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We calculate the NRQCD matrix elements for the decays of the lowest-lying S- and P-
wave states of charmonium and bottomoniumin guenchedlattice QCD. We also compute
the one-loop relations between the lattice and continuum matrix elements.

1. Heavy-Quarkonium Formalism

Heavy-quarkonium systems are nonrelativistic. In the CM frame, the average
quark velocity v satisfies v <« 1, where v? ~ 0.3 for charmonium, and #* =~
0.1 for bottomonium. This fact allows one to describe heavy-quarkonium systems
conveniently in terms of the effective field theory Nonrelativistic QCD (NRQCD).?
NRQCD accurately describes processes in which pg < Mg. Its utility stems from
the fact that it can be used to decouple short-distance (~ 1/Mg) processes from
long-distance (~ quarkonium size ~ 1/{Mqv)) processes.

QQ annihilation occurs at a distance of order 1 /Mg, so NRQCD does not de-
scribe the details of that process. In NRQCD, the short-distance part of the am-
plitude for Q@ — light hadrons — QQ is pointlike, and the entire amplitude is
described by a four-fermion interaction. The quarkonium total annihilation rate is
proportional to the imaginary part of the matrix element in the quarkonium state
of the appropriate four-fermion operator.

Coefficients of the four-fermion operators are determined by matching matrix
elements in NRQCD to those in full QCD. The coeflicients are short-distance quan-
tities and, hence, are calculable in QCD perturbation theory. They are proportional
to the IR-finite parts of the parton-level annihilation rates.

1.1. Factorization theorems

Using these ideas, Bodwin, Braaten, and Lepage® have shown that a quarkonium
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decay rate can be written as a sum of terms. Each term is the product of a long-
distance matrix element of a four-fermion operator in the quarkonium state with a
short-distance coefficient. For example, decay rates for S-wave quarkonia through
next-to-leading order in »? are given by

T(2*+1S; — X)=G;(**+15;)2Im £, (*+1S, )/ M}

+F(**F1Sr) 2 Im g (PS5 )/ MG (1)
Decay rates for P-wave quarkonia, to the lowest non-trivial order in v?, are given
by
T(**1P; — X)=H(**1P;)2Im f1(**1P;)/ M}
+Ha(* 1 Pr) 21m fo(**+S;)/ M} (2

The f’s and g’s are the short-distance coefficients and are proportional to the rates
for the annihilation of a QQ pair from the 2**1L; state. Gi, F1, K1, and Hg are
the long-distance matrix elements, which we calculate in this paper. The subscripts
1 and 8 indicate the color state of the @@ pair. (An octet state, in lowest order in
v, consists of a QQg state.)

1.2. Matriz elements

The long-distance matrix elements are defined by
G1=("Sol¥xx" ¥ S0},
Fi=(Sal#hxxd (5 DY wlisol,
H1=(*P{$'(i/2) D xx'(5/2) D ¥[*P1),
Ha=('P1 |9 Txx T*¢|* Py). (3)

Here, 1 and x! are two-component spinors that annihilate a heavy quark and a
heavy antiquark, respectively.

The G; and H; terms in the decay rates (1) and (2) appear in the conven-
tional, color-singlet model.* For the color-singlet matrix elements we can, to good
approximation, take only the vacuum in the intermediate state.? Then we have

1= |(*Sol¥! x|0)* (1 + O(v*)),
Fa= (*Sol$!xI0){0h! (5 D)41*So) (1 + O(*)),

—F -
Hi=|(* P! 5 D x|0)? (1 + O(*)). 4
1t then follows that, in the vacuum-saturation approximation,
3
61~ o |Rs(O)F,

Hu | RR(O), )




where R(0) is the radial wavefunction at the origin, and R'(0) is the derivative of
the radial wavefunction at the origin. The matrix-elements (3) define a regularized
R(0) and a regularized R'(0) in QCD. The ratio F;/G; measures the average of 57 -
in the quarkonium state.

The term in the P-wave decay rate (2) that is proportional to Hg is absent in
the color-singlet model. The matrix element Hg is proportional to the probability
to find a QQg component in P-wave quarkonium, with the @Q pair in a relative
S-wave, color-octet state. It is perhaps the most interesting of the matrix elements
that we measure, since it corresponds to a field-theoretic effect of QCD and is,
therefore, inaccessible through any potential model of quarkonium.

2. Lattice Measurement of the Matrix Elements

2.1. FEuclidean-space formalism

In Euclidean space, quarkonium two-point functions decay exponentially:

Jim (M(T)M'(0)) = lim (0|Me™ "7 31"|0) = (0|M|})e™ =T (1| 31)0).  (6)

Here, M and M are quarkonium sources, and |8} is the lowest-lying state with the
quarkonium quantum numbers. We deduce from {6) that, in the vacuum-saturation
approximation, the quarkonium matrix elements are proportional to the coeflicients
of e"B1T in the appropriate two-point functions.

Similarly, a three-point function involving the four-fermion operator O has the
behavior :

Lim (M(T +T') O(T) M!(0))=(0|M|)e™ 5T (tlo|ne=57 (1} 0)
=(M(T +T") M'(0))(HlOW). )

Therefore, one can determine the expectation value of O in the quarkonium state
by measuring the ratio of a three-point function to a two-point function.
In practice, we rewrite the two-point function in (7) as follows:

lm (T T) MYO)) = Z(M(T+T) M(T)) (MY(T) MY (0),  (8)

where Mp is a point-source interpolating operator, and C is the coefficient of e~ %7
in (Mp(T) Mf,(O)) The sources in the three-point function match those in the two-
point functions on the right side of (8). Hence, we can reduce noise by measuring
the ratio of the three-point function to those two-point functions. The expectation
value {I[|O|l) is then represented by the diagram in Fig. 1.

2.2. Computational method

‘We measured operator expectation values using noisy-point and noisy-gaussian
sources and generating retarded and advanced quark propagators from each time




Fig. 1. Diagrammtic representation of ([|O{l). The large disks represent quarkonium sources (and
sinks); the small disks represent quarkonium point sources and four-fermion operators.

slice. We chose the Coulomb gauge for the field configurations. This gauge choice
made the implementation of extended sources simpler, and it allowed us to replace
covariant derivatives with normal derivatives, with errors of relative order v2. For
matrix elements of covariant operators, we checked some of our results on non-
gauge-fixed field configurations.

In calculating heavy-quark propagators G(x,t) on the lattice, we used the non-
relativistic formulation of Lepage, L. Magnea, Nakhleh, U. Magnea, Hornbostel.5
We chose an evolution equation that is valid to the lowest non-trivial order in »?,

that is, a lattice version of the inhomogeneous Schrédinger equation:
G(x,t+ 1) = (1 — Ho/2n)"U% ,(1 — Ho/2n)"G(x,t) + 65 9bt41,0, (9)

with the initial condition G(x,t) = 0 for t < 0. Here, Hy = —V®)/(2Mo) — ko,
V(2) is the gauge-covariant discrete Laplacian, My is the bare heavy-quark mass,
uo = ((1/3)Tx Uphqueneﬁ is the mean-field value of a gauge-field link, and Ao =
3(1 — uo)/My is the mean-field energy shift. This choice of kg is equivalent at
leading order in v to tadpole improvement of the action.> We chose n = 2. For our
choices of the bare masses My, this is the minimum value of n for which the Q@
propagators are free from lattice-artifact singularities.

Note that F; /M2 is suppressed by O(v?) relative to Gi. That is, this ratio is of
the same order as terms that we have neglected in the evolution equation. However,
in 3S; — Light Hadrons, 35; — v + Light Hadrons, and 35; — 37, the coefficient
of Fy/ M¢22 is approximately —5 times that of G;.3:® Thus, we feel that there is some '
merit in calculating F1/M3, even in the presence of order v? errors.

2.3. Paramelers of the lattice simulation

In our bottomonium and charmonium measurements, we used of 158 quenched
gauge-field configurations on a 162 x 32 lattice at 6/g% = 5.7. In the case of bottomo-
nium, we also used 149 configurations on a 163 x 32 lattice at 6/g% = 6.0. We took
our values of the bare heavy-quark masses from the determination by the NRQCD
collaboration:” My = 1.5 at 6/¢% = 6.0, Mo = 2.7 at 6/¢% = 5.7, and Mo = 0.69




at 6/9% = 5.7. (Note that our definition of Mo is uy times that of the NRQCD
collaboration.) We also used ug = 0.87778701 at 6/9°% = 6.0 and up = 0.8608261760
at 6/¢% = 5.7.

In converting from lattice to physical units, we used the lattice spacings de-
termined by the NRQCD collaboration. Their values are a=* = 2.4 GeV for bot-
tomonium at 6/¢% = 6.0, a~! = 1.37 GeV for bottomonium at 6/¢%> = 5.7, and
a~! = 1.23 GeV for charmonium at 6/¢% = 5.7. At a given coupling, the lattice
spacings are different for charmonium and bottomonium because the quenched ap-
proximation leads to slight inconsistencies when one tries to use the physical spectra
to fix the lattice spacing.

2.4. Lattice resulis

Our measurements revealed that the vacuum-saturation approximation is even
more accurate than one would expect. For bottomonium at 6/g% = 6.0, corrections
to the vacuum-saturation approximation for G; are of relative size 1.3(1) x 10~3.
For charmonium at 6/g% = 5.7, the corrections are about 1%. The corrections to
the vacuum-saturation approximation for H; are also small. We assumed that the
vacuum-saturation approximation is accurate for F; as well. The numerical results
that we present for Gy, Fi, and H; are the vacuum-saturation values.

The results of our lattice measurements of the matrix elements are shown in
Table 1. (The subscript L denotes lattice regularization.) The first error in each

Table 1. Lattice values of the NRQCD matrix elements.

charmonium bottomonium

6/g% 5.7 5.7 6.0

(4782 0.1317(2)(12) | 0.9156(9)(65) | 0.1489(5)(12)
Fip(non)/G 1, 1.2543(7) 2.7456(8) 1.3135(8)
Fir{cov)/G11 0.5950(5) 2.1547(7) 0.8522(5)
Fip(nonz)/G1y 0.7534(4) 1.2205(2) 0.7775(5)
Fip(covz)/ 01z 0.5201(3) 1.1111(2) 0.6659(3)
Hiz 0.0208(2)(20) —_ 0.0145(8)(20)
Har/Hir 0.034(2)(8) —_ 0.0152(3)(20)

quantity is statistical. Where two errors are given, the second error is an estimate
of systematics associated with the parametrization of the functions used to fit to
the propagators and with contamination from higher states. The arguments of Fjr,
indicate different lattice representations of the operator. The argument cov denotes
a tadpole-improved naive gauge-covariant operator; the argument non denotes the
simple, gauge-noncovariant, finite-difference operator in the Coulomb gauge. The
subscript 2 indicates a difference operator with spacings of two lattice units. This
softer lattice Laplacian was useful in controlling regulator-artifact power divergences




in the operator matrix element, which we shall discuss later.

3. Relation of Lattice Matrix Elements to Continuum Matrix Elements

At leading order in v?, the lattice and continuum matrix elements of the opera-
tors that we measured are related as follows:

Gir=(1 +€)G1,

Fio=(1+7)F1 + ¢G1,

Hir=(1+)H1 + xHs,

Hap=(L +n)Hs + (Hy. (10)

(The continuum-regulated matrix elements have no subscript.)

Note that, to leading order in v?, G,z has no F; component. In fact, if one were
to try to compute the addmixture of ¥, using the leading order NRQCD action
that corresponds to (9), then the resulting inconsistencies in the treatment of v?
corrections would lead to uncanceled IR divergences.

The coeflicients in (10) relate different UV regularizations of the operators.
Therefore, they are short-distance quantities and, hence, are perturbatively cal-
culable. The coeficients ¢, v, ¢, ¢, 7 and { are of order «,, while 5 is of order
ol

We calculated these coefficients through order a, (one loop) in tadpole-improved
perturbation theory.® First, we obtained analytic expressions for the integrands. By
carrying out the time components of the loop integrations analytically, we were able
to identify the IR divergent pieces, which are identical in the lattice and continuum
matrix elements. After subtracting these divergent pieces, we evaluated the remain-
ing IR-finite integrals numerically using VEGAS.

Our numerical results (in lattice units) for the case of MS regularization of the
continuum matrix elements are shown in Table 2. The accuracy of the coeflicients of
o, is better than 1%. The quantity { depends at one-loop order on the factorization
scale, which we took to be 1.3 GeV for charmonium and 4.3 GeV for bottomonium.
These values are approximately equal to the MS c-quark and b-quark masses,
respectively.

Some of the coefficients of &, in the expressions for ¢ appear to be large. How-
ever, in physical units, G; has dimensions (mass)? and F; has dimensions (mass)®.
Hence, we see from (10) that ¢ has dimensions of (mass)?. We can make ¢ di-
mensionless by dividing F; and ¢ by Mé, Similarly, we can make x and { di-
mensionless by dividing #; and x by MJ and multiplying ¢ by M3. Using the
values, M; = 5.0 GeV and M, = 1.5 GeV, we find that none of the dimensionless
coeflicients of a, is large. We conclude that the perturbation series is reasonably
behaved in one-loop order.

In setting the scale for o,, we made use of the method of Brodsky, Lepage
and Mackenzie.®® For coefficients that arise from a positive integrand, the scale is
about 1/a. In the case of integrands without definite sign, large cancellations can




Table 2. Coefficients relating lattice and continuum (M S) matrix elements.

charmonium bottomonium
6/g* 5.7 5.7 6.0
€ -0.7326 a, 0.2983 a, -0.4877 o,
¥(non) -0.02578 a, -1.248 -0.9117
7(cov) -2.860 a, -2.192 a, -2.560 a,
~y(nonz} -0.2774 a, -1.096 a, -0.9236 «,
¢(non) 1.486 «, 10.90 a, 4.418 x,
$(cov) 0.3928 a, 9.808 a, 3.325 a,
¢(nong) 1.004 6.096 a, 2.863 a,
A -0.7603 o, -1.852 o, -1.191
0.09157 o, -0.03728 «, 0.06096 o,
¢ -0.1785 o, -0.006011 ¢, | -0.01862 x,

make the normalizing integral anomalously small and spoil the simplest scale-setting
method. Therefore, we chose the scale to be 1/a for all of the coefficients, taking
a, = av(l/a) = 0.3552 at 6/¢% = 5.7 and o, = ay(1/a) = 0.2467 at 6/g° = 6.0.

4. Continuum Matrix Elements

Substituting the lattice matrix elements and the lattice-to-continuum coefficients
into (10), we obtain the results for the continuum:-regulated (M S) matrix elements
shown in the first two columns of Table 3. The first two errors are the statistical and
systematic errors from the lattice measurements. The third error is the systematic
error from the neglect of terms of higher order in a«, in the lattice-to-continuum
coefficients.

Errors from the omission of terms of higher order in v? in the evolution equation
and in the operator mixing have not been reported in the first two columns of
Table 3. We expect these errors to be of order 10% for bottomonium and 30% for
charmonium. In the case of Gz, the NRQCD collaboration has given results that
are accurate to next-to-leading order in v2. The weighted averages of the singlet-
and triplet-state values are Gi;, = 0.133(4) for charmonium at 6/¢g? = 5.7 and
Gir = 0.144(4) for bottomonium at 6/g% = 6.0, which are in good agreement with
our results. This suggests that the approximate effect of the corrections of higher
order in v? is to split the values of the matrix elements for a multiplet of spin states,
without changing their spin average.

The second column of Table 3 does not include errors that arise from uncertain-
ties in the physical values of a~!. We estimate, from the results of the NRQCD
collaboration, that these errors are 7% for Gy in charmonium, 13% for H; in char-
monium, 13% for G; in bottomonium, and 23% for H; in bottomonium.

In addition, there are errors associated with the quenched approximation, for




Table 3. Continuum-regulated (M S) matrix elements.

lattice experiment

lattice units physical units
charmonium 6/g? = 5.7
G 0.1780(3)(16)(*355) | 0.3312(6)(30)(1531) GeV? 0.36(3) GeV?
Fi/G 0.05 — 0.54 0.07 — 0.82 GeV? 0.057 GeV?
H, 0.0285(2)(27)(F%9 0.0802(6)(77)(T1%1) GeV5 | 0.077(19)(28) GeV?
Ha/Hy | 0.086(1)(6)(12) 0.057(1)(4)(*27) GeV=2 | 0.095(31)(34) GeV 2
bottomonium 6/g% = 5.7
G 0.8279(8)(59)(F105°) | 2.120(2)(15)(F2714) GeV? 3.55(8) GeV3
Fi/G -3.7—0.2 -6.9 — 0.4 GeV? —_
bottomonium 6/g* = 6.0
S 0.1692(6)(14)(11%8 2.340(8)(19)(*113) GeV? 3.55(8) GeV?
F1/6: -0.34 — 0.28 -2.0 — 1.6 GeV?2 —
My 0.0205(9)(28)(}23 1.63(7)(23)(F12) Gev® —
Ms/Hy | 0.0151(2)(14)(F35) | 0.00262(3)(24)(F3T)GevV~2 —

which we have no quantitative estimate.

4.1. Ezperimental values of the matriz elements

The third column in Table 3 gives phenomenological results for the matrix ele-
ments. G; was extracted from the measured decay rates for J/9¥ — ete™, n. — 7y
and T — e*e™ (Ref. 10), using the expressions in given in Ref. 3. The value for
F1/G: for J/+ is from the calculation of Ko, Lee and Song.!! H; and Hg/H; for
Xxc are from Ref. 12. There is no published data for x; decays into light hadrons,
photons, and/or leptons. To extract the phenomenological matrix elements for G;
and H;, we used the values Mj(pole) = 5.0 GeV (Ref. 7), M (pole) = 1.5 GeV
(Ref. 13), a,(M.) = 0.243, o, (M) = 0.179, a(M,) = 1/133.3, and a(M;) = 1/132.

In the third column of Table 3, the first error is experimental, and the second,
where it is given, is theoretical. Where no theoretical error is given, it is at least
as large as the uncertainty from the neglect of terms of higher order in «, in the
calculation of the short-distance coefficients. This uncertainty is of nominal size 25%
for charmonium and 20% for bottomonium. Errors that arises from uncertainties in
the heavy-quark masses have not been reported in the third column. The NRQCD
collaboration quotes an error of 4% for the b-quark mass, which leads to errors of
8% in G; and 16% in H;. In the case of the c-quark mass there is, as yet, no reliable
determination from a lattice calculation. :

5. Discussion

In the case of charmonium, our results for Gy, H;, and Hg/H; are in agreement




with experiment, but the errors are large. It is interesting to note that this agree-
ment would have failed if we hadn’t included the lattice-to-continuum corrections
to the matrix elements.

The ratio /Gy is poorly determined, largely because of uncertainties in the
coefficient ¢ that gives the mixing of F; into G;. The mixing of F; into G; is power
UV divergent. Since the mixing is UV dominated and begins at one loop, we expect
it to be of order a,. On the other hand, in the continuum, F1/(M?G,) is of order
v? & 1. Therefore the effect of mixing on the ratio Fy/ (M?G,) is of relative order
a,/v? and is large for both charmonium and bottomonium.

Nevertheless, we can conclude that F;/(M?2G,) is no larger than O(v?), in agree-
ment with the NRQCD scaling rules.3® F,/G,; is probably positive for charmonium
and negative for bottomonium. Note that, because the continuum matrix element
F is gotten by subtracting UV divergences, it need not be positive.

For bottomonium, the lattice resuit for G; is 35 — 40% below the experimental
value. We know from the resuits of the NRQCD collaboration that at least part of
this discrepancy is due to the quenched approximation.”** There is good agreement
between our results at 6/g> = 5.7 and 6/g% = 6.0, which confirms the expected
renormalization-group scaling behavior.

Our results for the P-wave matrix elements for bottomonium can be translated
immediately into predictions for bottomonium decay rates.!? The values for indi-
vidual matrix are probably subject to large corrections from the quenched approxi-
mation, but the ratio of octet to singlet matrix elements may be less susceptible to
this source of error.

Aside from quenching, the largest uncertainties in the matrix elements come
from neglect higher-order (in &, ) corrections to the lattice-to-continuum coefficients.
One might remedy this situation by using lattice methods to compute the relations
between the lattice matrix elements and the momentum-subtracted continuum ma-
trix elements nonperturbatively, as suggested by Martinelli and Sachrajda.'® The
momentum-subtracted matrix elements could then be converted to M S matrix el-
ements in continuum perturbation theory.

In the continuum, MS regularization of the operator matrix elements leads to
renormalon ambiguities.!® These ambiguities are of the same order in v? as the ma-
trix elements of operators of higher dimension. In the case of Hg, we expect such
ambiguities to be small, since H; first mixes with Hg in order o2. Renormalon am-
biguities are absent in the case of hard-cutoff regulators, such as the lattice. That
is, they are an artifact of the regulator (factorization) scheme that one chooses
to define NRQCD. The consistency of NRQCD as an effective theory guarantees
that regulator-scheme dependence is absent in physical quantities. Hence, renor-
malon ambiguities cancel in decay rates if one computes the NRQCD short-distance
coefficients and the lattice-to-continuum coefficients to the same order in «,.

It is interesting that, for both charmonium and bottomonium, the values of
‘Hs/H;1 that we obtain are in agreement with a crude phenomenology.® In this
phenomenology, one obtains Hg by solving the one-loop evolution equation for Hg,




under the assumption that g vanishes below a scale Mgv. The one-loop evolution
of the decay matrix element Mg is the same as for the corresponding production
matrix element Hg. This suggests that Hg ~ Hs. The production matrix element
% can be extracted from CDF data for charmonium production'® and from recent
CLEO data.'” Using our value for H;, we obtain Hj/H; = 0.042(19) GeV~? and
L/H1 = 0.046(28) GeV~2, respectively, both of which are in good agreement with
our result for Hg/H;.
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