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Abstfact

A method for modeling the initiation and growth of discrete delaminations in shell-like com-
posite structures is presented. Thé laminate is divided into two or more sublaminates, with each
sublaminate modeled with four-noded quadrilateral shell elements. A special, eight-noded hex
constraint element connects opposing sublaminate shell elements. It supplies the nodal forces and
moments needed to make the two opposing shell elements act as a single shell element until a pre-
scribed failure criterion is satisfied. Once the failure cntenon is attained, the connecuon is broken,
creating or growing a discrete delamination. This approach has been implemented in a three-
dimensional finite element code. This code uses explicit time integration, and can analyze shell-
like structures subjected to large deformations and complex contact conditions. The shell ele-
ments can use existing composite material models that include in-plane laminate failure modes.
This analysis capability was developed to perform crashworthiness studies of composite struc-
tures, and is useful whenever there is a need to estimate peak loads, energy absorption, or the final
shape of a highly deformed composite structure.

This paper describes the eight-noded hex constraint element used to model the initiation and
growth of a delamination, and discusses associated implementation issues. Particular attention is
focused on the delamination growth criterion, and it is verified that calculated results do not
depend on element size. In addition, results for double cantilever beam and end notched flexure
specimens are presented and compared to measured data tb assess the ability of the present .

approach to model a growing delamination.
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Introduction

This work focuses on modeling the initiation and growth of discrete delaminations. Evena
single delamination can have a dramatic effect on the flexural stiffness of a laminated composite.
For example, if a homogeneous beam is split in half , the flexural stiffness is reduced td 25% of its
original value. If instead the beam is split into three beams, the stiffnéss is reduced to 11% of its
original value. Accordingly, an analysis that includes the initiation and growth of just one or two
discrete delaminations, located at a depth where they have the greatest impact on flexural stiff- _
ness, is expected to provide a reasonable representation of a delaminated cdmposite. This is the
approach taken in the present work. The laminate is broken up into two or more sﬁblaminates.
Each sublaminate is modeled with four-noded quadrilateral shell elements. The shell elements can
be layered, and can use existing composite material models that include the in-plane failure
modes of interest. A special, eight -noded hex constraint element connects opposing sublaminate
shell elements, and supplies the nodal forces and moments needed to make the two opposing shell
elements act as a single shell element until a prescribed failure criterion is satisfied. The connec-

tion is then broken, creating or growing a discrete delamination.

The efficacy of an analysis that uses a partially bonded assemblage of plate-like sublaminates
to model a laminate with a fixed, preexisting delamination is well established. [1-4]. There have
also been several efforts aimed at extending this type of analysis to a growing delamination. For
example, Sankar and Hu [5] connect linear elastic beam elements with extensibnal and torsional
springs that fail when the energy release rate reaches a critical value. They analyzed impact
induced growth of a preexisting delamination embedded within a cantilevered beam. Farley and
Jones [6] model delamination by disconnecting “zero length” extensional and torsional springs
between coincident nodes of adjacent shell elements when the energy release rate reaches a criti-
cal value. Their large deformation analysis uses a nonlinear elastic idealization with a maximum

strain failure criterion for the in-plane material model. A small section of a composite tube was

modeled to estimate sustained crushing stress. Song and Waas [7] use a linear elastic beam on a




nonlinear spring foundation to model delamination growth in a double cantilever beam fracture

specimen. A spring fails when the total strain energy in the spring reaches a critical value.

Notable features of the present analysis include 1) a three-dimensional, large deformation
capability, 2) modeling the initiation and growth of one or more discrete delaminatibns, 3) com-
patibility with existing shell element formulations, in-plane material models, and mesh generation
tools, and 4) implementation in a finite element code that uses explicit time integration to advance
the equations of motion from the initial state. Note that explicit finite element codes, sometimeé
referred to as “wave codes”, are used to solve transient dynamic problems that include highly non-
linear material response and large deformations [8]. They are also used for quasistatic loadings
when the model contains a large number of elements, complex contact conditions, geometric
instabilities, or material softening. In the following, the approach fof modeling discrete delamina-

tions is reviewed, implementation issues are discussed, and illustrative examples are presented.

Approach for Modeling Discrete Delaminations

- The basic idea is easily visualized by considering a 2D representation. The laminate is broken
into two shells (sublaminates) of thickness h, with nodes located along each shell’s mid-surface.
Focus attention on the two nodes on the left hand side of two opposing elements (Fig. 1a). The rel-
ative normal (mode I) displacement across the connection plane (the location of a potential delam-
ination) is simply equal to the relative nodal displacement in the normal direcﬁon (the shells are
inextensible in the thickness direction). The relative tangential (mode II) displacement across the
connection plane is based on the displacement at the bottom of the top shell and that on the top of
the bottom shell. As indicated in Fig. 2a, these displacements can be defined in terms of the tan-
gential nodal displacement and nodal rotation defined at the shell’s mid-surface. To make the two
shells act as one, the relative displacements across the connection plane (AU; and AVj) must be

constrained or penalized to enforce an acceptable level of displacement continuity. The penalty

parameter (ie., K, or K,) can be thought of -as a spring constant that is applied to the relative dis-




placement, and the stiffer Vthe. spring the moré precisely the constraiﬁt is enforced. The associated
forces act on the connection plane and correspond to the internal forces that hbld the sublaminates
together prior to delamination (Figs. 1b, 2b). These forces are then replaced by equivalent nodal
forces and moments (Figs. 1c, 2¢). Note that the corresponding nodal degrees of freedom on
opposite sides of the delamination plane are not simply tied together. There are no torsional
springs, nor are there concentrated moments on the delamination plane. The present approach

produces the correct bending stress distribution in an intact laminate prior to delamination.

Explicit finite element codes are conditionally stable. The minimum time step that can be used
to stably integrate the governing equations is associated with the highest eigenvalue (vibrational
mode) in the mesh. The penalty parameter (i.c. spring constant) must be chosen in a judicial man-
ner to avoid adversely impacting the stable time increment. For this reason, the smallest, physi-
cally reasonable value for the penalty parametérs is used. Recall that K, penalizes normal
displacement across the connection plane. Since the shell elements are transversely inextensible,
the estimate for K, is based on the transverse stiffness of the material Between the nodes defining
the upper and lower sublaminates.

K = AK where K =

n n

(1)

where E is the sublaminate’s transverse Young’s modulus, A is the portion of the connection plane
area assigned to the node, and h is the sublaminate thickness. Prior to delamination, the displace-
ment AU; is associated with through-the-thickness laminate deformation. When a shear deform-

able shell is used, the K, estimate is based on the shear stiffness of a thin, resin-rich layer between

sublaminates.

K, = AI—{t where | I_(t = — )

where G* is the shear stiffness that corresponds to a resin-rich layer (e.g., epoxy shear modulus),
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aﬁd h* corresponds the thickness of a resin-rich layer (e.g., one quarter of a lamina thickness).
Previous wbrk has shown that these choices for penalty parameters lead to an energy release rate,
compliance, and stress distribution ahead of the delamination that are in good agreement with
detailed finite element results [9]. Note that it is convenient to use area weighted penalty parame-

ters K, and K, as input quantities since they do not depend on element size.

Delamination failure is assumed to initiate at a specified value of the relative displacement
across the connection plane. Mode I failure initiates at a critical value of AUj;, and mode II failure
initiates at a critical value of AV;. Differences in the initiation of mode I and II delaminations can
be modeled by specifying different critical values for mode I and II. Though not considered in the
present study, a mixed-mode delamination criterion that is a function of both AU; and AV; could
be defined. Note that this failure criterion is equivalent to a critical stress criterion. Connection
plane stresses F /A and F,/A, where A is the portion of the connection plané area associated with

a node, are directly related to AU; and AV (see Figs. 1 and 2 and Egs. 1 and 2).

Failure does not occur instantaneously, and energy is dissipated as the delamination grows.
Accordingly, the dependence of interfacial stress on separation distance is prescribed, and this
defines the gradual reduction in the penalty parameter (Fig. 3). The curve’s initial slope is set
equal to the K, value given by Eq. 1. The value of K, begins to decrease once AU; > Uy, and
continues to decrease until AU; =Up,,. A linear decrease in the stress-separatidn relation for AU;
> U, is a reasonable choice.The reduction in the penalty parameter K, with mode II separation is
defined in an analogous way. In the present implementation, there is no distinction between mode
II and mode Il delamination growth. The initiation of delamination growth and subsequent sepa-
ration are based on the vector magnitude of the penalized tangential displacement components.
Note that a complete separation in mode I implies a complete loss of resistance to a mode II load-

ing, and vice versa. Interpenetration of the sublaminates is prevented by reapplying the transverse

stiffness K, whenever the delamination closes (i.e., acts like a gap contact element). A mode II




delamination can grow while the delamination is closed in mode I.

The stress-separation relation defined in Figure 3 is like that used in cohesive zone fracture
models (see Barenblatt [10] for cracks in homogeneous materials, and Needleman [11] for deco-
hesion along an interface). Accordingly, the separation forces éctirig between opposing nodes in
this discretized formulation can be thought of as defining a cohesive fracture zone. Again consider
mode I response, recognizing thatbmode II-IIT response is defined in an entirely analogous man-
ner. Since the initial penalty parameter is chosen to represent transverse laminate stiffness (see Eq.
1), AU;j values of less than U are associated with laminate through-the thickness strain. Only
AU; values from Uy to Uy, are associated with material separation, and the area under this por-
tion of the curve equals the work of separation (i.e., energy dissipated/unit area of delamination
growth). Note that the stress-separation relation contains an intrinsic material length scale, U,,,,
and that the energy dissipation/unit area of delamination growth does not depend on element
length (sublaminate thickness is assumed to be constant). This avoids tﬁe problem of the element
size setting the length scale, and leads to mesh independent results provided that the element size
is sufficient to define the length of the cohesive zone. Furthermore, the energy release rate for
mode I (II) delamination extension equals the area under the mode I (II) stress-separation curve
(work of separation) when the sublaminates are linear elastic, inertial effects are negligible, and
small scale yielding conditions apply (see Rice [12]). In this case, a mode I delamination propa-

gates at a fixed energy release rate, Gy.

1=
Gic = 5XnUcrirUnmax~Ycrir) -3

The mode I stress-separation in Figure 3 is not uniquely defined by a Gy value, and either U, or

Upax must also be specified. U, is associated with the critical stress level for the initiation of

delamination (separation), while U, is related to the length of the cohesive zone.




Implementation Issues

The delamination modeliﬁg technique described in the preﬁous section has been implemented
in a three dimensional, transient dynamics, finite element code (PRONTO3D [8]). A special,
eight-noded hex element was created to enforce the constraints penalizing the relative displace-
ment across the connection plane between sublaminates. This element is referred to as the DLAM
element. The DLAM element looks like, and is meshed like a standard hex element, but it has no
mass. It does not use shape functions. It shares nodes with opposing sublaminate shell-elements
and uses these nodal displacements and rotations to determine the nodal forces and moments
needed to make the opposing shell elements act as a single shell element until the connection is
broken (see Figs 1 and 2). Implementing the constraints within the context of a hex element pro-
vides a natural way for simultaneously accessing the displacement and rotational degrees of free-
dom of the opposing upper and lower sublaminate shell elefnents. It also automatically includes
the constraint forces when nodal forces are assembled. ther advantages of this approach include:
1) consistency with vector processing of element/material blocks, 2) ease of definition using exist-
ing mesh generators; the DLAM hex fits “in between” the sublaminate shell elements and shares
the same nodes, and 3) a capability for modeling laminates containing multiple delaminations
with sublaminates of differing thicknesses (e.g. shell-DLAM-shell-DLAM-shell). The DLAM
element can be used with any type of four node quadrilateral shell element as long as the shell ele-
ment is defined in terms of the usual displacement and rotational degrees of freedom. Layered
shells can be used to model the sublaminates, and there are no restrictions on the type of material
model used to model sublaminate response. In particular, material modéls that include damage

and failure can be used.

The penalized relative displacements and the associated constraint forces and moments must
be defined with respect to a suitable connection plane coordinate system. Note that the initial

shape of a DLAM hex element is not necessarily rectangular, and regardless of its initial shape,




the DLAM hex can be deformed in an arbitrary'mannef. It is convenient tov deﬁné a local coordi- |
nate system for each of the four DLAM element edges that connect the nodes on the ﬁpper and
lower sublaminate shells. Consider one of these four DLAM element edges. The first coordinate
axis is directed along this DLAM edge. This is the direction of normal relative displacement
across the connection plane (i.e., AU;in Fig. 1). The other two local coordinate axes lie within a
plane perpendicular to the first axis and are defined with respect to the DLAM element edges that
lie in the plane of the sublaminate shells. This coordinate system is continually updated as the
DLAM hex deforms. The normal constraint force is always directed along a line connecting upper

and lower nodes. This is necessary to avoid artificial stiffening when the laminate is bent.

The minimum time step used for the explicit time integration of the governing equations
dgpends on the highest eigenvalue (vibrational mode) in the mesh. The presence of DLAM ele-
ments in a mesh can introduce or modify high frequency‘vibrational modes. For this reason, for-
mulae have been derived to estimate the frequency of those vibrational modes that might impact
the choice of the stable time increment. These estimates are based on simple idealizations that
capture the main features of the mode of interest. A through-the-thickness vibrational mode exists
when two sublaminates are connected together by springs restraining relative normal displace-
ments. A two mass, one spring system is used to estimate this frequency. The frequency depends
on the mode I penalty parameter (stiffness) K. The highest extensional (membrane) vibrational
frequency of sublaminates joined by a DLAM element is greater than that of thé individual sub-
laminates. When the sublaminates are vibrating 180° out of phase, the mode TI connection (with
stiffness K,) is stretched. This effectively increases the sublaminates extensional stiffness; more
force is required to extend the sublaminate. The frequency estimate is based on a bar’s natural fre-
quency using a stiffness that includes the effect of the mode II connection. The highest vibrational
frequency associated with sublaminate transverse shear stiffness is also increased when a DLAM

element connects the sublaminates. A satisfactory estimate for a shell’s highest shear frequency is

the eigenvalue of the lumped mass-shear stiffness matrix for a linear beam element [13]. When a




DLAM element is present, the shear stiffness matrix must include the rotation-induced contribu- '

tion to the moment generated by the mode II DLAM connection.

Examples

Calculated results for double cantilever beam (DCB, mode I) and end notched flexure (ENF,
mode IT) E-glass composite specimens are presented and compared to corresponding test results.
This polyester matrix composite is reinforced with a basket weave fabric that is woven from ~ 5
mm wide rovings. Since the composite contains a clearly defined length scale, finite element
meshes with comparable element size (5 by 6.25 mm) are used unless indicated otherwise. The
fracture specimens analyzed in the present study developed no significant iﬁ-plane damage.
Accordingly, the sublaminates are modeled as linear elastic materials with a Young’s modulus of
30 GPa, and a Poison’s ratio of 0.10. Note that reported experimental results are for a quasistatic
loading condition. A much faster loading rate (500 mm/s) is used in the analysis to reduce the
number of time steps required to complete the calculation. Nevertheless, trial calculations showed
that inertia effects are negligible at this loading rate, and the calculated results are applicable to a
quasistatic loading. Finally note that the initial values for the area weighted penalty parameters

are based on Egs. 1 and 2, and K,=2 kN/mm? while K;=10 kN/mm3.

The DCB specimen geometry is defined in Figure 4a. Calculated results for a propagating
delamination are in good agreement with experiment when Gy =0.6 kJ/m? and Uppax=0.30 mm
(U#=0.002 mm) As observed in the tests, the analysis predicts that the delamination grows sta-
bly with increasing load point displacement (Fig. 4). Figure 5 compares the calculated load vs.
load point displacement relation with results from three DCB tests. As is common practice in a
DCB test, the specimen was loaded until the delamination extended about 10 mm, and then
unloaded to measure the specimen compliance. This procedure was repeated until the delamina-

tion was roughly 100 mm long. For clarity, the unloading curves are removed from the plotted test

data, and the remaining portions are associated with a propagating delamination. Test results for




the initial peak load show considerable variation between the three tests. The delarriinatioﬁ growth
was initiated from an artiﬁcially induced delamination. The variability in the measured peak load
suggests variability in the character of the inserted flaw and in the initiation of delamination
growth from this flaw. After the first unloading, the measured data for the three tests are quite con-
sistent, and the calculated result is in excellent agréement. Visual Qbservations made during the
DCB tests identified the presence of partially failed material spanning the delamination plane
behind the delamination front [14]. This observation is consistent with the use of a cohesive zone
failure model. A cohesive zone length of ~10 mm is predicted for the U_,,, = 0.3 mm value used
in the analysis (cohesive zone length defined by the number of nodal pairs subjectéd to a separa-
tion force that spans the delamination as it grows). The calculated load vs. crack length relation
also in good agreement with the test data (Fig. 6). Note that calculated results are presented for a
coarse and a refined mesh in Figures 5 and 6. One calculation uses elements that are 5 mm long by
6.25 mm wide, while the other calculation uses a mesh with elements that are 2.5 mm long by
3.125 mm wide (sublaminate thickness is fixed at 3.1 mm in both calculations). The calculated
results are essentially independent of the element’s in-plane dimensions. As discussed above, this
mesh size independence is an expected consequence of using a cohesive zone fracture model that
is defined by a stress-separation relation. Finally note that it is difficult to identify a unique stress-

separation relation using the sort of data typically measured during DCB tests.

Figure 7 defines the ENF specimen analyzed. The lower supports are fixed, énd the upper load
ram is displaced downward. Frictionless contact between the supports, load ram, and specimen
are maintained using PRONTO3D’s general capabilities to enforce interpenetrability conditions
between specified materials [15]. As shown in Figure 8, the calculated result for V ;= 0.00125
mm and V.= 0.25 mm is in good agreement with the test data. This choice for the stress-separa-
tion relation produces a relatively long cohesive fracture zone (~15-20 mm) and high energy dissi-
pation (1.6 kI/m?). Typical ENF test results for unidirectionally reinforced composites display an

abrupt load drop as the delamination propagates. This behavior is consistent with analytical
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resﬁlts that show that the energy release rate increases as the delamination begins to extend for the
usual test configuration[16]. Note, however, delamination growth in the this fabric reinforced
composite did not occur in an abrupt, unstable way. Measured load vs. load point displacement
relations show that a roughly constant load is maintained once delamination growth is initiated.

Calculations that use a lower Gyyc and Vi, value do show an abrupt load drop (Fig. 8).

Summary

A method for modeling the initiation and growth of discrete delaminations in shell—like com-
posite structures has been developed and implemented in a three-dimensional finite element code
that uses explicit time integration to advance the equations of motion. This approach uses a spe-
cial, eight-noded hex constraint element to connect opposing sublaminate shell elements and
makes them act as a single shell until a prescribed failure criterion is satisfied. When the failure
criterion is reached, the connection is broken, and a discrete delamination is initiated or grows.
This method of analysis has been applied to double cantilever beam and end notched flexure frac-
ture specimens. Calculated results were compared to measured data, and the present approach
reproduces test results for a propagating delamination. Finally, note that this method of modeling
composite delamination can be readily extended to adhesively bonded joints and bonded rein-

forcements (e.g. doublers and patches). The adhesive bond is modeled with DLAM elements, and

the adherends are modeled with shell elements.
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Figure Captions:
Fig. 1. Approach used to connect shells by penalizing normal (mode I) displacement across the
connection plane (looking only at left hand side nodes). 1a) relative normal displacement

across the connection plane, 1b) force acting on the connection plane, 1¢) equivalent

nodal force.

Fig. 2.Approach used to connect shells by penalizing tangential (mode II) displacement across the
connection plane (looking only at left hand side nodes). 2a) relative tangential displace-
ment across the connection plane, 2b) force acting on the connection plane, 2¢) equivalent

nodal force and moment.

Fig. 3. Mode I stress-separation relation.

Fig 4. Double cantilevered beam analysis (all dimensions in mm). 4a) DCB geometry, sublami-
nates 3.1 mm thick, 4b) Time = 0.0175 s, delamination length = 60 mm, and 4c) Time =

0.0350 s, delamination length = 90 mm.

Fig. 5. Comparison of calculated double cantilevered beam load vs. load point displacement rela-

tion with test data.

Fig. 6. Comparison of calculated double cantilevered beam load point displacement vs. delamina-

tion length relation with test data.
Fig. 7. End notched flexure geometry, sublaminates 3.06 mm thick (all dimensions in mm).

Fig. 8. Comparison of calculated end notched flexure load vs. load point displacement relation

with test data.
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