4+ A)- Ay — Ay, 'u"-‘]ds

where W is the work density and #; and u; are the traction and displacement, respectively. Here
AT*¢ denotes the AT* value associated with a contour, I'g, in the very vicinity of the crack. The

proximity of I'¢ is restricted to the region where plane stress condition prevails and is outside of
the region of three dimensional state of stress at the crack tip. The latter is generated by the finite
thickness of the plate specimen. For a flat crack without a shear lip, Narasimhan and Rosakis [5]
have shown that the state of plane stress prevails outside of one half of the plate thickness.

In theory, the total T*¢ is obtained by summing the incremental AT*g through the plastic

deformation process. Fortunately Pyo et al [6] have found that the total 7% computed directly by
using the stresses and strains based on the incremental theory of plasticity was for all practical

purpose equal to the summed AT*¢. Thus T*g can be computed directly without the cumbersome
incremental summation procedure provided the stresses and strains, on which T*¢ is based, are
obtained through the use of the incremental theory of plasticity. Like the J integral, T%¢ is path
dependent in the presence of large scale plasticity and plastic unloading. Thus, if T¥¢ is to be used

as a fracture criterion, it is imperative that T*¢ be evaluated along a contour, I'g, very close to the
crack tip, such that it can be considered a crack tip parameter. :

In this paper, we present the T*¢ integral values which were determined directly from the

displacement field surrounding a stably growing crack in thin 2024-T3 aluminum compact (CT)
specimens and A606 HSLA steel single edge notched (SEN) specimens.

METHOD OF APPROACH

Experimental Procedure

The experimental procedure consisted of measuring the two orthogonal displacement fields
surrounding a stably growing crack in the CT and SEN specimens using Moir€ interferometry.
Figure 1 shows the 2024-T3 aluminum CT specimen and the A606 HSLA steel SEN specimen,
respectively. A coarse cross diffraction gratings of 40 lines/mm was used to determine the large
plastic strains surrounding the extending crack. A special Moiré interferometry procedure [7],
which combines the advantages of geometric Moiré and the traditional Moir€ interferometry and
uses a low frequency Moiré grating for measuring large strains in the vicinity of the crack tip, was
developed for this ductile fracture study. A special four-beam Moiré interferometry bench was also
constructed for use with this low frequency Moiré diffraction grating.

The strains along the line integration contour for the T*g integral computation were
determined directly from the orthogonal displacement field obtained by Moir€ interferometry. The
stresses corresponding to the total strains were then computed using the equivalent stress-strain
and the measured uniaxial stress-strain data of the 2024-T3 aluminum and the A606 HSLA steel
sheets. This use of the deformation theory of plasticity to compute stresses does not account for
the unloading process which occurs in the trailing wake of the extending crack. However, by
restricting the integration contour very close to and along the extending crack, Okada and Atluri
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[8] has shown that the contour integration trailing the crack tip can be neglected by virtue of the

closeness of the integration path, I'g, to the traction free crack surface. This approximation not

only simplified the integration process but also eliminated the undesirable effect of the deformation
theory of plasticity which is used to compute the stresses from the measured strains.

The crack tip opening angle (CTOA) was also computed by the angle subtended by the
measured crack opening displacement (COD) at a distance 1 mm from the crack tip.
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Thickness = 3.1
Unit : mm
1 Thickness : 1.6

‘4‘ 50.8 ,
76.2 l o \ 5‘4 :
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(a) 2024-T3 CT specimen. (b) A606 HSLA SEN Specimen.

Figure 1. Specimens.

Numerical Procedure

A plane stress finite element (FE) model of portion of the A606 HSLA steel SEN specimen
was used for numerical analsysis. The FE model of the SEN specimen was truncated at a 20.8
mm distance from the crack in order to conserve compute time. The measured displacements along
the truncated width of the SEN specimen together with the measured instantaneous crack length
and the measured equivalent stress-strain relation of A606 HSLA steel were used to drive the FE
model in its generation mode based on the incremental theory of plasticity.

The T*¢ integrals along an elongated contour surrounding the stably growing crack of the
SEN specimen was then computed. Unlike the stresses used in the experimental procedure for T%¢
evaluation, the FE analysis provided stresses which accounted for the unloading effect in the
trailing wake of the extending crack tip. Therefore, the entire contour was used for T*¢

evaluation. Numerical errors in the FE data in the vicinity of the crack tip were masked by
replacing the contour integral by the equivalent domain integral of Nikishkov and Atluri [7]. To

recapitulate, T*¢ evaluation procedures for the Moiré and FE studies differ in that the former




involved only the frontal segment of a near-field contour, I'g, while the latter involved an
equivalent domain integral over the entire crack length.

RESULTS

A total of four 2024-T3 aluminum CT specimens and four A606 HSLA SEN specimens were
analyzed. Figures 2 and 3 show typical Moiré interferometry patterns of the u- and v-

0
(a) u- field. b) v- field.
Figure 2. Moiré fringe patterns of 2024-T-3 CT specimen.
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Figure 3 Moiré fringe patterns of A606 HSLA SEN specimen.
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displacement fields of an 2024-T3 aluminum CT specimen and an A606 HSLA steel SEN
specimen, respectively. Also shown are the elongated I'g contour of € = 2.0 mm along the

extended crack in the 2024-T3 aluminum CT specimen and € = 2.0 mm for the A606 HSLA steel

SEN specimen. These £'S are over a one half of a plate thickness away from the crack tip where

the state of plane stress is thought to prevail even in the presence of 100 percent shear lips in the
crack.

Figure 4 shows the experimentally and FE determined T* for the 2024-T3 aluminum CT

and the A606 HSLA SEN specimens. The maximum crack extension, Aa , for the 2024-T3
aluminum and A606 HSLA steel specimens were 5.5 and 8.0 mm, respectively. Also shown for

comparison is the experimentally and numerically determined T*¢ for the same I'g in a thinner
2024-T3 aluminum SEN specimen [10].

Figure 5 shows the experimentally determined crack tip opening displacements (CTOA).
The CTOA for the aluminum SEN specimen is in excellent agreements with that of the 2024-T3
aluminum SEN specimen [10] as well as that of Dawicke et al [11].

Unlike the increasing J resistance curve determined by the ASTM Standard testing

procedure, or the vanishing J for the near field solution, the 7¥¢ for a given I'¢ shown in Figure 4

and the CTOA shown in Figure 5 both reached physically more realistic steady state values with
stable crack growth.

CONCLUSIONS

1. T*g computed from the displacement fields, which were obtained experimentally and from

finite element analysis, of the A606 HSLA steel SEN specimens were in good agreement
with each other.

2. Computed T*¢ values are domain-size independent and tend to converge to a stationary
value for a smaller inner contour, I'¢ of € = 2.0 mm for the 2024-T3 aluminum CT
specimen and € = 2.0 mm for th A606 HSLA specimen.

3. T*g did not reach a steady state value for Az = 8.0 mm during stable crack growth in a thin
A606 HSLA SEN specimen.

4. Computed and measured CTOA reached a steady state value of 5 and 159, respectively,

after a stable growth of about Aa = 2.0 mm in the 2024-T3 aluminum CT specimen and .
A606 HSLA steel SEN specimen.
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Abstract

A fundamental process during any multiphase flow in porous media is the breaking
apart of one of the phases-into smaller components. Here we investigate this breaking
process as applied to a thin liquid film. We study the breaking of both a two dimensional
planar film and a cylindrical thread of liquid using both analytical and numerical methods.

INTRODUCTION

Multiphase flows in porous media occur in many situations of practical interest. An example
with application to enhanced oil recovery is foam flow in porous media. Here a gas and
surfactant solution is injected into the ground. This then generates a foam which is used to
drive the oil out. The foam is composed of alternating regions of liquid and gas with the liquid
primarily in the form of a thin liquid film coating the solid portions of the pores or in the
form of thin liquid lamellae which separate the gas regions and move with the gas down the
pore channel. As the foam moves within the porous material, these liquid films can break or
rupture forming larger gas bubbles within the material. In addition, the formation of the foam
itself is associated with a film rupture process called snap-off where a large gas bubble is driven
through a constriction in the pore channel, becomes unstable and splits into two parts (Tsai
and Miksis [1].) Our aim here is to study this rupture process. We will consider a model for
the dynamics of a thin viscous film which is valid for long wave (relative to the film thickness)
disturbances. The model accounts for the effects of surface tension, inertia and van der Waals
forces. We begin by studying a two dimensional planar film. Numerical and analytical results
close to rupture will be presented. We will also study a thin three dimensional axisymmetric
liquid thread.

There have been a number of works recently concerned with the breaking of either thin 2-D
liquid films or axisymmetric threads of liquid. For example, Dupont et al. [2] analyzed the in-
terfaces between two liquids under the influence of surface tension (but without van der Waals
forces). Rupture in a finite time is observed numerically and the region near rupture is scru-
tinized for a similarity solution. Considering the finite-time rupture of thin fluid layers in
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h(x,t)

Figure 1: Time series evolution of an unstable thin film for A = 1 and § = A/x% = §./2.
hO)(z,t) is shown for ¢ = 0,0.1,0.2,...,1.4,1.5,1.52129982.

Hele-Shaw flows, Goldstein et al. [3] studied a lubrication model for the dynamics of the
fluid interfaces. Based upon their numerical studies, they concluded that the Bond number
(van der Waals forces were not included in their model) plays a decisive role in the character of
the solutions near rupture. Additionally, they investigated the region near rupture numerically
and conjectured a power-law form for the interface (b « (¢t — ¢,)® where § was numerically
found to be equal to 1.45 + 0.05). Claiming the existence of “universal exponents,” Eggers [4]
considered the rupture regions of thin axisymmetric threads of liquid. In the same context, i.e.,
the thinning of threads of liquid, Eggers and Dupont [5] analyzed the “pinching” singularity
observed experimentally. Their model equations included the effects of surface tension with
the full curvature term, but neglected the role of van der Waals forces.

TWO DIMENSIONAL THIN FILMS

We will use the two-dimensional free film equations of Erneux and Davis [6]. These equa-
tions were derived asymptotically in the long wave limit. For convenience, we summarize those
equations here. Consider an incompressible film of density p and dynamic viscosity p. Intro-
duce 2 two-dimensional (z, z) cartesian coordinate system. Let b be the unit of length in the z
direction and let Ao, the undisturbed film thickness, be the unit of length in the z direction. In
addition let u/bp be the unit of velocity and pb?/u the unit of time. Specify the symmetric film
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interfaces by z = +h(z,1), here ¢ is time, and the transverse component of the fluid velocity
in the z-direction by u(z,t). In the limit ho/b < 1, the leading-order evolution equations for
these two quantities are then,’

oh oh ,0u

5" "5 "o ()
du 40h0u 0%u ou
5 = hosos e “oz (2)
8h 34 0h
3555+ s g

where § = yopho/3p? is 2 nondimensional constant which encompasses the dimensional sur-
face tension 7o, and A = pb?A/6wh3u? is a dimensionless constant which encompasses the
effects of van der Waals forces through the Hamaker constant A. We will assume periodicity
on the interval z € [~1,1] so that about the origin ¢ = 0, h is even (A(-z,t) = h(z,1))
and u is odd (u(—z,t) = —u(z,t)). Fig. 1 demonstrates a typical unstable numerical so-
lution to these equations. The parameter values are A = 1 and § = A/x%. The initial
conditions used are u(z,0) = 0 and A(z,0) = 1/2 — (0.1) cos7z, and solutions are shown
for t = 0,0.1,0.2,...,1.4,1.5,1.52129982. Note that near rupture (h — 0 at z = 0), the
numerical solution appears to have taken on a similarity form. Our aim is to identify this
dynamics. Erneux and Davis [6] have show that a uniform thickness film is linearly stable
when § > 2A4/n?. Hence we will select our parameters to fail this stability criterion in order
to observe rupture.

In order to resolve the form of the solution near the point of breakage, we define the
following similarity variables,

T =1, —t, (32)
£=ar?, (3b)

where ¢, is the time of rupture. We then assume the following forms for ~ and u,

h = TH(E), (42)
u=rTU(E). (4b)

The forms of these solutions are suggested by the rapid variations in both space and time
near the point of rupture. Now substitute the similarity forms into the evolution equations (1)
and (2). Suppose we balance all the terms in (1). We find that T = 8 — 1. Now consider the
other equation. Here there are several possible terms which could be balanced, each giving a
different answer. We claim that the viscous and van der Waals terms must balance (this will be
verified numerically later). Hence this assumption implies that we need to balance the terms
of O(77~?P) with those of O(7~3*~F). This implies that = 1/3. Hence we have determined
that I' = 8 — 1 and a = 1/3 but we have not determined the specific values of 8 and I' from
this dominate balance argument.

Now we will examine the evolution of the interface numerically. To obtain extreme spa-
tial accuracy in the region near rupture while maintaining a reasonable execution time, an
adaptive regridding finite-difference algorithm based upon that employed by Bernoff and
Bertozzi [7], Bertozzi [8] and Dupont et al. [2] has been used to solve equations (1) and
(2) (see Ida [9] for details). The results of a systematic examination of the observed expo-
nents are summarized in table 1. In each case, the same initial conditions ((k(z,0),u(z,0)) =
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ezponents A=1 A=5 A=10

@ 0.3438428 + 0.002986701 0.3381307 £ 0.00352386 0.3365617 + 0.003716294
a—2f | —0.4422666 4 0.006927182 | —0.5384250 £ 0.012368135 | —0.58326818 =+ 0.01416819
T'—p |-1.0124770 £ 0.004877930 | —1.0181044 = 0.004328344 | --1.0192778 - 0.004913314

Table 1: Results of a systematic study of the exponents in the similarity solution for
the free film near breaking. For each value of A, values are averaged over § =
{0, A/4x? A/272%,3A/4n2, A/ x?}.

(1/2 — (0.1) cos 7z, (0.1)sinmz)) are used; and for each value of A = {1,5,10}, values of
S = {0, A/4n? A/2x% 3A /472, A/7?} are employed. For each value of A used, the values of
the exponents are then averaged, with the results and their standard deviations presented in
table 1. From the values of the standard deviations, which never exceed approximately 2%,
we see that the values of all exponents appear to be independent of §. We find, however, that
while o and T’ — § appear to be independent of A (each is within an interval of approximately
two standard deviations in width, and within approximately four standard deviations of their
expected values of 1/3 and -1), & — 20, the exponent for g—:’}(o,t) which would result from (4),
is not (the interval needed to contain it is on the order of 20 standard deviations). Thus, our
assumption concerning the balancing of the terms seems to be confirmed.

We would now seem to have satisfactory proof as to the correct form of the similarity
solution. Thus, we find that o = 1/3, and that ' —~ 8 = —1 but T and 8 are undetermined.
We speculate that the constants § and T are to be determined through a matching procedure
to a more complex solution of the full evolution equations in the outer region away from the
point of rupture.

In conclusion we note that we have identified a similarity form for the film thickness and
transverse velocity of a two-dimensional thin free film near rupture. We have found that
van der Waals and viscous forces dominate the evolution, still leaving a single degree of freedom
(the value of either § or T') in the precise specification of the form of the solution. This
undetermined constant could in principle be determined through a matching procedure to the
outer flow field away from the immediate vicinity of rupture. Similarity solutions of this type
have been discussed by Barenblatt and Zel’dovich [10].

THREE DIMENSIONAL LIQUID THREADS

In this section, we investigate a set of evolution equations for the dynamics of a thin,
axisymmetric thread of liquid [9]. The equations can be derived by a long wave analysis [9].
The effects of a van der Waals like force will be included in our model, in addition to the effects
of surface tension, inertia and viscosity.

We begin by considering an infinite, periodic, axisymmetric thread of liquid of density p
and kinematic viscosity v oriented along the # axis of a cylindrical coordinate system. Denote
the fluid velocity by ¥(7, 2) = @.(7,2)r + i;(,Z) z where r and z are the unit vectors in the 7
and Z directions respectively. Let 7 = h(z ?) represent the fluid interface, n and 7 the surface
tension on it. In order to extract a tractable problem we perform a long wavelength analysis
of the the equations of motion. Let b be a typical wavelength of the system and kg be a typical
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thread radius such that € = ho/b < 1. The leading order in € equations of motion are [9]

O0h oh hou, -
% " 20 (5)

and

du, 60h0u, 8%y,
3 ~hoz oz ooz (6)

—u23z+h23z +h2 ’

Here we have introduced the dimensionless variables i, = (gu/b)un %, = (v/b)u,, Z = bz,
7 = hor and kb = hoh. In addition we have scaled time by b%/v and the pressure difference
by (pvz/bz) Similar to the previous section we introduce the dimensionless constants § =
vb/epr? and A = (48pv?h3/B?)A, where we have assumed that there is an attractive van
der Waals like potential of the form A/h3. Together, equations (5) and (6) constitute a set
of evolution equations for the two quantities ~ and u,. These equations are identical to the
evolution equations obtained by Eggers and Dupont [5] with gravity replaced by van der Waals
attractions.

Note that the pressure scale specified here is slightly different from that used in the analysis
of thin films. In particular, if pgi, is the pressure scale used in the thin film scalings of the
previous section and pipreq is the pressure scale used here, then we have that pgim /Pikread = €.
This larger pressure scale is necessary to balance the radial curvature which is now large
because of the thinness of the thread and the hoop stress it induces in the normal stress
boundary condition.

Suppose that we use the full curvature in the equations, not the asymptotic correction as
done above. Then we find that equation (6) becomes,

du, 60h0u, _0%, Ou, 3A0h

B "ho:0x P02 “ox VW es ™
2
oh 0%h 3 (@)
— — 2
0z 1 022 07
+s an\2 | h? Y on\?
oh k|1 —) ok
1+<6z> l[ +(6z ] [1+(6z)]
o°h
828

The form of equation (7) is now quite similar to the transverse velocity evolution equations
previously derived for thin films (equations (1) and (2)). In particular, the highest-order
derivative multiplying the surface tension parameter, S in (7) is now a third-order spatial
derivative as it is in the thin film evolution equations. This is in marked contrast to the
evolution equation (6) derived using the correct asymptotic expression for the curvature where
the the highest-order derivative multiplying S is only of first-order.
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Figure 2: Evolution of an unstable perturbation to the thin thread equations solved using the
finite-difference scheme. The parameter values used are § = A = 1; and solutions are shown
for ¢ = 0,0.01,...,0.25,0.2572390625.

To consider the linear stability of the evolution equations (5) and (6) we perturb in normal
modes about the steady-state solutions h = h = const. and u, = 0,

h _ il ’\;' wttikz
(0)=(8) (&) ©

Linearizing and applying a solvability condition, we obtain the dispersion relation for the

growth rate, w,
3k2 2 34
=—|-14£,4/1 = (.S' -.—) . 9
¢ 2[ \/+9k2h +h2] ®)

Since the larger value of w > 0 for all values of the parameters involved, we find that the
steady-state solution is unconditionally unstable.

If we now use the full expression for the curvature and we analyze the linear stability of
equations (5) and (7), we find that the dispersion relation is instead given by,

3k? 2 - 3A
=22 ) i — k2j2) 4+ 22
w=— { 1:}:\/1+9k27z[5(1 kh)-l-ﬁz]}. (10)

Since there are now values of the parameters for which both values of w may be negative and
the steady-state stable, we find that the condition for stability is k¥ > k. where,

1 [ 34
k = = 1 —_. 11
Tk +5h2 (11)
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Figure 3: Evolution of an unstable perturbation to the thin thread equations solved using the
finite-difference scheme. The parameter values used are S = 100 and A = 1; and solutions are
shown for ¢t = 0,0.01,...,0.09,0.10,0.10756.

In this instance, the largest eigenvalue is positive only over a finite range of k.

Now consider the numerical solution of the evolution equations discussed above assuming
periodicity on the interval z € [—1,1]. The finite-difference approximation used earlier for the
two-dimensional thin film (see Ida [9] for details) is used here.

Figs. 2 and 3 are representative of the types of solutions of the coupled nonlinear system (5)
and (6). Each figure is started with the same initial conditions, (h(z,0),u.(2,0)) = (1/2 —
(0.1) cosz,0), and with the same value of A = 1. In fig. 2 we set § = 1 and show solutions
for t = 0,0.01,...,0.25,0.2572390625 and in fig. 3 for which S = 100, solutions are shown for
t=0,0.01,...,0.10,0.10756. What we find, by resolving the region near rupture more closely,
is that a pair of “dimples” forms off of the axis of symmetry (z = 0) and leaves an isolated thin
packet of fluid remaining. We see that as S increases, the size of this packet of fluid increases
with the rupture points moving further away from the axis of symmetry. If we were to focus
our attention on the region near rupture, we see the formation of the “dimpled” structure
before the onset of numerical instabilities. (We found these instabilities extremely difficult to
eliminate, because the growth-rate in equation (9) is monotonically increasing Vk > 0, and the
film is unconditionally unstable. Thus, the onset of instabilities exhibited in shorter wavelength
modes is not limited by a cutoff wavelength.)

If we solve the equations utilizing the full curvature term, (5) and (7), we obtain solutions
where the rupture point is more localized and the dimple seems to disappear. Only order
one values of S have been considered and larger values need to be studied to confirm this
conclusion.

In conclusion we note that in this section we have studied a set of leading-order evolution
equations for the interface shape and transverse velocity of an axisymmetric thin liquid thread
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subject to a van der Waals like force. Based upon a linear stability analysis, we have found
these equations to be unconditionally unstable. These equations have been solved numerically.
We find that as the effects of surface tension are increased, rupture occurs over a wider spatial
domain, and a “dimpled” structure is exhibited. This is in marked contrast to the characteristic
rupture behavior of thin films which is confined to a small spatial region.
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ABSTRACT

A line-focus acoustic microscope is used in conjunction with a multiple
wave-mode method to determine elastic constants from a single V() mea-
surement. V(z) curves which include contributions from different wave modes,
measured using the line-focus acoustic microscope at 225 MHz, have been com-
pared with theoretical results predicted by a V(z) measurement model. The
determination of elastic constants has been achieved numerically by seeking a
set of elastic constants that leads to the best fit, in the least square sense, of
the theoretical results to the experimental ones. The method has been applied
to isotropic materials in bulk, and plate and thin-film configurations. Elas-
tic constants for each of these cases have been determined. The consistency,
convergence, sensitivity and accuracy of the procedure have been investigated.

INTRODUCTION

4

Line-focus acoustic microscopy (LFAM) provides a method to determine the elastic
constants of homogeneous specimens and thin-film/substrate configurations. The elastic
constants are determined from the velocities of leaky acoustic waves that can be obtained
from V/(z) measurements. The V(2) curve, which is a record of the transducer output volt-
age V as a function of the distance z between the lens focus and the specimen surface, is
unique to a material and referred to as the material signature. Generally speaking, more
than one elastic constant has to be determined, and hence more than one data point is re-
quired. Hence, for isotropic materials sufficient data cannot be procured with a single mode.
For anisotropic solids the velocity can be measured as a function of the angle defining the
propagation direction on the surface to yield a sufficiently large set of data. The technique
has been discussed in great detail in a recent review article, which also lists numerous ref-
erences [1]. For thin-film/substrate configurations measurements at various frequencies or
for different film thicknesses may be carried out to obtain sufficient data using standard
measurement procedures [1]. There are, however, obvious advantages to work with a sin-
gle specimen and at a single frequency. As discussed in this paper, this can be done by
considering the contributions of more than one leaky wave mode to the V(z) curve.

This paper presents a multiple mode method to determine, with a single-frequency
V(z) measurement on a single specimen, the elastic constants of bulk isotropic solids, thin
isotropic plates and thin-films on substrates. The V(2) curve which includes contributions
from multiple leaky acoustic waves has been measured experimentally using a line-focus
acoustic microscope at 225 MHz. V(z) curves have also been simulated numerically using a
measurement model with selected elastic constants. Both the experimental and the numer-
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ical V(2) curves go through the same V/(2) analysis to yield their respective predictions for
the leaky acoustic wave velocities. The determination of elastic constants is then achieved
through minimization of the differences between the theoretical predictions and the experi-
mental results by a numerical iterative searching procedure known as the simplex method.
The accuracy, consistency, convergence and sensitivity of the numerical inversion have also
been studied in this paper.

THIN FILMS

Thin film materials are already widely used, and they promise to have significant addi-
tional applications in future technology. There are many present and potential applications
of configurations consisting of thin films deposited on a substrate.

A first important application is concerned with thin coatings to protect surfaces of com-
ponents from wear, impact, corrosion, and thermal disturbances. Hard and wear-resistant
coatings are an important segment in the US and world economy. The need to extend the
wear-life using coatings is not only to save cost, but also reduction of downtime.

Diamond film has a number of remarkable properties. It is the hardest substance
known, and it has a higher modulus of elasticity than any other material. When free of
impurities, it has one of the highest resistivities. It also combines a very high thermal
conductivity with a low thermal expansion coefficient to yield high resistance to thermal
shock. Lastly, diamond is very resistant to chemical attack. However, diamond coatings are
not good with ferrous alloys because diamond reacts with steel at high temperatures.

Transition-metal nitride films are commonly used as hard, protective coatings for softer
surfaces. Superlattice films, including TiN/NbN, TiN/VN, and TiN/VNbN, have, however,
been shown to exhibit much higher hardness than homogeneous nitride films. The elastic
constants of these films on a substrate are difficult to measure.

LINE-FOCUS ACOUSTIC MICROSCOPY

An acoustic microscope consists of four main components: the acoustic probe, the pulse-
mode measurement system for transmitting and receiving electrical signals, the mechanical
systems for alignments and movements of the sample and a computer for controlling the
system and processing the recorded wave forms. :

The propagation of surface acoustic waves along the interface of a solid material and
air or water provides a useful means to determine material constants of the solid by mea-
suring propagation velocities. For small specimens, or when local values of the material
constants must be determined, the measurements require small wavelengths correspond-
ing to high frequencies. For such cases a single water coupled focused transducer can be
used advantageously, and the ultrasonic technique is referred to as quantitative acoustic
mMicroscopy.

Particularly useful is a water-coupled line-focus acoustic lens since such a lens allows
the measurement of the SAW velocity in specified directions. Hence line-focus acoustic mi-
croscopy (LFAM) has been used to determine the elastic constants of anisotropic materials.

The best known technique measures the V(z) curve, which is a record of the magnitude
of the transducer’s voltage output V as a function of the distance z between the focal line
of the lens and the specimen surface. It can be shown that the spacing of peaks or valleys
in the oscillatory V(z) curve is directly related to the propagation velocity of the surface
wave, see [1]-[2].
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V(z) Curve Measurement

The experimental results have been obtained with a Honda AMS-5000 ultrasonic mea-
surement system and a line-focus acoustic lens operating at 225 Hz. The detailed de-
scription of this system can be found in Reference [1]. Figure 1 shows schematically the
configuration of the acoustic probe and the specimen. A ZnO-film transducer generates and
detects longitudinal waves at the flat surface of a Z-cut sapphire rod. The acoustic beam is
focused by an acoustic lens with a cylindrical concave surface at the other end of the rod.
The cylindrical concave surface has a radius of 1.0mm and an aperture half-angle of 60°.
The operating frequency is around 225M Hz and the focal length of the lens is 1.15mm. For
efficient transmission of acoustic waves through the lens couplant interface, a chalcogenide
glass film with a quarter wavelength thickness is deposited on the cylindrical concave sur-
face. A specimen is placed on a mechanical stage, translated in the vertical direction and
rotated around the axis of the rod.

/ transducer

7777777

acoustic
lens

|, anti-reflection coating

coupling water

Figure 1: Cross-sectional configuration of the line-focus acoustic probe.

V(z) Measurement Model

Basic to the interpretation of V(z) curves is a reliable measurement model. A V(z)
measurement model simulates the measurement procedure, including any systemic errors
that may occur in the determination of the velocity from experimental V(z) curves. For
example, effects due to multiple modes, will be replicated in the numerical model. The
material constants obtained from comparisons of results from the measurement model and
experiments will, therefore, be free of these systemic errors.

A measurement model for the V(z) curve has been described in detail in Ref. [1]-
According to the model, the output voltage of the transducer can be expressed as

Vi) = ";°° exp(2ik,2) Ly (o) La(ks) R(k2)dke (1)
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where k, = (k2 —k2)'/? and k,, is the wave number in the coupling fluid. Ly (k) is the angular
spectrum of the wave fleld at the focal plane generated by a plane wave in the buffer rod,
and Ly(k;) is the voltage response of the transducer when a plane wave of unit amplitude
and wave vector (k;, k) is insonifying the lens. A detailed description and discussion of the
angular spectrum function Ly (k) and the response function Ly(k;) can be found in Ref. [1],
where integral expressions as well as numerical calculations have been presented. R(k,),
which is the reflectance function of the fluid-loaded specimen, can generally be expressed

as: A BB
AT jB 2)

where 8 = ipyw?/k,, and p,, is the coupling fluid density. A and B have different definitions
for different sample geometries. For a fluid-loaded bare-substrate-specimen or a fluid-loaded
layered-specimen, A and B can be found in Ref. [1]. For a fluid-loaded plate-specimen,
a numerical approach proposed by Chimenti and Nayfeh [3] has been adopted here. A
sumn[rlary of the calculation of R(k;) for an isotropic plate is given in the Appendix of
Ref. [4]. .

T<]) determine the leaky surface wave velocities a procedure completely analogous to the
one for the experimental V' (2) curve is applied to the theoretical result given by Eq. (1).

R(k;) =

Determination of Elastic Constants

The elastic constants are obtained by seeking a set of elastic constants that yields the
best fit in the least square sense of the theoretical predictions to the experimental results.
A numerical iterative searching procedure known as the simplex method has been used
to find the set of elastic constants that minimizes the deviation between theoretical and
experimental results.

A dimensionless deviation function, D, is defined in terms of the measured and the
calculated quantities as:

} ®)

N
D=%" {W,S”)
n=1
where v™ and AT are the velocity and the peak-amplitude in the Fourier domain of the
n-th leaky surface mode obtained from the measured V(z) curve; v and A are the same

quantities obtained from the calculated V(z) curve. It is noted that different weights, W)

and W4, have been imposed on the differences in velocities and spectrum amplitudes in
order to get the best results. Both experimental and numerical errors have been taken
into consideration in choosing these weights. For example, more weight has been put on the
velocity part than on the amplitude part, because the accuracy of the velocity measurements
is usually about an-order-of-magnitude better.

The selection of the starting values for the application of the simplex method is in
general a matter of trial and error. Different selections of the starting values should yield
the same answer, but due to the existence of local minimums, a good initial guess of the
starting values is very important for quick convergence to the true values.
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SOME RESULTS

Specimens with three different sample configurations have been tested. Bulk specimens
include a modified borosilicate glass AF45, a glass slide and an aluminum sample; the plate
specimen is a modified borosilicate thin glass plate D263 of 50 pm thickness; and thin-film
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specimens include a 2.2 pm titanium-film deposited on an aluminum substrate and a 0.1 pm
gold-film deposited on a glass-slide substrate.

For the bulk specimens, the leaky Rayleigh wave and the LSSCW have been used for
the determination of the elastic constants. For the D263 glass plate the zeroth-order Lamb-
mode and a higher-order Lamb-mode have been used. For the thin-film /substrate specimens,
multiple LSAW modes have been used to determine the thin-film elastic constants. The
dispersive leaky Rayleigh wave and the LSSCW have been used for the titanium-film on
an aluminum substrate configuration, and two generalized leaky Lamb modes, namely the
dispersive leaky Rayleigh wave and the leaky Sezawa wave mode, have been used for the
gold-film on a glass-slide substrate configuration.

The determined elastic constants are listed in Table 1. Known values of the densities
and thicknesses have been used. For the thin-film/substrate cases, the elastic constants of
the substrates were known. It should be noted that accurate information of the substrate
properties is very important for the determination of thin-film constants. Elastic constants
determined in this paper for the bulk aluminum and the glass-slide have been used for the

substrates.

Table 1: Elastic constants determined for materials in various configurations.

‘ A Determined
Specimen Thickness | Density | Waves or Modes | Elastic Constants
(um) (kg/m®) used (GPa)
E G
AF45 Glass N/A 2720 leaky Rayleigh 63.2 25.6
(bulk) & LSSCW
Glass Slide N/A 2459 leaky Rayleigh 71.0 28.5
(bulk) & LSSCW
Aluminum N/A 2700 leaky Rayleigh 70.4 26.3
(bulk) & LSSCW
D263 Glass 50 2510 0-th Lamb 73.1 30.6
(plate) & higher Lamb
dispersive
Titanium film 2.2 4508 leaky Rayleigh 87.7 33.2
(on Aluminum) & LSSCW
dispersive
Gold film 0.1 19281 leaky Rayleigh 79.5 28.0
(on Glass slide) & leaky Sezawa
DISCUSSION

Comparisons between Theoretical Predictions & Ezperimental Results

The sets of elastic constants that have been determined can be verified by comparing
the corresponding theoretical velocities with the experimental results. Figure 2(2)(b) shows
V(z) curve and V(k) curve comparisons, where the dashed lines are the experimental results
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and the solid lines are the theoretical predictions using the determined elastic constants.
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Figure 2: (a) V(z) curve comparisons for AF45 bulk glass. (b) V(k) curve comparisons for
AF45 bulk glass. '

Consistency of Determined Elastic Constants

The elastic constants that have been determined from one set of experimental data can
be checked by using them to calculate V(z) curves for another independent experimental
setup. For example, the elastic constants of D263 glass plate that have been determined from
the water/plate/air configuration can be verified using the water/plate/water configuration.

Convergence due to Use of Multiple Leaky Acoustic Waves

As discussed in section 2.4, the numerical procedure includes information from different
leaky acoustic waves. The use of multiple leaky wave information reduces the region in the
plane of the material constants E and G for which the deviation D, defined by Eqn. (3), has
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a prescribed small value. This improves the convergence of the procedure. For the AF45
bulk glass sample, Figure 3 shows the reduction of the region for D < 0.024 due to the use
of multiple leaky acoustic waves. Figure 3 displays the changes of the deviation field D as
the Young’s modulus and the shear modulus vary around the determined values for the five
cases: (a,? if only leaky Rayleigh wave velocity information is used for the minimization of D;
(b) if only LSSCW velocity information is used; (c) if only leaky Rayleigh wave amplitude
information is used; (d) if only LSSCW amplitude information is used; (e) if all the above
(a)-(d) have been used and combined in Eqn. (3).

It is interesting to note, from Figures 3(a)-(d), that despite the obvious convergence
problems implied by the extent of the dark areas, the areas have different slopes. It is
the different directions of the slopes in Figure 3(a) and Figure 3(b)(c)(d) that lead to the
convergence of our numerical inversion when Eqn. (3) is used, as indicated by the finite
extent of the dark domain in Figure 3(e).

CONCLUSIONS

V(z) measurements of multiple leaky acoustic waves by line focus acoustic microscopy
have been used to determine elastic constants. The method presented in this paper has the
advantage that it requires only a single V(z)-curve measurement by the LFAM. It serves
as a very effective approach to determine elastic constants of a single isotropic specimen
since only one single-frequency V(z) measurement is required. Elastic constants for isotropic
materials in bulk, and for plate and thin-film/substrate configurations have been determined
to satisfactory accuracy. It has been shown that the use of multiple leaky wave information
reduces the region in the plane of the material constants E and G for which the deviation
D has a prescribed small value. This improves the convergence of the method. Consistency
of the results has been shown by verifying the elastic constants determined from one set of
experimental data with results from another experimental configuration. The sensitivity of
the deviation D to variations of the elastic constants has also been investigated. Generally
D is more sensitive to changes of Young’s modulus.
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Deviation D

Figure 3: Reduction of region for D < 0.024 when multiple leaky acoustic waves/wave
parameters are used for AF45 bulk glass. (a) Deviation field when only leaky Rayleigh wave
velocity is used; (b) Deviation field when-only LSSCW velocity is used; (c) Deviation field
when only leaky Rayleigh wave amplitude is used; (d) Deviation field when only LSSCW
amplitude is used; (e) all of the above have been used.
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ABSTRACT

An experimental study was carried out on the tribological behavior of mate-
rials of interest in éryogenic applications, focusing on diamond and graphite.
Both natural diamond (referred in the text as diamond) and chemical-vapor-
deposition (CVD) diamond (CVD-diamond) were used. The experiment
was carried out using a pin-on-disk tribometer capable of operating at cryo-
genic temperatures, from 4.2 to 293 K. Two basic scenarios of testing were
used: 1) frictional coefficient (i) vs velocity (v) characteristics at constant
temperatures; 2) g vs temperature (T) behavior at fixed sliding speeds.
For diamond/CVD-diamond, graphite/CVD-diamond, stainless steel/CVD-
diamond pairs, p’s are virtually velocity independent. For each of dia-
mond/graphite, alumina/graphite, and graphite/graphite pairs, the ou/ov
characteristic is favorable, i.e., positive. For diamond/CVD-diamond and
graphite/CVD-diamond pairs, p’s are nearly temperature independent be-
tween in the range 77 — 293 K. Each p vs T plot for pin materials sliding on
graphite disks has a peak at a temperature in the range 100 — 200 K.

INTRODUCTION

The principal objectives of this research were to advance the theoretical understanding of
low-temperature sliding behavior and to expand the cryogenic tribology data base, par-
ticularly for very hard materials. Hard materials are of interest because of their generally
high load bearing capacities, low friction coefficients, and wear resistance. The emphasis
here is on the frictional behavior of materials of interest to cryogenic applications sliding
against CVD-diamond film and graphite.

Early in the next century, high-temperature superconducting (HTS) technology and cryo-
genics are expected to play key roles in competitive global markets encompassing energy,
information, medicine, transportation, space, and basic science [1]. We have been studying
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the cryotribology of materials relevant to applications in these fields. A notable recent de-
velopment in “new materials” is the remarkable progress achieved in materials fabrication
techniques, e.g., chemical-vapor-deposition (CVD), for synthesizing diamond films. The
CVD-diamond films possess properties very similar to those of bulk diamond, making them
promising for new applications such as in HTS magnet technology. The CVD-diamond
may be usable in HTS magnets as an interface material as a good electrical insulator as
well as a good thermal conductor.

TRIBOLOGY OF DIAMOND AND GRAPHITE

The friction of diamond and graphite has long been known to be low [2]. Gardos and
Soriano (3], Samuels and Wilks [4], Kohzaki, et al. [5], Jia, et al. [6], Bowden and
Hanwell [7] have reported on the frictional behavior of diamond, either natural or CVD-
processed film, and found both to have low values of friction coefficient, typically 0.05-0.1,
with materials exposed in the atmosphere. Mody, et al. [8], Petlyuk, et al. [9], Khopin
[10], Nishiyama, et al. [11], Cameron [12] have reported frictional data for graphite and
graphite-filled composites. Their results indicate values in the range of 0.05 — 0.15."

EXPERIMENTAL PROCEDURE AND MATERIALS

Apparatus The tests were performed with a rotational pin-on-disk tribometer built
to keep specimens at cryogenic temperatures in the range 4.2 — 293K [13]. A rotating
specimen disk slides against three hemispherical specimen pins, symmetrically spaced
on a 5l-mm bolt circle diameter. The specimens are immersed in a cryogen to achieve
and maintain the test temperature: nitrogen (77K) and helium (4.2K). The tribometer
operates at a constant nominal sliding velocity, ranging from 10~7 to 0.1m/s. Velocity
is regulated through a computer-controlled DC servo motor and a set of precision gear
reducers. Normal loads (7.5 — 22.4N) are applied by placing weights on the load ring
which transfers the force through a pulley system. A constantan-chromel thermocouple
imbedded in the stationary disk sample monitors the specimen temperature.

The friction force is measured by strain arms which prevent the rotation of the specimen
pins. The friction force is monitored continuously during test with a computer-based data
acquisition system. Although the use of spherical pins results in highly localized contact
at the sliding surfaces, the friction coefficients obtained under these conditions are valid
because the frictional force is generally independent of the apparent contact area [14].

Materials Table 1 presents a listing of the Table 1: Pin and Disk Materials
materials tested, both in disk and pin form.

The mechanical properties of the materials Pin Materials Disk Materials

are well known at room temperature and to Natural diamond CVD-diamond film
a lesser extent at cryogenic temperatures [15 Graphite Graphite

—17]. It is not the intention of this project to Copper Copper

examine all possible combinations of materi- Stainless steel®  Stainless steelt
als, but rather to test certain combinations Alumina

that were of interest. * AISI440C (pins) and AISI316 (disks).
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Both diamond and graphite are crystalline forms of carbon [18]. Diamond is a covalently
bonded solid; its bonding arrangement comprises four equivalent covalent bonds directed
towards the four corners of a tetrahedron. By comparison, graphite is a layer-lattice ma-
terial consisting of three equivalent 120° bonds in the basal plane with a fourth, hybrid
resonant orbital directed perpendicular to the plane [19]. Graphite’s solid lubricant be-
havior is chiefly due to the easy shear of these interplanar hybrid orbitals. The microwave
plasma CVD method was used to synthesize the diamond-coated films for our cryotri-
bological study. In the microwave method, a substrate is placed in a quartz tube and a
stream of hydrocarbon gas, e.g., methane diluted by hydrogen, is converted into a film
of crystalline diamond by microwave heating. Although silicon is the standard material
for substrates, several other substrate materials are possible, including ceramics (silicon
carbide, tungsten carbide, silicon nitride, alumina) and metals (tantalum, molybdenum,
and tungsten). The diamond is deposited on the substrate at a rate of 0.3 — 0.5 um/h.
The substrate material used in the experiments was silicon.

Pin and Disk Preparation Graphite pins were obtained as 6.35-mm (1/4-in) diameter
rods and turned to their final shape with a radius form tool. Alumina and AISI440C
stainless steel pins were obtained in the form of 6.35-mm diameter balls. Three natural
diamond pieces, each approximately 1/3 carat and of irregular shape were mounted to
allow contact with the specimen disks. The graphite disks were machined from plate
stock and faced with a single point cutting tool to remove surface'irregularities. The disks
were then randomly abraded against 320-grit silicon carbide paper under running water.
This cleaned the disks and provided a consistent surface finish between tests. Since water
does not wet a surface contaminated with organic contaminants, a disk was deemed clean
when a water layer wetted the surface.

Surface Cleaning Before a test, three of the desired pins were mounted in a brass
specimen holder, wiped clean with a swab soaked in methanol, allowed to air dry, and
placed into the apparatus. Each disk was first rinsed with methanol to displace the water
layer and air dried on clean tissue paper. Later, it was placed in an oven at approximately
100°C overnight, to bake away any residual contaminants on the surface.

Testing Two types of measurement were performed: 1) friction (i) vs velocity (v) at
constant temperatures (4.2, 77, and 293 K); 2) p vs temperature (T") at a constant sliding
velocity of 1075 m/s. For each speed setting, a distance of at least 3mm was covered to
allow the measured friction to achieve a steady value [20]. A velocity of 105 m/s used
in p vs T measurements allowed a sufficient number of data points at a given, though
not absolutely constant, temperature and yet limited the total sliding distance of the run
to ~2m. A slowly changing temperature environment could be created in the cooldown
process during cryogen transfer into the test cryostat or in the subsequent warm-up process
" after the cryogen transfer. The friction data could be monitored during either the cooldown
or the warm-up process. Both processes showed essentially the same py vs T behaviors.
However, because of the lower magnitudes of 8 T'/0 ¢, typically of less than 20K /h in the
warm-up processes compared with 60 — 80K /h in the cool-down processes, the warm-up
processes were used. Because a quiescent helium boil-off rate from the test cryostat was
in the range 0.10 — 0.201/h, an initial pool of liquid helium provided ~30 hours for each
1 vs T' measurement sequence.
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RESULTS AND DISCUSSIONS

Tribological data are often unreproducible and sometimes inexplicable. Friction by its na-
ture is very complex. The factors that contribute to a tribological process may be divided
into three classifications: - those we know, those we don’t, and those we can control. The
first is finite, the second may not be, and the third is very finite indeed. The conditions
of tribological experiments are particularly crucial. Although utmost care for consistency
was taken for each experimental sequence, often ambient conditions, e.g., room temper-
ature, air humidity, cleanliness of the air, have influenced the outcome. When natural
(expected) variation of the structures and composition of the materials tested are added
to the equation, large variability in results was sometimes encountered. The data gathered
will be presented according to two classifications: p vs v; and p vs T'. Because of space
limitations, only selected sets of data are presented here.

Friction vs Velocity Figures 1 — 6 show p vs v graphs, each with three plots corre-
sponding to temperatures of 4.2, 77, and 293 K. Each p vs v plot is the arithmetic mean
of two sets of measurement. Data for the two sets are within 10% at all points for all
material pairs. For a given velocity, each point represents the average value of at least 100
data points. The sliding speeds tested ranged from 10~ m/s to 0.1 m/s. For each speed
setting, a distance of at least 3 mm was covered to allow the measured friction to achieve
a steady value. The applied load was 14.3N.

Figure 1 — 3 shows, respectively, data diamond/CVD-diamond, stainless steel/CVD-
diamond, and graphite/CVD-diamond pairs at three temperatures. Data clearly show that
1 at each temperature is virtually velocity independent, confirming a general friction law
on the independence of friction on velocity. Data for diamond/graphite, alumina/graphite,
and graphite/graphite pairs are shown, respectively, in Figs. 4 — 6. Here for each pair,
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0.04 .
01+ -
0.02 -
0 ] ! 1 1 0 i ! 1 ]
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Fig.1 p vsv for diamond/CVD- Fig. 2 p vs v for stainless steel/
diamond pairs. CVD-diamond pairs.
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Fig. 3 p vs v for graphite/CVD-diamond pairs. Fig. 4 p vs v for diamond/graphite pairs.

[ increases with v at all three temperatures. The increase can be attributed to the
continuous creation of wear particles that are later entrapped between the sliding surfaces.
Since graphite is a softer material in comparison with materials like diamond and alumina,
the hard pins plow the surface of graphite, wearing graphite and generating wear particles
during sliding. When the sliding speed is increased, the rate at which these wear particles
are generated is also increased. This results in more wear particles to be entrapped
between the sliding surfaces, increasing p. When graphite pins slide on graphite, again
wear particles are generated, this time from both surfaces. Here, because pins and disk
are of the same material, adhesion also plays a major role.
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Fig. 5 p vs v for alumina/graphite pairs. Fig. 6 pu vs v for graphite/graphite pairs.
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Friction vs Temperature Figures 7 — 10 show p vs T traces, each taken at a constant
velocity of 1075 m/s. For each temperature span, the total sliding distance was ~2m.

Data in Flgs 7 and 8 are, respectively, dlamond/ CVD-diamond and graphite/CVD-
diamond pairs. For the dlamond/ CVD-diamond pair, p is 0.09 at 4.2K and decreases
with temperature to 0.05 at 293 K, remaining constant at 0.06 in the middle range 75 -
225 K. According to the adhesion theory, this pair, because both materials are identical,
should have high values of p [21]. Our results appear to be quite the opposite: it has a
low value of 0.05 for most of the temperature range tested.

Data for the CVD-diamond/graphite pair (Fig. 8) show a fairly constant x (0.07 - 0.08)
with temperature. Although small, ;1 varies somewhat in the temperature range 50 —
250 K. This variation may be attributable to the wear particles of graphite, the softer of
the material pair. As sliding proceeds wear particles are generated and entrapped between
the sliding surfaces, increasing the friction. As the sliding continues, these particles are
either plastically deformed or removed from the sliding path, hence reducing the friction.
This process of wear particles being generated and later eliminated from the sliding surface
could account for the variation in the coefficient of friction. As might be surmised from
the three data points at v = 1075 ms/s-of Fig. 2, the p vs T plot of stainless steel/CVD-
diamond pairs (not shown here) indicates that u increases gradually above 77 K, reflecting
the fact that u is inversely proportional to stainless steel’s hardness.

Data in Figs. 9 and 10 are, respectively, for pins of natural diamond and graphite vs
graphite disks. For the diamond/graphite pa.ir, ¢ is roughly temperature independent
and equal to ~0.04, from 4.2K to ~70K. p increases with temperature in the range ~70
— ~160 K. This increase is attributed to macroscopic stick-slip, typically observed in this
temperature range [22 — 24]. Above ~160K, p decreases, reaching at room temperature a
value roughly the same as that at 4.2K. The graphite/ graphite data (Fig. 10) are similar
to the diamond/graphite data, except here the peak value is ~0.08.
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CONCLUSIONS

We have presented a selection of cryotribology data for diamond (natural and CVD films)
and graphite, all in terms of p vs v plots and p vs T plots. Based on our data, both
presented here and not presented owing to lack of space, we may make the following
conclusions. 1) For natural diamond, graphite, and stainless steel pins vs CVD-diamond
coated disks, p's are essentially velocity-independent. For diamond pins sliding on stainless
steel disks, p is roughly velocity-independent at 4.2 and 77 K, but increases with v at 203 K;
apparently at temperatures above 77K and certainly at 293 K, stainless steel is a “soft”
material in comparison with diamond. 2.) Although for natural diamond, graphite, and
stainless steel pins vs CVD-diamond coated disks, p’s are fairly temperature-independent,
there are subtle variations. In the diamond/CVD-diamond pairs, p is at a maximum
at 4.2K and decreases with temperature. In the graphite/CVD-diamond pairs there is
a variation in g with T in the mid temperature range, due perhaps to wear particles
generated by the graphite pins. 3.) The materials sliding against graphite disks show a
peak frictional coefficient value within the temperature span 100 — 200K. As is the case
with diamond/stainless steel pairs, there is a definite correlation between friction and
material hardness: p is inversely proportional to material hardness. Thus g is higher at
higher temperatures, because hardness generally decreases with temperature.
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ABSTRACT

At moderate and high welding currents,
the most important forces in gas metal arc
welding acting on the molten electrode are
magnetic forces arising from the interaction
between the welding current and its own
magnetic field. These forces drive the dy-
namic evolution of the drop and also de-
pend on the instantaneous shape of the
drop. In this paper, experimentally ob-
served manifestations of magnetic forces
are shown, and a technique for approx-
imating the temporal evolution of these
forces from experimentally measured drops
shapes is reported. The technique provides
quantitative data illustrating the large in-
crease in the magnetic forces as a drop de-
taches from the electrode.

The temporal evolution of the metal drop
geometry during drop detachment in gas
metal arc welding (GMAW) has an impor-
tant effect on the process because the forces
acting on the drop depend on its shape and
they change dramatically over the course of
drop detachment. If the geometric evolu-
tion of the drop is ignored, it is impossible
to quantitatively explain such phenomena
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as the substantial initial velocity a drop has
at the moment it detaches from the elec-
trode. It is also difficult to quantitatively
explain the effectiveness of current pulsing.
As another example, if the geometric evo-
lution of the drop is ignored, it is difficult
to quantitatively explain why some welding
conditions result in the stable, axisymmet-
ric detachment of drops and other condi-
tions do not.

Over a wide range of conditions, the ef-
fects of magnetic forces may be seen act-
ing on drops detaching from a GMAW elec-
trode. A drop detaching at 260 A and 29 V
is shown in Figure 1.* For a 1/16-inch
diameter ER70S-3 electrode in Ar-2%0,,
this current is in the upper end of the glob-
ular transfer region. The distinctly flat-
tened (oblate) shape of the drop is a result
of the magnetic forces acting on the drop.
It will be seen below that when a drop of
approximately the same size detaches un-
der very low-current conditions, the drop is
largely spherical and is not flattened (Fig-
ure 5). Also, although it is not apparent

*The images in Figure 1 and subsequent fig-
ures were obtained using the optical technique de-
scribed in [1]. An arc is present in all of the images,
but it is rendered virtually invisible by the optical
technique.




Figure 1: Drop detachment with constant
current 260 A and 29 V electrode posi-
tive. The electrode is 1/16-inch diameter
ER70S-3 in Ar-2%0;. Note the vertically
flattened (oblate) shape of the drop during
and after detachment.

from the images in Figure 1, the drops ac-
celerate off the end of the electrode at a rate
substantially greater than the acceleration
of gravity. This excess acceleration is due
to the sharp increase of magnetic forces act-
ing while the drop is detaching and due to
the force of plasma flow while the detached
drop is in flight.

The magnetic forces arise from the inter-
action of the welding current with its own
magnetic field as illustrated in Figure 2. If
the current diverges in the drop (as shown
in Figure 2), then downward forces act on
the fluid in the drop, and if the current con-
verges in the drop, then upward forces act
on the fluid in the drop. Unlike gravity,
which acts uniformly in the vertical direc-
tion on the fluid (assuming the density of
the fluid is spatially uniform) and is an ir-
rotational force, the magnetic forces do not
act uniformly and there is a rotational com-
ponent of force acting on the fluid.

At higher currents (~400-470 A), the
heat of the arc causes molten metal to
stream off of the electrode forming a col-
umn of liquid which then breaks up into
drops. The magnetic forces due to the

Figure 2: Magnetic forces in a welding .
drop arise from the interaction between the
welding current and its own magnetic field.

current flowing through this liquid aid
the breakup of this column into drops.
Even without magnetic forces acting, the
breakup of a liquid column will occur due
to mechanical disturbances in the fluid flow
which cause disturbances in the curvature
of the surface of the column. If cur-
rent is flowing in the column, the mag-
netic forces aid the breakup of the column.
At very high currents, the magnetic forces
are apparent in the appearance of rotating
streams of metal as shown in Figure 3 for
480 A and 35 V. At such high currents the
magnetic forces are significant compared to
the inertial forces in the column and slight
asymmetries in the column cause asymmet-
ric radial magnetic forces which move the
column away from its straight line of flow.
It can be shown that such a bend in the
current path also results in azimuthal com-
ponents of the magnetic forces. The combi-
nation of asymmetric radial forces and az-
imuthal forces results in the spiraling mo-




tion of the column as seen in Figure 3. This
motion is known as a kink instability [2].

Figure 3: Drop detachment with constant
current 480 A, 35 V. electrode positive. The
electrode is 1/16-inch diameter ER70S-3 in
Ar-2%0,. Note the spiraling detachment
of drops from a column of liquid metal.

By pulsing the welding current, magnetic
forces may be used to detach drops from
the electrode. The shape of the pulse, its
magnitude, duration, repetition rate (fre-
quency), and the current level between
pulses are all parameters in this process.
An incorrect choice of parameters may re-
sult in an unstable arc, a reduced metal de-
position rate, incorrect base-plate heating,
and/or spatter. Figure 4 shows the results
of applying a pulse having too great an am-
plitude. The magnetic forces overwhelm
the surface tension forces and the detach-
ment process proceeds asymmetrically. A
thin, filamentous neck is violently snapped
to the side resulting in fine spatter. Due to
the violence of the detachment, the main
drop sometimes breaks apart resulting in
.coarse spatter. If the current is not re-
duced immediately after the detachment of
a drop, the heat of the arc will generate a
subsequent small drop (a droplet) and the
magnetic forces will detach it asymmetri-
cally which also generates coarse spatter.
Such a droplet is seen forming in the last
image in Figure 4. In this particular case,
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Figure 4: Drop detachment with pulsed
current 550/40 A, 6 Hz, 2% duty cycle, and
18 V electrode positive. The electrode is
1/16-inch diameter ER70S-3 in Ar-2%0,.
Note the whipping of the drop neck, the
severe distortion of the drop, and the pres-
ence of a small droplet on the electrode at
the end of the sequence which often de-
taches and flies to the side as spatter.

the current is reduced before the droplet
detaches from the electrode and the droplet
is pulled back onto the electrode by surface
tension.

Under certain pulsing conditions, drops
will detach from the electrode with minimal
distortion and no droplets. Such a case is
shown in Figure 5. In this case, the current
pulse imparts enough momentum to the
drop to cause detachment, but ends well
before the drop detaches, thereby avoiding
the formation of droplets. At the time of
detachment, the welding current is 40 A
and the drop is almost spherical. The lack
of distortion of the drop is in marked con-
trast to the distortion of the drop seen in
Figure 1 at 260 A constant current. When
the current is very low at drop detachment,
the magnetic forces do not act violently on
the neck of the drop as seen in Figure 4,
and since the drop is largely undistorted as
it detaches, the probability is low that it
will break apart.

If a current pulse lower than 290 A




Figure 5: Drop detachment with pulsed
current 290/40 A, 5 Hz, 2% duty cycle, and
18 V electrode positive. The electrode is
1/16-inch diameter ER70S-3 in Ar-2%0,.
Note the symmetric detachment of a drop
and the lack of drop distortion.

Figure 6: Drop response with pulsed cur-
rent 280/40 A, 5 Hz, 2% duty cycle, and
18 V electrode positive. The electrode is
1/16-inch diameter ER70S-3 in Ar-2%0,.
The current pulse is insufficient to detach
the drop. Subsequent current pulses will
also fail to detach the growing drop.
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is used, the momentum impulse supplied
by the magnetic forces will not be great
enough to overcome surface tension and the
drop will not detach, as shown in Figure 6.
Without the assistance of magnetic forces,
the surface tension forces, which act to re-
store equilibrium, dominate and overcome
the inertial force of the drop. During the
next several current pulses, the mass of the
drop will be greater and the magnetic forces
will be unable to impart enough momen-
tum to the drop to make it detach. The
drop will continue to grow until gravity,
aided by the disturbances caused by cur-
rent pulses, overcomes the surface tension
holding the drop on the electrode.

The magnetic diffusion time and the
magnetic Reynolds number in a drop of
molten steel on the end of a GMAW elec-
trode are both very small. The very short
magnetic diffusion time indicates that on
the time-scale of drop motion, the diffu-
sion of the magnetic field throughout the
drop is essentially instantaneous. The very
small magnetic Reynolds number indicates
that the magnetic diffusion process is much
faster than fluid convection in the drop.
Therefore, in a gas metal arc welding elec-
trode the magnetic field is unaffected by
the fluid velocity in the drop. Rather, the
distribution of the magnetic field is deter-
mined by the instantaneous geometry of
the current path in the drop and, assum-
ing uniform fluid conductivity, the current
path is determined by factors other than
the fluid velocity.

In (3], the magnetic stress tensor is used
to calculate the total vertically-directed
magnetic force acting on a generalized, ax-
isymmetric drop shape. The motion of the
fluid interacts with the magnetic field only
in that it affects the resulting shape of the
drop and hence the shape of the current
path. Therefore, if the shape of the current




path is known at each instant, the magnetic
stress tensor may be used to calculate the
total vertically-directed magnetic force on
the drop (the sum of the irrotational and
rotational parts).

As a drop attempts to detach from the
solid electrode, a neck forms. The current
density in the drop neck increases and the
divergence of the current increases. Both
phenomena cause the magnetic forces act-
ing on the drop to increase and result in a
measurable acceleration of the drop upon
detachment. The time during which a neck
initiates and collapses is short compared to
the total drop growth time but it is during
this brief time that the magnetic forces are
most important.

During drop necking, the lower part of
the drop is well modeled by a truncated el-
lipsoid and the upper part is well modeled
by a volume formed by rotating a third-
order polynomial about the vertical axis, as
illustrated in Figure 7. Third-order poly-

<— Cubic
Polynomial

Truncated—>
Ellipse

Figure 7: Experimentally-observed necking
drop shape modeled with a truncated ellip-
soid and a polynomial volume.

nomial volumes were chosen to model the
neck because these shapes are completely
defined by the geometrical boundary con-
ditions at the top of the truncated ellipsoid
and the bottom of the electrode.

A truncated ellipsoid is shown in Figure 8

along with the portion of a polynomial vol-
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Figure 8: Stress tensor surfaces.

ume below its waist (its narrowest point).
In [3], the total vertically-directed magnetic
force on a generalized shape is calculated to
be

__BL?
f= 167

por [ [ it rhas] 5255,

where I is the portion of the welding cur-
rent emerging from the drop and j(s) is the
density of this current along the surface s
of the drop. If there is no drop neck, if the
truncated ellipsoid is a truncated sphere,
and if the current density j(s) is taken to
be constant,* then both integrals in Eq. 1

(1)

*No experimental measurements are available in
the literature about the distribution of the current

" density on a GMAW electrode due to the difficulty
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of making such measurements in the harsh environ-
ment of the arc next to the free surface of a drop.
However, observations of drops detaching from the
electrode empirically suggest that a constant j(s)
may be a reasonable approximation {4].




may be solved in closed form. The result-
ing expression is commonly used to com-
pute the total vertically-directed magnetic
force acting on a welding drop:

pol? [1 (asin@)
- 2.1
i 14 . Te +
2

* (1 —<:2osi>)2 o (1+cos<I>)] » @)

where a is the radius of the sphere, 7, is
the radius of the electrode, and @ is the an-
gle describing the portion of the drop over
which current is emerging (& = 0 = no cur-
rent emerges from the drop, and ® = 7/2
= current emerges from the lower hemi-
sphere of the drop).

While a drop is necking—a time when
the magnetic forces increase dramatically—
truncated-ellipsoid and polynomial-volume
combinations are required to model the
shape of the drop, as shown in Figure 7.
The integrals in Eq. 1 cannot be solved
analytically even for these simple approx-
imations of the fluid surface of a necking
drop. Over the surface of the truncated el-
lipsoid, the inner, squared integral may be
solved analytically, but not the outer inte-
gral. Over the surface of the polynomial
volume, the inner, squared integral cannot
be solved analytically (and therefore the
outer integral also cannot be solved ana-
lytically).

Truncated ellipsoids and polynomial vol-
umes were fit to drop profiles observed dur-
ing current pulsing similar to those shown
in Figure 5. The instantaneous vertically-
directed magnetic forces acting on these fit-
ted shapes were then computed numerically
using Eq. 1. Constant current density j(s)
was assumed to cover the entire surface of
the shapes up to the waist of the poly-
nomial volume. Experimentally-measured
current pulses and the corresponding com-
puted vertically-directed magnetic forces

1
1—cos®

2
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are shown in Figure 9.
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Figure 9: Total vertically-directed mag-
netic force during current pulsing with the
Ar-2%0, current emission model.

The forces in Figure 9b show that ini-
tially as a drop elongates in response to the
downward (negative) magnetic force, the
magnitude of the force decreases slightly.
This decrease is because in an elongated
(prolate) drop the current diverges less.
Once a neck begins to form, however, the
magnitude of the magnetic force increases
rapidly. This increase is because the nar-
rowing of the neck results in greater sub-
sequent current divergence. This observa-
tion is not surprising or new since it has
long been known that magnetic forces act
to “pinch” drops off the end of an electrode.
The results shown in Figure 9, however,
represent the first time the temporal evo-
lution of the magnetic force has been com-
puted using close approximations of exper-
imentally measured drop shapes.




By using shape approximations as in Fig-
ure 7, a simple, dynamic model of drop
detachment may be developed, as illus-
trated in Figure 10. Such a model is de-

-
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Figure 10: Illustration of the dynamic
model developed in [4] using truncated-
ellipsoid /polynomial-volume shapes.

veloped in [4] and is compared with exten-
sive measurements of drop detachment ob-
tained from high-speed images of gas metal
arc welding.
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PARTIAL CONTROL OF COMPLEX SYSTEMS
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ABSTRACT

The research deals with the control of complex nonlinear system with a limited number
of manipulated variables. In many chemical processes the number of variables that
make up the specifications and constraints exceeds the number of manipulated variables
available. Furthermore, model information is limited. The goal of our work is to study
the design of the control system and the conditions required to achieve adequate control
for such cases. A Fluid Catalytic Cracker was chosen to illustrate and test our
approach. This paper presents a short overview and summary of our approach and
results.

INTRODUCTION

The fluidized catalytic cracker (FCC) is one of the most important processing systems in oil
refineries. It is a complex system to operate and control, one which is not fully understood, and one on
which the petroleum industry has spent considerable time and research effort over the past sixty years.
The heart of the problem is that there are many more process variables that one needs to control than
there are manipulatable variables with which to do so. This is characteristic of most complex systems
such as oil refineries and chemical plants as well as social systems, even the economy. The other salient
feature of such systems is that their behavior is not well understood. This is true of the FCC; it is
certainly true of the economy.

The goal of the present work is to develop a practical theory of partial control that can be
applied to complex systems. However, to insure that it is a relevant theory, its development has been
closely tied to a significant real-world example, namely, the FCC. Further, this work has been done in
close collaboration with Mobil, one of the major petroleum companies. Our research in this area has
reached the state where its results can be implemented and utilized by industries in many areas. It
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already has led to improvements in the control of FCC's and these have been adopted by industry. It is
the goal of this paper to give an overall picture of the theory and its application to control of FCC’s. For
details the reader is referred to the papers that have already been published under this grant [1-4].

CONCEPTS OF PARTIAL CONTROL

It is not obvious that one can control a complex nonlinear system by only a limited number of
manipulated variables, particularly when the behavior of that system is not completely understood.
Based on our theoretical results and the study of actual complex processes, we have developed an
approach and a theoretical framework as how to choose the manipulated and measured variables for a
control system in order to get the best results. The control ideas underlying this research were
developed and published by Professor Shinnar in two papers [5,6] and were based on his work in
process control in both.academia and industry.

In general, in the design of a control system, one first identifies the set of variables that need to
be controlled, namely, those that are related to product specifications and process operating constraints.

Denote these by Y,; and their number by N.. Next, one identifies a set of suitable manipulated
variables with which to effect this control. Denote these by Uy, and their number by Ny, If N, =N,
then all of the controlled variables can be controlled, at least in principle, to exact set points. We call
this exact control. It is the type of control to which the vast majority of the control literature and
textbooks are devoted. A different situation arises quite often in the control of large, complex systems,
one where N, < N.. Now, not all the Y; can be controlled at exact set points. Instead, we must settle
for something less strict, namely, that these variables are kept within an acceptable operating space, i.e.,
Ypimin < Ypi < Ypimax. We call this partial control. Y. v

The basic idea of partial control is that we O Fast
choose a subset of the controlled variables, Y4, and the Slow v Yo T
manipulated variables, U, which results in a square L
control matrix. This primary control matrix will be
used for exact control of the chosen subset of controlled v v
variables. Which and how many variables are chosen Model Process |Ued | Control
depends upon a number of factors that are discussed < A
below. For many systems an appropriate choice of the
primary matrix will allow us to maintain all the Yy; A4
within the acceptable operating space by adjusting the | Optimizer |
set points of the variables in the control matrix (Fig. 1). Set Points

Choice of this primary control matrix is critical to the Fjgure 1: Block diagram for partial control
success of the overall control. If one has a very good
model, one would feed the measurements of Y; directly
into a2 model based on direct computer control to adjust all U;. This does not allow integral control and
requires a much better model than we normally have.

_ There are several considerations in the choice of the primary control structure. We would like
the primary matrix to be as small as possible. To achieve this, our choice Y4 and U,q must satisfy the
following criteria:

Ucs

A.Dominance
In partial control one chooses a set of measured variables Y4 that are kept by exact control at
chosen set points. If one or more of the output variables of concern Y,; moves out of the desired range,
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one adjusts the set points of Y4 to keep the operation of the process acceptable, both economically and
in terms of product specifications.

It is very important how one chooses this set of measured variables Y4, some of which may be
of no direct interest by themselves. The most important concern is dominance which means that
changing the set point of a measured variable has a strong impact on many or all the process variables of
interest. To do so requires that we have available manipulated variables which have a strong impact on
Yy and Y. A good example is chemical reactor temperature which affects all the kinetic processes just
as climatic temperature affects all biological processes. The difference is that in a reactor we can
control it. Change the temperature and we change almost everything else: the production rate, the yield
or product distribution, even the stability of the operating point. Similarly, interest rates are a dominant
variable in the economy. Raise interest rates and many, many other things change. There are many
other examples.

B. Sufficiency :

It is overly optimistic to believe that a single dominant control loop will lead to acceptable
control of the many important variables that arise in complex systems. This leads to the concept of
sufficiency. How many and what dominant variables must be controlled so that the system is stable and
that all the other variables are maintained within specified limits? What constitutes a sufficient set of
such variables?

It is important to ensure that a process has enough manipulated variables with a wide enough
range of variability to insure that the process can deliver product that meets its quality specs. The
control must simultaneously ensure that process conditions do not violate operating constraints, such as
metallurgical limits, flooding or entrainment flow velocities, etc., which we include in Y,. The control
should also achieve this goal in economically acceptable ways. Since the availability of the
manipulated variables is determined during the design phase, one needs to understand how the design
impacts control. Another important consideration is that of the product specifications. These are
determined externally by market requirements but set many of the constraints on Yy;. This will have a
major impact on the design of both the unit itself as well as the control system. One has to understand
how the design interacts with the specifications in order to come up with an economically acceptable
compromise. Better partial controllability is achieved at the expense of adding more manipulated
variables but these must be chosen to provide the widest possible range of operating conditions at
acceptable cost. '

Our research deals with this important problem and we have developed these criteria for the
FCC. These results are important in developing strategies for better design procedures, and are a good
example demonstrating how basic research in control can lead to better design of chemical processes.

C. Modellability

The choice of dominant variables is itself constrained by the number of manipulated variables
available for control. These must satisfy several criteria, the primary ones being that they have a
significant gain with respect to the dominant variables to be controlled and that they affect these
variables on a suitable time scale.

This leads to the very important question of modellability. To indirectly control a complex
system where anywhere from a dozen to a hundred or more variables are of interest and to do this by
direct control of a small set, say two to six, dominant variables requires a model. This model must
satisfy two criteria:

® How well can the process variables Yy; be related to the dominant variables, particularly in
steady-state? This is the major determinant of how well we can do with respect to constraint
management.

® How well can the dominant variables be related to the manipulated variables? This is a major




1}

determinant of how well we can stabilize and control the primary control structure.
This has to be addressed from system to system; examples will be discussed later. In general full scale
reactors have more complex and less uniform flows and hopefully the variables sensitive to these
variations are not dominant for Y. This is essential not only for control but also for safe scale up.

D. Time Scale of Response

The primary control structure must be chosen so that it responds on a time scale commensurate
with the time scale on which the process variables Yy; respond to disturbances to the system. This time
scales are determined by the design. The designer faces some compromises for complex processes. In
adiabatic processes such as the FCC one introduces intentionally sufficient thermal inertia to allow the
operator to intervene in order to prevent catastrophic instabilities and correct mistakes. In the FCC the
holdup in the regenerator provides this thermal inertia. The reactor has a much faster response which is
beneficial. Fast response in the process industries is often less important than in aerospace.

E. Nonlinearities and Stability
In complex, nonlinear systems assuring stability of the control system is a major concern. Such
systems often exhibit multiple steady-states, some of which are open-loop stable, others which are not.
Input multiplicities and regions of zero open-loop gain further complicate the task of choosing a control
structure. The pertinent nonlinear features of the FCC were analyzed in [2] as part of this program and
- have critical impact on the control strategies.

APPLICATION TO THE FCC

The fluidized catalytic cracker (FCC) was chosen as an example of the kinds of complex
systems encountered in the petroleum and chemical industries which are operated subject to partial
control. As shown in Fig. 2, the FCC consists of two principal units. In the first, the reactor, hot catalyst
is contacted with oil in a fluidized bed. It supplies heat whereby the oil is first vaporized, then cracked
to more desirable products such as gasoline and heating oil. The catalyst is cooled down and
simultaneously deactivated by the formation of coke which is a byproduct of the cracking reactions.
The catalyst is reactivated and reheated by circulating it to the second unit, the regenerator, where it is
contacted with air to combust the coke.

The energy released in the regenerator Stack Gas - Froducts
is recycled back to the reactor by the {to €O boiler) compressor)
circulating catalyst. One important Separator
condition for the operation of the FCC | Regenerator|
is that the heat generated by combusting
all the coke generated equals the heat
. . . .. |Catalyst

absorbed in heating and cracking the oil | Cooler Riser -
feed. Reactor

There are many variables in the

Regenerated

FCC that need to be controlled to a
Catalyst

greater or lesser extent. These include
the fractional conversion of the oil feed
to products, the gasoline yield and its
composition, the Ny and CO levels of Air
the flue gas leaving the regenerator, and

Figure 2;: Schematic Diagram of FCC
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olefin content of the product gas which is used as a feed for alkylation,-to name just a few. There are
but a few variables available with which to exert this control on the appropriate time scale, primarily the
feed rate of air to the regenerator, F, the catalyst circulation rate between the two units, F.y, and the
temperature of the feed, Tg.eq

Some units have a catalyst cooler to allow processing of heavy feedstocks, for coke make in the
FCC is tied to conversion. For highly coking feeds, excess heat has to be removed. Such a cooler
decouples the reactor from the regenerator and changes the control.

In addition to U, modern FCCs have a range of slowly manipulated variables available, such as
catalyst activity and other properties which are controlled by adding and withdrawing catalysts as well as
additives that impact on Y;. [7] reviews how design changes in FCC developed and how they impact on
FCC operation.

There is another aspect of o

design that changes the control of the 1400 | <—ram;%ﬁr>| '
FCC. Historically, most units operated . 05 ﬁNumbers areO2s 34
at regenerator temperatures of 1180 to 1350 ¢ s
1250°F with a CO,/CO ratio between . 5
1.2 to 1.5. This reduces the amount of 1300
heat evolved, allowing higher |Trgn :
conversion. The CO is combusted ina - | [F] 1250 3
CO boiler, but old units often simply s

. . 1200 i
emitted it to the atmosphere. [
Environmental laws forced operations 1150:_ coartial_
of such units to change the operation to ] 1ls
complete CO  combustion and T | S N S T S S S
combustion promoters allowed to 0.48 0.52 0.56 0.6 0.64
practically eliminate CO emission. Air/Oil [Ib air/lb feed]

Today many units operate in full CO Figure3: Ty, vs. Air Rate at Constant T;=1000°F
combustion. This changes the control as
can be seen from Fig. 3 where we plot T, (regenerator bed temperature) versus air rate at constant Ty,
(riser top temperature). For a given air rate and T;; there are two steady states, one in partial and the other
in complete CO combustion.

Fig. 4 gives some options for control

matrices and loops that have been used in the Manipulated Controlled

partial CO combustion regime. For complete Catalyst AB.CD 70 Riser Top .

combustion the only option is to use [Fy , Cirulation Temperature (Tris)

Oa4] which is essential to keep the unit in g:ate) EX g Temp. Rise Across

complete CO combustion. Excess oxygen cat the Cyclones (AT)

varies between 0.5 and 2.0% but aside from

keeping the unit stable has no impact on o Regenerator Dense Bed

either Ty, or Yy;. ' AE Temperature (Trgn)
If we look at Fig. 4, the measured Air ]

variables entering the matrices in partial CO Flow Bro ;T:;ng 'gc',s;:((:?;s

combustion are Ty, Tigm, Tsg (stack gas Rate c y

temperature in the regenerator) and AT (= T, (Fair) p ™o Stack Gas

- Tyz) which is proportional to the excess Temperature (Tsg)

oxygen entering the cyclone. While AT and

T, have been used in the past and have been 0 Excess Oxygen (Ozsq)

preferentially promoted in the control Figure 4: Possible Control Structures for the FCC

literature [8], they have two disadvantages over T,y and Ty They are not dominant and very model
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sensitive, and therefore not predictable
from laboratory experiments. In the FCC
the nature of the reactions are such that
residence time has a small impact.

However, reactor temperature impacts
strongly on all reactions. Therefore,

reactor outlet temperature Ty as well as
inlet temperature Ty strongly impact on

Y- Trix is a strong function of Ty In
the regenerator in partial combustion T,
determines the ratio of CO,/CO as well
as the rate of coke combustion and
therefore C, (coke on regenerated
catalyst). Ty is therefore dominant. In
full CO combustion C, is practically
zero and CO,/CO close to infinity.

1050
1030
1010 F
Tris .
F] 990 4 ;
970 ' / Trgi=1180F
950 :
unstable /:....l.. ’ ' ! t
for A=1 o
below z=0.9 Lo, Relative Activity:
80F R — A=l
comension_ [ —
onversion .o E [ N,
% .
e e, Trgn=1250F
E |state below Lo,
E| this point \ NS
50 A —. IR P
0 1 2 3 4 5 6

z - Relative Coking Rate

Therefore T,y is not dominant as long as
it is high enough.

Figure 5: Sufficiency of Single Loop Control. [Fy,Trg] for
partial combustion; [Fgr,02] for complete combustion.

The dominant variables are therefore Tys and Ty, in the reactor and Ty, in the regenerator. They

are also the only ones of the set that are mode

llable.

While a discussion of the variables requires far more space than we have, we can use this to
illustrate some of the ideas. For example, in partial combustion it is perfectly possible to maintain a stable
operation over a wide range of catalyst properties by one single control loop [Fa, Trgn). This can be seen
from Fig. 5 where we plot Ty vs. relative coking rate (z), as Ty has narrow limits. It has to be maintained
between 900 and 1010°F. Below 850°F part of the feed will not vaporize or crack and at about 1030°F
thermal cracking becomes the predominant reaction. We note that the impact of Far on Ty, is small, so
varying T, allows one to keep Ty within the permissible range. At low relative coking rate, z, the unit
becomes unstable, but a single PI controller can stabilize it. At very low z it loses the steady state and the

only option is a more active catalyst or one that produces more coke.
In full combustion a single control loop [Fay, O] does not a

llow stable operation. We note that

small changes in z will change T such that it falls outside the permissible range. The only option is to

change catalyst activity. Controlling Ty is
here essential. The two loops are equivalent
to a single loop in partial combustion.

While a single loop is sufficient to
maintain the unit stable in partial combustion
(or a 2x2 matrix in complete CO
combustion), it is very limiting for
controlling Yy;. This is illustrated in Fig. 6
where we show some elements of Yy; for the
scheme [(Far, Trgns)s (Feat, Tiis)] for a specific
operating point in partial combustion. We
. note that instead of a line an area of Yy;
becomes accessible. Adding slow
manipulated variables (Ucy) will change the
accessible space to a multi-dimensional
volume. Similar plots can be made for
complete combustion, but here we need three
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Figure 6: Accessible Area of Yp. Partial Combustion .

Control: [(FairsTren)s(Feats Tris)]
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manipulated variables to increase the accessible space of Y; from a line to an area.

In complete combustion there is an additional problem. Even three loops do not allow adequate
control of Ty, for higher coking rates. The only variable that allows control of Ty, over a wide range of z
is catalyst activity. It has a large impact on control in complete combustion whereas its effect is limited in
partial combustion. These problems can be completely overcome by the addition of a catalyst cooler
which allows T, to be adjusted independently both in partial and complete combustion.

Our results show that in partial combustion, in addition to lack of modellability and dominance,
AT (and therefore T;;) has another problem. If AT and Ty are kept constant we can show that increasing z
could cause the unit to crash as at constant Ty and AT increasing z will decrease T, (Fig. 7). If Tyg, will
drop below 1100°F the unit could lose its uppermost steady state. The same is true for the scheme [(Fa,
Tign), (Fear, AT)] proposed by [9]. In that case an increase in z will cause Ty to decrease (Fig. 7). If Ty
goes below 850°F, the unit also loses its steady state. The exact limits strongly depend on the unit and the
catalyst. Thus our results explain the phenomena of crashing due to coking feeds which plagued the
industry until the control scheme [(Fair, Trgn), (Fears Tiis)] Was introduced. Crashing occurred when a heavy
coking feed was suddenly introduced and did not occur in units with well controlled constant feed
composition.

This illustrates an important aspect 1220 R
of our results. Choice of the proper control FREN
matriX is in most cases far more important | 1180 Manl

. . . . rgn E OIS

than the multi-variable algorithm itself. [F] RO [(Feat, Tris)
Further, while in the FCC linear algorithms 1140 [(Feat, Tri )" “Seue.._ (Fair,AT)]
are enough for taking care of wide changes 3 (Fai?‘,,Ts g')s] """" JRRRETIN “ean
in operating conditions and feed 1100 2= e —
perturbations, one must chose the matrix 1060
based on nonlinear considerations. The 1020 3 [(Fair, Trgn), (Feat, AT)]
understanding of the nonlinear feature of | Tris - (Kurihara)
the system is essential. [F] 980 F No steady states

One can not even design the linear 0940 E beyond this point
algorithm itself based solely on the linear T
model for the mafrix. One needs to 075 1 125 15 175 2 225 25 275 3
understand  the impact of the z- Relative Coking Rate

specifications. Thus, the matrix [(Fa,
Tegn), (Fears Tiis)] has a negative relative gain  Figure 7: Impact of Coking Rate on Dominant Variables for
array (RGA). In FCC’s however one Different Control Schemes.

normally designs along the negative diagonal contrary to textbook recommendations. This gives a fast
response to Ty; and allows tight control of it. As Ty;; dominates Y this advantage outweighs the penalty of
operating along the negative diagonal which causes the system to become unstable when one loop opens.
Another important aspect of our results that have significance to other systems is that the controllability of
a system can totally change if changes occur in the system or operating conditions. This can often occur in
reactors due to changes in catalyst properties or changes in Y; due to market requirements.

Thus our results on the FCC give some important insights as to the design of partial control
systems for complex nonlinear systems and raise important challenges for future research. They should
also impact on the way we teach process control. The current work focuses on the impact of the design on
the control and on the minimum information required to design and operate a successful partial control
system. Future work will try to generalize the approach by dealing with other complex systems.

The results are published in a way that indicates that they are useful for a wide range of
processes and should have a much wider impact than just FCC control. A paper on how the results
impact on economic control was recently submitted for publication. For more details, consult
references 1-4.
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ABSTRACT

The paper introduces a method of identification of non-linear systems encountered
in marine engineering applications. The non-linearity is accounted for by a combination of
linear subsystems and known zero-merhory non-linear transformations; an equivalent
linear multi-input-single-output (MISO) system is developed for the identification
problem. The unknown transfer functions of the MISO system are identified by
assembling a system of linear equations in the frequency domain. This system is solved by
performing the Cholesky decomposition of a related matrix. It is shown that the proposed
identification method can be interpreted as a “Gram-Schmidt” type of orthogonal
decomposition of the input-output quantities of the equivalent MISO system. A numerical
example involving the identification of unknown parameters of flow (ocean wave) induced
forces on offshore structures elucidates the applicability of the proposed method

INTRODUCTION

Mathematical modeling of wave-induced forces on offshore structures is a complex technical
problem. Conventionally, the wave forces on structural elements of size that is small compared to
the characteristic wavelength are calculated by Morison’s equation [1]. Selecting parameters for
the Morison’s model which are appropriate for the conditions of a specific site is a delicate
procedure. In this context, it is noted that it is rather difficult to account for the effects of waterline,
body motion, velocity head, and second-order potential. Thus, the validity of the Morison’s force
model and its applicability for describing wave forces on flexible offshore structures have been
questioned in the literature. In this regard, this paper addresses the issue of determining reliable
models of non-linear forces acting on offshore structures by using system identification techniques
in conjunction with possibly available experimental data.

Although the identification of linear systems is a well developed subject and is extensively
used in engineering practice [2], identification of non-linear structural systems and forces is a less
understood scientific area. Several alternative approaches have been proposed in the literature in
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conjunction with structural dynamics applications. Non-linear systems can be identified by using
the Volterra/Wiener representation theory im which the kernels of the associated integrals are deter-
mined from the governing differential equations [3]. In Refs. [4] and [5] the non-linear restoring
force was expanded by using a polynomial basis and the coefficients of this expansion were found
by minimizing the discrepancy between the observed and simulated responses. By representing the
non-linear restoring forces as a set of parallel linear subsystems, the identification of a non-linear
system can be developed by adopting a multi-input-single-output (MISO) linear system analysis
procedure [6,7]. Using this approach, Vugts and Bouquet [8] verified the accuracy of Morison’s
equation based on realistic measurement data. Utilizing the representation of a non-linear struc-
tural system as a collection of linear subsystems, Spanos and Lu [9] addressed the non-linearity
induced by the structure-environment interaction in marine applications; pertinent examples
demonstrated the validity of the identification method. Recently, Zeldin and Spanos [10] proposed
to use a parametric ARMAX procedure to identify the introduced MISO linear systems. The latter
procedure can be especially useful for identification of transfer functions exhibiting sharp peaks;
this feature is quite common for structural systems in marine applications.

In this paper, a new procedure is developed for the identification of non-linear models of
structural systems for offshore engineering applications. Specifically, the non-linear restoring
force is represented as a set of known zero-memory non-linear transformations that are combined
with linear subsystems; it reduces a nonlinear system to a linear MISO system [6,7,9]. This method
is particularly efficient if preliminary studies of the non-linear system may be used to speculate
with regards to the mathematical form of the non-linear force. The identification of the equivalent

-MISO system is performed by assembling a system of linear equations in the frequency domain
with respect to the unknown linear transfer functions of the MISO system. This system is solved by
performing the Cholesky decomposition of the associated matrix. The developed identification
method can be viewed as a “Gram-Schmidt” type of orthogonal decomposition of the input-output
quantities of the equivalent MISO system examined in Refs. [6,7,9]. Pertinent numerical calcula-
tions elucidate the implementation of the proposed identification method for marine engineering
applications.

MODELING OF NON-LINEAR FORCES

Consider the differential equation

’ mig+cqg+kqg = f(u,....q,...), @)
where g(¢) is the scalar variable representing the structural motion, u(t) is the variable describing
the wave kinematics, and f is the random force function which represents the wave induced non-
linear force. Further, m, ¢, and k are the structural mass, damping, and stiffness of the structure,
respectively; the dot signifies differentiation with respect to time. To find the unknown structural
parameters of Eq. (1), the non-linear force is expanded in terms of base functions of the wave and
structural kinematic parameters. In this regard, it is assumed that the system and the excitation
nonlinearities can be expressed as a superposition of zero-memory non-linear transformations and
linear subsystems. Specifically,

FQy gy ) = T lHk(%)fk(u, s Gy er)s )

where H(s) are polynomials, f(«, ..., g, ...) are non-linear zero-memory transformations, and
M is the total number of base tjlcmctions used in the representation of the non-linear excitation
force.

Some preliminary studies may be used to speculate with regards to the mathematical form of
the non-linear transformations of Eq. (2). For example, for a Duffing oscillator under random
excitation u(¢), the non-linear excitation force can be expressed as

flu,...,q,...) = —8q3+u 3
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and the unknown non-linear parameter € can be determined from measurements by using the pro-
posed identification procedure. For an offshore structure with small structural elements, the non-
linear excitation force induced by waves may be represented by Morison’s equation. Specifically,

f(u’ cens g, "°) = ozl|u-—q'|(u—q) + a2ma(l’z—q) +maq.’ (4)
where 0, and o, are unknown drag and inertia coefficients, respectively. Alternatively, a polyno-

mial expansion of the drag force can be used instead of Morison’s equation. That is, the non-linear
excitation force can be expressed as

) I-j i.j . .
flty.ng,...) = Z,- oo Q'+ Oy (- )+ myg . (5)
In this case, the non-linear force is described by M = (I+ 1)(I+2)/2 + 2 parameters.

EQUIVALENT MISO SYSTEM

By substituting Eq. (2) into Eq. (1), the non-linear equation of motion of the structural system
can be expressed as

HO(%)q = Z; lHk(%)fk(u, cees Gy een)s (6)

where Hy(s) = ms™ + cs + k. The proposed identification method rearranges the terms of Eq. (6)
by treating them as the input/output quantities of an €quivalent MISO linear system. Specifically,
the terms ¢ and fi(u, ..., g, ...) of Eq. (6) that are associated with the unknown structural param-
efers are interpreted as the inputs x, of the MISO system. The remaining terms of Eq. (6) are com-
bined into the system output y(¢) . Note that this study uses the terms “input” and “output” (x and
¥) in the context of system analysis terminology, whereas “excitation” and “response” (x and g)
denote physically motivated structural analysis terms. The composed MISO system is described by
the equation

n

o E S = 5, %

where n denotes the total number of the input variables used in the equivalent MISO representa-
tion of the non-linear structural system.

The time domain description of the MISO system of Eq. (7) leads a frequency domain repre-
sentation, as well. Specifically, using Fourier transform in Eq. (7) yields

ZL (Hi (o)X (0) + N(o) = Y(@), )]
where the capital letters denote the Fourier transforms
X() = F{x(8)}, Y(w) = F{y(}, ®)

and the symbol N(w) is introduced to represent the extraneous noise. The MISO system with the
governing equation (8) is schematically shown in Figure 1.

IDENTIFICATION OF THE TRANSFER FUNCTIONS OF THE MISO SYSTEM

It is assumed that the excitation and the response of the non-linear system are stationary
stochastic processes. Correspondingly, the input-output variates of the equivalent MISO linear
system are also stationary processes; their correlation is described by the cross-correlation
function .

inxj('c) = Elx;(0)x(t+7)] (10)

or by the cross-spectral density function
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1 feo i
St (@) = 5= Rep (e dr. (11)

In Eq. (10) E[°] denotes the operator of mathematical expectation. Alternatively, the cross-spec-
tral density function for stationary processes x;() and x J-(t) can be defined as

S, (@) = TELX (@)X, (@)], (12)

where T denotes the length of observation of the processes x;(¢),and ( )* is used to denote com-
plex conjugation. It can be shown that the definitions of Eqgs. (11) and (12) are identical in the limit
as T tends to infinity. In this context, they can be considered as equivalent for an adequately large,
but finite, value of 7.

In conjunction with the preceding comments, Eq. (8) governing the input-output relationship
of the MISO system can be rewritten in the equivalent form

(X'(0), Y() }{E(im)} = -N(w), (13)

where X = {X|, ...Xn}t, H = {H, ..Hn}t, and t( )t denotes, the transposition of the corre-

sponding vectors. Premultiplying Eq. ’(i3) by 2n({X (w), Y(w)} Y/ T and taking mathematical

expectation yield
Sex Sxy {H} = { 0 } (14
Sye Syy| U1 TN

where it is assumed that the noise process N(®) is uncorrelated from the inputs of the MISO sys-
tem. Further, it follows from Eq. (14) that if the observation noise is zero and all non-linear effects
are properly captured by the MISO system, then the vector {H  ~1} is the eigenvector of the
spectral matrix of the vector-process { X ‘(w), Y(w)} corresponding to the zero eigenvalue.

The system of equations (14) can be readily used to determine the unknown transfer
functions of the MISO system. Indeed, the first # equations of the system can be used to find the
vector of the transfer functions H(i®) . The last equation can be utilized to determine the value of
S,y Which represents the influence of the measurement noise and the non-linear terms which were
not included into the MISO system. In this regard it is pointed out that the value Sy  is equal to the
spectral density of the noise. Indeed, by squaring Eq. (13) one can derive

27 fo% X* t H tox Sex S H
S = —{(H),-1}E X,Y = {(H), -1} ¥ ¥ =
P e C RN

. 0
{H" ,—1}{_ }= Syw- (15)
“yN
Upon evaluating the spectral density function S, the cumulative coherence function [6,9] can be
evaluated from the equation
Syn(®) Syy(®@) =S,y

L) =1~ =
e N Y R W
_ The coherence function v, (®) expresses the cumulative linear contribution of the random vector
x(t) to the MISO system output y(z) . This coherence function reflects, in essence, the “goodness”
of the selected model in describing the physical system.

In context with the preceding development, the Gaussian elimination procedure applied to
the system of equations (14) provides a useful interpretation of the proposed method for numerical
evaluation of H(i®). Note that the Gaussian elimination procedure transforms the matrix of Eq.
(14) to an upper triangular matrix. At the step j of this procedure the components of the matrix
located on the j-th column below the main diagonal are eliminated. In this regard, every step of the

(16)
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Gaussian elimination is equivalent to a premultiplication of Eq. (14) by a lower triangular matrix
with non-zero components located on the main diagonal and on the j-th column. Thus, during the
first step of the Gaussian elimination, Eq. (14) is premultiplied by the matrix

1 0.0
Sy /Spx 1O

A= 17
_—S},xl/le‘,cl 0.. 1_
This yields the system of equations
Sy Sxxy - Sxy [[H1
0 szxz;l sz)’;l d H, r= { 0 }, (18)
“yN
I 0 Sy - Syy;l_ -1
where § =Sy, /S x, - In this manner, during the j-th step of the Gaussian elimi-

Xl ; ) S5 . . . T
nation, the 8ystem 6Fequation’dbtainéd at the end of the previous (j— 1) step is premultiplied by
the matrix

10 .. 0 .. 0
L_|00 1 0 (19)
PTL0 0 =S, i 1/Seaior e O

0 0 o =Sy i 1/Sxpijct - 1

Then, the Gaussian elimination procedure can be formalized as a prer—nultiplication of Eq. (14) by
the matrix

A=AA . Af. (20)

Since all matrices A ; in Eq. (20) are lower triangular, the assembled matrix A is also lower trian-
gular. Also, note thaf all elements of the main diagonal of the matrix A are equal to 1. The system
of equation obtained after completion of the Gaussian elimination can be written as

-
-1 ~Syn

where S is the upper triangular matrix.

In this regard it is pointed out that Eq. (21) can be obttainegl directly from Eq. (13) by pre
multiplying it by the vector 2m({X’, YY) /T = 2n(A™{X', Y}) /T and taking mathematical
expectation. Note that the matrix S of Eq. (21) can be viewed as the cross-spectral density matrix
of the vector-process {X', y}' and the vector-process {x’, y}'. Therefore, it can be concluded from
the triangular form of S that the process X, is uncorrelated from any of the processes x; for j </,
and the process y is uncorrelated from the vector-process x . Further, the spectral density matrix of
the vector-process {x', 3} can be found from the equation

-~

S = @E[{X} (%, ?}] = A[S’Q‘ SH} ah® = §a"". (22)
Y

yx Uyy

3 T
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Since both matrices S and (A")” are upper triangular, the matrix S¢3 54 is also upper triangular.
Moreover, the matrix Sy, 53 is a symmetric spectral density matrix of a random vector; it is a
diagonal matrix. That is, the random vector-process {X,y} is a vector-process with uncqrrelated
components. Also, note that since the elements of the main diagonal of the matrix (A" are all
equal to 1, the main diagonal of the matrix S5 51 is identical to the main diagonal of the matrix
S. That is, upon implementing Gaussian elimination on Eq. (14), the elements of the main diago-
nal of the obtained matrix S represent the spectral density functions of the corresponding orthogo-
nalized processes.

In conjunction with the preceding developments, it is pointed out that the Gaussian elimi-
nation procedure of the system of equations (14) is equivalent to a “Gram-Schmidt” type of
orthogonal decomposition of the random vector-process {x, y} ; this approach was previously
pursued in Refs. [6,7,8,9] for identification of the MISO system transfer functions H j(i ®).

Finally, it is noted that the matrix A can be determined in a more efficient manner, from a
computational standpoint, by using the Cholesky decomposition of the matrix of Eq. (14). Indeed,

Eq. (22) yields
-1 I 1%
. =A S_,_:(S_,_,A ):LL, 23
Sie Sy ( J{z,y}) J @) 23)

where L is the lower triangular matrix of the Cholesky decomposition. Since the Cholesky decom-

position is unique, one finds )
-1
L=A"[S ' 24
/ &5 (24)

Note that the elements of the main diagonal of the matrix L represent the square root of the spec-
tralt density functions of the corresponding components of the orthogonalized vector-process
{x,5}.

Upon evaluating the transfer functions of the equivalent MISO system by solving equation
(14) with the use of the Cholesky decomposition procedure, the unknown structural parameters of
the non-linear model can be obtained by using a curve-fitting procedure over the frequency range
of interest. Several computational issues of the developed identification method warrant additional
remarks. First, the introduced equivalent MISO and the ordering of its components must be
selected based on a physical model which makes use of the available knowledge regarding the non-
linear structural behavior. A physically motivated model can provide mathematical forms for the
base functions of Eq. (2), or indicate the most expeditious expansion of the non-linear excitation
force into a series of functions in a statistically equivalent sense. Note that the components that
better describe the system physics correspond to the higher value of the coherence function and
should be assigned to the first elements of the vector x. Second, the proposed identification
method can be sensitive to the error of estimating the power spectral density functions. It is a
common practice in linear spectral analysis to use an appropriate window to reduce the effect of
leakage in spectral estimation. Further, overlapping and zooming can be applied to the estimation
process to recover the information lost during windowing [11]. Note that a biased estimation of the
corresponding spectral density functions and inadequate MISO system representation may yield a
matrix S, (@) which is not positive definite for certain frequencies. Finally, it should be noted that
noise may be induced during the measurement. The proposed method relies on the assumption,
which is quite reasonable in most circumstances, that the noise is statistically independent from the
structural excitation and response quantities; filtering techniques must be applied to reduce this
noise as much as possible.

S-E-E S-?.:y

NUMERICAL EXAMPLE

To illustrate the application of the proposed method, a single-degree-of-freedom system
excited by a wave force is considered. The wave force is modeled by Morison’s equation. Thus, the
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motion of the system is governed by the equation

mg+cq+kqg = of|lu—g|(u—g)+oa,m,(h—§)+myg. . (25)
The numerical values m = 100,¢c = 1,k = 025, m, = 10, o;; = 0.9,and o, = 1.25
are used. This structure has system natural frequency ®, = ~k/m = 0.05, and damping ratio

{ = 0.1. The Gaussian surface wave elevation is generated consistently with the Pierson-
Moscowitz spectrum [9] corresponding to a wind speed of 25.74 m/s, using a superposition of
sinusoids at 1000 frequency points uniformly spaced in the interval [0, 1.5] rad/sec. The horizontal
wave velocity and acceleration at a depth of 10m in a “deepwater” location are computed using
linear wave theory. A steady current of 0.5 m/s is superimposed on the velocity at the same
location. Note that the assumption of an infinite water depth and of linear wave theory are adopted
for simplicity and the proposed identification algorithm does not hinge upon these assumptions.
Figure 2 shows the time histories, one-sided power spectra, and probability density functions of the
water particle velocity and the displacement response. The low frequency response and the non-
Gaussian distribution of the response are clearly discernible.

For the considered example the values of the parameters o/; and o, are assumed to be
unknown and are identified based on the simulated data. The base functions are selected as
lu—4l(u—¢) and u—¢. The following decomposed system is derived: x;, = [u—gl(u—4),
X, =U—-§, y=(m-my)§ +cqg+kq, H(in) = o;, and H,(i®w) = o,m,. Results of
identification are shown inaFigure 3. The transfer functions H,(i®w) = o; and H,(i®) = a,m,
are found to be constant; the parameters are obtained as @; = Real(H;(®)) and
&, = Real(H,(®))/m,, accordingly. The broken lines represent the true parameters, o; and
ol,. The averaged parameters are &; = 0.896 and &, = 1.231. Note that beyond the cutoff
frequency (@ = 1.5 rad/sec) the identified values are of no interest. Shown in Figure 4 are the
cumulative coherence functions associated with the SISO system having the input x; and with the
MISO system with the inputs x, and x,. Full frequency range is displayed, although only the
range of [0, 1.5] rad/sec is to be observedz. The coherence functions in Figure 4 provide a measure
of the validity of the decomposed system and indicates the confidence with respect to the identified
transfer functions. Indeed, a quantitative error analysis can be pursued to relate the confidence
limit of an identified parameter to the coherence of its associated transfer functions. Also, it was
found that the developed identification method is quite robust, with respect to adding noises to the
observed excitation and response processes, within the frequency range containing the frequencies

which are significant for describing waves and structural behavior.

CONCLUDING REMARKS

Method of identification of non-linear structural systems has been developed. It is based on
the decomposition of system nonlinearities in terms of base functions, and on subsequent
treatment of these base functions as input-output variables of an equivalent MISO linear system.
The transfer functions of the MISO are determined by solving a system of frequency domain
equations with the use of the Cholesky decomposition. The numerical example involving identifi-
cation of the parameters of a non-linear wave force on the offshore structure demonstrates the
applicability and usefulness of the proposed identification method.
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ABSTRACT

Nonlinear diffusion of electromagnetic fields in superconductors with ideal and gradual.
resistive transitions is studied. Analytical results obtained for linear and nonlinear polarizations
of electromagnetic fields are reported. These results lead to various extensions of the critical
state model for superconducting hysteresis.

I. INTRODUCTION

It is well-known that type-II superconductors exhibit magnetic hysteresis which is caused by the
pinning of the motion of flux filaments. The critical state (Bean) model has been proposed to treat the
magnetic hysteresis of hard superconductors [1]-[2]. This model is based on the assumption of ideal (sharp)
resistive transition which is described by step-wise E vs. J relation. This assumption leads to the nonlinear
diffusion equation which admits simple analytical solutions for 1-D flux configurations. It has been
gradually realized that the critical state model has some intrinsic limitations. First, this model leads to
the explicit analytical results only for 1-D flux distributions and linear polarizations of external magnetic
fields. Second, the critical state model does not account for gradual resistive transitions exhibited by
actual superconductors. There are many publications in which extensive efforts are made to further
generalize the critical state model. The intent of this paper is to summarize the recent contributions
[3]-[7] of the author to this area.

II. NONLINEAR DIFFUSION IN SUPERCONDUCTORS WITH IDEAL RESISTIVE TRANSITIONS

Ideal resistive transitions are described by nonlinear Ohm’s law illustrated by Figure 1. According
to this law, any electric field, however, small, will induce full (critical) current density j. to flow.

Consider a superconducting cylinder of arbitrary cross-section (Figure 2a) subject to uniform field
B.(t) whose direction does not change with time. As the time varying flux enters the superconductor, it
induces screening (shielding) currents of density %j.. The distribution of these superconducting screening
(shielding) currents is such that they create the magnetic field which at any instant of time completely
compensates for the change in the external field § B, (t) in the region interior to superconducting currents.

It is clear that 0.B.(t) changes its sign as B.(t) goes through its extremum values. This results in a
reversal in the direction (polarity) of superconducting screening currents values. By using this fact, the
essence of the critical state model can be summarized as follows.
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Each reversal in the external magnetic field results in the formation of a surface layer of supercon-
ducting screening currents. This layer extends inward with time until another reversal (extremum) value
of the external field is reached. At this point, the inward progress of the previous superconducting current
layer is terminated and a new inward extending current layer is formed. The previously induced layers of
persisting superconducting currents stay still and they represent past history of the temporal variations
of the external field. This past history leaves its mark upon future distributions of superconducting

currents.
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Figure 1. Nonlinear Ohm’s law.
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Figure 2. Superconducting cylinder subject to external field.

Thus, it can be concluded that at any instant of time there exist several (many) layers of persisting
superconducting currents (see Figure 2b). These persisting currents have opposite polarities (directions)
in adjacent layers. The interior boundaries S} and Sj of all the layers (except the last one) remain still
and they are uniquely determined by the past extremum values of Be(t). The last induced current layer
extends inward as the external field changes in time monotonically.

The magnetic moment, M, of the superconductor is related to the distribution of the superconducting
screening currents as follows:

i1 = [ [ i@, | 8)
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where the integration is performed over the superconductor cross-section.

In general, this magnetic moment has z- and y-components. According to (1), these components are
given by the expressions:

1.0 = [ [vitwas, w0 =- [ [ ziwds. @

1t is apparent from the previous discussion that the instantaneous values of M_(t) and M,(t) depend
not only on the current instantaneous value of the external field B, (t) but on the past extremum values of
Be(t) as well. This is because the overall distribution of persisting superconducting currents, j, depends
on the past extrema of B.(t). Thus, it can be concluded that the relationships Mz(t) vs. B.(t) (and
My (t) vs. B.(t)) exhibit discrete memories which are characteristic and intrinsic to rate independent
hysteresis.

It is clear from the above description of the critical state model that a newly induced and inward
extending layer of superconducting currents will wipe out (replace) some already existing layers of per-
sisting superconducting currents if they correspond to the previous extremum values of B,(t) which are
exceeded by a new extremum value. In this way, the effect of those previous extremum values of B,(t)
on the overall future current distributions will be completely eliminated. According to (2), the effect of
those past extremum values of the external magnetic field on the magnetic moment will be eliminated
as well. This is the “wiping out” property of the superconducting hysteresis as described by the critical
state model.

Next, we proceed to the discussion of the “congruency” property. Consider two distinct variations of
the external field, BY (t) and BY (t). Suppose that these two external fields have different past histories
and, consequently, different sequences of local past extrema. However, starting from some instant of
time they vary back-and-forth between the same reversal values. It is apparent from the description
of the critical state model and expressions (2) that these two identical back-and-forth variations of the
external field will result in the formation of two minor loops for hysteretic relation Mz (t) vs. Be(t) (or
My(t) vs. B.(t)). It is also apparent from the same description of the critical state model that these two
back-and-forth variations of the external field will affect in the identical way the same surface layers of a
superconductor. Unaffected layers of the persistent superconducting currents will be different for Bgl)(t)
and B® (t) because of their different past histories. However, according to (2), these unaffected layers
of persistent currents result in constant in time (“background”) components of the magnetic moment.
Consequently, it can be concluded that the same incremental variations of B") (t) and B® (t) will result
in equal increments of M, (and M,). This is tantamount to the congruency of the corresponding minor
loops.

The experimental testing of the “congruency” and “wiping out” properties has been recently under-
taken [8] and it has been found that these properties are in good compliance with experimental data for
tested superconductors.

It has been established [9],[10] that the “wiping out” property and the “congruency” property con-
stitute the necessary and sufficient conditions for the representation of actual hysteresis nonlinearities by
the Preisach model. Thus, the description of the superconducting hysteresis by the critical state model
is equivalent to the description of the same hysteresis by the Preisach model, which is defined as follows:

—M(@) = / f (2, B) o Be (£)dexdB, 3)
a>p

where: M(t) can be z- or y-component of the magnetic moment, negative sign in (3) accounts for
diamagnetic nature of superconductor, 4,8 are elementary hysteresis operators which are represented




by reétangular loops with & and S as the “up” and “down” switching values, respectively; the function
(e, B) is not specified in advance and should be determined from matching first-order transition curves
(10]. ’

The question can be asked “What is to be gained from the above result?” The answer is as follows.
There is no readily available analytical machinery for the calculation of the interior boundaries of su-
perconducting current layers for specimens of arbitrary shapes. For this reason, the critical state model
does not lead to the mathematically explicit results. The application of the Preisach model allows one
to circumvent these difficulties by using some experimental data. Namely, for any superconducting spec-
imen, the “first-order transition” curves can be measured and used for the identification of the Preisach
model [10] for the given specimen. By using these curves, complete prediction of hysteretic behavior of
the specimen can be given at least at the same level of accuracy and physical legitimacy as in the case of
the critical state model. In particular, cyclic and “ramp” losses can be explicitly expressed in terms of
the first-order transition curves [10].

III. NONLINEAR DIFFUSION IN SUPERCONDUTORS WITH GRADUAL RESISTIVE
TRANSITIONS (LINEAR POLARIZATION)

Actual resistive transitions of superconductors are gradual and they are usually described by the

“power law” )
E= (]/k)nr (n > 1), (4)

where E is an electric field, j is a current density, and k is the parameter which coordinates the dimensions
of both sides of the last equation.

The exponent “n” is a measure of the sharpness of the resistive transition and it may vary in
the range 7-1000. At first, the power law was regarded only as a reasonable empirical description of
the resistive transition. However, recently there has been a considerable research effort focused on the
theoretical justification of power law (4). In this paper, power law (4) is used as a constitutive equation
for superconductors.

It is easy to show that this constitutive relation leads to the following nonlinear diffusion equation
for the current density:

o2Jn o0J
T2 = Hok™ =0 (5)
We shall first consider the solution of this equation for the following boundary and initial conditions:
J(O,t)=ct?, (t20,p>0), (6)
J(z,0)=0 (z>0). (7

By using the dimensionality analysis, the self-similar solution to the initial-boundary value problem (5)-
(7) can be found. For n > 7, this self-similar solution can be written (with sufficiently high accuracy) as
follows {3]:

=z y1/(n-1) . m
J(Z,t) = {Ctp (l—ﬁ') , if z<dt™, (8)
0, if z > dt™,
where
d = \/(nc*)/[pokmm(n — 1)]. ©

The close examination of self-similar solution (8) leads to the following conclusion: in spite of the
wide range of variation of boundary conditions (6) (see Figure 3), the profile of electric current density
J(z,t) remains approximately the same. For typical values of n, this profile is very close to a rectangular
one. This suggests that the actual profile of electric current density will be close to a rectangular one
for any monotonically increasing boundary conditions Jo(¢) = J(0,t). Thus, we arrive at the following
generalization of the critical state model.
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Figure 3. Boundary conditions (6) for various p.

Current density J(z,t) has a rectangular profile with the height equal to the instantaneous value Jo(t)
of electric current density on the boundary of superconductor (see Figure /). Magnetic field H(z,t) has
a linear profile with a slope determined by instantaneous value of Jo(t). |
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Figure 4. Generalization of the critical state model.

To better appreciate the above generalization, we remind that in the critical state model the current
has a rectangular profile of constant (in time) height, while the magnetic field has a linear profile with
constant (in time) slope.

For zero front zo(t) of the current (or magnetic field) profile, we have:
Ho(2)
Jo(t)

To find Jo(t) in terms of Hy(t), we multiply (2) by z and integrate from 0 to zo(¢) with respect to z and
from 0 to ¢ with respect to t. After simple transformations, we arrive at the following expression:

(10)

20 (t) =

zo(t) t
k™ / 2J(z,8)dz = / Jp(r)dr. (11)
0 0
By using the rectangular profile approximation for J(z,t), we obtain
kK" t
Ll w00 = | B (12)
0




By substituting expression (10) into (12), we find

n 2
tuk” 4 [“Ji((g] = 73(0)- (13)

By integrating equation (13), we can find the expression for Jo(t) in terms of Ho (t), which, after substi-
tution into (10), leads to the following formula for zo(t) in terms of the boundary values of the magnetic
field Ho(2):

1 [2(n+l) (14)

1/(n+1)
20 (t) = HO (t) Lo kn ]

t
/ Hg"(r)d'r
0

1t is instructive to point out that nonlinear diffusion in superconductors with gradual resistive tran-
sitions may exhibit a peculiar (anomalous) mode which does not exist in superconductors with ideal
resistive transitions. This is a “standing” mode. In the case of this mode, the electromagnetic field on
a superconductor boundary increases with time, while the region occupied by the electromagnetic field
does not expand.

The “standing” mede is the exact solution of the nonlinear diffusion equation (5) which corresponds
to the following initial and boundary conditions:

1

(n=D)pok™(z0—2)2 | *-T

J(z,0) = { [ et ] , f0<z< 2, (15)
0, if z > 2,

_ ‘ nz2 n—1
Jo(®) = J(0,8) = [28: +i))7‘:2’:2 _°t)] yt > to. (16)

The standing mode solution itself is given by the expression [6]:

1

(n=Duok™ (20—2)%] 7T

J(z, t) = { [ n2(n—‘if:)n(t?—t‘; ] ? if0 Sz< 2, (17)
0, if z > 2,

. This solution is illustrated by Figure 5.

I(z,t) %

v » Z
Z 0
Figure 5. “Standing” mode.

The origin of the “standing” mode can be elucidated on physical grounds as follows. Under the
boundary condition (16), the electromagnetic energy entering the superconducting material at any in-
stant of time is just enough to affect the almost uniform increase in electric current density in the region
(0 < z < 2p) already occupied by the field, but insufficient to affect the further diffusion of the field into
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the material. Mathematically, it is clear that the origin of the “standing” mode is closely related to the
fact that in the case of nonlinear diffusion equation (5) one deals with “finite support” solutions, that
is with the solutions which have finite zero front. In the case of linear diffusion, the zero front is always
infinite.

IV. NONLINEAR DIFFUSION IN SUPERCONDUCTORS WITH GRADUAL RESISTIVE
TRANSITIONS (NONLINEAR POLARIZATIONS)

Most of the literature on the critical state model is concerned with scalar superconducting hystere-
sis. This is because the study of vector hysteresis requires the investigation of nonlinear diffusion of
electromagnetic fields into superconductors for the case when these fields are not linearly polarized. This
is a very difficult analytical problem that requires the solution of coupled nonlinear partial differential
(diffusion) equations. It turns out that this problem can be attacked as follows. First, we consider
the case of circular polarization of electromagnetic fields. In this case, the exact analytical solutions
of coupled nonlinear diffusion equations can be found due to the high degree of symmetry associated
with this polarization. Then the case of arbitrary polarization is treated as perturbation of the circular
polarization.

To start the discussion, consider a plane circularly polarized electromagnetic wave penetratmg su-
perconducting half-space z > 0. This implies the following boundary conditions.

E.(0,t) = E,, cos(wt +7),
Ey(0,t) = Ep sin(wt + 1), (18)

Ez(00,t) = Ey(o0,t) = 0. (19)

The distribution of electric field E in half-space z > 0 is governed by the coupled nonlinear diffusion
equations:

0%E,

2 #oa[g( EZ + E2)E,], (20)
8%E 0

622y = #05[0( EZ + E7)Ey], (21)

where according to (4)
o (, [E2 + E2) = o(E) = kEY™1. (22)

It turns out that exact (periodic in time) analytical solution to the boundary value problem (18)-(22)
can be found [4]. This solution has the following form:

Ey(z,t) = En(1—- —0) o cos[wt + 8(2) + 11, (23)
Ey(z,t) = En(1 - —0) * sinfwt + 8(2) + 7, (24)
where z < z9 and
o 2n(n +1)(3n +1)2
TV Voo =1)
m = kE", (25)
0(z) = o"'In(1 — z/2), (26)




2n 2n(n +1)
! — u_‘/ .
“=n-1v ¢ N-1 @7)

For z > zp, the electric field is equal to zero.

The remarkable property of the above solution is the fact that the circular polarization is preserved
everywhere within the superconducting medium. As a result, there are no higher order time harmonics
of the electromagnetic field anywhere within the medium despite its nonlinear properties. This fact can
be easily understood on the physical grounds if we take into account the rotational symmetry of the
boundary value problem (18)-(22).

Next, we consider the nonlinear diffusion of the electromagnetic field for the case when the electric
field on the boundary is specified as follows:

E.(0,t) = Ep[cos(wt + ) + efz(2)],
Ey(0,t) = Ep[sin(wt +7) + efy(t)], (28)
where ¢ is some small parameter, while f.(t) and f,(t) are given periodic functions of time. It is apparent

that this case can be construed as a perturbation of the circular polarization. We shall look for the
periodic solution in the form:

E.(2,t) = EX(2,t) + eez(2, 1),
Ey(z,t) = Eg (2,t) + eeyl(z,t). (29)

By using the machinery of perturbation technique, it can be shown [5] that E2 and Eg coincide with the
“circular polarization” solution (23)-(27), while e; and e, satisfy the following equations:

d%e;(z,t) z.2071/14+n
822 —yoam(l—%) 52[( 2n

1 2 cosfwt + 20(:)]Jealart) (30)

l1—-n
2n

+

+ sin[2wt + 26(2)]ey(2, t)] )

po(1 - :—0)2% [1 — " sin[2wt + 20(2)]es(2, ) (31)
1

2n
1+n n
+( S — = cosfaut + 20(2)]) ey(2,2)] -
Equations (30) and (31) are coupled linear partial differential equations of parabolic type with a variable
in time and space coefficients. To find the periodic solutions of these equations, we introduce new complex
valued state variables:

o(z,t) = ez(z,t) +iey(2,t),
¢(Zat) = ez(z’t) -iey(z1t)1 (32)

and the following Fourier series expansions for them:

QD(Z,t)= Z ¢2k+1(z)ei(2k+1)wt’ (33)
k=—c0
e 3
PY(z,t)= D oy (2)elGETIVL ‘ (34)
k=—o0

121




Here, it is tacitly assumed that f;(¢) and f,(t) (and with them ¢(z,t) and 9¥(z,t)) are functions of
half-wave symmetry.

By using (32), (33), and (34) in (30) and (31), the following equations for @or4+1 and ¥or4q can be
derived [5]:
zy2d? Por41
(1 zo) dz?

= ixor41 [@p2r41 — (1 — %)iza”dizk—l] ) (35)

z 2 Prfo—1 _
(1 - ;;) dz2
)—i2a"

= ixo—1[ath2r—1 + (1 - % P2k41] (36)
(k=0,+1,%2,..),

where

1+n 1-n
a=1—0— Xetrr=(2k+Dwpoom——. (37)

Thus, the problem of integration of partial differential equations (30)-(31) is reduced to the solution of
infinite set of ordinary differential equations with respect to Fourier coefficients ¢or+1 and ¥or—31. The
remarkable property of these simultaneous equations is that they are only coupled by pairs. It allows
one to solve each pair of these coupled equations separately. After war41 and tsr—1 are found, we can
compute ¢(z,t) and 9(z,t), and then e, (z,t) and ey(z,t).

A solution of coupled equations (35)-(36) can be found in the form:
P2r41(2) = Agpgr (1 - ;—O)ﬁ,
z —ionl?
Yor—1 = Bor—1(1 — %)ﬁ 2 (38)

and details of calculations of 8, Aoy and Bar_j are given in [5].

It is easy to show [5] that in the important case of elliptical polarization, when
fz(t) =coswt, fy(t) = sinwt, (39)

only the first (k = 1) pair of equations (35)-(36) must be solved. This means that only first and third
harmonics are not equal to zero.
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ABSTRACT

This paper reviews several coupled theoretical and experimental investigations of the effect
of microstructure on momentum transport in concentrated suspensions. An expression to
predict the apparent suspension viscosity of mixtures of rods and spheres is developed and
verified with falling-ball viscometry experiments. The effects of suspension-scale slip (rel-
ative to the bulk continuum) are studied with a sensitive spinning-ball rheometer, and the
results are explained with a novel theoretical method. The first noninvasive, nuclear mag-
netic resonance imaging measurements of the evolution of velocity and concentration pro-
files in pressure-driven éntrance flows of initially well mixed suspensions in a circular
conduit are described, as well as more complex two-dimensional flows with recirculation,
e.g. flow in a journal bearing. These data in nonhomogeneous flows and complementary
three-dimensional video imaging of individual tracer particles in homogeneous flows are
providing much needed information on the effects of flow on particle interactions and ef-
fective rheological properties at the macroscale.

INTRODUCTION

Many industrial processes include the transport of suspensions of solid particles in liquids, such as coal
and other solid feedstock slurries. Oil, gas, and geothermal energy production rely on the transport of sus-
pensions such as muds, cements, proppant, and gravel slurries in the drilling and completion of a well. Sus-
pensions are also found in high-energy-consumption industrial processes such as found in pulp and paper
manufacturing. The complex rheological response of suspensions often limit the efficiency of the design of
such processes, causing loss of productivity, increased cost, and increased energy consumption. Because of

124




the importance of particulate two-phase flows in the applications described above, the study of suspension
rheology remains an important technical research topic for the Department of Energy.

This overview of our recent research supported by the Department of Energy, Office of Basic Energy
Sciences, will focus on flow of suspensions of relatively large particles in which colloidal and inertial ef-
fects are negligibly small. There is growing evidence that even in this restricted range of flows, the rheology
of a suspension with a nondilute particle concentration cannot be characterized by a material function. In-
stead, the microstructure of the suspension determines the overall macroscopic properties, and the flow his-
tory of the suspension determines aspects of the microstructure. Advances in the ability to predict the
rheological response of concentrated suspensions depend on answering three broad questions: 1) How does
the microstructure of a suspension affect the rheological properties? 2) How do boundaries, such as walls,
affect the microstructure and properties? 3) How does the macroscopically imposed flow field affect the mi-
crostructure of a suspension? Aspects of these questions are being addressed in our work.

In the following section we will explore the first question by discussing the use of falling-ball rheometry
as a means to circumvent the shear-induced changes in microstructure that can be encountered when using
conventional rotational devices to measure suspension viscosity. We will discuss falling-ball rheometry
used to determine the apparent viscosity of a suspension of particles of two shapes. In the third section we
will discuss experimental and theoretical aspects of spinning-ball theometry in otherwise quiescent suspen-
sions and show that this can provide a sensitive measure of slip at the surface of a particle.

The fourth section of this paper focuses on efforts to develop capability to predict the evolution of con-
‘centration and velocity profiles of an initially well mixed suspension as it demixes when subjected to non-
homogeneous shear flows. If the local concentration is known, one can then use the falling-ball information
to determine the local viscosity in a flow field. Global behavior can then be determined by incorporating a
spatially varying viscosity field into the usual balance equations. We will illustrate the existence of flow-
induced microstructural changes with data on the time evolution of concentration and velocity profiles in
suspensions undergoing flow in pipes and between counter-rotating eccentric cylinders (journal bearings).
When the suspended particles are small in comparison to the characteristic dimensions of the flow appara-
tus, steady-state concentration and velocity profiles are in good agreement with predictioins of the shear-
induced migration model [1,2]. However, another avenue to modeling particle migration is to use a kinetic
theory approach, which has been applied successfully in granular flows [3,4]. In this theory the intensity of
the velocity fluctuations, caused by particle interactions, is characterized by a ‘granular temperature’ anal-
ogous to the temperature in classical kinetic theories and governed by a balance of fluctuation energy. Under
some situations this approach leads to the same balance equations as with the first model, but with a hydro-
dynamic diffusion that can be determined in homogeneous flow fields. We will describe experiments where
we use particle tracking techniques, originally developed in falling-ball studies, to determine the granular
temperature of various suspensions undergoing homogeneous flow between parallel moving belts.

FALLING-BALL RHEOMETRY IN COMPLEX SUSPENSIONS

In previous work, we have shown that falling-ball theometry is an excellent tool to probe the rheological
properties of a suspension without significantly changing the properties through the very act of measuring
them. Unlike conventional viscometers, which employ flow fields that tend to influence the microstructure
of the suspension, falling-ball rheometry can be used to determine the macroscopic viscosity of a suspension
with little effect on the microstructure [5]. This is especially useful for suspensions of particles with aspect
ratio greater than one, whose alignment is especially sensitive to the flow field. We have recently begun to
use falling-ball rheometry to study suspensions of particles with a mix of shapes.

Most investigations on the rheology of concentrated suspensions have focused on monodisperse sus-
pensions of either spherical or rodlike particles. In practice, most suspensions contain particles that are poly-
disperse both in size and shape. Only a limited number of studies have been devoted to the problem of size
polydispersity in suspensions of spherical particles, and even less is known about the behavior of suspen-
sions composed of particles of different shapes.
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Farris [6] develop a model for the viscosity of suspensions of spheres with multimodal diameter distri-
butions. In his model, for each fraction of a given particle size, the smaller particles in suspension have the
same effect as a homogeneous fluid with Newtonian viscosity similar to the viscosity of a suspension made
up only of the fraction of smaller spheres. In other words, the smaller suspended particles do not interact
with the larger particles and are ‘sensed’ by the larger particles as part of the continuous suspending fluid.
We will apply these concepts to develop an equation for the relative viscosity of a suspension composed of
a mixture of rodlike and spherical particles. If the rods are large enough relative to the spheres, we may con-
sider the spherical particles as part of the homogeneous suspending continuum. Let us define an apparent
sphere volume fraction V /(Vy+V) = /(19 ) , where Vis volume and the subscrlpts
s, 0, and r stand for the spheres, ﬂllld ang rods respectxvely I{’ we assume the viscosity of a suspension
composed of spheres and rods is the same as the viscosity of a suspension of rods suspended in a Newtonian
homogeneous flu1d of viscosity identical to the viscosity of an-equivalent suspension of spheres with a vol-
ume fraction ¢ s» We may write (after Farris):

Heer(07) = Rrel, spheres(q)*s)l"'rel, rods(®r)  » (M

where the relative viscosity of a suspension is the viscosity of the suspension normalized by the viscosity
of the suspending contindum. Several expressions are available for the relative viscosity of suspensions of
spheres (e.g. those listed by Graham et al. [7]). Here we adopt the following empirical relation [8], which
has agreed well with previous falling-ball measurements:

@) = 1+2.5(6) +10.05(6)° + 000273 16-69) @

urel, spheres
For the viscosity of a suspension of randomly oriented rods, we have the following empirical relation for
rods with aspect ratio of 20 [5]:

p’rel, rods(q)): l + 28-50¢ . q) < 0.125 (3a)

= 1+204003  ¢$>0.125 (3b)

The relative viscosity of a mixed suspension may now be calculated for any combination of rods (of aspect
ratio 20) and spheres by the set of equations (1)-(3).

The falling-ball experimental apparatus, materials, and methodology have been described in detail pre-
viously [5,9]. The suspensions were composed of mixtures of poly(methyl methacrylate) particles in a New-
tonian liquid. The particles were mixtures of spheres, with diameters of 3.175 mm, and aspect-ratio-20 rods,
with length of 31.65 mm. The rod-sphere mixtures were suspended in a liquid solution with three primary
ingredients (50wt% alkylaryl polyether alcohol, 35wt% polyalkylene glycol, and 15wt% tetrabromoet-
hane). The weight fractions of the ingredients were adjusted so that the density and the refractive index of
the fluid would match those of the particles. Three different suspensions were prepared with total solids vol-
ume fraction ¢ of 0.35 (volume fraction of rods ¢,=0.05 and of spheres ¢,=0.30), 0.40 (¢,=0.10 and
$s=0.30), and 0.45 (¢,=0.05 and ¢=0.40) respectively. The falling balls were either chrome-plated steel,
monel, or tungsten-carbide ball bearings with diameters between 6.35 mm and 15.88 mm.

The trajectories of the falling balls were recorded on a high-speed digitizing video system. An average
velocity for an individual experiment was determined by measuring the elapsed time for a ball to settle a
known distance on the screen. The results of up to 40 individual experiments with a falling ball of one nom-
inal size (not necessarily of one material) were averaged to determine a reproducible effective viscosity of
the suspension. Two or three sizes of falling balls were used for each suspension and the results showed no
significant effect of the relative sizes of the falling ball and the suspended particles over the size ranges list-
ed above. The average apparent relative viscosity for each suspension was obtained by averaging the entire
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set of experimental results (up to 120 individual experiments).

These results are shown in Figure 1 along with the values predicted by equations (1)-(3). The solid and
dotted lines represent the relative viscosity for a suspension of randomly oriented rods of aspect ratio a,=20
[eq. 3a and 3b] and for a suspension of spheres [eq. 2], respectively. The broken lines represent the calcu-
lated viscosity for mixed rod-sphere suspensions with the indicated fraction of rods (5%, 10%, and 15%)
based on the predictions of eq. 1 combined with egs. 2 and 3. The agreement between the falling-ball ex-
perimental points and the calculated lines is very good.
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Figure 1. Falling-ball viscosities of mixtures of suspended rods and spheres.
SLIP STUDIES
Spinning-Ball Experiments

In the falling-ball experiments described in the section above, the drag on the ball appeared to be that
found in a Newtonian liquid with no slip at the ball boundaries. instead of measuring the mean velocity of
a falling ball, we could instead measure the mean torque on a spinning ball. This geometry is more sensitive
to slip at the ball boundary. Whereas the force F on a ball moving slowly through an unbounded Newtonian
liquid without slip can be described as F=67 ajv (where L is the viscosity of the liquid and a and v are the
radius and velocity of the ball, respectively), the force with perfect slip is 47 ajv. In contrast, the torque T
on a ball spinning slowly in a Newtonian liquid is described by Kirchoff’s law, 8 & ApQ. (where Q is the
angular velocity of the ball); however, the torque on a ball with perfect slip at the boundaries is zero [10].

Kunesh and coworkers studied the torque on balls spinning in single-phase Newtonian liquids, verified
the formula above, and quantified the effects of the free surface [11]. We have completed similar experi-
ments to measure the torque on balls spinning in otherwise quiescent suspensions. We measured the torque
. on three sizes of balls (0.32, 1.27, and 2.54 cm in diameter) spinning in various suspensions. Suspension
with solids volume fractions of 0.25, 0.40, and 0.50 were studied. Three sizes of suspended spheres (0.07,
0.32, and 0.64 cm in diameter) were used in the suspending oil described earlier. The suspensions were well
mixed prior to the start of an experiment.

Typical traces of the torque on a 1.27 cm-diameter ball in terms of the relative viscosity (the measured
spinning-ball viscosity normalized by capillary viscosity measurements of the suspending liquid) in the sus-
pending liquid and in a suspension with ¢=0.5 is shown in Figure 2. The suspending liquid measurements
agree well with capillary measurements and show no Variation with time (number of revolutions). On the
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Figure 2. Spinning-ball viscosities (relative to capillary measurement of the suspending liquid
viscosity) for the suspending liquid (O ) and for a suspension with $=0.50 (® ).

other hand, the suspension measurements show a distinct fall off in the measured viscosity with increasing
numbers of revolution. This is expected, as this nonhomogeneous flow induces particle migration (which
will be discussed in the following section). The short-time behavior (an average torque for the first four rev-
olutions) is taken as an indication of any apparent slip at the ball’s surface in the still homogeneous suspen-
sion. The effects of the relative sizes of the spinning ball and the suspended spheres are shown in Fig. 3.
Here, all data are taken in suspensions with $=0.5; however, the suspended-sphere size varies as well as the
spinning-ball size. As the suspended spheres become small compared to the spinning ball, the spinning-ball
viscosity increases. The torque experienced (initially) on a 2.54-cm-diameter ball spinning ina suspension
of 0.07-cm-diameter particles is correspondent to the viscosity measured with falling-ball rheometry. Con-
versely, when the spinning ball and the suspended spheres are comparable in diameter, the presence of sig-
nificant ‘Kirchoff-law slip’ is observed.

20 :
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Figure 3. The effect of the relative sizes of the spinning ball and the suspended spheres on the
initial apparent viscosity measured assuming Kirchoff’s law. The data point to the far right is
close to the value predicted by falling-ball studies [23] and conventional rheometry [8].

Theoretical Developments

Einstein’s [12] classical analysis of the rheology of a dilute suspension related the increased viscosity
of the suspension to the additional dissipation occurring within a ‘suspension cell’ owing to the perturbing
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presence of a freely suspended sphere in an otherwise uniform shear field. However, scalar dissipation ar-
guments are viable only in cases where the suspension behaves macroscopically as a homogeneous isotropic
fluid. In particular, these methods are inapplicable in circumstances where the suspension-scale stress/
strain-rate relationship is anisotropic. Batchelor [13] and Brenner [14] developed a general theory from
which the stress/strain-rate relation may be obtained. Their methods are based on averaging over a ‘suspen-
sion cell’ the interstitial-scale stress and velocity gradient tensors. Higher-order terms in the relative viscos-
ity/suspended-particle concentration expansion have-been obtained by Batchelor & Green [15,16], based on
an ‘ensemble average’ approach. Each of the above methods is essentially local in nature; that is, effects of
bounding walls as well as spatial nonhomogeneities in the ambient velocity gradient are neglected. When
the ensemble-average approach is applied, and the existence of walls ignored, nonconvergent integrals
arise, which require ad hoc renormalization methods to overcome.

Recently, a new method has been developed for rheologically homogenizing a dilute suspension com-
posed of freely suspended spherical particle dispersed in a Newtonian fluid [17]. The method is global in
nature; that is, wall effects and spatial dependence of both the ambient flow and the particle number density
are encountered, enabling known classical results for the suspension viscosity to be obtained without the
need for renormalization. ‘

When the ambient flow is singular (as for example in the case of a small sedimenting or rotating ball
comparable in diameter to the suspended spheres) it is possible to use this technique to estimate the velocity
‘at points far from the singularity. In a recent paper, it is shown that even far from the singularity (relative to
the freely suspended sphere radius), the suspension does not behave like a homogeneous medium [17]. Spe-
cifically, due to interparticle hydrodynamic interactions, the average extra-torque exerted on a ball rotating
at a given angular velocity (and, conversely, the average reduction in angular velocity experienced by a
sphere on which a given torque is exerted), are not related by the Kirchoff’s law linear factor 8n Ay, instead
a suspension-scale ‘slip’ occurs at the surface of the spinning ball in agreement with the experimental work
discussed above. Furthermore, the extra-torque felt by a ball held at constant angular velocity in a suspen-
sion and the reduction in angular velocity felt by the same ball held at constant torque do not correspond
directly. In fact, when the ratio of the spinning-ball diameter to the suspended-sphere diameter is roughly
one, the dimensionless extra-torque is almost 25 per cent larger than the comparable reduction in angular
velocity. This phenomenon cannot occur in a homogeneous medium for which the constitutive stress/rate-
of-strain relationship is an intrinsic material property of the system.

In the case of a sedimenting ball, the ‘apparent viscosity’ obtained experimentally by the supposed ap-
plicability of Stokes law agrees with the viscosity of the suspension measured by standard viscometric
methods if the ball is the same size or larger than the suspended spheres [9]. However, if the ball is some-
what smaller, the reduction in sedimentation velocity is less, apparently because of a ‘slip at the surface of
the sedimenting ball [18]. Recent theoretical results show this as well for dilute suspensions [19]. It is in-
teresting to note that the appearance of ‘slip’ occurs over a smaller range of the ratio of the tracer (in this
case, falling) ball to the suspended particles than in the rotating ball case. Furthermore, the theory predicts
that if the falling ball is yet smaller relative to the suspended spheres than those studied experimentally, the
reduction in sedimentation velocity then becomes significantly higher. This contrasting behavior arises
from the difference in the respective probability density functions for the cases of sedimenting and rotating
spheres. For the case of a rotating sphere, the probability density function P(xy/sg) is constant (where xg is
the location of the center of a suspended sphere and s corresponds to the domain inside a sedimenting or
rotating sphere) and independent of the relative sizes of the rotating and suspended spheres. In contrast, in
the case of a sedimenting sphere, it exhibits large gradients near sy for very small sedimenting spheres, ren-
dering the near-field contribution dominant. Since the settling velocity decreases significantly when the set-
tling and freely suspended spheres nearly touch, the reduction in sedimentation velocity increases
proportionally. In other words, whereas the rotating sphere has only one ‘interaction’ mechanism (namely
that the overall effect of hydrodynamic interactions decays monotonically with decreasing ratio of the ro-
tating-to-suspended sphere diameter since the domain in which the effect of the suspended sphere is sensible
shrinks), the settling sphere has two competing mechanisms. The first is similar to that of the rotating
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sphere. The second is the increase of probability density function in the vicinity of the singularity with de-
creasing ratio of the rotating-to-suspended sphere diameter, which makes the near-field contribution dom-
inant in spite of the fact that the domain in which this effect is significant shrinks.

EFFECTS OF FLOW ON THE MICROSTRUCTURE OF SUSPENSIONS
Pressure-Driven Pipe Flow

Flow-induced migration of suspended particles is thought to occur whenever particle interactions are
more frequent in one part of a flow field than in another, as could occur in the presence of spatially varying
shear rate, concentration, or viscosity fields. The spatial distribution of suspended particles present in con-
centrated suspensions is difficult to measure because most suspensions are opaque even at relatively low
particle concentrations. However, under the auspices of the Department of Energy, Office of Basic Energy
Sciences, noninvasive techniques based on nuclear magnetic resonance (NMR) imaging have been devel-
oped by Fukushima and coworkers to study both concentration and velocity profiles in multiphase flows
[20,21]. We have employed these NMR imaging techniques to study the flow-induced migration of particles
in suspension when subjected to a variety of flow fields.

One of our more recent studies involved low-particle-Reynolds-number pressure-driven flow in a cir-
cular conduit of suspensions ranging in solids volume fraction ¢ of 0.1 to 0.45. Measurements were made
using 3.175-mm-diameter particles in a 50.4-mm-diameter tube (a/R = 0.0625) and 675-mm-diameter par-
ticles in a 25.4-mm-diameter tube (a/R = 0.0266). The primary data obtained from these experiments were
NMR images of the concentration (¢) and velocity (v) fields at various locations downstream of an in-line
mixer.

During flow development, significant migration to the axis of the tube and ‘plug-like’ velocity profiles
were observed at all solids volume fractions. Full flow development occurred sooner than predicted by ex-
isting scaling arguments. Evidence suggests that, at higher concentrations (>30%), evolution of the ¢ and
v profiles occur on different length scalses. Two flow rates were tested (9.89 mm/s and 197.7 mm/s). The
development of the ¢ and v profiles were independent of flow rate.

Example steady-state profiles are shown in Figure 4. At the lower ratio of a/R the ¢ profile achieves a
cusp at the center of the flow. The higher a/R (0.0625) is significantly above the ratio suggested by Seshardi
& Sutera [22] and Mondy et al. [23] to be the upper limit of continuum behavior. Particle size effects man-
ifest themselves as somewhat more blunted concentration profiles at larger a/R. The depletion in ¢ apparent
near the wall would result in a ‘layer’ of lower viscosity and a reduction in the pressure drop required to
flow the suspension, which is also consistent with the findings of Mondy et al. [23]

Piston-Driven Pipe Flow

In contrast to pressure-driven pipe flow, piston-driven pipe flow is not unidirectional. At the surface of
the moving piston the velocity profile is necessarily uniform, yet downstream the velocity profile becomes
parabolic for a Newtonian liquid. In order for this to occur, continuity requires that liquid near the pipe walls
be swept into the center of the pipe. We find that this complex flow leads to particle migration in both the
radial and axial directions.

Recently, we have studied the flow of a concentrated suspension in a 38 cm long by 5 cm diameter pipe
equipped with a driving piston at one end and a freely moving piston at the other. This geometry results in
a closed system ideal for an NMR imaging study of a two-dimensional flow. Two suspensions were imaged,
one of 0.07-cm-diameter spheres and one of 0.32-cm-diameter spheres, both at an overall solids volume
fraction of 0.50. Figure 5A shows an image of the suspension of smaller spheres in the region near the driv-
ing piston after the piston has traveled approximately 5 pipe diameters. A region of high liquid content has
formed near the pipe walls and has been swept to the pipe axis along the piston face. Figure 5B shows the
radially averaged solids volume fraction, in the suspension of larger spheres, along the axis of the pipe from
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Figure 4. Steady-state v and ¢ profiles for a/R = 0.0625 at ¢ = 0.20 as measured with NMR (symbols)
and predicted values (lines) from the improved shear-induced migration model.

the driving piston to the freely moving one. The particles ‘lead” the fluid and concentrate at the far end of
the flow (farthest from the driving piston).
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Figure 5. A. NMR image near the driving piston. Dark areas represent regions of higher
liquid fraction. B. Radially averaged solids volume fraction along the axis of the pipe from
the driving piston to the freely moving one.
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Numerical Modeling and Constitutive Equation Development

The NMR data discussed above has been compared with the results of a constitutive model developed
by Phillips et al. [2] after Leighton & Acrivos [1]. This constitutive model consists of both a Newtonian
constitutive equation, in which the viscosity depends on the local particle volume fraction, and a diffusive
equation that accounts for shear-induced particle migration. Two adjustable parameters arise in the diffusive
equation, which describe the relative strength of the mechanisms for particle migration. These two rate pa-
rameters can be evaluated empirically with experimental measurements of velocity and concentration pro-
files in a wide-gap Couette apparatus. We have recently determined these parameters as functions of ¢.

One criticism of this model was its prediction of a cusp-shaped concentration profile in pressure-driven
pipe flow. However, the recent NMR experiments have shown that such concentration profiles can occur,
as shown in Figure 4, which is of one of the more blunted obtained. The original Phillips formulation [2]
has been modified so that the shear rate is averaged over the size of a particle. This results in different fully
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developed profiles for different particle sizes, in agreement with the data. Examples of the predictions and
the close agreement with data can be seen in Figure 4. However, the original formulation and the new model
both overpredict the entrance length in comparison to the data.

The second criticism was the inherently one-dimensional treatment of the particle migration (it is de-
pendent on gradients in a scalar shear-rate). Although this could still be an impediment to generalizing the
model to complex flows, we have found that this simple model can often predict the very complex behavior
of suspensions. The constitutive expression previously described by Phillips et al. [2] has been expanded to
two-dimensional flows by describing the flow in terms of the strain rate tensor D and the migration in terms
of gradients in the generalized shear rate Y = (2 tr D?) 12, The equation set was then solved numerically
and the predictions compared to NMR imaging data. NMR imaging has also been used to study the flow of
concentrated suspensions in the gap between a rotating inner cylinder placed eccentrically within an outer
fixed cylinder (a journal bearing). We reported earlier [24] that this model, when coupled with a finite vol-
ume solver, failed to capture the qualitative nature of this two-dimensional flow. Specifically, at certain val-
ues of the eccentricity a very slow recirculation occurs and concentrated suspensions evolve a concentration
profile with the maximum concentration of solids occurring, not at the outer wall, but inside the gap. The
earlier numerical results always predicted a monotonic increase in solids volume fraction from the rotating
inner cylinder to the outer wall, and no recirculation zone was predicted. However, recently we have used
a finite element technique with more success. Figure 6 shows the development of a spatially varying solids
volume fraction as the number of turns of the inner cylinder increases. The predicted profiles are remarkably
similar to the NMR images. In addition, the calculations do indeed predict a recirculation zone.

Figure 6. NMR image of liquid volume fraction contours (left) and predicted contours of liquid
volume fraction and streamlines (right) for a suspension undergoing flow in a cylindrical journal
bearing after 1000 turns.

The finite element model was also used to predict the behavior of concentrated suspensions undergoing
piston-driven flow. Figure 7 shows the predicted spatially varying concentration obtained under the same
conditions as the experiments described in the previous subsection. The contour plot is remarkably similar
to the NMR results shown in Figure 5.

Microrheological Observations
Despite some successes with the above model, we feel that other avenues should continue to be explored

to ensure that the particle migration phenomena is adequately understood and appropriately generalized to
multiple dimensions. One such avenue recently suggested is to use a kinetic theory approach, which has
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been applied successfully in granular flows [3,4]. In this theory the intensity of the velocity fluctuations,
caused by particle interactions, is characterized by a “granular temperature” analogous to the temperature
in classical kinetic theories and governed by a balance of fluctuation energy. This approach emphasizes the
importance of measuring not only average behavior of suspensions but the details of the fluctuations about
those averages. Under some situations this approach leads to the same balance equations as with the first
model, but with a hydrodynamic diffusion that can be determined in homogeneous flow fields.

Figure 7. Predicted concentration contours in piston-driven flow using a finite element code.

Currently, we are using particle tracking techniques, originally developed in falling-ball studies, to de-
termine the granular temperature of various suspensions undergoing homogeneous flow between parallel
moving belts. The suspensions consist of poly(methyl methacrylate) 0.635-cm-diameter spheres neutrally
buoyant in the oil mixture described earlier. The suspended spheres are primarily transparent, with the same
index of refraction as the suspending liquid. A few opaque tracer spheres, otherwise identical to the others,
are added to the suspension. .

To date, 100 detailed three-dimensional trajectories of the tracer spheres in a suspension with ¢=0.20
undergoing flow at two different shear rates have been recorded. Figure 8A shows one such trajectory (in
only two of the three directions), where the y-direction is parallel to the belt and in the direction of motion
and the x-direction is in the direction of the overall velocity gradient. The origin is at the center of the device.
Figure 8B shows the velocity fluctuations in the x-direction for an ensemble of 50 particles at a shear rate
of 3.34 sec’!. From our preliminary measurements, it appears that the velocity fluctuations are more or less
isotropic. The granular temperature in each direction is definedas T = {u'- u’)  , where u'is the velocity
fluctuation of a particle about its local mean velocity and the angled brackets c{énote ensemble averaging
over all the particles. Preliminary results for T, (in the x-direction) at two shear rates are shown in Figure 8C.

Currently we are instrumenting the homogeneous flow apparatus with piezoelectric pressure sensors
that will allow the measurement of the frequency of particle-wall interactions, as well as the additional pres-
sure due to the presence of the particles. These are pieces of information critical to the evaluation of gran-
ular-flow based suspension rheology models.

CONCLUSIONS

We have performed a variety of experimental, theoretical, and numerical studies to elucidate the linkage
between the microstructure and the macroscopically observed responses of suspensions of particles in lig-
uids. NMR imaging studies and visual observations have confirmed that a suspension’s microstructure can
change dramatically during flow. Falling-ball viscometers, on the other hand, can be used (under certain
circumstances) to determine an apparent viscosity of a homogeneous suspension, without significantly af-
~ fecting the microstructure during the measurement. Quiescent suspensions can also be used to examine ef-
fects of boundaries. We have described one such measurement: the torque on a rotating ball in otherwise
quiescent suspensions. Recent theoretical results have also shed light on experimental results indicating
Stokes law and Kirchoff’s law could be presumed to hold only under limited circumstances.

Information obtained with quiescent suspensions can be combined with information about the evolving
microstructure in a flow to predict the spatial variations in viscosity and the global behavior. We have had
successes in modeling multidimensional flows with an approach that describes shear-induced particle mi-
gration with a diffusive equation. However, further studies of the details of particle interactions are needed
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Figure 8. A. The trajectory of a tracer sphere in a suspension with $=0.20 undergoing uniform shear.
B. Velocity fluctuations of 50 particles in this flow. C. Resultant granular temperatures at two shear
rates. .

before definitive predictive capabilities can be developed. Measurement of the detailed fluctuations of the
velocity of particles in suspension undergoing flow is an example of one such study.
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ABSTRACT

The mechanism underlying shear-induced particle diffusion in concentrated
suspensions is clarified. Examples are then presented where this diffusion process plays
a crucial role in determining the manner by which such suspensions flow under laminar
conditions.

INTRODUCTION

During the past ten years, it has been widely recognized that concentrated suspensions of
non-colloidal particles undergoing shear give rise to a number of curious and important
phenomena which play a vital role in governing the rheology of such systems. Examples
include the resuspension of a settled bed of heavy particles even under conditions of
varnishingly small inertial forces, and the migration of neutrally buoyant particles across
streamlines from regions of high shear to low thereby creating a non-uniform concentration
profile with a highly concentrated center plug in a suspension flowing in a tube. All these
effects are due to the existence of shear-induced particle diffusion at vanishingly small particle
Reynolds numbers [1].

At first glance, it might appear that such a diffusive process which leads to particle
migrations across streamlines would run counter to the well-known reversibility property of
the creeping flow equations. Thus, one might argue that if, for example, migration were to
occur in a given direction where the flow is, say, from left to right, reversing the flow direction
should also reverse the sense of this migration. This argument, however, applies only to
systems consisting of a finite (relatively small) number of particles in the absence of non-




hydrodynamic effects. In contrast, a space filling suspension having an effectively infinite
number of particles behaves in a fundamentally different way.

The reason is as follows: When dealing with a finite number of particles, their velocities U;
can, in principle, be determined exactly via the solution of the creeping flow equations, given
their positions r; as well as the imposed flow field. Thus, the evolution of their configuration is
governed by the Smoluchovski equation, shown in the figure, which is entirely deterministic in
the sense that, given the position of all the spheres at some instant of time, the configuration at
later, or even earlier, times can be computed exactly via the solution of this equation.

When the number of particles is infinite, however, the straightforward determination of U
fails because the sum of the weak contributions to U; from the infinitely many distant particles
at “infinity” diverges owing to the slow algebraic decay of any velocity disturbance in Stokes
flow. Thus, one replaces these distant particles by an effective medium containing a random
distribution of particles of given concentration whose hydrodynamic influence is felt only via
their contribution to the effective viscosity of this effective medium. In other words, in
calculating the velocity of a given particle, say the black particle in the figure, one supposes
_that this particle is surrounded, as before, by a finite number of (white) particles but that, in
addition, the whole set is immersed into an effective fluid extending to infinity. The evolution
of the configuration then proceeds in a deterministic fashion via the solution of the’
Smolucovski equation with the particle velocities U; calculated in the manner discussed above,
but only for small times, i.e. only as long as the marked particle is surrounded by its original
neighbors. For later times, however, the marked particles is surrounded by new neighbors
which were originally located within the effective medium and whose original position was
unspecified. Thus, the motion of the marked particle acquires a random component which
means that its location can no longer be determined exactly but can only be represented via a
probability density function p(ryt) given by the solution of the Fokker-Planck equation also
shown in the figure. In addition, when the bulk properties of the suspension, such as the bulk
" shear rate or the particle concentration, vary over distances which are much larger than the
particle radius a, one can obtain the evolution equation for the particle concentration ¢, simply
by replacing p by ¢ in the Fokker-Planck equation referred to above.

The quantity D(r) is the particle tracer diffusivity, while V(r) is the mean velocity of a
representative particle. The latter consists of two parts: the bulk velocity U(r) of the
suspension viewed as an effective medium, and a “drift” particle velocity V'(r) relative to
U(r). This drift velocity vanishes of course for neutrally buoyant particles in a simple shear
flow when the concentration ¢ and the shear rate y are constant because, under these
conditions, there exists no preferential direction for particles to migrate across the streamlines
of the bulk flow. In the presence of a macroscopic concentration gradient, however, a given
particle will be displaced by its neighbors more frequently on one side than on the other and,
hence, will tend to “drift” towards the region of lower concentration. A similar drift will occur
in the presence of a gradient in the shear rate or in the shear stress.
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As will be seen presently, the existence of such a drift velocity is primarily responsible for
the various phenomena referred to above which arise when concentrated suspensions are
subjected to shear.

EXPERIMENTAL MEASUREMENTS

In principle, the particle tracer diffusivity D(r), which, from scaling arguments, is
proportional to the product of the local shear rate times the square of the particle radius,
should be easy to measure by following the motion of an individual tagged particle in a
suspension of uniform concentration and shear and then computing its mean square
displacement. This was the technique originally used [2] which has since been modified and
rendered more accurate [3,4]. The particle tracer diffusivity can also be computed via the so-
called “Stokesian dynamics” calculations [5]. Finally, analytic expressions for the transverse
components of D(r) for smooth equi-sized spheres along and normal to the plane of shear in a
simple shear flow were recently derived [6] using the computed trajectories of triads of
interacting particles.

In contrast to D(r), which can be measured directly, the drift velocity V'(r) has, to-date,
been determined only indirectly, specifically by matching experimental results to model
equations. For example, in the presence of a macroscopic concentration gradient, say d¢/dy, in
a simple shear flow along x, the component of V" the y-direction is proportional to d¢/dy, with
the constant of proportionality being minus the so-called gradient diffusivity, which also scales
as the produce of the local shear rate and the square of the particle radius. The component of
this gradient diffusivity normal to the plane of shear was then determined from the observed
long-term decrease in the effective suspension viscosity as measured in a Couette device, by
fitting the data using the solution of a one-dimensional unsteady-state diffusion equation with
the gradient diffusivity being an adjustable parameter [7]. Similarly, the component of the
gradient diffusivity along the plane of shear, as well as the diffusivity which enters into the
expression relating V" to the gradient in the shear rate, were determined from the observed
short-term increase in the effective suspension viscosity when the Couette device was activated
after loading the sample [7].

Thus, reliable values for all of these diffusivities, as functions ¢, currently exist for
monodisperse suspensions of solid spheres which can be used for modeling purposes.

COMPARISONS OF MODELING CALCULATIONS WITH EXPERIMENTS
We summarize below a few of the many cases in which model calculations using no
adjustable parameters have been successfully compared quantitatively with experimental

observations.

1. Thirty years ago, Karnis, Goldsmith and Mason [8] measured, at the end of a long circular
tube, the particle velocities in flowing suspensions of monodisperse neutrally buoyant solid
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spheres and reported that the profile was blunted at the center rather than parabolic as in
pure viscous fluids. Moreover, for fixed tube dimensions, the bluntness was found to
increase with an increase in ¢ and with the particle radius a. This is consistent with the
premise that particles diffused from regions of high shear, i.e. the wall, to the centerline and
the fact that the diffusivity is a monotonically increasing function of ¢ and is proportional
to a* [7]. Indeed, model calculations [9] were found to be in very good agreement with the
experimental results referred to above [8].

2. When a settled suspension of heavy particles with a clear fluid layer above it is placedina
Couette device which is then turned on, the bed expands and the suspension is observed to
flow [10, 11]. The height to which the suspension rises can then be calculated via the
solution of model equations and excellent agreement is found between the results, as
predicted from the model calculations, and the experimental measurements [11]. A similar
agreement exists under transient conditions [8, 12].

3. When heavy particles in a suspension sediment under gravity in a settler having inclined
walls, the dense concentrated sediment that overlays the upward facing wall is able to flow
freely only because the upward shear-induced particle flux due to gradients in the particle
concentration and in the shear stress balance the downward gravitational flux. The
theoretically determined particle velocity profile within this sediment layer as well as the
local sediment layer thickness were found to be in excellent agreement with experimental
measurements [13]. .

4. The model equations developed to-date apply only to monodisperse suspensions under
conditions where the shear flow is laminar and either uni- or quasi-unidirectional. An
attempt was recently made to extend the applicability of these equations to fully three-
dimensional flows by simply replacing the local shear rate y by the second invariant of the
deformation tensor [14]. Although this is, admittedly, a very crude step, the resulting
theoretical predictions [14] for the concentration and particle velocity profiles in a tube
were quantitatively consistent with experimental results reported earlier [15].

The above are but a few examples of suspension flows where shear-induced particle
diffusion manifests itself in a crucial way.
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ABSTRACT

Two topics in combustion fluid mechanics are discussed. The first
is a theory of the outward propagating spherical flame in the regime of
well-developed hydrodynamic instability. In a qualitative agreement
with experimental observations it is shown that the flame assumes
a fractal-like wrinkled structure resulting in the overall burning rate
acceleration. In contrast to hydrodynamically unstable flames, the
expanding flame subject exclusively to the effect of diffusive instability
does not indicate any disposition toward acceleration.

The second topic concerns the dynamics of diffusively unstable
flames subjected to radiative heat losses. At high enough heat losses
the flame breaks up into separate self-propagating cap-like flamelets
while a significant portion of the fuel remains unconsumed.

INTRODUCTION

A spherical flame spreading out from an ignition source is one of the most basic
configurations of premixed combustion. While such flames are quite feasible in the
laboratory, under certain conditions a nominally spherical flame becomes unstable and
displays an irregular pattern of wrinkles. As is now well established, there are two
principal mechanisms for the intrinsic flame instability: (i) thermal expansion of the
burnt gas and (ii) high mobility of the deficient reactant (e.g. [1]). The first, the so-called
hydrodynamic or Darrieus-Landau mode of instability, is an invariable feature of any
exothermic premixed gas flame. On the other hand, the occurrence of the second, the
diffusive mode of instability, clearly depends on the composition of the mixture.

The outward propagating spherical flame in the regime of well-developed
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hydrodynamic instability assumes a multiple-scale pebbly structure. To observe such a
configuration the aspect ratio of the system should be rather large. For conventional
hydrocarbon-air mixtures under normal pressure this would require the flame to be
of several meters in diameter. In relatively small-scale systems the hydrodynamically
unstable flames are either completely smooth or exhibit a few wide-spaced ridges that
are well maintained even under the deformation and extension of the flame. Unlike the
former, the diffusive mode of instability manifests itself in the emergence of the small-
scale irregularly recombining cellular structure and therefore relatively easily produced
under normal laboratory conditions.

In recent years new aspects of hydrodynamic and diffusive instabilities have been
revealed. It was observed that in the regime of well-developed hydrodynamic instability,
the average radius, R, of the large-scale wrinkled flame moving into an initially quiescent
homogeneous premixture grows as R ~ t3/2 [2). This striking effect implies, that the
wrinkled sphere surface area grows as R /3, i.e. faster than -Rz, that may well be regarded
as the self-fractalization of the flame interface with 7/3 being its fractal dimension. The
first-principle description of the phenomenon is one of the topics of the present progress
report. Another novel effect concerns the diffusive instability of near-limit low-Lewis-
number flames. It was observed that in mixtures of very weak reactivity the point ignition
leads to an outward propagating cellular flame with rapidly separating cells resulting in
the flame self-fragmentation [3]. In some circumstances the fragments close up upon
themselves to form stationary spherical structures called the flame-balls. An equilibrium
theory of the flame-balls was proposed in [4]. The present report deals with the dynamics
of their formation.

SELF-FRACTALIZATION OF HYDRODYNAMICALLY UNSTABLE FLAMES

To describe an outward propagating hydrodynamically unstable flame the following
weakly nonlinear evolution equation was employed [5],

O _ ﬂ(a_R)z _Dn®@R U
ot o \00/ — | 06> 2R
where 0 < 8 < 27 and I{R}, R are defined as

I{R} + Us (1)

1 oo 2r B _ 1 27
{R} = — ;n fo cos [n(6 — %) R(6%,8)d6", R= - /0 R(6,)d6 .
Here 7 = R(6,t) is the interface of the outward propagating flame; U ~ speed of a planar
flame relative to the burned gas; D,, — Markstein diffusivity; D, — thermal diffusivity
of the mixture; o = 28(Le~! — 1) - Zeldovich number; Le — Lewis number; v — thermal

expansion coefficient (y < 1).
In the limit of weak thermal expansion (v < 1), Eq. (1) is an exact asymptotics
provided R, 8,t are appropriately scaled.
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To ensure the well-posedness of the associated initial value problem, Eq. (1) should
provide dissipation of the short-wavelength disturbances. Hence, D, should be positive,
that pertains to high-Lewis-number premixtures. The numerical simulation of Eq. (1)
yields the following picture of the flame evolution. At the beginning of the process
the expanding interface exhibits one or two folds and the flame evolves in a self-similar
manner. Somewhat later, almost instantaneously, a considerable portion of the interface
acquires a nearly periodic cellular structure. As the flame sphere grows the quasi-periodic
corrugations gradually stretch while the interface becomes less regular. The sufficiently
enlarged cells eventually also acquire a fine structure and so on. The whole process, thus,
assumes the character of a cascade, quite in line with the general concept of the fractal
curve (Fig. 1a). The most interesting feature of the system, however, is that the average
speed, R, does not stabilize but rather enjoys a noticeable amplification. As one can see
from Figure 1b the R;(t) dependence is not incompatible with the experimental R; ~ t1/2
power law. Moreover, the fractal analysis of the numerical solution [5] (via the standard
box counting procedure) yields the fractal dimension D; =~ 4/3 which is quite consistent
with Dy = D; + 1 = 7/3 suggested by the experimental data [2].

Eq. (1) also transpires to be accessible to analytical explorations. Similar to Burgers’
equation it admits an infinite number of exact solutions of the form [6,7],

2N
R=1Ust +2DnU;1 Y In [sin 1(M6 — Z,,(t))] 2)

n=1

where M is an integer and time-dependent Z,’s are poles of R(0,t) in the complex plane,
appearing in conjugate pairs. Their dynamics is governed by the system of ODE’s

dZ, ');ZM' 2D Z (Zn -
ctg -

Zm\ i MU,
dt b

oF sign(ImZ,) . (3)

L

For a pole solution the number of flame cusps never exceeds A N. Moreover, R, — Uy
as t — oo. Yet, direct numerical simulations of the original Eq. (1) show that the
flame does accelerate and the number of cusps constantly grows as the flame expands.
Comparing the flame dynamics governed by Eq. (1) with the exact pole solutions, the
following picture of the flame self-fractalization has been revealed [7]. The flame dynamics
evolves through successive instabilities and births of poles where the flame closely follows
a 2N pole solution before approaching a 2N +2 pole solution. The process keeps repeating
itself as the time increases.
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If Markstein’s diffusivity, D.,., is negative, which occurs in low-Lewis-number
premixtures, the earlier mentioned diffusive mechanism of instability enters the play In
this case dissipation of small-scale disturbances is provided by the new term ~ -R Roggg
which should be added to the r.h.s. of Eq. (1). In relatively small-scale flames the
diffusive instability may dominate over the hydrodynamic one whose impact on the overall
flame dynamics may be disregarded. The pertinent evolution equatlon for the outward
propagating wrinkled flame reads,

R _ Uy (6R>2 Dm 0°R  4Duplun 8*R

Bt ot \06) T g oer  RH o6t +Us )

Here £;;, = Dy, /Uy is the thermal width of the flame. Similar to the hydrodynamic
case the diffusive instability leads to the flame wrinkling which in turn results in the
enhancement of the effective flame speed, R;. However, in contrast to the situation with
hydrodynamic instability, here R; rather rapidly comes to saturation. Thus, the well-
developed wrinkled flame does not accelerate. Such an outcome is apparently due to
the fact that in the diffusive case the wrinkling occurs not as a multiple-scale cascade
but rather as a generation of fixed-size cells, whose width is entirely controlled by the
small perturbations maximum growth rate. In sufficiently large-scale systems the diffusive
instability will clearly interact with the hydrodynamic one which may result in the flame
acceleration similar to that occuring for Eq. (1) with positive Dy,

SELF-FRAGMENTATION OF DIFFUSIVELY UNSTABLE FLAMES

The morphology of the flame fragmentation clearly cannot be described within the
weakly non-linear model such as Eq. (1), and requires a more general coordinate-free
approach. The systematic derivation of the pertinent reduced equation is a difficult
problem still awaiting a solution. Yet, it appears that near the planar flame quenching
point certain aspects of such a model may be captured through the following semi-
phenomenological reasoning. Near the quenching point the dispersion relations of
the diffusive and hydrodynamic instabilities are known to be formally identical. The
hydrodynamic problem allows for a rather well founded coordinate-free reduced equation
[8]. Hence, by the appropriate redefining of the parameters one may try to apply this
equation to the near-limit diffusively unstable flames as well, where it reads [9],

n- % =—-U; +Du KK + %’)'efoq (1 + l _(I‘—Sllds) . (5)
TJs
Here r and s are the points on the flame interface, n is the normal directed to the
burned gas at the point r, K = —V - n is the flame curvature, U, = Ui/ \/e is the flame
speed at the quenching point: 7esf = y/4a/a +6. For the hydrodynamically unstable
flame Uy, 7ess, Dir should be replaced by Uj,<v, Dm, respectively. While the thermal
expansion parameter v never exceeds unity, its counterpart v.rs may come rather close
to 2 provided a = 38(Le™! — 1) is large enough. This is easily achieved for low-Lewis-
number premmtures Numerical simulations of Eq. (4) show that at yers < 1 it produces
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a wrinkled flame similar to that of Eq. (1) (Fig. 1la). However, at 7e55 > 1 the flame
evolution occurs as a fingering instability that may well be regarded as the incipient stage
of the flame self-fragmentation (Fig. 2).

100

50

=50

-100

Figure 2. Numerical simulation of Eq. (5) for a near-limit diffusively unstable flame at
Yesf = 1.5. Shown are flame configurations at three consecutive instants of time [9].
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Apart from exploring the reduced equation (5) we also undertook a direct numerical
simulation of the pertinent reaction-diffusion system based on a finite rate Arrhenius
kinetics [10]. Figure 3 shows some of the results obtained. The emerging cap-like flamelets
appear as localized solitary waves spreading through the reactive premixture and leaving
most of it unconsumed. At strong enough heat losses this combustion mode also becomes

unfeasible resulting in a total suppression of the flame.

@ o ()

):3

Figure 3. Reaction rate (), temperature (T'), and deficient reactant concentration (C')
distributions in low-Lewis-number premixed flames. (a) — moderately nonadiabatic case,
(b) — strongly nonadiabatic case [10].
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ONE-DIMENSIONAL TURBULENCE
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ABSTRACT

One-Dimensional Turbulence is a new turbulence modeling strategy involving an un-
steady simulation implemented in one spatial dimension. In one dimension, fine scale
viscous and molecular-diffusive processes can be resolved affordably in simulations at
high turbulence intensity. The mechanistic distinction between advective and molecu-
lar processes is thereby preserved, in contrast to turbulence models presently employed.
A stochastic process consisting of mapping ‘events’ applied to a one-dimensional velocity
profile represents turbulent advection. The local event rate for given eddy size is pro-
portional to the velocity difference across the eddy. These properties cause an imposed
shear to induce an eddy cascade analogous in many respects to the eddy cascade in turbu-
lent flow. Many scaling and fluctuation properties of self-preserving flows, and of passive
scalars introduced into these flows, are reproduced.

INTRODUCTION

Many aspects of turbulent flow, and of physical and chemical processes within turbulent flow,
can be captured only in a fully resolved, unsteady simulation. To address these aspects by a more
economical method than direct numerical simulation (DNS), one possible strategy is to use a model
with reduced spatial dimensionality. Several two-dimensional (2D) formulations have been employed
for this purpose, such as 2D Navier-Stokes simulations, discrete-vortex methods, and simulations
involving synthetic 2D velocity fields. Further reductions in computational cost can be achieved by
adopting a 1D formulation.

1D turbulence models are often used to represent turbulent transport, in particular, vertical
transport in geophysical flows. These models are neither fully resolved nor, in most cases, unsteady.
They typically incorporate the average effect of fine-scale unsteady processes by means of empirical
parametrizations.

Here, a new approach [1] involving fully resolved, unsteady simulation on a 1D domain is
outlined. The approach, denoted ‘One-Dimensional Turbulence’ (ODT), is intended to extend the
scope of computationally accessible turbulent flow phenomena.

MODEL FORMULATION

The foundation of the model is the recognition that the key mechanisms of flow modification by
a turbulent eddy, compressional strain and rotational folding, can be represented in one dimension.




This observation motivated the formulation of the linear-eddy model (LEM) (2], a turbulent mixing
model that is the antecedent of ODT.

ODT is formulated as follows. Specializing to boundary-layer type flows for clarity, the com-
putational domain y represents the transverse coordinate. The fluid state is represented by the
transverse profile of streamwise velocity u(y,t), the kinematic viscosity v, any advected scalar
profiles 6(y, t), and their corresponding molecular transport coefficients. The formulation encom-
passes spatial development parametrized by (y, z), where z is the streamwise coordinate, as well as
temporal development Earametrized by (y,t). For present purposes, consider the latter.

Viscous evolution is implemented deterministically, governed by equations of conventional form.
This implementation is mechanistically literal because the viscous scales are fully resolved in the
computation. Advection by a single turbulent eddy is represented by the triplet map, an instanta-
neous transformation of a segment of the computational domain. The mapping rule is illustrated
in Fig. 1. The straining and folding properties of this map mimic the corresponding attributes of
turbulent eddies [2]. The affected segment is denoted [yo, 3o + ], where yo and the segment size [
are randomly selected. The space-time-size sequence of mappings is a stochastic process governed
by the rate distribution '

Mo%0.0) = gy @

Here, 7 is the eddy time scale l
7(; 90,t) = AAn @)

where Au is some measure of the velocity difference across [yo, yo + I]. Here, Au is taken to be the
difference of velocities averaged over the intervals [yo,yo + /2] and [yo + 1/2, yo + 1], respectively.
Other reasonable definitions are possible. In most cases, computed results are found to be insensitive
to the precise definition.

y
A

“triplet map"

Figure 1. Application of the triplet map to a designated interval of the transverse profile
of streamwise velocity. The map replaces the profile in the segment by three copies, each
compressed by a factor of three, with the middle copy inverted.
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Equations (1) and (2) provide a simple, dimensionally consistent prescription of the ensemble
of mappings, without introducing extrinsic quantities. A is the only free parameter in the present
formulation. Work in progress involves generalization of Eq. (2) to account for buoyancy effects in
density-stratified flows.

Scalar fields 8(y, t) can be introduced. They are subject to molecular transport, implemented
deterministically in a conventional manner, and to advection by mappings.

- RELATION TO 3D FLOW

Operationally, ODT is a numerical method for generating realizations of a class of stochastic
initial-boundary-value problems on a 1D domain. The initial and boundary conditions can be
chosen to represent homogeneous turbulence, free shear flow, or wall-bounded flow. A variety of
such flows have been simulated, and results have been compared to measurements.

Representative cases are discussed shortly. First, the interpretation of ODT in the context of
3D flow is considered. '

For spatially developing flow, viscous evolution is represented by the usual boundary-layer
equations. In the absence of the mapping process, the model reproduces the well known laminar
solutions for the planar boundary layer, shear layer, jet, etc. These solutions are deterministic, so
all simulated realizations of a given flow are identical, and no fluctuations are predicted.

The stochastic mapping process introduces fluctuations that can be characterized statistically
using the methods generally applied to an ensemble of measured or computer-simulated flow real-
izations. Single-point velocity and scalar statistics of any order can be extracted, and multipoint
statistics such as spectra and spatial correlations can be obtained. Lagrangian, fractal, and wavelet
analyses are applicable.

In particular, the Reynolds stress component {u'v’) can be obtained although motions along
the computational domain are governed by a sequence of maps rather than a velocity field v(y). To
see this, consider the interpretation of (8’v'), where 6 is any fluid property and #' is the residual
after subtraction of the ensemble mean value at a given y location. Then (6'v') is the flux of
induced by velocity fluctuations v’ at that location. In ODT, this flux is determined by monitoring
mapping-induced transfers of 8 across any y level of interest. This definition is applicable not only
to the Reynolds stress (6 = u) but also to fluxes of density, temperature, chemical composition, etc.

An important aspect of the relation between ODT and 3D flow is energy transfer. The mapping
process is measure-preserving. In the spatially discrete numerical implementation, the triplet map
is a permutation of the cells of the 1D domain. Spatial profiles of fluid properties, including the
streamwise velocity u, are rearranged accordingly. Therefore any spatially integrated function of ,
in particular the (normalized) kinetic energy u? integrated over the 1D domain, is invariant under
mappings. :

In 3D flow, the velocity component u associated with a fluid element can change by two
mechanisms, pressure effects and viscous effécts. Viscous effects are represented within ODT, but
pressure effects, which transfer kinetic energy among velocity components, are not. Therefore the
quantity u? in ODT is more closely analogous, from an energetic viewpoint, to the total kinetic
energy of 3D flow than to the 3D quantity u2. Accordingly, the budget of the production, transport
and dissipation of u? determined from ODT simulations is compared to measured budgets of kinetic
energy.

These formal correspondences between ODT and 3D flow do not explain why the former should
reproduce behaviors of the latter. The explanation is that ODT is formulated so as to reproduce
properties of Navier-Stokes turbulence that are mandated by dimensional relations.
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There are two types of dimensionally mandated properties. Microstructural properties are
flow independent at high Reynolds number (Re). Salient microstructural properties are the k~5/3
wavenumber scaling of the inertial range energy spectrum and the Re®* scaling of the high-
wavenumber viscous cutoff of the inertial range. Macrostructural properties characterize the overall
evolution of flow structure subject to initial and boundary conditions and conservation laws. Salient
examples are the self-similar decay of homogeneous turbulence, the self-similar growth of free shear
flows, and the log-law regime of wall-bounded flows.

Dimensionally mandated scaling is a facet of self-similarity. The evolution of a self-similar pro-
cess is governed by the length and time scales describing the state of the system at a given instant,
rather than extrinsic length and time scales. The governing length and time scales, in conjunc-
tion with the boundary conditions and conservation laws, determine a unique set of dimensionally
consistent scaling laws governing the evolution of the process. (If the similarity is ‘incomplete’ [3],
initial conditions may also influence the scaling.)

The rate distribution specified by Egs. (1) and (2) generates eddies of a given size at a rate
governed by flow fluctuations on that length scale. The eddies in turn wrinkle the u profile, thereby
creating fluctuations that sustain the mapping process. This feedback process may be viewed as a
form of turbulence closure. In this instance, the closure involves a postulated two-way coupling be-
‘tween a velocity profile and a stochastic process rather than the usual closure involving a postulated
relation among terms in a formal expansion of the Navier-Stokes equation.

The time scale specified by Eq. (2) is the ODT analog of the eddy turnover time. Though
mappings are instantaneous, they introduce finite-time effects through their imprints on the velocity
field and the influence of these imprints on the time scales governing subsequent events. These
finite-time effects have two significant consequences.

First, the subsequent evolution is governed by intrinsic length and time scales, leading to self-
similarity and thus to dimensionally mandated scalings. As noted, the mapping process conserves
spatially integrated quantities, so the applicable conservation laws are those governing viscous
evolution. The viscous equations are of conventional form, conserving momentum (momentum
flux) in temporally (spatially) developing flow. Therefore the conservation laws determining the
dimensionally consistent scalings are the same as in 3D flows.

Second, the finite-time effects induce an eddy cascade. The triplet map steepens velocity
gradients and reduces the length scale of velocity fluctuations (see Fig. 1). Mild gradients over
large length scales induce mappings that generate steeper gradients over over shorter length scales.
The resulting time-scale shortening increases the frequency of subsequent smaller-scale mappings.
This self-acceleration process is the ODT turbulent cascade. Because this cascade is driven by
intrinsic length and time scales, and because u? is conserved, the dimensionally mandated scalings
are the same as in the inertial range of 3D turbulent flow.

These considerations explain the performance of ODT with regard to self-similar evolution.
The model can also capture transient behaviors, as illustrated shortly. This is because transients
are generated by changes in boundary conditions or external inputs-that are represented within
the model. The length and time scales of flow response to these changes are governed by the eddy
distribution within the flow at the epoch of the change (assuming, for this discussion, a sudden
change). Provided that the fluctuation spectrum of the ODT u profile is a faithful rendering of the
3D spectrum, the length and time scales of the ODT transient response will emulate the 3D flow
response.

It is thus plausible, though by no means guaranteed, that ODT can capture transient as
well as self-similar evolution. The model is limited, of course, to flows whose symmetries (in
the ensemble average) admit a low-dimensional characterization. Also, the model cannot capture
pressure-dominated effects such as flow separation.
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The attributes of ODT are analogous in many respects to those of mixing-length and related
models. An important distinction is that dimensionally consistent relations between eddy length
and time scales have heretofore been applied to the mean flow, or in more advanced models, to low-
order fluctuations. In ODT, the self-consistent closure implicit in Egs. (1) and (2) is applied at the
level of the individual turbulent eddy. This approach yields a wide scope of predictive capability,
including high-order fluctuations and multi-point statistics as well as mean properties.

In subsequent sections, applications to a wall-bounded flow and a free shear flow are discussed.
For these and other flows involving a turbulent inner flow and a constant-velocity outer flow, the
model formulation is supplemented by an ‘eddy exclusion’ rule. Any mapping that is more than
half contained within the outer flow is disallowed. This prevents rare events much larger than the
turbulent zone width. These events violate the scaling pr1nc1ple that the largest eddy size should
be of the order of the turbulent zone width.

PLANAR BOUNDARY LAYER

The spatially developing boundary layer above a planar wall is simulated by setting the initial
u profile equal to a constant value and imposing the no-slip boundary condition © = 0 at y = 0. The
eddy rate, Eq. (1), is identically zero initially. However, the eddy rate distribution immediately
becomes nonnull owing to velocity differences induced by the viscous evolution. The eddy time
scale is much longer than the time scale for viscous dissipation of mapping-induced perturbations
of the velocity profile during an initial transient period. The early development is therefore viscous-
dominated. As the profile spreads, equality of these time scales is achieved in some y range owing
to viscous growth of the layer, allowing a turbulent cascade to develop. The subsequent coexistence
of a viscous-dominated wall layer and a nearly inviscid outer flow is evident in simulated flow
realizations.

The qualitative picture is consistent with 3D evolution, though the early development lacks the
laminar instability mechanisms that govern the transition to turbulence in the 3D boundary layer.
Quantitative comparisons are meaningful only in the fully developed turbulent boundary layer.

The free parameter A in ODT is assigned the value 0.23 to obtain the best fit to the measured
dependence of the friction coefficient on streamwise distance. The functional form of this depen-
dence, and all other quantities of interest, are then determined from the simulations with no further
empirical input. )

Quantitatively accurate predictions of boundary-layer width and the shape factor as a function
of streamwise distance are obtained. ODT exhibits log layers that collapse in wall-scaled coor-
dinates, with a Von Kdrmdan constant of 0.25, versus the measured value 0.41. Velocity-defect
scaling of the outer flow is obtained. Second and third order fluctuation statistics statistics have
been examined, namely the streamwise velocity variance and skewness, the Reynolds stress, and
the turbulent kinetic energy budget. Qualifative features are in good overall conformance with
measurements, and reasonable quantitative agreement is obtained.

PLANAR JET

The planar jet is simulated by assigning a top-hat initial u profile. The similarity scalings of
this flow are reproduced, and transverse profiles of mean and fluctuation properties through third
order are in reasonable agreement with measurements. A is assigned the value 0.14 to match the
measured spreading rate.

To illustrate transient relaxation within ODT, model predictions are compared to measure-
ments of passive scalar mixing downstream of pairs of coaxial, coplanar ring sources in a turbulent
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round air jet [4]. Rings of six different radii were employed in the experiment, the largest radius
being 0.71 times the half-width at half-maximum of the mean velocity profile in the plane of the
rings. Labelling the rings in order of increasing radius, their radii were chosen in the proportion
1: % :2:3: % : 4. In successive runs, the rings were heated individually or in pairs, and the
data were combined so that the two rings of a pair could be interpreted as sources of two distinct
passive scalar species. The concentration covariance of these two species as a function of radial
offset r and distance downstream of the source plane was deduced from the measurements. Here,
only centerline results are considered.

Using ODT, the planar-jet analog of this mixing process is simulated. (The round jet can
also be simulated using ODT, but this is not implemented for reasons discussed elsewhere [1].) It
is reasonable to simulate the round-jet mixing process using a planar-jet simulation, despite the
differences between the similarity scalings of these flows, provided that the streamwise development
is parametrized by the normalized convective time [4] ¢/ = f:ﬁns dz (u'2)2/2 /(Inusm). Here, Iy, and
Uy, are the jet half-width and the mean centerline velocity.

Spanwise line sources of a passive scalar (Pr = 0.7) are placed at a streamwise location Z;ing
within the self-preserving region of the simulated flow. (In the experiment, the sources were placed
upstream of the self-preserving region, potentially complicating the interpretation of the results.)
The transverse offsets of the line sources, scaled by the jet width, are set equal to the scaled radial
offsets in the experiment.

Figure 2 shows measured and computed profiles of the segregation parameter «, defined as
the scalar covariance divided by the product of scalar means. Measurements are plotted with the
convective time scale stretched by a factor of two relative to the ODT convective time scale. The
plot indicates that functional dependences are well predicted by ODT, but the simulated mixing
process evolves roughly half as fast as indicated by the measurements.
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Figure 2. Centerline evolution of the segregation parameter ¢ versus normalized convective
time t/7. Curves: planar-jet computations. Symbols: round-jet measurements [4]. Plotted
data is keyed to the scaled radii r/rmi, of the pair of ring sources, where r is the ring

radius and 7p;y, is the radius of the smallest ring: ——, open circle, 7/Tmin = (1, -g—), ------ )
open square, 7/Tmin = (1,3); —-—, filled circle, 7/rmin = (%,4); ————— , filled square,
7/Tmin = (2,4).
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The implication of this discrepancy is that the predicted relationship between small-scale mo-
tions governing mixing within the jet and large-scale motions governing jet entrainment differs from
the relationship found in 3D turbulence. Put another way, if A had been assigned so as to match
the observed mixing rate, then the computed overall spreading rate of the jet would have been too
fast. This may be attributed a deficiency of either the simulated microstructure or the simulated
large-scale entrainment. The latter is suspect because it is sensitive to the eddy exclusion rule,
which somewhat arbitrarily disallows eddies more than half contained in the outer flow. This rule
can be (but has not yet been) generalized to include an adjustable parameter that allows large scale
and small scale evolution to be reconciled.

The comparison of measured and computed results yields insight concerning the significance
of a set of measurements for which no detailed explanation had previously been offered. One could
not a priori rule out sensitivity of the measured results to organized large-scale motions, to near-
field effects owing to the proximity of the scalar sources to the potential core of the jet, or to
other possible influences. The simplicity of ODT, together with the data comparisons, suggests the
following explanation of the observations. It is inferred [1] that the observations reflect a transition
from near-field radial transport dominance to far-field axial transport dominance, in conjunction
with known transient properties of three-stream turbulent mixing.

DISCUSSION

One-dimensional turbulence as formulated here is intended to identify the range of turbulence
phenomena that can be captured with a minimal representation of the interplay between advective
and viscous processes in turbulent flow. The essential elements of such a representation are identi-
fied as a mechanistically literal numerical implementation of viscous evolution (requiring, at a mini-
mum, one spatial coordinate), a stochastic advection process incorporating the essential ingredients
of vortical motion (compressive strain and rotational folding), and a simple dimensionally-based
prescription of the ensemble of such motions. To incorporate these elements in a 1D formulation,
the triplet map (Fig. 1) is adopted as a 1D representation of an individual turbulent eddy and
Egs. (1) and (2) are used to determine the eddy rate distribution as a function of the instanta-
neous streamwise velocity profile. Diverse phenomena are reproduced by integrating these elements
into a numerical simulation in which the initial and boundary conditions corresponding to various
turbulent flow configurations can be imposed.

This modeling approach has features in common with various other turbulence models. For
example, the analogy between the dimensional principles embodied in ODT and those underpinning
mixing-length models has been noted.

In another context, ODT may be viewed as the real-space analog of shell models [5] and
other mode-coupling models formulated in Fourier spaces of reduced dimensionality. In"ODT, the
mapping events are the ‘modes’ and the streamwise velocity profile is the field that couples them.

The discreteness of the events is reminiscent of the discrete-vortex method, a 2D model that
can also be rendered in 1D, though with limited applicability [6]. In ODT, however, the events are
discrete in time as well as space. This formulation reflects the ephemeral nature of turbulent eddies,
in contrast to vortical structures that are relatively persistent at the largest (energy-containing)
and smallest (viscosity-dominated) length scales.

The nonlocality of fluid motion implicit in the mapping process is reminiscient of nonlocal
transport models [7]. Those models describe the evolution of mean quantities rather than individual
flow realizations. The relation between those models and averages of ODT flow realizations will be
investigated in future work.




Mathematically, ODT is somewhat analogous to a deterministic sequence of 1D maps in which
the structure of each map is a function of the profile to which it is applied [8]. In ODT, it is the
statistical ensemble of maps, rather than map structure, that evolves.

These analogies, though suggestive, do not reflect the key features of the modeling approach.
The key features are the representation of eddy creation by shear that is externally imposed and
amplified by previous eddies, and the mechanistically literal implementation of molecular (viscous
and diffusive) effects by maintaining full spatial resolution. By capturing the interplay of shear,
vortical motion, and viscosity, the model emulates the mechanisms underlying a variety of turbulent
flow phenomena.
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' ABSTRACT

The primary objective of this research program is to obtain understanding
concerning the role of three-dimensional vortex structures in the dispersion of
particles and droplets in free shear flows. This research program builds on
previous studies which focused on the nature of particle dispersion in large scale
quasi two-dimensional vortex structures. This investigation employs time
dependent experimental and numerical techniques to provide information
concerning the particulate dispersion produced by three dimensional vortex
structures in free shear layers. The free shear flows investigated include modified
plane mixing layers, and modified plane wakes. The modifications to these flows
involve slight perturbations to the initiation boundary conditions such that three-
dimensional vortex structures are rapidly generated by the experimental and
numerical flow fields. Recent results support the importance of these vortex
structures in the particle dispersion process.

INTRODUCTION

During the past twenty years considerable research efforts have been directed towards
investigating the important deterministic flow structures present in free shear flows. Initially this
work concentrated on the large scale vortex structures that were primarily dependent on the
geometry of the mean flow velocity gradient. For flows in which the mean velocity field is two-
dimensional, such as mixing layers, wakes and axisymmetric jets, the large scale structures are
typically quasi two-dimensional with instantaneous vorticity approximately aligned, in the time
average vorticity direction. Large scale flow structures of this type have been documented
extensively in the literature. (Ho and Huerre 1984, Browand and Troutt 1980, 1985). Although




these large scale structures are extremely important in the global development of free shear flows ‘
they do not provide a complete description of the mixing processes associated with these flows.

Significant research attention concerning free shear flows has focused recently on the
nature of a deterministic three dimensional vortex structure which apparently co-exists with the
large scale structures. The presence of this three dimensional structure in plane mixing layers was
initially documented through experimental flow visualization studies by Breidenthal (1981), and
Bernal and Roshko (1986). Later visualization studies by Jimenez et al. (1985) and Lasheras et
al. (1986, 1988) examined more closely the origin and evolution of the three dimensional vortical
structures. The three difnensional structures are typically aligned over much of their length in the
streamwise direction. The structures are also typically referred to as braids or ribs or simply
streamwise vortices. Extensive hot-wire measurements by Huang and Ho (1990) have confirmed
the concentrated vortical nature of these three dimensional structures and their sensitivity to initial
conditions. The measurements also demonstrated that the spanwise wavelength of the streamwise
structure scales with the spacing of the large scale structures. The ratio of these two scales was
found to be approximately 2/3 after initial pairing interactions were completed.

Numerical simulations of three dimensional vortex structures have been performed by
Ashurst and Meiburg (1988) for a spatially developing plane mixing layer. A review concerning
the fundamentals of three dimensional discrete vortex simulations is available by Leonard (1985).
Metcalfe et al. (1987) employed spectral techniques to simulate the dynamics of three dimensional
perturbations in a temporally developing mixing layer. This work involved a pseudo-spectral type
approach where finite difference techniques were applied for computing non-linear terms in the
governing equations. Pseudo-spectral simulations of the temporally developing plane mixing layer
by Rogers and Moser (1992) investigated in more detail the complex three dimensional
interactions between of the streamwise rib vortices. Later pseudo-spectral simulations by Moser
and Rogers (1993) followed the three dimensional evolution of the plane mixing layer vortex
structures through three pairing interactions and up to the onset of transition to turbulent flow.
The role of these three dimensional vortex structures in the two-phase particle dispersion process
in free shear flows is a subject that has received little attention in the past, mainly because of it
complexity (Crowe, Chung, Troutt 1993).

The primary objective of this research program is to obtain understanding concerning the
importance of three dimensional vortex structures in the dispersion of particles and droplets in
free shear flows. The free shear flows investigated include modified plane mixing layers, and
modified plane wakes. The modifications to these flows involve slight perturbations to the
initiation boundary conditions such that three dimensional vortex structures will be rapidly
generated by the experimental and numerical flow fields. The particulate dispersion process
associated with these structures is then focused upon using advanced experimental and numerical
techniques.

RESEARCH PROGRAM

This overall research program is being pursued using both experimental and numerical
approaches. Recent experimental work has concentrated on characterizing and quantifying the
three dimensional streamwise vortex structures in plane wakes using phase-averaged hot-wire
anemometry techniques. The flow experiments have been carried out in a low turbulence shear
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flow wind tunnel with test facility crosssection dimensions of 60cm by 45cm. A computer
controlled system for probe positioning, active shear flow forcing and data acquisition has been
developed expressly for these measurements.

The numerical techniques for simulating the free shear flow and the particle dispersion
process have proceeded along two avenues. One approach has employed a time dependent three
dimensional spectral technique based on the work of Metcalfe ef al. (1987). This approach has
been employed to generate three dimensional vortex structures in a temporally developing mixing
layer. Initial three dimensional simulations have also been performed involving one-way coupled
particle dispersion using this technique.

In addition to the one-way coupled three dimensional simulations, extensive numerical
studies involving two-way coupling effects in two-dimensional wakes have also been performed.
These simulations have involved two dimensional discrete vortex techniques to evaluate mass,
momentum and energy transfer effects between the particulate and gas phases. Previous
simulation results emphasized momentum coupling effects. The present efforts focus primarily on
mass and energy coupling effects.

THREE-DIMENSIONAL NUMERICAL RESULTS

Numerical simulations of a temporally developing three dimensional mixing layer at
Re=500 based on initial instability wavelength have been recently computed. The simulation is
initiated from a hyperbolic tangent velocity profile with two dimensional fundamental and
subharmonic perturbations. In addition an isotropic random phase three dimensional energy
spectrum is initially specified. Figure 1 displays the time development of spanwise vortex
structures from the three dimensional simulation. The spanwise vortex structure development for
the three dimensional simulation is very similar to that observed previously from two-dimensional
numerical results.

The development and persistence of three dimensional stream-wise vortex structures is
displayed in Figure 2. The general character of these rib like structures is in agreement with
previous experimental and numerical findings concerning these flow structures.  Three
dimensional particle concentration contours produced by the simulated flow are shown in Figure 3

for various Stokes number particles. Considerable order is apparent in the dispersion pattern at
St=1.0.

TWO-WAY COUPLING RESULTS

Recent analytical and numerical efforts have focused on the effects of two-way mass and
energy coupling produced by vaporizing liquid droplets in a heated gas flow. The analysis begins
from the compressible flow continuity equation

where S, is a mass source per unit volume produced by droplet vaporization or condensation.
With the assumptions of low Mach number and constant droplet temperature the continuity
equation can be rewritten as
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The right side of the continuity equation represents the coupling effect of the droplet on
the gas flow. The first term represents the mass source from the droplet to the gas and the second
term the heat transfer source.

The velocity field in the mass and energy two-way coupling model can be decomposed
into three parts: the field corresponding to the base potential flow, the flow velocity induced by
the vortices in the field, and the flow velocity produced by the effects of mass and energy
coupling. The base flow is simulated with a two-dimensional discrete vortex technique.

The effect of droplet mass and energy coupling on the gas flow can best be evaluated
through the use of coupling parameters. The mass coupling parameter can be written as

I =—="
pU, /L
where U, and ¢ are characteristic flow velocity and length scales.
The energy coupling parameter can be written as

.
* pc,TUo/ ¢
Figure 4 shows the results of two-way mass and energy'coupling effects for a wake downstream
of a bluff body. The results indicate that the development of vortices downstream of the body
may be altered somewhat due to the two-way coupling effects.

Three Dimensional Experimental Results

Experimental results concerning the three-dimensional nature of the vortex structures in a
(Re=~1200 based on momentum thickness) plane wake flow have recently been acquired and
analyzed. Examples of the experimental data from a cross stream section of a perturbed wake
flow at a selected downstream position are shown in Figure 5. The vorticity contours illuminate
the alternating sign character and the organized nature of the streamwise vortices in this flow.
Eventually experimental results similar to these will be directly compared to simulation results.

Summary

Numerical and experimental investigations concerning three dimensional flow and particle
dispersion processes are presently underway. Numerical and experimental results have confirmed
the presence of the alternating sign patterns and concentrated vorticity levels associated with
these flow phenomena. Initial simulation results demonstrate that three dimensional vortices can
have a substantial effect on the particle dispersion patterns at intermediate Stokes numbers.

Extensive numerical simulations of two-way mass and energy coupling effects between
vaporizing droplets in gas flows indicate that the initial vortex formation and development may be
somewhat delayed. However changes in the overall character of the wake flow are not substantial
over the range of parameters presently investigated.
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ABSTRACT

An overview of our recent experiments, in which we generate high Reynolds
number homogeneous grid turbulence, is provided. We show that in a small wind
tunnel we are able to achieve Reynolds numbers that are sufficiently high (Ry ~
800, Ry ~ 36,000) such that many of the aspects of turbulence that hitherto
have only been observed in large scale anisotropic shear flows, are obtained. In
particular we study the evolution of the spectrum with Reynolds number, the
Kolmogorov constant and the internal intermittency, showing the way they tend
to their high Reynolds number asymptotes. Thus we link previous low Reynolds
number laboratory experiments with large scale environmental measurements.

INTRODUCTION

A detailed understanding of turbulence is required in order to predict mixing and com-
bustion rates, drag, pollutant transport and many other aspects of fluid motion that are of
concern in industry and the environment. For over fifty years the Kolmogorov (1941) sim-
ilarity theory has provided the basis for the scaling of experimental data as well as for the
modelling and simulation of turbulent flows. No other phenomenology has such generality
or simplicity. Although there are delicate issues concerning some of its predictions, it does
have good experimental confirmation for flows at high Reynolds numbers, suggesting that
the scaling is approximately correct, at least for variance quantities such as the turbulence
energy and the dissipation rate.

The Kolmogorov spectrum is used widely in engineering simulations and models, both in
homogeneous and inhomogeneous flows. For example, Large Eddy Simulation (LES) is based
on the ability to model the small scales ¢ la Kolmogorov [1]. Yet engineering flows often
occur at moderate Reynolds numbers where the Kolimogorov assumptions may not hold. Here
the form of the spectrum is different. Remarkably, there has been no systematic study of
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how the turbulence spectrum evolves as a function of Reynolds number. Indeed the question -

of what is high Reynolds number turbulence has not been properly addressed although it
is known that by about Ry ~ 400 the spectrum shows an appreciable inertial range, close
to the —5/3 slope predicted by Kolmogorov [2]. Here, R, is the Taylor Reynolds number
defined in the usual way, as ((u2))2)\/v where u is the fluctuating longitudinal velocity, A
is the Taylor microscale (A = ((u?)/{(8u/0x)?))'/?) and v is the kinematic viscosity.

The Kolmogorov inertial range scaling assumes that the turbulence is locally isotropic.
Tt has been most studied in flows that are anisotropic at the large scales due to mean shear
or buoyancy, or some other effects. The recent boundary layer experiments of Saddoughi
and Veeravalli [3] show that local isotropy does indeed occur as the shear stress co-spectrum
(affecting the large scales) begins to diminish. However, for lower Reynolds number shear
flows (for Ry less than 300 or 400), the co-spectrum (due to the shear) extends to the dis-
sipation range, providing almost no locally isotropic turbulence. (e.g., figure 21 of reference
3). Thus while the experiments with shear indicate at what R there becomes an appreciable
region of local isotropy in the wave number spectrum, they do not address whether lower
R,, experiments would be consistent with Kolmogorov scaling if the anisotropic effects of the
large scales were absent, since the effects of shear dominate all of the spectrum for the lower
R,. This issue can only be addressed if the turbulence is isotropic at all scales, including
those in the energy containing range.

Unfortunately, grid turbulence, the only type of turbulence that is free of large scale
anisotropy that can be generated in the laboratory, has been limited to low Reynolds numbers
(R, < 150) since the grid generates very low turbulence intensities (less than 3%). However,
over the past three years following Makita [4], we have developed and built active turbulence
generator grids that produce high intensity turbulence with large integral scales. We recently
have achieved an R, of nearly 800, around 3 times the highest R, that can be obtained using
direct numerical simulations. The active grid turbulence has the essential ingredients of very
high R, atmospheric flows but without their complicating effects of large scale spatial and
temporal inhomogeneity.

Briefly, Makita’s grid works as follows: Triangular shaped wings are placed on each mesh
of the grid (figure 1). A pulse generator rotates the grid bars (and hence the wings) and at

the same time the motor is fed by a random pulse which reverses the rotation of the grid -

har. Thus the wing, always in rotational motion, reverses its direction randomly, providing a
flapping motion. Each bar is separately controlled, providing random flapping between bars.
For our experiment the mesh length was 5 cm and the mean speed was varied from 3 to 14
m/s. The rotation speed of the bars was around 2H z and was slightly varied with wind speed.
The velocity variance decay was similar to that of conventional grids. The experiments were
carried out in our 40 x 40 cm? x 5m wind tunnel [5]. Velocity and temperature fluctuations
were measured using conventional hot wiré anemometry. )

Here we will provide an overview of our recent experiments. Further results can be found
in Mydlarski and Warhaft[6,7].
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Figure 1: A sketch of the active grid.

THE SPECTRA

Figure 2(a) shows u and v spectra for 50 < Ry < 473 obtained with the active grid.!
Our results show a significant scaling range close to —5/3. Figure 2(b) shows a compilation
of results from Saddoughi and Veeravalli (1994) taken in a number of different flows, both
in the laboratory and in the atmosphere. Although their results are mainly for shear flows,
they show a very strong resemblence to our homogeneous measurements. Both the sets of
results (figures 2(a) and (b)) have provided strong support for Kolmogorov scalings.

A more stringent test for Kolmogorov scaling is to display the data in compensated form.
Figure 3(a) shows the Fi; spectra from our experiments multiplied by =2/ 3kf 8. The inertial
range should be horizontal on such a plot. The 4 representative compensated spectra are
for Ry = 99,199,373 and 448. While there is a trend towards becoming horizontal with Ry,
there is still a significant slope at the highest Reynolds number. The dashed lines show the
accepted value of the Kolmogorov constant. It falls approximately midway between the low
and high ends of the scaling range. '

The spectra of figure 3(a) show, then, that while there clearly is a scaling region, its slope
is not —5/3 even for the highest Ry. It appears that the spectra are not yet self similar. In
order to describe them, we use a modified similarity form:

F11(k1) = 01*62/3k1_5/3(k177)5/3—n1 (1)

Foo(ky) = Cone?/? kf5/3(km)5/3‘”2 )

Wery recently we have achieved an Ry of 780 using a larger active grid. The trends in the new data are
consistent with the lower Ry deseribed here.
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Figure 2: (a) The longitudinal (u) and transverse (v) power spectra for Ry varying from 50 .

(open triangles) to 473 (open circles) in the present experiment. (b) A compilation of shear
flow u spectra [3]. Here the R, variation is from 23 to 3,200.

where n; and ny are the slopes of the scaling region for the u and v spectra respectively
and C;, and Ch,. ate now Kolmogorov variables: both C, and n are functions of Ry (and
as Ry — oo,n1,m9 — 5/3 and C, — C (the traditional Kolmogorov constant)). In figure
3(b) we have plotted Cy. = Fi1(k)e~ 3k ™ ~5/% vs. kyn for the four spectra of figure 3(a).
The value of n,, which varied from 1.40(Ry = 99) to 1.58(Ry = 448) was determined by
trial and error such that the scaling region would be horizontal. Note that C). decreases as
R, increases but even for the high R, case its value is approximately 0.7, well above the
accepted high Reynolds number estimate of approximately 0.5.

Figure 4 is a summary of the best fit scaling exponent, n;, for all the u spectra we
measured over the range 50 < R, < 473. These results show that below Ry ~ 100 the
spectra have a scaling region in the range 1.3 to 1.4. The relatively large uncertainty is due
to the small width of the scaling region. There is then a relatively well defined transition
region extending from Ry ~ 100 to Ry ~ 200 where the scaling exponent steepens to a value
of about 1.52. Beyond R, ~ 200 the slope tends to increase very slightly. Our maximum
slope was 1.58 at R, ~ 473. We emphasize the high degree of reproductability of the high
Reynolds number experiments (R > 250). The experimental scatter was 3-0.01.
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Figure 3: Compensated u spectra for Ry = 99,199, 373 and 448. (a) Fy;(ki)e=% 3k‘;’/ =0
(b) Fi1(k1)e ®BEpig=3 = Cy,. The horizontal dashed, line in (a) is 0.5, the accepted
value for C; (equation 1) for high Reynolds number turbulence. Each of the curves in (a)
has been successively shifted by 0.2 with respect to the lower one. The Reynolds number
increases from the bottom curve upwards in (a) and from the upper curve downwards in (b).

We have fitted a —2/3.power law curve to figure 4. Defining p; = 5/3 — n, we find
D= 5.25R;2/ 3. This suggests that a 5 /3 scaling region will not occur until Ry ~ 104, a very
high Reynolds number indeed. Figure 5 shows a plot of Ci. as a function of p. (The values
of C, were determined from all of the measured spectra in the same manner as for the four
spectra in figure 2(b).) The best fit line to Ci4 is

Ci. = 0.51 + 2.39p;. (3)

Thus, when py = 0(ny = 5/3),C1. = C; = 0.51. The generally accepted value of the three-
dimensional Kolmogorov constant C is 1.5 [4] and the one- and three-dimensional constants
are related by C) = 18C/55. Thus C, = 0.49. Our extrapolated value of 0.51 is remarkably
consistent with this value. We emphasize that equation 3 is a best fit.
In a similar way, we determined C,, the Kolmogorov variable for the transverse velocity,
v. The ratio of the Kolmogorov constants Cy/C; must be 4/3 if n; = ng = 5/3. In order to
determine the best fit line for Cs, we have used the value Co = 4/3 x 0.51 for p» = 0. The
best line fit is
Cos = 0.68 + 3.07pa. (4)

INTERNAL INTERMITTENCY

While approximately Gaussian at the large scales, turbulence at the small scales is
strongly intermittent and non-Gaussian. If the Reynolds number is high enough, the in-
termittent structure should be observable not only in the dissipation range, but also in the
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Figure 4: The slope of the u spectrum Figure 5: Cy, and C,. (equations 1 and 2)
as a function of R, for the various active plotted as a function of p = 5/3 — n where n
grid experiments. is the slope of the respective spectrum. Open
circles, Ci; closed circles, Cs,. For Cis, the line
is that of best fit. For Cs,, the best fit line has
been forced through Cp.(p =0) x 4/3 at p=0.

inertial subrange. Kolmogorov [2] hypothesised that for high Ry, the energy dissipation rate
averaged over a radius 7, &, (where 7 is within the inertial subrange) is related to Au(r) by -
the relation

Au(r) = V(re, ) (5)

where V is a stochastic variable independent of r and &,. Thus the quantities Au(r) and
e, must be statistically dependent. In figure 6(a) and (b) we have plotted (reel!)/® and
(ro€21)1/2 conditioned on Au(r,). Here ell(= 150U ~*((9u/0t)?)) and e2l(= (7.50U~2((dv/dt)?))
are (one-dimensional surrogates for the total dissipation) determined over a record of length
T, from which we also obtained Au(r,) from velocity difference between the start and end
of the record. ,For high R, figures 6(a) and (b) show both &} and 2! are statistically
dependent on Awu(r,) : the curves have a pronounced V' shape indicating that higher dis-
sipation (averaged over r,) is associated with larger velocity differences. For low R,, the
conditional statistics are considerably flatter, showing only a weak dependence on Au(r,).
This is particularly so for the £2! case (figure 26(b)). Notice the asymmetry in those curves
for low R,. .
Recently it was pointed out [8,9] that a statistical dependence between Awu(r) and re;?
must occur, even if the Kolmogorov revised similarity hypothesis, KRHS, does not hold. A
correlation will occur between e2* and Au(r) on purely kinematic grounds. For a given Au(r),
there exists a minimum possible value of the dissipation ' which corresponds to a linear
variation in u over the distance r (€} |min = 15v(Au(r)/r)?). On the other hand, the existence
of a statistical dependence between €2! and Au(r) suggests a dynamical contribution. For
our high R, experiments (figure 6(a) and (b)) both e!* and €' conditioned on Au(r) show
statistical dependence on Awu(r), giving strong support for KRHS. Thus the combination
of our high and low Reynolds number cases and the conditional statistics of both el! and
2! on Au(r) enable us to separate the kinematical from the dynamical contributions to the
statistical dependence: at low R, the dependence appears to be kinematical while at high
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Figure 6: The expectation of €}! conditioned on Au(r,) and 2! conditioned on Au(r,). (a)
[((raett) 3| Au(re)))/ (raleri )/ (b) [{(rae?t)/®|Au(ra))]/ (rale?;)) /2. For both (a) and (b)

the symbols are : A, Ry = 473R;+, Ry = 275R; X, Ry = 2075;0R, = 995;<, Ry, = 100
(conventional grid, M = 10.2 cm), O, Ry = 50 (conventional grid, M = 2.54cm).

R, a significant dynamical effect is observed.
Finally, we have determined the intermittency exponent (I{62) from the autocorrelation

of € [2]:

pes(T) = <8($)§§:)+ 7')) ox 7. (6)
Our estimates of i are plotted as a function of Ry in figure 7. Below Ry ~ 100,41 ~ 0.
There is then a steep rise to a value of around 0.11 at Ry = 450. Measurements in very high
Reynolds number flows show  is approximately constant, with a value of approximately 0.2
[2]). Evidently, we are not yet at a sufficiently high R, to attain this value. This is consistent
with the spectra (figure 3) which are still evolving.

CONCLUDING COMMENTS

We have implemented a powerful new, cheap, experimental method of studying homoge-
neous turbulence at Reynolds numbers that are sufficiently high so that many of the issues
raised in contemporary turbulence theory may be studied. We have found that the R, must
be well above 200 before fully developed internal intermittency first appears. We note that
Direct Numerical Simulations tend to be in the range Ry ~ 200 and it is unlikely that they
will achieve R in the 500 to 800 range in the near future. We are presently using the active
grid to study scalar mixing and dispersion, as well as further elucidating the issues raised
here.
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CONDUCTION IN NON-UNIFORM COMPOSITES

A. Prosperetti and M. Marchioro
Department of Mechanical Engineering, The Johns Hopkins University
Baltimore MD 21218

ABSTRACT

A method for the numerical simulation of non-uniform mixtures is described and
applied to the heat conduction problem. It is found that, when the inclusions are not
uniformly distributed in space, the standard single-phase Fourier law of conduction,
with an effective conductivity multiplying the gradient of the average temperature,
is not satisfied.

INTRODUCTION

In several recent papers we have developed an approach to the derivation of averaged equa-
tions for disperse multiphase flows that appears promising in that the closure problem is phrased
in terms of computable quantities (Zhang and Prosperetti 1994a, 1994b, 1996). The theory is
developed in terms of ensemble averages that are notoriously difficult to calculate numerically.
However, the complexity of the task decreases by many orders of magnitude in the case of ho-
mogeneous suspensions for which the average quantities become spatially uniform, as in this
situation the ensemble average can be reduced to a volume average over many (as opposed to a
large number of) realizations of the flow. In Zhang and Prosperetti (1994a) we have given an
explicit example of the procedure for one simple case of this type. We started out with a rep-
resentation of the quantity of interest in terrs of the unconditionally averaged fields multiplied
by unknown coefficients, and determined the coefficients from the simulations. We believe that
this is a promising approach that can ultimately lead to a useful closed set of averaged equations
provided adequate simulations can be carried out. Unfortunately, the method cannot evidently
deal with non-uniform suspensions, a situation that it is imperative to consider in order to develop
a complete theory. Indeed, it is widely recognized that there is little hope of developing realistic
models of multiphase flows without second-order spatial derivatives (see e.g. Batchelor 1988).

These considerations motivate the present study in which we propose a method for the evalu-
ation of gradient terms that only requires the calculation of averages for uniform suspensions. In
order to develop and test the method, we have deemed it desirable to work with a system simpler
than two phase flow, namely heat conduction in a composite with spherical inclusions. In this
case the quantity to be determined is the mean heat flux in the mixture q,,. It can readily be
shown that this quantity can be calculated from the expression (Batchelor 1974):
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Am = —kcVTm — (kp — kc) < VIp >, (1)

where the subscripts C and D refer to the continuous and disperse phase respectively, the angle
brackets denote the phase-ensemble average, k is the thermal conductivity, Tp the disperse-phase
temperature and .
Tm=Bc<Tc>+Pp<Tp> (2

is the mean temperature defined in terms of the individual phase average temperatures and volume
fractions f¢,p. Note that S + Bp = 1.

THE NON-UNIFORM ENSEMBLE

To explain our procedure, consider for example the standard Fourier law of single-phase heat
conduction relating the heat flux q to the temperature gradient VT, @ = —kVT. If this relation
is true, the thermal conductivity k can be calculated, or measured, no matter how small or large
VT is. Indeed, in the classical Chapman-Enskog expansion. of the Kinetic Theory of Gases, this
relation is derived and % calculated on the assumption of a small temperature gradient.

We base our approach on the assumption that the closure relations that we are seeking establish
. a functional relation among the average quantities included in the theory endowed with a similar
“intrinsic” nature. This remark suggests that we proceed perturbatively, setting up a “nearly
uniform” suspension and expanding in the degree of non-uniformity in such a way that all the
actual numerical calculations are conducted on a uniform composite. The idea is similar to the
familiar asymptotic method of domain perturbation, where the problem in the perturbed domain
is approximated as a series of problems on the simpler unperturbed one.

We consider composites occupying the entire space and consisting of an infinite number of
copies of a fundamental cubic cell I much greater than the particle radius a. We can therefore
simply deal with such a fundamental cell replacing the rest of the composite by periodic boundary
conditions. By standard techniques we can generate numerically an ensemble of such fundamental
cells, each one with N particles randomly and uniformly distributed in the mean. Let Po(N) =
P(yl,y?%,...y"Y) in which y*, @ = 1,2,...,N are the positions of the particle centers, be the
probability density for this ensemble. In each realization, subject now each particle to the small
displacement

%) = y* +ef (y9), (3)

where f is a given, deterministic function equal for all particles and € a small parameter. The new
probability density then becomes

) N
P(N) = By(N) [L+e3(N)], &(N) =) Vya-f(y%). 4

a=1
For the purposes of the present paper we take
V-f(y) = sink-y, (5)

where k equals 2w/L times a unit vector in one of the coordinate directions. This may be
considered as a single term of a Fourier expansion. A more general analysis will be presented
elsewhere.
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The volume fraction of the disperse phase fp is defined by

Bol,t) = 37 [ VPN xp(o ), ©)

where xp is the characteristic, or indicator, function of the disperse phase. For a suspension of
equal spherical particles of radius a an explicit representation is (Lundgren 1972)

N
xp(;N) = 1-xc(x,N) =) H(a—[x—y°), (7)

a=1

where H is the Heaviside distribution. Upon substitution of (4) into this definition of Sp we have

Bp = BY +efh sink-x, _ (8)

where ) ) N

v
8% = 27 [ X0t M B@V;9)deY = 74, ©)

where v = 37a® is the particle volume, and
gL = /ch P(N; ) (V) S sink-y / Brcosk-z
b L3 NI ,,Z_l |z|<a
2

~ L3 - /dCNPo(N £) ®2(N) + O ( ) . (10)

The last form is obtained upon a Ta.ylor series expansion of the cosine in the inner integral of the
previous line, and upon recognizing that the remaining sum of sines, if f is given by (5), is just

(4).

TEMPERATURE FIELDS

" For the determination of the microscopic, exact temperature field for each configuration we
use the multipole expansion method closely following the approach of Sangani and Yao (1988).
We thus set

N
To(xN) = G x+ Y Y AR AnSi(x—y%), (11)
a=lm
where we have used an abbreviated notation for the inner summation that, written out in detail,
is o n ) )
> AmdESi(x—y%) = 3 Y [A%n0l ™A + A58 B Si(x-¥%).  (12)
m n=1m=0
Here 81, Am, and A, are differential operators with respect to the components of the field point x
and S; is Hasimoto’s function (for details see Sangani and Yao 1988). The vector G is a constant
that can be interpreted as the “overall” temperature gradient in a large piece of the composite.
The temperature field inside the generic particle is represented as a spherical harmonic ex-
pansion:
o0 n
=Y > (Cr+Drea ) Y0, 4) (13)
n=1l1m=-n
Imposing the continuity of temperature and heat fluxes at the particle surfaces gives relations
between the coefficients 4, C, and D that we do not need to write down in detail. Suffice it to
say that, as expected, all these constants are found to depend linearly on G.
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EXPRESSIONS FOR THE AVERAGES

We are going to seek representations of the average fields in terms of Fourier series truncated
at a low order in correspondence with the ansatz (5) for f. For the continuous-phase average
temperature we write

ﬂc(<Tc>—G-x)=7'oc+erscsink-x+efrfcosk-x. (14)

According to Fourier’s theorem, the coefficients 7C are found by taking projections. For example

’ N
NIL Ve m

a=1
N

= gy [ 4" Bty L ITEG) -Gyl (15)

where the expression in the second line is found upon substituting the representation (11) for T¢
into the one in the first line. Similarly one finds that the other coefficients may be conveniently

‘written as
'rsC = —ﬂ% [('rsc)1+3m-'rsc] , 'rcC = 3,B%m-'rcc, (16)

where m = k/k and

1 2 ¥ .
(11 = 5 [ 4V B2 T D [TE(r") — G-y sink-y® (1)
: a=1
¢ = | L [ac py(v;t)a(v)~2 NA“'k"‘
w¢ = | g [ BN g 35 Af sinke-y?| -m (18)
¢ = L [ eV pyv;Ha) 2 lNA""k"‘
1€ = 57 [ 4V P9 T | g 3 A7 sinke-y (19)

Here A; and A, are a vector and a symmetric second-order tensor having components related to
the 3 and 6 scalar coefficients corresponding to n = 1 and 2 in the expansion (11).

One can readily deduce some information about the necessary structure of these complicated
expressions as follows. Let us start from 'roc . This quantity must be a scalar linearly dependent
on G. This is only possible if the vector nature of G can be neutralized by taking a scalar product
with another vector, but no other vector is available here as 7§ is calculated on the basis of a
uniform mixture. Hence we expect 7§ = 0, a fesult that is confirmed by the numerical calculations.

For ('rsc )1, again we expect a linear dependence on G but, since this quantity “knows” about

the non-uniformity of the mixture, also on m. Then we are led to the form

(oh = m- G, (20)

with ¢ a dimensionless quantity to be calculated numerically. For 7€, 7¢ we need a vector linearly

dependent on G and possibly, linearly or nonlinearly, upon m. We are thus led to

C u’és u%s
Tes = T’G+ T (m-G)m. (21)
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For the disperse-phase temperature field we write
Bp(<Tp>—-G-x) = 7 +erP sink-x+er” cosk-x, (22)

and, from the representation (13), we find
t
'roD = —'rOC, 'rsD = ('rsc)l = Em-G, (23)

2

- 'r,f) — § a

51—k

The last quantity to be evaluated is the mean temperature gradient in the disperse phase.
Upon setting, as before,

,8% (u,l; + ug)k -G. (24)

(1—-k) Bp < VTp >= (% [do +eds sin k- x +ed, cos k- %] , (25)
with k¥ = kp/kc the ratio we find

1 1 Y
do = (1-#) 7 / dcN Po(Nit) 1 3 VTn(y®) = —3ue@, - (26)

a=1

N
d; = (1 &) % /dCNPo(N;t)q)(N)%;VTD(y“) sink-y® = —3 [u§G+u§ (m-G) m] ,
(27)
1
N
~3[u}G +ul(m- G)m] . (28)

a? |2 N
d. = —(1—&)-—5— [ﬁ /dCNPo(N;t) &(N) ZVVTD(y"‘) sink-y"‘] -k

a=1

THE AVERAGE HEAT FLUX

With the results of the previous section, we can now write down an expression for the mean
flux qmp. It turns out that, numerically, we find ¢t = 0, u! = 0, u2 = 0. Hence we drop the
corresponding terms and have

—kiqm = (1+3uo,3°D+3e,B°Dui sink-x—3e,B°Du};mmsink-x) -G. (29)
C

This form of the result is dependent on the specific way in which the problem has been set
up, rather than reflecting an intrinsic relation among the fundamental quantities of the theory,
namely < T¢c,p > and Bp. As explained before, we proceed on the postulate that such an
intrinsic form does exist and therefore we try to express G and m (m-G) sink-x in terms of such
fundamental quantities, or some convenient combination of them. We shall make use of VT;, and
V(<Tp>—<Te >).

Upon substitution of the previous results into the definition (2) of the mean temperature and
differentiation, we find

VT, = G —3ef) (u}; + uz) (m-G)msink-x, (30)
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0
V(<TD>—<TC>)=3el—§Dﬁ—0 (u}:-l-u%) (m-G) msink-x. (31)
D
It is obvious from this expression that, for a uniform mixture in which e =0, V <Tp > =
V < T¢ >, as is well known. For this relation to hold also in the present case, one would need
ul 4+ u2 = 0, which is not supported by the simulations.
These two relations are now solved for G and m (m - G) sin(k-x) and the result inserted into
the expression (29) for qp. The result is

——1-qm = (1 + 3,6’%110 + 3,3%’11,1:6 sink- x) Vin
ke
0 0 u% :
+(1—ﬂD) 3ﬂDU0———u}:+u§ V(<Tp>-<Tc>). (32)

In writing this expression we have retained the sine in the first term for the following reason. Let
kefs = Keff(Bp) be the effective conductivity of a uniform composite normalized by k¢. If we
use the expression (8) for Bp, we have

. . ds
Keff (ﬂ% +¢B) sink - x) & Keff (ﬁ%) + €B} sink - xﬁ?g . (33)
The result (32) thus suggests that
1

dk U
kess = 1+ 3Bpuo, d,(;; L 3ﬂD—£, (34)

which are both results that we have verified numerically. If we also define a second effective
thermal conductivity by

ka = (1—PBp) (3ﬂD'UO - L) ) (35)

C
ul + u2
we have the final result in the form

1
T dm = feff VIn+6aV(<Tp>—-<Tc>). (36)

As noted before, for a uniform composite the second term is absent because the mean gradient is
the same in the two phases.

RESULTS AND DISCUSSION

We generate an infinite composite by placing N spheres at random in a fundamental cell, and
by filling up the whole space with copies of this cell. Experience shows that the results are not
strongly affected by the artificial periodicity introduced in this way. The ensemble averages are
calculated by the Monte Carlo method using 500 configurations, 32 particles per configuration,
and truncating the summation in (12) to n = 3. The numerical results for sy and xa obtained
in this way are shown in Figs. 1 and'2 as functions of fp for several values of £ = kp/kc.
The former quantity, kess, is the same as the result obtained by several authors for a uniform
composite. The slight numerical differences between the present results and those published by
Sangani and Yao are to be imputed to our use of 3, rather than 7, singularities. As noted before,
we have also calculated 8}, and verified numerically the second relation in (34).
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In the steady problem, of course, any temperature gradient is linearly dependent on either G or
VT,,, and to that extent the relation (36) is less determinate than the result (29). However, (29) is
not a general result, but only represents the solution to a specific problem. The connection between
V(< Tp > — <T¢ >) and G in any other situation must be worked out anew. Furthermore,
in a time-dependent problem, the temperature gradients in the two phases are independent in
general, and in this case (36) may be expected to be applicable, while no relation of the type
(29) is likely. In this sense, it may be stated that a composite material of the type considered
here satisfies Fourier’s law of conduction with an effective conductivity only when it is uniform.
Spatial non-uniformities in the distribution of the disperse phase give rise to a qualitatively new
effect. Evidently, the zf:tual prediction of the mean heat flux requires information on the spatial
structure of both < Tg > and < Tp >. Two separate energy equations for the two phases are
therefore required for the full solution of the problem. '

The only other study of this situation that we are aware of is a very recent paper by Buyevich
and Ustinov (1995) who carried out a perturbation expansion on the assumption of a small gradient
of Bp, rather than of a small non-uniform part as in (8). Their result is therefore different from
the present one. In particular, they find an effect of order a?/L?, which is smaller than ours.
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Figure 1: Effective normalized thermal conductivity of a uniform composite with spherical inclu-
sions as a function of the volume fraction of the disperse phase Sp. The lines correspond, from
bottom to top, to conductivity ratios kp/k¢ = 0, 0.2, 0.5, 1, 2, 5, 10, 1000.
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as a function of the volume fraction of the disperse phase fp. The lines correspond, from bottom
to top, to conductivity ratios kp/kc = 0, 0.1, 0.2, 0.5, 0.8, 1, 2, 5, 10, 1000.
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ABSTRACT

Films flowing down an inclined plane are considered. An unconventional perturbation ap- -
proach is discussed. It yields the most general evolution equation for film thickness and the
least restrictive conditions for its validity. Results of numerical simulations of the dissipative-
dispersive evolution equation indicate that novel, more complex type of spatiotemporal pat-
terns can exist for strange attractors of nonequilibrium systems. It is suggested that real-life
experiments satisfying the validity conditions of this theory are possible.

INTRODUCTION

Thin liquid layers (*films”) flowing along solid surfaces occur in both natural and man-made environ-
ments (and the wavy film flows can captivate the occasional observer—this author, for one). Industrial
applications of film flows started as long ago as the 1800s, and have been growing in their scope and
importance ever since (see e.g. [1]).

Naturally, the studies of such film flows (the “Kapitza problem”) have a considerable history. However,
the nonlinear dynamics of wavy films is still far from being fully understood (see e.g. [2]; [3] and [4] are
some recent reviews of film flow studies). The Navier-Stokes (NS) system of partial differential equations
couples together the velocity components which are functions of four independent variables (time and the
three spatial coordinates). In addition, there are boundary conditions (BCs), including those at the moving
interface, whose position itself is determined by a partial differential equation (PDE) which involves the
unknown velocity values. Such a three-dimensional (3D) problem is prohibitively difficult to simulate even
with the most powerful presently available computers.

Even the simpler 2D computations were undertaken only recently, and only under the additional sim-
plifying restrictions of short computational intervals and/or time-independence (see e.g. [5]). However, the
2D flows are frequently unstable to 3D disturbances, and therefore three-dimensionality can be important
in many film flows (see e.g. recent experiments [2]).

Fortunately, there are certain domains in the parameter space for which the complicated NS-dynamical
evolution of 3D film waves can be captured by much simpler approzimate descriptions. In the most favorable
cases, such a theory hinges on a single PDE which governs the evolution of film thickness, a function of at
most two spatial coordinates. [The theory also leads to explicit expressions for the 3D velocity and pressure
fields in terms of the (2D) film thickness.] Recently, we [3] obtained the most general of such evolution
equations (EEs) for a film flowing down an inclined plane [which, in a certain sense (explained below),
includes any other such equation that can be valid for all time]. Numerical simulations of that equation




revealed the spontaneous formation of ordered patterns consisting of self-organized coherent structures.
These unusual patterns are the subject of the present communication.

The phenomenon of pattern formation in nonequilibrium, driven dissipative systems is currently a topic
of active experimental and theoretical research (see e.g. [6] for a recent progress review). However, the
self-organization of patterns was mainly studied in closed-flow situations, such as the Rayleigh-Bénard
convection. The planforms studied up to now in fluid-dynamical experiments—as well as in solid state
physics, nonlinear optics, chemistry, and biology—can be divided into two classes. In patterns of the first
kind, the elementary unit is “one-dimensional”, in the sense that one of its dimensions is much larger than
the others (like a rope or a thread). The convection rolls are an example, as are the “spiral” and “target”
chemical waves. The second kind of patterns are two-dimensional arrays of 2D. structures—for example,
hexagonal cells in some large-aspect-ratio convection experiments. |

Our studies reported here show that patterns of coherent structures can spontaneously form in film flows
(which, of course, are open-flow systems). Remarkably, these patterns are of a type different from both the
above classes (and typically of a2 more complex character). In the rest of the text, we discuss the derivation
of the most general EE (and of the conditions of its validity); some results of its numerical simulations; and
some theoretical explanations and possible experiments regarding the novel patterns.

PERTURBATION THEORY

Consider a layer of an incompressible Newtonian liquid flowing down an inclined plane under the action
of gravity. We introduce the coordinates as follows: the z axis is normal to the plane and directed into
the film; the y axis is in the spanwise direction; and the z axis is directed streamwise. The corresponding
components of velocity are u, v, and w. We denote the pressure field in the film by p; the pressure of the
ambient passive gas is neglected for simplicity.

The system is determined by the following independent parameters: the average thickness of the film ho
(the overbar here and below indicates a dimensional quantity); the liquid density p, viscosity &, and surface
tension ; gravity acceleration g; and the angle of the plane with the horizontal 6.

There is a well-known, time-independent, constant-thickness solution of the NS problem called Nusselt’s
flow. The only nonzero component of velocity is the streamwise one. It only changes across the film, starting
from the zero value at the solid plane. The free-surface value U of the Nusselt velocity is U = ghj sin 6/(27)
(where 7 = T/ p is the kinematic viscosity). We nondimensionalize all quantities with units based on p,
Tio, and U (e.g. pU2Ro is the unit of measurement for the surface tension). Exactly three independent
basic parameters (BPs) appear in the dimensionless equations and boundary conditions; one can choose
e.g. the inclination angle 6, the Reynolds number R = hoU /7 [= gh{sin8/(27%)], and the Weber number
W = oR/2 [= &/ (pgh? sin6)], as such BPs.

In [3] we discussed different perturbation approaches to obtaining single-EE approximations of the film
dynamics. Here we briefly reiterate some points. The conventional approach uses formal series in powers of a
single (small) long-wave parameter, say €. In particular, the three basic parameters must each be prescribed
certain orders of magnitude in terms of powers of e—such as W ~ €~2. Thus, artificial inter-dependences
are forced on those BPs. The three degrees of freedom in the parameter space (corresponding to the three
BPs) collapse into just one degree of freedom, . Because of this, the validity conditions(VCs) for the
derivation are unnecessarily restrictive [7] in this single-parameter approach (SPA). Also, if the exponents
of powers prescribed to the BPs are changed, one can obtain a different EE. To determine if this is the case,
one has to repeat the EE derivation for each new choice of the set of exponents—and there is an infinite
number of such choices.

These drawbacks of the SPA can be remedied (see [3]). It is essential to notice here that each derivation
of this type essentially amounts to neglecting certain terms in the NS equations for velocities, so that they
become ordinary differential equations (ODES) in z. These ODEs are linear and have constant coefficients.
They can be easily solved in terms of the film thickness h and its derivatives. Substituting these expressions
for velocities into the kinematic BC, one arrives at the single closed PDE for the thickness h(y, z,t). So, it
is possible to determine the minimal simplifications of the original NS equations, the terms which simply
have to be discarded—and therefore require that they be small—if the goal is to arrive at the solvable ODEs
(we call this requirement the principle of derivability of a single EE). It is clear that in this way, the most
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universal single EE approximating the exact NS evolution is arrived at; every other valid EE (including
those obtained by any single-parameter derivation) can be obtained by simply discarding some terms of
the universal EE. This approach also yields the conditions of validity for the universal equation as well as
the (stronger) VCs for each of its simplified versions. The validity conditions have the form of inequalities
requiring that (a finite number of) certain dimensionless parameters must be independently small. Thus,
this is a version of the multi-parameter perturbation approach (MPA) suggested and developed in our earlier
papers over a number of years (see [3] and references therein).

As was discussed in those publications, one kind of condition is that of the local validity of the theory.
These local-validity conditions (VCs) involve, along with the BPs, the local (in time) parameters, such as
the characteristic lengthscale, timescale, and wave amplitude. The film flow is a dissipative system which
evolves to an attractor and forgets the initial conditions. Accordingly, the characteristic scales gradually
change from their initially prescribed values to the attractor-appropriate ones. Thus, these local parameters
(LPs) can depend on time (before the system approaches the attractor), so that it may happen that the
validity conditions cease to be satisfied after a finite time. If this is the case, the EE is not valid for all time
(in other words, it is non-uniform in time). On the other hand, for the appropriate values of BPs (since,
clearly, the attractor values of the LPs are determined by the BPs only), the local validity conditions can
remain satisfied even when we substitute for the LPs their attractor expressions in terms of BPs; in this case
the evolution equation is clearly valid for all time. In this way, one arrives at the global-validity conditions,
which involve only the “global”parameters, the BPs. The result, then, is that the evolution equation is
uniformly valid in time, provided that certain three groups of the three original BPs (we call those groups
the modified BPs) are (independently) small.

It is clear that globally valid description of evolution by a single equation can only be possible in
certain restricted domains of the space of BPs. We argued earlier (see [3] and references therein) that
such a single-EE description cannot exist globally for those parametric regimes of inclined-film flow which
lead to the amplitude of surface waves being “large”—comparable to the average film thickness. In the
present communication, we are interested in the large-time behavior, when the system is already close to
the attractor, and we want a single-EE description of the wavy film dynamics. Therefore, for the film
thickness deviation, » = h — hg, we assume from the outset that its amplitude A(tf) = max|y| is small
(for all time). Qur derivation (a refinement of the one presented in [3]) will be described only briefly here;
details will be given elsewhere [8]. It is essentially an iteration procedure. We write the fields in the form
of sums containing the known Nusselt parts, e.g. w = wy + Wp, where wy(z) = 2z — z2 is Nusselt’s
streamwise velocity; clearly, the @y is the unknown error in the approximation of w by wy. The z-NS
equation is rewritten in the form Woz; = --- [here and everywhere below, a subscript z, y, 2, or (time)
t, indicates differentiation with respect to that variable.], and all the terms (and only those terms) of the
r.h.s. which contain the unknown error functions are discarded. The solution of the thus simplified equation
with appropriate BCs (the—similarly simplified—tangential-stress balance at the free surface the no-slip at
the solid plane) is found (wg = 2nz). Next, the approximation to the normal velocity is found from the
incompressibility (no-divergence) equation, %o, = - - -; to the pressure from the z-NS equation, Hp; = - - -(and
the normal-stress BC); and to the spanwise velocity from the y-NS equation, Tz = ---. The procedure
can be repeated, leading to increasingly refined approximations; e.g. w ~ wn + wo, w =~ wy + wo + wy,
etc., where w1y € w; (£=0,1,2,---). Similarly, u = up + 43 + uz + u3 (note uy = vy = 0), etc.

As a result (by substituting the velocity expressions in terms of 5 into the kinematic BC), one obtains
the evolution equation in the form
2
3
where V2 = 82/82% + 6%/8y? and § = (4R/5 — cot§). (We will always assume § > 0, because otherwise the
infinitesimal disturbances would not grow and the interesting finite-amplitude waves would never appear.)
Equation (1) holds in a reference frame moving (with respect to the solid plane) with the velocity V = 2
in the streamwise direction. [This choice of the reference frame removes the trivial fast-time oscillations of
film thickness (at a fixed station) arising because of the uniform translation of waves past the station with
their phase velocity (cf. [9]).]

The local-validity conditions yielded by the theory are max [4, 1/L?, R/L, W/L?] < 1. Here L is the
characteristic z-lengthscale (such that 8/8z ~ 1/L; 1.. ~ L2, etc.; and we have assumed for the sake

2 2
7t + 4, + génzz ~ 3 oot Onyy + =WV +2V3n, =0 (1)
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of simplicity that the characteristic y-lengthscale is > L—which has been the case in all experiments we
know). Note that the requirement L? >> 1 appears as a necessary consequence of the derivability principle.
Thus, no single-EE theory can avoid the small-slope requirement.

The analysis of derivation of the above EE shows that its third term originates from the inertia members
of the NS equations; this term is destabilizing, as is readily seen from the linear stability theory. The
(stabilizing) fourth and fifth terms are due to hydrostatic and capillary (i.e. surface-tension) parts of the
pressure, respectively. Finally, the last, odd-derivative term is due to the viscous part of the pressure. This
term is purely dispersive: it does not lead to either growth or decay of the amplitude of surface deviation
n—in contrast to the dissipative, third through fifth terms (we regard the production of energy by the
destabilizing terms as negative dissipation). Such a term also appeared in the EE obtained by Topper and
Kawahara [10] for the case of an almost vertical plane: they used the small angle of the plane with the
vertical as their (single) perturbation parameter. Also, under their assumptions all the terms of the EE
have to be of the same order of magnitude. Our derivation shows that the Topper-Kawahara (TK) equation
of the form (1) holds under much less restrictive conditions than those stipulated in [10]. Different limiting
cases of Eq. (1) are identified as simpler well-known equations (see [3]).

When this (dissipative) system has evolved sufficiently close to the attractor, the average wave amplitude
ceases to change in time. So, the destabilizing and stabilizing terms of the EE must be of the same
order of magnitude. Estimating the derivatives in terms of the lengthscale as was mentioned above yields
L, ~ +/W/é for the value L, of the lengthscale that is characteristic of the attractor. The amplitude A,
on the attractor is determined from the balance of the nonlinear term of EE (1) with the dispersive or
dissipative (linear) terms, whichever is greater: A, ~ max(L;%,W/L3). By substituting these expressions
into the local validity conditions above, the global validity conditions are obtained. Namely, the following
modified basic parameters—which we denote as & and f—are required to be small: a =1 JL2(=6/W) k1
and (noting that § < R and W/L2 ~ §/La,< R/Lo) B = R/L.(= R\/(8/W)) K 1.

In certain domains of the space of basic parameters, the dispersive term is small; then it can be neglected.
[This was the case when we numerically simulated our EE (1) with the parameter values pertaining to the
recent experimental studies [2] of an inclined-film flow. Although their global-VC parameter § is ~ 1 rather
than < 1, we had a qualitative agreement with the transient phenomena observed in those experiments
(see [3] for details of those results.)]

However, if the dissipative terms are small, they still play an important role, on a slower time scale.
Namely, the 2D KdV equation obtained by neglecting the dissipative terms, similarly to the usual case of
1D KdV equation, has a whole family of soliton solutions (these axially-symmetric solutions were found
numerically in Ref. [11]). The wider soliton is shorter and moves slower. If disturbed, it relaxes on a
faster time scale to the solution corresponding to the new value of the family parameter. The additional
small dissipative terms of the TK equation gradually change the parameter—say, the lengthscale—of the
soliton, until the equilibrium value L,, determined by the balance between the stabilizing and destabilizing
dissipative terms, is reached. (For the 1D case, this phenomenon was first described in Ref. [12].) Therefore,
the derivation must correctly determine the small dissipative terms (to their leading order). This is-not
guaranteed by the derivation of Eq. (1) in which the (cross-stream) velocity approximation was truncated
at u;. Therefore, we [8] have analyzed higher-order iterations.

We find that after taking into account, e.g., the corrections up and u3, the EE reads

1t + 417z + (2/3)8n22 — (2/3) cot Oy + [2V?n; + (40/63) R67:22 — (40/63) Rcot 012y, )

+[(2/3)WV*n — (6/5) cotV*n + (157/56)RV 1, + (8/45)Rcot? 6V*n
+(1213952/2027025) R%7; ... — (138904/155925) R? cot 6V>7.2] + (8/5)R(nm:)= = 0. (2)

[The 1D (8/8y = 0) version of this equation, with the same numerical coefficients, was obtained before
[13], but our 2D version is new. The same numerical coefficients, in a linearized 1D context, are found in an
even earlier paper [14].] There are additional dissipative terms, e.g. (157/ 56)RV27,., which in certain ranges
of BPs can be larger than the original stabilizing term, (2/3)W V*n (which is clearly the case for W < R).
Can they provide saturation by balancing the destabilizing term? Our answer is negative: equation (2) can
only be valid locally. It turns out that the last (nonlinear) term in the Eq. (2) is destabilizing and blows up
the solution. Physically, all the important dissipative terms (which, by analyzing the iterations through all
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orders, we have shown to be of the form—for simplicity, in the 1D case—R2"~18%"y/52%"), are traced back
to inertia, the same factor which is responsible for the destabilizing (linear, second-derivative) term of the
EE (2). It is unlikely that the same physical factor will provide both the destabilization and a balancing
stabilizing term. We conclude that the long-time behavior in such cases cannot be described by a single-EE
theory (although a conclusive mathematical demonstration would require massive calculations to determine
the sign of the higher-order dissipative terms, which we have not undertaken). To exclude such parametric
regime, one requires max(R, R3) <« W.

Thus, EE (1) is the universal (most general) all-time valid evolution equation of the inclined-plane film
flow. The global validity conditions (o < 1, 8 < 1, and max(R, R3) <« W) are all satisfied if we take

~

op=R/IW <1 (3
Br=R/(R/W) <1 )

(recall that § < R).

A possible simplification of the universal EE is obtained by omitting its dispersive term; this results in
a KS-type equation 7; + 49, + (2/3)[67.. — cotfnyy + WV45] = 0. [It can be seen that the additional
(global) VC expressing the smallness of dispersion is (W§)~1/? « 1.] The long-time behavior of the KS
equation is chaotic. In the present paper, we are interested in the opposite case—we show that ordered
patterns arise under the parametric conditions of the large dispersive term, +/(Wé) < 1. (As we noted
earlier, the dissipative terms, albeit small, must be retained in the EE, to their leading order.)

In addition to large dispersiveness (in other words, small dissipativeness), we limit ourselves in the
present paper to the case of a vertical plane, cot @ = 0 (note that § = 4R/5 in this case). We can transform
Eq. (1) to a “canonical” form, which contains only one “tunable” constant—by rescaling 7 = N7, z = L,Z,
y = L,7, and t = T%, where N = 2R/(5W), L, = v/5W/(4R), and T = (5°/2/16)(W/R)3/2. Dropping the
tildes in the notations of variables, the resulting canonical form of the EE is

e +me + VP, +€(nz2 + Vin) =0. )

The single control parameter in this equation is

e = (2/3)/WR/5, (6)

and we will be mostly concerned with the parametric domains [in the (W, R)-space] for which € < 1.

NUMERICAL SIMULATIONS AND SOME RESULTS

We have carried out numerical simulations of Eq. (§) with periodic boundary conditions. To exhibit
interesting spatial behavior, a system should be sufficiently “large”. For the periodicity domain 0 < y < 27p
and 0 < z < 2mg in our simulations of Eq. (5), we chose 5 < p < 16 and 16 < p < 80. We used spatial
grids of up to 256 x 256 nodes, with the Fourier pseudospectral method for-spatial derivatives and with
appropriate dealiasing. The initial values of 7 were chosen—independently at each spatial node—from the
interval [0, 05,0.05] with a uniform probability distribution. Time marching was done (in the Fourier
space) by using Adams- Bashforth and/or Runge-Kutta methods. We checked the results by refining the
space grids and time steps; by verifying the volume conservation, [7dydz = 0; etc. A typical simulation
run took ~ 10° — 10° time-steps.

The main focus of the present communication is the presence of highly nontrivial patterns in time-
asymptotic states for the strongly dispersive cases, € < 1. Figure 1 shows snapshots of the film surface at
large times for three different sets of parameter values. We will speak of such numerically identified time-
asymptotic states as attractors, although one needs to be cautious here: It is known that such extended
systems may sometimes exhibit long transients.

There are two subpatterns in Fig. la: The V-shaped formation consisting of 13 large-amplitude bulges
aligned into two straight lines moves as a whole downstream with a certain velocity, and the small-amplitude
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Fig. 1. Snapshots of the time-asymptotic film surface self-organized in simulations of Eq. 5, for three
different cases (bulges move down the page here; for convenience of presentation, different axes may have

different scales; in reality, all structures have small slopes). (2) p = ¢ = 16, €~ = 50, and ¢ = 1.6 x 105;
(b) (p,q) = (16,80), e* = 30, and ¢ = 5.98 x 10% (c)(p,q) = (5,60), €~* = 25, and ¢ = 4.89 x 10°.
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Fig. 2. Time-sequence of instantaneous sur-
face profiles in a fixed cross-section normal to the
streamwise direction (for p = g = 16, e~ = 50;
the time shown as 0 is in fact 1.6 x 10° count-
ing from the start of the run). In particular, it is
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background moves uniformly as well, but in the opposite (if the reference frame is appropriate) direction
. (Similar segregation of coherent structures into two subpatterns of different amplitudes is also seen for
the non-square, large-aspect-ratio domains, Figs. 1b and 1c.) This movement of the two subpatterns in
opposite directions is evident in the time-delay plots shown in Fig. 2. The background subpattern in Fig.
1a consists of small-amplitude “bumps” which form a lattice-like structure. Even though the bumps change
their shape and interact with each other in an irregular manner, they seem to maintain their identity. In
particular, they do not seem to coalesce or break up (see Fig. 2). As one sees in Fig. 2, the bumps weakly
interact with one another. Also, the height of a bulge chaotically fluctuates (see more in [3], where these
fluctuations are also reflected in the energy plot, Fig. 2 there).

We investigated how the pattern changes as the value of € for the above simulations (with p = g = 16)
is varied from € >> 1 to a small value, € = 1/305. When € > 1, the 1D version of Eq. (5) is essentially the
KS equation, which on extended spatial intervals yields chaotic attractors. Accordingly, we observe chaotic
(although 2D) waveforms in our simulations of Eq. (5) with large e. For smaller € (larger dispersiveness),
however, the ordering effect of dispersiveness becomes increasingly evident: The amplitude separation into
bulges and smaller-amplitude background structures becomes noticeable for € ~ 1/5 and continues to grow
as € is decreased. At smaller value of € (~ 1/25), the bulges start lining up, even though each straight-line
segment (which is inclined by the characteristic angle ¢ to the streamwise direction) consists of just two or
three bulges. It appears that for the longer lines (the V-shaped pattern) to form, the value of ¢ has to be
sufficiently small, € <.1/30.

It is natural to inquire as to how the various quantities of the pattern scale with . We varied e~! between
25 and 305 for p = ¢ = 16. In one set of simulations, e~! was gradually decreased from 50 in relatively
small steps of 5 (to allow the system to “adiabatically” adjust to the new parameter value), up to ¢~! = 25,
at which point the line formations of bulges break down. In another set of simulations, €~! was increased
from 30 in steps of 10 or 15 up to €1 = 305. In all cases, we find that the characteristic width of the bulge
as well as that of the bump is ~ 1, independent of €. The amplitude of bulges is also constant, ~ 1, as is
the velocity of bulges and that of bumps (of course, the signs of these two velocities are different ). Only
the bump amplitude varies: it scales like ~ e.

The V-shaped formation of bulges retains its form when e is changed from 1/30 to 1/305. However, the
(absolute value of the) angle of each bulge-filled line with the streamwise axis decreases with ¢, probably
approaching some asymptotic value in the limit € — 0 (see Fig. 3. Since there is no parameters remaining
in this limit, the asymptotic angle should be just 0.) This decrease of the angle seems to be determined
mainly by the increase of the streamwise separation between the neighboring bulges, while the spanwise one
stays approximately constant

When € « 1, the d1ss1pat1ve terms in Eq. (5) can be treated as perturbations ~ ¢ of the 2D KdV
equation 7; + 77; + V27, = 0. This equation does not seem to have any analytical solutions. However, by
transforming to a reference frame moving with a velocity ¢ > 0 [replace 7 with (—cn,) in the equation],
Petviashvili and Yankov [11] numerically obtained a stationary axially-symmetric solitary-wave solution.
By balancing the first term with the nonlinear term, cn, ~ 77, and the latter term with the dispersive
term, the characteristic amplitude and velocity of these solutions are found to be  ~ ¢ and ¢ ~ 1/L2 where
L is the characteristic lengthscale, which is not uniquely determined by the KdV equation. However, as
was discussed above, there is also the balance between the dissipation terms in Eq. (5), a necessary outcome
of slow-time evolution. It selects uniquely the soliton of Ls ~ 1, which results in ¢ ~ 1 and n ~ 1 as well,
independent of e. These estimates are consistent with the numerical results reported above.

Motivated by the discovery of the second, small-amplitude subpattern, we examined the possibility of a
corresponding second travelling-wave solution. If we transfer to the frame moving with a negative velocity
¢ = —a?, where a is a constant, there are such solutions—with the nonlinear term being as small as the
dissipative ones. Indeed, the leading-order equation then is V27, + a®3, = 0, which is the well-known
Helmholtz equation for 77,. There are solutions « sin Jysin Kz (J? + K2 = a?). The balance between the
(small) dissipative terms again determines K ~ ¢ ~ 1, and the balance of the dissipative terms with the
nonlinear term yields 7 ~ e. We see that these lengthscale, amplitude and velocity (including its sign) agree
with those observed for the bumps in the numerical experiments as described above.

Note that our assumption of the negative velocity was essential: with a positive velocity, one arrives at
the modified Helmholtz equation, which does not have any oscillating solutions. There are only ezponential
solutions, which are physically unsuitable here. [We note that the Helmholtz equation has axially-symmetric
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solutions as well, o Jo(ar) where Jo is the Bessel function (r is the radial coordinate). This solution is only
weakly localized: it decays at spatial infinity like a power rather than exponentially.]

Similar to Eq. (5), we have derived an equation for a film flowing down a vertical cylinder (see Ref. [3]).
In particular, one can see that if the (dimensionless) radius b of the cylinder is not too small (b >> B),
the flow is well approximated by the planar-film equationl (with periodic BC in the azimuthal direction;
we note that this also justifies our use of spanwise-periodic BCs in the numerical simulations discussed
above. As to the streamwise BC, we believe the solution is insensitive to the BC type in the limit of large
aspect ratio g/p.). One finds that with ko ~ 1 mm, the cylinder radius b ~ 1 cm, and under parametric
conditions ag < 1, Br < 1, and € < 1, for the waves (evolving as they propagate from the entrance end
of not-too-long a cylinder-to the exit end) to have enough time to approach the attractor stage, the liquid
should be several hundred times as viscous as water. For example, it could be glycerin with an admixture
of water. [It is interesting to note that one can see a straight row of bulges in the photograph of a film
flowing down a cylinder, Fig. 2 of Ref. [15]; however, the f-condition of validity was not strictly satisfied
for the parameter values of those experiments.]

SUMMARY AND CONCLUDING REMARKS

Numerical 2D simulations of a realistic evolution PDE indicate that nonequilibrium dissipative systems
can spontaneously form spatial patterns which are significantly more complex than those known before.
Namely, whereas the conventional patterns (such as thermal-convection rolls, “target” and “spiral” chemical
reaction-diffusion waves, etc.) are essentially almost periodic and stationary (at least locally), and are
either arrays of 1D structures or 2D arrays of 2D structures—the novel patterns exhibit soliton-like, 2D
spatially-localized excitations which can spontaneously line up into 1D arrays. They make nonperiodic, but
nevertheless highly ordered arrangements. Moreover, these patterns typically consist of subpatterns—each
of a different amplitude and each moving as a whole with its own velocity—“percolating ” through one
another. Thus, the overall complex spatiotemporal pattern is non-stationary in any reference frame, even if
consideration is restricted to small domains containing only a few soliton-like structures. This is in contrast
to any other pattern we could find in the literature. (For an example of the conventional pattern, if one
considers a small piece of a chemical spiral wave, much smaller than the spiral radius, that local part of
the spiral pattern will appear almost stationary—and almost periodic as well—in an appropriate reference
frame.) It is interesting to note that the observed complex order appears “on the edge of chaos” (which
overtakes at smaller dispersiveness), in accordance with some ideas of the recent “science of complexity”.

The particular dissipative-dispersive evolution PDE under consideration here has been consistently de-
rived from the full Navier-Stokes problem. It is the most general single EE to provide a controllably close
approximation to the evolution of a liquid film flowing down an inclined plane. The unconventional pertur-
bation approach used in this derivation has the advantage of yielding clear and comparatively non-restrictive
parametric conditions of the validity of the theory. To satisfy those validity conditions for a possible (terres-
trial) experiment designed to observe patterns of the novel type on a film flowing down a vertical cylinder,
the film liquid should be much more viscous than water (e.g. a glycerin-water solution).

To construct a theory of interactions of coherent structures which could explain the observed patterns
remains a fascinating challenge.
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9-D TRAVELING-WAVE PATTERNS IN BINARY FLUID
CONVECTION

C. M. Surko and A. La Porta
Department of Physics, University of California, San Diego, La Jolla CA 92093

ABSTRACT -

An overview is presented of recent experiments designed to study two-dimensional traveling-
wave convection in binary fluid convection in a large aspect ratio container. Disordered patterns
are observed when convection is initiated. As time proceeds, they evolve to more ordered pat-
terns, consisting of several domains of traveling-waves separated by well-defined domain bound-
aries. The detailed character of the patterns depends sensitively on the Rayleigh number.
Numerical techniques are described which were developed to provide a quantitative characteri-
zation of the traveling-wave patterns. Applications of complex demodulation techniques are also
described, which make a detailed study of the structure and dynamics of the domain boundaries
possible.

INTRODUCTION

When a spatially extended system is driven far from equilibrium a breaking of translational sym-
metry is sometimes observed which results in the formation of a pattern. In contrast to equilibrium
systems, which are governed by a free-energy minimization principle, patterns in nonequilibrium
systems typically exhibit nonrelaxational dynamics. As a result, a much richer variety of phenom-
ena is observed, and it has proven very difficult to understand the general principles of pattern
selection in nonequilibrium systems. Despite this, the effort to find relationships between the pat-
terns and the symmetries of the system in which they occur has been very successful[l}, especially
in systems in which the primary instability is stationary. It is important to extend this work to
the broad class of systems in which the primary instability is oscillatory and the patterns consist
of traveling waves. Work in this area has potential relevance to many important applications, such
as reaction-diffusion systems, large aspect ratio lasers, and oceanographic flows.

Convection in binary mixtures of ethanol and water is an example of a pattern forming system
with an oscillatory instability. Binary fluid convection is a double-diffusive system in which two
quantities (heat and concentration) diffuse in the fluid and are advected by the velocity field. In
the ethanol-water system, there is a coupling between temperature and solute concentration known
as the Soret effect. Therefore, if the convection cell is heated from below a concentration gradient
forms in the fluid layer, the effect of which is parameterized by the separation ratio,

Pp=—c(l—c) Stg, (1)

where ¢ is the ethanol concentration, S; is the Soret coefficient, and a and § are the thermal
and concentration expansion coefficients, respectively[1]. For the 8% ethanol mixture studied here,
1) = —0.24, and the ethanol concentration gradient tends to stabilize the fluid layer against thermal
convection[2]. This stratification of the fluid layer and the strong separation of time scales for
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Amplitude

Reduced Rayleigh Number

Figure 1: Schematic bifurcation diagram comparing convection in a pure fluid and in a binary
mixture with negative separation ratio. In the mixture, the heavy solid line indicates traveling-
wave (TW) convection, and the heavy dashed line indicates stationary- overturning convection
(80CQ).

ethanol diffusion and heat diffusion significantly influence the onset of convection in the mixture.
In this case, a subcritical Hopf bifurcation to a state of oscillating convection(3] is observed at onset,
as indicated in Fig. 1. After convection begins in the mixture, the interaction of the Soret effect
with the convective flow can produce complex phenomena such as chaotic growth and collapse of
traveling waves[2], and the formation of pulses in one or two dimensions[4, 5]. The Soret effect is
responsible for the strongly nonlinear traveling-wave state which is observed for large negative 3
and also influences the texture of stationary convection patterns which are observed above 7*[6],
as indicated in Fig. 1.

Convection in fluid mixtures has several advantages as a system in which to study the dynamics
of traveling-wave patterns. The underlying physical equations governing the system, the Navier-
Stokes equation coupled with the equations for the diffusion of mass and heat, are well known,
and the physical parameters of the system can be precisely controlled. Furthermore, the degree of
nonlinearity of the traveling-wave state is dependent on 1, which may be varied over a wide range
by changing the concentration of ethanol in the mixture[2].

APPARATUS

The experiments were performed in a convection cell consisting of a resistively heated bottom plate
and a sapphire top plate which is cooled by a temperature regulated water flow bath. A window in
the flow channel provides optical access for visualization of the convection cell through the bath.
The cylindrical convection container has an unusually large diameter of 21 cm and a height of
0.4 cm, which corresponds to an aspect ratio (r/h) of 26. The cell was specifically designed to
have a large aspect ratio, in order to study traveling-wave patterns which are separated as much
as possible from the influence of the physical boundaries of the cell.

The convection cell has several unique features. The bottom plate is a 1.91 cm thick polycrys-
talline silicon cylinder which is mirror polished to a flatness of one wavelength per inch. Although
the thermal conductivity of silicon is a factor of 2.5 smaller than that of copper, it is still ade-
quate. Silicon is very hard and does not interact with water, so that the quality and durability
of the mirrored surface is far superior to that typically obtained from plated copper mirrors. The
main technical difficulty in this experiment is maintaining a constant and uniform Rayleigh num-
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Figure 2: The long-term evolution of a traveling-wave pattern at r=1.28. Time is expressed in
terms of the vertical thermal diffusion time, 7 = 124 sec.

ber across the large convection cell. To this end, a linear channel flow was employed to cool the
top plate. This flow is much simpler in structure than the circularly symmetric flows which are
typically employed in cylindrical convection cells. By using a flow with a high Reynolds number,
the temperature variation over the top plate is small and predicatable, and can be compensated
by creating a matching temperature distribution on the bottom plate. Our measurements indicate
that the peak-to-peak variation in the Rayleigh number over the cell is 0.2%. The visualization
of such a large convection cell also presents some unique problems. The cell’s diameter of 21 cm
makes refracting optics impractical. Therefore we have employed a parabolic mirror as the main
focusing element of our white-light shadowgraph. Images are acquired using a CCD camera and
digitized with a PC frame grabber. A time-lapse VCR is used to monitor the long term evolution
of the patterns. A flexible computer process control system has been developed which controls the
experiment and acquires data. The apparatus has been described in detail elsewhere[7).

SURVEY OF TRAVELING-WAVE PATTERNS

The first experiments in traveling-wave convection in binary fluid mixtures observed 2-D patterns
in small and medium aspect-ratio convection cells[8, 9]. Early on, investigators found that the
patterns and their associated dynamics were very complex, and experiments quickly turned to
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1-D patterns, either in narrow channels[10] or in an annular geometry[11]. Our experiment has a
significantly larger aspect ratio than previous work on 2-D TW convection[4], and so our first task
has been to make a survey of phenomena in the system.

The evolution of a typical traveling-wave pattern in a cylindrical contamer is shown in Fig. 2.
The basic conclusion is that extremely disordered patterns are normally created when traveling-
wave convection is initiated, but that a coarsening of the pattern occurs over time scales of the
order of thousands of vertical thermal diffusion times. One of the important mechanisms for the
coarsening of the pattern is the launching of organized rolls from sources on the boundaries which
tend to sweep chaotic fuctuations to the boundary of the pattern. This mechanism makes an
interesting contrast to the case of rotating Rayleigh-Bénard convection[12], where the coarsening
occurs via the growth of domains in the bulk of the pattern. The coarsening of the TW pattern
continues until the pattern has organized itself into a few domains of straight or slightly curved
rolls, separated by well-defined domain boundaries. Such a pattern is shown in the final panel of
Fig. 2.

We have found that organized, multi-domain patterns are formed over the entire traveling-
wave branch of convection, but that the character of the patterns is sensitive to the Rayleigh
number([7]. The domain boundaries in Fig. 2 typically separate patches of rolls which are nearly
perpendicular to each other, with the domain boundary parallel to one set of rolls. At slightly
higher Rayleigh number, near » = 1.35, “zipper” boundaries are more commonly observed, in
which counter propagating rolls shear past each other, with the domain boundary parallel to the
direction of propagation. At higher Rayleigh numbers, near r*, there are typically no clear domain
boundaries. Here the convection patterns are organized around point defects and rotate more or
less rigidly. Initially, we have concentrated our effort on organized patterns such as the one that
develops in Fig. 2.

DEVELOPMENT OF 2-D TRAVELING-WAVE ANALYSIS TECHNIQUES

As mentioned above, there is a large body of work on 1-D traveling-wave convection patterns.
In this restricted geometry, the patterns consist of superpositions of counter-propagating waves.
By making use of the fact that the waves have a narrow spectral content, it is possible to de-
modulate them in time and space to obtain the local amplitude and wave number of the wave
components[13]. This technique enables us to make meaningful tests of theoretical predictions and
to make precise statements about the dynamics of the patterns. Examples include studies of the
Eckhaus instability[14], the chaotic evolution of the convective amplitude[15], and the behavior of
pulses of traveling-wave convection[5].

Unfortunately there is no straightforward way to extend this technique to 2-D patterns. Al-
though the modulus of the wave number, [|k||, is narrowly distributed in the 2-D patterns, the
direction of propagation is arbitrary, so that (k), and (k), are broadly distributed and spatial

.demodulation cannot be performed. We have developed an algonthm which is similar to complex
demodulation in that it extracts a complex amplitude from the pattern, but is flexible enough to
represent the complex structure of the 2-D traveling-wave patterns[7].

The basis of the algorithm is the fact that, despite the complex spatial structure of the TW
patterns, the time series at a typical point in the pattern is periodic and has a narrow frequency
spectrum. Within the large domains of the mature patterns, extremely regular oscillations are
observed, and the slowly moving domain boundaries merely cause phase dislocations in the time
series in a small fraction of the area of the pattern. The pattern can therefore be represented as an
array of oscillators and the description of the pattern then consists of the complex amplitude and
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Wavenumber (2.75,3.5) Direction Curvature (-0.05,4+0.05)

Figure 3: Analysis of a traveling-wave convection pattern showing (a) the phase, ¢; (b) the modulus,
llAll; (c) the frequency, w; (d) the wave number V¢; (e) the direction, tan™! (ky/kz); and (f) the
curvature, V - 7. .

the frequency of oscillation of each pixel. In the strongly nonlinear TW patterns, the modulus of the
complex amplitude is approximately constant in time and space. Therefore information about the
spatial structure of the pattern is contained mainly in the phase, and the instantaneous evolution
of the pattern is largely determined by the local frequency of oscillation. The dynamical properties
of the pattern can be derived from the complex amplitude and frequency fields as described below.

QUANTITATIVE CHARACTERIZATION OF PATTERNS

Fig. 3 shows the dyna.mical analysis of a traveling-wave convection pattern. Fig. 3(a) is the phase
of the complex amplitude. The phase gives a clean representation of the pattern and resolves the
ambiguity of the direction of propagation of the rolls. The modulus of the complex amplitude is
shown in Fig. 3(b), and it is nearly constant within the large domains, justifying the assumption
that the pattern is determined mainly by the phase. In Fig. 3(c), the frequency distribution of the
pattern is shown. It is clear that the frequency, and hence the phase velocity, is strongly modified
by the proximity of domain boundaries. The remaining panels of Fig. 3 show quantities derived
from the phase field. The wave'vector is the gradient of the phase field. The modulus of this
vector is shown in Fig. 3(d), and is found to have a rather narrow distribution compared with the
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Figure 4: (a) The twist, %Vw x 1i, and (b) the stretch, %Vw - fi.

frequency. The direction of the wave vector is represented in Fig. 3(e), and the divergence of the
normal vector, shown in Fig. 3(f), is a measure of the curvature.

The data in Fig. 3 characterize the spatial pattern and its instantaneous rate of evolution. It
is also of interest to measure the deformation of the pattern. This may be done by comparing
the phase field with the gradient of the frequency field. Clearly, the pattern can evolve without
deformation only if the frequency field is uniform. If the frequency field is different at two points
in the pattern, then a different number of rolls will pass these points in a given time interval, and
the pattern will be deformed. The nature of the deformation depends on the relationship between
the gradient of the frequency, Vw, and the normal vector, fi. If Vw and #i are parallel, then
local stretching of the pattern occurs, and if Vw and fi are perpendicular, a Iocal twisting of the
pattern occurs. Therefore, the dot product and the cross product of Vw and ii are measures of the
stretching and twisting, respectively, and they are shown in Fig. 4.

The algorithm described above represents an attempt to obtain detailed quantitative informa-
tion from complex 2-D traveling-wave convection patterns. It allows precise comparisons between
experimental data and analytical models. For example, the data of Fig. 3(d) indicate that the
wave number is sharply peaked and remains within the Eckhaus stable band, probably because
rolls can be created and annihilated freely at the domain boundaries. The data of Fig. 3(c) exhibit
a wide range of frequencies, even though the variation of wave number is narrow, indicating that
linear dispersion is not responsible for the frequency spread. Fig. 3(f) indicates a pervasive positive
curvature of the convection rolls.

The data in Fig. 4 place interesting constraints on a model. The twist is substantial, although
there is no measurable stretching or compression of the convection rolls as they propagate. This is
equivalent to the statement that the gradient of the frequency is everywhere perpendicular to the
direction of propagation. These data and those in Fig. 3(d) indicate great rigidity of wave number
in the TW patterns. A successful model for TW convection should reproduce these properties.

INTERACTION OF TRAVELING WAVES AT DOMAIN BOUNDARIES

Our study of ordered traveling-wave patterns indicates that the properties of the domain boundaries
are important in the pattern selection mechanism. It appears that the multi-domain patterns are
stable because the kinetics of the domain boundaries are consistent with the circular cell geometry
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Figure 5: (a) A shadow%raph image of a zipper boundary recorded at r = 1.37, (b) the modulus
of the wave component measured on the right side of the boundary, (c) the modulus of the wave
component measured on the left side of the boundary, (d) the moduli of the two amplitudes along
a line transverse to the boundary. ’ -

and with the kinetics of the traveling-waves, including the suppression of the phase velocity which
occurs near the domain boundaries. In order to study the interaction of traveling waves at domain
boundaries, we have employed 3-D complex demodulation of small areas of patterns in which
the wave vectors are well defined. Using complex demodulation, it is possible to calculate the
complex amplitude of a certain spatio-temporal wave component, defined by k, ky and w. By
calculating this amplitude for the wave components on either side of a domain boundary, it is
possible to measure both the penetration of waves through domain boundaries and the movement
of the boundaries.

As an example of the use of this technique, Fig. 5 shows the demodulation of a “zipper”
boundary. Rolls on the left of the pattern are moving up and toward the boundary, and rolls
on the right are moving down and away from the boundary. Figs. 5(b) and (c) are maps of the
modulus of the two dominant wave components in the pattern and indicate the general structure
of the domain boundary. Fig. 5(d) shows the amplitudes along a line perpendicular to the domain
boundary. From these curves it is evident that the region over which the two wave components
overlap is approximately one cell height. Another interesting feature of this data is the ripple which
is visible on the modulus for waves on the left side of the boundary. This indicates a standing wave
pattern which is consistent with 10% reflection of the incoming waves from the domain boundary.
No evidence of a standing wave is observed on the other side of the boundary. Here, the waves
move away from the boundary and no reflection would be expected.

CONCLUSION

We have conducted a survey of 2-D traveling-wave convection patterns which occur in ethanol-water
mixtures at a large negative value of the separation ratio. We have used a variety of numerical
techniques to characterize the dynamics of the complex 2-D patterns, and we have indicated the
properties which mathematical models should reproduce. These include the stability of certain
configurations of domain boundaries, the suppression of the phase velocity near domain boundaries,
and the interpenetration and reflection of traveling-waves at the domain boundaries.
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ABSTRACT

The long term objective of this research program is to determine the fluid
flow and drying characteristics of thin liquid/solid films using image processing
techniques such as Image Analyzing Interferometry (IAI) and Image Scanning
Ellipsometry (ISE)'. The primary purpose of this paper is to present
experimental data on the effectiveness of IAI and ISE to measure nonuniform
film thickness profiles.

Steady-state, non-isothermal profiles of evaporating films were measured
using IAIL Transient thickness profiles of a draining film were measured using
ISE. The two techniques are then compared and contrasted. The ISE can be used
to measure transient as well as steady-state profiles of films with thickness

ranging from 1 nm to > 20 pm, whereas IAI can be used to directly measure
steady-state and transient profiles of only films thicker than about 100 nm. An
evaluation of the reflected intensity can be used to extend the use of the IAI
below 100 nm.

INTRODUCTION

The dynamics governing drying and evaporation phenomena in thin films have been
studied extensively. However, our understanding of these phenomena is far from complete. In
systems where drying or evaporation takes place, it is crucial to understand the complex effects
of the interfacial and intermolecular forces on the intermediate and final film properties. These
forces are a function of the film’s thickness profile. While theoretical analyses of these film
profiles have been available for some time, experimental evidence to ratify these theories has
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been lacking only because of the lack of suitable techniques. We believe that ISE, and to a
certain extent, IAI are well suited to study such films experimentally.

IAI is a technique based on optical interference, developed to measure non-uniform film
thickness profiles. IAI enjoys among other advantages, excellent thickness sensitivity, lateral
resolution and the ability to study every point on a surface simultaneously by using image
processing techniques. Steady-state, non-isothermal, thickness profiles of Pentane on Quartz®
were measured using IAI to demonstrate it’s effectiveness. One fundamental limitation of IAT is
that the measurement of film thicknesses below approximately 100 nm. are less accurate
because they depend on the relative intensity of the reflected light. A null ellipsometer and/or an
intensity analysis can be used to enhance the accuracy. Since this is time consuming, IAI is not
well suited to measuring transient film thickness profiles when the thickness is less than 100
nm. However, transient profiles for thicker films can be easily obtained.

ISE is a technique which can measure both liquid and solid film thicknesses ranging

from 1 nm — >20 pm. Moreover, it can “handle steady-state and transient processes, measure
the entire surface profile, and be non-destructive”.®> ISE can also measure refractive index
variations across the surface under observation. From these measurements, if the surface is a
mixture of two chemical species, their chemical compositions can be easily extrapolated. In this
paper, we demonstrate that the ISE can be used successfully to study the transient draining
profiles of a fully wetting and a partially wetting film. The two techniques, ISE and IAI, are
then compared and contrasted. We also document the shortfalls of the initial design, and briefly
mention the improvements that were made on the second generation ISE. A concise summary of
current investigations of the drying of spin-coated sol-gel films, using the improved second
generation ISE, will also be given.

EXPERIMENTAL SET-UP

Image Scanning Ellipsometry

The details of the theory, design, calibration and operation of the ISE are documented
elsewhere®, hence no attempt will be made to reproduce them here. However, a schematic
overview of the ISE will be presented in the succeeding sentences. The image scanning
ellipsometer is based on conventional null ellipsometry, which records the change in phase and
amplitude upon reflection of incident polarized light, from a surface. Through appropriate
models, the recorded phase and amplitude differences upon reflection are converted into film
thickness and refractive index data. :

Figure 1 contains a schematic of the image scanning ellipsometer. The ISE has tw
arms, the polarizing arm, and the analyzing arm. The polarizing arm of the ISE has a light
source which provides nonpolarized light, a polarizer which polarizers the light linearly, and a
compensator which changes the state of polarization of the light from linear to circular. The
analyzing arm has a polarizing analyzer which records the polarization state of the analyzer, and
an imaging package. The imaging package consists of a long working distance microscope and
a CCD camera. The CCD camera is controlled by a desktop PC through a frame grabber. In a
normal null ellipsometer, a photomultiplier or light intensity detector would be used in place of
the imaging package. _ '

For a null ellipsometer, the analyzing polarizer is used to null or extinguish the reflected
light and the photomultiplier is used to detect the null point. At the null point, depending on the
azimuthal angles of the Polarizer, Analyzer and the Compensator, the film thickness and
refractive index can be calculated. For the ISE however, if the film from which reflection takes
place is non-uniform, a series of bright and dark fringes are produced, as shown in Figure 2.
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Figure 1. Schematic diagram of the ISE Figure 2. Reflectance fringes from a draining film

These fringes are reflectivity fringes, and the center of every dark fringe corresponds to a null
point. The centers of the dark fringes are calculated by processing the acquired image by
employing an image analysis software. Thus the film thickness and the refractive index can be
determined at the center of these dark fringes. Changing the polarizer angle changes the state of
polarization of the incident light. This will in turn change the position of the bright and dark
fringes. That is, the fringes are displaced. Hence the film thickness corresponding to the center
of the new dark fringes (the minimum intensity point) can be obtained. Therefore, by moving
the polarizer while keeping the analyzer and the compensator fixed, the thickness profile over
the entire surface can be plotted. One advantage of the ISE is that the technique is reasonably
insensitive to the overall intensity of the image, because it depends only on the relative intensity
of the image. Another advantage is that the initial null point can be associated with a very thin
film (film thickness on the order of 1 nm.)

The film thickness at the null paints can be calculated only up to a repeat thickness. This

thickness, 9,, is given by
4 )
p M

=27r77f cosf,

r

where, A is the wavelength of the light, B, is the polarizer angle, 1, is the refractive index of the

film, and 6, is the angle of refraction of light through the film. In this study, the repeat thickness
was found to be about 302.5 nm.

Image Analyzing Interferometry

The IAI consists of a CCD camera mounted on top of a normal optical microscope. The
CCD camera is in turn controlled by a desktop PC through a framegrabber. Interference images
captured by the framegrabber are stored in the PC and later analyzed using an image analysis
software. The principle of operation of the IAI is based on the interference of light rays upon
reflection from a transparent thin film. Alternating constructive and destructive interference
patterns occur when coherent light undergoes reflection from the two interfaces of a thin liquid
film and recombine. Constructive interference occurs when the two reflected beams are in
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phase, while destructive interference occurs when the two beams are out of phase by 7. The
equation used to calculate the film thickness is:

_(@L+1)A
T 4n

5 @

i

where, n, is the refractive index of the film, L is the order of the destructive (dark) fringes, and

A is the wavelength of monochromatic light used. The first destructive fringe occurs at a
relatively large thickness of approximately 100 nm.

Test Cell -

A fused silica cell was used for the draining film experiments. The cell was trapezoidal
in shape to ensure that light entering and leaving the cell was perpendicular to the cell walls. The
cell was cleaned by a standard RCA cleaning procedure, sealed with the test liquids (a fully
wetting FC-70 film in one set of experiments and a partially wetting dodecane film in another)
and placed on a hinged sample holder on the ISE. The holder was hinged in such a way that
fluid would drain on to the part of the silica surface that was under observation with the
ellipsometer.

The experiment® was initiated by tilting the test cell and returning it to it’s original
position. A series of images were recorded at various time intervals from the start of the
experiment. These images were digitized and stored in the computer’s memory and were later
analyzed by an image analysis program to determine the minimum intensity points (null points.)

In addition to this, experiments sponsored by NASA were also carried out to determine
the thickness profile using IAI for a Pentane film over Quartz. Details of these experiments are
presented elsewhere?.

RESULTS AND DISCUSSION

ISE Results

Figures 3 and 4 show experimentally determined profiles of the partially wetting and
fully wetting draining films respectively, at different time intervals from the start of flow. From
the figures, the flow can be divided into four draining regions, interfacial, transition,
hydrodynamic and meniscus. The region farthest from the liquid pool is the interfacial region
and it consists of the adsorbed film. The transition region connects the interfacial region and the
hydrodynamic region. Film thicknesses in the interfacial and transition regions are below 100
nm. The hydrodynamic draining region extends for another 1-2 mm down from the interfacial
region. As can be seen from the figure, the extent of this region shrinks with time. The last
region is the meniscus region, and it lies near the liquid pool. It is characterized by a rapidly
increasing film thickness profile.
IAI Results

Figure 5 shows an experimentally determined profile of a Pentane film on quartz, at
steady-state. As can be seen from the picture, the smallest thickness that could be resolved here
was about 100 nm. Hence, the interfacial region is below the threshold of the IAI Therefore,
the evaluation of this region (below 100 nm) depends on modeling.
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ISE vs. TAI

A comparison of the two techniques reveals some features of interest. For clarity, the

comparison will be split up into two categories as shown below:
Advantages of ISE over IAI

e ISE can be used to measure thicknesses from a monolayer upto about 20 pm, whereas IAI

can only be easily used from about 100 nm and upwards. It is noted that an evaluation of
the reflected intensity can be used to extend the use of the IAI below 100 nm.

ISE enjoys a larger lateral resolution than IAI. Hence larger variations in thickness profiles
can be observed using ISE.

ISE can be used on films whose R.I. is unknown. At the same time, R.I. variations can
also be handled facilely by using ISE. IAI needs R.I values to determine film thickness
unless two different wavelengths are used.

Advantages of IAI over ISE

IAI is more accurate as the accuracy of ISE is, depending on the algorithm used, highly
dependent on the initial guesses for the thickness and R.I (Ellipsometry algorithms use
models to relate changes in phase and amplitude to thickness and R.1.)

TAl is easier to use and is less expensive.

It is conceivable that IAT can be used to measure steeper profiles than ISE because of it’s
larger magnification. At this point, we are still unsure of ISE’s limitation in this regard.

Modifications to the initial design of ISE

Modifications were made to the initial design of the ISE using recent advances made in

Imaging technology to overcome some of the limitations with respect to weakly reflecting films.
However, some of these modifications created new problems while solving some of the older
ones. These modifications are:

The use of a laser (He-Ne green laser at 543.5 nm) as the light source. In the initial

design, we used a UV lamp. The biggest asset of laser light is that it is an intense, coherent,
collimated light source. Thus, most of the intensity problems we faced with the UV lamp were




eliminated. However, the trade-off is with respect to the speckle that is a characteristic of laser
light. While laser speckle has it’s uses, it can be a great nuisance in imaging applications. In our
case, the speckle makes it difficult to determine the exact center of a dark fringe as it produces
variations in the intensity profile. There are two techniques to tackle this problem. The first is to
eliminate the speckle at the source itself, by using diffusers™ or fiber optic probes. The second
technique involves “cleaning up” the image by certain algorithms that can eliminate the speckle
by employing complex statistical formulae. Currently, we are employing both techniques to help
remove this obstacle

The use of a higher resolution, lower light level CCD camera. In the previous version of
the ISE, we used a standard 512x512 pixel camera. However, in this version, we deciding to
replace the old camera with a 1024x1024 pixel camera. This augmented resolution is mildly
offset by the slightly slower rate at which frames can be “grabbed” using this camera. With the
standard 512x512 pixel camera, we can grab upto 30 frames a second. However, with the new
camera, we can only grab upto 10 frames a second. This is mainly due to the extra demands
placed on the computers’ memory interface by the higher resolution camera. We do not expect
this slightly lower transferring power to be a handicap.

The mechanical infrastructure on which the current version of the ISE is mounted offers
several advantages over the previous one. The chief among these are the ability to change the
angle of incidence (multiple angle of incidence ellipsometry’ offers a statistically superior
alternative to conventional null ellipsometry), and the improvement in the number of degrees of

freedom enjoyed by the substrate holder.

CURRENT INVESTIGATIONS USING THE MODIFIED ISE

Currently, we are applying the ISE to study the complex transport effects which occur
during the drying of spin-coated sol-gel films. It has recently been found that organically
modifying sol-gel systems by partially replacing the surface hydroxyls has an anomalous effect
on the final film thickness of dip-coated sol-gel films®. These films exhibit a ‘springback’
during the final stages of drying. This ability to control the degree of shrinkage during drying
could have an enormous impact on many potential applications.

To study this effect in spin-coated systems, we are currently carrying out the following

investigation: An organically modified sol-gel system is spin-coated over a 0.5 pm. high by 500
pm. wide aluminum line (to provide a meniscus for the ISE). The film is then dried on a hot-
plate and the evolution of the drying film thickness and refractive index profiles is observed in
real-time using the ISE. The thickness and refractive index profiles will yield information about
the porosity of the resulting film. Film porosities are responsible for effects such as electrical

and thermal insulation, etc. The ultimate goal is to understand from a fundamental perspective,
how the drying related stresses will effect the final porosity of the film.

CONCLUSIONS

1. The ISE and the IAI are efficient and accurate techniques to study the complex interfacial
effects that occur in very thin films.
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2. Both ISE and IAI can be used to study transient as well as steady-state thickness profiles. IAI
cannot be easily used below 100 nm which is where the intermolecular forces are most
important. . .

3. The initial design of the ISE has been modified to take advantage of the increasing data
processing available in imaging applications today.
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KINETIC ANALYSIS OF COMPLEX METABOLIC NETWORKS
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ABSTRACT

A new methodology is presented for the analysis of complex metabolic
networks with the goal of metabolite overproduction. The objective is to locate a
small number of reaction steps in a network that have maximum impact on
network flux amplification and whose rate can also be increased without
functional network derangement. This method extends the concepts of Metabolic
Control Analysis to groups of reactions and offers the means for calculating group
control coefficients as measures of the control exercised by groups of reactions on
the overall network fluxes and intracellular metabolite pools. It is further
demonstrated that the optimal strategy for the effective increase of network fluxes,
while maintaing an uninterrupted supply of intermediate metabolites, is through
the coordinated amplification of multiple (as opposed to a single) reaction steps.
Satisfying this requirement invokes the concept of the concentration control
coefficient, which emerges as a critical parameter in the identification of feasible
enzymatic modifications with maximal impact on the network flux. A case study
of aromatic aminoacid production is provided to illustrate these concepts.

INTRODUCTION

Many industrial applications make use of the unique capabilities of microorganisms to
convert simple carbohydrates into a variety of products. Microbial processes for the production
of chemicals, materials, and pharmaceuticals and specialty chemicals, are presently employed in
many parts of the world. The above products are synthesized by complex networks of
biochemical reactions catalyzed by specific enzymes. The throughput of these networks is
determined by the specific rate of glucose, or other carbohydrate, uptake and the relative
activities of the network enzymes participating in the production of these products. Although
gains in volumetric productivities and yields have increased the competitiveness of biological
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processes, the majority of chemical and materials production presently is carried out by chemical
synthesis because of the superior yields and productivities obtained by such processes.

Biological systems, on the other hand, offer some distinct advantages such as enhanced
selectivities and environmentally benign operations utilizing renewable resources as raw
materials. Furthermore, they allow greater flexibility for process optimization using techniques
from genetic engineering. These techniques can be employed to extend the range of substrates
that a microorganism can utilize to alter the product profile secreted by a producing cell, or
overproduce a product normally secreted by a microorganism.

Although genetic ‘engineering has been instrumental in the construction of strains with
enhanced or unique properties, a greater challenge would be to effect multi-fold throughput
increases through the metabolic pathways of industrial microorganisms such as yeasts,
Streptomyces, bacilli, and Escherichia coli. Such flux (i.e. throughput) amplifications are needed
to significantly increase the specific productivities of biological systems and thus make them
competitive with chemical processes. To accomplish this objective the central carbon metabolic
pathway must be similarly amplified as it is the main line of carbon processing and, as such, it
constitutes the main supply route to all product-forming pathways. Amplification of central
carbon metabolism, however, is a very demanding undertaking since it involves many
interconnected reactions with sophisticated feedback controls and regulations that have, to date,
evaded most attempts at directed manipulation. In this context, it becomes ‘very important to
identify the key branchpoints where such controls are exercised and the specific reactions within
metabolic pathways that must be specifically amplified to effect a direct change in the overall
network flux. Relevant questions are also whether one or more reactions need to be modified
and whether activity amplification should take place in a sequential or simultaneous manner.

The objective of this paper is to analyze the kinetic behavior of complex metabolic networks
and provide a framework within which answers to the above questions can be systematically
sought. By necessity, this is a theoretical paper. The alternative, namely, the experimental
evaluation of networks in the absence of a rational framework, would be an unfocused and time-
consuming undertaking. We have opted, instead, to employ a rather sophisticated network of
biochemical reactions as a surrogate cell to facilitate our investigation into the dynamics of such
networks operating in real microorganisms. The purpose here is not to simulate biological
reality, but rather to take advantage of a system which exhibits all aspects of regulation, tight
control, and feedback mechanisms that are likely to be encountered with real biological systems.

Our presentation utilizes the framework of metabolic control analysis (MCA) [1-4] and its
various extensions. In order to facilitate the investigation of networks with a large number of
reactions, we present a novel method of reaction grouping and extensions of MCA to groups of
reactions, a concept that is very valuable in describing the kinetic behavior of complex networks.
The magnitude -of control coefficients is used as a measure of the kinetic control exercised by
single reactions or groups of reactions. As such, much of the focus of the paper is on techniques
for the determination of such control coefficients as a means for identifying network limiting
steps. This is demonstrated with a model of aromatic aminoacid biosynthesis. We close our
presentation with an evaluation of the extent to which such limiting steps can be amplified and
the effect such amplifications can have on the stability of the overall metabolic network. It turns
out that it is not possible to significantly amplify rate controlling steps without complete
derangement of the network. On balance, it may be more desirable to focus on steps that allow
greater amplification even though they have lesser impact on the overall kinetics of the network.
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In this context, the concentration control coefficient emerges as an important parameter that '

determines the extent to which various steps can be amplified without compromising the stability
of the system.

THEORY

Rudiments of Metabolic Control Analysis

A microbial cell is often viewed as a black box typically processing carbon and nitrogen
sources to derive the erergy and carbon skeletons needed for growth along with the secretion of
various metabolic products. Figure 1 shows such a schematic illustrating the utilization of
glucose and ammonia by Saccharomyces cereviciae with simultaneous excretion of ethanol,
glycerol (Gol), polysaccharides (Pol), CO, and the aromatic amino acids: tryptophan,
phenylalanine, and tyrosine. Lumped parameter models have proven useful in producing
macroscopic kinetic expressions for the rates of substrate uptake, microbjal growth, and product
production for use in the design of fermentation equipment for the propagation of these
microorganisms.
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If, on the other hand, one is interested in altering the metabolism in order to increase the
overall flux through these organisms, then one needs to be concerned about the exact
biochemical network that catalyzes the transformation of the substrates into energy and the
secreted products. Figure 2 is a schematic of the network of biochemical reactions operating in
S. cereviciae and leading to the production of aromatic amino acids. Energy, in the form of'ATP,
is produced primarily by the ethanol pathway and consumed at various reaction points. In order
to bring about significant increases in the overall rate of product production then a number of
relevant questions arise: (a) which enzymatic’step or series of steps should be targeted for
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modification in order to effect such an outcome; (b) what is the optimal type and magnitude of
modification; and (c) should the modifications take place in a sequential or simultaneous manner.

The above questions are complex and difficult to answer due to the high non-linearity and
interaction among the various reaction steps and intracellular metabolites. They are a part of the
general quest to elucidate the control of flux in metabolic networks, a central tenet of metabolic
engineering. For the past 22 years a convenient framework and school of thought have evolved,
currently referred to as metabolic control analysis, that can be used to address these questions.

A key parameter in MCA is the flux control coefficient (FCC). FCC’s provide a measure of
the impact that a change in a single reaction step of a metabolic network can have on an overall
flux through the network. They are defined as the ratio of the fractional change of a metabolic
flux J to the fractional change in the velocity of enzymatic reaction i:

G/ = (@In)/(dviivy) (Eq. 1)

Another parameter introduced by MCA is the reaction elasticity, defined as the fractional
change in the velocity of an enzymatic reaction v; divided by the fractional change in the
concentration of a metabolite M;:

g = @vivi)/(OMyM) (Eq. 2)

Clearly, the elasticity with respect to metabolites that have no effect on the reaction velocity
is zero. The elasticity with respect to another metabolite can be obtained from the partial
derivative of the reaction velocity with respect to the concentration of the metabolite in question.
In this regard, elasticity can be considered as a pseudo order of the reaction rate.

Elasticities are local parameters, while FCC’s systemic properties of the network at steady
state. MCA theorems provide equations relating FCC’s with elasticities so that FCC’s can be
determined if the elasticities are known. This means that if kinetic models are available for the
individual reaction steps of the network, they can be used for the exact determination of the flux
control coefficients and, through them, the control architecture of the network.

Reaction Grouping, Group Control Coefficients
Accurate in vivo reaction kinetics are, in general, not available. Furthermore, typical

metabolic pathways involve many reactions that make it infeasible to evaluate the impact of each
one of them on the overall network kinetics. A useful concept is that of reaction grouping
introduced by the top down metabolic control analysis (TDCA) [5,6]. The main tenet of this
approach is to focus on groups of reactions instead of individual reaction steps and evaluate the
effect of different groups on the kinetics of the overall network. This is an intuitive approach
whose success depends on the correct definition of reaction groups, which frequently differ from
groupings suggested by the topology of biochemical maps.

We have developed a method for the systematic definition of reaction groups. This method
makes use of the steady-state internal metabolite stoichiometry (SIMS) matrix defined as an mxr
matrix in which m is the number of explicit steady state metabolites in the network and r is the
number of explicit reactions. Each element Nj of the SIMS matrix is the stoichiometric
coefficient v; of metabolite X participating in reaction i written as:




Z(—V, Xf)_> Z(V,- Xj) " (Eq.3)

reactants products

It is crucial that the direction of each reaction of Eq. 3 be the same as the net flux in the
actual network. Follbwing the construction of the SIMS matrix, the reaction groups are
identified from the membership of the vectors of the kernel matrix, K, of N defined as: N.K =
0.

It should be noted that the reactions comprising the columns of the kernel of the SIMS
matrix also define the independent pathways of the network. Independent pathways reflect the
smallest set of reactions connecting a single network output with the necessary network inputs in
such a way that permits a steady state to be reached by all internal metabolites. For a network
consisting of r reactions and m internal metabolites at steady state, the number of independent
pathways P is shown to be equal to P =r-m. Besides independent pathways, reaction grouping
also identifies the link metabolites, (also referred to as branch points), as the intervening
metabolite at the point of separation between two or more independent pathways.

When the above method is applied to the metabolic network of Figure 2, the pathways and
link metabolites indicated in Fig. 3 are identified: ATP; glucose-6-phosphate (G6P); fructose-1,
6-diphosphate (FDP) and glyceraldehyde-3-phosphate (GAP); xylulose-5-phosphate (X5P) and

"chorismate (CHR); and prephenate (PPH). It should be noted that the FDP/GAP branch point
actually consists of an equilibrium between the two species. In the case of the X5P/CHR branch
point, both species are produced by the common pathway and consumed by alternate routes;
consequently, this branch point consists of dual link metabolites. It is also critical to realize that
the first link metabolite to be identified in this network is ATP, although this fact may not be
immediately apparent from the reaction schematic. The glycolytic production of ATP is common

to all pathways. Because the independent pathways utilize ATP differently, a pathway separation -

occurs at the ATP junction, so ATP is indeed found to be a link metabolite [7].
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Concurrent with reaction grouping is the concept of the group flux control coefficient
(gFCC). The latter is defined as the flux control coefficient which would exist, were the entire
group of reactions actually a single step. Since it is practically impossible to implement changes
of the same magnitude in all reactions in a group, the experimental determination of gFCC’s
relies on the measurement of carbon fluxes and flux changes following perturbations in one or
more reactions in the group. The details of the calculation can be found in [8].

It should be noted that each independent pathway is usually associated with a secreted
product. In fact, the accumulation of secreted metabolites can provide a measure of the flux
through each independent pathway [9,10]. Furthermore, changes in product accumulation,
during different phases of a fermentation process or in response to introduced perturbations, can
be used for the quantitative evaluation of the kinetic control exercised by each reaction group,
through the determination of the corresponding group control coefficients. Through the recursive
analysis of overlapping reaction groups around different link metabolites, the search for the
controlling steps of the network can, in fact, be focused within a small group of reactions.

RESULTS

An in-depth case study was carried out for the aminoacid biosynthetic network of Fig. 2. In-
vitro kinetic expressions (from [11] with minor modifications) were used for each of the
indicated reactions. The network reaction kinetic model allows the determination of the steady-
state concentrations of the intracellular metabolites and, through them, the calculation of the
reaction elasticities and FCC’s. MCA theorems are invoked in the latter calculation following
usual practice. The magnitude of the FCC for the phosphofructokinase (PFK) reaction,
(G6P—FDP in Fig. 2), was found to be significantly greater than any other reaction in the
network, indicating that the PFK enzyme exercises a significant fraction of the total control on
the network flux.

Although the above approach based on FCC calculation is practically infeasible (due to lack
of reliable in-vivo kinetic models), it can serve as a guide in the development of experimentally
feasible methods, .such as one that involves grouping of reactions. It is reminded that the
calculation of the group control coefficients requires the measurement of the fluxes through the
simplified network of Fig. 3b, a task that can be normally accomplished from the measurement of
the indicated extracellular metabolites. Through successive reaction groupings around the
different link metabolites, the network flux control can be localized to a single intermetabolite
linkage, that becomes the focus of further investigation and genetic modification.

The introduction of kinetic perturbations to the reactions of the network of Fig. 2, 8],
allowed the calculation of the gFCC of the various reaction groups. It was found that the
controlling reaction group (as assessed by the magnitude of the gFCC’s), should lie upstream of
the FDP/GAP branch point and downstream of G6P. Thus, the step exerting the most control is
the reaction of PFK, in agreement with the conclusion reached from the magnitude of the
individual FCC'’s.

The large magnitude of the phosphofructokinase FCC would indicate that this particular step
should be the primary amplification target in order to bring about the maximum effect on amino-
acid overproduction. However, simulations of proportional increases in the kinetic parameters of
the PFK reaction revealed that the structure of the network prevents PFK amplification beyond
an 11% increase in activity. At greater amplifications the overall system is unstable, i.e., unable




to converge to a steady state condition. The reason for this particular instability turned out to be '

a bifurcation, at the above PFK amplification value, into a space where a steady state for the
chorismate metabolite does not exist. In other words, there are no acceptable intracellular
metabolite concentrations that can balance the rates of chorismate production and depletion.
Although it cannot be claimed that this would happen in a similarly-modified strain of S.
cerevisiae, this result is analogous to typical cellular responses to the introduction of a
catastrophic metabolic disturbance. In such cases, secretion of metabolites, induction of
degradation pathways, and drastic changes in product profiles are commonly observed.

One way to limit network instabilities following the introduction of a genetic perturbation is
to design perturbations that minimize the departure of the altered cell from a normal steady state.
This can be implemented by a coordinated modification of more than one steps that effect an
increase of flux through the network while maintaining intracellular metabolite levels near their
original steady state. By allowing modest changes in metabolite levels, it can be shown that
significant increases in the overall network flux can be obtained from the modification of only a
small number of carefully selected enzymatic steps.

Group or individual concentration control coefficients (CCC) emerge as key parameters in
the optimization process, since they provide a measure of metabolite sensitivity to reaction rate
modifications. The problem then is to determine the best single reaction step, or perhaps the best
two or three steps, that should be amplified in order to effect the largest possible increase in the
flux of the network, subject to the constraint that all intracellular metabolite levels remain within
a reasonable range of their original steady-state values. As it happens, the results are rather
insensitive to the allowed metabolite range, owing to the fact that, once the bifurcation borders
are approached, progression towards network instability occurs rather precipitously.

Omitting details, the optimal reaction step(s), as well as the recommended rate amplification
are obtained as the solution of a constrained optimization problem [8]. For the network of Fig. 2,
although PFK is clearly a limiting reaction, if a single step is to be amplified, it is most profitable
to do so for the reaction producing the desired amino acid. The large FCC for PFK i, in essence,
nullified by a much larger CCC that restricts the allowable kinetic amplification of PFK.
Reactions 14, (CHR—Trp), and 12, (PPH—Phe), emerge as the optimal single steps for
tryptophan and phenylalanine production, respectively, because they offer the best balance
between the magnitude of the allowed amplification (measured by the CCC) and the impact on
the network flux per unit of reaction rate amplification (measured by the FCC). When two
reaction steps are allowed to be changed, the optimization procedure predicts that the flux for
tryptophan and phenylalanine overproduction can be doubled through the increase of the reaction
pairs (PFK, 14) and (PFK, 12), respectively. In essence, the effect of these pairings is to moderate
the level of chorismate, by pulling away from chorismate (through reaction 14 or 16) part of the
overwhelming carbon flux which is pushed into chorismate by the amplification of PFK. Thus,
adjustment of one reaction in each pair serves to alleviate the metabolic instabilities otherwise
caused by amplification of the second. Thus, simultaneous adjustment of multiple steps is
favorable to sequential amplification.

Our results suggest that greater flux increases can be achieved through the simultaneous
amplification of two reactions rather than one, and with three rather than two. Amplification of
four or more steps, however, was found to be marginally better and occasionally problematic, due
to unpredictable instabilities resulting from significant changes in such a large number of steps,
as well as the unfeasibility of experimental implementation of this many simultaneous

213




alterations. It is instead suggested that an optimal pair or triplet of reactions be amplified,
followed by analysis and further modification of the resulting system. In most any case,
significant flux amplification should be achievable through adjustment of a small number of
reactions.
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