

1

HYDRIDE ORIENTATIONS AND MECHANICAL PROPERTIES
OF THIN-WALLED ZIRCALOY TUBING

USAEC-AECL COOPERATIVE PROGRAM

MONTHLY PROGRESS REPORT

SEPTEMBER 1963

by

R. P. Marshall
Pile Materials Division
Issue Date: October 1963

Facsimile Price \$	1.10
Microfilm Price \$	1.90

Available from the
Office of Technical Services
Department of Commerce
Washington 25, D. C.

This document is furnished pursuant to the Memorandum of Understanding of June 7, 1960, between the U. S. and Canadian Governments establishing a Cooperative Program on the development of heavy water moderated power reactors.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

E. I. du Pont de Nemours & Co.
Explosives Department - Atomic Energy Division
Technical Division - Savannah River Laboratory
Aiken, South Carolina

Contract AT(07-2)-1 with the
United States Atomic Energy Commission

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

HYDRIDE ORIENTATIONS AND MECHANICAL PROPERTIES
OF THIN-WALLED ZIRCALOY TUBING

USAEC-AECL COOPERATIVE PROGRAM

MONTHLY PROGRESS REPORT*

SEPTEMBER 1963

INTRODUCTION

Additional study of the orientation of zirconium hydride platelets in thin-walled Zircaloy tubing is being sponsored at the Savannah River Laboratory (SRL) by the Technical Advisory Committee of the USAEC-AECL Cooperative Program. The SRL study will first define the relationship of the fabrication techniques and associated Zircaloy structures to the susceptibility of the tubing to preferred hydride orientations. Second, the work will assess qualitatively the effects of oriented hydride platelets on the mechanical behavior of tubes under several stress conditions. The various types of tubing being used in this program are described in the table on page 3.

SUMMARY OF PREVIOUS WORK

Previous tests on circumferential specimens of the six types of tubing had indicated that the susceptibility to stress orientation of the hydride platelets varied widely between tubing from different fabrication processes and, in one case, between tubing made by different vendors using nominally the same process. The structural factor in the Zircaloy that controls the susceptibility has not been defined, but tubing with similar textures that were estimated mainly from the **anisotropic** strain behavior during tensile tests have shown different susceptibilities to stress orientation of the hydrides.

SUMMARY OF LATEST WORK

Results from stress orientation tests at 18,000 and 30,000 psi confirmed previously reported results at lower stress levels. These tests completed the stress orientation tests on circumferential specimens with 50 ppm hydrogen.

*The reports in this program are documented as the DPST-(year)-74-(month) series. The first report covered the work in June 1963 and was published as DPST-63-74-6.

Discussion

As described previously, the several types of tubing have exhibited large differences in susceptibility to stress orientation of the hydrides. This variability is shown in Figure 1, which illustrates the effect of stress level on the fraction of hydride platelets that precipitated perpendicular to the stress axis, f_N . The data from a previous program have been included in the figure to provide data on additional lots of tubing.

Four general types of tubing have been tested thus far: roll-formed, tube-reduced, drawn, and as-extruded. The as-extruded tubing was the most susceptible to stress orientation, but only one lot of material has been examined. Additional samples of as-extruded tubing will be tested.

Two lots of roll-formed tubing exhibited low susceptibilities to stress orientation in spite of the fact that prior to the roll-forming operation tubing A was formed by extrusion and tube reducing, while tubing A' was formed by extrusion and drawing. The two lots of drawn tubing, tubing E and E', exhibited high susceptibilities to stress orientation. On the other hand the stress orientation observed in tube-reduced tubing, lots B, C, and F, ranged from the low susceptibility of the roll-formed tubing to the high susceptibility of drawn tubing. The causes for these differences in behavior are being sought by texture measurements and by analysis of the details of the fabrication history, such as the type of constraint or the directional metal flow during forming.

The stress orientation results may be summarized as follows.

<u>Fabrication</u>	<u>Level of Susceptibility to Stress Orientation</u>	<u>Lot to Lot Variation</u>
Roll-formed	Low	Small
Tube-reduced	Low to high	Large
Drawn	High	Small

PROGRAM

Stress orientation tests of longitudinal sections will begin next month, and some analyses of the microstructural features of the circumferential sections may be possible. Tests of additional lots of as-extruded, drawn, and roll-formed tubing will be made when samples are available. Texture measurements by X-ray diffraction will be made to confirm the predicted textures as indicated on Figure 1.

Summary of Fabrication Processes for Zircaloy Tubing

Tubing Code	Fabrication Process	Predicted Texture*
A	Tube reduced and roll formed	Radial (X, TS)
A'	Drawn and roll formed	Radial (M)
B	Tube reduced	Radial (TS)
C	Tube reduced	
D	Extruded	Circumferential (L, TS)
E	Drawn	Circumferential (X, TS)
E'	Drawn	Circumferential (M)
F	Swaged and tube reduced	Radial (M, TS)

*The direction listed is the estimated predominant orientation of the poles of the basal plane [0001], based on the sources of data as noted.

X - texture measurement on similar material

L - literature review of texture measurements of a variety of material

TS - analyses of strain anisotropy in sheet tensile specimens at SRL

M - texture measurement by X-ray diffraction

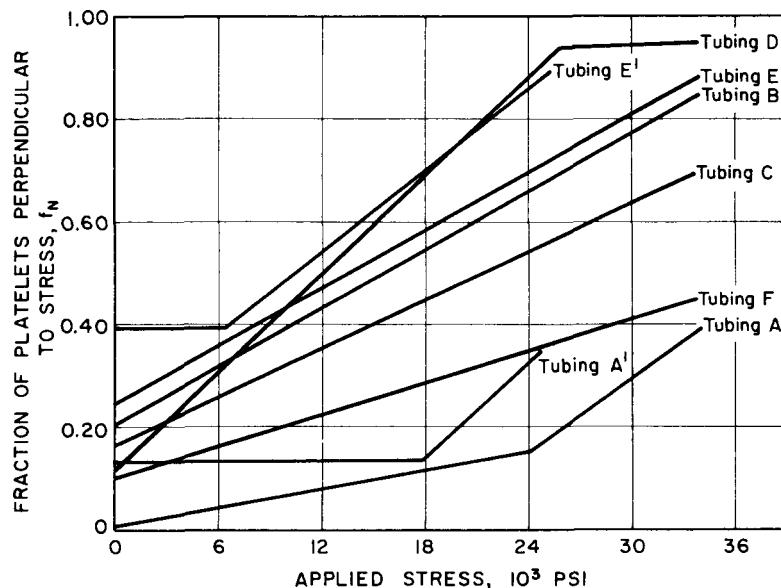


FIG. 1 STRESS ORIENTATION OF HYDRIDE PLATELETS IN DIFFERENT TYPES OF ZIRCALOY TUBING

EXTERNAL DISTRIBUTION

H. B. Rahner, SROO (3)
R. G. Erdley, SROO
D. G. Boyer, USAEC Technical Representative, AECL, Toronto, Ontario (8)
M. N. Hudson, USAEC Scientific Representative, AECL, Chalk River, Ontario
W. R. Voigt, Division of Reactor Development, USAEC, Washington
P. G. Holsted, Civilian Reactor Development & Research Division,
USAEC, Richland, Washington
J. M. Simmons, Division of Reactor Development, USAEC, Washington
D. Weinstein, Armour Research Foundation, Chicago, Ill.
M. Bell, Carolinas-Virginia Nuclear Power Associates, Inc., Parr, S. C.
R. G. McGrath, Westinghouse Electric Corporation, Pittsburgh, Pa.
S. Porembka, Battelle Memorial Institute, Columbus, Ohio
J. L. Klein, Nuclear Metals, Inc., West Concord, Mass.
F. W. Albaugh, General Electric Company, Richland, Washington
R. H. Anderson, Jr., Babcock and Wilcox Company, Lynchburg, Va.
S. A. Reed, ORNL, P. O. Box Y, Oak Ridge, Tenn.
J. E. Cunningham, ORNL, P. O. Box X, Oak Ridge, Tenn.
Division of Technical Information, USAEC, Oak Ridge, Tenn. (3)

INTERNAL DISTRIBUTION

L. Squires - M. H. Wahl, AED, Wilmington
H. Worthington - L. C. Evans
W. B. DeLong
D. F. Babcock
S. A. McNeight
E. E. Hayes
L. J. Scott
W. P. Bebbington, SRP
T. C. Evans
W. P. Overbeck - J. W. Croach, SRL
A. A. Johnson - P. H. Permar
R. T. Huntoon - W. R. McDonell
R. B. Olcott - W. G. Holmes
R. P. Marshall
TIS File (5)
TIS File Record Copy
Vital Records Copy