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COARSE-MESH REBALANCE METHODS COMPATIBLE WITH THE SPHERICAL HARMONIC

FICTITIOUS SOURCE IN NEUTRON TRANSPORT CALCULATIONS

by

W. F. Miller, . *.

ABSTRACT

The coarse-mesh rebalance method, based on neutron con-
servation, is used in discrete ordinates neutron transport
codes to accelerate convergence of the within-group scattering
source. Though very powerful for this application, the method
is ineffective in accelerating the iteration on the discrete-
ordinates-to-spherical-hannonics fictitious sources used for
ray-effect elimination. This is largely because this source
makes a minimum contribution to the neutron balance equation.
In this report, the traditional rebalance approach is derived
in a variational framework and compared with new rebalance
approaches tailored to be compatible with the fictitious source.
The new approaches are compared numerically to determine their
relative advantages. We conclude that there is little incentive
to use the new methods.

I. INTRODUCTION

It has been observed by several authors the*

periodically requiring the flux to satisfy neutron

balance on a phase-space grid accelerates the itera-

tion on the within-group scattering source in dis-

crete ordinates neutron transport calculations.

The method, used in TWOTRA?!, entails the super-

position of a coarse spatial grid on the fine mesh

and finding direction-independent factors that, when

applied to the flux and current, require neutrons to

be conserved in a weighted integral sense within

each coarse-mesh cell. It was recognized by Lathrop

that his coarse-mesh rebalance equations could be de-

rived variationally or by a weighted residual ap-

2 3

proai;h. Nakamura, as well as Yuan et al., used

variational principles and the second-order self-

adjoint neutron transport equation in the derivation

of their rebalance equations.

The advent of ray effect mitigating fictitious
4-7

sources has provided a new challenge to the ef-

fectiveness of coarse-mesh rebalance algorithms.
o

The term "ray effect" refers to anomalous ripples
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that appear in the neutron flux for some problems

with isolated sources and low scattering ratios. The

fictitious sources that yield spherical harmonic or

spherical harmonic-like solutions effectively elimi-

nate these distortions. However, when the within-

group iteration proceeds on the sum of this source

and the scattering source, the convergence properties

of the iterative process are greatly degraded. As re-

ported by Jung, the traditional coarse-mesh rebalance

approach is ineffective in accelerating this iteration.

In Sec. II, the step and diamond spatial dif-

ferencing coarse-mesh rebalance equations are derived

from a variational principle. In Sec. Ill, the dis-

crete-ordinates-to-spherical-harmonics fictitious

source used in this study is presented and described.

In Sec. IV, variational methods are used to derive

new coarse-mesh rebalance approaches more applicable

to the fictitious source iteration. Section V pro-

vides numerical results while some conclusions and

recommendations are described in Sec, VI.



II. COARSE-MESH REBALANCE WITH THE STEP AND DIAMOND

DIFFERENCE EQUATIONS

We variationally derive the coarse-mesh re-

balance relationships that result from the step and

diamond difference schemes for two reasons. First,

although Lathrop recognizes that a variational deri-

vation is possible, such a procedure has not been

documented to the author's knowledge. Second, the

variational approach provides a unifying framework

for earlier rebalance equations as well as for the

new relationships derived in Sec. IV.

For simplicity, consider the monoenergetic or

within-energy-group equation in x-y geometry with

isotropic scattering and sources. We wish to ac-

celerate the convergence of the so-called within-

group or inner iterative process

3x V a(x,y) *m (x,y)

Os(x,y) <|> " (x.y) + O^Cx.y) m - 1,2,...M. (1)

These are the x-y geometry discrete ordinates equa-

tions for iteration k; a set of equations in the

angular flux ii for each of M discrete directions de-
m

termined by the direction cosine set lu , n t. In
* m m i

discrete ordinates neutron transport codes such as
TWOTRAN, Eq. (1) is spatially differenced, tradi-

9
tionally with the step or the diamond difference

scheme, and the iteration on the scattering source

proceeds. At an arbitrary stage of the iteration,

neither Eq. (1) nor its corresponding set of spatial-

ly differenced equations satisfy neutron balance.

This can be seen by first defining
M M M

B t . ! • ) w U lli , J = 7 w n t | >mm f ^ m j m mm £ A m mm
m*l m*l

where the jw^J are the input quadrature weights. We

M

then operate on Eq. (1) with J w to obtain

m=l

. + r — + CJffi - 0
3y v s

31
ax Q-

Clearly, neutron conservation occurs only upon scalar
k-1 k

flux convergence when $ = <J> . The coarse-mesh re-

balance approach is designed to speed up this con-

vergence by requiring neutron balance in a weighted

integral sense on a pre-established spatial grid.

Consider the fine-mesh spatial grid of Fig. 1

with a superimposed coarse mesh and consider the

following semi-discrete functional:

M

[•*.•]- f ** f

y
m ST

 + \ 3T +

Here, il/ and 0 are the adjoint angular flux and ad-

adjoint source, respectively, and as usual, we

assume that all cross sections are knovn constants

in each mesh cell. It is well known that the func-

tional of Eq. (2) has, as one set of its Euler equa-

tions, the discrete ordinatts equations:

Mm 3x m 3y
O m = 1,2,...M. (3)

The so-called Euler equations provide necessary con-

ditions for the functional to be "stationary" with

respect to arbitrary changes in i>^. The process of

rendering a functional stationary will be pursued in

more detail below. The discrete ordinates adjoint

equations are also Euler equations of Eq. (2)

JT + J

•-* '•*

Fig. 1. Coarse and fine spatial mesh.



rendering the functionary stationary with respect to

arbitrary variations In ill .
m

Equation (2) may be used as a starting point to

derive the coarse-mesh rebalance equations used with

the step difference scheme. We begin by choosing
approximation spaces for li and "l> . Let

in m

IT JT

Wx-y) (4a)

otherwise. (5b)

Inserting Eqs. (4a) and (Sa) Into Eq. (2) yields the

reduced functional

and

IT JT
(4b)

where

i-ij < X * X i+V

l - h < y i yj+V

0 otherwise,

\ >

u < o, n > o
m "

s y < V44i«.

M > 0, n < 0
m is

(4c)

and i>mj- is the angular flux for direction m and for

the lj t n mesh cell. The {ty „} are known from the

previous iteration, whil"? the (f. } are unknown and

are restricted by

fk£

We further assume

7 (5a)

where
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"iwij JM

V.
JT

(V.., - ',-,/.„,=(- -

IT JT

V°

x 67y-y 2L,
nm<0

T=l j-1

j-i

Carrying through the integration, we obtain

JM

• y ) +

2-
1-

lek jeS.
51
iek Je

5-
nm<0

2.rf
lek

mfcj
refer to the angular flux evaluated to obtain the coarse-mesh rebalance equation

mfcj
at the j t n y fine Interval and at the x fine interval

adjacent to the oucSoing boundary of the kth coarse-
 fk4 ( F Rk£ + "'kH + "'kt + F Dk£ + A Bk£ J " ̂ k l + f » - U

mesh interval. A similar definition holds for ip ...

In Eq. (6), Q
.. w QLJJ- T O find the stationary

to-1
point of the reduced functional of Eq. (6), we set

8F m a

k* k - 1, 2, ... IM

a - i, 2, ... JM

FRk-lH

where

F L k + U + fkE.-l "'ki-I

k * 1 ' 2 » • • • I M

£-1, 2, ... JM



u >o
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IT JT

k w |u
ml'

Mm<0 jet

'ij

and

V*l (7b)

Equation (7&) is the set of rebalance equations for

the rebalance factors trVo)» Thus, after each iter-

ation, or series of Iterations, one uses the new

angular flux iterate to compute the quantities of

Eq. (7b), solves for the rebalance factors of Eq.

(7a), and applies them as indicated in Eq. (4a) to

obtain an Improved flux. A weighted residual or

weight-aml-integrate approach may also be used to

derive Eq. (7a) by first inserting Eqs. (4a) and

(4b) into Eq. (3) and multiplying the result by

^^("•y). Then, operating with

dx /

the desired equations result.

The coarse-nesh rebalance equations for the

diamond difference scheme are derived in a manner

analogous to the above procedure except Eq. (4a)

is replaced by Che trial solution

i-i j-i

£i:lWx>y)

where

u) otherwise •

The resulting rebalance equations are:

(8)

The flows are defined in a Banner analogous to Eq.

(7b). It is clear that other trial functions for

C< and C yield other rebalance equations.

III. DISCRETE-ORD1NATES-TO-SPHERICAL-HARHONICS

FICTITIOUS SOURCE

A new developaent in the theory of discrete

ordinates approximations Is the advent of fictitious

source flxups to nltigatc the ray effect distortions

that plague sone nsutrun transport calculations.

These flxups entail appending the within-group dis-

crete ordinates equations cf order N with a ficitious

source that ensures that the resulting solution

satisfies spherical haraoric or spherical haroonic-

llke equations of order N-l. These fictitious sources

are complicated functions of the angular flux itself.

Appending one of these sources alters the iterative

process of Eq. (1) to:



3*.
k-1

• - 1. 2.

k-1

(9)

wher* Saf 1» the fictitious source for direction

a evaluated using the angular flux from the k-1

Iteration. For all fictitious sources derived In

(9)the literature, the iterative process of Eq.

is slow to converge when compared to that of Eq. (1).

Further, Jung ec al. observed that vhen tradlational

coarae-aesh rebalance is applied to Eq. (9) with

their fictitious source, Che convergence rate is not

significantly iaproved. Jung's observation is gen-

erally valid for all fictitious sources derived to

date. To explain this unfavorable interaction of

coarse-aesh rebalance with Eq. (9), we begin with

the source due to W. F. Miller and W. H Reed:

Saf -

(10)

This fictitious source requires the solution of Eq.
(9) Co satisfy the spherical harmonics equations of
order K-1. We have used the following inner product
notation in Eq.(10): (d.b) - | ^*dRd(fi)b(R). Also,
the Y/j are spherical harmonics and the (a^ } are

normalized weighes defined such that the quadrature

set exactly Integrates all spherical haraonlcs

through a given ord-jr. The Appendix provides a de-

tailed discussion of tlcse fa-1,}.
ni

In order to simplify Eq. (10), ve define

(lla)

and

•'-!

W i " (llb)

These quantities depend only on the angular quad-

rature set used and can be precalculatcd before the

iterative process begins. Combining Eqs. (10), (A-5),

and (11), we obtain

s<*.y>

3*_

amp
(12)

An important fact to note about Eqs. (9) and

(12) is that spherical harmonic solutions *re inde-

pendent of the quadrature set used. Different quad-

rature sets do alter the solution on tiie system

boundary slightly since they correspond to different

boundary conditions. Thus, as Reed has pointed out,



the potential exists to select a quadrature set that

minimizes the spectral radius of the Iteration matrix

implied In Eq. (9). That Is, we wish to select quad-

rature points such that|sof| Is tsiniaized In some

reasonable norm. The sheer complexity of Eq. (12),

as well as Its dependence >n the angular flux and

hence the physical problem concerned, causes such a

minimization process to be Impractical. The simplest

approach one can take Is to select quadrature points

such that

m*il

M

£
and

r - 0, 1, .... N (16a)

0, r - 1,2,....N/2

(16b)

« • (13)

Then the fictitious source is zero in a weighted sum

sense. Inserting Eq. (12) into Eq. (13) yields

M

]F)mO *p (»..%) " ° •
m«I

But, as shown in the Appendix, the

(14)

exactly in-

spherical harmonics through order N-ltegrate

as well as selected N order ones. Thus,

p - 0 , 1 , 2 , . . . N - l , n - 0 , 1 , 2 , . . . p .

H e n c e , Ei). ( 1 4 ) becomes

H M
0 nafl - 0
mmO 3x nmO 0.

In general, this equation is satisfied if, and only

if.

From Eq . (11), It is sufficient that the following

relationships hold in order for Eq. (15) to be satis-

fled:

m'-l (16c)

Spherical harmonic recursion relationships can be

used to express the sums of Eqs. (16b) and (16c) as

sums over linear combinations of spherical harmonics

of order N-l and N+l. Since N is restricted to be

even, these sums are over odd spherical harmonies.

As discussed in the Appendix, symmetric quadrature

sets yield a {a
m0} set symmetric about P - n - 0,

and the sums of Eqs. (16b) and (16c) are identically

zero. Likewise, with a symmetric quadrature set,

the sums of Eq. (16a), with r odd, are zero. We are

left then with the requirement of finding a symmetric

quadrature set satisfying the relationship

t r - 0 , 2 , 4 , . . . . N (17)

Two sets, discussed in the Appendix, have been de-

rived that satisfy this requirement. Unlike the

standard S .-et generated in TWOTRAN, these sets re-

sult in convergence of E^. (9) for all problems run.

Since the <a_nf are quadrature weights, Eq. (13)

implies that, if the fictitious source is included

In the functional of Eq. (2), its contribution is

zero. Thus, quadrature sets satisfying Eq. (13) en-

sure that the fictitious source in no way contributes

to the rebalance t tions and hence the coarse-mesh

rebalance equations cannot accelerate fictitious

source convergence. Thus, we are leid to a dilemoa.

A quadrature set that satisfies Eq. (13) leads to a

source for whish Eq. (9) convergences more rapidly

than other sets. Yet the traditional coarse-mesh

rebalance method does not accelerate convergence.

We are required, then, to consider variations of the

traditional rebalance approaches.



IV. REBALANCE METHODS APPLICABLE TO DISCRETE-'JRDI-

KATES-TO-SPHBRICAL-HARMONICS FICTITIOUS SOURCES

let ua consider the functional cf Eq. (2) with

the fictitious source appended:

Re have shown in Che previous section chat quadrature

sees satisfying Eq. (17) yield a fictitious source

that makes no contribution to the balance equation.

That is,

one for r^ < 0. In lieu of Eq. (5a), we ansuae

*. <»•* (Xiy) (20a)

k-l ̂ T

where y,» (x,y) is defined in Eq. (Sb) and

(20b)

Both & j and tfj { are unknown constants in a for all

k,&. In lieu of Eq. (4a), va use the following «p»

proximation for I(I (x,y>:
m

M

2 <0 Smf " °' (19)

We have thus to seek approximation spaces for i|» and

ty sucli that the sums of Eq- (19) do not appear in
ID

the reduced functional. That is, we seek approxi-

mation spaces such Chat the fictitious source con-

tributes to the equations for the rebalance factors.

A. Space-Angle Coarse-Mesh Rebalance

We consider a coarse angular mesh superimposed on

the fine angular mesh as indicated in Fig. 2 where,

for example, the coarse mesh is composed of the four

quadrants of the unit disk. We consider the simplest

case of two coarse-mesh intervals, one for n > 0 and

Fig. 2. Coarse and fine angular meshes.

*D(x,y) (21a)

with the|6nl.(x,y)l given by Eq. (4c) and the llmi

restricted by

fmlj

and

f

f

( 2 1 b )

We next combine Eqs. (IP), (4b), (12), (20), and

(21), differentiate FJiJ)*,i(ijwith respect to i!>kl , and

set the result to zero to obtain:

«

J

k-;,2...TM, * -1.2....JM (22«)

where



je t u >0 n >c p-0 n«0 y >0
tn m " turn

E W C'
a

n >o
tn

n_>0 n <on
m

wjuj^iy,, FSUJ["
jeS wn< 0 "ri~>b ~

n <0 . n >0

lek V ° wo"
n >o p-6 n-0 v <o
a r mo

n <o

lck

and

iek je£ n <O
IB

AV 1 * 1
i j We repeat the above process except F|lji , i|>|is now

l £ k i U V° differentiated with respect to (|i*?N. to yield
K.tK

DS
N-l « k11

., >0 p-0 n-0 n >O iek
ID nm

SFSUk)l " £ j " a ^ < ^BrfIp^mt"mAtrf "ramp ^ - ^ + f^j FSD" . - QQ", , k-1,2 IM
nm>0 p-0 n-0 ^mm*0 l E k £-1,2 JM

(23)

* where the definitions of tha terms appearing ic Eq.

N_l p (23) can be deduced from 5q. (22b). Now Eqs. (22)

and (23) provide a system of 2*IK*JM linear algebraic

equations for the If. . I and jf. „ I. These rebalance
p*0 (jH0 p >0 jefi.

™° factors then are applied respectively to the upward

and downward directed angular fluxes. The scattering

and fictitious sources are calculated from these im-

proved fluxes and the iterative process proceeds.



Ocher than the obvious disadvantage of the com-

plexity of these equations, storage requirements will

be greatly increased. The quantities of Eq. (22b)

must be stored over the coarse mesh. In addition,

two vectors having lengths equal to the scalar flux

vector are needed for application of the rebalance

factors. Further, the coupled set of equations In

the unknowns jf^jand |fj™]will be much more diffi-

cult to solve than Eq. (7). This coarse space-angle

mesh rebalance approach is discarded based upon

the above observations.

B. Up-Down Coarse-Mesh Reoalance

In this approach, we retain the advantage of the

space-angular mesh rebalance method, but decouple the

equations for [f™] and [f™] (Eqs. (22) and (23)).

In neutron transport codes such as TWOTRAN, the space-

angle mesh is swept for all downward directions,

assuming a known scattering and fictitious source,

and then for all upward directions with the same

sources. In Eq. (23), we assume that we are re-

balancing on the downward directed fluxes and all up-

ward angular fluxes are known and can be treated as

sources. Then, Eq. (23) reduces to

DM nD ^ J i D . ^ J - D
+ F S D 'W

™l.)-Cu«-u --Ku)-'DNk+U
FSDu+i)

QQ
JU1.2....JM (24)

with

U

Equations (24) and (25) are significantly more simple

to solve than the space-angular mesh rebalance equa-

tions. The storage requirements are still signif-

icantly larger than that needed in the traditional

rebalance method, though if only a reasonably coarse

mesh is used, the storage penalty is not great. In-

tuitively, one would expect less acceleration than

with the space-angular mesh equations since the

coupling in j^Jand[f™j is less.
Equations (24) and (25) may be further simpli-

fied by ignoring the fact that the fictitious source

is comprised of spatial derivatives when deriving

the acceleration scheme. Then, there is no spatial

coupling inra 4in the fictitious source
term. Then, Eq. (24) becomes

DN D DN

" fk+iJt " v a n fkJt+i

(26)

while Eq. (25) i s

A B L -
(27)

In these expressions, the definitions of Eq. (22b)

apply and

RD LD D RD
Dfc|l - FSD U - FSDfe|l - FSDk_1

LD
D

In a similar manner, Eq. (22) reduces to
+ FSDkd+1 '

and

ran?. „ . ,LU _ U RU LU
F S U U FSUk ) l - F S U k _ u + F S U f c + u

, , ,
4=1,2,..., JM

(25)

with

10

He would expect a less effective acceleration scheme

than that of Eqs. (24) and (25) due to the decreased

spatial coupling of the rebalance factors.



C. Angular Moment Coarse-Mesh Rebalance

He stated in Sec. Ill, and will demonstrate in

Sec. IV, that quadrature sets that satisfy Eq. (13),

when used in conjunction with Eq. (9), yield an

iterative scheme that generally converges more

rapidly than when the standard S scheme is used.

Houever, standard rebalance methods, based on the

neutron conservation equation, are ineffective.

Since the fictitious source makes no contribution

to this equation, we consider an equation involving

higher angular moments. First, let £ denote the

sum over all spherical harmonic orders for which,

in general,
M

2 S
y <0 on

N-l

FU,"kit
T) >0 pn
m

N—1 o *

n'=l

pn

iel

pn

n >0 iek

These orders may easily be determined numerically

for a given quadrature set as discussed in the Ap-

pendix. Then assume
FD,'kit

H <0 pn

JM

( 2 8 )

pn

and let

*m(*.y>

IT JT

(29)

respectively, satisfying Eqs.withfA ..J and ff 1,

(4c) and (4d). Inserting Eqs. (28) and (29) into

Eq. (2) differentiating Fliji ,\|jwith respect to ^

and setting the results to zero yields

" fk+U

k=l,2 IM
(30a)

where

>G pn jeJi
m

pn

and

<yk
pn

<0 iek

•mj " W
m-l pn iek jeS,

iek jed

(30b)

In principal, this scheme requires no more computer

storage than standard rebalance, though if one de-

sires the true absorptions and flows to be printed,

one more sweep through t e space-angle mesh is

needed after convergence.

A simplification analogous to that applied in

the previous section to up-down rebalance may be

applied to the angular moment rebalance equations.

That is, the fictitious source may be treated as if

it did not involve derivatives, thus eliminating

coupling in Jfjjfor these terms. Equation (30a)

then reduces to

11



FR' k-H " f k J l - l

J-1.2.....JM (31)

where the flows are the same of those of Eq. (30b)

without the fictitious source contributions, and

M

AB'k£ " \l

pr.

a" 7 7 Y°
"IP i—d Lm4 P

p'-l n'-l

(S F ™p r
• *

•»>^-

x F'mmp' / i(

mmiJl
l e k iek

Again, we expect Eq. (31) to be less effective in

accelerating when compared to Eq. (30a) due to the

tighter spatial coupling of If. jlin the latter case.

V. NUMERICAL RESULTS

In this section, we consider several sample

problems In order to compare the quadrature sets

and acceleration schemes described in the previous

sections. Me also consider both the diamond and

step spatial differencing schemes. For all problems

run, the pointwise convergence criterion was 10

and the fictitious source used was that one which

converts the discrete ordinates equations of order

four to the spherical harmonics equations of order

three. The three problems run are depicted in Figs.

3-5 with region cross sections provided in Table 1.

He used a spatial mesh, with equal intervals, of

20 x 20, 30 x 30, and 20 x 20, respectively, for

problems 1-3.

Table II provides a comparison of the number of

inner iterations [see Eq. (9)J required for con-

vergence using the step and diamond schemes with no

2.0

1.0

Voc

Sourct=O.Q

Source* 1.0

0.0

Fig. 3. Tost problem 1.

1.0

Voc

2.0

3.0

2.0

1.0

A n

-

I

Souret
= 1.0

Vac

I

Sourc* - 0.0

-a
Source
= 0.0

1.5

1.0 2.0

Vac

3.0

Fig. 4. Test problem 2.

4.0 r

2.8 -

Vac

1.2

0.0

\
I

I
SoiifC*
= 0.0

Sourc* = 0.0

HI

Sourc* =0.0

H

Sourc*
-10

S

Sourc*
=0.0

1.6

1.2 2.8 4.0

Vac

Fig. 5. Test problem 3.
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TABLE I

CROSS SECTIONS FOR TEST PROBLEMS

Problem 2 Problem 3

Cross Reg. Reg.
Section Problem 1 I II

Reg.
I

Reg.
II

Reg.
Ill

s

va

1.0 0.5 0.10 1.0 0.0 0.0

1.0 0.75 1.0 1.0 1.0 O.01

0.0 0.25 0.90 0.0 1.0 0.01

0.0 0.0 0.0 0.0 0.0 0.0

TABLE II

ITERATIONS REQUIRED FOR CONVERGENCE WITH

VARIOUS QUADRATURE SETS AND DIFFERENCE SCHEMES

Problem

1

2

3

Step

Quad
Set 1

19

22

30

Difference

Quad
Set 2

19

21

31

Quad
Set

18

21

31

Scheme

Quad*
3 Set 3

18

21

31

Diamond
Scheme

Quad
Set 2

29

'•5

>50

Quad
Set 3

>50

>50

>50

This problem was run with coarse-mesh rebalance.

iteration acceleration mechanism employed. Quad-

rature Sets 1 and 2 are those discussed in the Ap-

pendix, while Set 3 is the standard SN set used in

TWOTRAN.1 While the first two sets satisfy Eq. (13),

the SN set does not. This dees not appear to affect

the iteration count when the step scheme is used.

Uneii the diamond scheme is used in conjunction with

Set 3, however, the iteration diverges for all prob-

lems run. The first two sets, although requiring

more iterations for convergence than with the step

scheme, yield convergent algorithms when used with

the diamond scheme. Since Set 3 does not satisfy

Eq. (13), the fictitious source does contribute to

the neutron balance equation. Included in Table II

are the results of runs using coarse-mesh rebalance

and Set 3. The number of iterations is unaffected

largely due to the fact that, although the contri-

bution of the fictitious source to the rebalance

equations is not zero, it is very small. Table II

then provides little basis to make a quadrature set

selection when the step scheme is used but clearly

indicates that schemes satisfying Eq. (13) are

preferable when the diamond scheme is used.

One reason for the better performance of all

sets when used with the step scheme is related to

the behavior of the analytic solution of the spher-

ical harmonics equations at material interfaces. It

is well known that certain angular flux moments are

discontinuous at material interfaces with the spher-

ical harmonics method. Yet the diamond difference

approximation imposes angular flux continuity at the

mesh cell boundaries. The step scheme, however,

allows angular flux, and hence flux moment, dis-

continuity at all mesh cell edges.

Table III depicts an iteration count compa'-i-ion

for three of the methods discussed in Sec. IV.

Method 1 is the up-down coarse-mesh rebalance ap-

proach described by Eqs. (24) and (25). Method 2

is the simplification of Method 1 given by Eqs. (26)

and (27). Method 3 is the angular moment coarse-mesh

rebalance approach of Eq. (31). All problems were

run with quadrature Set 1 and the step scheme. When

the iteration counts are compared with the nonacceler-

ation results (see Column 1 of Table II), it is clear

that none of the proposed methods are very effective

in accelerating the iteration process.

VI. CONCLUSIONS AND RECOMMENDATIONS

In this work we have sought coarse-mesh re-

balance methods that accelerate the iteration on the

fictitious source (Eq. (9)). Although we have de-

veloped several seemingly promising methods, none of

the proposed procedures is effective enough to war-

rant consideration for production codes. Since

coarse-mesh rebalance methods are nonlinear and the

fictitious source is extremely complicated, it is

very difficult to determine the reasons for the dis-

appointing results. It appears from the results,

TABLE III

COMPARISON OF ITERATION COUNTS USING

PROPOSED REBALANCE METHODS

Problem

1

2

3

Method

System

19

21

30

1

Fine

18

20

28

Method

System

19

22

30

2

Fine

19

21

29

Method

System

19

22

30

3

Fine

19

21

?9

13



however, that the coarse-mesh rebalance approach to

accelerating Eq. (9) should be discarded in favor of

or some other approach.a synthetic
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APPENDIX

DETERMINATION OF SPHERICAL HARMONIC QUADRATURE WEIGHTS

In the derivation of the Miller-Reed fictitious

source, the angular flux is assumed to have a spher-

ical harmonic polynomial expansion given by

N-l

(x,y)

p«0 n»0

The P (M) are associated Legendre polynomials. The

spherical harmonics are normalized such that

1

f1 TT

", Yn,') = f dp f d* Y n Yn| = S
P P / / / P P PP

J-l J0

,6

x Y^n"i(p,n)^n-1(x,y) (A-l)

where the Y's are spherical harmonic polynomials de-

fined by

2ir(p
cos n0.

(A-2)

Here U is the x-component of the neutron direction

vector, while the y-component is

The spherical harmonic angular flux moments,

are defined by

A Lagrange basis is introduced such that the un-

knowns are directional fluxes in lieu of angular

flux moments. Thus, in addition to Eq. (A-l), we

also set
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(A-3)

where the f L^ I are Langrange polynomials and M is

the number of directions corresponding to the dis-

crete ordinates order, N. To find these polynomials

in terms of the spherical harmonics, we expand the

by

N-l

L (p,r

S/2

- (A-4)

Combining Eqs. (A-l), (A-3), and (A-4), it is clear

that

A - Y
,-1

(A-7)

It is difficult to deduce anything about the

structure of Y for a given quadrature set. How-

ever, certain generalities can be made about the

matrix A bi_sed on numerical experimentation with

several sets, including the ones to be presented

below. The first observation follows from Eqs. (A-2)

and (A-4):

SnO

Second, all the ja glare positive and are analogous

to quadrature weights, since, from Eq. (A-5),

mp m
(A-5)

n 1To find the a , we define the MxM matrices.

Y = <

and
0 0 0
a, a a^
xo 2o ^ o

a° a0 °

''V \l
Then, it follows from Eq. (A-4) and the detinition

of Lagrange polynomials, that

YA - (A-6)

"So*.

Thus, note Chat these quadrature "weights" are fixed

by the quadrature points. Third, for a quadrature

set symmetric about u - n - 0, the a . are likewise

symmetric about u - n - 0.

As shown in Sec. Ill, there are incentives for

deriving symmetric quadrature sets that satisfy Eq.

(17), repeated here

M

r-0,2,4,...,N. (A-8)

m-1

We take the specific case of N • 4 and point out

sets that satisfy Eq. (A-8).

1. Quadrature Set 1—The first quadrature set

satisfying Eq. (A-8) is the EQN set derived by

Carlson.11 This set is

0.0833333

0.8333333

0.0833333

0.3500212

0.3500212

0.8688903

0.3500212

0.8688903

0.3500212

Tl.ese were derived by Carlson by solving a non-

linear system of equations

where I is the identity matrix. Thus, the A array

is determined completely from the quadrature points

and is given by i I, p even, and
£+p - 0,2,4 (A-9)



with the constraint of equal weights. Since Eq.

(A-9) has a unique solution, the [a „] of Eq. (A-8)

and the l^jof Eq. (A-9) must be identical except

for a normalizing constant.

2. Quadrature Set 2—The second set, named

the ZPN (zeroes of Legendre polynomial) set Is

found by solving the six nonlinear equations of

Eq. (A-9) along with the three constraints that

each p be a zero of Y,. The resulting set is

B

1

2

3

0.

0.

0.

" •

0815181

0869637

0815181

0.

0.

0.

3399810

8611363

3399810

0.

0.

0.

3499611

3594757

8728896

Again, the equations to find the ZP set have unique

solutions. Thus, the weights and la .1 must be equal

to the Iw I except for normalization.
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