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COARSE-MESH REBALANCE METHODS COMPATIBLE WITH THE SPHERICAL HARMONIC
FICT.LTIOUS SOURCE IN NEUTRON TRANSPORT CALCULATIONS

by
W. F. Miller, .:.

ABSTRACT

The coarse-mesh rebalance method, based on neutron con-
servation, 1s used in discrete ordinates neutron transport
codes to accelerate convergence of the within-group scattering
source. Though very powerful for this application, the method
is ineffective in accelerating the iteration on the discrete-
ordinates-to-spherical-harmonics fictitious sources used for
ray-effect elimination. This is largely because this source
makes a minimum contribution to the neutron balance equation.

In thisreport, the traditional rebalance approach is derived

in a variational framework and compared with new rebalance
approaches tailored to be compatible with the fictitious source.
The new approaches are compared numerically to determine their
relative advantages. We conclude that there is little incentive

to use the new methods.

I. INTRODUCTION
It has been observed by several authors tha-
periodically requiring the flux to satisfy neutron
balance on a phage-space grid accelerates the itera-
tion on the within-group scattering source in dis-
crete ordinates neutron transport calc:ulat:i.c.ms.l-3
The method, used in TWOTRAM,!

position of a coarse spatial grid on the fine mesh

entails the super-

and finding direction-independent factors that, when
applied to the flux and current, require reutrons to
be conserved in a weighted integral sense within

each coarse-mesh cell. It was recognized by Lathrop1

that his coarse-mesh rebalance equations could be de-
rived variationally or by a weighted residual ap-

proach. Nakamura,2 as well as Yuan et al.,3 used

variational principles and the secend-order self-

adjoint neutron transport equation in the derivation

of their rebalance equations.
The advent of ray effect mitigating fictitious

X source54-7 has provided a new challenge to the ef-

fectiveness of coarse-mesh rebalance algorithms.

The term "ray effect"8 refers to anomalous ripples
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that appear in the neutron flux for some problems
with isolated sources and low scattering ratios. The
fictitious sources that yield spherical harmonic or
spherical harmonic-like solutions effectively elimi-
nate these distortions. However, when the within-
group iteration proceeds on the sum of this source
and the scattering source, the convergence proper:ies
of the iterative process are greatly degraded. As re-
ported by Jung,6 the traditional coarse-mesh rebalance
approach is ineffective in accelerating this iteratiom.
In Sec. II, the step and diamond spatial dif-
ferencing coarse-mesh rebalance equations are derived
from a variational principle. In Sec. III, the dis=-
crete~ordinates-to-spherical~harmonics fictitious
source used in this study is presented and described.
In Sec. 1V, variational methods are used to derive
new coarse-mesh rebalance approaches more applicable
to the fictitious source iteration. Section V pro-
vides numerical results while some conclusions and

recommendations are described in Sec. VI.
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II. COARSE-MESH REBALANCE WITH THE STEP AND DIAMOND

DIFFERENCE EQUATIONS

We variationally derive the coarse-mesh re-
balance relationships that result from the step and
diamond difference schemes for two reasons. First,
although Lathrop1 recognizes that a variational deri-
vation is possible, such a procedure has not been
documented to the author's knowledge. Second, the
variational approach provides a unifying framework
for earlier rebalance equations as well as for the
new relationships derived in Sec. IV.

For simplicity, consider the monoenergetic or
within-energy-group equation in x-y geometry with
isotropic scattering and sources. We wish to ac-
celerate the convergence of the so-called within-

group or inner iterative process
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These are the x-y geometry discrete ordinates equa-
tions for iteration k; a set of equations in the
angular flux wm for each of M discrete directions de-
termined by the direction cosine set *“m’ nm}. In
discrete ordinates neutron transport codes such as
TWOTRAN, Eq. (1) is spatially cifferenced, tradi-~
tionally with the step or the diamond difference9
scheme, and the iteration on the scattering source
proceeds. At an arbitrary stage of the iterationm,
neither Eq. (1) nor its corresponding set of spatial-
ly differenced equations satisfy neutron balance.
This can be seen by first defining

M M M
¢ =§ :"mwm’ ! =§ :wmumwm’ J =§ ;wmnmwm ’
m=l m=1 m=
where the i"m* are the input quadrature weights. We
M

then operate orn Eq. (1) with

m=1

w_ to obtain
m

koK
AL’ , 33 k k-1 _
el - ) Q.

2learly, neutron conservation occurs only upon scalar
flux convergence when ¢k-1 = ¢k. The coarse-mesh re-
balance approach is designed to speed up this con-

vergence by requiring neutron balance in a weighted

2

M+5 IT+§

integral sense on a pre-established spatial grid.
Consider the fine-mesh spatial grid of Fig. 1
with a superimposed coarse mesh and consider the

following semi-discrete functional:

sy Yyras M

i [ [ 0 S
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X e 3 ™ dy me s¢ Qm QO )

Here, W: and Q; are the adjoint angular flux and ad-
adjoint source, respectively, and as usual, we
assume that all cross sections are known constants
in each mesh cell. It is well known that the func-
tional of Eq. (2) has, as one set of its Euler equa-

tj.ons,"'O the discrete ordinates equations:

awm me
UNF.'- nm_a.;_+gwm=gs¢+qm m= 1,2,...M. (3
The so-called Euler equations provide necessary con-
ditions for the functional to be "stationary" with
respect to arbitrary changes in w;. The process of
rendering a functional stationary will be pursued in
more detail below. The discrete ordinates adjoint

equations are also Euler equations of Eq. (2)
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Fig. 1. Coarse and fine spatial mesh.
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rendering the functionary stationary with respect to
arbitrary variations in wm'

Equation (2) may be used as a starting point to
derive the coarse-mesh rebalance equations used with
tte step difference scheme, We begin by choosing

*
approximation spaces for wm and wm. Let
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and wmi is the angular flux for direction m and for
the 1jtP mesh cell. The {wmij} are known from the
previous iteration, whili~ the {fij} are unknown and
are restricted by

fij = fkl iek, jek . (4d)

We further assume

M M
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vm(x,y) = 2 E L) Ykm""’y) (5a)
k=1 f=1

where

~

v kT Ty
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0 otherwise. (5b)

Inserting Eqs. (4a) and (5a) into Bq. (2) yields the
reduced functional

s
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Carrying through the integration, we obtain
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By wmkj' we refer to the angular flux evaluated to obtain the coarse-mesh rebalance equatiols

at the 3th y fine interval and at the x fine interval
adjacent to the outgoing boundary of the kth coarse~ fkl(FRkIL * Fka. * F"kz
mesh interval. A simi]ar dafinition holds for % mil
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Equation (7s) is the set of rebalance equations for
the rebalance factors {fkg Thus, after each iter-
atlon, or series of iterations, one uses the new
angular flux iterate to compute the quantities of
Eq. (7b), solves for the rebalance factors of Eq.
(7a), and applies them as indicrted In Eq. (4a) to
obtain an lmproved flux. A weighted residual or
weight-and-integrate approach may also be used to
derive Eq. (7a) by first inserting Eqs. (4a) and

(4b) into Eq. (3) and multiplying the result by

Vip (%:¥).  Then, operating with
T A M

Jr dx‘jr dy E n .
):!s ys m=1

the desired equations result.

The crarse-mesh rebalance equations for the
diamond difference scheme are derived in a manner
analogeus to the above procedure except Eq. (4a)
is replaced by the trial solution
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The resulting rebalance equations are:

e (PR + Fly g + Fliasy ¥ o + u-ki)

Fe-1e"Roe ¥ Eraralyang * free-1 ooy
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The flows are defined in a manner analogous to Eq.
(7b). It is clear that otker trial functions for

w: and Vo yield other rebalance equations.

ITl. DISCRETE~ORDINATES-TG-SPHERICAL~HARMONICS

FICTITIOUS SCURCE

A new development in the theory of discrete
ordinates approximations is the advent of fictitious
source fixups to mitigate the ray effect distertions
that plague some neutrun transport calculations.
These fixups entail appending the within-group dis-
crete ordinates equations cof order N with a ficitious
source that ensures that the resulting solution
satisfies sphericail harswonic or spherical harmonic-
like equations of order N-l1. These fictitious sources
are complicated functions of the angular flux itaelf.
Appending one of these sources alters the iterative

process of Eq. (1) to:
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mel, 2, ... M 9)
where S.fk"l is the fictitious source for direction
o svaluated using the angular flux from the k-1
iteration. For all fictitious sources derived in
the uuu:ure."'7 the iterative process of E3. (9)
is slow to converge when compared to that of Eq. (1).
Further, Jung et a1.6 observed that when tradiational
coarse-aesh rebalance is applied to Eq. (%) with
cheir fictitious source, the convergence rate is not
significantly improved. Jung's observation is gen-
erally valid for all fictitious sources derived to
date. To explain this unfavorable interaction of
cogrse-psesh rebalance with Eq. (9), ve begin vwith
the source due to W. F. Miller and W. H Reed:7

N-1 N-1
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x Ve (ugeenge) v B o, M
N i SR m' ax @' 9y :
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(10)

This fictitious source requires the solution of Eq.
(9) cto satisfy the spherical harmonics eguations of
order N-1. We have used the t'ollmung inner product
notacion in £q.(10): (d,b) = 3 J; dod(R)b(@). Also,

the Yi are spherical hamonics and the {aj } are

normalized weighcs defined such that the quadrature
set exactly integrates all spherical hsrmonics
through a given order. The Appendix provides s de-
tailed discussion of these (n;t}.

In order to simplify Eq. (10), we define

N-1
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N/2
._.p Ve Hugrongs) Npraan . (110)

These quantitfes depend only on the angular quad-
rature set used and can be precalculated before the
iterative process begins. Cosbining Eqs. (10), (A-3),
and (11), we obtain

( . N-1 aw(::.y)

XaY n -

uf 2 ; Yp("n'"n) i,:{!’n—p ax
p*0 n= =]

aw"‘"’

n [ .
e § 12
+ G 3y (12)

An important fact to note about Eqs. (9) snd
(12) is that spherical harmonic solutions sre inde-
pendent of the guadrature set used. Different quad-
rature sets do alter the csolution on tiie system
boundary slightly since they correspond to differsnt
boundsry conditions. Thus, as Reed‘ has pointed out,




the potential exists to select a quadrature set that

minimizes the spectral radius of the iteration matrix-
implied in Eq. (9).
rature points such that {Smf} 18 mwinimized in some

That is, we wish to select quad~
reasonable norm. The sheer complexity of Eq. (12),
as well as its dependence sn the angular flux and

hence the physical problem concerned, causes such a
minimization process to be impractical. The simplest
approach one can take is to select quadrature points

such that

(13)

Then the fictitious zource is zero in a veighted sum

sense. Inserting Eq. (12) into Eq. (13) yields
M N-1 M
0 S = e ?_u.“;-ﬂ + " _awﬂ
n0°nf omp  9x tmp Iy
o] p=0 nsD mm=]l

M
D3 EJCENELY
m=

But, as shown in the Appendix, the a:0

(14)

exactly in~
tegrate all spherical harmonics through order N-1

as well as selected Nm order cnes. Thus,

M

M
zﬂgo Y (o) - Zago 70 () = 1 -
o= o=

p=0,1,2, ,.. 481, n=0,1, 2, ... pe

Hence, Eq. (14) beconmes
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K O Ym0 Y
00 mf mm0  Ix rm0  Jdy

mel mm=1

= 0.

In general, this equation is satisfied if, and ouly
i€,

mm=1,2,... M. 15)
From Eq. (11), it is sufficient that the following
relationships hold ir order for Eq. (15) to be satis-

fied:

M

0 r
ajeo Yn(um..n_.)- 0, r=0,1, ..., N (16a)

o =1
M

0 2r-1
2 : a g YN (um.,nm,)um. =0, r=1,2,...,N2
] (16b)
and
M

0 2r-1
E azg YNr (“m""m')"m' =0, r=1,2,...,N2.
m’ =] {16c)
Spherical bharmonic recursion relationshipsa can be

used to express the sums of Eqs. (16b) and (16¢) as
sums over linear combinations of spherical harmonics
of order N-1 and N+l. Since N 1s restricted to be
even, these sums are over odd spherical harmonics.
As discussed in the Appendix, symmetric quadrature
sets yield a {ago} set symmetric about p = n = 0,
and the sums of Eqs. (16b) and (16c) are identically
zero. Likewise, with a symmetric quadrature set,
the sums of Eq. (16a), with r odd, are zero. We are
left then with the requirement of finding a symmetric

quadrature set satisfying the relationship

M
Z “:'o Y;(um,.nm.) =0, r=0,2,4,...,8 . A7)

n's]

Two sets, discussed in the Appendix, have been de-
rived that satisfy this requirement. Unlike the

standard §, cet generated in TWOTRAN, these sets re-~

sult in co:vergence of E~. (9) for all problems run.
Since the {ago} are quadrature weights, Eq. (13)
implies that, if the fictitious source is included
in the functional of Eq. (2), its contribution is
zero. Thus, quadrature sets satisfying Eq. (13) en~
sure that the fictitious source in no way contributes
to the rebalance ¢ - -tions and hence the coarse-mesh
rebalance equations cannot accelerate fictitious
source convergence. Thus, we are 1l22d to 3 dilemma.
A quadrature set that satisfies Eq. (13) leads to a
source for which Eq. (9) convergences more rapidly
than other sets. Yet the traditional coarse-mesh
rebalance method does not accelerate convergence.
We are required, then, to consider wariations of the

traditional rebalance approaches.



IV. REBALANCE METHODS APPLICABLE TO DISCRETE-JRDI-
NATES-TO-SPHERICAL-HARMONICS FICTITIOUS SOURCES
Let us consider the functional of Eq. (2) with
the fictitious source appended:

11y YTy M

elvav] f xf dyEm{m<m3x+nmatn

+ prm - Us¢ - Qm - Smf) - wﬂlq: }. (18)

We have showm in the previcus section that quadrature
sets satisfying Eq. (17) yleld a fictitious source
that makes no contribution to the balance equation.
That 1is,

QJ

M M

0
E WS¢ . E ag Spe = O 19)
o=, o=

We have thus to seek approximation spaces for w; and
Wm guch that the sums of Eq- (19) do not appear in
the reduced functional. That is, we seek approxi-
mation gpaces guch that the fictitlous source con~
tributes to the equations for the rebalance factors.
A. Space-Angle Coarse-Mesh Rebalance

We consider a coarse -angular mesh superimposed on

the fine angular mesh as indicated in Fig. 2 where,

for example, the coarse mesh 1s composed cf the four
quadrants of the unit Gisk. We consider the simplest

case of two coarse-mesh intervals, one for LN > 0 and

Fig. 2. Coarse and fine angular meshes.

ope for My < 0, In lieu of Eq. (5a), we sesume
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where Y (x,y) is defined in Eq. (5b) and

AUp
—* wkl "a >0
Yk = (20b)

*DN
wkl nm <0.
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Both ¢kgp and wkgn are unknown constants in m for all

k,%. In lieu of Eq. (4a), v2 ugse the following ap=

proximation for wm(x,y):
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with the{éuij(x,y)} given by Eq. (4c) and the {Emij}
restricted by

- UP B
fmij = EkE iek, jef, n >0 (21b)

and

- DN
foig = e ick, jel, n < 0.

We next combine Eqs. (18), (4b), (12), (20}, and

o * *
(21), differentiate Flw ,w!with respect to wkgi and
set the result to zero to obtain:
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We repeat the atove process except FI"’ .WI is now
differentiated with respect to w k 2 to vield
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RD N
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ka1 FSPuo 1 = QQuq » k=1,2,...,IM

i=1,2,...,J4

+

f

(23)

where the definitions of thz terms appearing ir Eq.
(23) can be deduced from Eq. {22b). Now Egs. (22)
and (23) provide a system of 2*IMYJM linear algebraic
2quations for the [t’g‘;l and [f:l: . These rebalance
factors then are applied respectively to the upward
and downward directed angular fluzes. The scattering
and fictitious sources are calculated from these im-

proved fluxes and the iterative process proceeds.



Other than the obvious disadvantage of the com~
plexity of these equations, storage requirements will
be greatly increased. The quantities of Eq. (22b)
nust be stored over the coarse mesh. 1In addition,
two vectors having lengths equal to the scalar flux
vector are needed for application of the rebalance
factors. Further, the coupled set of equations in
the unknowns [fgi]and [fzg will be much more diffi-
cult to solve than Eq. (7). This coarse space-angle
mesh rebalance approach is discarded based upon
the above observations.

B. Up-Down _Coarse-Mesh Repalance

In this approach, we retain the advantage of the
space-angular mesh rebalance method, but decouple the
equations for [fgﬁ] and [fzgl (Egs. (22) and (23)).

In neutron transport codes such as TWOTRAN, the space-

angle mesh 1s swept for 31l downward directions,
assuming a known scattering and fictitious source,
and then for all upward directions with the same
sources. In Eq. (23), we assume that we are re-
balancing on the downward directed fluxes ard all up-
ward angular fluxes are known and can be treated as

sources. Then, Eq. (23) reduces to
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Wyq 2QQ, + Sy + FSDL) - FSD) - FSDy - FSD, )
+ wspY. . - Fspl
o1t Kl

In a similar manner, Eq. (22) reduces to

UP U u LU
sz (Fsz + FLkR + FUkQ + ABkQ - Fsukz + FSUkQ

u up (.U RU UP (.U
- FS"kv.) £ 11( FR_1p Fs”k-iz)‘ fk+1E(F1'k+J.2

LU up wn (]
+ Fs”k+1xc)‘ fra-1 (“’kz—l FSUp. )= By
k=1,2,...,IM
2=1,2,...,JM (25)
with
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Tl RD
@y, = Qqu scD, + FSUR) - FSULD - FSUD, - PSULD,

Equations (24) and (25) are significantly more simple
to soive than the space-angular mesh rebalance equa-
tions. The storage requirements are still signif-
icantly larger than that needed in the traditional
rebalance method, though if only a reasonably coarse
mesh is used, the storage penalty is not great. In-
tuitively, one would expect less acceleration than
with the space-angular mesh equations since the
coupling in [E:E]andlfggl is less.

Equations (24) and (25) may be further simpli-
fied by ignoring the fact that the fictitious source
is comprised of spatial derivatives when deriving
the acceleration scheme. Then, there is no spatial
coupling in [EEE or[fzgl in the fictitious source
term. Then, Eq. (24) becomes

DN D D D —===D DN D
Fieg (PRq + Fligg + Py + AByg- FBp)- fean Rie-in

DN D DN wn ]
- fer1e Fliare = fepan o = Qe »
k=1,2,...,IM
2=1,2,...,JM4 (26)
while Eq. (25) is
ULV, U U ==u )_ v U
fip (FRkE + Plyy + Flp + AR = FSUL = 10 PReenn
(P up _ =y
£iv1e Fls1e ~ Fege1 Fliges = Wiy - @7

In these expressions, the definitions of Eq. (22b)

apply and
—aD RD D RD LD
FSDkQ = FSDkl - FSDkZ - FSDkQ FSDk_12 + FSDk+12
+ ESDggyy
and
U _ RU LU
FSUkz - FSUkz Sukl FSU e Fsuk-ll + FSUk+12
u
- FSUpp ;1 -

We would expect a less effective acceleration scheme
than that of Eqs. (24) and (25) due to the decreased
spatial coupling of the rebalance factors.




C. Angular Moment Coarse-Mesh Rebalance

We stated in Sec. III, and will demonstrate in
Sec. IV, that quadrature sets tha: satisfy Eq. (13),
when used in conjunction with Eg. (9), yield an
iterative scheme that generally converges more
rapidly than when the standard SN scheme is used.
However, standard rebalance methods, based on the
neutron conservation equation, are ineffective.
Since the fictitious source makes no contribution
to this equation, we consider an equation involving
higher angular moments. First, let g; denote the

sum over all spherical harmonic orders for which,

M
2 : n . (x,y)
mpsmf ¥ 0.

=l

in general,

These orders may easily be determined numerically
for a given quadrature set as discussed in the Ap-~

pendix. Then assume
M JIM
* 1 :E : :; ; * :E:: n .

‘Pm(x.)') = T leEYkE(x,y) amp » (28)
D=1 I= pn

and let
IT

¥y, (x,¥) = E E m-ij mij x,y) , (29)
1=]1 j=1

with Ami and [fij]‘ respectively, satisfying Egs.

(4c) and (4d). Inserting Eqs. (28) and (29) into
* *
Eq. (2) differentiating Flw ,qlwith respect to wkl

and setting the results to zero yields

o +‘A'B, ) £ —n
fig (g, + Pyt + g + BB )= £ 9 PR g

b 0, £ ,.. D,
- Br1s Fraae ~ freer kel T fkerl FPrena
—
= qug k=1,2,...,IM
e=1.2,....0M (30a)
where
M
n
L IPDINUDIPIE
u >G pn m=1l pn
N-1 .
“' l T
X Yp.(um_nm) mp* k354 2
p=l n'= |- 0 jE

‘F‘Lkl -Z Za:plumljgl'mkjuyj mZ-Z mp

um<0 pn
N~1 !
[} n'
529 TR IR I
p= n'=1 pm<0 jell
PEDIPILAN SI) NN
n >0 pn w=l pn
o
= S: 2 mpoﬂA"i ’
p'=l n'=1 n >0 iek
kE EZ lnmiz :q'milei E :E :mp
r| <0 [
N-1 _p'
X 2 : E : (um' m)]E:: mmp 1’Jmm:l.ll. ’
p'=l n'=l nmm<0 iek

L. -~
ABy, = E E a:p E Z(Uijwmij - Usij¢ij)Axiij .
o=

pn itk jeg
and

Qka zz mpz quijhiij )

m=l po ick jef

(30b)

In principal, this scheme requires no more computer
storage than standard rebalance, though if one de-
sires the true absorptions and flows to be printed,
one more sweep through t-e space—angle mesh is
needed after convergence.

A simplification analogous tc that applied in
tha previous section to up-down rebalance may be
applied to the angular moment rebalance equations.
That is, the fictitlous source may be treated as 1if E
it did not involve derivatives, thus eliminating ;
coupling in [fkllfor these terms. Equation (30a)

then reduces to

11




[ [ [ [ [ -
B (FR'jeq + FLpq + FU'yg + P00 + a8 ) £y

[ . - t
* FRY g2~ Bran Pl ~ kel e

k=1,2,...,IM

®©
kl f=1.2,....0M

1
B o

(31)

where the flows are the same of those of Eq. (30b)

without the fictitious source contributions, and

Asmzzmpz )

o=l po =] n'=1
Z mp * Z“’mk ~ Vomk-13)8%3 * Z
Hon™0
x 2(¢mmk+lj mmkj ij Z Comp?
jeg
:E::ﬁﬁmm1l wmmiﬂ 1 jax +:E:: mmp :E::
itk N <0

\
x(wmilﬂ - “‘miz)A"i)'
4gain, we expect Eq. (31} to be less effective in
accelerating when compared to Eq. (30a) due to the
tighter spatial coupling of lfkllin the latter case.

NUMERICAL RESULTS

In this section, we consider several sample

v.

problems in order to compare the quadrature sets
and acceleration schemes described in the previous
sections. We also consider both the diamond and
step spatial differencing schemes. For all problems
run, the pointwise convergence criterion was 10_3
and the fictitious source used was that one which
converts the discrete ordinates equations of order
four to the spherical harmonics equations of order
three, The three problems run are depicted in Figs.
3-5 with region cross sections provided in Table I.
We used a spatial mesh, with equal intervals, of
20 x 20, 30 x 30, and 20 x 20, respectively, for
problems 1-3.

Table II provides a comparison of the number of
inner iterations [see Eq. (9)] required for com-
vergence using the step and diamond schemes with no

Voc
2.0
Source=0.9 .
[}
£ 1o §
Source =1.0
0.0 1.0 290
Vac
Fig. 3. Tost problem 1. é
4
4
Vac
3.0
I
2.0+ Source =00
o
<] I <
> T 5 H
I.OA—-———— Source
I 20.0
5
Source
=10 |
0.0
1.0 20 3.0
vac
Fig. 4. Test problem 2.
Vac
4.0
I
Source = 0.0
28—
n
< Source <
g m =10 H
(K-
i1
1.2 Source =0.0
I Source .
=0.0
Source
= 0.
0.0 .2 28 4.0 ?
Voc
Fig. 5. Test problem 3.




TABLE 1

CROSS SECTIONS FOR TEST PROBLEMS

Problem 2 Problem 3
Cross Reg. Reg. Reg. Reg. Reg.
Section Problem 1 I II I II II1
c, 1.0 0.5 0.10 1.0 Q.0 0.0
O, 1.0 g.75 1.0 1.0 1.0 0.01
Oy 0.9 0.25 0.%90 0.0 1.0 0.01
v 0.0 6.6 0.0 0.0 0.0 0.0
TABLE II

ITERATIONS REQUIRED FOR CONVERGENCE WITH
VARIOUS QUADRATURE SEYS AND DIFFERENCE SCHEMES

Diamond
Step Difference Scheme Scheme
Quad Quad GQuad Quad* (Quad Quéa—
Problem Set 1 Set 2 Set 3 Set 3 Set 2 Set 3
1 19 19 18 18 29 >50
2 22 21 21 21 45 >50
3 30 31 31 31 »50 >50

*
This problem was run with coarse-mesh rebalance.

iteration acceleration mechanism employed. Quad-

rature Sets 1 and 2 are those discussed in the Ap-
pendix, while Set 3 is the standard S
oTRAN.

the SN set does not.

N set used in
While the first two sets satisfy Eq. (13),
This dces not appear to affect
the iteration count when the step scheme is used.
Wnew the diamond scheme is used in conjunction with
Set 3, however, the iteration diverges for all prob-
lems run. The first two sets, aithough requiring
more iterations for convergence than with the step
scheme, yield convergent algorithms when used with
the diamond scheme. Since Set 3 does not satisfy
Eq. (13), the fictitious source does contribute to
the neutron balance equation. Included in Table II
are the results of runs using coarse-mesh rebalance
and Set 3. The number of iterations 1is unaffected
largely due to the fact that, although the contri-
bution of the fictitious source to the rebalance
Table I1

then provides little basis to make a quadrature set

equations is not zero, it is very small.

gelection when the step scheme is used but clearly
indicates that schemes satisfying Eq. (13) are
preferable when the diamond scheme is used.

One reason for the better performance of all
sets when used with the step scheme is related to
the behavior of the analytic solution of the spher-
ical harmonics equations at material interfaces. 1t
15 well known that certain angular flux moments are
discontinuous at material interfaces with the spher-
ical harmonics method.7 Yet the diamond difference
approximation imposes angular flux continuity at the
mesh cell boundaries. The step scheme, however,
allows angular flux, and hence flux moment, dis-
continuity at all mesh cell edges.

Table III depicts an iteration count compa~i~on
for three of the methods discussed in Sec. IV.

Method 1 is the up-down coarse~mesh rebalance ap-
proach described by Eqs. (24) and (25). Method 2

is the simplification of Method 1 given by Egs. (26)
and (27). Method 3 is the angular moment coarse-mesh
rebalance approach of Eq. (31). All problems were
run with quadrature Set 1 and the step scheme. When
the iteration counts are compared with the nonacceler-
ation results (see Columm 1 of Table II), it is clear
that none of the proposed methods are very effective

in accelerating the iteratiom process.

VI. CONCLUSIONS AND RECOMMENDATIONS

In this work we have sought coarse-mesh re-
balance methoda that accelerate the iteration on the
fictitious source (Eq. (9)). Although we have de-
veloped several seemingly promising methods, none of
the proposed procedures is effective enough to war-
rant consideration for production codes. Since
coarse-mesh rebalance methods are nonlinear and the
fictitious source is extremely complicated, it is
very difficult to determine the reasons for the dis-
appointing results. It appears from the results,

TABLE III

COMPARISON OF ITERATION COUNTS USING
PROPOSED REBALANCE METHODS

Method 1 Method 2 Method 3
Problem System Fine System Fine System Fine
1 19 18 19 19 19 19
2 21 20 22 21 22 21
3 30 28 3¢ 29 30 29

13



however, that the coarse-mesh rebalance approach to
accelerating Eq. (9) should be discarded in favor of

a synthetic™ or some other approach.
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APPENDIX

DETERMINATION OF SPHERICAL HARMONIC QUADRATURE WEIGHTS

In the derivation of the Miller-Reed fictitious
source, the angular flux is assumed to have a spher-

ical harmonic polynomial expansion given by

N-1 N/2
WK, ¥, = E i Y: (u,n)cb;I (x,y) + E
n’

p=0 u=0

* a0, o2 L () @-1)

where the Y's are spherical harmonic polynomials de-
fined by

n_ [(2 - 6n,QZ(p " n)!(Zp + 1)]% P;(u) cos np.

P 2n(p + n)!

Y
(a~2)

Here n is the x-component of the neutron direction

vector, while the y-component is

14

n=vl - uz cos ¢ .

The P: (0) are associated Legendre polynomials. The

spherical harmonics are normalized such that

1 4
n n' n . n'
= d do Y =8 ,8 .
(Yp. Yp') [ l»:/(; ® P b pp’ Onn’
-1

The spherical harmonic angular flux moments, ¢:

are defined by
/ n n
Y = o
(v p) %

A Lagrange basis is introduced such that the un-
knowns are directional fluxes in lieu of angular
flux moments. Thus, in addition to Eq. (A-1), we

also set

el

e At T

RTMOARIDN



M
y(x,y,u,n) = lbm(x,)') Lm(U.n) ’
m-;

where the Lm are Langrange polynomials and M {s

(a-3) -

the number of directions corresponding to the dis-
crete ordinates order, N. To find these polynomials

in terms of the spherical harmonics, we expand the

]

N-1 N/2 ’
_ n n 2n-1 2n-1
Lm(u,n) = 2 S amp Yp + E an Yy . (A-4)
p=U0 n= n=1

Combining Eqs. (A-1), (A~3), and (A~4), it 18 clear
that

(a-5)

To find the la;p], we define the MxM matrices.

( Yg (“1’ ”1) Yg (“1’“1)""’:-1(“1’”1)’
"g (“2' "2) Yg (“2,"2)"“':-1(”2'”2)
. ;
RIS R )
and
(a(l)o a‘z’o ...... eeenenn ago 3
0 0 0
311 321 setEsessnsErnsenerasas a.Ml
= ?
L e ey

Then, it foliows from Eq. (A-4) and the definition

of Lagrange polynomials, that
Ya=1 (A-6)

where I 1s the identity matrix. Thus, the A array

is determined completely from the quadrature points E v u: n: - fdﬂu"np.

and is given by

A=Y, (A-7)

It is difficult to deduce anything about the
structure of Y-l for a given quadrature set. How-
ever, certain generalities can be made about the
matrix A bised on numerical experimentation with
several sets, including the cones to be presented
below. The first observation follows from Eqs. (A-2)
and (A-4):

M
z :ago - /om E :“noxo Yg(“m'"m) -/
me

o=l

Second, all the (ago)are positive and are analogous
to quadrature weights, since, from Eq. (A-5),

M

0 0
¢0 -Z amowm *

=1

Thus, note that these quadrature "weights" are fixed
by the quadrature points. Third, for a quadrature
set symmetric about U = n = 0, the ago are likewise
symmetric about U = n = 0.

As shown in Sec. IIT, there are incentives for
deriving symmetric quadrature sets that satisfy Eq.

(17), repeated here

M

D8, v -

m=1

r=0,2,4,...,N. (A-8)

We take the specific case of N = 4 and point out
sets that satisfy Eq. (A-8).
1. Quadrature Set 1--The first quadrature set

satisfying Eq. (A-8) is the EQN set derived by

Carlson.11 This set is
o ¥o Y "o
1 0.0833333 0.3500212 0.3500212
2 0.8333333 0.3500212 0.8688903
3 0.0833333 0.8688903 0.3500212

Tl.ese were derived by Carlson by golving a non-

linear system of equations

M

R, p even, and
51 R4p = 0,2,4 (A-9)
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with the constraint of equal weights. Since Eq.
(A=9) has & uoique solutiom, the [ago] of Eq. (A-8)
and the [wm ]of Eq. (A=9) must be identical except
for a normalizing constant.

2. Quadrature Set 2--The second set, named
the ZPN (zeroes of Legendre polynomial) set is
found by solving the six nonlinear equations of
Eq. (A~9) along with the three constraints that
each W be a zero of Yg. The resulting set 1is

16

Wm . ].lm

1 0.0815181 0.3399810
2 0.0869637 0.8611363
3 0.0815181 0.3399810

Again, the equations to find the 2P

solutions. Thus, the weights and 820] must be equal

to the Iwm] except for normalization.

o
0.3499611

0.3594757
0.8728896

set have unique
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