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ABSTRACT

This report is-the first of three which discuss the kinetic theory
of ionized gases. In this report only a simple gas is considered so
that the notation and mathematical procedures used can be easily _
explained. In the second report, Part II of this study, the kiné%ic

theory of an ionized gas with no magnetic fields present is described
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INTRODUCTION

In 81 the Boltzmann equation for a simple gas is derived and its
limitations discussed. In 82 the hydrodynamic equations are derived
from the Boltzmann equation and the pressure tensor and heat flux
vector are introduced. In 83 a discussion of collisions is given
and the form in which they enter into the Boltzmann equation is written
down. Some expressions are derived for the rate of change of any
quantity due to collisions. The proof that, if left to itself, the
gas will approach the equilibrium state described by the well known
Maxwell distribution is given in 84. The properties of this equilibrium
state are discussed. 1In 85 the physical significance of the various
terms of the hydrodynamic equations is discussed. The simple "mean
free time" theory is described in 86. The theory is formulated very
carefully so as to make clear the approximations which are made. In
87 the formal procedure of Chapman and Cowling(l) for obtaining a solution
of the Boltzmann equation is descrived. The very powerful variation
method of Hirshfelder et al(2) for solving the integral equations which
turn up in the theory is described and the results of applying this
method to calculate the coefficients of viscosity and thermal conduction
are given. These results are

5 Vi (kT)F
u - 10025 4/;{- e" \/]
5
75 k (kT)2
A= 1.08 16V m e*y
kT)®
where @ = log {1 .2 (5 ) } '
n e n

m is the mass of the particles, e their ¢t rge, T the temperature and
k Boltzmann's constant. Tables of these quantities are givan in the
Appendix to Part II. In 8 it is pointed out that this variation method
corresponds to asking for the maximum rate of entropy production.

One difficulty with this subject is that the notation, even when
considering just the simple gas, becomes complicated. At the end of
this report therefore is given 2 full list of all the symbols used
together with their definitions.
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81. THE DOLTZMANN RQUATION

The Boltzmann cquation is the equation upon which all this work is
based. It gives the rate of change of the distribution function
F(v,r,t), sometimes called "the density in phasc space", where this
function is defined so that

F(v,r,t) dv dr

is the number of particles in the velocity range v to v + dy,

(dv = dv, dvy dv,), and at a position in spacc between r ~=nd r +dr,
(dr = dx dy dz), at time t. An exact knowledge of F(v,r,t) 1is not
equivalent to a complete knowledge of the system but it does tell us as
much a2s we need to know for most purposes. The Boltzmann equation is
derived in the following way. Consider the particles which arc within
this phase volume dv dr centred on v,r at time t. If there were
no collisions then each of these particles would move so that at an
earlier time t—~dt they would have been in the phase volume dv dr
centred at v — X dt, r— dt. Here X is the force per unit mass
acting on a particle. Hence if there were no collisions we would have

Flv,r,t)dv dr = F(v-¥ dt, r — v dt, t—dt) dv dr .

But in addition to these particles which move smcothly into the range

dv dr centred at v,r there are also particles which suffer a collision
in the volume dr so that their velocities get scattered into or out of
the velocity range v to v + dv. The nett number of particles scattered
into the range will be proportional to dv dr dt and we write it as

AF(v,r,t) dv dr dt .

Adding this term to the right haond side of ths previous equation and making
dt tend to zero gives

o
— + yT+X3} Ryt = A FLIY) (1.1)
(]
where 3 o 3
2 = -~ T :—) (102)
(@).¢ ¢ CZ
3 O (3
9 = (== = —
vy dvy v,

This is Boltzmann's equation.
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In deriving this equation we assumed we could define a "collision".
This could certainly be done if the particles were hard spheres; we
would then say that a collision takes place if the particles touch.
But for particles with Coulomb interactions it is not obvious.what should
be called a collision because two particles interact no matter how far
apart they are. Indeed in a formal way we could say that collisions.
just represent forces between particles and should therefore be included
in the force term ¥ leaving zero on the right hand side of the equation.
But this would not be convenient. We shall define a “collision" to take
place when two particles approach nearer to one another than a certain
distance. Fortunately it will turn out that our answers are not very
sensitive to this distance. Chapman and Cowling take it to be half’
the mean interparticle separation. Nowadays it is gensrally considered
better to take it to be the Debye cut-off distance dy = {kT/4n e? n1}%
where k 1is Boltzmann's constant, T the temperature and n, the
electron number density. This is the distance we shall usec.

It should be emphasised that the force X therefore includes the
forces due to particles separated by more than this distance as well
as external forces. The contribution to X coming from distant particles
may be important, for example plasma oscillations might give rise to
appreciable effects. Such questions will not be considered in this
report.

Notice that the Boltzmann equation is only complete in itself if
the right hand side, the collision term, can be expressed as a function
of F. e shall see in §8, when we consider the collision term in
detail, that this can be done so long as the gas is dilute enough so
that correlations between the particles can be neglected, i.e. so long
as the probability of finding one particle in a certain range dv dr
while a second particle is in some other rang. is just the product of
the individual probabilities. This is certainly not so in a liquid
but it is probably alweys a good approximation in a plasma.



2. THE EQUATIONS OF HYDRODYNAMICS

In this section we shall deduce the hydrodynamic equations of motion from
the Boltzmann equation, We start however, by writing down the definitions of
fundemental quantities we want to know.

If 9 is any property of the particles, depending in general on the
velocity, position and on the time, then the mean value of ¥ at the position
r and at time t |is

¥ = ﬁfszw (2.1)

where n 1is the number density of particles, i.e.

n = [dyF (2.2)
The density of the gas is

p = mm

where m is the mass of each particle.

The drift velocity is

I<|

The random velocity of a particle, ¢, is the difference between its actual
velocity and u. Thus

c = v-u (2.4)
Because of (2.3), ¢ is zero.
The kinetic temperature I is defined by

3 1 - 1 : 1 2

g = = = - d F"' c (2-5)

gkl = gme n Jorfgme
A quantity we shall want to know is the pressure tensor

(2.%)

Pyg = mmCC = m J dv F cqep
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Here @ and 3 stana for the thrce cartesian directions X, ¥, % Thus
Cq 1s the a—component of the vector ¢ where a 1is x, y, or z. Tlnere
are nine quantities py3 of which only six are independent since clearly

Ps = P3g (2.7)

These six are

Pxx» Pyys Pzz» Pxy = Pyx» Pyz = Pzy and Dy = Dyg

The heat flux vector is q defined by

1

1
[ dv F zm c? ¢y (2.8)

i
o
g
10
o
=

4

Vie shall see why P and g are important presently.

The well known equations of hydrodynamics expressing continuity,
conservation of momentum and conservation of energy can be derived-from
(1.1) without any detailed knowlédge of the form of the collision term on
the right nand side. The equation of continuity comes from integrating (1.1)
over all velocities. This gives

oF
| dv 5t + Jav vg Vy F + [dv Xy Oy F = [ dv AF (2.9)
In this equation we have written out the scalar products v .V and X .3
using the usual summation convention. With this convention whenever a
subscript is repeated it is summed. Thus the scalar product of two vectors
a and b is written in the form

a.b= T agby = 3y by (2.10)
@

Consider the terms of (2.¢) one by one. In the first term the differentiation
with respect to time can be brougnt outside the integral to give

d
= F o= =
o [ dv

In the second term the differentiation with respect to space can similarly

ot 3
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be brought outside the integral to give
Vo f dv F vy =Vyanuy =Y. (np

The third term can be integrated by parts to give

5 f v

; dav_dv [X, F - F9

a By U ]Va=“” J au F Oy %

The first part of this expression vanishes because F must be zero for

Vg = + © and tne second part vanishes if Oy X, is zero. This is certainly
so if X 1is independent of velocity and it can still be true for some
velocity dependent forces. For example it is true for magnetic forces
because tne force in any direction is independent of tne velocity in that
direction, i.e. the force X, depends only on vy and V.. Assuming from

now on that X is such tnat 09.X vanishes, this third term is zero.

The ternm on tne right hand side of (2.9) is the rate of increase of

particles due to collisions and this must be zero if ionization is not
taking place. Hence (2.¢) becomes

©n
61— + _V_’_ . (n _‘-}_) = 0 (2-11)

If we introduce the total time derivative

"

D G
- - . \7 .
o o + u (2.12)

which represents the total rat- of change as seen by an element of fluid,
(2.11) can be written in the form

bn V.uc=0 (2.18)
Dt

(2.11) and (2.13) are alternative forms of tne continuity equation.
The equation of motion comes from multiplying (1.1) by mvy and then

integrating over all velocities to get

(6] - )
J dv mvg 5% + [ dymvg vg Vg F + J av mvg Xg Og F = [ dy mvg F(2.14)

L
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The first term becomes

9 . c
5 Jdv vy F = 5 (n m ug)
The second term becomes
Vg Jodumvgvg F=Vg [ dum (ug +cyllug + cy) F

=Vg ( nmuy uz) + Vg(nmecy cy)

since c¢ is zero. “he sum of the first and second terw is therefore,
using tne definition (2.3) and making use of (2.11),

D .
[o] ]—)‘t—ud’ +\/[? pﬁa

The third term of (2.14) can be integrated by parts to give

—p Xq

The rignt hand side of (2.14) is tne rate of changs of momentum in the «
direction due to collisions and must be zero since momentum is conserved in
collisions. Hence (2.14) becomes

D
0 I_).{ u(X. = -—‘/:3 p:’a +p AO’, (2-15)

whicn is the equation of motion. <he interpretation of tne terms in tnis
equation is very simple. “he left hand side is the mass times the
acceleration in tne o-direction of a unit volume of the fluid; the right
hand side is the force acting in this direction on this unit volume - and is
made up of two terms, the force exertcd by the surrounding fluid (pressure
and viscous forces) and the force Z which acts on all particles. If X

is velocity independent X is the same as X, Ve snall discuss the physical

[a)

’ interpretation of the pressure tensor terms in 6.

7.
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The energy equation comes from multiplying (1.1) by
integrating over all velocities to give

and

oo
=
I<

I 1 cr
y_:é-mvava;;-

1 o 1 - ~
5 + [ dy 5 M VaVy vﬁq3v + [ dv 5 M VeVg X3 33 F (2.13)

The first term is

9 1 —_
3% (§ nmvy,) =

The second term is

1 ——— 1 o1
V3 (5 nm veavg) = V3 (Gnmu®ug) + Vg (§ nmuz c?)

e o1 ———
+Vgln muy cy cy) + V3 (5 nmcyeqep)

and the third term is

“nm iy - -eugky —e ol

The right hand side of (2£.13) is the rate of change of energy dus to
collisions and is zero because energy must be conserved in collisions.
Collecting together these terms and making use of (2.11) and (2.15) we fird
this equation can be rearranged into tne form

b 3 - 3, Ln ,

oy (é-n k T) = 3 kT %f ~V.q ~ pg3 Vg Uy * P Cp XB (2.17)
or

Z—nk%% = -V .q-pg Viuy +oc.X (£.18)

wnich is. the energy equation. Thne physical significance of each term is
best seen from (2.17). The left hand side is the total rate of change ot

8.
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the energy content of an element of the fluid per unit volume.

The terms on tne right nand side are: the rate of change due to
increase in the number density, each particle having an energy - kT on
average; the heat flowing into tne element due to thermal condﬁction; the
work done in chan¢ing the snape and size of the element, and finally the
work by tne force X 1in the random motions of tne particles. This last
term is certainly zero if X 1is velocity inder.ndent for then it becomes

p c.X .and ¢ is zero. e shall see later that it also vanishes for magnetic
forces.

For most problems we would be quite content to obtain a solution to these
equations of contimuity, motion and energy witnout knowing the distribution
function F(v, r, t) accurately. However in order to solve these equations
for n, wand T it is necessary to know thne pressure tensor pg; and the
heat flux vector q and these can only be obtained from a solution of
2oltzmann's equatiah for the distribution function. iHow to obtain a good
solution of Boltzmann's equation is very difficult but later we shall show
that we can formulate a procedure which, although giving only a poor solution
to the Boltzmann =quation, gives a good approximation to the coefficients of
viscosity and thermal conduction wnich appear in the pressure tensor and
heat flux vector respectively. Therefore, provided a solution of these
macroscopic hydrodynamic equations is all we require we need not trouble to
get a more accurate solution for the distribution function F(v,r,t) that

this procedure gives us.



83. THE COLLISION TERH

So far all we have needed to know about the collision term is that
in a collision the number of particles, the total momentum and the total
energy must be conserved. To go further however we must examine the
collision term more carefully. We shall do this now.

Consiaer the collision between a particle of velocity v with a
particle of velocity s. Suppose that after the collision the velocities
are v’ and s’ vrespectively. The velocity of the centre of gravity,
G, must remain constant so

G = %(! +s) = % (v' +s") (2.1)

We define the relative velocities before nnd after the collis;on to be

g=s8-v g =s' —-v' ' (8.2)
Hence
s =03 + E g s' =G + l g
= T 9 - - 2 -
Do
1 , L (2.8)
v=g--28 vi=G-=-¢
. - 5 -

The total energy is conscrved, i.c.

m (V/2 +§/2) (304)
Substituting from (3.3) this gives

g = g’ (g)°5)

where ¢ 1is the megnitude of the vector ¢.

To complete thc specification of the collision we must give the
gecometry of the collision as well as the initial velocities v and s.
Ve do this with refurence to Figure I which shows the second particle
moving relative to the first particle with velocity ¢ before the
collision and with velocity 2’ after the collision having been
deflected through 2n angle xj If we specify thz asymptotic distance
of approach, b, then the angle Y 1is o 'crinined by the law of inter-
action between the particles. Finally wo must also {ix the plane in
which the collision takes place by specifyiny the angle e which this
plane, that is the plane of the paper, m=i.s with some fixed plane.

10.
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Now consider collisions which take place in a volume of space dr
in a time t to t + dt between particles with velocities in the range
v to v+dv and s to s + ds respectively wher: the asymptotic
distance of approach lies between b and b + db and the azimuthal
angle of the plane of the collision is between e and e + de. Provided
we can neglect correlations the number of such collisions is proportional
to the number of particles in the range dv dr, i.e. to F(v,r,t)dr dv,
and to the number of particles in the velocity range ds which are in
a cylinder in space of length gdt and of base area bdbde. That is,
the number of collisions of this type is

Pv,r,t) Ms,r,t) ¢ b db de dv ds dr dt (3.8)

In these collisions the final velocities lie between v’ and v’ + dv’

and between s’ and g’ + dg’ respectively where v’ and s’ depend
upon V, s, b, € nand the law of interaction between the particles. It

can be shown quite generally that

dv' dg' = dv ds . (2.7)

Closely associated with collisions, of this specified type are the
inverse collisions shown in Figure 2 where the initial velocities are
v’ and g8’ and the other specifications b and € are the same. The
final velocities in this caszs will be v and s by symmetry. The
number of these inverse collisions is

F(v'r,t) F(s’,r,t)2'b db de dv'ds’dr dt (8.8)
which by (8.5) and (8.7) is equal to
F(v'r,t) F(g',r,t) ¢ b db de dv ds dr dt (2.9)

The calculation of v’,g’' in terms of v,s,b and e for Coulomb inter—
actions is given in Appendix A at the end of Part II. We need not
consider it until later.

The collisions (8.8) scatter particles out of the range dyv,
collisions (8.9) scatter particles into the range dv, hence the nctt
nunber of particles scattered into dv is

. .
R -

ds de i db bg [F(v")F(s’) - F(v) F(s)] (3.10)
o) Yo

Hencee dO is the muximum valuc of b allowed by our definition of a

11.



collision, is the Debys cut—off distance {kT/4m e® n}%. Hence by the
definition of AF wused in derivins tne .oltzmann equation (1.1)

an d
Fly,r,t) = [ ds [ de [ dbb¢ (FuFs)-F)Flg)] (3.11)
(e} o)

) . .
where v/ and g’ are function of v,8,b, ¢ and the law of interaction
between the particles. %e shall mzok- use of this expression frequently.

low we shall prove some very important tnecrems about the rate of
change of quantitics due to collisions. If 9 is any propert. of the
particles, depending in general on the velocity, position and time then
the mean value of ¥, written as ¥ is defined by (2.1) and the rate
of change of this mean value due to collisions is

AV

[ dy W F(y) (8.12)

= [ dv ds dedbb g W) [F(v'IF(s") — () Fg)]

Alternatively we could derive an expression for 47 directly from (3.6).
(83.8) is tne nurber of collisions of a specified type in which v changes
to v'. For eacn such collision ¥ changes by an amount Y(v')-¥(v).
Hence the total rate of change of ¥ due to collisions can alsc be written

as

£ - %1- [ dvdsdedb b g [He") - w)] Fl)Fs) (2.13)

It can be verified that (3.12) and (5.19) are consistent as follows. The
first term of (£.12) is
1 o b] N v ¢+ T / 1 ¢ A
= [ drdsdedbiog Wy Hy') F(g") (8.14)
n
In this expression we can change variables trom ¥ aind s to v' and s
and by (8.7) the Jacobian is unity. 8y (3.5) w. cin replace ¢ by ¢’

and then tnis becomes
= [ dv' dg' deobapb g’ ) rl') Flg")
n

Now by symmetry v 1is the same furction . v ' b and € as

v' is of v,s b and e. Hence tnis last wpression 1s the same as

= [ dvds de bdbg “v') F(y) F(g) (3.15)

12.




This together with the second term of (3.12) pives precisely (8.13).

Because all particles are equivalent (3.13) can also be written as

AV = Pif dv as de b db g [¥(v') + "(s') — ¥(v) - ¥(s)IF(¥)F(s)

<

which, in the same way that (8.14) is cquivalent to (3.15), can be shown
to be

N %f dv dg de b db g[Wv’) + ¥(s') — W(v) - ¥(s)IF(v')F(s’)

Adding (3.18) and (2.17) and dividing by 2 ¢ives yet another formula

-—

AT = ;'_if dv ds de b db g[W(v') + "(g') — W(v)-¥(s) I[F(v)F(s)-F(v')F(s")]

Tt is convenient to collect together all these formulae for A¥.  They
are

f =

A

i

dv W(v) A F(v)

Jdvds de b db ¢ Wyv) [F(v') F(g') — F(v) F(s)]

] %f dv ds de b db g [¥(v') - Wy)] F(v) F(s)

, 51;f dv ds de bdb ¢ [Wy') + Ws') - Wv) - Us)] F(v) Fls)

v

= Z-i-:f d\l d_S__ de b db g[\y(y_l) + W(_s_’) _ W(Y.) . “’(_s_)][F(y’)F(_s_’)—E‘(g)F@)]
ooe(3.18)

ile shall frequently make use of the fact that these expressions for A¥ are
equivalent.  All we havc used in deriving them are certain symmetry nroperties
of collisions. Clearly A7 is zero if ¥ is 1, mv or % mv®. This just
expresses conservation of particles, momentum and energy. Because these laws
uniquely determine the final velocities of the particle in terms of the

initial velocities and b and e, it follows that only for thase choices of

U does AY vanish. Conversely if AU vanishcs then ¥ nmust be 2 linear

combination of "the collision invariants®, 1, mv and % mv*. We shall
make use of this fact in the next scction. Strictly speaxing, becausc
13.
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electrons and many ions have spins, to complete the specification of a
collision we should also deseribe the initial spin states.  This requires
two more parameters and gives two more collision invariants, the total
spin ana the z-—component of total spin. Put the spin dependent inter-
action between the particlcs arising from their magnetic moments is so
much smaller than the Coulomb interaction that it can be neglected. In
this case the spin specifications remzin unchanged in a collision and so
we can omit them altogether. It ’'is also tru. that angular momentum is
conserved in collisions, in our notation this means that for each collision
the asymptotic distance bectween the particles after the collision is the
samc as it is initially, namely b. The angular momentum of a particle
mr v, 1is an independent collision invariant because at a2 collision the
centres of the molecules are at different points. But in our treatment
of collisions we ignored this, for example in (8.6) both distribution
functions arc evaluated at the same point r,t. Therefore because we
have made this approximation the angular momentum must not be regarded

as an independent collision invariant. Of course if we were considering
molecules with some internal degrees of freedom so that angular momentum
could be exchanged vetwezn the translational and internal modes of the
particles then we would have to reconsider this question carafully.

14.



84.  THE EQUILIRRIUM STATR

In this section we shall prove that the system, if left to itself,
will approach an equilibrium state in which the distribution function is
of the familiar Maxwell form. We shall then go on to prove some
properties of this equilibrium state, namely that the temperature is
uniform and that the drift velocity can only vary in a certain restricted
WAY o

Consider the quantity

S(t) = =k [ dr [ dv F(v,r,t) log F(v,r,t) (4.1)

In equilibrium we shall show that S becomes thc entropy of the system
apart from an additive constant. Differentiating gives
ds

oF
2=k fdr [ d + log F} — .2
= Jdr [ dv {1 og F} = (4.9)

’\F )
Now substituting for g; from (1.1) gives
@]

Jdr [ dv {1+ 1log F} v,V F

+

Jdr [ dv {1 + log F} X, 3, F

S dr [ dv {1 + log F} AF (4.8)

Consider the tcrms on the right hand side of this equation one by one.  The
first term can be rewritten

Jdar v, [fdv v, FlogF

which can be transformed to an integral over the surface of the container
of the system

[ dA [ dv vy F lop F (4.4)

Here dA is an element of arca of the container und v, 1is the component
of velocity perpendicular to this area.  Now provided the wall of the
container is smooth and cvery particle which hits the wall bounces buck

elastically then F 1is nn even function of v, and (4.4) an odd

18.



function of v, and so the integral in (4.4) vanishes. We shall now go “

on to show that provided (4.4) does vanish then thc system must tend to

the oquilibrium state given by Maxwells distribution. Thus the system
will not reach the Maxwcll equilibrium state if the conditions for the
vanishing of (4.4) arc violated, i.e. if the wall is rough or the particles
lose encrgy to the walls on hitting them or if particles are being

absorbed or cmitted from the wall, This is reasonable physically, for
example if the walls continually absorb particles we cannot possibly get
an cquilibrium state.

Assuming (4.4) to vanish then we are left with the second and third
terms on the right hand side of (4.2). The second term can be written
as

Jdr J dv X, B, F log F
which can be integrated by parts since 9, X, is zero, to give

Va = 4 @O
2 [dr [ dvgdvy, (X, F log F‘]Va =

which certainly vanishes because F must tend to zero morec rapidly than

log F goes to infinity as Vg < P

The last term of (4.8) is
- [ drn V{1 + log F}

Hence using (8.18)

d
5. = li—f dr / dv dg de b db g[log F(v') + log F(s') — log F(v) — log F(s)]

x [F(y') F(g') - F(V)F(g)]

which can be rewritten as

dS k F(v')F(s’) (v’ )F(s")
—=~f4d dv ds de b = Z =
g/ dr/dvds & b ab g F(WR(s) {F(!) o 1} 1og NI
(4.5)
h ] F ] + F !
Now the two factors of this expression, {;Ez)) Fii)) - 1} and g%%lﬁgij’

o

P
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arc cither both positive or both nzgative according as F(v')F(s') 1is
greater or less than F(v)F(s). Thus thc product of these two factors
is always positive or zero and th.refore the integrsl in (4.5) is either
positive or zero, i.c.

oS .
m— Oo 4of‘
= 3 (4.4)

Hence as the distribution function chang.s it does so in such a way
that the entropy increases. Indeed we shall show later that it changes
in such a way that thc rate of entropy production is the maximum possible
subject to certain restraints. The entropy cannot increase indefinitely
for it can be shown that this would require the encrgy content of the gas
to increase indefinitely, so cventually a state is reached where S no
longer increases and the cquality sign holds in (4.6). This state is
the equilibrium state. In the equilibrium state

F(v")F(s") = F(v)F(s) (4.7)
for all collisions, i.e. for z2ll collisions
log F(v') + log F(s') — log F(v) — log F(s) = 0 (4.3)

Hence in the equilibrium state log F(v) must be a linear combination of the
collision invariants, i.c.

log F(v) = a, +ma, v - > mag ¥V (4.9)
where a,, a, and a, ore quantities independent of v. From (4.0)
1
- om ag (¥ — 2,4)°
My) =2, e * (4.10)

whzre a, and a, are new quantitics indzpendent of v which are simply
related to the constants a,, a, and &, appearing in (4.9). The
physical significance of 124, 25 and a, 1is fcund as follows. The
number density of the gas is given by (2.9).  Substituting for F(v)

from (4.10) and performing the integral gives the relation

‘o 2

n o= a <-¥2£~\ : (4.11)

m ag/
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The drift velocity is defined by (2.3) ind this gives

U = 2, (4.1%)
The temperaturc is defined by (2.5) and this gives

kro= = (4.13)
8'3

Hence in the equilibrium state the distribution function is given by
Fy) = f(v) (4.14)

where throughout this report f(v) stands for the Maxwell distribution

.' .8 __._r.n__(v_u)"‘
fm o \% —(¥y-u
fw = n(5m=)" e Bl (4.15)

So far we have said nothing about the spatial dependence of n,u and
in this equilibrium state. We can examine what possinilities are allowed
by substituting (4.15) into the Boltzmann equation (1.1). The right hand
side is then zero, and assuming there is no dependence on time, we have

{v.¥ + X0 f(y) = O
< i.e. {v.V¥ + X.3} log f(v) = 0.

Substituting from (1.31) this is, in terms of the random velocity ¢,

1 -3 me? m
{°~+“u}{g v, n - o v, T+ wTE Vo T + 5 °A v, tal
m
~g Xe =0 (4.16)

Mow (4.16) must hold over all space and for all velocities c. Hence
the coefficient of each powsr of ¢ must vanish. for simplicity we
shall assume throughout the rest of this section that X is independent
of velocity. The only term of order ¢® is

me 2

v
Cy kT o T

Hence )
VyT = 0 (4.17)

1].
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i.e. the temperature is uniform in the equilibrium state. It should be
remembered that this result and those to be derived presently are only
true if (4.4) is zero, i.c. if collisions with the walls are elastic.
The term of order c¢? is

n

E CN Cr} V{Y’ U.(:} .

Hence
Vy Ug * Vauy, =0 (4.18)

for all o,8. The most gencral solution of (4.18) is

U=U,+Wxr (4.19)

where u, and @ are constants. The flow (4.19) is a superposition of
a uniform drift u, upon a rotation with constant angular velocity w.
This is the only flow pattern allowed in thc equilibrium state. [Of
course u, and @ could both be zero, i.e. the gas could be stationary. ]
The term of order c¢ is

m m
clVq 108 n+ o g Vo Uy = i Xy)
Hence
KT m
= — V. {logn-— u?). 4.20
Xee m ¢ tlog kT ~ } ( )

It follows that the curl of X, is zero, i.e. X, must be the gradient
of a scalar potential V, i.e.

X, = — V_V (4.21)

Such a force is known as s conservative force. From (4.20) and (4.21)

1
-—mny — u
n = no e kT e?)kl (4922)

There is not an error of sign in this equation; the term in u? 1is the
centrifugal potential and we see that in centrifugal motion the density
is greatest where the velocity is greatest, i.e. at the outside of the
rotating system.

The term in (4.18) independent of ¢ is

u, Y, log n.

18.
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But Uy V,u? =2 u,ug YV, ug =0
by (4.1R). Hence (4.°3) is

u, Y, V=0 (4.24)

which tells us that in the equilibrium state the flow must be along
equipotentials.

Knowing the distribution function we can casily calculate the pressure
tensor and the heat flux vector from their definitions (2.4) and (2.8).
We find that in this equilibrium state

Pys = P 6,3 = N KT 80 (4.25)

q = 0 (4-26)

(4.25) shows that in the equilibrium state only simple hydrostatic pressure
forces appear in the pressure tensor and (4.27) shows that no heat flow
takes place.

In the q equilibrium state the quantity § of (4.1) becomes

<X -
2

)‘ —g-] (4.27)

m
on kT

/
S=~k fdrn([logn \

which apart from an additive constant is the entropy of the gas.
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8. THs YLYSICAL SIQNIFICAHCE‘QF [HL BQUATIONS

In £2 we defined the pressure tensor and tne heat flux vector and
deduced the equations of hydrodynamics from the Boltzmann equation in a
formal mathematical way. In this section we shall discuss the pressure
tensor and the heat flux vector in a way which brings out their physical
significance clearly and then we shall rederive the equations of
hydrodynamics in a physical way so as to get a clear idea of the meaning
of each term in the equations.

Imagine a small element of area dS moving with the lccal drift velocity
L so that relative to the gas it appears stationary. The orientation and
size of this area we can indicate by a vector d§ erected at the centre of
the area so that it is nommel to it and of magnitude dS. This is shown in
Figure III.

llow consider tne particles crossing this element of area in the
positive sense, i.e. from left to right in the Figure, witn relative
velocities ¢ to ¢ +dg in time t to t + dt. These particles are
those which have relative velocities ¢ to ¢ + dc which are in a small
cylinder in space erected on d3 as base with axis parallel to ¢ and of

length ¢ dt. The volume of this cylinder is

.c dt (5.1)

j{oh
2

The number of such particles is therefore, by definition of the distribution
function
dS.¢c dt-de Fly, g, t) (€.2)

where r is tne position of the clement at time 1.

1
Each of these particles carries a random energy of = mc® (as
distinct from a total energy % m v2 whicn is partly ordered) across dS.

< . . . o s
Hence the total amount of random energy, i.c. neat, carried across dS in the
rositive sense is
l 2 aQ ™ )
—meg? dS.cdt Fly, o, t
2
In this expression tnose particles crossing dS in the opposite sense have a
and hence contribute a negative amount as they

J dv

negative value for di.c
should do, The rate of heat transfer across dS is therefore

Zl.



\ 1 '
dS . [ dve smg? Ky, £ t) = d3.q (5.3)
5 1

by definition of q.

Hence the physical interpretation of q 1is that it is the rate of heat
flow, i.e.the heat flux. We shall show later that for the simple gas q is
given by -

‘q_ = - }\zTg (6.4)
where A 1is the coefficient of thermal conductivity.

Each of the particles (5.2) also carries a momentum my and so the rate
of transfer of momentum across df8 in the positive sense is

f dv my daS. ¢ Flv, r, t) (EeH)
But the rate of transfer of momentum across dS in the positive sense is
equal to the force exerted across the surface dS by fluid to the negative

on fluid to the positive side., Hence (£.2) is tnis force. It is of course
a vector quantity and written in component form is

[ dvy m(uy + ¢y, Uy * Cyy Uy * c,) d8. ¢ Fly,r,t)
J dv m(cy, Cy cy)dS . ¢ Fly, ¢, t) 5.5

which by (2.8) is

; . 5.7)
s (b s Py’ Pay ©

where of course a summation over components « 1is implied.

Thus for example if dS 1is parallel to the x axis, i.e. the area dZ lies
in tne y-z plane, this force is

p ) (5.86)

a8 (p pxy’ Xz

XX

Herce Pys is the force exerted in the B direction across a surface

224
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‘ “ facing the « direction. Later we shall show that peg iS given by

2

= + - — 7 / K‘

Po {p SLLY. 1‘1_}50(3 u (Vg ua +22ua) (5.9)
i.e,

Doy = + 2 2 2o v
}‘Xx p 5 i ° Ll__ - CU, X U.X
Pyy = etce
;&y=—u(vxuy*vyuﬂ = DPyx (5.10)
Pyx = etc,

Here p is the hydrostatic pressure nki' and u the coefficient of viscosity.

low we have discussed q and Pyz let us rederive the hydrodynamic
equations (2.11), (2.15) and (2.17) using physical arguments instead of the
purely mathematical derivation we gave in 82 which started from the
Boltzmann equation. To do this consider a small rectangular element of
volume dx dy dz centred on the point r as shown in Figure IV. In this
figure the two faces normal to the x direction, witn area dy dz, we shall
call the x—faces. The first x face is tne one passing through r — - dx, the
second x—-face passes through r + 5 dx. Ye use a similar nomenclature
for the other faces. We suppose that each part of the element moves with
the local drift velocity so that, unless tne drift velocity is uniform
the element will not retain the same volume or shape.

Vie can calculate the rate of volume change as follows. The volume at

time t is

dx dy dz,

|

Consider the element at a later time t + dt. The point r — 5 dx will now
have moved to the point

A

dx)

Q0 g

r—dx +dtulr -

and the point r + - dx will have moved to
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The x component of the distance between them is therefore

1
dx + dt{u,(r + > dx) = u, {r - é dx)}
dux
= dx {1 + dt }
X

Similarly the dimension in the y direction changes from dy to

¢ u
Yy

dy {1 + dt

and in the z direction to

duZ

dz {1 + dt }
2

To first order in dt tnerefore the volume changes fram dx dy dz to

dx dy dz {1 +dt V. u}

D .
S0 oo {dx dy dz} = dx dy dz V. . u (E.11)

wow let us derive the equation of continuity. The total number of
particles in the element is n dx dy dz. The rate of cnange of this
number is

D o
Y {n dx dy dz} (6.12)

This rust be equated to the rate that particle: flow into the element across
the surfaces. But this is zero because it is given by tne integral of an
expression like (6.2). For example the rate particles cross tae first

x—face is

dy dz [ deey, F=dydzncy =0

Hence (5.1%Z) is zero, i.e.

D
dxdydz%% +nﬁ-€(dxdydz)=0

24,
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If we now use (5.11) and then divide by dx dy dz we get tne continuity
equation in the form (2.13).

Now let us derive the momentum equation. The total rate of change of
the a-component of the momentum of the element is
D dx dy dz) (5.18)
This must be equated to the force acting on the element. The force X
produces a force in tne o direction
o Yo dx dy dz (5.14)
In addition to this there are forces acting on the element across the
surfaces. By (6.8) the force acting across the first x face in the
e direction is
dy dz ( L dx)
Y anl‘. s &
The force acting across the second x-face, on the element, in the
o direction is
1
- dy dz r + = dx)
@ pmﬁ“ 2
Hence the total force acting across the x faces is
1 1
~ dy dz - + = dx) - r—-=dx))
e {pxa(n S pxa( 2
d
= - dy dz —
R dx pxa
Adding contributions from the y and z faces gives a total surface force
— dx dy dz V4 Py (6.15)

Addin; (5.14) and (5.15) to equate to (£.12) gives

é% {p uy dx dy dz} = p Xy ux dy dz — dx dy dz Vg p3q

[aN]
.
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Since (5.12) is zero this is, dividing by dx dy dz

Du, _
vl Vo Dag * Py (5.18)
which is the equation of motion.

Finally let us derive the energy equation. The total energy in the
element is

Q
p W dx dy dz + ;-n XT dx dy dz (5.17)

]

p V2 dx dy dz =

[V RN o

QO s

The rate of change of this must be equated to the rate tnat heat flows
into the element plus the work done by the forces. By (6.8) the rate that
heat flows across the first x—face into the element is

dy dz q; (r - 3 dx)

lav Rl o

The rate heat flows across the second x—face out of the element is

dy dz qu(r + > dx)

O

The nett rate of heat flow into the element across the x—faces is therefore

d
- dx dy dz —
x dy dz == dy

Adding similar contributions due to flow across the y and z faces gives
as the total rate heat flows into the element

The rate the force X does work is

o T v dx dy dz = p(Z.u + Loc) dx dy dz (5.19)

The rate the surface force across tne f.rat x face -does work on the element
is

dx)

Lo

dx) v (¢ +
o

[ASR R g

kS L
dy dz pxa(n

S0
24,




m . .
The nett rate the surface forcos acting across the x—faces do work is

therefore

d
- dx dy dz — ]
X 4y e dx (pxa La)

and the total rate all ,the surface forces do work is

- dx dy dz Vg (png ug) (5.20)

Equating tne rate of change of (5.17) to the sum of (5.18), (5.1€) and
(5.20) gives

pu® dx dy dz) + —?—- (

- nkT dx dy dz)
vt

ST
SIRe

D
Dt (
= —dxdydzV.q+ p(Zou + Lg) dx dy dz
- dx dy dz V@(pga Uy (5.21)
The left nani side, remembering (£.12) is zero, can be rewritten

D, D3
p dx dy dz oo U + n dx dy dz Dt(2 kT)

vl B

hence, dividing by dx dy dz, (£.21) becomes

Du D 3
ol R AR, I S AP
Pua 5 tngy (g e aTe

g

.utpX.c

Now multiplying (5.16) by u, gives an expression for the first term on the
left nand side of (5.22). Substituting inis expression we find that (8.22)

can be rewritten as
D .3

n —(=%xT) = -9 . +p X.c— Va u .
vth(zk) V.4q+0p C ~ Pag V3 Ya B.28)

which is the energy equation in the form (£.18).
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8 THE MRAN FREE TIMD THEORY

[

In this section we shall duscribe the mean free path theory of
kinetic processcs, i.e¢. of viscosity and thoermal conduction. This
theory gives a useful insight into the physics of the effects but it
is not precise and suffers from internal inconsistencies. Gualitatively
however for the simple gas it gives the same results as the more complete
analysis to be deseribed in the next section.  Usually the theory is
based on the concept of a "mean free path" but w: shall formulate it in
terms of a “mean free time" as it is this formulation which can be easily
extended to consider the same problems in the presence of a magnetic
fielde As usually described it is not clear just what approximations
are made in this theory and this is onz possible reason why there has
been no successful zttempt to improve the mzan free path theory until
it is quantitatively as well as qualitatively correct. We shall there-—
fore formulate the theory exactly before going over to the customary
theory and this will eneble us to see the approximations which must be
made.

The idea of all mean free path or mean freec time theories is to
follow the motion of each particle back to when it suffered its last
collision and so relate the distribution function at any given time to
the distribution function at the earlier time of the collision. The
theory is therefore essentially as attempt to solve the Boltzmann
equation.

The motion of a particle between collisions is particularly simple
if X 1is velocity independent and constant. In this case the equation
of motion

2
g;; r = X
is easily integrated to give
d
DT Y 7 Yt -t X (8.1)
L o= I+ (t=1t5) vy + Lt - to)® X (3.2)

where ¥V, and r, are the velocity and position of the particle at a
given time tg,.

Let ~<(v,r,t) be the mean time between collisions for a particle

of velocity v at the point r and at time t. Of course the

B
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dependence on r and t 1is only implicit throuph the dcpendence on
number density and temperature.  Toncen the nurmber of collisions in a
volume dr =2bout r in time t to t + dt by particles with velocities
viov +dv is

’I'-s

1'1
o+
~— i

dv dr dt -% . (2.8)

l< ;l<

Comparing this with the formula we derived ea.lier (38.%) we sec that

1

— = de b db ¢ ,
©(v,r,t) J dg de db ¢ Fs

It (6.4)

Define p(t) to be the probability that a particle survives making
collisions up to time t ¢given tnat it made a collision at time zero.
To calculate p(t) consider this probability at a later time t + dt.
The probability the particle survives up to time t + dt is the probability
it survives up to time t minus the probability it suffers its first
collision in time t to ¢ + dt. The latter is the probability that
it survives up to time t times the probability it suffers a collision
in a timc interval dt. Hence

d
p(t + dt) = p(t) - p(t) —} (0.5)

which, if * were constant would have the solution

~t/
p(t) = ¢ 7. (BaB)

But actually in (R.5) +t is the collision time for a particle with
velocity v at position r, time t, where r and v are given in
terms of the position and velocity at time zero by equations like (5.3)
and (6.4). A more precise solution taking t™is into account is

ft dt’
p(t) = e Tt (£.7)
Now we have secen in 95. that in order to calculate g and p y leco

the coefficients of thermal conductivity and viscosity, it is necessary
to cvaluate (£.2) which is the numoer of particles crossing an element
of area in time dt with velocities in a certzin range. Usually the
theory is formulated to give this direccetly but since this number is
simply related to F we may alternatively regard the theory as an attempt
to calculate P, 1i.e. to solve Roltzmann's equation. We shall now
descrinhe the theory.

o0
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The number of particles in a given volume r, to ry + dr, with

velocities v, to v, + dv, at time t, is, by definition

dv, dry F(vg, Igs to)e (5.8)

Now consider thosc particles of this set which suffered their last
collision at time t to t +dt, [t < ty]. These are those particles
which suffer a collision in time t to t +dt at r to r +dr so
that their final velocities after the collision lie in v to v + dv
where r and v are given in terms of r,, v, by (6.2) and (6.1) and

dy_ = d.y_oo (6.9)

The number of such particles is given by integrating (3.9) over g, b and ¢
to give

dv dr dt [ ds de b db ¢ F(v',r t) F(s’,r,t) (€.10)

which using (2.11) in Boltzmann's equation can be written in the alterna—
tive foram

dv dr dt {F(V ent)

[—E?-+v.§_7 +
t(v,r,t) ot 7

=<

2] F(z,z,t)} : (6.11)

Not all of these particles make a contribution to the set (6.3), however,
because they may suffer a second collision in the time interval t,-t.
The probability they survive is

_ o dt,
e v T(¥y,Iy,ty) (8.12)
where
vy = Vo f (b — b)) X
Teot Lot (ta = tg) Yo + (s~ o) X - (£.1%)

Multiplying (%3.11) by (6.12), integrating over all 1t and equating to (3.8)
gives

. sto dt,
"o t  «{v,,r.,t,) (F(v,r,t) 3
F(VayLaptad =) dt e =112 71 { == + [— + v V + X 3Fv,r,t }
(Y01 Lo o L t{v,r,t) [at LY+ & alent)
- (6.14)
20.



This is a formula which relates the distribution function at time ty, to

the distribution function 2t earlicr times t. Je have mads no approxima-—
tions so far and (6.11) is exact. To prove this we noticc that the

first term of (R.14) can bc rcwritten as

Ao { - [lo dt, ?

' d vt (v,,T., bs)

| dt F(v,r,t) — 4 e —1r=12 21/ |

! - dt {

~o ( J

which can be integrated by parts to give
~- ~ 1

-~y _ dt: 10 o o _ 9t

t T(V4yLar by ‘ - t T(¥1sTayrty)
|

=5 ]

a 4

2 —— i
. \) T (v,r,t)
¢ o] 00

The first term of this expression evaluated at ty is F(¥giInito)s

evaluated at - 1is zero; 1in the second term w2 note that

“c‘i" F(Y_.F_.t) = [’a" + V.
dt at

i<l
1<
{e))
=
L<:
e}
o+

so this second term exactly cancels off with the second term of (8.14).
Thus the right hand side of (@.14) reduces to F(v, Iy to) as it should.

In the mean free time theory we now use an iteration procedure on
the formula equivalent to (8-14)

o
F¥oLorto) = | 7 dte - ds de b db g FYInt)Es',5t)
-
(#.15)

obtained by using (3.10) in place of (A.11). [We cannot use an iteration
procedure on (8.14) itself because the discusslon just given shows that
any distribution function would satisfy the equation.] The itcration
procedurc consists of inscerting an approximate cxpression for F in the
right hand side and performing the intcgrations to ¢.t a better 2pproxima-—
tion for F(vgiLgrlgl.

The simplest approximation is to replace F on the risht hand side
of (A.15) by a local Maxwellian distribution. This is a good approximation

.



if the collision time is short compnred with ony macroscopic relaxation
-time of the gas.  Then remembering that

f(v',r,t) f(s',r,t) = f(v,r,t) f(s,r,t) (£.18)

where f(v,r,t) stands for a Maxwellian distribution at r and t.
Ignoring the variation of the collision time over the path of the
particle, (6.15) becomes

(o)
F t.) = to (Vo Tor o) |
(YO’EO’ O) B } dt e \‘ d§_ de b db 8 f(!._f_',t)f(_s_a}l»t)
Vo N
. (t—to) (8.17)
1o o
e 10 g e T HLLU) (6.18)
klw %o

where To 18 shorthand for T(go,go,to).

Ve now expand f(v,r,t) in powers to (t-t,) to give

€]
f(vyr,t) = f(y_oyr to) + (t'_to) [é—‘rjo + Y—O'—V-O + X_-EOB f(Y-O’EO’tO)

_O’
2 0 o (o) 3 a
where V. = ( , )y Oy = y o .
0 '3x, By, Ozy | O (Evax oy avoz)

Ignoring the terms of order (t-t,)® which give contriovutions (%) and
performing the integrations over t gives, dropoing the subscript o,

d
F(v,r,t) = f(v,r,t) - = [5{ + v.7 + X.9] f(v,r,t) (6.20)

At this stage, without any real justification the normal mean free time
theory replaces (7.20) by

8 _.._._.m__ )2
P(v,r,t) = £(v,r,t) LA Shr (L2
v, T, = i(v,rL, 'rncuwnnkw
3 - —E—(!?Q)z
< £(¥,1,10) = e gD — *+ ¢ (¥ up)—1] { — VB kT
1l o AR Al @u(g \ZMT'
3 ome®, 1 ™ )
- et JLl fre g p e g cece Yy ug}  (5.20)



. At first sight it looks as though Lo get this result the terms

Cv (2 s ug o+ X2) fYn,t) (6.22)
ot
in (8.20) have been ignored and furthermore that it has becn assumed that
‘the gas has uniform density so that VY n = 0. In fact, however, a careful
examination of these terms shows that, to the order we are working, (8.21;
is qualitatively correct and can be made quantitative merely by modifying

the terms so that it reads
X 1 Tm 1
F(v,r,t) = f(v,r,t) {1 + T( é- —_—> ,E ¢V T~ E (Cfl C.D' - —c: c? 6068)Va U.G}

4

(8.23)

The details of this careful examination are given in the beginning of the

next section. The idea involved is that the term of of (8.22) involves
on ou ot

' ot
derivatives Vn, V,ug and VI by the equations of motion.  when these

oT . :
and 5t and these three quantities are related to the spatial

relations are used to eliminate the time derivatives in (8.20) it is found
that many terms cancel and (6.23) is the final result.

Quite apart from the fact that the normal theory gives no kind of
justification for this last step it is unsatisfactory for two reasons.
Firstly the non-Maxwellian parts of F 1if inserted on the right hand
side of (8.15) would lead to terms comparable to the non-Maxwellian
terms in (8.23). Secondly in going from (6.17) to (R.18) it is con—
inconsistent to take account of the difference of f(v,r,t) from
f(vg:Lgrty) but ignore the variation of T over the path of the
particle. For these reasons we cannot expect (8.23) to be more than
qualitatively corréct.

It is clear that a better procedure than that which we have described
would be to assume a small departure from Maxwellian and solve for this
self consistently.  Assuning

Fv,r,t) = f(v,r,t) {1 + o(v,r,t)} (B8.24)

where o 1is small, (6.15) gives to first order in o

(t_to)
.t PSR~ ‘:
(Vo1 Torto){L + 0(VorIntg)} = © dt e ° | ds de b db ¢ fELLUELL)
‘:.‘-(1) \
.I + 1 [ ds de b db g f(VaIoato) (80Tt {m(¥,’) + o(s)}

880 (60 25)
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Making use of the expansion (<.1%9) and the argument leading to (%.23)
this gives dropping the subscript o,

5 nme®\ 1 ~ m (
ffe) o(c) = 1 f(g)( 5 - ?kT) p c.V T -1 f(e) EE ¢, Cp Vo ug
R oms?\1 m
2 - & 1 AR o T o — 1
+12 [ dg de b db ¢ f(c) f(g)l\g Qle)T_s,_Y_T kTSaSBvduB‘
+tfds deb dbg f(c) f(s) {w(c’) +o(s")} - (A.25)

Zut this is a more difficult cquation to solve for = than the cquation obtained by
substituting (5.24) directly intc the Boltzmann equation and we shall see
in the next section that this is essentially what is done by Chapman and
Cowling.

Qualitatively, however, (8493) is correct and substituting 1t into
the definition of the pressure tensor (2.6) we get the formula (5.9) [for
the details ot this calculation see equations (7.34) to (7.41)] where

w = nkT<. (5.927)

Similarly if we substitute (8.23) into the definition of the heat flux
vector (2.8) we get

qQ=-AVT (5.29)

where A = 351 n kT (3.29)

(for details see the similar calculation (7.£38) to (7.22).

-
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8. THE FORMAL THEQRY OF KINETIC PROCLSSES

In this section we shall describe the Chapman—Cowling method for %
solving the Boltzmann equation by successive approximations. We
shall see that we obtain only a very crude idea of the complete
distribution function but that we obtain quite accurate expressions
for the pressure tensor and the heat flux vector, that is for the
coefficients of viscosity and thermal conduction. This is usually
as much as we need.

It is assumed that collisions are most important in determining
the distribution function and that to a first approximation we have a
Maxwellian distribution at each point in space. Then we calculate
the corrections to this. Mathematically we can indicate this process
by rewriting (1.1) as

€] 1
— + V.V + .3} F = ~
{at v.V + X.0} " AF

f ds de bdbg {F(y')F(g') — F(v) F(s)} (7.1)

31

Of course we set n equal to unity eventually but we write the equation
in this way to indicate the way the terms will be grouped. Ve now write

F o= FO (1 4no+n2y +....) (7.2)

where by taking more and more terms we get successive approximations.

Substituting (7.2) into (7.1) and setting the coefficients of each
power of n equal to zero gives a set of equations which, in principle,
gives a complete solution of (7.1). In practice it is only the first
two coefficients which are considered because the work rapidly becomes
too difficult.

The only term of order = is
n

%f ds de db by {F()(yr) plo)(gr) - p(O)(y) plo)(g)} (7.8)

which has solution

m .2 2 kT

0 - f = 7 .
F(v,ryt) = f =n {RnkT}Q e (7.4)

i.e. the Maxwell distribution.
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The terms independent of n on the right hand side of (7.1) are

J ds de bdog[f(v')f(s ) {a(¥x )+(2")} - £(¥)F(s){m(¥)+a(8)}] (7.5)
and since
f(v')f(g") = f(v)f(s) (7.8)

this can be rewritten
[ ds de b dbg f(v) f(s){e(y') + n(g') - a(y) —a(g)] (7.7)

The terms independent of n coming from the last two terms on the
left hand side of (7.1) are

- m of of of
{v.V + X.B}f = — T f Yoo + 5;-y.§n + 55; vg Vg uy + ~ v.VT (7.8)
where clearly
of
on n
du,, kT ¢
: 2
?__f.‘. = - f {._.-. — m 92
oT 24 okT?

The terms independent of n coming from the firgt term of (7.1) need
a little care to dcrive.  They must be contained in the term

of on of L of or of

of _ ®maf | of oot (7.10)
3t dtam Bt ou, Bt OT
an ou or
and now we can substitute for —, % and 2 from (2.11), (2.15)
3t ot ot
and (2.13). “hen we do so, however, we must remember that in the

spirit of this approach some terms of these equations are of higher
order in n. Thus the pressure tensor in (2.15) and (2.12) and
the heat flux vector in (2.1R) are g¢iven to zero order in n by (4.25)

) on ou oT
and (4.25). Thus to determine -—, = and — to zero order
a3t 9t ot
in n we use

o
>
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aU.,X 1

e + (u,V)ua = _—‘;V(x p + ,{d (7.11)
B of 3

> n k vy +-n k ueVT=—-p Veu

Substituting into (7.10) using (7.9) and adding to (7.8) it is found
that many terms cancel and after some tedious algebra we obtain as an
equation for o

- w?)e.V log T}

[ s ]

1
f(v){2[w, wg - 3 ﬂ26aﬂwm ug — (
(7.12)

1]

J ds de bdbg f(v) f(8) [o(v') + m(s') - o(¥) —- o(s)]

Here w 1is the random velocity expressed in dimensionless form by

fm
Ww = c JoT - (7.18)

Similarly by considering the terms of order n in (7.1) we could
derive an equation for the next correction term to the distribution
function. But this would be extremely tedious so we shall not do it.
These higher terms have been considered by Burnett and are also
discussed by Chapman and Cowling. They give contributions to the
distribution function proportional to the second differentials of the
temperature or the drift velocity and to products of the first
differentials. Hence provided all gradients are small it is reasonable
to neplect these higher terms.  Fffects corresponding to these higher
terms should be observable in the structure of strong shocks but
experiments have so far failed to detect them.

Now let us discuss the solution of (7.19). First of all it is
convenient to introduce a notation to stand for the tensor which
appears on the left hand side of (7.12). Let

0, - 1
(gﬁg%ug = W, vg - 3 w2 8, - (7.14)
Pecause (7.12) is linear in ¢ it follows that the solution is of
the form
37



Where the tensor B satisfies the equation

-2 f(v) o = [ das deb db g F(r)f(e)[B(v*)+B(s") - B(¥)-B(s)] (7.16)
and the vector A satisfies
f(y) (= —w?)c = [ ds deb db g f(¥)f(s)[A(v')+A(s") ~ A(v)-A(s)] (7.17)

From the form of these equations it is clear that the tensor B 1is of
the form

B = wy B(w?) (718}
where B(w?) is some scalar function of the magnitude w?. Similarly
it is clear that
where J(w?) 1is a scalar function of the magnitude w2.

The problem has now reduced to solving for these scalar quantities
B and 3. Besides being solutions of (7.1¢) and (7-.17) A and B
must be such that

10
i
S

i.e. that
J dv f(v){1 + o(v)} ¢ = 0. (7.20)

S

Substituting for e¢(v) from (7.15) and for A and B from (7.19) and (7.18)
this becomes
1

8
2

[ dw eV 2 J(w?) = 0, (7.21)
n

i.e. there is no condition imposed on 3(w?).

le now have an exact solution for m(v) if we can find 3 and B
exactly. One reasonable mecthod of proceding would be to take power
series in w? with undctermined coefficients for 3 and 8B, i.e. to
take

+c, W+ L.,

However, it turns out to be much more convenient to rearrange the terms
of this expansion and red:fine coecfficicnts so that we can write,

(oYl
(,()f) L)



_EQ) + a, (?é —_

d=a, +a, (
- 1
© 8 g

Nim

8

[
e

a gl (w?) (7.22)
2

m=0

where Sg(wﬂ) is called a Sonine polynomial defined by

(-1)J (m+n)! 2]

SM(w?) = 5 : _ - 7,23
R S FC= DI 72
Here if n 1is.a half integer
5 8 Vm
5 2 (7.24)

n! = n (n"l) (n'—z) e 0e - - —

2 2 2
We have written out the first three terms of (7.22) and we see that this
expansion is essentially like a power series expression but it is in an
extremely convenient form because it can be shown that Sonine polynomials
satisfy the orthogonality formula

2 ' 1 (n+m)!
[ayy™ e s i) -2 B s L ()

[Av}

and this orthogonality property simplifies the calculations enormously.
In (7.22) we made the special choice of n = £ for this will turn out
to be most convenient. Fore 3 it turns out to bec more convenient

to choose n = £ so we write

B = bo+b1 (%—Wz) + s

i
™8

b™ 8T (w?) (7.28)
0 2

1]

m

To obtain a complete solution to the problem we need to know all the
coefficients a™ and b™.  But before we describe how to determine
these coefficients let us see how the pressure tensor and the heat
flux vector are related to them and what the condition (7.92) is.

Substituting (7.22) into (7.721) gives

a0

Foan

R



[
—

Performing the integrations over angles and remembering that Sg
this becomes ?

3 a
m

= !’Jk
nje] =

J° dwwt e g
0

But this integral is of precisely the form (7.25) and hencc this condition
becomes

alo) = o, (7.27)

which is a very simple condition. It is simple because we are using
these Sonine polynomials with their useful orthogonality properties.

The heat flux vector is defined by (2.°). Substituting for F
from (7.2), for o from (7.15) and for A and B from (7.19) and
(7.18) this becomes

1 1
qy * Jdv f {1 - v, ug 222 o8 B(w?) — T U, T w, 3(w?)} 5 me? ¢

Y
(7.28)
The term in B8 certainly vanishes because it is odd in the random
velocity c¢. Substituting for 3 from (7.22) using (7.13) and
remembering (7.27), the other term becomes
1 2kT + 1 2
qQy =~ =V T« nkT(—)" 3 am = [dwe™ w?w,w, SU (w?)
(7.29)
The integral is zero unless o = y and we may replace w$ by é wZ to
give
i o
qy =~ V% Tnk ('—g-—k——)2 5 am 2L S dw w® eW gn (w?)e (7.30)
Y Y m - 3 3
m=1 anz 2
. .
Since 3 Sg(wg) _ S; (W?) = w?
3 7

the final integral can be rewritten as

57 dw w* [2 S2(w?) — SH(w?)] Sg(wz) oW’
0 2 7 7 &
e
15/n . —5_ ).
16 ™o

Hence (7.30) becomes

at VY T. (7.81)




If we define the coefficient of thermal conduction, A, by

q = - A SZ T (70??:)
then 1
N = - ?5I ak (FLE a1, (7.33)
m

The important point to notice about these equations (7.31) and (7.33)
is that they involve only the coefficient a'. Thus although we need
all the coefficients a™, b™® to give the distribution function we
only need the coefficient a® to give the thermal conductivity.

Now consider the pressure tensor defined by (2.6). Substituting
for F from (7.2), for o from (7.15) and for B and A from (7.18)
and (7.19) we find

1
Pyp = M J dv ¢, cg f{1 -9, ug wu ve B(w?) - T Vy T wy Uu?)} (7.84)

The term involving ( vanishes because it is odd in the random velocities.
The first term is zero unless a« = B and is

2kT. 1 1 g2
& ~nm (=) = = [ dww?e™
"'B ( m ) 3 n% —

= 6,5 nkT = o D (7.35)

The second term is

2kT

i% ] dw e Wy Wig {wy wg - % w? Syel B(w?)  (7.38)

7
-nn( )V e

v e
which has to be considered rather carefully. If o« # B then the second
term in the bracket contributes nothing and the first term contributes
only if y=a and € =8 orif y=8 and e =, If o #8
therefore (7.38) is

- n 2 kT (V, ug + Vg u,) [ dw eV wy Wi B(x?)

b° (7.37)

[l
|
N

n kT (Va UB + VB U.a)

41,
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If o =@ then the second term in the bracket of (7.38) gives

20 KT (Tu) & 5 [ dw e vt Bu?)
] T[é-
5
= 3 n kT (V.u) b©° (7.38)

while the first term in the bracket gives

-2nkT VY, u, j% [ dw ev* we B(w?)
"2
- 92n kT ¢ (V. u.) EL [ dw e"w2 w2 w2
G ¥ VP o Ty B(w?)
[» 3

8 (8] i (o]
= - 5 n kT b Va Uy — 5 nkTb $ VY uY

i ) (#a)
c_lnkroy KT b0 ¥ (7.30)
= —'9 _.‘U; -~ N dlll”- . 7

<

Collecting together all these results we find that if

]

. 1
if o # B, Poyg =~ 50Kl DO (Y, ug + Vgu, (7.40)

. 1 0 )
if =B pPyy =1 kT + ; n kT b° (V.u) = n kT b Vo Uy

i.e. in general
2

where

% n kT bO (7.42)

Uz’}
is the coefficient of viscosity. Notice that we need only the
coefficient b® to calculate the coefficient of viscosity. So we
see that really we are only interested in calculating the two
coefficients a' and b°.

Finally, to complete this section, we¢ shall describe the formal
variation procedure used by llirschfelder et al which in principle
could give all the coefficients a™, b™ and which in practise gives
excellent approximations to b°® and a' the only coefficients we

really want.
.42.
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) . If G and H are any properties of the particles define

5 Gy Hy = GH if G and

H
mzﬁ Gop Bog = Gon Hgy 1 G and { are both tensors.
(RS

are both vectors (7.48)
G:H =

Now define what we shall call "collision integrals” as

(G,H] = ~ nizf dv ds de bdbg f(v)f(s) G(v):[H(v')+H(s") — H(¥)-H(s)]

(7.44)
By symmetry this is also
(G,H] = ~ é—i—; J dv ds de bdb g f(v) f(g)[G(v)+G(s)]: [H(v )+H(s )-H(v)-H(s)]
(7.45)
or
[G,H] = 4i2 J dv ds deb db g f(v)f(g)[G(y')+a(s")-G(¥)-G(s)] : [H(y.")#H(s )-HE)H(s)]
(7.4€)
Notice from this last form that
[G,G] > O, (7.47)

Now the equations we have to solve, (7.16) and (7.17) are of the
form

R(v) = [ ds de bdbg £(v) f(s) [T(v') + T(g') - T(v) - T(s)] (7.48)

where R and T are either vectors or tensors, R 1is known and T is to
be found. let t(v) be any trial solution of this equation subject only
to the condition that

J dv t(v):R(v) = J dg dv de bdbg f(y)f(s)t(v):[t(x')+t(s')-t(¥)-t(s))

= - n?{t,t]. (7.49)
But from (7.48)
J dv t(v) : R(v) = = n® [t,T]. (7.50)
. ‘ so provided t 1is chosan to satisfy (7.49)
(t,t] = [t,T (7.51)
42,



Now consider
(t-T, t-T] = [t,t] - 2{¢,T) + [T,7]. (7.52)
By (7.47) this is positive or zero, hence using (7.51)

(t,t] < [T,7) (7.53)
or using (7.49)

S L@ R - [64) € (T (7.54)
This is the relation upon which the variation procedure is based. We

first choose a trial function with as many undetermined parameters as
is convenient. In our case we take the trial functions to be

8

A=wi(w?)=w 3z a" g(w*) (7.55)
m=1 3
or
B=uwlw B(w?) =wle 3 Db" ST (w?) (7.56)
2 uH =Y 2

depending upon whether we are considering (7.17) or (7.18) respectively.
We then take all but a few of the coefficients aM, b™ to be zero.

For example in (7.55) the first trial function is obtained by putting
all the coefficients a™ equal to zero except a®. A second trial
function giving a better result is obtained by putting all except

a! and a? equal to zero. The third trial function takes atl, a?
and a® to be non-zero etc. Having picked our trial function we then
ensure that the cocfficients are such that the equation in (7.54) is
satisfied and then we maximise either the left or right hand side of
this equation. Those values of the coefficients which give the
maximum valuc give the best approximation to the correct answer. As

we shall see in the next section when we apply this variation method,
this procedure pives excellent values for a?! and b® very rapidly.
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8. RESULTS

In this section we‘shall apply the variation method to the equations and
finally obtain the coefficients of viscosity and thermal conduction.

Considering (7.1%) first we see, comparing this equation to the general
form (7.48), that in this case

Hy) = - 21 wu (8.1)

Hence using (7.57) for t(y) we get the left hand side of (7.54) to be

1 2 © nm o . .9 m
~=Jdvtlw) : R(y) == 2 b [dy fly) ww*® ¥¥ 3 (v2)
n " m=o0 - T &
2 m 1 1 m
B e zb — — g2 — w2
w2 n%‘f dw {waw}3 g 6@3} {wotw‘{3 3 W 5a8} S%A(EF)
4
- 25" L faw v 8T ()
3n 2 £
v
5b°
= (8.2)
I
Hence (7.51) is
3b° ' L '
D=3 b b" [ww s, (), wow sy (w] < [T,71] (8.3)
n ml R ? —

The variational problem is now easy because of the very simple form
of the left hand side of (8.5). We must simply look for the largest value of b®
which the equation (8.3) will allow. The simple form of the left hand side of
(8.3) is another consequence of tne use of 3Jonine polybomials. From the
general theory of variational metnods we can expect to get good values for b°
with quite poor trial functions, i.e. with only a few non—zero coefficients.
But we see from (7.42) that u is directly related to ©° so we can expect
to get very good values for u very rapidly. We shall give a numer ical

illustrations of this presently.
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By taking more and more non-zero coefficients we can get successive
approximations to b°® whicn we shall write as

fbo]ii [bo.]Q; [bo]aaooo etCa
the corresponding successive approximations to w we write as

fuly, (wl,, wlge.. ete.

Each time we improveithe trial function we will get a bigger value for b,
hence

[bo]:. < [bo]z < [bo];; < Lo ELC,

and correspondingly

wly < [l < [uls < .ie. ete. (8.4)

The first trial function is obtained by setting all the coefficients
except b° equal to zero. (8.3) then becomes

193]

(o]
: = (b°)? [wOW. ww)] < [T.T] (8,5)

This is particularly easy to maximise for it only has two solutions

1

[o , wOW]— (8.8)

S in

I

b° =0 or b°

=,
=

|

The second solution is positive by (7.47) and ‘herefore is the one which
maximises (8.5). From (7.4%2) the corresponding value of w is

1

bl = 2K [ww, wul (8.7)

=

I

oo

The evaluation of collision integrals like that appearing in (B8.7) is
discussed in the Appendix to PART II. There is is shown that

. f_ﬁfi_i/;_ (8.8)
/m (K1) 2

o
(w w,

———

E:O
=,

I
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) . where m

is toe mass of the particle. e the charge and ¢ is given by
1kTd

o= log [1+ {—°] (8.9)
and d 1is the Debye cut—off distance mentioned in §1,

4 - KT }%
4ne? n

(8.10)

Because d only enters through this logarithmic factor (8.9) is insensitive

to the precise value of d and so there is only a few per cent possible
uncertainty about the value of these collision integrals.

From (8.8€) and (8.7) we find

5 vm (k)%
[U]’, = z
a/n €Y

(8.11)

(There is an error of a factor of £ in the formula quoted by Chapman and
Cowlingl.

table at the end of PART II.

The numerical value of this is given for a gas of positive ions by the
We see that (8.11) has the same qualitative
form as was given by the mean free path theory.

Now let us consider the next approximation to w so that we can jet
an idea of how accurate we may expect (8.11) to be.

The second approximation
is obtained by setting all the coefficients except

b° and b* equal to
zero in the trial function. Tnen (8.Z) becomes
5h ©° o 0
- 02 [, 1) ¢ %t [, w8 ()]
7
N 132 T 0 e~y ,2 0 o1 2 [o] 9)
+{b?)? {ww Sl ), wu St (w?)) (8.12
— 3 z

and the maximum value of b°

allowed is that for which (8.12) still has a
real solution for b'. Inis meximum value of b°

is therefore obtained by
setting the discriminant of (8.12) regarded as an equation for b! equal to

47,
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zero. Tlhis gives

. 0 0o -
o £ .o o ~*! 1 (LW, W Sé]Q :
(b°), = = [(ww, ww) T 55 5 (8.13)
o= == (ww, wullywS;, wuS;
-_—— = 7 — 3
Evaluating the collision integrals from the Appendix this becomes
[b°l, = [b°], . 1.0%85 (E.14)
Hence
), = ful, . 1.020 (8.15)

So this second approximation only gives a 2.5Y, correztion to tne first
approximation. We may therefore be confident that tne true value of u differs
from (8.,15) by at most a few per cent. But this is of the same order of
magnitude as the uncertainty in the values of the collision integrals due to

the uncertainty in the precise value to be used for the cut-off distance d so
there is no point in improving this value for u furtner by taking higher
approximations.

Now consider the thermal conductivity equation (7.17). Comparing to the
general form (7.48) we see that in this case

il

R(v) (2 —w2) ¢ =.S*(¥?) ¢ (8.18)

dojan

Using (7.58) as t we find

"

[e o]
Lyt :R- 3 a far f(v S50R) ¢ . ¥, W)
2 2

n n* =g T

e 1

B LS A (8.17)
‘n m
so (7.54) becomes
= 1 P n'il ‘
= (—2]5{—?1)2 at = Iz aha® (g Sn;, YLS.; 1 < [T, 7] {8.18)
4n n - 7 z’
48.




Once again we see that the variation metnod is very simple and consists of
looking for the most necative value of a* possible. Ve can expect to et
good values for tnis cocfficient with quite poor trial functions and from
(7.33) this corresponds to getting excellent values for the coefficicent of
thermal conductions A, A relation similar to (8.4) holds for )» too, namely

(M), < [A), < [N]g < wuen (£.10)

The first trial function is obtained by setting all the coefficients
except a! equal to zero. (8.18) then becomes

5  9kT
5 (DS - (a2 [wol, w St (8.20)
4n m z =

which has only two solutions

"—15 ng }_ ~ «Q ""1
a= 0 or a'-= y (_E~)2 (w D;, w 579 (8.21)
2 7

It is the second solution which maximises(8.20). The corresponding value
of the thermal conductivity is

7ok 2kT -1
(A, = 15 (w S;, W Sé} (8.22)

The collision integral, evaluated in the Appendix to PART II, is precisely
the same as (8.8). Hence

8
75 k (kT)?
18/7 Vmy e

(A, (8.23)

The second approximation is cotained by setting all the coefficlents
except a' and & equal to zero. ihen (8.1€) becomes

—~
L
|
S
1]
—~
o))
»
L)
]
—
=
2
-
=
[€2]
-
[
+
aY

> ata? [w 5}, uw %) (8.24)

4n m 5 5 2 2

+ {a?}? [w 7
7



which by analogy to (£.1£) is maximised by

( (w5}, u )" 1

(a*], = [a’], 1- - : t (8.25)
(w &% wiil (w &, wsl |
2 2 2 2 )

Evaluating the collision integrals from the Appendix this is

(a*], = [a*l, . 1.C8 (8.22)
and so

[)\]2 = [>‘]1 . 1.8 (8-27)

Hence the second approximation gives an &9, correction this time whereas

for the viscosity it gave only a 2.59 correction. levertheless the

correction is so small that there is no need to go to further approximations
and we may be confident that (8.27) is correct to a few per cent error at

most.
Hotice that

(N, _ 15k
Wl i (£.28)

This is a well know result.

It is only correct in the first approximation,
however.

Tnere is an error of a factor of 2 in Chapman and Cowling's formulae

lul, and [M]; for this case. This error nas been reproduced in a

previous report (Marsnall. The Structure of ilagnetohydrodynamic Shocks)(g).
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). THE PHYSICAL SIGNIFICANCE OF THE VARIATION PROCEDURE

It has been pointed out by Zimon4) that the variation procedure which
we have just described, has the simple physical interpretation that it
corresponds to maximising the rate of production of entropy for given
temperature and velocity gradients. This may be seen as follows.

If W and 6E = c,dT are increments of heat added to the gas and of
internal energy respectively then

W = BE + pb(%) (9.1)
. Dw _ pT P Dp o)
ie. R o7 Dt (s.2)

This is the rate of heat added per unit mass. The rate of entropy production
per unit volume is

b R £ (9.3)

DS 1 1 p
2 -2V, 9= \Y + =V, 9.4)
P B " B e I B (
Using (7.82) for q and (7.41) for pys gives
DS 1 2 u i :
Sl B SRR (Tow)?® * = (Vg g+ ug)(Vaug + Vaug)
=V, 3 VT + h— (V12 iu (V. n)? (9.5)

The first term of (9.5) gives zero when integrated over space. The other

terms are all positive definare and proportional to Aor u.
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Now in B8 we saw that the veriation principle essentially maximised
A and u. Hence it corresponds exactly to maximising tne rate of
production of entropy for given. temperature and velocity gradients.
Alternatively we can say the method corresponds to minimising the entropy
for given heat flux and pressure tensor. This result is closely conrscted
with a theorem of Prigogine's.

REFERENCES

(1) Chapman and Cowling. "The Mathematical Theory of Non-Unifor
Gases™ 0.U.P.

(2) J. O. Hirshfelder, C. F. Curtiss and R. B. Bird
"The Molecular Theory cf Gases and Liquids" <Chapters VII and

VIII, John Wiley and Sons: Chapman and Hall Ltd., london.

(83) V. Marshall, "The Structure of Magnetohydrodynamic Shocks™
AE.R.E. T/R 1718,

(4) J. M. Zimon. The General Variational Principle of Transport
Theory. Canadian Journal of Fhysics 34, 1256, 124, 1GC5¢6.

82



NOTATIN

Mathemat ical

Vectors are indicated by an underlining, thus p is a vector of magnitude r.
Tensors are indicated by a double underlining, thus p.

The components of vectors and tensors are indicated by Greek subscript
@, B, Y, & @ .., thus r, stands for x, yor z; v, for Vys Vy OF Vg,

When a subscript is repeated a summation is implied. Thus a scalar product
is written

ab = ayby, = aby + ayby + azbz
An element of volume in space is written as

dr = dx dy dz

An element of volume in velocity space is
dy = dvy dvy dv,
A differentiation with respect to position is described by V where
3 S] ji)

vV = (— | —

A differentiation with respect to velocity is described by < where

~ ( G c 3 )
c = ’
vy avy ' oV
6]
é% is shorthand for 5 +u. V¥
bgg = 1 if @ =8 is the Kroencher— symbol
= Cif a #P

Q
De

L. Lov



Symbols

r position in space
v velocity of a particle
t the time

F(y,r,t) the distribution fuaction

X the force per unit mass acting on the particles
A denotes rate of change due to collisioas
v stands for any property of the particles depending in geseral

on their velocity, position and time.
n the number density of particles

m the mass of each particle

]

p = nm the density
- 1 . .
v H J dv ¥ F denotes the mean value of ¥ ar the point r and time t

v the drift velocity

=
i

¢ =¥ —u the random velocity of a particle with actual velocity ¥

m —

T = — t m
T ¢, the temperature

k Boltzmann's constant

= p c,C» the pressure tensor
Poj a p

)

p = nkT the static pressure
1 —_—
qQ = snmcg°c the heat flux vector
-~ I
s always used to stand for the velocity of the "otner particle" in a
collision,

v' and g', the velocities of the particles after the collision

1 . . . . .
G = 5 (v + 8) the centre of gravity velocity in a collision
g = 58—y the relative velocity of the particles in a collision
b the asymptotic distance of approach in a collision

&4.

Pl
Pa«
>
(]
~j



X the scattering angle in a collision

3 toe angle the planc of the collision makes with some fixed plane
d the Debye cut—off distance. d = {—kT )&

4re?n
e the change on the particles

(2]

the entropy of the gas
v the potential from wnich X 1is derived, X = VV

ds a unit of area wnose orientation is described by the vector ds
drawn normal to it

T a collision time

p(t)  the probability that a particle survives making collisions for a time
greater than t after making a collision

4 an expansion parameter in the formal theory. n =1
f stands for the Mexwell distribution

w=c¢ J_ B a dimensionless random velocity

kT
WO = wWow _1 w? B,
dB a3 q - o

al coefficients in the expansion of 3. fEquation (7.22)
o™ coefficients in the expansion of B. Equation (7.23)

o) . .

S a Sonine polynomial

n
1 the coefficient of viscosity
A the coefficient of tnermal conductivity

G and H any properties of tne particles
(G,H] a "collision integral” defined by (7.44)
luly, (ul,, (wles.. etc. denote successive approxinmations to wu.

U the logarithmic cut—off term defined by (8.€)

[
N

,,..\
-
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FIG.I. THE GEOMETRY OF A COLLISION.

FIG.2, THE GEOMETRY OF AN INVERSE COLLISION,
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FIG. 3. THE CYLINDER CONTAINING THOSE PARTICLES
WHICH CROSS ds WITH VELOCITY ¢ IN TIME dt.

do

IR I
s
s

7 dy

(x,y,}) dx (x +d x,y,2)

FIG. 4. A RECTANGULAR ELEMENT OF FLUID.
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