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ABSTRACT

The usual axioms of quantum field theory are modified to
allow a uniform treatment of stable and unstable particles
without making explicit use of asymptotic conditions, A defini=
tion is proposed for the physical state of a singfe, neutral,
scalar (or pseudoscalar) boson. The consistency of this defini=
tion requires the corresponding one-particle amplitude to satis-
fy an integral equation whose solutions depend on the mass
spectrum and the preparation mechanism of the particle. The
unstable particle decay law is obtained from the one-particle
amplitude and at very long times appears iikgly to depend on
the details of the preparation. For stable particles the
formulation given in this paper is shown to coincide in an
asymptotic sense with the well-known Lehmann, Symanzik,and
Zimmermann formulation. The generalizations to many-particle

states and to particles with spin 1/2 are indicated briefly.
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I, INTRODUCTION

| L New probl;mé in the definition of particle states have arisen from
.;ttemptS'tOVinclude.é dgscription-of decay procééses in quantum field
tﬁébry,k ln>tHe first axiomatic formulations of quantum field theory,"Z'
it was simplef‘gb ignore the weaker interactions and to consider only’
'thefcollision processes of stable particles. These fqrmulations make

use of some a5sumptions,which are incompatible with observed decay inter=
actions. The time=like asymptotic conditions on field operatorS are
cleafly applicable to stable parti;les only, Since the definition of
.particle states in‘thé Lehﬁann, Symanzik, and ?ihmermann formulation,l
depends oﬁ the asymptotic conditions, the difficulty of defining unstable
particle stafes iS immediately evident. Also invariance unaer imﬁrpﬁef
Lorentz transformations is not permissible, since violations may be i
possible among weak intgractibn phenoﬁena.

Many of the more rigorous treatments of Qnstable particles have
aimed at consistent definitions of masses and Iifetimes..3’l+’5 We shall
assume.hereAthe exisfenéé of unambiguous definitions for the mean posi-
tions and mean widths of peaks in the mass spectrums of fundamental
particles.

Matthews and Sa[am,h defined unstable particle states but these seem
~ too dependent on rather értificial defiﬁitions of the ‘masses and life-~
" times. A»definition byAIda,6 of aniunstable'partﬁcje state is unsatis-
factory giﬁce it appeafé to rely upon the assignment of a complex mass
gtd ;he_uhs;ablé pafticle. Peeﬁles,7'has given a prescription for uni-~
formly fepresentfné stabre'and uﬁstable physical particle states, but
.~;§Be effect of observations.is not treated thoroughly enough, and the

onééﬁartic[e amblitude Is not considered at all. We prefer to set up
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a somewhat different repfesentation whi;h explicitly éxhibits fundamental
relationships between a one-particle state, the corresponding one-particle
amplitude, and the general,prepération mechanism, First, we must adjust

- the usual ;tatemenfs of the basic postulates of quantum field theory with
a view to dealing with unstable particles, then we can define a physjcal
one-particle state. As a consequence of our definition we deduce the
éeneral structure of the one-particle amplitude and }fs fundamental
depén&encé on the preparation mechgnism. The unstable particle decay law
is deduced ffom the one-particle amplitude, and its possible dependence on
"the preparation mechanism at very long times is shown, We also show how
to. construct many-particle states from localized one-particie states and

" thence reduce the scattering matrix for a collision process to vacuum
expectation values of operator products. Sections 2. to 7. deal ohlf
with neﬁtral;lscalar (or pseudoscalar) bosons, but in Sec;ion 9 we out-

line the extension to fermions with spin 1/2.
2. POSTULATES

We shall use onfy those postulates of axiomatic field theory,8
suhmariéed béldw;

1. "Quantum physics applies, and, in partfcular.'the states of the
system .correspond to the vectors of a Hflbert space H with positive-
definlte ﬁetric.

'il,i There exists in H'a set of hermitian Hei;enberg field operators
- A(x) wH?ch describe a neutral, scalar (or pseﬁdoscalar) boson field.
The quantities A(x) are to be interpreted in fhe sense of operator-

valued distribufions such that the expression
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. . © :
A(X) = [ d* x x(x) A(x)
. : . e . . : ) .
. is an:operator in H and gives definite results when X(x) is
altésirfunctioﬁ belonging to the class of ail indefinitely differen-'
} Fiable functions with_;ompacf support in space-time, Also the set of
opefétofs A(X) -is complete.
. Qnitary operators U(A, a) exfst in H cérrespondlpg to proper
{nhémogéneous Lorentz transformations, where‘A is a homogeneous
Lorentz transformation and a is a translational transformation.
The field operators A(x) transform under a Lorentz transformation
according to ‘, |

“U(A, a) A(x) u! (A, a) = A(Ax + &) ,
In partiCUlaE we have

W(a) =4e-iﬁr alF
where theAP'; . are infinitesimal generafprs of the transiation

operator U(a). Also the mass operator is

M= (-pY)'/2
where 4P2 = le- P2 .

Tﬁe‘sérﬁctu(e of the energy-momentum spectrum is such that the eigen-
i’vélue P of Pr‘ satisfies

‘ .-fp2= p(z) -'3.2.20 and pOZOA
-and a unique vacuum state )0 > exists where

.u(/\,,a) jo> = 10> and Pr o> = a’k,

‘Thgre are one or ﬁarg discrete eigenvalues mis Mys .. of the mass ’
operator correspondiﬁg to'states of single stable particles and a
‘:Acontinuum of.hass values above 2ml in<thch there may be one or
. more approximately discrete elgenvélues of the mass operator

corresponding to states of single almost-stable particles.
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V o [A(x), A(y')]: 0 if‘(x-y)z- =’(-’-(-l)2 - (xo - yo)2 > 0.

: U'Nofe thaf‘we_do not assume any asymptotic conditiohs nor invariance
| uﬁder separéfe pafify P;<charge conjug#tion C, and time-reversal T trans-
.forﬁétionS“so that our formulation will be valid for weak intéraction |
;prﬁcessés. H&wevef-We may still have invariance under the (PCT) trans-
formafion.s*'f
| Note fur;Hér that.the above postulates are sufficient to imply the
existence of free in-going and free out-going time-like asymptotic fields
for stable particles provided there are corresponding Dirac 6-fubction |
'cqnfributfons to the ﬁass Spectrum. |

It i$ yétlfé be shown that field operators for unstable particle fields
exist and safisfyiﬁhe postulates. The possible construction of such ffeld
operators provides another interesting problem which has beeﬁ examined to
‘some extent byAHamajand Tanaké.lo |

o ji is generally befieved4possible to conéeive of ;ingle unstable
particle states in fhe‘Héisenberg”repfeéentation as approximate eigen-
étaté; of»F}, and thé; fﬁe accuracy of the approximation will depend on

the lifetime, so we have included this possibilityin the statement of

-postulate IV,

3. ONE-PARTICLE STATES

' we‘a}m to'construct not an idealistically free one-particle state
‘buf;a:statefwhich will be physically observab]e as a one=-particle state
repreéehtiﬁg.either a'stable or an unstable particle. Even-in a field
: ~.‘;fl-,-g:;b.r,_yﬂof'i;msta‘b'lAe particles we may be able to‘construqt a complete ortho-
né}ma['sy§tem qf‘Basic vectors spanning the Hilbert space in the Heisenberg
"rebfeﬁéntation'féom the astptotic fields of stable particles or from
tﬂe set of,eigethates of the displacement operator Pr, . Unsfable

particle states can only appear as a result of the dynamics of some
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production or scattering prbcess begihnihg and ending with stable particles
~ and therefdre can only enter into a kinematical discussion if we treat theh.
sas-approximafely stable, Let us therefore recall the usual expressibn for
a one-particle s;ate,l using the asymptotic field of a stable particle.

We h#Qe,‘ |

- fa, in> = AainTlo >

T .
. g T ds G
= =i Lim == X(s) do™ (x) A(x) ™ f (x) 0> (1)
Te® 4 -B[ T -B[ : : .axr, @ l
. %u=0p(s)
where the field A(x) describes particles of mass m and
3T 9 '
A NA L, 3f
A?xf‘ix f-A @ x

To have a normalizable state a discrete set of positive energy 'wave-
packet' solutions {'ﬁx(x) I of the Klein-Gordon equation have been used

so that

| fd(xj =_I d* é,_(kq).lé(kz +n?) ™ F (k) - (2)

and the ﬁa(x) form a linear vector space which becomes a Hilbert ‘space’

~on defining a scalar product of the Form,'l

- _ ‘ P ,
(g o) = =i [ P00 00 35 500 = g (3)

which implies the restriction

. @ 3. o L~
(zn)3;-[ mm ) Tl = 6 ()

-
~ . .
on tho othorwico arbitrary function fﬁt). Also dof(x) is o space-like

surface element with normal in the time-like direction of Xp - The
quantity X(s) is a test-function possessing derivatives of.all‘ordefs

and Qanishing faster than:any power of s-]'outside a region =-2T < s < -T
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and'i§ approximately unipy insideAthjsAFegion.
it may be meaningless to ask for the asymptotic properties of unstable
particle fields since,'in the infinite time-like limits, an unstable
pérticle does not exist physically. We are therefore prevented from
unterpretlng an unstable particle field in terms of a specific particle
in the usual way. |f one-particle states are to be defined without using
time=~like asymptofic limits, we must consider pérticles created by an
éxterhél_soufce in a region of space-time V(x) given by.
t-"‘l'g‘x < t+T
ro- RS X Sr R, 0=1,2,3,

We now choose
X 00 = X (x ) X

to be a test-function with region Vas its support such that

| Xv(x) e | . for x € V |

= 0  otherwise .

The replacement of X(s) in Eq. (1) by Xv(x) takes account of the fact
that the preparation ér detection of a single particle cannot be accom-
plished instantaneously or at aigeometricalApoint-jn space. We will
_call X (x) the preparatlon function, since its explicit form depends on
the detalls of the preparation of the partlcle

No partncle can be observed with perfetL auuhuécy; su da physlcal
4oné-partic|e state neea‘not aescribe an exact eigenstate of the displace=~
ment operator ﬁ'. but must be almost exact to be observed as a'one-
.'f’particle state ai all, . Therefore a one-particle state may not be
ﬂjoﬁsefvéd as an exact eigenstate of P). due to one or both of the reasons:

(a) The state of the system will be unavoidably perturbed by any

. measurement performed on the system,
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-(b) A fundamental pfoperty of the state may be tHat it is“nqt
an exact eigenstate of P
,C]éariy it may not bé necesséry to define a one-particle state té be an
exact eigenstate of P,, . The form of the wave-packet ﬂx(x) in Eq. (2)
. is inadequate, for, although it -already allows for an arbitrary momen tum
C spread,=ii cﬁooses a precige mass value m for the onejparticle state in
Eq.~(l). AHowever; note that in Lehmann, Symanzik, and Zimmermann

theory,],we can write.

: ﬁz(x) =<0} A(x)l(x in> . , (5)'

Therefo?e'instead of. a wave-packet ﬁz(x) with a definite mass we can use
< O\A(x') la in> 'Awhich we hope to calculate from the representation of
the one-particle state itself,

we'pfopose to restrict a one-partfcle, neutral,'scalar‘(or pseudo-~
scalar) boson state by . | |

o ata
|mmv>-_ﬁv|0>

-r-b-
_ —_iA j‘ ds j‘ dol(x) X (x) [A(x) a <0 | A(x){p,a,V >]]o >
() L (6)
%

_In sections L and 5 we will use Eq. (6) and postulate IV to deduce a
general form for the one-particle amplitude < 0lA(x) }p,,V > in terms of
_the Lehmann spectral function and the preparation function. If this general
Form for < 0} A(x)|p,u,V > Is put back In equatian (6) then it will be
clear that Eq. (6) can be a representation of a one-particle state with
average mass m, average momentum p, and prepared near a point r in space

around a time t,.

L. PARTICLE CONDITIONS
It.is to be expected that the concept of a particle is mainly quali-
tafive and arises from the appearance of peaks in the mass spectrum, Of

course it is'still an open question as to how much of the mass spectrum
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can be deduced and hpw much can be assumed as 'elementary'. We hope
to show that this problem can be reduced to finding elementary fields,
To be certain that we are preparing or detecting a one-particle
state of mean mass m, our méasurements must. be sufficiently accurate
o to distinguish the peak in the energy spectrum near the energy value .
'(pZ mZ)l/Z
. OAs

+. , where p is the average momentum of the particle, from the

e MR
other contribufions to the spectrum, As lda pointed 6ut,6 the uncertainty
principle then gives a restriction on the time requiréd to prepare a one=-
particle stafe. We state lda's particle conditions in a form Slighé1y44
altered to suit our purposes: |
(i)v'For a stable particlg we must distinguish between the dis-
crete contribution at mass m and the continuum in the spec-
-trum, |f the average momentum isag: then the indeterminaéy‘
of our energy measurements AE must satisfy
7! SAE’<<V(pZ+m§h)]/zf(p2+m2)'/2 W
where mh is the lowest mass valpe of the continuous mass

spectrum, To eliminate negative energies we must also have

T < << (pf + )2 (8)
: o
(ii) For an unstable particle the analogous relations are
Y R AR U (9
T cae << P )2 - (pF 4y -0
. Pt ~— th

4

spectrum contributed by interactions which do not cause

where m. > m is the lowest mass of the ‘continuous mass

the decay'of the particle. |In addition we must have the
observation time less than the lifetime to be sure of

 ébserving the particle before it decays



T >>y= % - A (1),
where - ® is the half-life.
?rgm Eqs. (10) and (11) we find the condition for a narrow energy

peak to imply the existence of a particle

' ‘ L1/

2 2 2 2
<< (p” +m9) (p° + mth)

1/2

1/2

172
<@l+nd) (12)

.y << T-'

Thus if s of one order less than QEE + mz) , then v is of two

6rders less ;han ggf + m2)1/2. For the well established particles
v/m -IO?'S, but it is difficult to examine resonance scattering.
'experimentally due to the Qeakness of the decay interactions. However,
the new méson and baryon mesonances have large widths with y/m ~107} s
and their decay iﬁteractlons are strong, although it is hard to establish
the existence of associated particlesr' Hence it may be possible to study
“‘the dgcay of these new short-iived particles'ﬁn greater detail than the
weak decay pa(ticlés.

| According to conditions (i) and (ii) above no single stable particle
can‘exis; if we alloQAel;ctromagnetic interactions for then, mfh =m andA

0 < T-l << 0, Similarly for the case of an unstable particle m, = m

! << 0 with the possible exception of an electromagnetic

and 0 <‘T-
Adécay. It may be possible to prepare someLhing ciosely resembling a one-
particle state, but it cannof be freed froﬁ the eleqtébmagnetic phenomenon
'd£ a 'soft photon cloud'. ance we no longe; hav; a partiéle in the
busua],sense; the name iﬁfra-particle has been given to such a particle
witha 'softmphoton cloud;-?z‘ The question of how to describe infra=-
pafti;lés seems rather sepafate from that of how to obtain a Qniform
"descrfptipn’b? stable.and unstable particles. Hence we shall ignore this

pérticular electromagnetic effect and presume that this will not affect

our physical conclusions, - °
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Lastly we should require the uncertainty in the momentum Ap or the
L]
momen tum spread of our one-particle state be small and therefore that R
be large according to
-] . ’ . :
Ri <<Api s i =1,2,3 , (13)
5. ONE=-PARTICLE AMPLITUDES

The mass and momentum distributions of the one-particle state
lp,a,V >, used in Eq. (6), are contained in the structure of the one-
partfcle amplitude < OlA(x)]p,@®s V> . This is clear from the operation

of P on lp,a,V > which gives

, v >
J‘ ds J‘ dot*(x) X (x){[P A(x)] 9— < 0|A(x)|p,a,\(-‘>}|0 >
(s)=x L
iyl
J‘ j doP(x) X ( ) {[ ”‘("1 'A .?)}‘ <0)A(x)| p,ox,V >} |o>
e G'ZE,S)-X" S :
=‘#i ds .?,[ dof‘(x) Xv(ﬂx) {A(x) ﬁr [i.ax—v < 0|A(x)‘;‘>,.a,v >] jo >
opls)=x, o -— ‘
- %f dsdot(x) [;_bx_ Xv'(x)] A(x) %; < o|A(x)| p,a,V >} o >
¢ =® v R . :
o (s)=x_ - F (14)-
» »

where the other term, appearing from an ‘integration by parts, vanishes

since'Xv(x) vanishes outside the finite region V.. Therefore we can write
: , \ , 4

P ]p,a V>

9
B T Taktof x,00 [A(x) 2 <olat 7 ey > |
r

Ur(s)—xr : 2
[70—; Xv(x)] A(x) —)}< 0'A(x)|p,a Vv >] o>
(15)
which shows that the.operation of Pv on‘|p,a,VA> is undetermined until we

can obtain an expression for < 0|A(x)(p,d,v >, From the restriction on
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o lp‘a,v > in Eq. (6) we readily obtain the following. integral equation for

~< 0JA(x) I,V >

. <~0|A(x)‘p,a,v > | - P
',.=-_iLT-dsTdr()x() < oJA(x) Aly)|0 > o= Aly)lp,a,V
o= Jes [P xG [A(x) Aly)|o > 3Yr<0l yltp,a,V >
' ok( ,5)-=Yr,~ : : (16)

Before we attempt to solve this equation, we not'e.the following results

13

due tb Lehmahn, which are valid for unstable particle fields

- ,
. ), (+

RRLCEEERFCY QUC SR s a

| where we have only used the postulates | to IV and

r( -k )e( k ) e(k ) = (2:()3 z: < 0IA(0)|k,a>< k,aIA(O)l o> (18)

2“)3 -‘a[ d' 8(ky) s(kF + w2y, 'A‘(")(Y-x; )
~(19)

The state |k,a > , used in Eq. (18), belongs to the complete set of eigen-

A( )(x-y:‘n-)'=

Lo

states of P’. Qith.eigenvlglue po ! and o refers to any other relevant quantum
nut'nbe.rs necessary té specify the state. It is clear f.t"bm Eq. (18) that
r( k ) is real and non-negatlve

We can now write Eq. (|6), using Eq. (17), in the form

< OlA(x) |p,a,V >

7 ds [y x,(n) fan®p(e?) [ 2™ (xey n.z)% < ofA(y) |p,a,V >]
- -0 . o - i ,’

BEENC (20)
1f we use Eq, (19) and put |
h(k) = (2 Ty J‘ ' e TR < 0 [A(X) | P,V > | (21)
then Eq (zo) becomes A g
: h(k) = ;\j' d k! e(k ) 8(-K )P( -k ){(2 )uf ds jdal“(y) | (y)ei(k".'k)Y](ka,'\)H(k')

, : v c (S) =y
_' = xj‘ o e(k ) 8(-k )r( k ) Fy (kg -k') Fp(k-k!) (k +w) h(k')

(22)
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where we have chosen the particular Lqréntz frame %-_= k° and put

o= d . ik = k')y ,

Frlky = k) = [ - Xplyg) v e ° o't - (23)
. | . © o ) i(k' ~k)» ’
Folk = k') =-(;—ﬂ)3 Idil’.xa(ﬁ e 8- x (24)

The function~Fl(ko,-‘ké),'defined by Eq. (23), can be thought of as an

energy filter since

t+T | . '
dy i(k. = k')y ilk =k')t sin(k. = k')T
- Lt o, o o’’o _ o o', o o
Filky = k)& [ 7%= e =e (k- kT
' t=-T : o [
- (25)

which becomes negligible Compared with unity,the maximum value of

[F(k, - kI in Eq. (25), when [k = k!f>>T"

. Similarly Fp(k - k')

is negligibly small for' |k, = ki[> >~Ri' , i=1,2,3, and so acts

like a momentum filter. The exact forms of F, and F, depend mainly on
the details of the preparation function Xv(y);

14

Equation (22) is a homogeneous Fredholm integral equatioﬁ;. for

the eigenfunctions h(k) and eigenvalues Aof the kernel

A 2 2
K(k,k*) = 8(k ) 8(-k"). @ (-k%) F (k = ki) Fylk - k') (k +k?)
’ ‘ (26)
For a non-trivial solution to exist the Fredholm determinant D(A) must

vanish for some value of A, where

ﬁ

o L © ) )
Ay =1 e z Lr%) foue J’dl‘ql-..duqn K(q,,9;) ... K(a;,q.)
. n= . - - | B

K(q,,9;) ... Klq_,q)

(27)
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Also , '
. @ @® ‘°< Lb l; ' K(k:k') oo K(k:qn) .
Mggq)=muk)+x£‘ " i jd%“dqm “%*Wu-“ﬁﬂﬁy
K(q ,k')... K(q,,q,)
(28)
satisfies
N(k,k'3a) = AD() K(k,k') + A f K(k,q) N(q,k'; k)d q (29)

so N is a solution of Eq.. (22) for any k' when D(A) = 0. We choose
' 2,1/2
) /

kt=p=(p, (p2 + m ). in order to have an eigenfunction with a momentum

spread around p and a mass spread around m, To show this we note that N
Julakae ) !

has the following -form

N(k,pid) = 8(k ) 8(-k?) p(-k?) F(k,pir) T (30)
where ‘ = ~ ~ ~
g(k,p A) = AK(k,p) + A z 14&1? T . T d“q,;..duA Klopikleg,) .. K(k;qn).
n=1 - 3§(q,,p)K(q,,q,)...K(q,,qn)
K(a,,p)K(q ,q,)...K(q ,q )
(31)
and . |
Rik,a) = (k, +q,) Filk, =q) Flk =g - (32)
It is clear from Eqs. (25),(7), (8),(3), and (10) ghat F, (k_ -(p% + m))'/?)

is negligibly small unless k “has a value close enough to (p +m )]/2

dlstcnguosh a peak inp(-k ) near k% = m? from the rest of the contri-
Abutlons to p(-k ) The first term on the right hand side of Eq. (31) will
2

',prOJect-gut the resonance preQ‘-kz) from p(-kz)'near -« =m . The other

terms én the right hand side of Eq. (31) should be negligible unless
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2. .2 . . .
-k'®m, since any term in the expansion of
K(k,p) K(k,q)) ... K(k,q,)

K(a),p)K(ay,q)) ... " K(q),q)

K(qn,p)K(qh,Q,) . ',K(qn,qn)

is negligible unless k, & (2’2 + mz)]/2 This follows since all the

‘ terms in the expansion of the above determinant are of the form
- K(a_,p)K(a,,q,) ... K(qz,qz.)K(qz.,qy.) oo Kla ,,a,,)K(k,q,,)
‘which allows us to deduce sdccessively
| o ~ -~ =
Pom (a)) ®(a) ... ®(q,) =(q,,) = (qy.)o-v ...~(qa‘.)oz kg
| (33)
2 2,1/2
(p7 +m )V

- The approximation ko== p. = +

o breaks down for large n in Eq.

(31), but the series converges uniformly so the terms with large n are
" negligible in any case. Hence it may be a good approximation for
sufficiently large 7 anH.T to regard 9 as an energy-momentum filter so

that we can write

N(opin) & 8(k,) 8(-k2) o

res (K1) Sli,p3) (34)

.The most general form for h(k) is however

- 2, 2

h(k) = ¢ N(k,p;d) = ¢ 8(k ) 8(-k") p(-k) Glk,p;}) (35)
where c is a constant to be determined by the normaliiatiqn of the one-
- particle amplitude
g(x:p;.)\) =< ol A(X) ‘ p,a,V >

' (-
L. ik 2 2 ~o
= [dk e ok ) 8(=k%) p(k") - < glk,pid) (36)
-0 - .

For a stable»particle's will project out from p(-kz) the term
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6(k2 +»m2 ) so that g(*,p;k) closely resembles ﬂz(x) défined in Eq. (2).
7;lt.is convenient to choose an orthonormal set .of solutions of Eq. (22) so -
that |

P,P'

(203 Jel? T o' o) 8(-k?) p(-kD) F¥(k,pin) F(k,p'in) = 6
' ' (37)

' The normalization of the one-particle statelp,a;v > is

- < p,d-,vwllp',B,V > s

t

i I ds-i".de Xv(x)[( < 0JA(x) Jp,a, V' >) " %;o ( < olata)lpr;8,v >.)]

- s=xX .
o]

il |22 © © ® . : ,
by _i‘ ds_;[ Ad33.§.xv(")__£ d*k &7k 8(k,) 8(-k?) p(-k?) T (k,pi0)

s=X
o]

c [ dtkr Tk 8(k!) 8(-k%) p(-k'?) L {CORRVITCRR

1eth [ d% a(k) 8(-kD) p(-k?) B¥Uepin) [ der a(ke) 8(-k12) p(-krd) F(k',p' ).
(kg + k1) ¢ (2003 F (kg - k) Fylk - K1)

(38)

3 2 T L 2 2, \ ~ . ‘ :
(20) 7 4el” [ dk 8(k)) 8(-k%) p(=k") G (k,p;r) glk,p'sh) =6
- . - . : o PP
Therefore for stable particles the formulatipn giveh here becomes identical
with the Léhmann, Symahzik and Zimmermann formulation,I in the asymptotic
limits t ==2T, T—#+ o and R, =»= , i = 1,2,3; although we have a more
explicit form for ﬂx(k) given by g(k,p;A). in Eq.;(3l). We also have the
“ existence condition D(k)‘= 0 for some non-zero A. We can obtain some
_ information about D(A) for the case of stable particles and plane waves. To

 reach the plane wave case we let R, =™, i =1,2,3, in Eq. (22) sq‘that

.1.:F2.(£<_' };‘) -5 (k - k')»yband
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hlicskg) = A dikg 8ky) (k%) p(-k) F\ (kg (kg# ki) hlgoke) — (39)

Also; for stable particles, we have

Klkgp) = 0(ky) s(kT + mD)(k + p)  (40)

- . which impliés that

U N(k,piA) = AK(k_,p.) | (81)
and §ubstituting.this in Eq. (29) gives
D) =1 -r | | (42)
"Hence D(X) = 0 when A¥ I.‘- However, the condition D(1) = 0 is hard to
analyze éfihough we suspect that it is concerned with renormalization.
At is eésy to show for this case of stable particles and pléhq

waves that the one-particle amplitude reduces to the familiar express}on
exp [i p X = i(pz + mz 1/2 x ]
| e . ) (o]
6. THE DECAY LAW

. The possibility thaf the exponential decay law for unstable barti-
cles fails after .very long tihes has'been already examined by Schwinger,5
in axiomatic fieldltheory, and he concludes that the law becomes dependent
. dn the production mechanism. Schwinger considered that the time dependence
of the unstable particle propagator G(x = x') = i < OJT(A(x)A(x")) |0 >
(here T symbofiies the.time ordering of the product of operators) character=-
izes the probability of‘decay and artifically ‘introduced a mass filter into
the propagator to project out a single particle term and not a\kingmatically
equivalent combination of particles. A similar conclusion wés reached by
~ Jacob and Sachs,‘]S whd used a perfurbatién theoretic decay model, and by

NewtOn,I-6 who used quantum mechanics with a time-dependent wave-packet

formalism. The later two works indicate that it is better for the sake
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-of easier comparison between theory and experiment to consider the time- .
&ependence of'ﬁhe one-particle amplitude as correctly characterizing the
prdbability-of decay. Therefore we shall aésume here that the probability
‘that the particles has not decayed after a time x, 2t (t is approxi-
':mately the tfme when tﬁe particle is created) is given by |< 0lA(x) |p,a,V > Iz.
HeHCe we examine the time dependénce of-g(x,p;k) giveﬁ in Eq. (36) which

we rewrite as follows

‘ © 2 2 -ikoxo o~
g(k,x sPiA) = [ dk_ 8(-k") p(-k") e c - g(k,p;r)-
.o |

-iE

© ' 2 w X '
-/ aw’p(wh) e U0 g G(E, Leid)  (43)

2)1/2

where E._‘- (k2,+ [, 2 .
. - .
Now compare Eq. (43) with the eduation expressing the time dependence

of Schwinger's masS filtered bropagator given below

® .. 9 2 'iE"xo i <) ()
M G(k,x ) =oj dw” pf " ) e T M( :
where ‘
M(e) = 1 for .K - m‘ < Am
» ‘ ~ (45)
0 for |w-m| 2 am :

also Y < < Am <:< m, andAAm is the pregfsion of the mass detefmination.
Clea;’ly we need only identify ¢ ‘g"_(‘l:,ﬁ.‘,Pi?\)‘;'wi.th i M(v8) for

~ Schwinger's subsequent-énalyﬁis of Eq. (44) to hold for Eq. (L3). We

need ndt repeat this analysis Here,_but we state the conclusion that the

eXponentf#l law appears to be valid for times x5 >>t such that

E

(BB = T << = (x)

“OsT | (46)



but for
o 'Em ' a
?,(xo't)"(-LT ) >>1 (47)
where a is a positive number, the exponential law appears to fail and

is no fonger fndependent of observation mechanisms,
7. MANY PARTICLE STATES

We have shown that N3 t , defined by Eqs. (6),(36) and (31), creates
a single particle state with-sufficient accuracy. for experimental veri-
'fication, and it is easy to show that N% is an annihilation operator
so
A,10>=0 - (48)
~since the particle conditions in section 4 eliminate negative energy
states. Also we have shown in Eqs. (38) that the one-particle state

created by A% t is'normafizéﬁ1e. We have further
[Aaf, 8t
v v

Er J_‘: _fd‘sds'-i:?dc‘(x)dia‘o(x')xv(x)X'v,(x') [A(x) a0 .,

7';’ .ﬁ\.’ glx,p;X) g(x',p';1")

=0 - | - (49)
if fho-fwo'preparation regions V and V! arec spati@lry separate so that
postﬁlate v applfes. éfmilafly

[A‘\"I ) Ae,] = [A% , As',f] =0 | o (50)
CifV and-V;<afe spatia]ly separate, With such localized operators
A%'t and Aejf ; -where V and V' are sbatially separate, we can create a

two-particle state since there will be no mutual interaction, Similarly

we can create many-particle states.
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we could now set up an S-matrix for a scattering process using

the famullar Lehmann, Symanzik and Zimmermann reduction technlquese

The followlng formulae are easily derivable

Q'Aa‘t X )

—_— - _I 43.’.‘.";1(.’9 [A’(.x) j(x,ps0a) = I(x) g(x,p;k)]

9 ()

where B t «>
AT - J o P = stomn)

and
(0 ) Ax) = 3(x)
( u + m )g(x,p,)\) J(x,piA) .
, ! Aaf(x
Also {S dgo ?—_-f"—oc’) o’!1‘( ') '_ I r(S)

Therefore

. ® © | . B s! ©
E%—,—_i‘ ds_i‘ ds' Xp(s) X, (s') sj’ dx_ i d3x X

. [A(x) j{x,psx) - J(X) g(x,pzk)]

ot Aqlf
\' v

where the region V' is in the future of the region V.,

application of Eq. (55) for stable particles consider the scattering

R

As a simple

(51)

(52)

(53)

(s4)

(55)

~of two stable bosons of masses m and m2 prepared‘ln each of two regions

I’ 2

v whnch are Spatlally separate, At a large future time from VI and

.v2’c9n51der reglons V3, 4 which are spatially separate and in which we

“have arranged to detect the results of the scattering.

o fstéblé bosons of masses m3 and m, in V3

scattering matrix has the form for non-forward scattering

and Vu respectively., The

. Suppose we detect
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.< P‘O’al&;vl}:pB’a3;v3l pz)az;vzzpl':a];vl >
"
(A A,

= f ds .. ds ds! ,.. ds/
- s I L 98 "
28TlT2T3ThTiT2T§Tl" - -
' ' S 4 si sa
. le(Sl) ces XTu(su) X%,(si) . X+L (sa) gf d(xl)° .. I d(xh)o .

.j‘d3,>,<" -i‘ d3‘>.<h xa(él) s Xpx) g Oeupiny) L gy (xy,pyiRy,)

- (0 + m?') ... (O + mi ) < OIT'[AI,(XI) Az(xz) A3(X3) Au(xu)] {o>
o (56)
and this.will also‘reduce to the usual Lehmann, Symanzik and Zimmermann
results if we let" |

to= 2 LR e e i=1,2,3, b,

T oTy = = T, T, —>
8. CONCLUSIONS

~ We have given a pregcription for defining a single, neutral, scalar
~ boson state in Eqs. (6), (36), (31), and (32), (23) and (24). In order
to have a uniform dgscriptioﬁ of stable and. unstable particies we have
formed a very close relationship betweeq a one-particle state and the
corresponding one-particle amblitude. The structure of the one-particle
amplitude follows from the consistency ot the onerparticle state defini-
tion. The detailed proberties éf the one-particle amplitude depend mainly
“on the details of the preparation of the particle. wé a§SUmedAonly very
general p?operties for the preparation function, but we found that it
':iS the mqre.detailed properties Wﬁich are likely to determine the decay
law of an‘unstasle particle after a very long t%me. This problem of

how to introduee new parameters to describe the preparation mechanism

more accurately and to find their effect on the decay law has already
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7 It is to be hoped that the new. very short

been discussed by Khalfin,
llved partucles wnll yield significant experlmental data and give some
:gulde towards the solution of this problem.

-For the case of'stabfe particles our formulation will coincide
asymﬁtotfcally with the Lehmann, Symanzik“and Zimmermann formulation,l

frand there is iittle difficulties in generalizing to charged bosons and

to fermions of spin 1/2,

It has proved unnecessaryfto solve the problem of finding. elementary
fields. We have shown thét it is possible to construct unstable as well
;s stable partlcle states wuthout requiring any specnal propertles of

the field operators other than those imposed by the usual postulates of

fleld theory

9. FERMIONS

A The extension of our forhulatiqn to particles witq spin 1/2 is
different in some detafls. We indicate briefly, in this section, how
thés extension can be carried out. |

"For a single fermion state with‘spin 1/2 the restriction analogous

Eq. (6)
C lp‘: ;-’: a, V>
as T dof(x) X ( ) “'(') ('\ ) <0 lw‘(".i)l"f‘.v %, a,V>]0 >

o (s)=x

' where ¢ (x) = (X)(WA) ‘ , also ¢ (x) is a Helsenberg splnor field

fl
é%av

- (57)

operator describing a sPun 1/2 fermlon fleld, and we are using a set
. of:hermi;ian Dirac matrices Vs Yoo Y3 Yy with {rYf" rY\)} = 26,‘\).
"The manipulétion of the integral equatiqn.for the one-particle ampli=~ -

tude is different in detail from the boson case.‘ We have



< 0‘ wi(x)l P, E': a, V.>

2T fds I dor(Y) X (y) < 0|¢ (X) (Y) lo> (’Yr)t < 0'¢ (Y)l P z.vasv >

°(S)Yr : S o | (58)

13

‘ The following results due to Lehmann', are valid if we avoid Lehmann's

use of separate P, C, and T transformation invariance

<0l g () 'q?t, (y)lo> |

C T2 s 2 2. L 2
= 'ofdwfl [('Yr 3x'. -K)iﬁ' : p'(" )"’setc‘ pz('t ) + '('Ys)gio' 93( "’A) '

+ lvg 7 r","?’j“.,- pl,(n2>] s ey 6% - (59)

where Ys =i Y1V2Y3Y and

-(2n) Z < ol Ve '(‘0_) L kon><knly g, (00>

12y 2, S L C (2
[(wf.,, (-i) ’u' (k)+a“. (kD) + il gr * p4(=kD)

Coy(kD) oMo Kk, ps(kD) Jolk) (60)

+
ol
W
=
}
x>

r)ii
but ok = 'yr'yv - 'yv v and so Ao kl‘kv' = 0 It is possible to
show that the pJ.(-kz), j=1,2,3,4, are real, and from postulate V or the
' “(PCT). ‘theorem,la we find

2,1/2 172 1/2
(%) (k>>[(p2(k) (k%) (k))"‘(p3(k))‘*(p“(k))]

(61)
<o wg(x)'?‘,;(o) lo>- ‘7('75>“<‘o|$‘.(o) ACH KPR
. Using Eq. (59) and taking the Fourier transform

g0 = e [T <ol e, § > (63)
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then Eq. (58) can be written as follows

aglk) = Doy [ & fdar(y) X, (y) ° T aw?
B -0 . -y - o)
' '. qP(S) Yn
| [(fvv-' :’\; - 'v'->“.p,(«.2> + 8 ipa(7) + i vy e (%)
R N lz)] s [ d'e akpete? +ed)e!* ov)
. _ v ) -0 )
vy [ dter e o ()
ST [(w\,' Ky~ K )ggen (7) + 500 0,(0%) + iy g s(%?)
(o] O

+ a(ysyvkv)“. ph(nz)] ok ) s(2 + w?)

Id « [um T ] erm xw e‘“""k"] © (gt (K

(64)
If we introdu‘ce positive ‘energy spinors U and u, such that
[ly k + ( k )]/2 ] u. =0, g. u, = 1 i j=1,2 (65)
J J J
and note the followung results

Gj (iy {k)ui. -(-kz)]A/2 s (-kz)'/2 Gjiy u. =k

R A
q.(iys)u. = Gj(iysy'k)uj =0 ;] s_l, 2 ‘ (66)

then we tind

[ugw(k)] =Afdk'[p(k)Z(k)I/Zp(k)]e(k)e(k)

R k) G ) o) )[F e ]
| ' : (67)

 which can be solved in the same way as in the boson case, since

(pz(_k?) - 2(-k%) /2 p'(-kz)] has the same properties as p('kz) .
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