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ABSTRACT 

The usual axioms of quantum field theory are modified to 

allow a uniform treatment of stable and unstable particles 

without making explicit use of asymptotic conditions. A defini-

tion is proposed for the physical state of a single, neutral, 

scalar (or pseudoscalar) boson. The consistency of this defini~ 

tion requires the corresponding one-particle amplitude to sat is-

fy an integral equation whose solutions depend on the mass 

spectrum and the preparation mechanism of the particle. The 

unstable particle decay law is obtained from thepne-particle 

amplitude and at very long t1mes appears I ikely to depend on 
I 

the details of the preparation. For stable particles the 

formulation given in this paper is shown to coincide in an 

asymptotic sense with the well-known Lehmann, Symanzik,and 

Zimmermann formulation. The generalizations to many-particle 

states and to particles with spin 1/2 are indicated briefly. 
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I. INTRODUCTION 

New problems in the definition of particle states have arisen from 

attem~ts to include a description of decay processes iM quantum field 

theory_. 
1 2. 

In the first axiomatic formulations of quantum field theory, ' 

it was simpler to ignore the weaker interactions and to con·sider only· 

the coli ision processes of stable particles. The~e formulations make 

use of some assumptions. which are incompatible with observed decay inter-

actions. The time-1 ike asymptotic conditions on field operators are 

clearly applicable to stable particles only. Since the definition of 

particle states in the Lehmann, Symanzik, and Zinvnermann formulation, 1 

depends on the asy~ptotic cond~tions, the difficulty of defining unstable 

part!cle states is immediately evident. Also invariance under improper 

Lorentz transformations is not permissible, since violations may be 

possible among weak. interaction phenomena. 

Many of the more rigorous treatments of unstable particles have 

aimed at consistent definitions of masses and 1 ifetimes .• 3' 4 ' 5 We shall 

assume here the existence of un~mbiguous definitions for the mean posi-

tions and mean widths of peaks in the mass spectrums of fundamental 

particles. 

Matthews and Salam, 4 defined unstable particle states but these seem 

too dependent on rather artificial definitions of the masses and 1 ife-

times. 6 A definition by Ida, of a~: unstabl~ part~cle state is unsatis-

factory since it appears to rely upon the assi~nment of a complex mass 

·to the_u~stable particle. Peebles, 7 has given a prescriptlon for uni-

formly representing stabl~ and unstable physical particle st~tes, but 

·:t~e effect of observations.is not .treated thoroughly enough, and the 

one~particte amplitude Js not considered at all. We prefer to set up 
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a .somewhat different representation which explicitl.Y exhibits fundamental 

relationships between a one-particle state, the corresponding one-particle 

amplitude, and the general .preparation mechani.sm. First, we must adjust 

the usual statements of the basic postulates of quantum field theory with 

a view to dealing with unstable. particles, then we can define a physical 

one-particle state. As a consequence of our definition we deduce the 

general structure of the one-particle amplitude and i~s fundamental 

dependence on the preparation mechanism. The unstable particle decay law 

is deduced from the ~ne-~article amplitude, and its possible dependence on 

·the preparation mechanism at very long times is shown. We also show how 

to construct many-particle states from localized one-particle states and 

. thence reduce the.scattering matrix for a coli ision process to va~uum 

expectation values of operator products. Sections 2. to 7. deal only 

with neutral, scalar (or pseudoscalar) bosons, but in Section 9 we out­

line the extension to fermions with spin 1/2; 

2. POSTULATES 

We shall use only tho~e .postulates of axiomatic field theory, 8 

summarized below: 

I. Quantum physic.~ applies, and, in particular, the states of the 

system .correspond to the vectors of a Hilbert space H with positive­

defInIte metric. 

II. There .exists in~ a set of hermitian Heisenberg field operators 

A(x) which describe a neutral, scalar (or pseudoscalar) boson field. 

Th~ quantities A(x) are to be interpreted in the sense of operator­

valued distributions such that the expression 
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A(X) = j d4 x X(x) A(~) 
-co . 

is anoperat6r in _Hand giv~s definite res~lts when X(x) is 

a test~function beloriging to the class of all Indefinitely differen­

tiable functJons with compact support In space-time. Also the set 6f 

ope~ators A(X) ·i~ complete. 

111 .• Unitary operators U(A, a) exist in H corresponding to proper 

inhomogeneous Lorentz transformations, where A is a homogeneo~s 

Lorentz transformation and a is a translational transformation. 

The field operators A(x) transform under a Lorentz transformation 

according to 

U(A, ~) A(x) U-l (A,· a) = A(Ax + a) • 

In particular we have 

U(a)=e-iP,. a,.. 

where. the P/'1- . are infinitesimal generators of the translation 

op!rator U(a}. Also the mass operator is 

M. = -( -P2) 1 /2 

where 

IV. The .structur.e of the energy-momentum spectrum is such that the eigen-

value p,. of p~ satisfies 

2 2 -2 
. ~ 0 and p

0 
~ 0 -p = Po .;. p 

11M 

.and a unique vacuum state to> exists where 

U(A,. a) I o >,.; IO > and p,. ' 0> = Q 

There are one or more discrete eigenvalues m1, m2, ... of the mass 

operator corresponding to states of sing_le stable particles and a 

. continuum of 11\ass values above ·2m1 in ·which there may be one or 

·more ·approximately discrete. elgenval·ues of the mass operator 

corresponding to states of single almost-stable particles 0 
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. v. if (x-y) 2 = (x-v) 2 - (x - y ) 2 > 0 . 
. -- 0 0 

Note that we do riot assume any asymptotic conditions nor invariance 

under separate parity P, _charge conjugation C, and time-reversal T tr~ns-

formations so that our formulation will be valid for weak Interaction 

··proces_ses. However ·we may sti 1-1 have invariance under the (PCT) trans­

for:-mat ion. 9 · " 

Note further that the above postulates are sufficient to imply the 

existence of free In-going and free out-going time-like asymptotic fields 
. 

for stable particles provided there are corresponding Dirac 6-function 
. . 8 

contributions to the mass spectrum. 

It is yet to be shown that field operators for unstable particle fields 

exist and s~tisfy the postulates. The possible construction of such field 

operators provides another interesting problem which has been examined to 
. . 10 

some extent by Hama. and Tanaka • 

. If is generally believed. possible to conceive of single unstable 

particle states in the Heisenberg representation as approximate eigen-

states of P,- and th_at the accuracy of the approximation wi 11 depend on 

the lifetime, so we have included thispossibili.tyin the statement of 

-postulate IV. 

3. ONE-PARTICLE STATES 

We-aim to construct not an idealistical-ly fr:ee one-particle state 

-but'a state-which will" be physically observable as a one-particle state 

representing_ either a·stable or an unstable particle. Even· in a field 
~ . . . 

·theory of unstable particles wemay be able to construct a complete ortho-
.. . 

n~rmal_system of basic vectors spanning the Hilbert space in the Heisenberg 

·representation ·from the asymptotic fields of stable particles or from 

the set of eigenstates of the displacement operator Pr . Unstable 

particle states can only appear as a result of the dynamics of some 
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production or scattering process beginnirig and ending with stable particles 

and therefore can only enter into a k i nerilat i ca 1. discus~ i Qn if we treat them 

.·as approximately stable. Let us ~herefore recall the usual expression for 

' I I ' h ' f' ld f bl ' I II a one-partie e state, us1ng t e asymptotiC 1e o a sta e part1c e. 

We have 

Ia, in>= A~ tao> 1n 
Cl) 

5!! X(s) 
Cl) 

= -i Lim f f T .. -+= 
T . 

-co '"(X) 

x,. =cr,.. ( s) 

where the field A(x) describes particles of mass m and -ALf;.,.~ 
, X ~X f - A 

To have a normalizable state a discrete set of positive energy 'wave­

packet' solutions { fa(x) J of the Kle.in-Gordon equation have been u.sed 

so that 

fa(x) = j d 4k e(k
0

) 6 (k2 + m2) e i kx t:(k) 
-co 

~nd the fa(x) form a I inear vector space which becomes a Hi l·bert space 

II on defining a scalar product of the form, 

which implies the restriction 

(2) 

(3) 

3 oo d3 ~- N'ir ~ 
( 21t) 1 2 ( k 2:m 2) I /2 fa ( ~ f f3 ( ~ = 6 at3 ( 4) - ,., on tho othorwico 01rbitr~ry function f(l(), A.lso ~,.(x) i:J o 3paee-like -

surface element with normal in the time-like d.irection of x~ . The 

quantity X(s) is a test-function possessing derivatives of all 'orde~s 
-1 . ' 

and vanishing faster than·any power of s outside a region -2T ~ s ~ -T 



and is approximately unity inside this region. 

It may be meaningless to ask for the asymptotic properties of unstable 

particle fields since, in the infinite time-1 ike limits, an unstabl~ 

parttcle_does not exist physically. We are therefore prevented from 

interpreting an unstable particle field in terms of a specific particle 

in the usual way. If one-particle states are to be defined without using 

time-like asymptotic I imits, we must consider particles created by an 

external source in a region of space-time-V{x) given by 

t-T< X< t+T 
-. 0 

· r. - R. < x. < r. + R. 
I I I 1. I 

We now choose· 

X (x) = X (x ) XR{x\ v . ,. 0 ~ 

' = 1,2,3 . 

to be a test-function with region Vas its s~pport such that 

X {x) ~ v for x E V 

-- 0 otherwise 

The replacement of X(s) in Eq. (1) by X (x) takes account of the fact v 

that the preparation or detection of a single particle cannot b~ accom-

plished instantaneously or at a geometrical point in space. We will 

call X (x) the preparation function, since its explicit form depends on 
v 

the details of the preparation of the particle. 

No portiels eonbe ob5erved with peffe(...L ~~~ .. ~Uid~y, su e1 physical 

one-particle state need not describe an exact eigenstate of the displace-

ment operator P but must be almost exact to be observed as a one-
. ~ 

·~article state at all.·. Therefore a one-particle state may not be 

·observed a~ an exact eigenstate of P ,-. due to one or both of the reasons: 

(a} The st~te of the system will be unavoidably perturbed by any 

measurement performed on the system. 
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(b) A fundamental property of the state may be that it is not 

an exact eigenstate of P~ . 

. Clearly it may not be necessary to define a one-particle state to be an 

exact eigenstate of P
1
• • The form of the wave-packet fa(x) in Eq. (2) 

. is inade~uate, for, ~!though it already allows for an arbitrary momentum 

spread,• it chooses a precise mass value m for the one-particle state in 

Eq. (1) .. However, note that in Lehmann, Symanzik, and Zimmermann 

1 theory, . we ·can write 

fa(x) = <0 I A(x) Jain> (5) 

Therefore instead of a wave-packet f (x) with a definite mass we can use - a 

< 0 l A(x) \a .in> which we hope to calculate from the representation of 

the one-particle state itself. 

We propose to restrict a one-particle, neutral, scalar .(or pseudo-

scalar) boson state by 

1 p,a, V > = 
_... 

-...ll, 
a> a> l A(x) ; x < 0 I A(x) lp,a,V >] JO > = I ds I dcr,.(x) X {x) 

2T v ......, ......, ,. . . (6) 
xl-= a,. ( s) 

In sections 4 and 5 we wi II use Eq. (6) and postulate IV to deduce a 

g~neral fo~m for the one-particle amplitude< 0\A(x)lp,a,V > in terms of 

the Lehmann spectral function and the preparation function. If this general 

furui foro:;:OlA(x)lp,u,V> Is put back In equatlO:n (6) then it will be 

clear that Eq. (6) can be a representation of a one-particle state with 

average mass m, average momentum p, and prepared near a point r in space 

around a time t. 

4. PARTICLE CONDITIONS 

It is to be expected that the concept of a particle is mainly quali-

tative and arises from the appearance of peaks in the mass spectrum. Of 

course it is still an open question as to how much of the m~ss spectrum 
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can be deduced and how much can be assumed as 'elementary'. We hope 

io show th~t this pro~lem can be reduced to finding elementary fields. 

To be certain that we are preparing or detecting a one-particle 

state of mean mass m; our measurements must be sufficiently accurate 

to distinguish the peak in the energy spectrum near the energy value 

. (p2 
+. m2) 112 , where p is the average momentum of the part i c I e, from the 

. -- 11M . 6 
other contributions to the spectrum. As Ida pointed out, the uncertainty 

principle then gives a restriction on the time required to prepare a one­

particlestate. We state Ida's particle conditions in a form sl ight'ly. 

altered to suit our purposes: 

(i) ·For a stable particle we must distinguish between the dis-

crete contribution at mass m and the continuum in the spec-

trum. If the average momentum is p, then the indeterminacy· ,__ 
of our energy measurements 6E must satisfy 

-1 
T <_ AE < <( 2 + 2 ) 1 /2 - ( 2 + 2) 1 /2 

u p . mth . p m - . -
where mth is the lowest mass value of the conttnuous mass 

spectrum. To eliminate negative energies we must also have 

T-1 S b.E < < {p2 + m2)1/2 -
(ii) For an unstable particle the analogous relations are 

-I 
~ b.E ( 2 + 2)1/2 _ (p2 + m2).1 /2 T << !!.. mt -

-I 
S b.E < < (p2 + m2)l/2 ( 2 + 2 )l/2 T P mth - -

where mt > m is the lowest mass of the icontinuous mass 

spectrum contributed by interactions which do not cause 

the decay of the particle. In addition we must have the 

observation time less than the lifetime to be sure of 

6bserving the particle before it d~cays 

(7) 

(8) 

(9) 

(I 0) 
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-1 -1 
T >>'Y=" ( 11) 

where. 't is the hal f-1 i fe. 

From Eqs. (10) and (11) we find the condition for a narrow energy 

peak to imply the existence of a particle 

. -1 2 2 1/2 . 2 2 1/2 2 2 1/2 
'Y·< < T < < (p + m ) - (p + m h) ~ (p + m ) (12) 

- - t. -

T f T-1 f (, 0 2 + m2) 1/2 hus i is o one order less than ~ , then 'Y is of t\1.0 

orders less than (p2 +m2) 112 . For the well established particles -
'Yim .wl0~ 15 , but it is difficult to examine resonance scattering 

experimentally due to the weakness of the decay interactions. However, 

the new meson and baryon mesonances have large widths with 'Ylm ~10-1 , 

and their decay interactions are strong, although it is hard to ~stabl ish 

the exist~nce of-associated particles.· Hence it may be possible to study 

the decay of these new short-lived particles in greater detail than the 

weak decay particles. 

Acc6rding to conditions (i) a~d (ii) above no singl~ stable particle 

can exist if we allow electromagnetic interactions for then, mth = m and 

0 < r·l < < 0. Similarly forth~ case of an unstable particle mt = m 

and 0 < T-l < < 0 with the possible exception of an electromagnetic 

decay. It may be pO!i!iible to prepare somellliny closely resembling a one-

' particle state, but it cannot be freed from the electromagnetic phenomenon 

·of a ·~oft photon ~loud'. Since we no longer hav~ a particle in the 

usual sense, the name infra-particle has been given to such a particle 
. 12 

with ·a 'soft photon cloud'.. The question of how to describe infra-

particl~s seems rather separate from that of how to obtain a uniform 

descript_ion of stable and unstable particles. Hence we shall ignore this 

particular electromagnetic effect and presume that this will not affect 

our physical conclusfons. 
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Lastly we should require the un·certainty in the momentum top or the -
momentum spread of our one-particle state be small and therefore that R 

be large ~ccording to 

-I R. <<top. 
I I 

, i =I, 2, 3 ( 13) 

5. ONE-PARTICLE AMPLITUDES 

The mass and momentum distributions of the one-p~rticle state 

lp,a,V >, used in Eq. (6), are contained in the structure of the one-

particle amp I i tude < OIA(x)l p, a, v > . This is c I ear from the operation 

of P on lp,a,V > which gives v 

< OIA(x)l p,a,V >}o > 

....- . 

; x < OIA(xll p,a, V >} (0 > 
r · (14) 

where the other term, appearing from an integration b~ parts, vanishes 

since X (x) vanishes outside the finite region V., Therefore we ~an write 
V ·. 1 

which shows that the operation of Pv on lp,a,V > is undetermined until we 

can obtain an expression for< OIA(x)fp,d,V >. From th~ restriction on 
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. · lp 4a,V >in Eq. (6) we readily obtain the following integral equation for 

. < OIA(x) I p ,a, V > 

< OIA(x)(p,a,V > 
.. ~- ~~ 1 ds 1 <fal" (y) Xv(y) [ < OJA(x) A(y)l 0 > 

· · a,_.(s)""Y,-. . 

Before we attempt to solve this equation, we note the following results 

due to Lehmann, l3 which are valid for unstable partie!~ fields 

< OIA(x) A(y)IO > r;:: ioj r(K~fl (+) (x-y; 1(
2) d~ 

wher.e we have on 1 y used the postu 1 ates I to IV and 

tf ( 17) 

r (~k2)e(-k2 ) e(ko) r;:: (21{)3 ~ < OIA(O) I k,a > < k,a I A(O)' 0 > (18) 

(+) 2 -i 3 ·JQ). 4 2 2 ik(x-y) (-) 2 
l1 (x-y; tc..)·r;:: (21f) d k e(ko) 6(k + K. )e r;:: -!1·· (y-x; K.) 

-a) . 

. .' ( 19) 

The state lk,a > , used .in Eq. (18), belongs to the complete set of eigen-. 

states of P~ with eigenvaluek,_, and a refers to any ;other relevant quantum 

numbers necessary to specify the state. It is clear from Eq. (18) that 

r (-k
2

) is real and non-negative~. 

We can now write .Eq. (16), using Eq. (17), in the form 

< OIA(x) I p,a,V > . 

r;:: 'rl- j ds jdtJI"(y) X)v) jd -.2 r ( .. 2) .[ ~ (+) (x-Y; rl>7< O(A{y) I p,a,v >] 
-a) 000) . 0 . . } 

. . . CT,. (s)=y,.. . . (20) . 

. If we uu Eq. (lg) and pllt 
1. Q) 4 ·ikx 

h ( k) = ( 21f) 4 J d x e < 0 I A ( x) I p ,a, V > ( 21 ) 
. 000) . . . 

then E~~ (20) b~~omes · 

h(~) = ~ d4k' e(kc,) e(-k2) ("( -k2
) (<~>41 ds}af"( y} ~T x_<y)e i (k' ~k}y}k/"+kf.}h{k? 

· · · ·. · · · ·CT (s.)=y 
. Q) . ~ ~ 

. ~ lf d4k' 8(k) 8(-k2) r· (-k2) F
1

(k ·k') F2(k-k')(k +k') h(ki) 
. 0 0 . 0 .. ,.. 0 0 -co . 

(22) 



where we have chosen the 
CD 

F (k - k
0
'} ... J . 1 0 
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particular Lorentz frame k = . . ,. 
dy i(k - k')y 
2T o Xr (Yo) •. e o o o 

. CD 

= ct">3 1 d!x, xA <u i(~ -~·. F (k - k') 
2 - M/110 

• e 

k and put 
.0 

(23) 

(24) 

The function F1(k
0

- k~),'defined by Eq. (23), can be thought of as an 

energy filter since 
t+T dy 

F1 (k
0 

- k~) R: J 2'f­
t-T 

i(k - k')y i(k -k')t 
0 0 0 0 0 • e = e • 

sln(k· - k')T 
0 0 

(k - k')T 
0 0 

(25) 

which becomes negligible compared with unity,the maximum value of 

fF (k - k•)l in Eq. (25), when I k - k'J > > T- 1• Similarly F {k- k') 1 . 0 0 0 0 2 

is negJ igibJy smaJ 1 for· I k. - k! I>> R~ 1 , i = 1, 2, 3, and so acts 
I I I · 

like a momentum filter. The exact forms of F1 and F2 depend mainly on 

the details of th~ preparation function Xv(y). 

Equation 1 (22) is a homogeneous Fredholm integral equation:~ 14 for 

the eigenfunctions h(k) and eigenvalues Aof the kernel 

K(k,k') = e(k) e(-k
2

). f (-k2) F1(k - k') F (k- ~)(k + k') 
.0 0 0 2- 0 0 

(26) 

For a non-trivial solution to exist the Fredholm determinant D(A) must 

vanish for some value of A, where 

-· • ·CD· !.:6Jn CD. CD 4 .· 4 
D(A)- 1 + E n' · J ••• Jd q1 ••• d qn 

n= 1 • ooCX) -

... 

• 
" 

••• 

(27) 
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satisfies 
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K(qn,kl) ••• K(qn,qn) 

(28) 

N(k,k 1 ;A) = AD(A) K(k,k 1 ) +A j K(k,q) N(q,k 1 ;A)d4q (29) 

soN is a solution of Eq .. (22) for any k 1 when 0().) = 0. We choose 

_k 1 = p = (p, (p2 + m2) 1/ 2) In order to have an eigenfunction with a momentum - -
spread around p _and a mass spread around m. To show this we note that N -
has the following .form 

N(k,p;).) = 8(k ) 8(-k2) p(-k2) g(k,p;).) 
. 0 . 

(30) . 

where 
"' N -

- . . Q) l:fJ.n Q) Q) 4 4 
g(k,p;A) = ).K(k,p) +An~--1 -~ J ... J d ql ~ •• d qn 

n. -= -= 

K(k,p)K(k,q 1) .•. K(k,qn) 

~~(ql ,p)K(ql ,ql) • •. K(ql ,qn)' 

and 

K(qn,p)K(qn,qi) •.. K(qn,qn) 

(31) 

~ . . . 

K(k,q) = (k + q) F1(k - q ) F2(k- a) . (32) 
0 0 0 0 - ... 

It is clear from .Eq~. (~5)J(7),(~),(~), and (10) th~t ~ (k -(p2 + m2) 112) 
I I 0 -

. . . 2 2 1/2 
'is negligibly small unless k has a value close enough to (p + m) to 

.. 0 . -

( 2) 2 2 . ' distinguish a peak in p -k near -k = m from the rest of the contri-

but ions 
2 . 

to p ( -k ) . The first term on the right hand side of Eq. ( 31) wilJ 
. . 2 . 2 2 2 The other . project out the resonance p (-k ) from p(-k ) near -k = m . res 

term·s ·on '· right hand. side of Eq. (31) should be neg I igl ble unless the 
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-k2
- m

2
, · · h · f - s1nce any term 1n t e expans1on o - . -K(k·,p) K(k,q l) 

,., . 
K(k,q ) , n 

K(ql ,p)K(ql ,ql) .. K(q 1 ,qn) 

This follows since all the 

terms in the expansion of the above determinant are of the form 

which allows us _to deduce successively 

S:::(qz)oS::(qz•)o~(qy•)o~ ... =(qa:>o~ ko 

(33) 

Th · . k ( 2 2)1/2 breaks down for 1 arge n in Eq. e approx1mat1on ~ p = p + m · 
0 0 -

( 31), but the series converges uniformly so the terms with large n ·are 

negligible in any case. Hence it may be a good approximation for 

suffi~iently large Tan~ T to regard i as an energy-momentum filter so 

that we can write 

2 2 -N(k,p;X)s:. 9(k) 9(-k·) p (-k) g(k,p;X) o res (34) 

The most general form for h(k) is however 

. 2 . 2 -h(k) = c N(k,p;X) = c 9(k ) 9(-k ) p(-k ) g(k,p;X) 
0 

(35) 

where c is a constant to be determined by the normalization of the one-

·particle amplitude 

g(x,p;X) = < Ol A(x) l p,a,V > 

= j d4k eikx 9(k
0

) 9(-k2) p(-k2) • c g(k,p;X) (36) 

~ 2 
For a stable particle g will project out from p(-k) the tenn 
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2 2 . 
6(k + m ) so that g(x,p;A) closely resembles fa(x). defined in Eq. (2). 

· lt. is convenient to choose an orthonormal set .of solutions of Eq. (22) so 

t.hat 

The normalization of the one-particle statelp,a:v >is ( 37) 

· < p,a,Vlp' ,f3,V > · . 

-- ~~ 1 ds]d\ x_<x>(< < DIA(xllp,a,V'>l* :X:(< DIA(xJip',I!,V >) J 
s=x 

0 

• -i '2J2
A j ds j d3!.X)x) j d4k e-ikx 9(k

0
) 9(-k2) p(-k2) ~*(k,p;A) 

-co -co . --co 

s=x . 0 

2_(1)4 . 2 2 * (1)4 2 2- . 
a lci""'A J d k 9(k

0
) 9(-k) p(-k) g (k,p;A) J d k' 9(k~) 9(-k' ) p(-k' ) g(k' ,p'_,A). 

-iao . -co 

. (k + k') • (21t)3 F (k - k') F (k- k') 
0 0 . 1 0 0 2--

Therefore for stable particles the formulation given here becomes identical 

with the Lehmann, Symanzik and Zimmermann formulation, 1 in the asymptotic 

1 imits t =-2T, T .,...:!: Cl) and R. -.CI) , i = 1 ,2,3; although we have a more 
I . 

,._ N 

explicit form for f (k) given by g(k,p;A). in Eq. ;(31). We aliiQ have the a . . 

exi~tence condition D(A) = 0 for some non-zero A. We can obtain some 

' 
i.nformation·about D(A) for the case of stable particles and. plane waves. To 

reach.the plane wave case we let R ... CII, i .. 1, 2,3, in Eq'. (22) so that 
I 
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co 

h(k~k ). = xf dk' e(k ) e(-k2) p(-k2) F (k -k')(k + k')· h(k k') (39) 
- o · o o I o o o o -.! o -co. 

Also, for stable particles, we have 

K(k
0

,p
0

) = 9(k
0

) 6(k2 ~ m2)(k
0
+ p

0
) (40) 

. which imp! ies that 

N(k ,p ;l) = lK(k ,p ) 
0 0 0 0 

(41) 

and substituting this in Eq. (29) gives 

D(l) = 1 - l (42) 

·Hence D(~) = 0 when l= I. However, the condition D(l) = 0 is hard to 

analyze although we suspect that it is concerned with renorm~lization. 

It is easy to show for this case of stable particles and plahe 

waves that the one-particle amp! itude reduces to the familiar expression 

exp I p ' X • I p . m X 
[

. '( 2 + 2)1/2. ] 
-.- - . 0 

6. THE DECAY LAW 

The possibility that the exponential decay law for unstable parti­

cles fails after very long times has been already examined by Schwinger, 5 

in axiomatic field theory, and he concludes that the law becomes dependent 

on the production mechanism. Schwinger con~i~ered th~t the time dependence 

of the unstable particle propagator G(x - x') = i < OI'T(A(x)A(x')) I 0 > 

(here T symbol.izes the time ordering of 'the produ~t of operators) character-

izes the probability of decay and artifically ·introduced a mass filter into 

the propagator to project out a single particle term and not a kinematically 

equivalent combination of particles. A similar conclusion was reached by 

15 Jacob and Sachs, who used a perturbation theoretic. decay model, and by 
16 . . 

Newton,· who used quantum mechanics with a time-dependent wave-packet 

formalism. The later two works indicate that it is better for the sake 
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·of easier comparison between theory and experiment to consider the time-

dependence of the one-particle amplitude as correctly characterizing the 

probability of decay. Therefore we shall assume here that the probability 

'that the.particles has not decayed after a time x
0 

~ t (t is approxi-

·. mately the time when the particle is created) is given by I< 0\A(x)lp,a,V > 12
. 

Hence we examine the time dependence of g(x,p;A) given in Eq. (36) which 

we ·rewrite as. follows 

~ 2 2 -ik X 
g (:.,X 

0
, P ; A) = f d k 0 9 (-k ) p (-k ) e 0 0 c · g ( k, p ; A) · 

0 

h E (k2. + ~ 2) l/2 w ere IL • _ . ""' 

-iE X 
" 0 e (43) 

Now compare Eq. (43) with the equation expressing the time dependence 

of Schwlnger•s mass filtered propagator given below 

~ .. 2 2 -iE X 
_j_ M G(k,x ) =I dWC. p( K ) e 

II. 0 . M(IIC.) 
... 0 2EK 

0 

(44) 

where 

M(L) = for 

'"" 
m \ < 6m - (45) 

0 for l K.- ·m l > L\m -
also~<< 6m < < m, and 6m is the precision of the mass determination. 

• • Clearly ~ore need only identify~ g(k,ill&,p;;\);·with i H(IC) for .. . 

Schwinger•s subsequent analysis of Eq. (44) to hold for Eq. (43). We 

need not repeat this analysis here, .but we state the conclusion that the 

exponential law appears .to be valid for times xo > t such that 

(~E) •1 ~ T < < 
E 

-...!ll 
m 

(x - t) < T 0 ,.,. . (46) 
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but for 

E a 
--.!!!. (x - t) • ( ...LT ) >. > 1 rrrr . o (47) 

where a is a positive number, the exponential law appears to fail and 

is no longer independent of observation mechanisms. 

7. MANY PARTICLE STATES 

We have shown that Aa f , defined by.Eqs. (6),(36) and (31), creates 
v 

a single particle state with sufficient accuracy for experimental veri-

fication, and it is easy to show that Aa is an annihilation operator 
v 

so 

Aa I o > ·- o 
v -

since the particfe conditions in section 4 eliminate negative energy 

states .• Also we have shown in Eqs. (38) that the one-particle state 

created by Aa + is normal i zable. We have further v . . 

= 0 

(48) 

(49) 

if the two prepilration regions V and V1 are spoti.,lly seperete so thaL 

postulate V applies. Similarly 

(50) 

if V and v• are spatially separate. With such localized operators 

Aa t and Af3 t . where V and V 1 are spatia 11 y separate, we can create· a 
v v ' 

two-particle state since there will be no mutual interaction. Similarly 

We can create many-particle states. 
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We could now set up an S•matrixfor·a scattering process using 
. I ) 

the .familiar·Lehmann, Symanzik_and Zimmermann reduction techniques·:e 

_The following fo~mulae are easily derivabl~ 

) ~at {x ) · 
A o 

= 
3 {x

0
)-

Q) 

J d~ XR(~ (A(x) j (x,p;X) - J{x) g{x,p;X) 1 -. {51) 

where t = f 
.A~ {x

0
) = 1 d3~ XR ~ A{x) g{x,p;~) 1 {52) 

and 

<D 
2 . 

+m ) A{x) = J(x) 

<[J 
. 2 
+ m )g{x,p;X) = j{x,p;X) {53) 

s• . -a A~ tcx
0

) at AaRt (s) AI so J dx 
~ 

= Aa (s•) - (54) 
0 X s 0 

Therefore 

.. 

• [A{x) j {x,p ;X) - J {x) g{x,p;X)] 

= Aa f. - Aa t {55) v v• 

where the region V• is in the future of the region V. As a simple 

application of Eq. {55) for stable particles consider the scattering 
! 

of two stable ?osons of massesm1 and m2 prepared' in each of two regions 

_v 1, v2 which are_ spatially separate. At a large future time from v1 and 

· v2 consider regions v
3

, v4 which are spatially separate and in which we 

have arranged to detect the resu 1 ts of the scattering •. Suppose we detect 

stable bosoMs of masses m
3 

and m4 in v
3 

and v4 respectively. The 

scattering matrix has the form for non-forward scattering 



·. 

< p4,a4;V4:p3,a3;v3J 

( i )4·;~ 1A2A l-4 

= 
co 

J 
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co 

J ds 1 . . . 
-co 

Xf 1 (s4) 
4 

ds4 ds 1 

I ... ds 1 

4 

5 I 5 I 
Jl d(xl) o ... J 4 d(x4)o 

51 54 

· (D + m~) ... (0 + m~) < OIT [ A1(x 1) A2(x2) A
3

(x
3
) A4(x4>] IO > 

(56) 

and this will also reduce to the usual Lehmann; Symanzik and Zimmermann 

res u 1 t s i f we 1 e t · 

t. = -2T. 
I I 

, R. __. 
I 

co • 
t =. 1, 2, 3, 4 

8. CONCLUSIONS 

We have given a prescription for defining a single, neutral, scalar 

boson state in Eqs. (6), (36), (31), and (32), (23) and (24). In order 

to have a uniform description of stable and. unstable particles we have 

formed a very close relationship between a one-particle state and the 

corresponding one-particle amplitude. The structure 6f the one-particle 

ampl ltude follows from the consistency ot the one~particle state defini-

tion. The detailed properties of the one-par~icle amplitude depend mainly 

on the details of the preparation of the particle. We assumed only very 

general properties for the preparation function, but we found that it 

·is the more detailed properties which are likely to determine the decay 

law of an.unstable particle after a very long time. This problem of 

how to introduce new parameters to describe the preparation mechanism 

more accurately and to find their effect on the decay law has already 
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been discussed by Khalfin. 17 It is io be hoped tha~ the new-very short 

lived particles will yield significant ~xperimental data.and give some 

guide towards the solution of this problem. 

For the case of stable partlcles our f6rmulation will coincide 

asymptotically with ·the Lehmann~ Symanzlk and Zimmermann formulation, 1 

·.and there is 1 ittle difficulties in general izlng to ch.arged bosons and 

to fermions of spin 1/2. 

It has proved unnecessary-to solve the problem of finding elementary 

fields. We have shown that it is possible to construct unstable as well 

as stable particle states without requiring any special properties of 

the field operators other than· those imposed by the usual postulates of 

field theory. 

9. FERMIONS 

The extension· of our formulation to particles wit~ spin 1/2 is 
···~ 

different in some details. We indicate briefly, in this section, how· 

this extension can be.carried out. 

For a single fermion state with spin 1/2 the restriction analogous 

Eq. (6) is 

1 2 , a, v > 

, also~ (x) is a Heisenberg spinor field ' . operator describing a spin 1/2 fermion field, and we are using a set 

of hermitietn o·irac matrices 'Yl' 'Y2, 'Y3, 'Y4 with f'Y,;., 'Yv 1 = 26~v 

The manipuiation of the integral equation for the one-part_icle ampli-

tude is different in detail from the boson Gase. We have 
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- < 0 l ~ ((x) I p, t , o:, V. > 

Cl) Cl) 

_= t r ds J dal"(y) Xv(y) < 0' ~ (x) r, (y) I 0 > <'Y.>c• < Olt (y) I p, t,o:,V > 
~ ~ - . \ ( f ~ 't ' 

a.(s)=y ... 
,. . r (58) 

The_ foll9wing results due to Lehmann~ l3 are valid _if we avoid Lehmann's 

use of separate P, C, and T transformation invariance 

+ {-y5 "/,. o .; x,. ) U' . 0 p4( K2) Ja (+) {x-y; 1<2)' (59) 

where 'Ys = · i 'Y1'Y2'Y3'Yo and 

- ( 2rc ) l ~ < 0 \ v \ ( ~) l k, n > < k, n \ ~ ' 1 ( 0) I 0 > 

a..v .,. v v ,.. 1'-V . 
but or- = 'Y' 'Y - 'Y 'Y• and so a k k . rv ~ 0 ~ It is possible to 

2 . 
show that the p.(-k ), j = 1,2,3,4, are real, 

J 
and from postulate V or the 

(PCT). theorem, 18 we find 

. ' . . - . . 

<- o l v (x) i , (o) l o > = -<'Ys>:r < oh ,(o) v (x) l o > <'Ys> , a• (62) 
~ -' . : ... W\ "' ' ' .. 

Using Eq~ (S9) and taking the Fourier transform. 

( ) 1 Joo 4 - i kx ( ) 1 1 · 
w l k = ( 2rc) 4 ~ d x e < 0 I t' x p, 2 ,o:, V > (63) 
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t~en Eq. (58) can be written as follows· 

'J- co 4 . k co d co co 
w'(k) = .( 2lf)4 l·d X e -I X 1 . 2; 1 dO',.. (y)" XV(y) • { d K 

2 

O',_(s)=yr. 

. . 

+ ; <'Ys'Y,k)n• P4 < ~ 2>] a(ko) o (k2 + "2 > 

jAu [(~)3 1 ~; 1 dal'(y) Xv(y) ei(k"-k)y] 

. 0'/-(s)=y,. 

If we i ntrodu'ce positive ·energy sp i nors u 1 and u2 such that 

. [ . 2 1/2] -i 'Y. k + ( -k ) u j = 0, u j u J = 1 ; j = 1, 2 

and note the follow1ng results 

- . 2 1/2 u. (•')' ·k)u .. = -(-k )· J . . J ( k2) 1/2 - . 
, - U.l')' U. 

J I!" J 

li. ( iry
5
· )u. 

.J J 
= u.(i'Ys~·k)u. = 0 ; j = 1, 2 

J J 

then we t i nd. 

= k ,.. 

0 
( ~ ) I W ( k11

) 

,. C4t ' 

(64) 

(65) 

(66) 

r ] · cr 4 · ( 2 2 112 · 2 ] 2 l~,w(k) = ~ d k' p2(-k )-2(-k) . p1(-k) 9(k
0

) ·9(-k) 

F 1 (k0~k~) F2 (!-~)(u(!)(-iry4) u(!.:) )[u'\ w,(k')] 

(67) 

which can be solved in the same way as i'n the boson case, since 

[p
2

(-k2)- 2(-k2)112
p 1(-k2)] has the same properties as p(-k

2
) 
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