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ABSTRACT 

This report is the first of three which discuss the kinetic theory 

of ionized gases. In this report only a simple gas is considered so 

that the notation and mathematical procedures used can be easily 

explained. In the second report, Part II of this study, the kinetic 
1*7 ' I ••—.••I • — 1 » 

theory oj^an ionized gas with no magnetic fields present is described 

and in the third report, Pairt III, the complications introduced by the 

presence of a magnetic field are considered and the final results 

quoted. 
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INTRODUCTION 

In §1 the Boltzmann equation for a simple gas is derived and its 

limitations discussed. In §8 the hydrodynamic equations are derived 

from the Boltzmann equation and the pressure tensor and heat flux 

vector are introduced. In S3 a discussion of collisions is given 

and the form in which they enter into the Boltzmann equation is written 

down. Some expressions are derived for the rate of change of any 

quantity due to collisions. The proof that, if left to itself, the 

gas will approach the equilibrium state described by the well known 

Maxwell distribution is given in §4. The properties of this equilibrium 

state are discussed. In §5 the physical significance of the various 

terms of the hydrodynamic equations is discussed. The simple "mean 

free time" theory is described in §6. The theory is formulated very 

carefully so as,to make clear the approximations which are made. In 

§7 the formal procedure of Chapman and Cowling^^' for obtaining a solution 

of the Boltzmann equation is described. The very powerful variation 

method of Hirshfelder et al^^^ for solving the integral equations which 

turn up in the theory is described and the results of applying this 

method to calculate the coefficients of viscosity and thermal conduction 

are given. These results are 
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m is the mass of the particles, e their ch rge, T the temperature and 

k Boltzmann's constant. Tables of these quantities are given in the 

Appendix to Part II. In §9 it is pointed out that this variation method 

corresponds to asking for the maximum rate of entropy production. 

One difficulty with this subject is that the notation, even when 

considering just the simple gas, becomes complicated. At the end of 

this report therefore is given d full list of all the symbols used 

together with their definitions. 
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§1. THE DOLTZKANN TiJQUATIÔ ' 

The Boltzmann equation is the equation upon which all this work is 

based. It gives the rate of change of the distribution function 

F(v,r, t), sometimes called "the density in phase spo.ce", where this 

function is defined so that 

P(y,r,t) dy dr 

is the number of particles in the velocity range v to v + dv, 

(dv = dv^ dVy dv^.), and at a position in space between r 'ind r + dr, 

(dr s dx dy dz), at time t. An exact knowledge of P(y,r,t) is not 

equivalent to a complete knowledge of the system but it does tell us as 

much as we need to know for most purposes. The Boltzmann equation is 

derived in the following way. Consider the particles which are within 

this phase volume dv dr centred on v,r at time t. If there were 

no collisions then each of these particles would move so that at an 

earlier time t-dt they would have been in the phase volume dv dr 

centred at y - X dt, v-^ dt. Here X is the force per unit mass 

acting on a particle. Hence if there were no collisions we would have 

F(y,r,t)dv dr - F(y-X dt, r - v dt, t-dt) dv dr . 

But in addition to these particles which move smoothly into the range 

dv dr centred at v,r there are also particles which suffer a collision 

in the volume dr so that their velocities get scattered into or out of 

the velocity range v to v + dv. The nett number of particles scattered 

into the range will be proportional to dv dr dt and we write it as 

AF(v,r,t) dv dr dt . 

Adding this term to the rignthand side of the previous equation and making 

dt tend to zero gives 

jrr + V I' + X aj F(y,r,t) = AP(y,r,t) (l.l) 

where o 0 J 
V - (;r-, — — ) (1.2) 

ox oy 8z 

a (J V 

3v„ .jv,, dv^ 
y 

This is Boltzmann's equation. 



In deriving this equation we assumed we could define a "collision". 

This could certainly be done if the particles were hard spheres; we 

would then say that a collision takes place if the particles touch. 

But for particles with Coulomb interactions it is not obvious.what should 

be called a collision because two particles interact no matter how far 

apart they are. Indeed in a formal way we could say that collisions-

just represent forces betvreen particles and should therefore be included 

in the force term X leaving zero on the right hand side of the equation. 

But this would not be convenient. We shall define a "collision" to take 

place when two particles approach nearer to one another than a certain 

distance. Fortunately it will turn out that our answers are not very 

sensitive to this distance. Chapman and Cowling take it to be half 

the mean interparticle separation. Nowadays it is generally considered 

better to take it to be the Debye cut-off distance d^ - i^'^/in e^ ni}"* 

where k is Boltzmann's constant, T the temperature and n^ the 

electron number density. This is the distance we shall use. 

It should be emphasised that the force X therefore includes the 

forces due to particles separated by more than this distance as well 

as external forces. The contribution to X coming from distant particles 

may be important, for example plasma oscillations might give rise to 

appreciable effects. Such questions will not be considered in this 

report. 

Notice that the Boltzmann equation is only complete in itself if 

the right hand side, the collision term, can be expressed as a function 

of F. '::e shall see in S3, when we consider the collision term in 

detail, that this can be done so long as the gas is dilute enough so 

that correlations between the particles can be neglected, i.e. so long 

as the probability of finding one particle in a certain range dv dr 

while a second particle is in some other rang, is just the product of 

the individual probabilities. This is certainly not so in a liquid 

but it is probably always a good approximation in a plasma. 

3. 
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§2. THE EQUATIONS OF HYDRODYNAMICS 

In this section we shal l deduce the hydrodynamic equations of motion fran 
the Boltzmann equation. We s t a r t however, by writing down the definit ions of 
fundamental quant i t ies we want to know. 

If •? i s any property of the pa r t i c l e s , depending in general on the 
velocity, position and on the time, then the mean value of <? at the posit ion 
Z and at time t i s 

f = - / dv F 1- C2.1) 
n 

where n is the number density of pa r t i c l e s , i . e . 

n ' / dv F (2.2) 

The density of the gas is 

p * nra 

where ra i s the mass of each pa r t i c l e . 

The d r i f t velocity i s 

U - V = - f d v F v (2.3) 
n 

The random veloci ty of a p a r t i c l e , c , is the difference between i t s actual 

velocity and ii. Thus 

V - u (2.4) 

Because of (2.3), c is zero. 

The kinetic temperature T is defined by 

- k T - - r a c ^ = - f dv F ^ m £=" (2.5) 
2 2 ~ n •" ~ 2 

A quantity we shal l want to know is the pressure tensor 

p = nm c c = m / dv F ĉ ĉg (2.6) 

4. 
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Here a and ,3 stana for the three car tesian direct ions x, y, z. Thus 
Cg, i s the a-component of the vector c where a i s x, y, or z. Tnere 
are nine quant i t ies pĵ 3 of which only s ix are independent since c lear ly 

Pa|3 = Ppa (2.'7) 

These six are 

Pxx' Pyy» Pzz» Pxy " Pyx» Pyz " Pzy ^^^ Pzx " Pxz 

The heat flux vector is q defined by 

q^ = - nm F c a = / dv F - m a*" c„ (2.8) 

V/e snai l see why p^^ and g. are important presently. 

The well known equations of hydrodynamics expressing continuity, 
conservation of momentum and conservation of energy can be derived-from 
(1.1) without any detai led knowledge of the form of the co l l i s ion term on 
the r ight hand side. The equation of continuity comes from integrating (1.1) 
over a l l ve loc i t i e s . This gives 

3F 
/ dv g^ + ; dv v„ V„ F + / dv X„ 3^ F = / dv AF (2.9) 

In this equation we have written out the scalar products v . V and X . 3 
using the usual summation convention, \vith this convention whenever a 
subscript i s repeated i t is summed. Thus the scalar product of two vectors 
a and b is written in the form 

a . b = 2 a^ b^ ^ a^ \ (2.10) 
a 

Consider the terms of {2.9.) one by one. In the f i r s t terra the d i f ferent ia t ion 
with respect to time can be tarougnt outside the integral to give 

In the second term the d i f ferent ia t ion with respect to space can similarly 

[*' .1 
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be brought outside the integral to give 

^a / dv F v„ = V„ n u« = V . (nu) 

The t h i r i term can be integrated by par t s to give 

v„=-H» 
I S av dv [ \ n - ; dv. P 9„ la 

The f i r s t part of th i s expression vanishes because F must be zero for 
Vgj = ± uo and the second part vanishes if Ô j Xg; is zero. This i s cer ta in ly 
so if X i s independent of velocity and i t can s t i l l be true for some 
velocity dependent forces. For example i t is true for magnetic forces 
because the force in any direct ion is independent of tne velocity in that 
di rect ion, i . e . the force Xy depends only on v.y and v ^. Assuming from 
now on that X is such tnat 9.X vanishes, th i s th i rd terra i s zero. 

The term on tne r ight hand side of (2.9) is the ra te of increase of 

par t ic les due to col l i s ions and t n i s must be zero if ionization is not 
taking place. Hence (2.9) becomes 

|2 . + V . (n u) = 0 (2.11) 
at - ~ 

I f we introduce tne to t a l time derivative 

-5- = ^ + u . V (2.12) 
Dt a t ~ ~ 

which represents the total rat's of change as seen by an element of fluid, 

(2.11) can be written in the form 

^ + n V . u = 0 (2.13) 
Dt " ~ 

(2.11) and. (2.13) are a l te rna t ive forms of tne continuity equation. 

The equation of motion comes from multiplying (1.1) by mv̂ j and then 

integrating over a l l ve loc i t ies to get 

aF 
J dv: mv^ — + / dvi mV(j vo Vjg F + J dv mvjj Xp a^ F = / dv mv^ F (2.14) 

I v I ou^ 



The f i r s t term becomes 

a c 

— / dv mv̂  F = - - (n m u„) 

The second term becomes 

V3 j dv ra V(j( vp F = Vp / dv m (u^ + Coj)(Uj3 + C3) F 

= V'g ( n m Ugj Up) + Vp(n m Cg cp) 

since c is zero. T'ne sura of the f i r s t and second ten.', is therefore, 
using tne def ini t ion (8.5) and making use of (2.11), 

The third term of (2.14) can be integrated by parts to £;ive 

- P Xo, 

The rignt hand side of (2.14) is tne r a t e of change of momenturn in the a 
direct ion due to co l l i s ions and must be zero since momentum is conserved in 
c o l l i s i o n s . Hence (2.14) becomes 

D " 
P 5^ % = -^':3 Ppa ^ P \ (2-15) 

whicn is the equation of m.otion. Ine interpretat ion of the terms in tn is 
equation is very simple. 'Ihe left hand side is the mass times the 
acceleration in tne a-direction of a unit volume of the fluid", the r ight 
hand side is the force acting in th is direct ion on this unit volume - and is 
made up of two terms, the force exerted by the surrounding fluid (pressure 
and viscous forces) and the force X which acts on a l l pa r t i c l e s . If X 
is velocity independent 1 is the same as X. I'te snai l discuss the physical 
interpretat ion of the pressure tensor terms in ffi. 

7. 
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The energy equation comes from multiplying (1.1) by - m v^ and 
integrating over a l l ve loc i t i es to give 

/ dv - m v<,v„ , ^ + / dv i m v^v^ vpVpF + / dv ^ m v„v« Xg d^ P (2 . r . ) 

1 
= J dv - m LL̂  A F 

The f i r s t term is 

a ,1 
9^ (g n m v„v^) = 

3 ^ ( - n m i i ) - 3 ^ ( - n m aM 

The second term is 

1 1 I 
,̂3 (g n m v̂ VojVp) = V̂  ( - n m ̂ = Ug) + Vp ( - n m Up ^) 

+ Vp( n m u„ c„ cp) + Vp ( - n m 0^0^03) 

and the thi rd terra is 

- n m VpXp = - p upXp - p CTXT 

The right hand side of (8.13) is the ra te of change of energy due to 
col l i s ions and is zero because energy rausL be conserved in co l l i s ions . 
Collecting together these terns and making use of (2.11) and (2.15) we find 
th i s equation can be rearranged into tne form 

^ / 3 „ ,. r7.\ _ 3 i.m ^^ t7 - „ t- ., _u „ « V_ ( 2 . 1 7 ) — ( - n k T) = 3 kT — - V.q - p^p V3 u„ + p cp Xp 

or 

1 n k ^ = - V . q - p^-- V.ua + P c I I (2-18) 
2 Dt - 1 'a,- ,. a 

which is. the energy equation. Tne physical significance of each term is 
best seen fron (2.17). The left hand side is the t o t a l ra te of change of 

8. 
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the energy content of an element of the fluid per unit volume. 

The terras on tne r ight nand side are: the ra te of change due to 
increase in the number density, each par t i c le having an energy - kT on 
ayerage; the heat flowing in to tne element due to thermal conduction; the 
work done in changing the snape and size of the element, and f inal ly the 
work by tne force X in the random motions of tne p a r t i c l e s . This last 
term is cer ta in ly zero if X is veloci ty indep-^ndent for then i t becomes 
p c.X .and c i s zero. We sha l l see l a t e r that i t also vanishes for magnetic 
forces. 

For most problems ve would be quite content to obtain a solution to these 
equations of continuity, motion and energy without knowing tne d i s t r ibu t ion 
function F(v, r, t ) accurately. However in order to solve these equations 
for n, u. and T i t is necessary to know tne pressure tensor p̂ j > and the 
heat flux vector q and these can only be obtained from a solution of 
Boltzmann's equation for the d i s t r ibu t ion function. Now to obtain a good 
solution of Boltzmann's equation is very d i f f i cu l t but l a t e r we shal l show 
that we can formulate a procedure which, altnougn giving only a poor solution 
to the Boltzmann equation, gives a good approximation to the coefficients of 
viscosi ty and thermal conduction wnicn appear in the pressure tensor and 
heat flux vector respectively. Tjierefore, provided a solution of these 
macroscopic hydrodynamic equations is a l l we require we need not trouble to 
get a more accurate solution for tne d i s t r ibu t ion function F ( v , r , t ) tha t 
th i s procedure gives us. 

9. 



S3. THE COLLISION TERM 

So far all we have needed to know about the collision term is that 

in a collision the number of particles, thci total momentum and the total 

energy must bo conserved. To go further however we must examine the 

collision term more carefully. vfe shall do this now, 

Consiaer the collision between a particle of velocity y with a 

particle of velocity s. Suppose that after the collision the velocities 

are v' and s' respectively. The velocity of the centre of gravity, 

G, must remain constant so 

G = l(v + s) = i (v' + s') (3.1) 
g _ _ 2 .- _ 

We define the relative velocities before and after the collision to be 

(3.2) 

Hence 

(3.3) 

g = a - V 

s = G + - g 
~ ~ 2 -

V = a - ^ g 

i' 

§.' 

V ' 

= s ' 

= G 

= G • 

- l' 

^\J 

The to t a l energy is conserved, i . e . 

- ra (v^ + s'̂ ) = i ra (v'= + s" ' ) (3.4) 
o - - 8 "" ~ 

Substituting from (8.3) this gives 

g = g' (3.5) 

Wihere g is the magnitude of the vector g. 

To complete the specification of the collision we must give the 

geometry of the collision as well as the initial velocities y and s. 

\/e do this with r̂ 'fc-rence to Figure I which shows tho second particle 

moving relative to the first particle with velocity g before the 

collision and with velocity g' after the collision having been 

deflected through an angle x» If ̂••'̂' specify the asymptotic distance 

of approach, b, then the angle x is ̂ ; ' jnnined by the law of inter­

action betv.'een the particles. Finally w. must also fix tlie plane in 

which the collision takes place by specifying the angle e which this 

plane, that is the plane of the paper, m^-Ls with some fixed plane, 

10. 
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Now consider collisions i,'hic'"> take place in a volume of space dr 

in a time t to t + dt between particles with velocities in the range 

y to y + dy and s to s + ds respectively where the asymptotic 

distance of approach lies between b and b + d'o and the azimuthal 

angle of the plane of the collision is between g and e + de. Provided 

we can neglect correlations the number of such collisions is proportional 

to the number of particles in the range dy dr, i.e. to F(y,r,t)dr dy, 

and to the number of particles in the velocity range ds which are in 

a cylinder in space of length gdt and of base area bdbde. That is, 

the number of collisions of this type is 

P(y,r,t) F(s,r, t) g b db de dy ds dr dt (3.6) 

In these collisions the final velocities lie between y' and y' + dy' 

and between s' and s' + ds' respectively where y' and s' depend 

upon y, s, b, e and the lav/ of interaction between the particles. It 

can be shown quite generally that 

dy' ds' = dy ds o (3.7) 

Closely associated with collisions, of this specified type are the 

inverse collisions shown in Figure 8 where the initial velocities are 

y' and s' and the other specifications b and R are the same. The 

final velocities in this case will be y and s by symmetry. The 

number of these inverse collisions is 

F ( y ' r , t ) P ( s ' , r , t ) o ' b db de d y ' d s ' d r d t (8 ,8) 

which by (3,5) and (3,7) is equal to 

F(y'r,t) F(s',r,t) g b db de dy ds dr dt (3,9) 

The calculation of y',s' in terras of y,s,b and e for Coulomb inter­

actions is given in Appendix A at the end of Part II. We need not 

consider it until later. 

The collisions (3»6) scatter particles out of the range dy, 

collisions (3,9) scatter particles into the range dy, hence the nott 

number of particles scattered into dy is 

,2rr „d 
dy dr dt ' ds de ! db bg [F(y')F(s') - P(y) F(s)] (3,10) 

••' ' % I ' ' ~ 
Hence d^ is the maximum value of b allowed by our definition of a 

11̂  
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col l i s ion , is the Debye cut-off distance {kT/47T e^ n}^. Hence by the 
defini t ion of AF used in derivin-j tne .oltzraann equation (1.1) 

Zr. a 
F(^ , r , t ) = / d§. / de / db b g [F(v'OF(a')-F(v)F(s)] (3.11) 

o o 

where y' and g.' are function of v , s , b , e and the law of interaction 
between the pa r t i c l e s . V,e shal l make use of this expression frequently'. 

kow we shal l prove some very important tneorems about the ra te of 
change of quant i t ies due to co l l i s i ons . If "' i s any propert:- of the 
pa r t i c l e s , depending in general on the velocity, position and time then 
the raean value of ?, wri t ten as "̂  is defined by (8.1) and the rate 
of change of t h i s mean value due to co l l i s ions is 

Ali = - / dz m F(Y) (3.12) 
n 

= - r dy ds de db b g '"(v)[ F (v ' )F(s ' ) - :'(v) F(s.)J 
n 

Alternatively we could derive an expression for Â ' d i rec t ly from (3.'^"). 
(3.6) is tne number of co l l i s ions of a sjjecified type in which y changes 
to y ' . For eacn such co l l i s ion ? changes by an amount '?(v ' ) -?(y) . 
Hence the t o t a l ra te of change of 1 due to co l l i s ions can a lsc be writ ten 
as 

A1 = - J" dv us de db b g Vl'iv'') - ^K^L) 1 Hv:)'Hs) (5.13) 
n 

It can be verified that (3.12) and (3.Hi) are consistent as follows. The 

first term of (£.12) is 

- j d v d s d e d b b g T(y') F(y') F(s.') (3.14) 
n 

In th i s expression we can change variables trora y and 3 to v' and s ' 

and by (3.7) the Jacobian is unity. 3y (3.5) wj c in replace g by g' 

and then tnis becomes 

- r dv' ds ' de b db g' *(y) ?(v ' ) P(s ') 
n 

Now by symmetry y is the same function ^ . i. s ' b and e as 
y ' i s of y , s b and e. Hence tnis last expression is the same as 

i / dv ds de b db g ^vj) F(y) F(a) (3.1^) 
n 

^•-i Vl'o 



This together with the second term of (3,18) gives precisely (3.13). 

Bec.ause all particles are equivalent (3,13) can also be written as 

A"^ = — / dy as de b db g [•̂ '(v') + ';'(s') - >P(v) - 'J^(s)]F(y)F(s) 2n - -. - _ 

which, in the same way that (3.14) is equivalent to (3,15), can be shown 
to be 

/̂T? = — / dy ds de b db g[?(v') + '-P(s') - ?(v) - '»(s)]F(v')F(s') 2n - - _ _ _ _ 

Adding (3,16) and (3.17) and dividing by 8 gives yet another formula 

l^w = — / dy ds de b db gV^v') + 'Hs'} - 'nv)-?(s)][F(y)P(s)-F(y')F(s')] 
4n 

It is convenient to collect together all these formulae for A®, They 
are 

A? = - dy 'P(v) A F(v) 
n - -

= - / dy ds de b db g •T'(y) [F(y') F(s') - F(v) F(s)] 
n "" 

= i / dy ds de b db g [?(y') - ?(y)] F(y) F(s) 
n 

= — / dy ds de b db g [̂ (̂y') + 'qj(s') - ?(y) - -̂-(s) ] F(y) F(s) 2n _ -

= I - / dy ds de b db ^VHv') + ®(s') - ?(y) - >?(s)][F(y')F(s')̂ (̂y)F(s)] 
4n 

,,.(3.16) 

l/e shall frequently make use of the fact that those expressions for Â ? are 
equivalent. All we have used in deriving thom are certain symraetry properties 
of collisions. Clearly A^ is zero if ^̂  is 1, my or f my". This just 
expresses conservation of particles, raomiintum and energy. Because these laws 
uniquely determine the final velocities of the particle in terms of the 
initial velocities and b and F, it follows that only for these choices of 
^ does A'? vanish. Conversely if A'-''̂  vanishes then ^ must bo a linear 
combination of "the collision invariants", 1, my and |- my-, V/e shall 
make use of this fact in the next section. Strictly speaKing, because 

13. 

C L Ul<> 



electrons and many ions have spins, to complete the specification of a 

collision we should also describe the initial spin states. This requires 

two more parameters and gives two more collision invariants, the total 

spin and the z-component of total spin. put the spin dependent inter­

action between the particles arising from their magnetic moments is so 

much smaller than the Coulomb interaction that it can be neglected. In 

this case the spin specifications remain unchanged in a collision and so 

we can omit them altogether. It is also tru. that angular momentum is 

conserved in collisions, in our notation this means that for each collision 

the asymptotic distance between the particles after the collision is the 

same as it is initially, namely b. The angular momentum of a particle 

ra r y, is an independent collision invariant because at a collision the 

centres of the molecules are at different points. But in our treatment 

of collisions we ignored this, for example in (3.6) both distribution 

functions are evaluated at the same point r,t. Therefore because we 

have made this approximation the angular momentura must not be regarded 

as an independent collision invariant. Of course if we were considering 

molecules with some internal degrees of freedom so that angular momentum 

could be exchanged between the translational and internal modes of the 

particles then we would have to reconsider this question carefully. 

14. 
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^4. THE EQUILIBRIUM STATE 

In this section we shall prove that the system, if left to itself, 

will approach an equilibrium state in which the distribution function is 

of the familiar Maxwell forra. We shall then go on to prove some 

properties of this equilibrium state, namely that the temperature is 

uniform and that the drift velocity can only vary in a certain restricted 

way. 

Consider the quantity 

S(t) = - k / dr / dy F(y,r,t) log F(y,r,t) (4.1) 

In equilibrium we shall show that S becomes the entropy of the system 

apart from an additive constant. Differentiating gives 

~ = - k / dr / dv {1 + log F} — (4.8) 
dt ~ - at 

oF 
Now substituting for — from (1.1) gives 

at 

1 ds 
- — = / dr / dy {1 + log F} v^ V„ F 

k dt '^ " 

+ / dr / dy {1 + log F} X̂ ^ a„ F 

- / dr / dy (1 + log F} AF (4.3) 

Consider the terms on the right hand side of this equation one by one. The 

first terra can be rewritten 

/ dr V^ / dy v^ F log F 

which can be transforraed to an integral over the surface of the container 

of the system 

/ dA / dy Vn F lô ^ F (4.4) 

Here dA is an element of area of the container and Vĵ  is the component 

of velocity perpendicular to this area. Now provided the wall of the 

container is smooth and every particle which hits the wall bounces bjck 

elastically then F is an even function of v^ and (4,4) an odd 
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function of v̂ j and so the integral in (4.4) vanishes. We shall now go 

on to show that provided (4.4) does vanish then the system must tend to 

the equilibrium state given by Maxwells distribution. Thus the system 

will not reach the Maxwell equilibrium state if the conditions for the 

vanishing of (4.4) are violated, i.e. if the wall is rough or the particles 

lose energy to the walls on hitting them or if particles are being 

absorbed or omitted from the wall. This is reasonable physically, for 

example if the walls continually absorb particles we cannot possibly get 

an equilibrium state. 

Assuming (4.4) to vanish then we are left with the second and third 

terms on the right hand side of (4.3). The second term can be written 

as 

/ dr / dy X^ a„ F log F 

which can be integrated by parts since 3^ X,̂  is zero, to give 

E / dr /• dvp dv^ [X„ P log V]^^ V„ = + a> 
00 

which certainly vanishes because F must tend to zero more rapidly than 

log P goes to infinity as v̂ ^ - ^. 

The last terra of (1.3) is 

- / dr n V {1 + log F} 

Hence using (3.16) 

dS k 
— = - / dr / dy ds de b db g[log F(y') + log F(s') - log F(y) - log F(s)] 
dt 4 

X [F(y') F(s') - F(v)F(s)] 

which can be rewritten as 

— = - / dr / dy ds de b db g F(y)F(s) 
dt 4 

fF(y')F(s') I , p̂ (y')F(s') 
- 1 log 

F(y) F(s) J ° F(y) F(s) 

(4.5) 

F(y') F(s') 1 ^ , F(y')F(s') , ,. . fi'(v') if{s-) 1 F(y'}b'(s') 
Now the two factors of this expression, -{rT—,—=7—; 1 and log - '- ' / T ' 

LF(y) F(s) J F(y) F(s) 
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are either both positive or both n-jgative according as P(y')F(s') is 

greater or less than F(y)F(s). Thus the product of these two factors 

is always positive or zero and th,.-refore the integral in (4.5) is either 

positive or zero, i.e. 

~ ^ 0, (4.6) 
dt 

Hence as the distribution function changes it does so in such a way 
that the entropy increases. Indeed we shall show later that it changes 
in such a way that the rate of entropy production is the maximum possible 
subject to certain restraints. The entropy cannot increase indefinitely 
for it can be shown that this would require the energy content of the gas 
to increase indefinitely, so eventually a state is reached where S no 
longer increases and the equality sign holds in (4.6). This state is 
the equilibrium state. In the equilibrium state 

F(y')F(s') = F(y)F(s) (4.7) 

for all collisions, i,e, for all collisions 

log F(y') + log F(s') - log P(y) - log P(s) = 0 (4.3) 

Hence in the equilibriura state log F(y) must be a linear combination of the 

collision invariants, i.e. 

1 
log F(y) = a^ + m ao y i" ag y" (4.9) 

where a^, a? and ag are quantities independent of y. From (4.9) 

- - m a3(y - a^)= 
F(y) = ao e ^̂  (.̂ .lO) 

where ao and 3,4 are new quantities independent of y which are simply 

related to the constants a.^, ag and ag appearing in (4.9). The 

physical significance of ao, ag and §4 is found as follows. The 

number density of the gas is given by (8,8), Substituting for F(y) 

from (4.10) and performing the integral gives the relation 

/ ''-"n \ I" 
n = ao ~—1 (4.11) 

Vra ag/ 
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The drift velocity is defined by (8,3) xnd this gives 

u = 3,4 (4.1?) 

The temperature is defined by ('̂ =5) and this give's 

kT = — (4.13) 
ag 

Hence in the equilibrium state the distribution function is given by 

F(y) = f(y) (4.14) 

where throughout this report f(y) stands for the Maxvrell distribution 

f(v) = n ( ^ e 2kT (4.15) 

So far wo have said nothing about the spatial dependence of n,u and 

in this equilibrium state. We can examine what possibilities are allowed 

by substituting (4.15) into the Boltzmann equation (1.1). The right hand 

side is then zero, and assuming there is no dependence on time, we have 

{y.V + X.2} f(y) = 0 

i.e. {y.V + X.2} log f(y) = 0. 

Substituting from (1.31) this is, in terms of the random velocity c, 

- — X. c = 0, (4.16) 
kT ~ ~ 

Now (4.16) must hold over all space and for all velocities c. Hence 

the coefficient of each power of c must vanish. For simplicity we 

shall assume throughout the rest of this section that X is independent 

of velocity. The only term of order ĉ  is 

mc^ 

"""• 2kF" ''•' 

Hence 
V„ T = 0 (4.17) 

1^. 
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i.e. the temperature is uniform in the equilibriura state. It should be 

remembered that this result and those to be derived presently are only 

true if (4.4) is zero, i.e. if collisions with the walls are elastic. 

The term of order d^ is 

C„ On V^ Uo . 

Hence 
V^ Up + Vp U(̂  = 0 (4.18) 

for all a,fl. The most general solution of (4.18) is 

u = U Q + ux r (4.19) 

where UQ and w are constants. The flow (4.19) is a superposition of 

a uniform drift UQ upon a rotation with constant angular velocity w. 

This is the only flow pattern allowed in the equilibrium state. [Of 

course UQ and s could both be zero, i.e, the gas could be stationary,] 

The term of order c is 

c.,{V̂ ^ log n + j|^ Up Vp u^ - ~ X^} 

Hence 

Xcc = — r̂t {log "^ -—; >î > • (4-20) 
ra * 8kT 

It follows that the curl of I^ is zero, i.e. XQ., must be the gradient 

of a scalar potential V, i.e. 

X^ = - V ^ V (4.21) 

Such a force is known as a conservative force. Prom (4.80) and (4,81) 

I'lV u^ 
n = UQ e kT ^Zk'Y ' (4,^2) 

There is not an error of sign in this equation,* the terra in u^ is the 

centrifugal potential and vre see that in centrifugal motion the density 

is greatest where the velocity is greatest, i.e. at the outside of the 

rotating system. 

The term in (4,16) independent of c is 

u„ V^ log n. 
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Hence 

u^ V^ {V - ^ un = 0 . (4.23) 

But u„ V^ u= = 8 u. Up V„ Up = 0 

by (4.IP!). Hence (4.^3) is 

u^ V^ V = 0 (4.24) 

which tells us that in the equilibrium state the flow must be along 

equipotentials. 

Knowing the distribution function we can easily calculate the pressure 

tensor and the heat flux vector from their definitions (2.G) and (2.8). 

V/e find that in this equilibrium state 

Pa8 = P ^tO " n M 6gp (4.25) 

q =• 0 (4.26) 

(4.85) shows that in the equilibrium state only simple hydrostatic pressure 

forces appear in the pressure tensor and (4.26) shows that no heat flow 

takes place. 

In the q equilibrium state the quantity S of (4.1) becomes 

/ m \'o 
S = - k / dr n [log nl - - — j ' -J] (4.27) 

\8Tt kT/ 2 

which apart from an additive constant is the entropy of the gas. 

80. 
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§5. THE PHYSICAL SIu.MFICA:iCE Ot̂  mi aQUATIOl̂ S 

In S2 we defined the pressure tensor and the heat flux vector and 
deduced the equations of hydrodynamics from the Boltzmann equation in a 
formal mathematical way. In th i s section we shal l discuss the pressure 
tensor and the heat flux vector in a way which brings out their physical 
significance clear ly and then we shal l rede rive the equations of 
hydrodynamics in a physical way so as to get a c lear idea of the meaning 
of each term in the equations. 

Imagine a small element of area dS moving with the local d r i f t veloci ty 
u so that r e l a t ive to the gas i t appears s ta t ionary. The orientat ion and 
size of this area we can indicate by a vector gS erected at the centre of 
the area so that i t is normal to i t and of magnitude dS. This is shown in 
Figure I I I . 

-low consider the pa r t i c l e s crossing this element of area in the 
posit ive sense, i . e . from left to r ight in the Figure, witn re la t ive 
ve loc i t ies c to c + do. in time t to t + d t . These par t ic les are 
those which have re la t ive veloci t ies c to c + dc which are in a small 
cylinder in space erected on dS as base with axis pa ra l l e l to c and of 
length c d t . The volume of th is cylinder is 

dS.c dt (5.1) 

The number of such par t ic les is therefore, by def in i t ion of the d i s t r ibu t ion 

function 
dS.c d f d c F(Y., r, t ) (5. CI 

where r is the posit ion of the elf^ment at time t . 
1 

Each of these par t ic les ca r r i e s a random energy of - ra a^ (as 
d i s t inc t from a t o t a l energy J m Y.̂  whicn is part ly ordered) across dS. 

Hence the to t a l amount of random energy, i . e . heat, carr ied across dS in the 

positive sense is 

r dv ^ m c" dS . a dt F(v, r, t ) 

In th is expression those par t ic les crossing dS in the opposite sense have 
negative value for dS.c and b-nce contr ibute a negative amount as they 
should do, The ra te of heat transfer across dS is therefore 

a. 
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dS . / dy £ - m£=' F(5L, r t ) •= dS.q (5.3) 

by definit ion of q. 

Hence the physical in terpre ta t ion of q is that i t is the rate of heat 
flow, i . e . the heat flux. We shal l show la ter tnat for the simple gas q is 
given by 

q = - A V T. (5.4) 

where ^ is the coefficient of thermal conductivity. 

Each of the par t ic les (5.2) also ca r r i e s a moraentum m̂ . and so the rate 
of t ransfer of momentum across dS in the positive sense is 

/ dy ray dS . c F(y, r, t ) (5.-5) 

But the rate of t ransfer of momentum across dS in the posi t ive sense is 
equal to the force exerted across the surface dS by fluid to the negative 
on fluid to the posi t ive s ide . Hence (5.5) is th i s force. I t is of course 
a vector quantity and written in component forra is 

J dv m(Ujj. + Cjj, Uy + Cy, Ug + c^) dS . c F(y, c, t ) 

J dy m(Cx, Cy, c^') dS . c. F(y, r , t ) (5.6) 

which by (2.6) is 

dS (p . , p , p ) (5.7) 
'a ax ay &.z 

where of course a summation over components « is implied. 

Thus for example if dS is para l le l to the x axis , i . e . the area dS l i e s 

in the y-z plane, th is force is 

dS (p , p , p ) (o.e) 
XX xy xz 

Herce D is the force exerted in the 3 direct ion across a surface 
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facing the a d i rect ion. Later v;e sha l l show that pĉ 3 is given by 

P«p̂  = {p + I u V . u} 6^^ - u(V„ up + Vp u„) (5.9) 

I . e . 
2 

Pxx "̂  P "̂  ^ u V . u - 2u Vĵ  Ux 

Pyy = etc 

Pxy = - ^ ('̂ x ^y "• K Ux) = Pyx (5.10) 

Pzx = e tc . 

Here p is the hydrostatic pressure nkT and u the coefficient of v iscos i ty . 

i;ow we have discussed q and p^p l e t us rederive the hydrodynamic 
equations (2.11), (2.15) and (2.17) using physical arguments instead of the 
purely mathematical derivation we gave in §2 which s ta r ted from the 
Boltzmann equation. To do th i s consider a small rectangular element of 
volume dx dy dz centred on the point r as shown in Figure IV. In this 
figure the two faces normal to the x direct ion, witn area dy dz, we sha l l 
c a l l the x-faces. The f i r s t x face is tne one passing through L ~ ^ dx, the 
second x-face passes through L + - dx. We use a similar nomenclature 
for the other faces. We suppose that each part of the element moves with 
the local d r i f t velocity so that , unless the d r i f t velocity is uniform 
the element wi l l not re ta in the same volume or shape. 

We can calculate the rate of volume change as follows. The volume at 

time t is 

dx dy dz, 

1 
Consider the element at a l a t e r time t + d t . The point r - - dx wi l l now 

2 
have moved to the point 

r - - dx + at u(r. - - ox) 
•~ 8 8 

1 
and the point r + - dx will have moved to 

1 1 
r + -: dx + dt u('r + - dx) 

2 " 2 
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The X component of the distance between them is therefore 

dx + dt{Ux(E + ^ dx) - u^ <ii - ^ dx)} 

d u„ 
= dx {1 + dt -} 

dx 
Similarly the dimension in tne y direct ion changes fron dy to 

dy {1 + dt —-^} 
dy 

and in the z direction to 

d u„ 
dz {1 + dt } 

dz 

To f i r s t order in dt tnerefore the volume changes fron dx dy dz to 

dx dy dz {1 + dt V . u} 

so — {dx dy dz} = dx dy dz V . u, (5.11) 

l<ow le t us derive the equation of continuity. The to t a l number of 
par t ic les in the element is n dx dy dz. The ra te of cnanye of th is 
number is 

1^ {n dx dy dz} (5.12) 

This must be equated to the ra te that par t ic le3 flow into the element across 
the surfaces. But th i s is zero because i t is given by tne in tegra l of an 
expression like (5.8) . For example the rate par t ic les cross tne f i r s t 
x-face is 

dy dz J do. c^ P = dy dz n Cĵ  = 0 

Hence (5.1£) is zero, i . e . 

. • ^ Dn D . , , , , „ 
ax ay dz - - + n — (ax ay dz) = (' 



If we now use (5.11) and then divide by dx dy dz we,get tne continuity 
equation in the form {2.13). 

How let us derive the momenturn equation. The to ta l rate, of change of 
the a-conponent of the momentum of the element is 

^ (p u^ dx dy dz) (5.13) 

This must be equated to the force acting on the element. The force X 
produces a force in tne a direct ion 

p X„ dx dy dz (5.14: 

In addition to th is there are forces acting on the elanent across the 
surfaces. By (5.8) the force acting across the f i r s t x face in the 
a d i rect ion is 

1 
dy dz p (L - - dx) 

X&, 2 

The force acting across the second x-face, on tne element, in the 
a d i rect ion is 

1 
- dy dz p (E. + - djc) 

xa 2 
Hence the to t a l force acting across the x faces is 

1 1 
- dy dz '[p ( E + - dx) - p (n - - dx) ] 

xa 2 xoJ 2 

= - dx dy dz -—• p 
dx xffl 

Adding contributions fron the y and z faces gives a t o t a l surface force 

- dx dy dz '̂ 0 p,, (5.15) 

Addinrt (5.14) and (5.15) to equate to (5.13) gives 

— {p U(j( dx dy dz} = p \ ax dy dz - dx dy dz Vjg pg^ 
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Since (5.12) i s zero t h i s i s , d iv id ing by dx dY dz 

Du, 

Dt 

which is the equation of motion. 

P f^ " - ^1 Pna * P ' -t (5.16) 

Finally l e t us derive the energy equation. The t o t a l energy in the 
element is 

1 -X- 1 3 
- p V dx dy dz = - p u.° dx dy dz + - n kT dx dy dz (5.17) 
O -O (O 

The ra te of change of th i s must be equated to the ra te tnat heat flows 
into the element plus the work done by the forces. By (5.3) the rate that 
heat flows across the f i r s t x-face into the element i s 

1 
dy dz q^ (n - - dx) 

^ 2 

The ra te heat flows across the second x-face out of the element i s 

1 
dy dz q^di + - d)c) 

The ne t t ra te of heat flow in to the element across the x-faces is therefore 

- dx dy dz — q̂^ _d_ 
dx 

Adding similar contributions due to flow across the y and z faces gives 
as the t o t a l ra te heat flows into the element 

- dx dy dz 1 . q (5.18) 

The ra te the force X does work is 

p X .V dx dy dz = p(X,li •*• X»c) dx dy dz (5.19) 

Tne rate the surface force across tne f .rsL x face -doed work on the element 

is 
1 1 

dy dz p (L * - die) u ( r •*- - dx.) 
xa 2 <x 2 
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The nett rate tne surface forces acting across the x-faces do work is 
therefore 

- dx dy dz T- (p u ) 
ax xa a 

and the to ta l ra te a l l .\he surface forces do work is 

- dx dy dz Vp (p,oa u^) (5.20) 

Equating the ra te of change of (5.17) to the sura of (5.18), (5.1£) and 
(5.20) gives 

~ ( - pu= dx dy dz) + ^ ( | nkT dx dy dz) 
Ut 2 jJt 8 

- dx dy dz V . q + p(X.u + X.Q.) dx dy dz 

- dx dy dz V^(p,3c, %) (5.21) 

The lef t nana s ide, remembering (5.12) is zero, can be rewrit ten 

- p dx dy dz — u^ + n dx dy dz — ( - kT) 

hence, dividing by dx dy dz, (£.21) beccraes 

D Urt D ,3 
P^a -T~^ + n — ( ^ k T ) = - V . q + p X . i i + p X . £ 

* Dt Dt 2 

-^t3(P&a V (5.22) 

Now multiplying (5.16) by \x^ gives an expression for the f i r s t term on the 

lef t hand side of (5.22). Substi tuting tnis expression we find that (5.22) 

can be rewritten as 

n 5 ^ ( | kT) = - S . 1 + P TTZ - P3« V3 u« (5.23) 

which is the energy equation in the form (2.18). 
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^6- THE Mr̂ AN FREE TIHC THEORY 

In this section we shall d̂ ŝcribc the mean free path theory of 

kinetic processes, i.e. of viscosity and thermal conduction. This 

theory gives a useful insight into the physics of the effects but it 

is not precise and suffers from internal inconsistencies. Qualitatively 

however for the simple gas it gives the same results as the more complete 

analysis to bo described in the next section. Usually the theory is 

based on the concept of a "mean free path" but w: shall formulate it in 

terms of a "mean free time" as it is this formulation which can be easily 

extended to consider the same problems in the presence of a magnetic 

field. As usually described it is not clear just what approximations 

are made in this theory and this is one possible reason why there has 

been no successful attempt to improve the mean free path theory until 

it is quantitatively as well as qualitatively correct. We shall there­

fore formulate the theory exactly before going over to the customary 

theory and this will enable us to see the approximations which must be 

made. 

The idea of all mean free path or mean free time theories is to 

follow the motion of each particle back to when it suffered its last 

collision and so relate the distribution function at any given time to 

the distribution function at the earlier time of the collision. The 

theory is therefore essentially as attempt to solve the Boltzraann 

equation. 

The motion of a particle between collisions is particularly simple 

if X is velocity independent and constant. In this case the equation 

of motion 

d'̂  

57 ^ • « 

is easily integrated to give 

_d_ 

dt 
= V = VQ + (t - t^) X (6.1) 

+ (t - t„) v_ + ̂  (t - t„)= X (a.2) 

where v^ and r^ are the velocity and position of the particle at a 

given time tQ. 

Let T(v,r,t) be the mean time between collisions for a particle 

of velocity v at the point r and at time t. Of course the 
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dependence on r ana t is only implicit through the dependence on 

number density and temperature. Tnen the number of collisions in a 

volume dr about r in time t to t + dt by particles with velocities 

V to V + dv is 
F(v,r,t 

dv dr dt -4"=^- , (5.3) 
~ " ^(v.r.t) 

Comparing this with the formula we derived ea.lier (3.6) we see that 

1 

T(Y,r,t) 
/ ds de b db g F(s,r,t). (6.4) 

Define p(t) to be the probability that a particle survives making 

collisions up to time t given tnat it made a collision at time zero. 

To calculate p(t) consider this probability at a later time t + dt. 

The probability the particle survives,up to time t + dt is the probability 

it survives up to time t minus the probability it suffers its first 

collision in time t to t + dt. The latter is the probability that 

it survives up to time t times the probability it suffers a collision 

in a time interval dt. Hence 

dt 
p(t + dt) = p(t) - p(t) — (r-.5) 

T 

which, if T were constant would have the solution 

p(t) = c ^ . (6o6) 

But actually in (6.5) x is the collision time for a particle with 

velocity v at position r, time t, where r and v are given in 

terms of the position and velocity at time zero by equations like (6.3) 

and (6.4). A more precise solution takin;'; t'̂ is into account is 

p(t) = e ° ^(^') . (6.7) 

Mow we have seen in §5. that in order to calculate q and p , i.e. 

the coefficients of tnormal conductivity and viscosity, it is necessary 

to evaluate (5.2) which is the nuraoer of particles crossing an elenent 

of area in time dt with velocities in a certain range. Usually the 

theory is form.ulated to give this directly but since this number is 

simply related to F we may alternatively regard the theory as an attempt 

.to calculate F, i.e. to solve Poltznann's equation. \t!e shall now 

describe the theory. 
90. 
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The number of particles in a given volume r^ to r^ + dr^ with 
velocities VQ to v^ + dvQ at time tQ is, by definition 

dvo dzo nio, ro' ^o)- (^•'5) 

Now consider those particles of this set which suffered their last 
collision at time t to t + dt, [t < t^]. These are those particles 
which suffer a collision in time t to t + dt at r to r + dr so 
that their final velocities after the collision lie in v to v + dv 
where r and v are given in terms of TQ, VQ by (6.2) and (6.1) and 

dr = drQ, dv = dv^. (6.9) 

The number of such particles is given by integrating (3.9) over s, b and e 

to give 

dv dr dt / ds de b db g F(v',r t) F(s',r,t) (6.10) 

which using (3.11) in Boltzmann's equation can be written in the alterna­
tive form 

dv dr dt \ ,^'~'-r + [—+ V.V + X.8] F(v,r,t)} . (8.11) 
i-T(v,r, t) dt J 

Not all of these particles make a contribution to the set (6.3)i however^ 
because they may suffer a second collision in the time interval tQ-t. 
The probability they survive is 

•h dt. 
- / 

'1 

t T(v,,ri,ti) (5.12) 

where 

Vl = VQ + (t, -to) X 

r, = lo + (̂1 -^o) Xo % ( ^ i -t-o)' X . (6.13) 

Multiplying (6.11) by (6.12), integrating over all t and equating to (8.8) 

gives 

t -/° ^̂ ^ 
P(Vo,r„ V - i' ° dt e ' -fc-I-».) f j ^ . [| * V V . X 2Mv,r,t)} 

1.) iT:(v,r, t) 9t J 

(6.145 
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This is a formula which relates the d is t r ibut ion function at time tQ to 

the d is t r ibu t ion function at e a r l i e r times t . Ue have made- no approxima­

tions so far and (6.14) is exact. To prove th is we notice that the 

f i r s t term of (6.14) can be rewritten as 

^ t dt "> 
>to I - / > ' I 

! dt F(v.r,t) ± le ' -^(^^-I-tJ ^ 
! dt 1 { 

^ I J 
which can be integrated by parts to give 

_ rto 11^ _ 1 ̂ ° ,̂ to ,to _ _^^i 
p, ,v ^ T(v,,r,,t, - I '^ T(v,,r,,t,) .d ̂ , 
F(v,r,t) e I I e —- P(v,r,t) 

V.' 
—00 —00 

dt 

The first term of this expression evaluated at tQ is F(YQ,rQ,tQ), 

evaluated at -<» is zero; in the second term we note that 

-^F(v,r,t) = [§- ^ V.2 , X.9] F(v,r,t) 
dt 9t 

so this second term exactly cancels off with the second term of (6.1^). 

Thus the right hand side of (6.14) reduces to P(vQ,rQ tQ) as it should. 

In the mean free time theory we now use an iteration procedure on 

the formula equivalent to (6-14) 

- fto ^̂ ^ 
T?/-,7 T̂  + ^ - ' 0 , t T(V,,r,,t.) \ 

nYo,rQ,tQJ - ( dt e - ' - ' , ds de b db g F(v;r,t)F(s',r,t) I 

-00 

(6.15) 

obtained by using (6.10) in place of ((^.ll). [v/e cannot use an iteration 

procedure on (6.14) itself because the discussion just given shows that 

any distribution function would satisfy the equation.] The iteration 

procedure consists of inserting an approximate expression for P in the 

right hand side and performing the integrations to g^t a better approxima­

tion for F(vQ,rQ,tQ). 

The simplest approximation is to replace F on the right hand side 

of (6.15) by a local Maxv;ellian distribution. This is a good approximation 
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if the collision time is short compared with any macroscopic relaxation 

time of the gas. Then remembering th-it 

f(v',r,t) f(s',r,t) = f(v,r,t) f(s,r,t) (6.16) 

where f(v,r,t) stands for a Kaxwellian distribution at r and t. 

Ignoring the variation of the collision time over the path of the 

particle, (6.15) becomes 

(t-to)_ 

F(Yo,rQ,tQ) = p ° dt e "'"̂ '̂ '̂ '̂ o) 1 ̂ ^ de b db g f(v, r, t)f(s, r,t) 

(t-to) (8*1'̂ ) 

(6.18) 

-co 

•:'' dt e '~^" l^lll^ 
a "̂0 

where TQ is shorthand fOr T(VQ,rQ,tQ), 

I7e now expand f (v, r, t) in powers to (t-tQ) to give 

f(v.r,t) = f(vQ,rQ,tQ) + (t-tQ) [- H- V Q , ^ -H X.2QB f(vQ,rQ,tQ) 

+ % (t-to)'̂  (6.19) 

„ , 9 9- 3 , , 9 3 9 
where V = (-—, ;:—, ; ; — ) , 9^ = (- , , ) • 

9XQ oyo OZQ -^ 9v3x ^̂ Q̂y 9VQ^ 

Ignoring the terms of order (t-tQ)^ which give contributions (T^) and 

performing the integrations over t gives, dropping tiie subscript o, 

ff(v,r,t) = f(v,r,t) - T [— + v.V + X.91 f(v,r,t) (C.20) 
9t 

At this stage, without any real justification the -normal mean free time 

theory replaces (6.20) by 

3. ( V-U ) ̂  

'" V 2kT -
Ml 1 •-• 

P(v,r.t) = f(v,r,t) - T n c.Vi — - ^ e 

^ -> > 3. - — - ( V - U ) ^ 

= f(v,r,t) - Tn[c,(S^T)- . c^/v>«)--] ; — j e ^^^ 

= f(Y.r,t) |l . T (| - '|1) i c VT - ̂  c, c, V^ Up} (6.21) 

i;l 1 0 3v> 



At first sight it looks as though lo get this result the terms 

pi 

_ x [__ + u.V + X.9] f(v,r,t) (6.22) 
9t 

in (6.20) have been ignored and furthermore that it has been assumed that 

the gas has uniform density so that V n = 0. In fact, however, a careful 

examination of these terms shows that, to the order wo are working, (6.21) 

is qualitatively correct and can be made quantitative merely by modifying 

the terms so that it reads 

FCv.r.t).f(v.r,t){l*^(|-|j) f £ .V T - = (o„ c, - i =' 6„e„^ „ J 

(6.23) 

The details of this careful examination are given in the beginning of the 
or 

next section. The idea involved is that the term — of (6.22) involves 
9n 9u 9T °^ 
— , — and — and these three quantities are related to the spatial 
9t 9t 9t 
derivatives Vn, V̂ ^ u,̂  and VT by the equations of motion. ihen these 

relations are used to eliminate the time derivatives in (6.20) it is found 

that many terms cancel and (6-23) is the final result. 

Quite apart from the fact that the normal theory gives no kind of 

justification for this last step it is unsatisfactory for two reasons. 

Firstly the non-l^axwellian parts of F if inserted on the right hand 

side of (6.15) would lead to terms comparable to the non-f-laxwellian 

terms in (6.28). Secondly in going from (6.17) to (6.18) it is con-

inconsistent to take account of the difference of f(v,r,t) from 

f(yo»ro»^o^ ^^^ ignore the variation of T over the path of the 

particle. For these reasons we cannot expect (6.23) to be more than 

qualitatively correct. 

It is clear that a better procedure than that which we have described 

would be to assume a small departure from Maxwellian and solve for this 

self consistently. Assun.ing 

F(Y,r,t) = f(v,r,t) {1 + 3)(v,r,t)} (6.24) 

where CD is small, (6.15) gives to f i r s t order in co 

• t 
( t - tn ) 

f(Yo.Io'^o)^l + ©(VO.IQ.^O^^ = dt e "̂  1 ds de b db g f(v,r,t)f(s,r^ 
- 0 0 

+ T / ds de b db g f(vQ,rQ,tQ)f(sQ,rQ,t^){r5(v^') + cn(s')} 

(6.25) 

'-O'Ui' " O ' ^ ' ^ ^ O ' ^ O ' ' '0 ' '^" ' '^-0 
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Making use of the expansion (.'-.19) and the argument leading to (6,23) 
th i s gives dropping the subscript o, 

(c) co(c) = x f ( c ) ( | - | ^ j ^ 0 . 5 T - T f(c) j ^ c ^ c , V, Up 

+ T V ds de b db g f(c) f(s) 
, 5 ms^'U 

- s VT - — s„ So V̂  u, 1 s vr s^ So v„ 
V 2 2kT/ T ~ "" (̂rp a p ff 

3 

+ T / da deb dbg f(c) f(s) {cp(c') + ro(s')} , (f̂ ,2c>) 

Put this is a more difficult equation to solve for m than the equation obtained by 
subst i tut ing (6.24) d i rec t ly into the Boltzmann equation and we shal l see 
in the next section that th is i s essen t ia l ly what is done by Chapman and 
Cowling. 

Quaiitative,ly, however, (6<f'3) is correct and subst i tut ing i t into 
the defini t ion of the pressure tensor (2,6) we get the formula (5.9) [for 
the de ta i l s of t h i s calculation see equations (7.34) to (7.41)] where 

u = n kT T . (5.27) 

Similarly if we substitute (6.23) into the definition of the heat flux 

vector (2.8) ve get 

q = - A V T (6.28) 

where , 5k , ,„ ,„ ^^s 
X = — n. kT T (6.29) 

2m • 

[for details see the similar calculation (7.CS) to (7.22). 



37. THE FORMAL THEORY OF KINETIC PROCESSES 

In this section we shall describe the Chapman-Cowling method for 

solving the Boltzmann equation by successive approximations. V/e 

shall see that we obtain only a very crude idea of the complete 

distribution function but that we obtain quite accurate expressions 

for the pressure tensor and the heat flux vector, that is for the 

coefficients of viscosity and thermal conduction. This is usually 

as much as we need. 

It is assumed that collisions are most important in determining 

the distribution function and that to a first approximation we have a 

Maxwellian distribution at each point in space. Then we calculate 

the corrections to this. Mathematically we can indicate this process 

by rewriting (1.1) as 

9 1 
{ _ + v.v + i,^} F •= - AF 
9t r\ 

= 1 f ds de bdbg {F(v')F(s') - F(v) F(s)} (7.1) 

Of course we set n equal to unity eventually but we write the equation 

in this way to indicate the way the terms will be grouped. V/e now write 

P = p(0) {^ + ̂  ̂  + ̂ 2 ̂  + } (r,,2) 

where by taking more and more terras we get successive approximations. 

Substituting (7.2) into (7.1) and setting the coefficients of each 

power of r\ equal to zero gives a set of equations which, in principle, 

gives a complete solution of (7.1). In practice it is only the first 

two coefficients which are considered because the work rapidly becomes 

too difficult. 

1 
The only term of order - is 

i / ds de db bg {p(°)(v') F(°)(S') - F(°)(V) F(°)(S)} (7.3) 

which has solution 
(v-u)2 

P°(Y:,r,t) = f = n {--A^e "' (7.4) 
2n:kT 

i.e. the Maxwell distribution. 
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The terms independent of r\ on the right h.and side of (7.1) are 

/ ds de bdbg[f(v')f(s'){<r(v')+-(s')} - f(v)f(s){w(v)+ro(s)}] (7.5) 

and since 

f(v')f(s') = f(v)f(s) (7.6) 

this can be rewritten 

/ ds de b db g f(v) f(s)[(p(v') + rp(s') - m(v) - m(s)] {7.7) 

The terms independent of r\ coming from the last two terras on the 
left hand side of (7.1) are 

{v.v + X.o}f = - — f X.c + — v.Vn + vo Vo u^ + — v . ^ (7.8) 
- kT " ~ 9n - - 9u^ P 3 « 9T " ~ 

where clearly 
9f 
9n 

9f 

9^a 

9f 
9T 

f 
n 

f 

-

•m 

kT ^ 

rilji 

m 

2kT=' 

(7.9) 

c'} 

The terras independent of n coming from the first term of (7.1) need 
a little care to derive. They must be contained in the term 

9f 9n 9f '̂̂ a of 9T 9f ,̂  ̂ ,̂ 
— = + — + — — (7.10; 
9t 9t 9n 9t 9u^ ot 9T 

9n ^^H 9T 
and now we can substitute for —, and — from (2.11)» (2.15) 

and (-2.13). ''hen we do so, however, we must remember that in the 
spirit of this approach some terras of these equations are of higher 
order in n. Thus the pressure tensor in (2.15) and (2,1̂ )̂ and 
the heat flux vector in (2.1^) are given to zero order in n by (4.25) 

9n 9u^ , 9T 
and (4.26). Thus to determine —, :r-^ and -7- to -zero order 

9t ^t ot 

in r\ we use 

i:v.i C 3 ^ 



9n 
— + V.(n u) = 0 
Ot 

^^^ - „. 1 
+ (u,V)u^ = _ _ V^ p + X„ (7.11) 

9t « p 

o o 3 , 9T ^ , „ „ 
- n k ~ + - n k u,V T = - p V.u 
2 ^t P 

Substituting into (7.10) using (7.9) and adding to (7.8) it is found 

that many terms cancel and after some tedious algebra we obtain as an 

equation for cp 

f(v){2[w^ W0 -|w=6^p]V^ UR - (|-w2)c.V log T} 

(7.12) 

= / ds de b db g f (v) f (s) [<o{v') + m(s') - cp(v) - (P(S) ] 

Here w is the random velocity expressed in dimensionless form by 

^ - £ j ^ . (7.13) 

Similarly by considering the terms of order r] in (7.1) we could 

derive an equation for the next correction term to the distribution 

function. But this would be extremely tedious so we shall not do it. 

These higher terms have been considered by Burnett and are also 

discussed by Chapman and Cowling. They give contributions to the 

distribution function proportional to the second differentials of the 

temperature or the drift velocity and to products of the first 

differentials. Hence provided all gradients are small it is reasonable 

to neglect these higher terras. Effects corresponding to these higher 

terms should be observable in the structure of strong shocks but 

experiments have so far failed to detect them. 

Now let us discuss the solution of (7.12), First of all it is 

convenient to introduce a notation to stand for the tensor which 

appears on the left hand side of (7,12). Let 

Because (7.12) is linear in cp it follows that the solution is of 

the form 
ro(v) = - B̂ R V^ U0 - A^ V^ log T. (7.15) 
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Where the tensor B satisfies the equation 

- 2 f(v) v£w = / ds deb db g f(Y)f(s)[B(v')+B(s') -B(v)-B(s)] (7.16) 

and the vector A sa t i s f i e s 

f(v) ( - - vr')c = / ds deb db g f(v)f(s)[A(v')+A(s') -A(v) -A(s ) ] (7.17) 

From the form of these equations it is clear that the tensor B is of 

the form 

B = w ^ i3(ŵ ) (7,18) 

where S(w^) is some scalar function of the magnitude w^. Similarly 

it is clear that 

A = w a(w'̂ ) (7.19) 

where 3,(ŵ ) is a scalar funciion of the magnitude w^. 

The problem has now reduced to solving for these scalar quantities 

0 and 3,. Besides being solutions of (7.16) and (7,17) A and B 

must be such that 

c = 0 

i.e. that 

- / dv f(v){l + m(v)} c = 0. (7.20) 
n " 

Substituting for (p(v) from (7.15) and for A and | from (7.19) and (7.18) 

this becomes 

-1 / dw e-^' w= a(w') = 0, (7.21) 

i.e. there is no condition imposed on 3(w^). 

I'/e now have an exact solution for ^{Y) if we can find 1 and 8 

exactly. One reasonable method of preceding would be to take power 

series in w^ with undetermined coefficients for a and 6, i.e. to 

take 

1 = C Q + Cj w^ + Cg w"* + .., 

However, it turns out to be much more convenient to rearrange the terns 

of this expansion and redefine coefficients so that we can write, 

..•L C ^ l 



,5 „, ,35 7 „ 1 
w^) + an {— w ^ + -

•2 - ' 8 2 - 2 

a = aQ + ai (̂  - w'**) + aj (— ~ " if̂  + r ŵ *)"*" 

00 

v^ â^ S^ (w=) (7.22) 
m=0 5-

where S[̂ (w'̂ ) is called a Sonine polynomial defined by 

" J (n+j).' (m-j)J J J 

Here if n is.a half integer 

nJ = n (n-1) (n-2) ... - - ~ . (7.24) 
2 2 2 

We have written out the first three terms of (7.22) and we see that this 

expansion is essentially like a power series expression but it is in an 

extremely convenient form because it can be shown that Sonine polynomials 

satisfy the orthogonality formula 

^ dy y8"*l e-y' SjCy') SS(y=) • i ^ ^ 6„,,- (7.E6) 

and this orthogonality property simplifies the calculations enormously. 

In (7.22) we made the special choice of n = f for this will turn out 

to be most convenient. Fore 8 it turns out to be more convenient 

to choose n = f so we write 

S = bQ + bi (i- - w=) + .... 

00 

= ?. b"̂  S'S (w^) (7.26) 
ra=0 I 

To obtain a complete solution to the problem we need to know all the 

coefficients a"' and b'". But before we describe how to determine 

these coefficients let us see how the pressure tensor and the heat 

flux vector are related to them and what the condition (7.2) is. 

Substituting (7.22) into (7.21) gives 

I a!^ \ J dw e"^' w^ S™ (w*̂ ) = 0. 
m TT? 2" 
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Performing the integrations over angles and remembering that S° = 1 

this becomes 

E a" Ij r dw w"̂  e-w' S? (w^) S? (w'̂ ) = 0. .;,m zl r°° 
m 7r2 2" 2 

But this integral is of precisely the form (7,25) and hence this condition 

becomes 

a (°) = 0, (7.27) 

which is a very simple condition. It is simple because we are using 

these Sonine polynomials with their useful orthogonality properties. 

The heat flux vector is defined by (2.8). Substituting for F 

from (7.2), for cp from (7.15) and for A and | from (7,19) and 

(7.18) this becomes 

qY = / dv f {1 - V^ U0 ̂  p̂ S(w^) - ̂  V„ T w„ Kw^)} | mc=> c^ 

(7.28) 

The term in 6 certainly vanishes because it is odd in the random 

velocity £. Substituting for 3, from (7.22) using (7.13) and 

remembering (.7.27)i the other terra becomes 

qy = - I ̂ ot T . n k T ( — ) ^ 2 a"̂  -i- / dw e"^' w= w^ w^ S!" (w=) 

(7.29) 
1 

The integral is zero unless a - y and we may replace Wy by - w^ to 
' 3 

give 

= _ V T n k ( — ) ^ 2 a"' -^ r dw w" e"^' S^ (w=). (7.80) q - - V i 11 r. V ; ^ tl 7 J uw w c Oj, 

^Y Y m „=i g j o f 

'̂"""̂  I S°(w'') -SI (w^) - w= 
• 2 2 

the final integral can be rewritten as 

r dw W-* [- S°(w^) - S,̂ (w=)] S?(w=) e-^' 
o '2 - 2.̂  ' ̂  3. 

16 

Hence (7.30) becomes 

r ^*'ra,o - * m , i > -

5 ''kT i 
q = ° n k { ^ ^ a^ V̂  T. (7.31) 

' 4 m ' 
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If we define the coefficient of thermal conduction,. \ , by 

q = - X V T (7.32) 

then p- pkT L 
A = _ £ n k (—)= a S (7.33) 

4 ra 

The important point to notice about these equations (7.31) and (7.33) 

is that they involve only the coefficient a\ Thus although we need 

all the coefficients a'", b™ to give the distribution function we 

only need the coefficient a'- to give the thermal conductivity. 

Now consider the pressure tensor defined by (2.6). Substituting 

for F from (7.2), for 0 from (7.15) and for g and A from (7.18) 

and (7.19) we find 

p^3 = m / dv c^ cg f{l - VY Ug w ^ S(w=) - - V^ T w^ ̂ (w^)} (7.34) 

The term involving 0. vanishes because it is odd in the random velocities. 

The first term is zero unless a = 0 and is 

The second term is 

2kT 1 _ 2 1 
- n m ( ) Ŷ Ug, -£ / dw e " ŵ , Wjg {WY Ŵ  w° SYg} 8(w2) (7.36) 

111 jT-2 

which has to be considered rather carefully. If ff ̂  3 then the second 

term in the bracket contributes nothing and the first terra contributes 

only if y = a and e = 3 or if Y = 3 and e = «>. if a f ^ 

therefore (7.36) is 

- n 2 kT (V^ Up + Vp u_̂ ) / dw e'^" ,,= w| 6(w'̂ ) 

= - I n kT (V^ Up + Vp u^) b° . (7.37) 

41, 
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If «. = 3 then the second term in the bracket of (7.36) gives 

2 n kT (V.u) - 4- / dw e"'"' w*̂  8(w=) 
9 j^2 

= - n kT (V.u) bO (7.33) 
6 

while the first term in the bracket gives 

- 2 n kT V^ u^ \ I dw e-^' w* i3(w=) 

- 2 nkT 2 ( V Y U Y ) ^ / dw e^= w > = g ( ^ 2 ) 
{fa) "̂  

= - ^ n k T b O v ^ u „ - ^ n k T b < ^ J V u 

{h) 

= - i n kT bO V.u - n kT b° V^ u^. (7.39) 

Collecting together all these results we find that if 

if a / 3, p„0 = - ^ n kT bO (v^ Up + Vp u„) (7.40) 

if a = 3. p^^ = n kT + ̂  n kT b° (v.u) - n kT b° V^ u^ 

i.e. in general 

P«B = {P + ̂  t̂ (V.u)} 6̂ p. - u(V^ u^ + Vp u^) (7.41) 

where 
U = ̂  n kT b° (7.42) 

is the coefficient of viscosity. Notice that we need only the 
coefficient b° to calculate the coefficient of viscosity. So we 
see that really we are only interested in calculating the two 
coefficients a^ and b°. 

Finally, to complete this section, ^̂re shall describe the formal 
variation procedure used by llirschfelder et al which in principle 
could give all the coefficients a"', b" and which in practise gives 
excellent approximations to b° and a^ the only coefficients we 
really want. 

^ 42. 
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If G and H are any properties of the par t ic les define 

I Gf, H„ = G.H if G and H are both vectors (7.43) 
G • H = "• « 

S G^p Hp^ = G„p Hflgj if g and ^ are both tensors. 

Now define what we shal l ca l l "col l is ion integrals" as 

[G,H] = - ^ i - / dv ds de b db g f(v)f(s) Q(v): [H(v')+H(s') -H(v) -H(s ) ] 

(7.44) 
n^ 

By syrometry th i s is also 

[G,H] = - ~ / d v d s d e bdbg f(v) f (s) [G(v)+G(s) ] : [H(v')+H(s')-H(v:)-H(s)] 
2n- " 

(7.45) 
or 

-1 

[G,H] =• - ^ / dv ds deb db g f (v)f (s)[G(v')+G(s')-G(v)-G(s) ] :[H(v')«(s')-H(v)-H(s)] 4n - — 

(7.46) 

Notice from this last form that 

[G,G] >. 0. (7.47) 

Now the equations we have to solve, (7.16) and (7.17) are of the 
form 

R(v) - / ds de b'dbg f(v) f(s) [T(v') + T(s ' ) - T(v) - T(s)] (7.48) 

where R and T are either vectors or tensors, R is known and T is to 

be found. Let t(v) be any trial solution of this equation subject only 

to the condition that 

/ dv t(v):R(v) = / ds dv de bdbg f(v)f (s)t(v): [t(v')+t(s')-t(v)-t(s) ] 

= - n2[t,t]. (7.49) 

But from (7.48) 

/ dv t(y) : R(v) = - n= [t,T]. (7.50) 

so provided t is chossn to satisfy (7.49) 

[t.t] = [t,T]. (7.51) 

4'̂ . 
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Now consider 

[t-T, t-T] = [t,t] -2[t,T] + [T,T]. (7.52) 

By.(7.47) this is positive or zero, hence using (7.51) 

[t,t] < [T,T] (7.53) 

or using (7.49) 

_ ^ / dv t(v): R(v) = [t,t] < [T,T]. (7,54) 
n^ 

This is the relation upon which the variation procedure is based. We 

first choose a trial function with as many undetermined parameters as 

is convenient. In our case we take the trial functions to be 

A = w a ( w = ) = w S a"̂  S^(w=) (7.55) 
3. 

m=l 2 

or 

E = ̂  B(w=) = ̂  S bf" S^ {wn (7.56) 
ra=0 2 

depending upon whether we are considering (7.17) or (7.16) respectively. 

We then take all but a fevr of the coefficients a"", b"̂  to be zero. 

For example in (7.55) the first trial function is obtained by putting 

all the coefficients a"' equal to zero except a*. A second trial 

function giving a better result is obtained by putting all except 

a^ and a^ equal to zero. The third trial function takes a'-, a.'^ 

and a° to be non-zero etc. Having picked our trial function we then 

ensure that the coefficients are such that the equation in (7.54) is 

satisfied and then v;e maximise either the left or right hand side of 

this equation. Those values of the coefficients which give the 

maximum value give the best approximation to the correct answer. As 

we shall see in the next section when we apply this variation method, 

this procedure gives excellent values for a^ and b° very rapidly. 
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§3. RESULTS 

In th i s section we shal l apply the variat ion method to the equations and 
f ina l ly obtain the coefficients of viscosi ty and themal conduction. 

Considering (7.16) f i r s t we see, comparing th i s equation to the general 
form (7.48), that in th i s case 

ri(v) = - 2 f ( i ) ^ (8.1) 

Hence using (7.56) for t(v:) we get the left hand side of (7.54) to be 

1 o *̂  O 
— JdY. t(yi) : ?.{)L) = ^ I b"" / dv I{)L) W°W • 'dJ± s"" '(w^) 
" fi m=o = S. 2 

• ^ I b" - / dw {w w. - ^ M' 6 ,,} {w ŵ  - i w'' 6 > S" ( i f ) 
n j^ 3. ot ;i 3 &!• a 3 3 a3 f n" 

4 ^ , m 1 r , A r̂a , „, 
— lb — f c i w w ^ S f w * ) 
3nm I- ^ 

n 
5b° 

n 
(B.2) 

Hence (7,54) i s 

' ^ I b'^b'"' [yud. Z i^), A S3'(ki')] < [T,T] (8.3) ' ^ ^ i i ' » ^̂ ^—^ " 3 , 

ram' , ^ 5-

The var ia t iona l problem is now easy because of the very simple fonn 
of the lef t hand side of (8 .3) . We must simply look for the largest value of b° 
which the equation (8.3) wil l allow. The simple form of the lef t hand side of 
(8.3) i s another consequence of tne use of Sonine polyboraials. From the 
general theory of var ia t iona l methods we can expect to get good values for b*̂  
with quite poor t r i a l functions, i . e . with only a few non-zero coeff ic ients . 
But we see from (7.42) that u i s d i rec t ly related to b° so we can expect 
to get very good values for u very rapidly. Ve shall give a numerical 
i l l u s t r a t i o n s of th is presently. 
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By taking more and more non-zero coefficients we can get successive 
approximations to b° whicn we shal l write as 

[b°]i, [bMs, [ b ° ] 3 . . . . e t c . 

the corresponding successive approximations to u we write as 

[u l i . [iti]2. [ ia]3. . . e tc . 

Each time we improve-othe t r i a l function we will get a bigger value' for bo 
hence 

[b°]x < [b°]2 < [b°]3 < . . . . e t c . 

and correspondingly 

[u]i < [u]2 < [u]3 < . . . . e t c . (8.4) 

The f i r s t t r i a l function is obtained by se t t ing a l l the coeff ic ients 
except b° equal to zero. (8.3) then becomes 

~ = (b°)= [ A , A ] < [T.T] (8.5) 
n 

This is par t icular ly easy to maximise for i t only has two solut ions 

r- 1 

b° = 0 or b° = - [w% , w%]~ (8.6) 
n • 

The second solution is posit ive by (7.47) and 'therefore is the one v/hich 
maximises (8.5). Fraa (7.4 2) the corresponding value of n is 

[uli = r kT [w w, w wj (8.7) 

The evaluation of co l l i s ion integrals l ike that appearing in C8.7) i s 
discussed in the Appendix to PART I I . There is is shown that 

o o . 2 /n e* ŝ  ta M 
[w_w, w_w] 3 

/S (kT)= 
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where m is tne mass of the pa r t i c l e , e the charge and 0 i s given by 

^ - log [1 M ^ ^ } ^ (8.9) 

and d is the Cebye ciit-off distance mentioned in §1, 

kT l i 
' = {i^^F (8.10) 

Because d only enters tnrough th i s logarithmic factor (8.9) i s insensit ive 
to the precise value of d and so there is only a few per cent possible 
uncertainty about the value of tnese co l l i s ion in tegra ls . 

From (8.8) and (8.7) we find 

r 1 5 /S (kT)l- ,^ ^ 
[li]^ = -— TT— (8-11) 

Ajl e*V 

[There is an error of a factor of 2 in the formula quoted by Chapman and 
Cowling]. 

The numerical value of this is given for a gas of positive ions by the 
table at the end of PART I I . We see tha t (8.11) has tne same qual i ta t ive 
form as was given by the mean free path theory. 

I'iow let us consider the next approximation to u so that we can get 
an idea of how accurate we raay expect (8.11) to be. The second approximation 
i s obtained by set t ing a l l the coeff ic ients except b'° and b^ equal to 
zero in the t r i a l function. Tnen (8.2) beaoraes 

— = (b°)2 [ t t ^ , M!H] + 'vb°b^ [ ^ , ^ S\ (w^)] 

+ (bM= [WLW S,HW^), v A S .̂ (w^] (8.12) 

and the maxiraura value of b° allowed is that for which (8.12) s t i l l has a 
real solut ion for b^. This maximum value of b° is therefore obtained by 
set t ing the di.scriminant of (8.12) regarded as an equatican for b^ equal to 
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zero. This gives 

[b°]2 = - [w_w, ww] 
n = ^ 

LW_Vi, M_S£ S ^ ] 
'/ 

Iw-W, w_wj[w_w S^, vui Sg 

-1 

(8.13) 

Evaluating the co l l i s ion in tegrals from the Appendix this becomes 

[b°], [b°]i . 1.025 (8.14) 

Hence 
[u], Cu], . 1.C8C (8.15) 

So th i s second approximation only gives a 2 . 5 % correction to tne f i r s t 
approximation. We raay therefore be confident that the true value of u differs 
from (8.15) by at most a few per cent . But th is is of the same orda* of 
magnitude as the uncertainty in the values of the co l l i s ion in tegrals due to 
the uncertainty in the precise value to be used for the cut-off distance d so 
there is no point in improving this value for u further by taking higher 
approximations. 

Now consider the thermal-conductivity equation (7.17). Comparing to the 

general form' (7.48) we see tha t in t h i s case 

R(v) = ( - - W )̂ c = . SMwM c 
" 2 -I 

using (7.55) as t we find 

(8.1^) 

- c o 

=i J dv t : R = - ^ 1 ^ j dv f(v) S (̂w=) c 
n n m=l 

w if!, (w )̂ 
5" 

SO (7.54) becomes 

z^l ,^:- .. 
en m 

(8.17) 

4n m , "2 ' 
m, ra 

'_3 
2 ' 

(8.18) 
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Once again we see that the var ia t ion rnetnod is very simple and consis ts of 
looking for the most ne'jative value of â  possible. V/e can expect to ^et 
good values for tnis coefficient with quite poor t r i a l functions and from 
C7.33) this corresponds to getting excellent values for the coeff icient of 
thermal conductions X. A relat ion similar to (8.4) holds for X too, namely 

[X]i < [Ms < [XJa < . . . . (8.19) 

The f i r s t t r i a l function is obtained by se t t ing a l l the coefficients 
except a* equal to zero. (B.IP) then becomes 

—1R Pk-T' 1 

Jf. ( f£ i ) f a^ = {a'y [w 3^ , v£ SM (8.80) 
4n ra r 

which nas only two solutions 

a* = 0 or â  = -— ( )2 [w o \ w o^-. (8.21) 
4n m 3. 3 J vc.^/ 

2 T 

I t is the second solution which maximises (8. SO). The corresponding value 
of the thermal conductivity i s 

[l]^ = ~ — [w Ŝ 3, w S ^ r ^ (8.28) 
16 m 2 r 

The co l l i s ion integral , evaluated in the Appendix to FART I I , i s precisely 
the same as (8 .8 ) . Hence 

TM "̂ 5 k (kT)^~ 
[X]i = 7=——r- (8.23) 

16/S /ra 0 e 

The second approximation is obtained by se t t ing a l l the coeff icients 
except a^ and e? equal to zero. Tlien (P.16) becomes 

1 ^ ( ^ ) i - a* = {a^}^ [K ^l, w SJ] + 2 a^a^ [w S^, w Ŝ ]̂ (8.24) 
4n m 2" r 2 r 

+ {a^}^ [w .% w L-y 
2" 2 
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which by analogy to (P.12) i s maximised by 

[a^], = [a^], J 
[as^s w =̂P 

2 

[w S 3̂, w S_̂ ] [w S|_, w S | ] 
2 2 2 "2' 

(8.25) 

Evaluating the col l i s ion integrals from the Appendix this i s 

[aM, [aMi . l.CB (8.25) 

and so 

[Xl: [X]i . 1.C8 (8.27) 

Hence the second approximation gives an 87o correction this time whereas 
for the viscosi ty i t gave only a 2.5'%, correct ion. Mever the less the 
correction is so small that there is no need to go to further approximations 
and we may be confident that (8.87) is correct to a few per cent error at 
most. 

Notice that 

[Xlx 15k 

4ra 
(6.28) 

This is a well know resu l t . I t i s only correct in the f i r s t approximation, 

however. 

Tnere is an error of a factor of 8 in Chapman and Cowling's formulae 
[mil and [X]i for this case. This error has been reproduced in a 
previous report (Karsnall. The Structure of liagnetohydrodynamic Shocks)^3^. 
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fe. THE PHYSICAL SIGNIFICANCE OF THE VARIATION PROCEDURE 

I t has been pointed out by Zimon'^' that the var ia t ion procedure which 
we have j u s t described, has the simple physical in terpreta t ion that i t 
corresponds to maximising the rate of production of entropy for given 
temperature and veloci ty gradients . This may be seen as follows. 

If 6W and 6E = c^dT are increments of heat added to the gas and of 
internal energy respectively then 

6W - (6E + p6(i) (9.1) 
P 

Dt ^ ""^ Dt P ' Dt 
i .e . — = Cy ~ ^ (9,2) 

This is the rate of heat added per unit mass. The ra te of entropy production 
p6r unit volume is 

^ - E^ ~ 3^ P 21 _ JL £P 
Dt " T Dt ' an T Dt pT Dt 

(9.3) 

(9.4) 

Substituting frcxn (2.1g) and (2.18) we find, assuming, c.X to be zero, 

DS I ^ Q I „ ^ P „ 
m : = - T ^ - - - f P a f 3 ^ « " 0 ' T ^ - ^ 

Using (7.32) for q and (7.41) for p̂ ia gives 

I = ^ V. X VT - I ^ (V.u)^ - ^ (V, up . V̂  u,)(V^U3 . V3U«) 

- V . ^ £ T + ~ (VT)^ . i ^ ( V . u)'' (9.5) 

*l 2 (V^ up + Vpu^)^ 

The f i r s t term of (9.5) gives zero when integrated over space. The other 

terms are a l l posit ive definare and proportional to X or u. 
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Now in B8 we saw that the variation principle essent ia l ly maximised 
X and li. Hence i t corresponds exactly to maximising tne ra te of 
production of entropy for given, temperature and velocity gradients . 
Alternatively we can say the method corresponds to minimising the entropy 
for given heat flux and pressure tensor. This resul t is closely conrected 
with a theorem of Pr igogine 's . 

REFERENCES 

(1) Chapman and Cowling. "The Mathematical Theory of Non-Unifor 
Gases" O.U.P. 

(2) J . 0. Hirshfelder, C. P. Curtiss and R. B. Bird 
"The Molecular Theory of Gases and Liquids" Chapters VII and 
VIII, John Wiley and Sons: Chapman and Hall Ltd. , London. 

(3) V/. Marshall, "The Structure of Magnetohydrodynaraic Shocks" 
A.E.R.E. T/R 1718. 

(4) J . M. Zimon. The General Variational Principle of Transport 
Theory. Canadian Journal of Riysics 34, 1256, 12A, 1956. 

52. 

i-'.. L C 5 J 



î TM'ION_ 

Mathemat ical 

Vectors are indicated by an underlining, thus n is a vector of magnitude r 

Tensors are indicated by a double underlining, thus p . 

The components of vectors and tensors are indicated by Greek subscript 
<*f P. Y, e. 9 ••! thus Tju stands for x, y or z; VQ̂  for v̂ ,̂ Vy or v^. 

When a subscript is repeated a summation is implied. Thus a sca lar product 
is written 

^.ti = a„b(̂  " a^bjj + ayby + a^b^ 

An element of volume in space is writ ten as 

dr = dx dy dz 

An element of volume in velocity space is 

dy. = dVjj dVy dv^ 

A different ia t ion with respect to position is described by S where 

V - (A A A) 
- ^9x ' 9y ' 9z 

A di f ferent ia t ion with respect to velocity is described by 3 where 

c = ( — - - , — ) 
^ x ' ^ y * ^^z 

—- is shorthand for r - + U . Z 
Dt ot 

^03 = ^ ^^ °' " ^ is vne Kroencher-6 symbol 
= C if a / 3 
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Symbols 

r position in space 

Y. velocity of a par t ic le 

t the time 

F'(iL,r,t) the d is t r ibu t ion function 

X the force per unit mass acting on the pa r t i c l e s 

A denotes rate of cnange due to co l l i s ions 

^ stands for any property of the par t ic les depending in ger-feral 
on their veloci ty, position and time. 

n the number density of par t ic les 

ra tne mass of each pa r t i c l e 

p » n m, the density 
~ 1 
^ = - / d3t * P denotes the mean value of '•̂  ar the point n and time t 

IX - )L the d r i f t velocity 

S. = Z - H tne random velocity of a par t ic le with actual velocity v 

T = — c^ , the temperature 
ok 

k Boltzmann's constant 

PoS ~ P '^a'^^ ^^'^ pressure tensor 

p = nkT the s t a t i c pressure 

1 - ^ 
q = - n m £ c the heat flux vector 

s always used to stand for the velocity of the "otner pa r t i c l e" in 

co l l i s ion . 

v ' and s ' , the ve loc i t ies of the par t ic les after the co l l i s ion 
1 

C = - (v + s) the centre of gravity velocity in a co l l i s ion 

g = S. - £ the re la t ive velocity of the pa r t i c l e s in a co l l i s ion 

b the asymptotic distance of approach in a co l l i s ion 
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>; tne scat ter ing angle in a co l l i s ion 

e tne angle the plane of the co l l i s ion makes with some fixed plane 

kT . 

4ne*n 

kT 1 d the Debye cut-off d is tance . d = { }« 

e the change on the par t i c les 

3 the entropy of the gas 

V the potent ial frcra wnich X is derived, X = VV 

ds a unit of area wnose or ientat ion is described by the vector ds 
drawn normal to i t 

X a co l l i s ion time 

p ( t ) the probabili ty that a pa r t i c l e survives making co l l i s ions for a time 
greater than t after making a co l l i s ion 

•̂  an expansion parameter in tne formal theory. il " 1 

f stands for the Maxwell d i s t r ibu t ion 

w = Q. / "' a dimensionless random velocity 
2kT 

^ 0 ( 3 ° "'^''^ " 3 ^ ' «̂̂ ^ 

a' ra coefficients in tne expansion of !l. Equation (7.22) 

D'̂  coeff icients in t ne expansion of B. Equation (7.83) 

m 
S a Sonine polynomial 
n 

U the coefficient of viscosi ty 

X the coefficient of tnermal conductivity 

G and H any properties of tne par t i c les 

[G,H] a "col l is ion in tegra l" defined by (7.44) 

[u] i , [ulg, [ u l a . . . e t c . denote successive approximations to n. 

<// the logarithmic cut-off tern defined by (8.S) 
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FIG. I. THE GEOMETRY OF A COLLISION. 

FIG. 2 . THE GEOMETRY OF AN INVERSE COLLISION. 
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FIG. 3. THE CYLINDER CONTAINING THOSE PARTICLES 
WHICH CROSS ds WITH VELOCITY c IN TIME dt. 

} 

•^ X 

(x,y,^; d-X (x+dx,y,^) 

FIG. 4. A RECTANGULAR ELEMENT OF FLUID. 
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