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COOLING OF INTERSTELLAR FORMALDEHYDE BY COLLISION WITH HELIUM: AN 
ACCURATE QUANTUM MECHANICAL CALCULATION 

Barbara Jane Garrison 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory 
and Department of Chemistry; University of California, 

Berkeley, California 94720 
ABSTRACT 

In order to tes t a co l l i s iona l pumping model as a mechanism for 

cooling the 6 cm and 2 cm doublets of i n t e r s t e l l a r formaldehyde, a 

quantum mechanical scatter ing calculat ion is performed. To obtain 

the intermolecular in teract ion between H2C0( A,) and He( S) two 

calculat ions a. u performed, a Hartree-Fock (HF) potent ial surface and 

a conf igurat ion in teract ion (CI) surface. A basis set o f better than 

" t r i p l e zeta plus po lar iza t ion" qua l i ty is used to compute the HF 

port ion of the potent ial energy surface. This port ion is highly 

anisotropic and has a s l i gh t a t t rac t ion ar is ing from induction - " fec ts 

at intermoleculav separations around 9 a.u. The HF surface is rrodif ied 

through a series of CI ca lculat ions. Correlat ion i s found to have 

l i t t l e e f fect in the strongly anisotropic repulsive region of the 

in teract ion potential but dominates the well and long-range regions. 

The maximum well depth i s attained fo r in-plane approaches o f He and 

l ies in the range 35-40°K for a rb i t ra ry 9 at center o f mass separation 

j f 7.5 a.u. The ent i re surface is f i t to a spherical harmonic expansion 

to f a c i l i t a t e scatter ing appl icat ions. 

An Arthurs and Dalgarno type coupled channel (CC) formalism is 

presented fo r scat ter ing of an asymmetric top by an atom. These CC 

equations are integrated at 12 scatter ing energies between 20 and 95°K. 
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For the cross section calculations a basis set of 16 ortho H,C0 states 
are included, resulting in 62 channels. Resonances are observed 
at ~20.2, 32.7 and 47.7°K. The cross sections are Boltzmann averaged 
to obtain rate constants which are used to solve the equations of 
statistical equilibrium. The 6 cm and 2 cm doublets of interstellar 
H,C0 are found to be cooled by collisions with He. The j = 3 ortho 
doublet plays a fundamental role in the cooling of H ?C0. 



-1-

I. INTRODUCTION 
During the past few years, considerable interest has developed 

around observations of anomalous absorption in interstellar formaldehyde. 
Because this absorption is seen toward dark clouds, it is anomalous, 
implying an excitation temperature for two rotational states lower than 
either the background radiation temperature (~2.7°K) or the expected 
kinetic temperature (10-20°K). These observations are quite common in 
the interstellar medium and are seen in (1) the l.g •*- 1^ (6 cm) transition 
of H 2 C 0 , 7 ' Z 4 ' Z 7 (2) the 2 n - 2 1 2 (2 cm) transition of HgCO, 1 0' 1 2' 1 3 

13 13 and(3) the 1 1 0 *• l,i transition of the isotope H, CO. 
To obtain such low excitation temperatures requires a nonthermal 

cooling mechanism. A number of pumping models have been proposed that 
involve transitions to higher rotational states of H,C0 followed by 
radiative decay. The pump or force causing the excitations has been 

35 variously suggested as being due to collisions or to radiation at 
millimeter, '' J H a infrared, and ultraviolet wavelengths. Evans, 

13 et al. have recently given a convincing discussion which indicates 
that the collisional pump is the only model that accounts for all the 
observations and satisfies necessary criteria. 

35 The collisional pumping model of Townes and Cheung is based on 
classical arguments. The rotational energy level structure and dipoie 
allowed transitions of ortho HgCO are shown in Fig. 4.1. Note that the 
lower levels of each doublet are connected by dipoie allowed transitions; 
likewise, the upper levels. Thus, if a molecule is excited to state 
3 (2,o) it will radiate to state 1 ( 1 ^ ) - The classical model proposes 
that both of the lower two states (j - 1 doublet) are preferentially 
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excited by collisions to state 3 where the molecule will radiatively decay 
to state 1, therefore, coaling the 6 cm (J - 1} doublet. (The intra-
doublet relaxation is slow due to the small energy separation between 
the levels.) 

Since the collisional pump appears to be the key to understanding 
interstellar cooling of H 2C0, several w o r k e r s 2 , 1 0 , 1 1 ' 1 3 , 3 4 , 3 5 have 
attempted to theoretically verify this model by determining the appropriate 
rotational cross sections. These calculations have been carried out 
subject to a number of limitations, including approximate interaction 
potentials (hard or soft sphere), approximate dynamics (classical or 
semi-classical calculations), and other less appropriate approximations 
(born or sudden). 

In the present study the test of the collisional pump is based upon 
entirely quantum mechanical calculations. An accurate ab-initio 
interaction potential (Hartree-Fock and configuration interaction) 
between H-CO and He is given in Chapters II and III. For these calculations, 
the most probable scatterer H, is replaced by He to reduce the scope of 
the computation. It is anticipated that the main conclusions of this 
study will not be seriously altered by this choice of scattering 
particle. In Chapter IV the Arthurs and Dalgarno type coupled channel (CC) 
formalism is presented for scattering of an asymmetric top by an atom. 
Using the ab-initio potential, the CC equations are integrated to yield 
rotational cross sections. Collisional rates are then determined (in 
Chapter V) from these cross sections and used to test the validity of 
the collisional pump as s mechanism for the cooling of interstellar H ?C0. 
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II. HARTREE-FOCK INTERACTION POTENTIAL 
A. Introduction 

This chapter deals with the determination of the Hartree-Focfc (HF) 
portion of the interaction potential (to be used in the scattering study) 
between H„C0 ( A,) and He ( S). Because collision energies in inter­
stellar space are small (OOO'K) and the vibrational energy level 
spacings of H„C0 are sufficiently large (>16O0°K for the lowest 
fundamental), H-CO should be well approximated by a rigid rotor. 
Consistent with the rigid rotor model, H,C0 is constrained to a single 
geometry in the calculations to be described. This results in a smaller 
number of degrees of freedom that must be treated and thereby significantly 
reduces the number of points needed tu map the region of the interaction 
potential required for scattering studies. 

At long range, the dispersion energy dominates the interaction of 
He with H,C0. Lesk has recently proven that the dispersion energy is 
unobtainable in the HF approximation so that a reliable determination of 
the correlation energy contribution is required for scattering studies 
of the present system. Nevertheless, it is clear that the HF method 
can accurately characterize the repulsive anisotropy of atom-diatomic 
molecule interactions between closed shell systems and yield quantitatively 

21 the Induction energy at long range for such systems. The present 
chapter forms the first of a two-part effort in which the second part— 
the determination of the dispersion interaction—will be presented in 
the following chapter. 
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B. Description of Calculations 
Hartree-Fock calculations were carried out following the Roothaan 

approach with H„C0 constrained to the equilibrium geometry of R c„ = 1.208A\ 
R C H = 1.1'I6A\ and^.HCH = 116031' determined by Takagi and Oka. 3 3 To 
facilitate collision studies, interaction energies are presented in a 
coordinate system with origin at the center-of-mass (cm.) of H 2C0 that 
1s shown in Fig. 2.1. 

The choice of basis set was governed by two criteria. One is that 
the superposition error be small. The other is that the quantities which 
determine the leading terms of the Induction contribution to the interaction 
energy at long range (permanent monents of H,C0, dipole polarizability of 
He) be reliably characterized. 

To test these criteria, preliminary calculations were performed with 
He constrained to 9 = 0° (0-atom end) and 6 = 180° (C-atom end) approaches 
to H_C0, i.e., C« geometries. Table II.1 lists interaction energies 
obtained (1) in the HF model employing the basis sets used in iur 
recent study of ground and excited state properties of H 2C0, and 
(2) using the multipole theory expression given in the Appendix. The 
excellent agreement (within 0.1°K) for R > 11 a.u. between energies 
computed using both basis sets and perturbation theory indicates that the 
induction contribution is quite well described and furthermore that 
the onset of the non-overlap region occurs for R = 11 a.u. 

Table II.2 lists basis sets A and B for the (HgCO, He) system. 
15 The H,C0 basis sets have been described previously. The He basis sets 

o 
are due to van Duijneveldt augmented by p functions chosen to give an 

37 accurate dipole polarizability. The latter functions are required to 
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Fig. 2.1. Coordinate system and geometry for the H-CO-He system. The 
triads in parenthesis are the x, y and z coordinates of the atoms. 
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Tible I I . l . Comparison of Hartree-Fock and 
aultlpole expansion interaction 
energies (°K).* 

R(a.u.) Basis Set Hultlpole 
x Expansion 

*** BT 

e « 0* 
5.0 2508.B3 2606.14 
6.0 228.96 276.60 
7.0 -11.05 20.58 
7.5 -22.29 1.83 -6.34 
8.0 -18.6S -3.05 -4.30 
8.5 -11.79 -3.61 -2.9!» 
9.0 -6.33 -2.98 -2.12 
9.5 -3.15 -2.15 -1.53 
10.0 -1.T* -1.47 -1.13 
11.0 -9.63 -0.69 -0.63 
12.0 -0.36 -0.38 
13.0 -0.22 -0.23 

a • 180° 
5.0 6355.97 6467.19 
6.0 777.87 838.07 
7.0 55.07 85.42 
7.5 4.13 21.36 
8.0 -6.91 1.78 -4.22 
8.5 -7.13 -3.03 -2.93 
9.0 -5.22 -3.29 -2.08 
9.5 -3.39 -£.48 -1.51 
10.0 -2.08 -!.67 -1.11 
1..0 -0.77 -0.73 -0.63 
12.0 -0.37 -0..7 
13.0 -0.22 -0.23 

V K - 3.1668«10"6 a.u. 
Obtained with formaldehyde geometry of Ref. 16. 
Obtained with formaldehyde geometry of Ref. 33, 

The energy differunces are attributable to basis 
set* differences due to geometry are negligible. 



-7-

Table II.2. Contracted Gaussian basis sets for H,C0 and He.*' 
* 

Basis A 

Atom Type Fui.^tion* 

0 S 0.006436(7816.54) + 0.0«924(117b.82) 
+ 0.233819(273.188) + 0.784798(81.1696) 

s 0.803381(27.1836) + 0.316720(3.4136) 
s 1.0(9.5322) 
s 1.0(0.9398) 
s 1.0(0.2846) 
X.Y.Z 0.040023(35.1832) + 0.253849(7.9040) 

+ 0.806842(2.3051) 
X.Y.Z 1.0(0.7171) 
X,Y,Z 1.0(0.2137) 
x 2 . v 2 . Z2,XY,XZ,YZ 1.0(0.8) 

C s 0.006228(4232.61) + 0.047676(634.882) 
+ 0.231439(546.097) + 0.789108(42.4974) 

s 0.791751(14.1892) + 0.321870(1.9666) 
s 1.0(5.1477) 
s 1.0(0.4962) 
s 1.0(0.1533) 
X,Y,Z 0.039196(18.1557) + 0.244144(3.9861) 

+ 0.816775(1.1429) 
X.Y.Z 1.0(0.3594) 
X.Y.Z 1.0(0.1146) 

X2,Y2,Z2,XY,XZ,YZ 1.0(0.8) 
0.025374(48.442) + 0.189684(7.2835) 

+ 0.852933(1.6517) 
S 1.0(0.46238) 
S 1.0(0.14587) 
X,Y,Z 1.0(1.0) 

Linear combinations are written in the form C,(a.) + C z(a,) + . 
where C,,C 
exponents. 
where C,,C,, . . . are coefficients and a,,a,, . . . are Gaussian 
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Table II.2. Continued. 

Basis A 
Atom Type Function 
He S 

S 
S 
X.Y.Z 
X.Y.Z 

0.002600(233.093) + 0.019628(35.023) 
+ 0.091421(7.9557) + 0.272853(2.2028) 

1.0(0.66435) 
1.0(0.20825) 
1.0(1.0000) 
1.0(0.2000) 

Basis B 

0 S 

s 
s 
s 
s 
s 
s 
X.Y.Z 

X.Y.Z 
X.Y.Z 
X.Y.Z 
X.Y.Z 

0.000210(31195.6) + 0.001628(4669.38) 
+ 0.008450(1062.62) + 0.034191(301.426) 
+ 0.110311(98.5153) 

1.0(35.4609) 
1.0(13.6179) 
1.0(5.38618) 
1.0(1.53873) 
1.0(0.60550) 
1.0(0.22054) 
0.002266(114.863) + 0.017192(26.8767) 

0.075341(8.32077) 
1.0(2.97237) 
1.0(1.12848) 
1.0(0.42360) 
1.0(0.15074) 

X 2,Y 2,Z 2 .XY, .XZ.YZ 1.0(2.0) 
X Z,Y 2,Z 2. .XY, ,XZ,YZ 1.0(0.5) 
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Table I I .2 . Continued. 

Basis B 
Atom Type Function 
C S 0.000242(15469.4) + 0.001879(2316.47) 

+ 0.009743(527.099) + 0.039167(149.438) 
+ 0.123636(48.8562) 

S 1.0(17.6209) 
S 1.0(6.81082) 
S i.0(2.7276) 
S 1.0(0.75674) 
s 1.0(0.30073) 
s 1.0(0.11409) 
X,Y,Z 0.002734(51.7233) + 0.018979(12.33*7) 

+ 0.080806(3.77224) 
X.Y.Z 1.0(1.32487) 
X,Y,Z 1.0(0.50546) 
X,Y,Z 1.0(0.19827) 
X,Y,Z 1.0(0.07731) 
X 2,Y 2, ZZ,XY,XZ,YZ 1.0(2.0) 
X Z,X 2, Z2,XY,XZ,YZ 1.0(0.5) 

H s 0.002006(82.636374) + 0.015345(12.409558) 
+ 0.075577(2.823854) 

s 1.0(0.797670) 
s 1.0(0.258053) 
s 1.0(0.089891) 
X,Y,Z 1.0(1.0) 

He S 0.000059(4840.888547) + 0.000463(723.108918) 
+ 0.002422(164.299706) + 0.009995(46.636262) 
+ 0.034249(15.277787) + 0.096302(5.526897) 

S 1.0(2.132879) 
S 1.0(0.849674) 
s 1.0(0.343643) 
s 1.0(0.138709) 
X.Y.Z 1.0(1.0) 
X.Y.Z 1.0(0.2) 
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yield a proper description of the induction contribution to the 
interaction energy at long range. Figure 2.2 plots the interaction 
energy for C, approaches of He to the 0-atom end (9 = 0°) and C-atom 
end (8 = 180°) for basis sets A and B and indicates the magnitude of 
the superposition error that accompanies the use of basis set A. Basis 
set B reduces the superposition error to approximately half the well 
depth. The close agreement between interaction energies obtained 
using basis set B and perturbation theory results given in Table II.1, 
and the reasonable agreement between the dipole moment determined 
employing basis set B and experiment, lend support to the notion that 
basis set B should provide a reliable description of the HF portion of 
the interaction potential. 

C. Results and Discussion 
Hartree-Fock interaction energies obtained using basis set B are 

presented in Table II.3 for <}> = 0° (He incident in the plane of 
formaldehyde), in Table II.4 for $ = 30°, in Table II.5 for $ = 60°, and 
in Table II.6 for <j> = 90° (He incident in the perpendicular bisector 
plane of H.C0). Owing to H„C0 symmetry, only 0° < <(> < 90° need be 
considered. Because the interaction potantial is planned for scattering 
studies at energies <100°K, R = 5 a.u. was arbitrarily chosen as the 
minimum R for computations. At this separation, the interaction is 
exponential,with repulsion energies ranging up to several thousand 
degrees K; see Tables II.3-11.6. The maximum R treated was chosen as the 
onset of agreement between HF and perturbation theory induction energies 
which, as discussed in relation to Table II.1, occurs at -11 a.u. 
Because of the large repulsion at 6 - 140° due to the He-H interaction, 
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Fig. 2.2. Basis set dependence of the interaction energy for C„ 
geometry: Basis A for 9 = 0°, basis B 
for 9 = 0°, basis A for 9 = 180°, basis 
B for 9 = 180°. 
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Table I I .3 . Interaction energies (°K) for <t> = 0°.* 

R (a.u.) 
e 5 6 7 8 9 10 

0 2606.14 276.60 20.58 -3.05 -2.98 -1.47 
30 2044.04 237.92 20.15 -3.26 -3.55 -1.66 
60 837.23 101.05 6.60 -3.67 -2.67 -1.03 
90 621.14 76.45 5.52 -1.52 -0.98 -0.37 

120 7220.33 1178.99 169.48 21.63 2.02 -0.15 
140 15852.93 2474.73 352.67 46.22 4.86 0.01 
160 11942.20 1774.97 235.29 25.72 0.82 -0.86 
180 6467.19 838.07 85.42 1.78 -3.29 -1.67 

*See footnote * of Table I1.1. 

Table II.4. Interaction energies (°K) for j = 30°.* 

R(a.u.) 
8 5 6 7 8 9 10 

30 1967.52 226.04 18.50 -3.12 -3.29 •1.56 
60 840.15 102.82 7.62 -2 .9 i -2.32 -0.95 
90 563.52 70.95 6.26 -0.74 -0.70 -0.33 

120 4468.44 735.56 109.13 14.39 1.27 -0.22 
140 10343.96 1642.55 236.61 30.93 2.91 -0.23 
160 9735.36 1431.19 185.02 18.57 -0.18 -1.01 

See footnote * of Table I I . l . 
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Table I I . 5 . Interaction energies (°K) for <j> = 60° . * 

R(a.u.) 
9 5 6 7 8 1 9 10 
30 1813.06 202.06 15.16 -2.83 -2 .77 -1.35 
60 830.64 103.06 8.69 -1.84 -1 .77 -0.80 
90 555.09 72.21 7.22 -0.21 -0. .54 -0.31 
120 1608.87 240.09 30.45 2.74 -0, .32 •0.44 
140 3942.97 590.33 75.57 6.93 -0, .55 -0.73 
160 6138.CK, 850.97 97.83 5.87 -2. .03 -1.30 

See footnote * of Table I I . 1 . 

Table I I . 6 . Interaction energies (°K) for * = 90".* 

R(a.u. ) 
8 5 6 7 8 9 10 
30 1735.15 189.98 13.48 -2.70 -2.50 -1.25 
60 819.62 101.86 8.84 -1.47 -1.53 -0.73 
90 58,9.43 80.31 8.63 -0.06 -0.53 -0.31 
120 888.84 115.70 11.74 0.09 -0.71 -0.46 
140 2060.27 262.98 23.82 -0.87 -1.78 -0.93 
160 4670.12 606.53 60.25 0.34 -2.86 -1.44 

See footnote * of Table I I . l . 
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6 was sampled at the unevenly spaced values of 0, 30, 60, 90, 120, 
140, 160 and 180°. A total of 156 energy points were computed using 
basis set B. 

Figure 2.3 broadly summarizes the results contained in Tables II.3 
through II.6 in the form of equipotential plots for He incident in (a) 
the H-CO plane (<j> - 0°) and (b) the perpendicular bisector plane 
(• • 90°). For • * 0°, a slight attraction at R = 9 a.u. is evident as 
is the large repulsion at small ft due to the H atom. At <J> = 90°, however, 
the equipotential plot Is very nearly symmetrical about 8 = 90°. (Note 
that the opening of the zero contour 1s an artifact of having used the 
spherical harmonic expansion to generate the plots and reflects slight 
Inaccuracies In the fit functions.) These and other features are more 
clearly shown in the planar projections presented 1n Figs.2.4-2.7. The 
reduction of the strong repulsion due to the H atoms as He approaches 
for Increasingly large out-of-(HzCO) plane angles <t> 1s detailed in 
Fig. 2.4 for R * 7 a.u., in Fig. 2.5 for R = 9 a.u., and in Fig. 2.6 
for R • 10 a.u. Figure 2.7 presents another view of the R dependence 
of the Interaction for He incident in the plane of H.C0 and shows the 
pronounced decline of the repulsion due to H at R - 10 a.u. which 
portends the onset of the non-overlap region describable by multipole 
theory. From perturbation theory, the form of the long-range induction 
energy Is cos 8. At R « 9 a.u. (Fig. 2.5), this functional behavior is 
perceptible in the bisector plane approach (* » 90"). Note that by 
R • 10 a.u. (Fig. 2.6), the He-H Interaction is murh less repulsive 
and the long-range forces begin to dominate. 



XBL 753-6875 

Fig. 2.3. Contour plots of the interaction potential for He incident in the plane 
of HzCO (* = 0") and He incident in the bisector plane U = 90°)- Energies 
in °K. cm. denotes center of mass. 
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Fig. 2.4. Interaction energy vs 8 for selected angles + 
at R = 7 a.u. 
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F1g. 2.5. Interaction energy vs 8 for selected angles 
at R » 9 a.u. 
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Fig. 2.6. Interaction energy vs 6 for selected angles 4> at R = 10 a.u. 
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XBL 750-63 71 

Fig. 2.7. Interaction energy vs 8 for selected R at * 0\ 
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The HF in teract ion energies obtained using basis set B have been f i t 

to an expansion in spherical harmonics, v i z . 

^max J. 

V(R,e,») * ^ ^ ] ( 4 V 2 £ + 1 ) 1 / 2

 V j [ r o (R) Y ^ O , * ) (1) 

Ab i n i t i o energy points were supplemented by addit ional points determined 

by the method of splines to y ie ld a dense gr id to f a c i l i t a t e the 

determination of the radial coe f f i c ien ts . The HF energies were accurately 

reproduced using H = 12 by both least-squares and numerical in tegrat ion 

procedures. Formaldehyde symmetry leads to v.. (R) = v„ (R), i o r m an 

even integer, and to 49 unique nonzero terms through I = 12. The v ^ 

coef f ic ients are given in Table I I . 7 . These coef f ic ients have been f i t 
J;o the radial funct ion 

„ ia\ - / A e " B R - CR"6 - DR"7 , R < 10.5 a.u. , , , 
\ m W " \ 0 , R > 10.5 a.u. w 

A, B, C and D are l i s t ed in Table I I . 8 . 

D. Summary and Remarks 

Using a basis set o f better than t r i p l e zeta plus polar izat ion 

qua l i t y , a Hartree-Fock interact ion potent ial fo r the H,C0-He system 

has been determined fo r f ixed geometry of HoCO sui table fo r r i g i d rotor 

scatter ing studies. The potential energy surface is highly anisotropic 

for He incident in the plane of H~C0 and has a small (<3°K', minimum at 

R » 9 a.u. The ab i n i t i o surface agrees closely with in teract ion energies 

determined from perturbation theory fo r R > 11 a.u..which is ind icat ive 

of the onset of the non-overlap region. 
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Table I I .8 . Parameters for the HF interaction.* 

s. m A** B C** D** 

0 0 3.034 (7) 1.845 -4.793 (6) 5.635 (7) 
1 0 -2.483 (7) 1.751 1.226 (7) -1.186 (8) 
2 0 5.449 (7) 1.890 -6.558 (6) 7.320 (7) 
2 2 8.094 (6) 1.735 -3.628 (6) 3.789 (7) 
3 0 -1.056 (8) 2.586 -7.069 (5) 1.354 (6) 
3 2 -1.546 (7) 1.736 8.259 (6) -8.037 (7) 
4 0 -3.534 (6) 1.535 9.527 (6) -9.868 (7) 
4 2 1.853 (7) 1.759 -6.595 (6) 6.644 (7) 
4 4 1.891 (6) 1.774 -7.542 (5) 8.072 (6) 
5 0 9.850 (6) 1.748 -3.935 (6) 3.771 (7) 
5 2 -1.483 (7) 1.810 3.471 (6) -3.309 (7) 
5 4 -3.876 (6) 1.773 2.176 (6) -2.133 (7) 
6 0 -6.766 (6) 1.773 2.240 (6) -2 139 (7) 
6 2 9.097 (6) 1.867 -6.458 (5) 6.286 (6) 
6 4 5.635 (6) 1.849 -1.443 (6) 1.405 (7) 
6 6 1.054 (6) 2.084 -1.275 (5) 1.425 (6) 
7 0 2.065 (6) 1.736 -9.935 (5) 9.736 (6) 
7 2 -1.527 (6) 1.765 6.644 (5) -6.362 (6) 
7 4 -7.489 (6) 1.970 4.087 (5) -4.048 (6) 
7 6 -1.423 (6) 1.999 2.603 (5) -2.759 (6) 
8 0 6.528 (6) 2.340 -1.211 (5) 8.455 (5) 
8 2 -2.540 (6) 2.123 -6.083 (3) 2.294 (5) 
8 4 6.741 (6) 2.032 -1.058 (5) 1.096 (6) 
8 6 2.284 (6) 2.072 -1.670 (5) 1.855 (6) 
8 8 2.483 (6) 2.440 7.301 (4) -6.220 (51 
9 0 -1.018 (6) 1.827 1.612 (5) -1.453 (6) 
9 2 1.458 (6) 1.900 -5.968 (5) 5.435 (5) 
9 4 -3.530 (6) 2.011 9.729 (4) -9.621 (5) 
9 6 -3.14: (6) 2.154 7.576 (4) -8.948 (5) 
9 8 -1.829 (5) 1.749 

.u. and 

9.982 (4) 

energy units 

-1.005 (6) 
* 

Distance units are a 

1.749 

.u. and 

9.982 (4) 

energy units are °K. 
Values in parenthes is are powers of 10. 
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Table I 

I m A * * 

10 0 5.618 (5) 
10 2 -5.311 (5) 
10 4 1.374 (6) 
10 6 3.146 (6) 
10 8 2.936 (5) 

10 10 1.088 (6) 
II 0 1.532 (5) 
11 2 -2.037 (5) 
11 4 -2.004 (5) 
11 6 -2.502 (6) 
11 8 -4.106 (5) 

11 10 -1.562 (4) 
12 0 -3.809 (5) 
12 2 4.697 (5) 
12 4 -1.694 (5) 
12 6 1.825 (6) 
12 8 4.479 (5) 
12 10 2.446 (4) 
12 12 -2.358 (1) 

8. Continued. 

B C** 

1.909 -2.721 
1.916 1.599 
2.003 -4.401 
2.191 -2.969 
1.818 -8.167 

2.730 9.658 
1.681 -9.677 
1.763 7.733 
1.950 1.693 
2.206 1.243 
1.881 7.275 
1.691 1.133 
1.730 1.869 
1.811 -9.500 
1.982 2.674 
2.232 7.190 
1.913 -5.518 
1.734 -8.733 
1.273 3.639 

D** 

(4) 1.752 (5) 
(4) -1.309 (5) 
(4) 4.150 (5) 
(4) 4.099 (5) 
(4) 8.218 (5) 

(3) -8.540 (4) 
(4) 1.023 (6) 
(4) -7.618 (5) 
(4) -1.453 (5) 

(4) -2.111 (5) 

(4) -7.134 (5) 
(4) -1.127 (5) 
(5) -1.840 (6) 
(4) 9.246 (5) 
(3) -5.278 (4) 

(2) 5.528 (4) 
(4) 5.421 (5) 
(3) 9.300 (4) 

(2) -4.978 (3) 
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Since the Hartree-Fock model cannot describe dispersion contributions , 
which from perturbation theory should dominate the long-range interaction 
in the present system, correlation studies will be needed to complement 
results presented here. 
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APPEN&IX 
The induction contribution to the long rf.nge interaction between 

H»C0 and He may be written, 

V{R,e.«) = I 7. (4T./2*+1) , / 2 v. (R) l,Je.*) (A1J 

The lowest order nonzero terms are 

v 0 0 (R ) « - A / R 6 (A2) 

v 2 0 (R ) = v 0 Q (R) (A3) 

v , 0 (R) = -18 uo6 z z /5R 7 (Afl) 

v 3 Q (R) = (2/3) v 1 Q (R) (A5) 

v 3 2 (R) = - u a ( 8 / 1 5 ) 1 / 2 ( 6 X X - 0 y y ) / R 7 (A6) 

Here, a is the dipole polarizflinlity of He, u is the dipole moment of 

H2C0, and 8 ^ ( i i 2 xx, yy and zz) are the diagonal components of the 

quadruped moment tensor of H-CO. Note that the dipole-induced dipole 

contribution (R ) is two orders of magnitude larger than the quadrupole-

induced dipole term (R ) . 

The values of molecular properties used tc construct the entries 

in the third column of Table I I . 1 were taken from Ref. 15. They are: 

V = -1.1249 a.u. 8 = -0.1481 a.u. 

exx = ° - 1 7 7 3 a - u - 9

Z Z

 = -0-C292 a.u. 

Q 

An experimental dipole polarizabil ity (1.397 a.u.) was used for helium. 
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I I I . EFFECT OF ELECTRON CORRELATION 

A. Introduction 

In the previous chapter we discussed a Kartree-Fock (HF) interaction 

potential fcr the HjCOt'Ajl-Hej's) systea. It is known that the HF method 

describes only the average interaction between electrons of colliding 

nolecules. Hence for neutral-neutral interactions, the HF Method cannot 

provide an accurate description of the interaction **ergy in regions where 

the dispersion interaction plays an important role, since the dispersion 

Interaction arises froa the instantaneous mutual response of one molecule 

to another. Therefore, a correlated calculation is required to yield 
4 20 this contribution to the interaction energy. ' Because accurate 

scattering cross sections at very low energies are sought for the 

HjCO-he s y s t e a , 1 3 ' 3 4 b ' 3 5 i t is important to determine the correlation 

correction to the HF potential. 

It is useful to divide the H.CO-He interaction potential intn three 

parts—a highly anisotropic repulsive region at small internuclear 

separations, a region containing the energy minimum at intermediate 

distances, and a long-range region. The dominating forces in these 

regions have different physical origins which dictate the use of selected 

methods for each. Since electron correlation is only a small fraction 

of the interaction energy at short range (where closed-shell repulsive 

forces dominate), the potential energy surface 1n this region is believed 
19 to be well described by our previous HF results. In the non-overlap 

region, perturbation theory estimates show that the dispersion 

interaction is dominant and that induction contributions (obtainable in 

the HF approximation) are negligible. Little is known a priori about 
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the region near the minimum. Since the HF well depth is quite small 
(~3*K), it Is clear that the CI contribution will significantly alter 
the potential In this region. Therefore, CI calculations are needed 
to complete the Interaction potential for the H2C0-He system. 

Since only small van der Waals attractions arise from dispersion 
forces, special care must be given to the type of CI calculation 
performed. Of course, one would like to determine the correlation 
contribution to the Interaction energy from a full CI claculation but 
that Is at present economically unfeasible for most systems. Extensive 
work en the h> 2 system, 3 , 2 3 , which similarly has a small van der Waals 
minimum, guides our approach to this problem. By carefully choosing 
configurations for the He 2 system, the dispersion energy was calculated 

3 23 31 directly (D1-CI).* " The main advantage of this method is that the. 
error due to lack of completeness of the basis set (superposition 

23 error) Is eliminated. However, it does not take into account change 
In Intramolecular correlation of each molecule with inter-nuclear 

23 31 
distance. ' Since the change in Intramolecular correlation increases 
with decreasing intermolecular distance, this method overestimates the 

23 
well depth. As shown by Liu a"d McLean, J the Intermolecular and the 
Intramolecular correlations are not additive, thus one cannot add the 
dispersion energy and the intramolecular correlation to obtain the 
total CI contribution. To Include intramolecular correlation, a CI 
calculation nay be performed which Includes all single and double 
excitations from the HF reference state (S+0 CI). Such a computation 
approximates the total CI energy including dispersion and intramolecular 
correlation energy. It also includes the superposition error, however, 



-29-

which generally leads to an a r t i f i c i a l increase in well depth, for 

He2 a fu l l CI was carried out yielding a well depth of -10 .7°K 2 3 b that 

is bracketed by the DI-CI value ( 12 .1 °K) Z 3 a and the S+D CI l imit result 

(-9.3°K). Unfortunately, as of this writ ing, there Is no basis upon 

which to presume that this bracketing wi l l hold rigorously for other 

systems. However, i t does show that interaction energies obtained by 

the various methods are roughly equal. For the larger H.CO-He system, 

i t is economically feasible to perform only Oi-CI and S+D CI calculations. 

B. Description of Calculation 

To obtain the CI energy, we i n i t i a l l y chose to calculate the 

dispersion energy by the following procedure (Oi-CI): (a) compute the 
36 HF energy of the system, (b) localize the occupied orbitals, (c) generate 

configurations that include single and double excitations corresponding 

to removal of one electron from a H,C0 orbital and one electron from 

the He orb i ta l , and (d) place the excited electrons into al l possible 

spin and symmetry allowed combinations of HF virtual orbitals. 

( In a l l Di-CI calculations, the two lowest orbitals, which correspond 

to 0 and C Is cores, are frozen, i . e . , no excitations are permitted.) 

By calculating the dispersion energy in this manner, no superposition 

error arises. Using this method at R = 8 and 11 a.u. for both 6 = 0° 

(O-atom end) and 180" (C-atom end) yields an interaction at the C-atom 

end that is twice as attractive as that at the 0-atom end; see Table I I I . l . 

This finding is contrary to what one would expect from HF results where, 

for fixed R, the interaction at the C-atom end was more repulsive than 

that at the 0-atom end. To verify these values, S+D CI calculations 
42 were performed at the same geometries, again holding the lowest two 
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orbitals fixed. The S+D CI Interaction energies were in close accord 
23 with Di-CI values. As in the He. study, the Di-CI procedure yields 

a larger well depth than the S+D CI method. 
In the HF H.CO-He study, a very large basis set (basis 8) was used 

to reduce the superposition error. Since the expense of using basis 
B for the two types of CI calculations described above is presently 
prohibitive, basis A was reexamined. At S = 8 a.u. and 3 = 0 ° , the 
superposition error Is at most 7°K. Since Di-CI and S+D CI computations 
are 1n reasonable agreement using basis A, we feel that +!,e super­
position error is likely not larger than 7°K for the gswetrles 
considered here. For these reasons, it is felt that basis set A should 
provide an adequate description of the well and long-range regions and, 
therefore, is used for the remainder of the calculations. 

Although the D1-CI and S+D CI methods yield comparable results, the 
available S+D CI computer code 1s faster and, therefore, was the one 
used for the bulk of the calculations. CI computations were performed 
at 14 geometries: 6 = 0 ° and 180° for R = 5, 7, 8 and 11 a.u.; 6 = 90°, 
* = 0° (plane of HgCO) for R = 5, 3 and 11 a.u.; and e = 90°, <t> = 90° 
(bisector plane) for R = 5, 8 and 11 a.u. The number of configurations 
included in the CI wavefunctions depends, of course, on the molecular 
point group. As discussed elsewhere, each configuration is a pure 
spin eigenfunction with S = 0. The geometries 8 = 0 ° and 180° correspond 
to C 2 v symmetry (19452 configurations in the S+D CI), 9 = 90°, * = 0° 
corresponds to C symmetry (37779 configurations) and 6 = 90°, 4> = 90° 
also corresponds to C symmetry (34419 configurations), but a different 
plane of symmetry is involved. 
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C. Results and Discussion 
Correlation energies are given in Table II1.1. These values do 

not Include the HF Interaction energy and thus must be added to the 
HF results to get the complete interaction potential. Because of the 
limited information available for 8 » 90°, no correlation contribution 
to the <Ji dependence can be ascertained. 

To facilitate the use of the energy surface in scattering calculations, 
the correlation contribution is expanded in spherical harmonics, Following 
Eq. (II.1) the angular dependence of the correlation contribution is 
expressed in the form 

V(R,6) = v 0„(R) + v 1 Q(R) cose + \ v 2 0(R)(3cos 26 - 1) (1) 

Inverting Eq. (1) gives 

v ( R) = V(R.0°) * V(r.l80°) + 4V(R.90°) ( 2 ) 

V i o ( R ) , V(R,0°) - V(R,180°) ( 3 ) 

and 

v ( R ) - V(R.0°) * V(R.180°) - gV(R.90°) ( 4 ) 

FromEqs. (1) through (4), the correlation contribution can be interpolated 

for al l desired values of R and e. The potentials V(R,8) have been f i t 

to the radial function 

V(R,e) = Ae"B R - CR"6 , (5) 

where A, B and C for 6 = 0°, 90° and 180° are given in Table III.2. 
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Table I I I . l . Correlation energies (E C,-E H F) for H2C0-He.* 

R(a.u.) 0 
0° 
0° 

90° 
0° 

90° 
90° 

180° 
0° 

5 -0.000891 -0.000737 -0.000709 -0.002247 
-281.4 -232.7 -223.9 -709.6 

7 -0.000171 — — -0.000294 
-54.0 . . . . . . -92.8 

8 -0.000064 -0.000040 -0.000026 -0.000115 
-20.2 

(-22.9)** 
-12.6 -8.2 -36.3 

(-41.9) 
11 -0.000005 -0.000001 -0.000001 -0.000009 

-1.6 
(-2.9) 

-0.3 -0.3 -2.8 
(-4.9) 

Order of entries in the table: energy in a.u. and °K, where 
1°K = 3.1668x10-6 a.u. 

Energies (°K) in parenthesis are from the Di-CI calculation. 
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Table I I I . 2 . Parameters for the correlation 
interaction.* 

e A** B c** 
0° -1.30529 (4) 0.80863 8.19754 (5) 

90° -5.58237 (4) 1.11606 2.08846 (5) 

180" -8.00165 (4) 1.01991 3.46152 (6) 

* 
Distance units are a.u. and energy units 

are °K. 
Values in parenthesis are powers of 10. 
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Contour plots of the HF and CI interaction energies in the plane 
of the HgCO ($ = 0°) and the bisector plane (4> = 90°) are given in 
Fig. 3.1. As expected, the strongly repulsive region is virtually 
unchanged by including electron correlation. The corrtlation con­
tribution increases the well depth from 3°K in the HF surface to 
35-40°K and shifts the minimum inward from 9 a.u. to 7.5 a.u. 

Based on the close agreement of the Di-CI and S+D Ci calculations 
in the well region (R = 8 a.u.), the final CI interaction energies 
are believed reliable to ~20%. 

D. Summary 
A CI calculation has been performed to ascertain the role of electron 

correlation on the interaction potential between a rigid formaldehyde 
molecule and a helium atom. Efforts were concentrated on the region of 
the eiergy minimum and at large intermolecular distances where correlation 
effects are expected to have their largest effect. 

Two types of CI calculations ware carried out. In one method 
(Di-CI), the dispersion energy was calculated directly by judicious 
selection of configurations. In the second procedure (S+D CI), the 
interaction energy was determined from a CI wa '"function built from 
inclusion of all single and double excitations from a HF reference 
state. Interaction energies obtainsd by the two procedures were in 
reasonable agreement. It is noted that the Di-CI method yields a 
somewhat larger well depth than the S+D CI procedure as anticipated 

23 from previous He, studies. CI interaction energies in the vicinity 
of the minimum have an estimated uncertainty of 20%. 
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XBL 758-6878 
Fig. 3.1. Contour plots of the interaction potential for He 

incident in the plane of H2CO (* = 0°) and He incident 
in the bisector plane (<f> = 90°). Ci interaction 
potential. HF interaction potential. Energies 
in °K. c m . denotes center of mass. 
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To facilitate scattering studies, the CI interaction energies were 
fit to a spherical harmonic expansion. Three terms were used to 
describe the 8 dependence; no significant out-of-(H,C0) plane 
dependence $ was obtained. The effect of correlation on the well region 
is to deepen the well from ~3°K to 35-40°K and to shift the minimum 
inward from a H-CO-He center of mass separation of 9 to 7.5 a.u. 
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IV. DETERMINATION OF CROSS SECTIONS 
A. Introduction 

In this chapter an Arthurs and Dalgarno type coupled channel (CC) 
formalism is developed for the scattering of an asymmetric top by an 
atom. With the interaction potential described in Chapters II and 
III, the CC equations are integrated to determine the rotational 
cross sections of ortho H~C0. 

B. Asymmetric Top 
Before treating the scattering of an asymmetric top by an atom, 

the properties of the asymmetric top wavefunctions will be briefly 
summarized. An excellent detailed discussion is given by Davydov. 

It is convenient to define two coordinate systems: (1) a space 
fixed (SF) frame denoted by primes and (2) a body fixed (BF) frame 
(unprimed) which is attached to the center mass of the top. The BF 
axes are taken to be coincident with the principal axes of the top. 
The orientation of the BF axes with respect to the SF axes is given by 

28 the three Euler angles (aBy)-
The rotational Hamiltonian of the top is 

liZ J2 J 2\ 

= AJ 2 + (B - A) J 2 + (C - A) J 2 . (2) 
2 Here J is the square of the angular momentum operator J, J. (i = x,y,z) 

are the components of J along the BF axes, I- are the principal moments 
of inertia, and A = g-j-, B = ji~ a n d c = zi~ a r e t n e rotational 
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constants. To solve the Schroedinger equation for the Hamiltonian in 
(2) it is convenient to expand the asymmetric top wavefunction in a 
basis set of symmetric top (where I = I y) wavefunctions, \ji. . . The 
asymmetric top wavefunction is, therefore, expanded as 

*T
 J (<*y) - 2 ^ *kVjm.k ( a 6 Y> (3) 

k=-j J 

where 

^-ilWi *jm.k^) = y^-i.^ k(„ B Y) (4) 

Here D^ k(a6y) is an element of the rotation matrix; the ajL are 
J 2 

expansion coefficients (to be determined); j(j + 1) h , m.h (|m.| « j), 
2 and kti (|k| < j) are the eigenvalues of J , J ,(SF projection), and 

J (BF projection) respectively; and T labels the asymmetric top 
2 eigenfunctions (see below). Note that J and J , are conserved for 

both symmetric and asymmetric tops while J is conserved only for the 
symmetric top. The fact that J is not conserved results in mixing of 
the (2j + 1) different values of k corresponding to a given (j, m.) 
to form (2j + 1 ) states of the asymmetric top. These asymmetric top 
states are labeled by an index T as indicated above. 

Substitution of (3) into the Schroedinger equation leads to 

k

l £ kxK j k'W^m j .k > - E j A ' k h ° (5) 

for (2j + 1 ) values of x. Tho matrix elements of X over the symmetric 
top wavefunctions canbe found in Davydov. 
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The (2j + 1) equations given by (5) can be simplified by employing 
the symmetry properties of the Hamiltonian. The Hamiltonian is 
invariant under the group of the following four coordinate transformations: 
(1) identity transformation, (2) x + -x, (3) y + -y and (4) z + -z. 
These transformations *orm a representation of the Klein Four Group 
which has four one-dimensional irreducible representations. By 
transforming the basis of symmetric top wavefunctions to a set of 
symmetry adapted functions, which transform according to the irreducible 
representations of the Four Group, the Hamiltonian matrix (see Eq. (5)) 
becomes block diagonal, thus decoupling the system of Eqs. (5) into 
four smaller systems. The four classes of symmetry adapted functions, 
X, are 

Xkf = ^fjm.k + <-> 5 * j B j - k ] • k o d d ' s = 0 or 1 , (6a,b) 

w - ̂ ^ [w+(-)S v J ; k evsn-s = ° o r K 6C" 
OK 

Note that there are four types of functions (k is odd ox even and 
s = 0 or 1), each of which transforms according to a different 
irreducible representation. The expansion (3) can now be restricted 
to sums over a single class of symmetry adapted functions, 

odd or 
even k 

O - 12 "kr̂ ks 
k=0 or 1 

where the state index T now also implies odd or even values of k 
and a value of s (0 or 1). The system of Eqs. (5), therefore, becomes 
four smaller systems of the type 
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odd or 
even k 

£ t'kV'Vs^Ys'-Vk'k^0 • < 7 

k=0or 1 

These sets o f equations can be solved by standard techniques in l inear 

algebra to y ie ld the eigenvalues s . and expansion coef f ic ients bj; 

o f the asymmetric top. 

The group described previously does not represent a l l the 

synmetry properties of the asymmetric top Hamiltonian. The Hamiltonian 

also has inversion symmetry (simultaneous inversion of the x , y and z 

coordinates), thus the f u l l group o f the top is D~. = CU®i. (D- is a 

rea l iza t ion of the Four Group and i represents the inversion group.) 

In Section I I I th is addit ional symmetry w i l l be used to s impl i fy 

the coupled channel scatter ing equations. For reference the inversion 
jm, 

par i ty of $ J i s given by 

F*T

 J - ( - ) J + k + S * T

 J (8! 

where F is the inversion operator. Hence the symmetry adapted 
functions of (6) are automatically symmetry adapted functions of the 
larger group G.-. 

For the case of Hr,C0 there is the additional synmetry of inter­
changing the identical H nuclei resulting in ortho (symmetric) and 
para (antisymmetric) couplings of nuclear spins. Since there is no 
interaction that couples nuclear spin states during collisions with 
He, ortho and para H ?C0 can be treated as separate species. The 
astrophysical observations of interest in this study are cf ortho 
H,C0; therefore, only these states need be included in the scattering 
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calculations. Since the H nuclei are Fermions, the total wavefunction 
must be antisymmetric under their interchange. The nuclear wavefunction 
is symmetric, and therefore the rotational wavefunctions must be 
antisymmetric. Letting P be the operator that interchanges H nuclei 
then 

jm. k jm. 
P<fT

 J = (-)* * T
 J (9) 

jm. 
where again T implies odd or even values of k. Since $ J must be 
antisymmetric for ortho H,C0, Eq. (9) shows that only states with k 
odd (functions given by (6a,b)) are required in this study. 

Using the rotational constants of Oka 2 6 (A = 38835 MHz, B = 43003 MHz, 
and C ~ 282029 KHz) to evaluate the Hamilton!an matrix elements, the 
energy levels of ortho H„C0 were obtained from the solution of (7). 
These energy levels accompanied by two labeling schemes are given in 
Fig. 4.1. For the lower (upper) state of each doublet s is 1 (0). 

C. Theory of Atom-Molecule Scattering 
In this section, the Arthurs and Dalgarno (AD) coupled channel 

or close coupling (CC) formulation is presented for the case of 
scattering of an asymmetric top by an atom. For simplicity the atom 
is assumed spherical (in a S state) and the top is also taken to be 
in a singlet state so that the problems associated with the coupling of 
spin angular momentum cart be neglected. Low kinetic energies will be 
considered; therefore, vibrational and electronic excitation is not 
possible. 
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Ortho H 2CO 
Energy Levels and Transitions 
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XBL 758-6983 

Fig. 4 .1 . Energy level diagram for ortho HjCO with the 
dlpole allowed transitions designated by arrows. 
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The Hamiltonian of the total system (top plus atom) in center 
of mass coordinates is 

if = (-h2/2ii) V* + Jrjrtt(R') + V{r,R') , (10) 

where the terms from left to right are the kinetic energy operator for 
the relative motion of the top and the atom, the rotational hamiltonian 
(Eq. (2)) of the top, and the intermolecular potential. Here n is the 
reduced mass of the total system, r H (r,9',<t') is the position of the 
atom in a space fixed (SF) frame and R1 2 (OBY) is the orientation of 
the top in the SF frame. 

To solve the Schoedinger equation 
(K- E t o t ) f = 0 (11) 

an expansion technique is used. The total angular momentum 0 and its 
SF z'projection J , * M are conserved in this system. AD found it 
convenient to couple the rotational angular momentum (j) of the top 
and the orbital angular momentum (I) of the colliding system together 
to form eigenfunctions of J and J ,. Following AD the radial and 
angular dependences are separated and the wavefunction is written as 

yvx' 
(12) 

x^. T,(r',R<) 
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where _JL^ _ L ^ 

" V r , ) v ( R , ) • 
Here, C(j£J;iiijiî M) is a Clebsch-Gordan coefficient, V^ (?') is a 
spherical harmonic describing the relative angular momentum of the 
colliding system and 4 J(R') is the asymmetric top function given 
by Eq. (3). Srbstltutfng Eqs. (10), (12) and (13) Into (11), multiplying 
on the left by ViV?«„ ,,, integrating over ?' and R', and making use of 

28 orthonormality relations, yields the CC equations 

[d 2/dr 2 - V{1> + D / r 2 + k 2, T.] uj. t. T l < i, t t(r) ( M ) 

(*V> f g£yiv|v|jTv> " ^ v W * 
where 

" j V ' 2^ EtOt " « j ' , •>** • < 1 5 > 

The coupling matrix elements are defined by 

<j'tV|V|j'T'T"> =jy*dR ,dr ,^*, T.(? ,,S') (16) 

*V(r,6')V*| f t.(f',i') 

and are independent of H. For an asymmetric top and an atom the 
Interaction potential can be expressed as (see Eq. II.1) 

V(r.R') = J£ J2 («»/»+! > V 2 vAV<r> V 9 ' * ' 07) 
X=0 v=-A 
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where 6 and <J> are the angles that define the posi t ion of the atom 

with respect to the top. Since (6,$) are not the angles used previously 

and integrat ion over angles i s required by (16), the group representation 
39 A 

property is used to wr i te V. {a , * ) as a function o f the angles r' and 
R'. The potent ia l is a l ternate ly wr i t ten as 

V(r .R ' ) = ^ ( 4 i r / 2 X + l ) , / 2 (18) 

Substitution of Eus. (3), (13), and (18) into (16) yields the explicit 

form of the coupling matrix elements 

J ' J" 

<j'*viviw> - (-) j , + j"- J £ 24:T.aJ::T„(-)k"y;vx,k,,k.(r) 
k ' = - j ' k "= - j " X 

x [ ( 2 j ' + D ( 2 j " + D(2S.' + l ) ( Z r + 1 ) ] 1 / 2 (19) 

Iv r x\/y j" x \ iy v j) 
\0 0 0 / \ k ' -k " k " - k / ( 1 " j " X) 

The ( : : : ) are 3- j symbols and { : : : } is a 6- j symbol. 2 9 

Symmetry considerations s impl i fy evaluation o f the coupling 

matrix elements. Conservation of par i ty requires the coupling matrix 

elements (19) to vanish unless 

^j'+k+s'+r = (_ )j"+k"+s"+£" ( 2 0 ) 

(Recall from Section II that T implies odd or even values of k and 
s to be 0 px 1.) Hermiticity of the potential results in 
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< j M r T " | v | j ' r T ' > = <j , 4 , T , |v|j"4"T"> . (2 i ) 

The boundary condition on the radial function 

J /2 

-(kjt) 4*V«JIT ™P™V " W2>] 

defines the scattering matrix S . For the j'r' *• JT transition the 
integral cross section is given by 

J+j J+j' 

Z> + u £ E (23) 

M+ »%&'* A&i\t*ti-v\ 
IT 1?, . . . I 2 
1 VrT ' - j J l - r 1 

where 

T j ' i 'T ' i- j£T = 6 j j , 4 H , S T T ' " V l V + j f t T • (24) 

The cross section in Eq. (23) has been obtained by averaging over 
initial projections m. and summing over final projections m.'. Since 
the S matrix is unitary the reverse cross sections can be obtained 
from the reciprocity relation 

(2j + 1 ) k? T 

° * " v " w i > k J v ">'*'** " ( 2 5 ) 
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D. Description of Scattering Calculations 
The cross sections for rotational excitation of ortho H.CO by collision 

with He are determined by integrating the coupled channel equations (14). 
In order to carry out the integration it is necessary to 
specify the total energy of the system E. t (see Eq. (11)), the number 
of internal H,C0 states, and the integration procedure. For the 
astrophysical problem Boltzmann averaged rate constants are required 
(see Section VI), and accordingly 12 values of E in the range 
20° < E t Q t < 95°K were chosen. (See Table IV.1 or IV.2 for a list of values.) 
The sums on the right hand side of the CC equations (14) extend, 
In principle, over an infinite number of (j,T,£) combinations. Obviously, 
this is not computationally feasible so the sums must be restricted, 
keeping only the important terms. This is done by chosing a basis of 
internal ortho H,C0 states (J,T) and then selecting the values of 
orbital angular momentum £ permitted by the triangle inequalities of 
angular momentum coupling for a given value of J (total angular momentum). 
For this calculation a basis set of 16 ortho HpCO states with 
! < j < 5 were chosen. This resulted in a maximum of 62 channels 
((J,T,£) combinations) coupled together. At E t t's less than 50°K 
there are 4-8 HgCO states energetically accessible in the asymptotic 
region. The CC equations were integrated by Gordon's method with 
the tolerance parameters VHAX, TMAX, TOLLO, TOLHI, CTOL set at 
10" 4 and the parameters STEST and UTEST set at 10" 3. The interaction 
potential (Eq. (17)) is the sum of the Hartree-Fock contribution 
(Eq. (II.1)) and the correlation contribution (Eq. (III.l)). 
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E. Results 
The elastic cross sections for the si" lowest (j < 3) ortho 

HoCO states are given in Table IV.1 and displayed as a function of 
Etot 1 n F n 9 - 4 - 2' T n e ' " n e 1 a s t i c cross sections are given in Table IV.2. 
Selected inelastic cross sections are plotted in Fig. 4.3. Reverse 
transitions were obtained from the reciprocity relation (25). 

Resonances occur at ~20.2, 32.7 and 47.7°K in many of the cross 
section curves. These energies are approximately equal to the internal 
energies of the j = 2, 3 and 4 doublets, respectively. 



Table IV-1- Coupled channel e las t ic cross sections.* 

State 20.1668 25.1668 27.6668 30.1668 32.6668 35.1668 37.6668 40.1668 42.6668 47.6668 70.1668 95.1668 

235 229 213 345 189 179 170 163 152 115 93 
257 241 231 418 194 182 174 167 154 115 93 
267 282 249 430 217 205 197 186 178 122 96 
308 306 263 414 228 211 204 195 187 124 97 
... ... ... 1620 289 277 255 244 259 135 103 
... ... ... .... 253 28P 293 281 353 142 106 
... ... ... — ... ... ... 950 162 112 
— — — — — 178 116 

*Un)ts are I 2 . 
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XBL 578-6879 
Fig. 4.2. Elastic cross sections. 



Table IV.2. Coupled cnannel Inelastic cross sections. 

Transition 20.1668 25.1668 27.6668 30.1668 32.6668 35.1668 37.6668 40.1668 (2.6668 47.6668 70.1668 95.161 

V ^ «• 
' l l * 1 2 
'11*11 
'11*13 
' l l - J 1 2 

'10^11 
' i n - 3 „ 

'10-14 
'10*13 
V ' l l 
V | 3 
2„*3„ 

'12^13 

' l l ^ l S 

hi"*,, 
3„-4„ 

25.6 17.8 15.1 45.5 12.3 11.5 11.1 10.1 9.6 7.6 6.6 
22.7 23.3 23.3 37.6 20.2 18.1 17.1 16.7 16.1 10.5 8.5 
12.2 11.8 13.S 17.1 11.2 5.5 8.9 8.0 7.7 5.7 5.2 

.... 4.8 4.1 5.4 6.3 6.4 8.0 5.4 4.6 
0.3 0.6 0.8 1.2 1.6 0.9 1.3 

— •:•• — 3.0 3.5 3.8 

.... — ... — ... 0.9 1.2 
13.4 13.8 15.4 33.1 11.5 9.9 9.7 9.2 8.5 6.3 5.4 
14.2 13.3 16.0 34.9 14.3 12.4 11.5 10.3 8.9 8.4 7.8 

.... 2.5 7.6 8.6 7.6 7.2 7.0 4.7 3.4 
1.6 2.4 2.6 3.7 4.7 4.5 4.3 

.... .... — ... — 3.0 2.S 2.2 

— — — — 0.6 0.7 
24.8 19.4 19.9 92.4 13.1 10.4 8.4 7.1 5.5 3.5 2.8 

.... 10.8 11.9 13.3 13.3 12.9 20.0 11.6 11.1 

.... 2.1 3.3 3.7 3.7 9.5 3.4 3.1 

.... — — — 4.2 3.0 3.3 

— — — 1.1 1.3 

.... 7.6 7.1 7.9 6.6 7.3 12.3 3.7 2.8 
8.2 11.5 12.1 10.4 20.2 9.5 8.2 

.... .... .... .... 4.2 3.9 3.4 

... 3.3 3.6 

.... 9.6 10.2 8.B 9.2 25.0 2.8 2.1 

.... ... .... 14.1 11.9 10.7 

... 2.4 2.4 

.... .... .... — .... .... 12.7 2.6 1.9 

.... — 10.0 9.E 

... 2.7 1.8 

*Unlts are I 1 . 
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Fig, 4,3. Inelastic cross sections for initial states 
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V. COOLING OF INTERSTELLAR FORMALDEHYDE 
In order to test the collisional pump as a mechanism for cooling 

of interstellar H-CO, the rotational cross sections given in Chapter IV 
will be used to determine excitation temperatures. For simplicity 
we will assume that the only processes of importance are dipole 
radiation and collisions. Higher moment transition probabilities are 
several orders of magnitude smaller than dipole ones, and hence they 

the 
13 

14 are neglected here. It will also be assumed that the interstellar 
medium is rare enough to neglect radiative trapping. 

Astrophysical observations indicate that the 6 cm (j = 1) and 
2 cm (j = 2) doublets of ortho H,C0 are cooled, i.e., the excitation 
temperatures T between states 1 and 2 (see Fig. 4.1) and between 
states 3 and 4 are less than either the isotroi ic background temperature 
( T i s o = 2.7°K) or the kinetic temperature (10° < T k < 20°K). The 
excitation temperature is defined by assuming a Boltzmann distribution 
for the populations of two internal states, viz, 

(1) •Hi 9i e x P ( - V k
B
 Texc? 

"j " 9j e * P < - E / k B Texc> 

where n., = population of the 1 internal state 
g. = degeneracy of the i internal state 
E., = energy of the 1 internal state 
kg = Boltzmann's constant. 

Then if the populations of two states are known the excitation temperature 
characterizing them can be determined. 
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The populations are determined by solving the equations of 

5 statistical equilibrium, 

dr = 2 > j i + B j i p ( v i j ) + [ H e ] k j i } n j <2» 
J r l i 

-E A i j + v ( v u ) + C H e ] k i j 

where A., is the Einstein coefficient for spontaneous dipole emission 
from state i to state J (Ei > E.) (Table V.l), B-. is the Einstein 
coefficient for induced dipole emission and absorption (Table V.2), 
P(V-J) is the energy distribution of radiation at the isotropic background 
temperature (2.7°K), v.., = \E- - E.|/h and [He] is the helium con-

14 centration. Here k.. is the collisional rate constant for transition 
from state i to state j obtained by Boltzmann averaging the cross 
sections (as determined in Chapter IV) as follows (Table V.3^: 

W-(=SJy>)7'». k,-,(Tj = f — ^ — r l / Eo j V i(E) e ^ ^ d E (3) 
0 

where E = E. t - E.. is the relative translational energy. 
Assuming a kinetic temperature and a helium concentration, the 

system of equations defined by Eq. (2) is solved for the populations. 
Excitation temperatures are then calculated using Eq. (1). In the 
limit [He] •+ 0, i.e., radiation processes only (no collisions), all 
the excitation temperatures reduce to T. . As [He] •* °° the collisional 
processes become dominant and all T •* T. . At helium concentrations 
between these limits T lower than both T. and T^ can occur. 



Table V.l. Spontaneous emission coefficients matrix A.* 

I n i t i a l 
State hi ho 212 

Final 
2 11 

State 
3 13 312 4 13 12 

hi . . . ... ... ... . . . — — ... 

ho 0.4 ... — — — — — — 
212 5261.2 .... — — — — — . . . 
z n — 6420.2 3.2 — — — ... — 
3 13 

— ... 22739.4 ... — — ... . . . 
3 12 — ... . . . 27504.1 11.9 . . . ... . . . 
4 13 — — — . . . 58007.1 — ... — 
4 12 — — — . . . — 71264.6 35.4 . . . 

* -8 1 
Units of 10 (molecule -sec) . 



Table V.2. Induced radiation times radiation density matrix B-p.* 

I n i t i a l 
State ' l l ho 212 

Final State 
211 3 13 312 4 13 4 12 

hi — 3.9 781.2 — — ... ... ... 

ho 3.9 — — 791.7 — — — — 
212 468.7 — — 10.8 754.6 ... ... ... 
211 — 475.0 10.8 — — 709.7 — ... 
313 — — 539.0 — ... 18.2 509.4 ... 
312 — — — 506.9 18.2 — — 438.0 

4 13 — — — — 396.2 — — 26.0 

4 12 — — — — ... 340.7 26.0 — 

* -8 -1 
Units of 1J (molecule -sec) . 



Table V.3. Rate constants* at \ = 15°K. 

Final State 
I n i t i a l 

;tate ' l l ' lO 212 
zn 313 3,2 414 4 13 

111 
— 5.5 5.0 2.5 1.3 0.2 0.4 0.1 

' lO 5.6 — 3.1 3.4 1.3 0.8 0.3 0.0 

212 4.7 2.8 — 3.9 3.8 1.3 0.6 0.1 

2 11 2.5 3.3 4.1 — 2.0 3.4 0.6 0.3 

3 13 1.7 1.7 5.3 2.7 — 3.4 2.8 0.3 

3 12 0.3 1.1 2.1 4.9 3.8 — 1.5 1.4 

4 14 1.0 0.8 1.6 1.7 5.4 2.6 — 0.5 

4 13 0.2 0.1 0.3 0.9 0.7 2.9 0.6 — 

In units of 10 cc/molecule-sec. 
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Figure 5.1 displays cooling curves (T vs [He]) at 

T f c = 5, 10, 15 and 20°K. Cooling of both the 6 cm-(T ] 2 ) and 2 cm 

(T , , ) doublets i s seen to occur at helium concentrations between 
2 5 - 3 

10 and 10 cm for k inet ic temperatures between 10 and 20°K but 

not fo r 5°K. The two remaining curves, T , , and T , . , are exc i ta t ion 

temperatures fo r pairs o f states where dipole radiat ion is allowed. 

Having established that the 6 cm and 2 cm doublets of H,C0 are 

cooled by a co l l i s i ona l pump, the question of the re la t i ve importance 

o f the various t rans i t ions remains to be f u l l y elucidated. By varying 

the number of states used in the equations of s t a t i s t i c a 1 equi l ibr ium 

( l i m i t o f summation in Eq. ( 2 ) ) , the e f fec t o f the d i f fe ren t j doublets 

on the cooling can be assessed (see Fig. 5 .2) . Neglecting the j = 4 

levels caused less than 0.2°K changes in the e f fec t i ve temperatures 

fo r He concentrations at which cooling occurs. Omission of the 

j = 3 leve ls , however, resulted in np_ cool ing. Thus the j = 3 ortho 

doublet plays a fundamental ro le in the cooling of H.CO. At low He 

concentrations (£10 cm" ) radiat ive contr ibut ions are found to dominate 

co l l i s i ona l dipole-allowed t rans i t ions so that rate constants k 1 2 , k 1 3 , 
k 2 4 ' ^34* ^35* k 46 a n d k 56 a r e °^ m ' n o r importance. Ratios o f dipole 

forbidden t rans i t i ons , e . g . , k 2 5 / k , 6 , are the indicators of cool ing. 

The large ra t i o o f koK^iK " 6 (Table V.3) implies that t rans i t ions 

from the j = 1 to the j = 3 doublets are the primary components of the 

cooling mechanism. 
13 For co l l i s ions o f the isotopic homologue H ? CO the Born-Oppenheiner 

interact ion potent ia l is the same as before and a l l differences are 

contained in the dynamical treatment. They involve small changes in 
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Fig. 5.2. Excitat ion temperatures as a function of He density wi th various numbers 

of internal states included in the equations of s t a t i s t i c a l equi l ibr ium. 
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the center of mass of H,C0, the reduced mass of the total system and 
the energy level spacing. These differences are expected to have little 
effect on the scattering cross sections. In agreement with observations, 

13 these calculations indicate that the j = 1 doublet of H, CO is cooled. 
By a series of accurate quantum mechanical calculations, the 

collisional pump is confirmed as a cooling mechanism for the 6 cm 
(j = 1) and 2 cm (j = 2) doublets of ortho H 2C0. The j = 3 levels are 

i. found to be an integral part of the pumping scheme. 



- 6 2 -

ACKNOWLEDGEMENTS 

I wish to express my grat i t i ide to Professors Will iam H. M i l l e r and 

Henry F. Schaefer, I I I , both o f whom heve given me guidance during 

my years as a graduate student at the Universi ty of Cal i forn ia in 

Berkeley. In add i t i on , I would l i ke to express my sincerest thanks 

to Dr. Wil l iam A. Lester, Or. at the IBM Research Laboratory fo r a 

very rewarding in terac t ion 'uring the 2 years that we worked together, 

While in graduate school I have had rewarding interact ions wi th 

both Professor M i l l e r and Schaefer's research groups and my research 

associates at IBM. To these many fr iends and co-workers I say "thank you". 

Especially I would l i k e to thank David Yarkony fo r his continued 

in te res t i n my work and fo r c r i t i c a l l y reading my manuscripts. 

This work has been performed under the auspices o f the U. S. Energy 

and Research Development Administrat ion. In addit ion IBM has provided 

f a c i l i t i e s under a j o i n t study agreement with the Lawrence Berkeley 

Laboratory. 



-63-

REFERENCES AND FOOTNOTE! 

1. A. H. Arthurs, and A. Dalgarno, Proc. Roy. Sec. A256, 540 (1960). 

2. S. D. Augusti'n and W. H. Miller, J. Chem. Phys. §}_, 3155 (1974). 

3. P. J. Bertoncini and A. C. Wahl, Phys. Rev. Lett. 25_, 991 (1970); 

Chem. Phys. 58, 1259 (1973). 

4. A. D. Buckingham, Adv. Chem. Phys. 1_2_, 107 (1967). See also, 

0. 0. Hirschfelder, C. F. Curtiss and R. B. Bird, Molecular Theory 

of Gases and Liquids (John Wiley & Sons, Inc., NY, 1964) and 

H. Margenau and N. R. Kestner, Theory of Intermolecular Forces 

(Pergamon Press, NY, 1971). 

5. N. R. Davidson, Statistical Mechanics (McGraw-Hill, Inc, NY, 1962). 

6. A. S. Davydov, Quantum Mechanics (Pergamon Press, Oxford, 1965). 

7. N. H. Dieter, Ap. J. 183, 449 (1973). 

8. F. B. Van Duijneveldt, IBM Research Report RJ 945, December 1971. 

(Available from: Research Library, IBM Research Laboratory, 

San Jose, CA 95193). 

9. L. Essen, Proc. Phys. Soc. (London) B66, 189 (1953). 

10. N. J. Evans, il, Ph. D. Thesis, University of California, Berkeley, 

(1973). 

11. N. J. Evans, II, in preparation. 

12. N. J. Evans, II, A. C. Cheung and R. M. Sloanaker, Ap. J. (Letters) 

159, Ly (1970). 

13. N. J. Evans, II, B. Zuckerman, G. Morris and T. Sato, Astrophys. J. 

196, 433 (1975). 

14. H. Eyring, J. Walter and G. E. Kimball, Quantum Chemistry (John 

Wiley and Sons, Inc., NY, 1964). 



-64-

15. 3. J. Garrison, rl. F. Schaefer, III and W. A. Lester, Jr., 
J. Chem. Phys. 61., 3039 (1974). 

16. P. L. Goodfriend, F. W. Birss and A. B. F. Duncan, Rev. Mod. Phys. 
32, 307 (1960). 

17. (a) R. G. Gordon, J. Chem. Phys. 51_, 14 (1969); (b) Methods Comput. 
Phys. U), 81 (1971); (c) Program 187 Quantum Chemistry Program 
Exchange (QCPE), Indiana University, Bloomington, IN. 

18. S. Green, B. J. Garrison and W. A. Lester, Jr., "Hartree-Fock and 
Gordon-Kim Interaction Potentials for Scattering of Closed Shell 
Molecules by Atoms: (HgCO.Ke) and (H 2,Li +)" (to appear). 

19. Reviews of HF and CI interaction potentials for scattering are given 
by: (a) M. Krauss, Ann. Rev. Phys. Chem. 21., 39 (1970); 
(b) P. R. Certain and L. W. Bruch, in MTP International Review of 
Science, W. Byers Brown, ed. (University Park Press, Baltimore, 
1972), Vol. 1, p. 113; (c) R. D. Levine, in MTP International 
Review of Science, W. Byers Brown, ed. (University Park Press, 
Baltimore, 1972), Vol. 1, p. 229; (d) J. N. L. Connor, Ann. Repts. 
Chem. Soc. 70A, 5 (1973); (e) G. G. Balint-Kurti in Advances in 
Molecular Beams, K. P. Lawley, ed., to appear); (f) W. A. Lester, Jr., 
Adv. Quant. Chem. 9, (1975) (to appear). 

20. A. M. Lesk, J. Chem. Phys. 59, 44 (1973). 
21. (a) W. A. Lester, Jr. and M. Ki-auss, J. Chem. Phys. 52, 4775 (1970) 

(b) W. A. Lester, Jr., J. Chem. Phys. 53, 1511 (1970); (c) W. A. 
Lester, Jr., J. Chem. Phys. 54, 3171 (1971); (d) W. Kutzelnigg, 
V. Staeimiler and K. Hoheisel, Chem. Phys. 1_, 27 (1973). 



-65-

22. M. M. Litvak, Ap. J. (Letters) 160, L133 (1970). 
23. (a) B. Liu and A. D. McLean, J. Chem. Phys. 59, 4557 (1973); 

(b) B. Liu and A. D. McLean, unpublished results. 
24. Y. K. Minn and J. M. Greenberg, Astr. and Ap. 22., 13 (1973). 
25. T. Oka, Ap. J. (Letters) 160, L69 (1970). 
26. T. Oka, J. Phys. Soc. (Japan) 1_5, 2274 (1960). 
27. P. Palmer, B. Zuckerman, 0. Buhl and L. E. Snyder, Astrophys. J. 

156, L147 (1969). 
28. M. E. Rose, Elementary Theory of Angular Momentum (John Wiley & 

Sons, Inc., NY, 1957). 
29. M. Rotenberg, R. Bivins, N. Metropolis and J. K. Wooten, Jr., The 

3-j and 6-j Symbols (Technology Press, Cambridge, MA, 1959). 
30. B. Roos, Chem. Phys. Lett. ]5_, 153 (1972). 
31. (a) H. F. Schaefer, III, D. R. McLaughlin, F. E. Harris and 

B. J. Alder, Phys. Rev. Lett. 25., 988 (1970); (b) D. R. McLaughlin 
and H. F. Schaefer, III, Chem. Phys. Lett. 12., 244 (1971). 

32. P. M. Solomon and P. Thaddeus, Bull. AAS 2, 218 (1970) (abstract 
of paper delivered at 131st meeting of AAS, New York City). 

33. K. Takagi and T. Oka, J. Phys. Soc. Japan 1£, 1174 (1963). 
34. (a) P. Thaddeus, Ann. Rev. Astr. and Ap. 10., 305 (1972); 

(b) P. Thaddeus, Astrophys. J. 173., 317 (1972). 
35. C. H. Townes and A. C. Cheung, Astrophys. J. 157., L103 (1969). 
36. Simply stated, the effect of basis functions on one atom assisting 

basis functions on another center and thereby leading to an incorrect 
description of the interaction between the two atoms. For a fuller 
discussion, applied to CI wavefunctions, see Ref. 23a. 



-66-

37. The helium dipole p o l a r i z a b i l i t y obtained using basis set B is 

1.300 a.u. See Ref. 9 fo r an experimental value. 

38. Since iiie one He o rb i t a l has A, symmetry, only the A, occupied 

o rb i ta l s were loca l ized. 

39. An example o f the group representation property is the spherical 

harmonic addit ion formula. For a f u l l e r discussion see J . D. 

Talman, Special Functions (W. A. Benjamin, I nc . , NY, 1968). 

40. The computer program IBHOL-version 6 was made avai lable by 

Dr. E. Clementi. 

41 . The j o i n t MOLECULAR-ALCHEMY program package incorporates the 

MOLECULE integral program and the ALCHEMY SCF program. MOLECULE 

was wr i t ten by Dr. J . Almlo'f of the Universi ty o f Uppsala, Sweden. 

The ALCHEMY SCF program was wr i t ten by Drs. P. S. Bagus and B. Liu 

of the IBM San Jose Research Laboratory. The in ter fac ing of these 

programs was performed by Drs. U. Wahlgren (presently at the 

Universi ty of Uppsala) and P. S. Bagus at IBM. For a descr ipt ion 

of MOLECULE see J . Almlb'f, Proceedings o f the Second Seminar on 

Computational Problems in Quantum Chemistry, p. 14, Strassburg, 

197Z (Max-Planck I n s t i t u t e , Munich 1973). For a descr ipt ion of 

the ALCHEMY-SCF program, see: P. S. Bagus, Documentation for 

ALCHEMY--Energy Expressions for Open Shell Systems, IBM Research 

Report RJ 1077 (1972). The ALCHEMY quantum chemistry programs were 

wr i t ten pr imar i ly by P. S. Bagus, B. L i u , A. D. McLean and 

M. Yoshimine o f the Theoretical Chemistry Group at IBM Research 

in San Jose, CA. Preliminary descriptions of the program are given 

i n : (a) A. D. McLean, Potential Energy Surfaces from ab i n i t i o 



-67-

Computation: Current and Projected Capabi l i t ies o f the ALCHEMY 

Computer Program, Proceedings o f the Conference on Potential Energy 

Surfaces in Chemistry held at the Universi ty of Ca l i fo rn ia , 

Santa Cruz, August 1970; and (b) P. S. Bagus, ALCHEMY Studies of 

Small Molecules, Selected Topics in Molecular Physics, Verlag 

Chemie (1972). 

42. Program MOLECULE-CI by B. Roos and P. Siegbahn, Universi ty of 

Stockholm, Stockholm, Sweden. 

43. H. F. Schaefer, The Electronic Structure of Atoms and Molecules: 

A Survey o f Regorous Quantum Mechanical Results (Addison-Wesley, 

Reading, Mass., 1972). 


