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COOLING OF INTERSTELLAR FORMALDEHYDE BY COLLISION WITH HELIUM: AN
ACCURATE QUANTUM MECHANICAL CALCULATION

Barbara Jane Garrison

Inorganic Materials Research Division, Lawrence Berkeley Laborato-y
and Department of Chemistry; University of California,
Berkeley, California 94720
ABSTRACT

In order to test a collisional pumping model as a mechanism for
cooling the 6 cm and 2 cm doublets of interstellar formaldehyde, a
quahtum mechanical scattering calculation is performed. To obtain
the intermolecular interaction between HZCO(]A]) and He(]S) two
calculations aiz performed, a Hartree-Fock (HF) potential surface and
a configuration interaction (CI) surface. A basis set of better than
"triple zeta plus polarization" quality is used to compute the HF
portion of the potential energy surface. This portion is highly
anisotropic and has a slight attracticn arising from induction =“fects
at intermolecular separations around 9 a.u. The HF surface is modified
through a series of CI calculations. Correlation is found to have
little effect in the strongly anisotropic repulsive region of the
interaction potential but dominates the well and long-range regions.
The maximum well depth is attained for in-plane approaches of He and
lies in the range 35-40°K for arbitrary 0 at center of mass separation
4f 7.5 a.u. The entire surface is fit to a spherical harmonic expansion
to facilitate scattering applications.

An Arthurs and Dalgarno type coupled channel (CC) formalism is
presented for scattering of an asymmetric top by an atom. These CC

equations are integrated at 12 scattering energies between 20 and 95°K.
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For the cross section calculations a basis set of 16 ortho H2C0 states
are included, resulting in 62 channels. Resonances are observed

at ~20.2, 32.7 and 47.7°K. The cross sections are Boltzmann averaged
to obtain rate constants which are used to solve the equations of
statistical equilibrium. The & cm and 2 cm doublets of interstellar
HZCO are found to be cooled by collisions with He. The j = 3 ortho

doublet plays a fundamental role in the cooling of H2C0.



I. INTRODUCTION

During the past few years, considerable interest has developed
around observations of anomalous absorption in interstellar formaldehyde.
Because this absorption is seen toward dark clouds, i1 is anomalous,
implying an excitation temperature for two rotational states lower than
either the background radiation temperature (~2.7°K) or the expected
kinetic temperature (10-20°K). These observations are quite common in
the interstellar medium and are seen in (1)} the 110 « 1]] (6 cm) transition

of H,00,7" 2027 (2) the 2, « 2, (2 cm) transition of H,C0, 01213

and (3) the 1]0 + 1]] transition of the isotope H2]3C0.13

To obtain such low excitation temperatures requires a nonthermal
cooling mechanism. A number of pumping models have been proposed that
involve transitions to nigher rotational states of HZEO followed by
radiative decay. The pump or force causing the excitations has been
variously suggested as being due to co!lisions35 or to radiation at
mil]imeter,32’34a infrared,22 and ultr-avio]etz5 wavelengths. Evans,
ggjﬂ:]3 have recently given a convincing discussion which indicates
that the collisional pump is the only model that accounts for all the
observations and satisfies necessary criteria.

The collisional pumping model of Townes and Cheung35

is based on
classical arguments. The rotational energy level structure and.dipole
allowed transitions of ortho HZCO are shown in Fig. 4.1. Note that the
lower levels of each doublet are connected by dipole allowed transitions;
likewise, the upper levels, Thus, if a molecule is excited to state

3 (212) it will radiate to state } (111). The classical mode! proposes

that both of the lower two states (j = 1 doublet) are preferentially
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excited by collisions to state 3 where the molecule will radiatively decay
to state 1, therefore, conling the 6 cm (j = 1) doublet. (The intra-
doublet relaxation is slow due to the small energy separation between

the levels.)

Since the collisional pump appears to be the key to understanding

interstellar cooling of HZCO, several worker52'10’1]’]3’34'35 have

attempted to theoretically verify this model by determining the appropriate
rotational cross sections. These calculations have been carried out
subject to a number of limitations, including approximate interaction
potentials (hard or soft sphere), approximate dynamics (classical or
semi-classical calculations), and other less appropriate approximations
(born or sudden).

In the present study the test of the collisional pump is based upon
entirely quantum mechanical calculations. An accurate ab-initio
interaction potential {Hartree-Fock and configuration interaction)
between HZCO and He is given in Chapters II and III. For these calculations,
the most probable scatterer H2 is replaced by He to reduce the scope of
the computation. It is anticipated that the main conclusions of this
study will not be seriously altered by this choice of scattering
particle. In Chapter IV the Arthurs and Da]garno] type coupled channel (CC)
formalism is presented for scattering of an asymmetric top Ly an atom,
Using the ab-initio potential, the CC equations are integrated to yield
rotational cross sections. Collisional rates are then determined (in
Chapter V) from these cross sections and used to test the validity of

the collisional pump as a mechanism for the ccoling of interstellar HZCO.
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[I. HARTREE-FOCK. INTERACTION POTENTIAL
A. Introduction

This chapter deals with the determination of the Hartree-Fock {HF)
portion of the interaction potential (to be used in the scattering study)
between H2C0 (1A1) and He (15). Because collision energies in inter-
stellar space are small (<100°K) and the vibrational energy ievel
spacings of HZCO are sufficiently large {>16G0°K for the lowest
fundamental), HZCO should be well approximated by a rigid rotor.
Consistent with the rigid rotor model, H200 is constraired to a single
geometry in the calculations to be described. This results in a smaller
number of degrees of freedom that must be treated and thereby significantly
reduces the number of points needed tu map the region of the interaction
potential required for scattering studies.

At long range, the dispersion energy dominates the interaction of
He with HZCO. Lesk20 has recently proven that the dispersion energy is
unobtainable in the HF approximaticn so that a reliable determination of
the correlation energy contribution is required for scattering studies
of the present system. Nevertheless, it is clear that the HF method
can accurately chiaracterize the repulsive anisotropy of atom-diatomic
molecule interacticns between ¢losed shell systems and yield quantitatively
the induction energy at long range for such systems.ZI The present
chapter forms the first of a two-part effort in which the second part--

the determination of the dispersion interaction--will be presented in

the following chapter.
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B. Description of Calculations

Hartree-Fock caiculations were carried out following the Roothaan
approach with HZCO constrained to the equilibrium geometry of Rco = 1.208K,
RCH = 1,116R, and £ HCH = 116°31' determined by Takagi and 0ka.33 To
facilitate collision studies, interaction energies are presented in a
coordinate system with origin at the center-of-mass {c.m.) of HZCO that
is shown in Fig. 2.1.

The choice of basis set was governed by two criteria. One is that
the superposition error36 be small. The other is that the quantities which
determine the leading terms of the induction contribution to the interaction
energy at long range (permanent monents of H2CO, dipole pglarizability of
He) be reliably characterized.4

To test these criteria, preliminary calculations were performed with
He constrained to ® = 0° (O-atom end) and 6 = 180° (C-atom end) approaches
to HZCO, i.e., sz geometries. Table II.1 lists interaction energies
obtained (1) in the HF model employing the basis sets used in ~ur
recent study15 of ground and excited state properties of H,CO, and
(2) using the multipole theory expression given in the Appendix. The
excellent agreement (within 0.1°K) for R > 11 a.u. between energies
computed using both basis sets and perturbation theory indicates that the
induction contribution is quite wel)l described and furthermore that
the onset of the non-overlap region occurs for R = 11 a.u.

Table II.2 lists basis sets A and B for the (HZCO, He) system.

The HZCO basis sets have been described previous]y.ls The He basis sets
are due to van Duijneveldt8 augmented by p functions chosen to give an

accurate dipole polarizability.37 The latter functions are required to
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Table I1.1. Comparison of Hartree-Fock and
sultipole expansion interaction
energies (°K).*

R(a.u.) Basis Set Multipole
+ Expansion
Ave B
8 = 0°

5.0 2508.83 2606.14

6.0 228.96 276.60

7.0 -11.05 20.58

7.5 -22.29 1.83 -6.34
8.0 -18.65 -3.05 -4.30
8.5 -n.79 -3.61 -2.9Y
9.0 -6.33 -2.98 -2.12
9.5 -3.15 ~2.15 -1.53
10.0 =1.1. -1.47 -1.13
1t.0 -92,63 -0.69 -0.63
12.0 =0.36 -0.38
13.0 -0.22 -0.23

8 = 180°

5.0 6355.97 6467.19

6.0 777.87 838.07

7.0 §5.07 85.42

7.5 4.13  21.36

8.0 -6.91 1.78 -4.22
8.5 «7.13 -3.03 -2.93
9.0 -5.22 -3.29 -2.08
9.5 -3.39  -:.48 -1.51
10.0 -2.08 -1.67 -1.1M
.0 -0.77 -0.73 -0.63
12.0 -0.37 -0.:7
13.0 -0.22 -0.23

:.'.'K = 3.1668x10°5 a.u.
Obtained with formaldehyde goometry of Ref. 16.

*mnined with formalde.yde geometry of Ref. 33.
The energy differences are attributable to basis
set; differences due to geometry are negligible.
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Table T1.2. Contracted Gaussian basis sets for Hzco and He.*

Basis A
Atom Type Fus..tion*
0 s 0.006436(7816.54) + 0.043924(117%.82)
+ 0.233819(273.188) + 0.784798(81.1696)
$ 0.803381(27.1836) + 0.316720(3.4136)
s 1.0(9.5322)
s 1.0(0.9398)
s 1.0(0.2846)
X.Y,z 0.040023(35.1832) + 0.253849(7.9040)
+ 0.806842(2.3051)
X,¥.2 1.0(0.7171)
X,Y,Z 1.0(0.2137)
x2,¥2,22 xv.x2,¥7  1.0(0.8)
¢ s 0.006228(4232.61) + 0.047676(634.882)
+ 0.231439(746,007) + 0.789108(42.4974)
s 0.791751(14.1892) + 0.321870(31.9666)
s 1.0(5.1477)
s 1.0(0.4962)
S 1.0{0.1533)
X.Y.Z 0.039196{18.1557) + 0.244144(3.9867)
+ 0.816775(1.1429)
X.¥,2Z 1.0{0.3594)
X.Y.Z 1.0{0.1146)
2,2, 22, xv,X2,Y2  1.0(0.8)
H s 0.025374(48.442) + 0.189684(7.2835)
+ 0.852933(1.8517)
s 1.0(C.46238)
s 1.0{0.14587)
X,¥,2 1.0(1.0)

*Linear combinations are written in the form C (u]) + 32("‘2) ...

where CI’CZ’ PR

exponents.

are coefficients and opps - -

are Gaussian
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Table 11.2. Continued.

Basis A
Atom Type Function
He S 0.002600(233.093) + 0.019628(35.023)

+ 0.091421(7.9557) + 0,272853(2.2028)

S 1.0(0.66435)

S 1.0(0.20825)

X,Y,Z 1.0{1.0000)}

X,Y,2Z 1.0(0.2000)
Basis B

0 S 0.000210(31195.6) + 0.001628(4669.38)

+ 0.008450(1062.62) + 0.034191(301.426)
+ 0.110311(98.5153)

S 1.0(35.4609)

S 1.0(13.6179}

S 1.0(5.38618)

S 1.0{1.53873)

S 1.06(0.60550)

S 1.0{0.22054)

X,Y,Z 0.002266(114.863) + 0.017192(26.8767)
0.075341(8.32077)

X,Y,2 1.0(2.97237)

X,Y,Z 1.0(1.12848)

LY, Z 1.0{0.42360)

X,Y,Z 1.0(0.15074)

%2 ,v2, 7% xv,xz,v2

%2, ¥2, 72 %y X2, Y2

1.0(2.0)
1.0(0.5)
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Table 11.2. Continued.

Basis B
Atom Type Function
C s 0.000242(15469.4) + 0.001879(2316.47)
+ 0.009743(527.099) + 0.039167(149.438)
+ 0.123636(48.8562)
s 1.0(17.6209)
s 1.0(6.81082)
s 1.0(2.7276)
s 1.0(0.75674)
s 1.0(0.30073)
5 1.0{0.11409)
X.¥.2 0.002734(51.7233) + 0.018979(12.327)
+ 0.080806(3.77224)
X,v,2 1.0(1.32487)
X,¥.2 1.0(0.50546)
X,Y,Z 1.0(0.19827)
XY,z 1.0(0.07731)
x2,v2,2% xv,xz,v2  1.0(2.0)
x2,52,22 .%7,%2,Y2  1.0{0.5)
oS 0.002006(82.636374) + 0.015345(12.409558)
+0.075577(2.823854)
s 1.0(0.797670)
s 1.0(0.258053)
S 1.0(0.089891)
X,Y,Z 1.001.0)
Y S 0.000059(4840.888547) + 0.000463(723.108918)
+'0.002422(164.299706) + 0.009995(46 .636262)
+ 0.034249(15.277787) + 0.096302(5.526897)
s 1.0(2.132879)
s 1.0(0.849674)
s 1.0(0.343643)
s 1.0{0.138709)
X,Y,Z 1.0(1.0)
X,Y,Z 1.0(0.2)
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yield a proper description of the induction contribution to the
interaction energy at lorg range. Figure 2.2 flots the interaction
energy for CZv approaches of He to the O-atom end (6 = 0°) and C-atom
end (9 = 180°) for basis sets A and B and indicates the magnitude of
the superposition error that accompanies the use of basis set A. Basis
set B reduces the superposition error to approximately half the well
depth. The close agreement between interaction energies obtained
using basis set B and perturbation theory results given i1 Table II.1,
and the reasonable agreement between the dipole moment determined
employing basis set B and experiment, lend support to the notion that
basis set B should provide a reliable description of the HF portion of
the interaction potential.

C. Results and Discussion

Hartree-Fock interaction energies obtained using basis set B are
presented in Table II.3 for ¢ = 0° (He incident in the plane of
formaidehyde), in Table 11.4 for ¢ = 30°, in Table II.5 for ¢ = 60°, and
in Table I1.6 for ¢ = 90° (He incident in the perpendicular bisector
plane of HZCD). Owing to HZCO symmetry, only 0° < ¢ < 90° need be
considered. Because the interaction potantial is planned for scattering
studgies at energies <100°K, R = 5§ a.u. was arbitrarily chosen as the
minimum R for computations. At this separation, the interaction is
exponential,with repulsion energies ranging up to several thousand
degrees K; see Tables II.3-I11.6. The maximum R treated was chosen as the
cnset of agreement between HF and perturbation theory induction erergies
which, as discussed in relation to Table II.Y, occurs at ~11 a.u.

Because of the large repulsion at & = 140° due to the He-H interaction,
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Fig. 2.2. Basis set dependence of the interaction energy for C

geometry: — —— Basis A for 8 = 0°, basis B
for 8 = 0°, -w-a- basis A for 8 = 180°, — — — basis
B for 6 = 180°.
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Tabie I1.3. Interaction emergies (°K} for ¢ = 0°.*
R (a.u.)

0 5 6 7 8 9 10
0 2606.14 276.60 20.58 -3.05 -Z.98 -1.47
30 2044.04 237.92 20.15 -3.26 -3.55 -1.66
60 837.23 101.05 6.60 -3.67 -2.67 -1.03
90 621.14 76.45 §.52 -1.52 -0.98 -0.37
120 7220.33 1178.99 169.48 21.63 2.02 -0.15
140 15852.93 2474.73 352.67 46.22 4.86 0.01
160 11942.20 1774.97 235.29 25.72 0.82 -0.86
180 6467.19 838.07 85.42 1.78  -3.29 -1.67

*See footnote * of Table II.1.

Table II.4. Interaction energies (°K) for » = 30°.*
R(a.u.)
] 5 6 7 8 9 10
30 1967.52 226.04 18.50 -3.12 -3.29 -1.56
60 840.15 102.82 7.62 -2.9: ~2.32 -0.95
90 563.52 70.95 6.26 -0.74 ~0.70 -0.33
120 4468.44 735.56 109.13 14.39 1.27 -0.22
140 10343.96 1642.55 236.61 30.93 2.91 -0.23
160 9735.36 1431.19 185.02 18.57 -~0.18 -1.01

*See footnote * of Table II.1.
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Table I1.5. Interaction energies (°K) for ¢ = 60°.*

R{a.u.)
a 5 6 7 8 9 10

30 1813.06 202.06 15.16 -2.83 -2.77 -1.35
60 830.64 103.06 8.69 -~1.84 -1.77 -0.80
90 555,09 72.21 7.22 -~0.21 -0.54 -0.31
120 1608.87 240.09 30.45 2.74 -0.32 -0.44
140 3942.97 590.33 75.57 6.93 -0.85 -0.73
160 6138.0, 850.97 97.83 5.87 -2.03 -1.30

*See footnote * of Table 11.1.

Table I1.6. Interaction energies (°K) for ¢ = 80°.*

R{a.u.)
2] 5 6 7 8 9 10

30 1735.15 189.98 13.48 -2.70 -2.50 -1.25
60 819.62 101.86 8.84 -1.47 -1.53 -0.73
90 5€9.43 80.31 8.63 -0.06 -~0.53 -0.31
120 888.84 115.70 11.74 0.09 -0.71 -0.46
140 2060.27 262.98 23.82 -0.87 -~1.78 -0.93
160 4670.12 606.53 60.25 0.3¢ -2.86 -1.44

*See footnote * of Table II.1.



-14-

8 was sampled at the unevenly spaced values of 0, 30, 60, 90, 120,
140, 160 and 180°. A total of 156 energy points were computed using
basis set B.

Figure 2.3 broadly summarizes the results contained in Tables II.3
through II.6 in the form of equipotential plots for He incident in (a)
the H,CO plane (¢ = 0°) and (b) the perpendicular bisector plane
(¢ = 90°). For ¢ = J°, a siight attraction at R = 9 a.u. is evident as
is the large repulsion at small K due to the H atom. At ¢ = 90°, however,
the equipotential plot is very nearly symmetrical about 6 = 90°. (Note
that the opening of the zero contour 1s an artifact of having used the
spherical harmonic expansion to generate the plots and reflects slight
inaccuracies in the fit functions.) These and other features are more
clearly shown in the planar projections presented in Figs.2.4-2.7. The
reduction of the strong repulsion due to the H atoms as He approaches
for increasingly large out-of-(HZCO) plane angles ¢ is detailed in
fig, 2.4 for R = 7 a.u., in Fig. 2.5 for R = 9 a.u., and in Fig. 2.6
for R = 10 a.u. Figure 2.7 presents another view of the R dependence
of the interaction for He incident in the plane of HZCO and shows the
pronounced decline of the repulsion due to H at R = 10 a.u. which
portends the onset of the non-overlap region describable by multipole
theciry. From perturbation theory, the form of the long-range induction
energy is cosze. AtR=29 a:u, (Fig. 2.5), this fuictional behavior is
perceptible in the bisector plane approach (¢ = 90°). Note that by
R = 10 a.u. (Fig. 2.6), the He-H interaction 1s murh less repulsive
and the long-range forces begin to dominate.
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Fig. 2.3.

Energies

Contour plots of the interaction potential for He incident in the plane
of HaCO (¢ = 0°) and He incident in the bisector plane {§ = 90°).
in °K. c.m. denotes center of mass.
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The HF interaction energies obtained using basis set B have been fit
to an expansion in spherical harmonics, viz.

Emax

V(R,0,0) = (an/22+1)

V2o Yee) ()

Ab initio energy points were supplemented by additional points determined
by the method of splines to yield a dense grid to facilitate the
determination of the radial coefficients. The HF energies were accurately

reproduced using £ = 12 by both least-squares and numerical integration

max
procedures. Formaldehyde symmetry leads to vlm(R) = Vg-m(R)’ ior m an
even integer, and to 49 unique nonzero terms through £ = 12. The Vom
caefficients are given in Table II.7. These coefficients have been fit
0 the radial function

-BR -6 -7
- JAe
Vom(R) = {0

A, B, C and C are listed in Table II.8.

(2)

D. Summary and Remarks

Using a basis set of better than triple zeta plus polarization
quality, a Hartree-Fock interaction potential for the H2C0-He system
has been determined for fixed geometry of HZCO suttable for rigid rotor
scattering studies. The potential energy surface is highly anisotropic
for He incident in the plane of H2C0 and has a small (<3°K) minimum at
R = 9 a.u. The ab _initio surface agrees closely with interaction energies
determined from perturbation theory for R > 11 a.u.,which is indicative

of the onset of the non-overiap region.
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Table 11.7. Continued.

© = oo BN
=) e w

R{a.u.}
m 5 6 7 a 9 10
-23.9 -3.8 -0.51 -0.06 -0.01 0.00
33.9 6.0 0.90 0.17 0.03 0.00
-36.1 -5.3 -0.77 -0.12 -0.02 0.00
59.0 7.8 0.99 0.13 0.0} 0.00
53.5 5.6 0.45 -0.02 -0.01 0.00

28.9 4.4 0.57 0.07 0.01 0.00

n
1
1
11
n
12
12
12
12
12
12
12

—'-Jcomhmcgmmam

N o

1.2 0.1 0.03 0.00 0.00 0.00
28.2 4.9 0.77 0.10 0.01 0.00
-25.5 -4.1 -0.62 -0.09 -0.01 0.00
-11.0 -1.5 -0.20 -0.03 0.00
-39.8 -4.2 -0.34 0.01 0.07
-29.4 -4.2 -0.54 -0.06 -0.01
-2.7 -0.5 -0.07 -0.01 0.00
-55.2 -9.3 -1.45 -0.22 -0.03
49.2 7.7 1.15 0.17 0.03
-8.0 -1.0 -0.12 0.00 0.00
26.1 2.7 0.23 -0.01 0.00
28.0 3.9 0.49 0.06 0.01
3.7 0.6 0.09 0.01 0.00
0.0 0.0 0.00 0.00 0.00
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the HF interaction.*

2 m Ax* B CH* D**
0 0 3.038(7) 1.845 -4.793 (6)  5.635 (7)
1 0 -2.483 (7) 1.751 1.226 (7) -1.186 (8)
2 0 5.449(7) 1.890 -6.558 (6)  7.320 (7)
2 2 8.094(6) 1.735 -3.628 (6)  3.789 (7)
3 0 -1.056 (8) 2.586 -7.069 (5)  1.354 (6)
3 2 -1.546 (7) 1.736  8.259 (6) -8.037 (7)
4 0 -3.53% (6) 1.535  9.527 (6) -9.868 (7)
4 2 1.853{7) 1.759 -6.595 (6)  6.544 (7)
4 4 1.891 (6) 1.774 -7.542 (5) 8.072 (6)
5 0 9.850 (6) 1.748 -3.935 {6) 3.771 (7)
5 2 -1.483 (7) 1.810  3.471 (6) -3.309 {7)
5 4 -3.876 (6) 1.773 2,176 (6) -2.133 (7)
6 0 -6.766 (6) 1.773  2.240 (6) -2 138 (7)
6 2 9.097 (6) 1.867 -6.458 (5)  6.286 (6)
6 4 5635 (6) 1.549 -1.443 (6) 1.405 (7)
6 6 1.054 (6) 2.084 -1.275 (5) 1.425 (6)
7 0 2.065 () 1.736 -9.935 {5)  9.736 (6)
7 2 -1.527 (6) 1.765  6.644 {5) ~6.362 (6)
7 4 -7.489 (6) 1.970  4.087 (5) ~-4.048 (6)
7 6 -1.423 (6) 1.999  2.603 (5) -2.759 ()
B 0 6.528 (6) 2.340 -1.211 (5)  8.455 (5)
8 2 -2,540 {(6) 2.123 -6.083 (3)  2.294 (5)
8 4 6,741 (6) 2.032 -1.058 (5) 1.096 (6)
8 6 2.284 (6) 2.072 -1.670 (5) 1.855 (6)
8 8 2.483 (6) 2.440 7.300 (4) -6.220 (5)
9 0 -1.018 (6) 1.827 1.612 (5) -1.453 (6)
9 2 1.458 (6) 1.900 -5.968 (5)  5.435 (5)
9 4 -3,530 (6) 2.011 9.728 (4) -9.621 (5)
9 6 -3.142(6) 2.154  7.576 (4) -8.948 (%)
9 8 -1.829 (5) 1.749  9.982 (4) -1.005 (6)

* 'y Y Iy
Distance units are u.u. and energy units are °K.

‘]
Values in parenthesis are powers of 10.
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Table II.8. Continued.
2 m A* * B C** D**
10 0 5.618 (5) 1.909 -2.721 (4) 1.752 (5)
10 2 -5.311 (5) 1.916 1.599 (4) -1.309 (5)
10 4 1.374 (6) 2.003 -4.401 (4) 4.150 (5)
10 6 3.146 (6) 2.191 -2.969 (4) 4.099 (5)
10 8 2.936 (5) 1.818 -8.167 (4) 8.218 (5)
10 10 1.088 (6) 2.730 9.658 (3) -8.540 (4)
11 0 1.532 (5) 1.681 -9.677 (4) 1.023 (6)
11 2 -2.037 (5) 1.763 7.733 (4) -7.618 (5)
11 4 -2.004 (5) 1.950 1.693 (4) -1.453
1M 6 -2.502 (6) 2.206 1.243 (4) -2.111
11 8 -4.106 (5) 1.881 7.275 (4) -7.134 (5)
11 10 -1.562 (4) 1.691 1.133 (4) -1.127
12 0 -3.809 (5) 1.730 1.869 (5) -1.840
12 2 4,697 (5) 1.811 -9.500 (4) 9.246 (5)
12 4 -1.694 (5) 1.982 2.674 (3) -5.278 (4)
12 6 1.825 (6) 2.232 7.190 (2) 5.528
12 8 4.479 (5) 1.913 -5,518 (4) 5.42]
12 10 2.446 (4) 1.734 -8.733 (3) 9.300
12 12 -2.358 (1) 1.273 3.639 (2) -4.978 (3)
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Since the Hartree-Fock model cannot describe dispersion contributions,
which from perturbation theory should dominate the long-range interaction
in the present system, correlation studies will be needed to complement

results presented here.
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APPENGIX
The induction contribution to the long ringe interaction between

HZCO and He may be written.4

- 1/2 \
V(R,0,0) = H‘ (4n/28+1) Vom(R) Top(0:d) (A1}

The Towest order nonzerg terms are

voo(R) = -ulorr® (A2)
%20(R) = vgo(R) (A3)
vp(R) = 18 uao_/5R" (ha)
v3gfR) = (2/3) vy, (R) (AS)
v3p(R) = -ua(8/15)% (o, - 0 MR’ (A6)

Here, a is the dipole polarizathlity of He, u i5 the dipole moment of
Hzco. and 854 (i1 = xx, yy and 22) are the diagonal components of the
quadrupe’2 moment tensor of HZCO. Note that the dipole-induced dipole
contribution (R'ﬁ) is two orders of magnitude largcr than the quadrupole-
induced dipole term (R'7).
The values of molecular properties used tc construct the entries
in the third column of Table II.1 were taken from Ref. 15. They are:
¥ = -1.1249 a.u. . 8y = ~0.1481 a.u.
O = 0.1773 a.u. 8,, = =0.0292 a.u.

zz

An experimental dipole polarizability (1.397 a.u.) was used for helium.9
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111. EFFECT OF ELECTRON CORRELATION
A. Introduction

In the previous chapter we discussed 3 Martree-Fock (HF) interaction
potential for the H,0('A))-He'S) system. It §s known that the HF method
describes only the average interaction between electrons o¥ colliiding
m!ecules.‘a Hence for neutral-neutral interactions, the HF method cannot
provide an accurate description of the interactics #eergy in regfons where
the dispersion interaction plays an important role, since the dispersion
interaction arises from the instantaneous mutual response of one molecule
to another.‘ Therefo.'e, a correlated calculation is required to yield
this contribution to the fnteraction energy“'zo Because accurate
scattering cross sections at very low energies are sought for the
Hzco-ne systel.'3'3‘b‘35 it is important to determine the correlation
correction to the HF potential.

It is useful to divide the HZCO-He interaction potential intn three
parts--a highly anisotropic repulsive region ai smal) internuclear
separations, a region containing the energy minimum at intermediate
distances, and a long-range region. The dominating forces in these
regions have differeat physical origins which dictate the use of selected
methods for each. Since electron correlation is only a small fraction
of the interaction energy at short range {(where closed-shell repulsive
forces dominate), the potential energy surface in this region is belioved
to be wel) described by our previous HF results.]9 In the non-overlap
region, perturbation theory estimates show that the dispersion
interaction is dominant and that induction contributions (obtaimable in

the HF approximation) are negligible. Little is known a priori about
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the region near the minimum. Since the HF well depth is quite small

{~3°K), it is clear that the CI contribution will significantly alter
the potential in this region. Therefore, CI calculaticns are needed

to complete the interaction potential for the HZCO-He system.

Since only small van der Waals attractions arise from dispersion
forces, special care must be given to the type of CI calculation
performed. Of course, one would like to determine the correlation
contribution to the interaction energy from a full CI claculation but
that 1s at present economically unfeasible for most systems. Extensive
work on the He, systen,3’23'31 which similarly has a small van der Waals
minimum, guides our approach to this problem. By carefully choosing
configurations for the He2 system, the dispersion energy was calculated
directly (Di-ct)?'za':ﬂThe main advantage of this method §s that the.
error due to lack of completeness of the basis set (superposition
error) is eliminated.23 However, it does not take into account change
in intramolecular correlation of each molecule with internuclear
disf.lm:e.23'3l Since the change in intramolecular correlation increases
with decreasing intermolecular distance, this method overestimates the

3 the intermolecular and the

well depth. As shown by Liu and McLean,
intramolecular correlations are not additive, thus one cannot add the
dispersion energy and the intramolecular correlation to obtain the

total CI contribution. To include intramolecular correlation, a CI
calcuiation may be performed which includes all singie and double
excitations from the HF reference state (S+D CI). Such a computation
approximates the total CI energy including dispersion and intramolecular

correlation energy. It also includes the superposition error, however,
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which generally leads to an artificial increase in well depth. for

He2 a full CI was carried out yielding a well depth of -10.7°I(23b that

is bracketed by the DI-CI value \'»‘12.1°K)23a and the S+D CI limit result
(-9.3°K).23a Unfortunately, as of this writing, there is no basis upon
which to presume that this bracketing will hold rigorously for other
systems. However, it does show that interaction energies obtained by

the various methods are roughly equal. For the larger HZCO-He system,

it is economically feasible to perform only Di-CI and S+D Cl calculations.

B. Description of Calculation

To obtain the CI energy, we initially chose to calculate the
dispersion energy by the following procedure (Di-CI}: (a) compute the
HF energy of the system, (b) localize the occupied orbitals.3B {c) generate
configurations that include single and double excitations corresponding
to removal of one electron from a HZCO orbital and one electron from
the He orbital, and (d)} place the excited electrons into all possible
spin and symmetry allowed combinations of HF virtual orbitals.dl
(In a1 Di-CI calculations, the two Towest orbitals, which correspond
to 0 and C 1s cores, are frozen, i.e., no excitations are permitted.)
By calculating the dispersion energy in this manner, no superposition
error arises, Using this method at R = 8 and 11 a.u. for both 6 = 0°
{0-atom end) and 180° {C-atom end) yields an interaction at the C-atom
end that is twice as attractive as that at the O-atom end; see Table III.1.
This finding is contrary to what one would expect from HF results where,
for fixedR, the interaction at the C-atom end was more repulsive than
that at the 0-atom end. To verify these values, S+D CI calculations

were perf_ormed42 at the same geometries, again holding the lowest two
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orbitals fixed. The S$+D CI interaction energies were in close accord

23 the Di-CI procedure yields

with Di-CI values. As in the He, study,
2 larger well depth than the S+D CI method.

In the HF HZCO-He study, a very large basis set (basis B) was used
to reduce the superposition error. Since the expense of using basis
8 for the two types of CI calculations described akove is presently
prohibitive, basis A was reexamined. At R = 8 a.u. and 3 = 0°, the
superposition error is at most 7°K. Since Di-Cl and S+D CI computations
are in reasonable agreement using basis A, we feel that the super-
position error is 1ikely not larger than 7°K for the grometries
considered here. For these reasons, it is felt that basis set A should
provide an adequate description of the well and long-range regions and,
therefore, is used for the remainder of the calculations.

Although the Di-CI and $+D CI methods yield comparable results, the
available S+D C] computer code is faster and, therefore, was the one
used for the bulk of the calculations. CI computations were performed
at 14 geometries: 6 = 0° and 180° for R = 5, 7, & and 11 a.u.; 6 = 90°,
¢ = 0° (plane of H2C0) for R =5, 8 and 11 a.u.; and 8 = 90°, ¢ = 90°
(bisector plane) for R = §, 8 and 11 a.u. The number of configurations
included in the CI wavefunctions depends, of course, on the molecular
point group. As discussed e]sewhere,3° each configuration is a pure
spin eigenfunction with S = 0. The geometries 6 = 0° and 180° correspond
to C2
corresponds to Cs symnetry (37779 configurations) and 6 = 90°, ¢ = 90°

v symmetry (19452 configurations in the S+D CI), 8 = 90°, ¢ = 0°

also corresponds to Cs symmetry {34419 configurations), but a different

plane of symmetry is involved.



~31-

C. Results and Discussion

Correlation energies are given in Table II1.1. These values do
not include the HF intevaction energy and thus must be added to the
HF results to get the complete interaction potential. Because of the
limited information available for 6 = 90°, no correlatian contribution
to the ¢ dependence can be ascertained.

To facititate the use of the energy surface in scattering calcylations,
the correlation contribution is expanded in spherical harmonics. Following

Eq. (I1.1) the angular dependence of the correlation contribution is

expressed in the form

V(R.9) = voo(R) + vlo(R) cos8 + % VZO(R)(3cosze -1 1)

Inverting Eq. (1) gives

VOO(R) - Y(R,0°) + v15.120°) + 4V(R,90°) (2)

vt = LD - VIR.1807) (3)
and

VZO(R) - ¥(R,0°) + !1B,l§0°) - 2V(R,90°) . (3)

From Eqs. {1) through (4), the correlation contribution can be interpolated
for all desired values of R and 6. The potentials V(R,8) have been fit
t0 the radial function

V(R,0) = e BR — g6, (5)

where A, B and C for 6 = 0°, 90° and 180° are given in Table IIl.2.
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Table II1.1. Correlation energies (ECI'EHF) for H,CO-He.*
3} 0° 90° 90° 180°
Rla.u.) ¢ 0° 0° 90° 0°
3 -0.000891 -0.000737 -0.000709 -0.002247
-281.4 -232.7 -223.9 -709.6
7 -0.000171 -—- —— -0.000294
-54.0 .- - -92.8
8 -0.000064 -0.000040 -0.000026 -0.000115
-20.2 -12.6 -8.2 -36.3
(-22.9)»* (-41.9)
n -0.000005 -0.000001 ~0.000001 -0.000009
-1.6 -0.3 -0.3 -2.8
(-2.9) (-4.9)

*Drder of entries in the table: energy in a.u. and °K, where

1°K = 3.1668x10-6 a.u.

'*Energies {°K) in parenthesis are from the Di-Cl calculation.
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Table 111.2. Parameters for the correlation
interaction.*

2] Axe 8 C*

0° -1.30529 (4) 0.80863 8.19754 (5)
90° -5,58237 (4) 1.11606 2.08846 (5}
180° -8.00165 (4) 1.001991 3.46152 (6)

*
Distance units are a.u. and energy units
are °K.

*k
Values in parenthesis are powers of 10.
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Contour plots of the HF and CI interaction energies in the plane
of the H2C0 (¢ = 0°) and the bisector plane (¢ = 90°) are given in
Fig. 3.1. As axpected, the strongly repulsive region is virtually
unchanged by including electron correlation. The correlation con-
tribution increases the well depth from 3°K in the HF surface to
35-40°K and shifts the minimum inward from 9 a.u. to 7.5 a.u.

Based on the close agreement of the Di-CI and S+D Ci calculations
in the well region (R = 8 a.u.), the final Cl interaction energies
are believed reliable to ~20%.

D. Summary

A CI calculation has been performed to ascertain the role of electron
correlation on the interaction potential between a rigid formaldehyde
molecule and a helium atom. Efforts were concentrated on the region of
the energy minimum and at large intermolecular distances where correlation
effects are expected to have their largest effect.

Two types of CI calculations were carried out. In one method
(Di-CI), the dispersion energy was calculated directly by judicious
selection of configurations. In the second procedure {S+D CI), the
interaction energy was determined from a CI wa ‘efunction built from
inclusion of all single and double excitations from a HF reference
state. Interaction energies obtainad by the two procedures were in
reasonable agreement. It is noted that the Di-CI method yields a
somewhat larger well depth than the S$+D CI procedure as anticipated
from previous He2 studies.23 CI interaction energies in the vicinity

of the minimum have an estimated uncertainty of 20%.
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XBL 758-6878

Contour plots of the interaction potential for He
incident in the plane of HpCO (¢ = 0°) and He incident
in the bisector plane (¢ = 90°). —— Ci interaction
potential. ---- HF interaction potential. Energies
in °K. c.m. denotes center of mass.
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To facilitate scattering studies, the CI interaction energies were
fit to a spherical harmonic expansion. Three terms were used to
describe the 6 dependence; no significant out-of-(HZCO) plane
dependence ¢ was obtained. The effect of correlation on the well region
is to deepen the well from ~3°K to 35-40°K and to shift the minimum

inward from a HZCO-He center of mass separation of 9 to 7.5 a.u.
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IV. DETERMINATION OF CROSS SECTIONS
A. Introduction

In this chapter an Arthurs and Dalgarno type coupled channel (CC)
formalism is developed for the scattering of an asymmetric top by an
atom. With the interaction potential described in Chapters II and
111, the CC equations are integrated to determine the rotational
cross sections of ortho HZCO.

B. Asymmetric Top

Before treating the scattering of an asymmetric top by an atom,
the properties of the asymmetric top wavefunctions will be briefly
summarized. An excellent detailed discussion is given by Davydov.

It is convenient to define two coordinate systems: (1) a space
fixed (SF) frame denoted by primes and (2) a body fixed (BF) frame
(unprimed) which is attached to the center mass of the top. The BF
axes are taken to be coincident with the principal axes of the top.
The orientation of the BF axes with respect to the SF axes is given by
the three Euler angles (an).28

The rotational Hamiltonian of the top is

2 2 2
2 2 g
e fEered 2
X X 2
=AJ2+(B-A)J§+(C-A)J§ . (2)

Here JZ is the square of the angular momentum operator dJ, J; (i = x,y,2)

are the components of J along the BF axes, li are the principal moments

of inertia, and A = E%;“ B = §%- and C = E%;' are the rotational

Y
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constants. To solve the Schroedinger equation for the Hamiltonian in
(2) it is convenient to expand the asymmetric top wavefunction in a
basis set of symmetric top (where Ix = Iy) wavefunctions, wjmjk' The
asymmetric top wavefunction is, therefore, expanded as
ang N
¢, 7 (oY) = Z akijmjk(onSY) (3)
k=-j

where

1 %
Yoo o (oBy) = ¢ = D, (cBY) (4)
ijk 8 2 mjk

u

Here Dgn.k(GBY) is an element of the rotation matrix;28 the aﬂr are
expansion coefficients (to be determined); j(j + 1) h2, mJ.h (|mj| <j),
and kh (|k| < j) are the eigenvalues of Jz, JZ.(SF projection), and
JZ (BF projection) respectively; and T labels the asymmetric top
eigenfunctions (see below). Note that J2 and Jz. are conserved for
both symmetric and asymmetric tops while JZ is conserved only for the
symmetric top. The fact that Jz is not conserved results in mixing of
the (2j + 1) different values of k corresponding to a given (J, mJ.)
to form (2j + 1) states of the asymmetric top. These asymmetric top
states are labeled by an index T as indicated above.

Substitution of (3) into the Schroedinger equation leads to

i . -
: ‘*kr{“"jrnjk'“‘I bim i’ &5<Sird = O (s)
for (23 + 1) values of 1. The matrix elements of ¥ over the symmetric

top wavefunctions canbe found in Davydov.6
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The (2j + 1) equations given by (5) can be simplified by employing
the symmetry properties of the Hamiltonian. The Hamiltonian is
invariant under the group of the following four coordinate transformations:
(1) identity transformation, (2) x + -x, {3) y + -y and (4) z » -z.
These transformations form a representation of the Klein Four Group
which has four one-dimensional irreducible representations. By
transforming the basis of symmetric top wavefunctions to a set of
symmetry adapted functions, which transform according to the irreducible
represeritations of the Four Group, the Hamiltonian matrix (see Eq. (5))
becomes block diagonal, thus decoupling the system of Eqs. (5) into

four smaller systems. The four classes of symmetry adapted functions,

X, are

odd 1 s
o I LT ] kodd, s =0or1, {6a,b)
ks 5[ijk Jm, k|’ '

(6c,c)

even - ; keven, s = 0or 1.

1 [ s

X Dl | 2L 3 M7 _]
ks mw ijk ij k

Note that there are four types of functions (k is odd or even and

s = 0 or 1), each of which transforms according to a different

irreducible representation. The expansion (3) can now be restricted

to sums over a single class of symmetry adapted functions,

odd or
even k

Jm, .
J = J
¢T E bk-r s
k=0 or 1
where the state index t now also implies odd or even values of k

and a value of s {0 or 1). The system of Eqs. (5), therefore, becomes

four smaller systems of the type
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odd or
even k

J : - =
bkr{('\k'spr“‘ks) estk.k) 0 . (7)
k=0 or 1
These sets of equations can be solved by standard techniques in iinear

algebra to yield the eigenvalues sz and expansion coefficients biT
of the asymmetric top.

The group described previousiy does not represent all the
symmetry properties of the asymmetric top Hamiltonian. The Hamiltonian
also has inversion symmetry (simultaneou. inversion of the x, y and z
coordinates), thus the full group of the top is Doy = qﬁbi. (D2 is a
vealization of the Four Group and i represents the inversion group.)

In Section IIT this additional symmetry will be used to simplify
the -oupled channel scattering equations, For reference the inversion

jm,
parity of ¢T J s given by

jm. : Jm.
Fo, 0 = ()ITS 4 I (8)

where F is the inversion operator. Hence the symmetry adapted
functions of (6) are autumatically symmetry adapted functions of the
larger group Dzh'

For the case of HZCO there is the additional symmetry of inter-
changing the identical H nuclei resulting in ortho {symmetric) and
para (antisymmetric) couplings of muclear spins. Since there is no
interaction that couples nuclear spin states during collisions with
He, ortho and para HZCO can be treated as separate species. The
astrophysical chservations of interest in this study are cf ortho

HZCU; therefore, only these states need be included in the scattering
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calculations. Since the H nuciel are Fermions, the total wavefunction
must be antisymmetric under their interchange. The nuclear wavefunction
is symmetric, and therefore the rotational wavefunctions must be
antisymmetric. Letting P be the operator that interchanges H nuclei

then
Jm, Jm,
po. 3 = () o 3 9)

where again t implies odd or even values of k. Since szj must be
antisymmetric for ortho H,C0, Eq. (9) shows that only states with k
odd (functions given by (6a,b)) are required in this study.

Using the rotational constents of Oka’® (A = 38835 MHz, B = 43003 Mhz,
and C = 282029 MHz) to evaluate the Hamiltonian matrix elements, the
energy levels of ortho uzco were obtained from the solution of (7).

These energy levels accompanied by two labeling schemes are given in
Fig. 4.1. For ihe lower {upper) state of each doublet s is 1 (0).

C. Theory of Atom-Molecule Scattering

In this section, the Arthurs and Da1garno] (AD) coupled channel
or close coupling (CC) formulation is presented for the case of
scattering of an asymmetric top by an atom. For simplicity the atom
is assumed spherical (in a ]S state) and the top is also taken ta be
in a singlet state so that the problems associated with the coupling of
spin angular momentum can be neglected. Low kinetic energies will be
considered; therefore, vibrational and electronic excitation is not

possible.
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Ortho H,CO
Energy Levels and Transitions

312 +——3—6 (33.4544°K)
3137 * 5 (32.0631°K)
20 | (226219
27 7 3 (21.9252°K)
o r 2 (15.3987°K}

R E—
: 1 {15.1668°K)
XBL 758-6983

TR

Fig. 4.1. Energy level diagram for ortho H,CO with the
dipole allowed transitions designated by arrows.
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The Hamiltonian of the total system (top plus atom) in center

of mass coordinates is
= 2 2 &/ gy
o= (-h/2u) 05 o+ 3 (R') + V{r,R') , {10)
P int

where the terms from left to right are the kinetic energy operator for
the relative motion of the top and the atom, the rotational Hamiltonian
(Eq. (2)) of the top, and the intermolecular potential. Here u is the
reduced mass of the total system, Tz (r,8',0') is the position uf the
atom in a space fixed (SF) frame and R = (aBy) is the orientation of
the top in the SF frame.

To solve the Schoedinger equation

(J(-Etot)‘i'=0 (1)

an expansion technique is used. The total angular momentum 3 and its
SF z' projection JZ. = M are conserved in this system. AD found it
convenient to couple the rotational angular momentum (3) of the top
and the orbital angular momentum (I) of the collidiny system together
to form eigenfunctions of 3 and Jz.. Following AD the radial and

angular dependences are separated and the wavefunction is written as

M = a0y - 14
“’gh(r.R )= Z Y uj'l“r"—jﬂ’[‘(r)
j'llTl

(12)

VR



where
RGO t z C(320s nme) (13)

Here, C(Jld;mjmzn) is a Clebsch-Gordan coef‘ficient,28 Ym!(F') is a
spherical harmonic describing the relative angular momentum of the
colliding system and nt:"a(ﬁ') is the asymmetric top function given

by Eq. {3). Svbstituting Egs. (10), (12) and (13) into (11), multiplying
on the left by V:j’ﬂ;..,[.., integrating over 7' and R', and making use of

orthonormality v'e'lai:'lons,28 ylelds the CC equations
[dzldv'2 - 20(2t + l)h-2 + kg.r.] ug.z.,[.‘_du(r) (1)
2 si1ght,.t? n [} J
= (Zu/"‘ ) ; !'Z:TZ(J L't IVIJ L") uj"E"T""jET(r)

where

2 =
kjl.rl Zu(Etot - EJITI)Ih . (15)

The coupling matrix elements are defined by
GretTv]iiene™ =ffd§'d?'v‘.”.4;. J(rLRY) (16)
j'e't
x V(FR') vy (R

and are independent of M. For an asymmetric top and an atom the

interaction potential can be expressed as (see Eq. II.1)

V(Fuﬁ')=2t(4n12hl)”2 vi(F) Yyylene)  (17)
A=0 v=-2
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where 6 and ¢ are the angles that define the position of the atom

with respect to the top. Since (6,4) are not the angles used previously
and integration over angles is required by (16), the group representation
property39 is used to write va(6,¢) as a function of the angles r' and

ﬁ'. The potential is alternately written as

V(F.RY) = Z (amj2a+1)172 (18)

Avv!
r\. A h'
viulr) YAv.(R ) Dv'v(' )

Substitution of Eys. (3), (13), and (18) into (16) yields the explicit

form of the coupling matrix elements

Jj' J

e rlgree = (3770 3 Zai:T-aﬁ:-'r--(-)k"zvx,ku-k-<”
k|=_j| kll=_jll X
x [(25* + 1)(23" + 1)(28" + 1)(22" + 1)71/2 a9)

EI EII A J' 1 J'II A j L} zl J
o o o kl -kll kll_kl ill Jll X
The (:::) are 3-j symbols and {:):} is a 6-j symbo].29
Symmetry considerations simplify evaluation of the coupling
matrix elements. Conservation of parity requires the coupling matrix

elements (19) to vanish unless

()RS L gitsteet (20)

(Recall from Section II that v implies odd or even values of k and

s to be 0 or 1.) Hermiticity of the potential results in
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(j"l"Tnlvlj|ﬂ'ITl) = (j'EIT"va"l"T") . (2])
The boundary condition on the radial function

J - .
"j'z'r'+jlr(r) LITILITIL exp[-((ijr - w/2)] (22)

X 1/2
_ it J . B
(J_'T.> Sirgrpragey oXPL kg r - 21/2)]

defines the scattering matrix SJ. For the j't' « jt transition the

integral cross section is given by

® Jei g
_ m

e T G g W @3

I N =0 e=T3-3] 2°=3-5'

J 2

lTj'E'r'«jRT[

where
J . o

Tj'l'T'«jET - ij'sil'sTT' Sj'l'T'*jET . (24)

The cross section in Eq. (23) has been obtained by averaging over
initial projections mj and summing over final projections mj'. Since
the S matrix is unitary the reverse cross sections can be obtained
from the reciprocity relation
: 2
(25 +1) ij

T s S (25)
Jrej't (23" + 1) k?'r' J'riejt
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D. Description of Scattering Calculations

The cross sections for rotational excitation of ortho HZCD by coilision
with He are determined by integrating the coupled channel equations (14).
In order to carry out the integration it is necessary to
specify the total energy of the system Etot {see Eq. (11)}), the number
of internal H2C0 states, and the integration procedure. For the
astrophysical problem Boltzmann averaged rate constants are required
(see Section VI), and accordingly 12 values of Etot in the range
20° < Etot < 95°¢ were chosen. {See Table IV.1 or IV.2 for a list of values.)
The sums on the right hand side of the CC equations {14) extend,
i principle, over an infinite number of (j,T,%) combinations. Obviously,
this is not computationally feasible so the sums must be restricted,
keeping only the important terms. This is done by chosing a basis of
internal ortho Hzco states (j,T) and then selecting the values of
orbital angular momentum £ permitted by the triangle inequalities of
angular momentum coupling for a given value of J (total angular momentum).
For this calculation a basis set of 16 ortho HZCO states with
1 < j €5 were chosen. This resulted in a ma.imum of 62 channels
{{(j,T,2) combinations) coupled together. At Etot's less than 50°K
therg are 4-8 HZCO states energetically accessible in the asymptotic
region. The CC equations were integrated by Gordon's method]7 with
the tolerance parameters VUMAX, TMAX, TOLLO, TOLHI, CTOL set at
104 and the parameters STEST and UTEST set at 1073, The interaction
potential (Eq. (17)) is the sum of the Hartree-Fock contribution

(Eq. (I1I.1)) and the correlation contribution (Eq. (III.1)).
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E. Results
The elastic cross sections for the si~ lowsst (j < 3) ortho
HZCO states are given in Table IV.1 and displayed as a function of
Etot in Fig. 4.2. The inelastic cross sections are given in Table IV.2.
Selected inelastic cross sections are plotted in Fig. 4.3. Reverse
transitions were obtained from the reciprocity relation (25).
Resonances occur at ~20.2, 32.7 and 47.7°K in many of the cross

section curves. These energies are approximately equai to the internal

energies of the j = 2, 3 and 4 doublets, respectively.



Table 1IV.1. Coupled channel elastic cross sections.*

EiotlX)

State 20.1668 25.1668 27.6668 30.1668 32.6668 35.1668 37.6668 40.1668 4Z.6668 47.6668 70.1668 95.1668
My 3N 235 229 23 345 189 179 170 163 152 1s 93
0 33 257 23] 23 418 194 182 174 167 154 15 93
7, - 267 282 249 430 27 205 197 186 178 122 96
2 - 308 306 263 a4 228 nm 204 195 187 124 97
3, - -—- ——- - 1620 289 277 255 U4 759 135 103
3, . . ——- — R 253 28R 293 281 353 142 106
4, - - —— - ———- - - - .- 950 162 12
4, —vn — - . ——e- - — . - - 178 16

“Units are K2

—6#-
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XBL 578-6879

Fig. 4.2. Elastic cross sections.
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Table 1¥.2, Coupled channe} inelastic cross sectfons.”

el
Transition 20,1668 25.1668 27.6668 30,1668 32.6668 35.1668 3I7.6668 AD.1668 42.6668 47.6668 70.1668  95.1668
l“~1w 66.0 25.6 17.8 15.1 5.5 12.3 n.s 1na 10.1 9.5 7.6 6.5
e onem 2.7 23.3 21.3 7.6 20.2 @1 170 16.7 6.1 10.5 8.5
'IHAZH 12.2 n.8 13.9 ma 1n.2 8.5 8.9 8.0 7.7 5.7 5.2
¥, van ——— —— ——— 4.8 4 5.4 6.3 6.4 8.0 5.4 4.6
1\].3‘2 ——- —— — ——— ———- 0.3 Q.6 0.3 1.2 1.6 0.9 1.3
"4" cvem Py vou —— .eae onme aee s - 3.0 35 3.8
1% caa- . . .- - - - - e .- 0.9 1.2
lm*llz oo 13.4 13.8 15.4 kN n.s 9.9 9.7 9.2 8.5 6.3 5.4
Iw’!" ———- L% 1.3 16.0 3.9 1,.3 124 1.8 10.3 8.9 8.4 7.8
Yo ——— ——— -—— acee 2.5 1.6 8.6 7.6 .2 1.0 4.7 3.4
o2 . pos ——- - .6 2.4 2.6 3.7 4.7 4.5 4.3
o — —- — —— P - - 3.0 2.5 2.2
‘10*13 — — ———- e anea p— - - - 0.6 0.7
212'2" 8.8 19.4 19.9 92.4 131 10.4 8.4 7 5.5 3.5 2.8
212‘313 - - 10.8 1".se 13.3 13.3 12.9 20.0 1.6 1.1
Z|Z'le - - 2.1 3.3 7 7 9.5 34 3
2,4, - —— ——- ——-- — ———- - - P 6.2 3.0 3.3
2,4, . a— P e - - . -~ . - 1.1 1.3
z“.zn —— — —— c.ee 7.3 7.9 6.8 1.3 123 37 2.8
z".glz J— —— —— o 8.2 n.s 124 104 20.2 9.5 8.2
2% J— o ——- cene o — ———- o . .2 33 34
213, P ——— -—-- ———- oven - - - .- 3.2 3.6
3392 - - - 9.6 10.2 B.B 9.2 25.0 2.8 2
3 1% ——— o . a——— —— - AL n.e 10.7
3‘ 34"’ ——— . - ——. - 2.4 2.4
3‘2'4" ———- ene .ee eme- 12.7 2.6 1.9
3y - - —— 10.0 9.6
‘"“13 ———— — ——- —— [— o .- ~ane - —— 27 1.8

“Untts are &2,

-16-



-52-

T T T T T T

Initial State = 1,,(2)

af‘_i (Az)

- Initial State = 1,,(1) -]

% 20 25 30 35 40 45 &0
E,, {°K)
tot XBL 758-6982
Fig. 4.3. Inelastic cross sections for initial states
1]] and 110.
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V. COOLING OF INTERSTELLAR FORMALDEHYDE

In order to test the collisional pump as a mechanism for cooling
of interstellar HZCO, the rotational cross sections given in Chapter IV
will be used to determine excitation temperatures. For simplicity
we will assume that the only processes of importance are dipole
radiation and collisions. Higher moment transition probabilities are
several orders of magnitude smaller than dipole ones, and hence they
are neglected here.14 It will also be assumed that the interstellar
medium is rare enough to neglect radiative tr‘apping.]3

Astrophysical observations indicate that the 6 cm (j = 1) and
2 cm (j = 2) doublets of ortho HZCO are cooled, i.e., the excitation
temperatures Texc between states 1 and 2 (see Fig. 4.1) and between
states 3 and 4 are less than either the isotro, ic background temperature
(Tiso = 2.7°K) or the kinetic temperature (10° < Tk < 20°K). The
excitation temperature is defined by assuming a Boltzmann distribution
for the populations of two internal states, viz,

N9 exp(-Ei/kB Texc) )
95 exﬁI:Ej/kB Texc)

1
"3
h

h

where n; = population of the it internal state

9; = degeneracy of the it internzl state
E. = energy of the ith internal state

k, = Boltzmann's constant.

Then if the populations of two states are known the excitation temperature

chavacterizing them can be determined.
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The populations are determined by solving the equations of

statistical equilibrium,5

dn.
1 _ r
ge = 2 Wi * Byyelvgy) + Thel gy g (2)
J#i
- J;Aﬁ + 8 50(v; ;) + [Hel kgt my = 0
J#1

where Aij is the Einstein coefficient for spontaneous dipole emission
from state i to state J (Ei > Ej) (Table V.1), Bij is the Einstein
coefficient for induced dipole emission and absorption (Table V.2),
p(vij) is the energy distribution of radiation at the isotropic background
temperature (2,7°K), Vij T ]Ei - Ejl/h and [He] is the helium con-
centration.]4 Here kij is the collisional rate constant for transition
from state i to state j obtained by Boltzmann averaging the cross
sections (as determined in Chapter IV) as follows (Table V.3):

T ”7 Eoy.(E) & e (3

m(kgT, )
0

where E = Etot - Ei is the relative translational energy.

Assuming a kinetic temperature and a helium concentration, the
system of equations defined by Eq. (2) is solved for the populations.
Excitation temperatures are then calculated using Eq. (1). In the
limit [He] » 0, i.e., radiation processes only (no collisions), all
the excitation temperatures reduce to Tiso' As [He] + « the collisional
processes become dominant and all Texc > Tk' At helium concentrations

- .
between these Timits Texc Yower than both Tiso and Tk can occur.



Table V.1.

Spontaneous emission coefficients matrix A.*

Initial Final State
State 1y, Mo 22 ) 33 312 43 12
110 0.4 --- -—--
2,, 5612 -
2 - 6420.2 3.2 - -
3 - - 227394 ---
3, - - 275041 1.9 ---
by - - 50071 -
by - ———  7124.6 35.4

* -8
Units of 10°° (molecule

=867



Table V.2. Induced radiation times radiation density matrix Bep.*

Initial Final State

State. T3 Ty Zp I 3y 3 43
I e 3.9 7812 e mmm eee e
o 3.9 e eem T eem e ame
2, 4687 === == 0.8 7546 - oo
2 —- 475.0  10.8  eem =ee 7007 e
33 eee =e= 539.0  =-=  --=  18.2 509.4
3, s —e= -= 506.9 18,2 ---  ---  438.0
4, 137 S
4, e eeeeee e eee 307 26.0

-9G-

* - -
Units of 1278 (molecule -sec) '



Table V.3. Rate constants* at Tk = 15°K.

Final State

Initial .

State. 1y Vg 2, 2y 33 31 Ay
1, - 5.5 5.0 25 1.3 0.2 04
1,0 56 -~ 31 34 1.3 08 03
2, 47 28 -~ 3.9 38 1.3 06
2, 25 33 41 - 2.0 3.4 0.6
33 L7 17 63 27 - 3.4 2.8
3, 03 101 21 49 3.8 - 1.5
4, 1.0 08 16 1.7 54 2.6 --

43 0.2 0.1 0.3 0.9 0.7 2.9 0.6

~lg-.

“In units of 1071 cc/molecule-sec.
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Figure 5.1 displays cooling curves (Texc vs [He]) at
Tk =5, 10, 15 and 20°K. Cooling of both the 6 cm-(le) and 2 cm
(T34) doublets is seen to occur at helium concentrations between
]02 and 105 cm'3 for kinetic temperatures between 10 and 20°K but
not for 5°K. The two remaining curves, T]3 and T24, are excitation
temperatures for pairs of states where dipole radiation is allowed.

Having established that the 6 cm and 2 cm doublets of HZCO are
cooled by a collisional pump, the question of the relative importance
of the various transitions remains to be fully elucidated. By varying
the number of states used in the equations of statistica’ equilibrium
(1imit of summation in Eq. ( 2)), the effect of the different j doublets
on the cooling can be a-<essed (see Fig. 5.2). MNeglecting the j = 4
levels caused less than 0.2°K changes in the effective temperatures
for He concentrations at which cooling occurs. Omission of the
J = 3 levels, however, resulted in no cooling. Thus the j = 3 ortho
doublet plays a fundamental role in the cooling of HZCO. At Tow He
concentrations (510s cm'a) radiative contributions are found to dominate
collisional dipole-allowed transitions so that rate constants k,. k;5.
k24, k34. k35, k46 and k56 are of minor importance. Ratios of dipole
forbidden transitions, e.g., k25/k16’ are the indicators of cooling.
The large ratio of k25/k16 = 6 (Table V.3) implies that transitions
from the j = 1 to the j = 3 doublets are the primary components of the
cooling mechanism.

For collisions of the isotopic homologue H2]3C0 the Born-Oppenheimer
interaction potential is the same as before and all differences are

contained in the dynamical treatment. They involve small changes in
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Fig. 5.2. Excitation temperatures as a function of He density with various numbers
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the center of mass of H2C0, the reduced mass of the total system and

the energy level spacing. These differences are expected to have little

effect on the scattering cross sections. In agreement with observations,

these calculations indicate that the j = 1 doublet of H2]3C0 is cooled.
By a series of accurate quantum mechanical calculations, the

collisional pump is confirmed as a cocling mechanism for the 6 cm

{3 =1) and 2 cm (j = 2) doublets of ortho HZCO. The j = 3 levels are

L
found to be an integral part of the pumping scheme.
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