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Can Inertial Electrostatic Confinement Work
| Beyond the
Ion-Ion Collisional Time Scale?

W.M. Nevins
Lawrence Livermore National Laboratory
Livermore, CA 94550

Abstract

Inertial electrostatic confinement systems are predicated on a
non-equilibrium ion distribution function. Coulomb collisions
between ions cause this distribution to relax to a Maxwellian on
the ion-ion collisional time-scale. The power required to prevent
this relaxation and maintain the JEC configuration for times
beyond the ion-ion collisional time scale is shown to be at least
an order of magnitude greater than the fusion power produced.
It is concluded that IEC systems show little promise as a basis for
the development of commercial electric power plants.

1. Introduction

Inertial electrostatic confinement (IEC) is a concept from the earlytdays of
fusion research. Work on magnetic confinement fusion in the Soviet Union was
begun by Sakharov and others in response to a suggestion from Lavrent'ev that
controlled fusion of deuterium could be achieved in an IEC device.! The concept
was independently invented in the United States by Farnsworth.2 Inertial
electrostatic confinement schemes require the formation of a spherical potential
well. Low energy ions are injected at the edge and allowed to fall into this
potential well. If the ion injection energy is low, the ions have a low transverse
energy, low angular momentum, and must pass near the center of the spherical
potential well on each transit. The repeated focusing of the ions at the center of
the well results in peaking of the fuel density and greatly enhances the fusion
rate relative to what would be achieved in a uniform plasma of the same volume
and stored energy. This strong ion focusing at the center of the potential well is
the defining feature of IEC schemes. The plasma configuration envisioned by
proponents of IEC fusion systems is illustrated in Fig. 1.

L A. Sakharov, Memoirs (Random House, New York, 1992) p. 139.
2 R.L. Hirsch, Journal of Applied Physics 38, 4522 (1967).
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Figure 1. Plasma Configuration in an IEC Device
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Fig. 1 The IEC plasma is divided into three regions: a dense plasma
core, a bulk plasma where the density falls approximately as 1/r2, and a
cold plasma.mantle where the ions are reflected from the edge of the
potential well and the mean kinetic energy is low.

Early spherical electrostatic traps23# required grids to produce the
confining potential. Calculations of grid cooling requirements® indicated that
this concept would require a grid radius greater than 10 m to achieve net energy
output, leading to an impractical reactor. It was suggested that the concept could
be improved by using a magnetic field to shield the grid from the hot plasma;
and in the Soviet Union the concept evolved into an investigation of
electrostatically plugged cusps (see Ref. 6 for an excellent review of this field). In

3 0.A. Lavrentev, Ukrain. Fiz. Zh. 8,440 (1963).

4 0.A. Lavrent'ev, Investigations of an Electromagnetic Trap”, Magmtnye Lovushki Vypusk
(Naukova Dumbka, Kiev, 1968) 77 [for an English translation, see AEC-TR-7002 (Rev)]. .

5 0.A. Lavrent'ev, Ann. N.Y. Acad. Sci. 251, 152 (1975).

6T.J. Dolan, Plasma Physics and Controlled Fusion 36, 1539 (1994).
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this evolution from a purely electrostatic confinement scheme into an magneto-
electrostatic-confinement scheme it appeared that a key advantage had been
lost—the confining magnetic field lacked spherical symmetry so the strong ion
focus is lost within a few ion-transit times because the angular momentum of the
ions is not conserved in the absence of spherical symmetry.

Recently, there has been a resurgence of interest in electrostatic
confinement fusion.” Two new concepts for forming the spherical potential well
which do not involve internal grids have been proposed—the Pollywell™ and
the Penning trap. In a Penning trap a spherical effective potential well is formed
in a rotating frame by a combination of electrostatic and magnetic fields.8 In the
Polywell™ configuration®10.11 a polyhedral magnetic cusp is used to confine
energetic electrons. The space-charge of these magnetically confined electrons
then creates a potential well to confine the ions.

Table I. Reference IEC Reactor Parameters

Quantity ; Symbol Value
Potential well depth » D, 50.7 keV
Plasma radius a Im

Core radius Iy 1cm
Volume averaged density <n> O._5><1020m'3
Peak ion density Ni, 3.3x10%m™
Fusion power Prision 1590 MW

1

In estimating the importance of collisional effects on an IEC fusion reactor
we will use the parameters in Table I. These parameters generally follow those
suggested by Bussard!® and Krallll. We have adjusted the operating point
somewhat to take account of our more accurate calculation of the fusion
reactivity (see Sec. 3) and to ensure that the projected operating point is
consistent with the model described in Sec. 2. We assume a DT-fueled IEC
reactor because the power balance is most favorable with this fuel and we find
power balance to be the critical problem.

7 See, for example, G.L. Kulcinski, Testimony to the House Subcommittee on Energy (April 21,
1994).

8 D.C. Barnes, R.A. Nebel, and L. Turner, Phys. Fluids B 5, 3651 (1993).

9R.W. Bussard, "Medhod and Apparatus for Controlling Charged Particles", U.S. Patent Number
4,826,646 (May 2, 1989).

10R.W. Bussard, Fusion Technology 19, 273 (1991).

1INL.A. Krall, Fusion Technology 22, 42 (1992).
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In this work a perfectly spherical potential is assumed, thus assuring that
the ion focus can be maintained over many ion transit times (about 1 ps for the
IEC reactor parameters of Table I). Ion-ion collisions act on & substantially longer
time scale. The ion focusing which defines IEC systems is associated with a
strong anisotropy in the ion distribution function. Ion-ion collisions tend to
reduce this anisotropy on the ion-ion collisional time scale (about 1 s for the IEC
reactor parameters of Table I). It is possible to maintain this non-equilibrium ion
distribution function with sufficient recirculating power. The object of this paper
is to compute the collisional relaxation rates and estimate the recirculating power
required to maintain an IEC reactor beyond the ion-ion collisional time scale.

Proponents of IEC systems often assume an ion distribution function that
is nearly mono-energetic.% 10,1112 There is not a necessary connection between
maintaining the ion focus (which results from the dependence of the ion
distribution function on angular momentum) and the variation of the ion
distribution function with energy. However, some proponents (see especially
Ref. 10) believe this to be a second key feature of IEC systems because of the
substantial increase in the fusion rate coefficient for a mono-energetic
- distribution relative to that of a thermal ion distribution (but see sectlon 3 where

it is shown that this increase is not significant). - -

Our approach in analyzing IEC systems is to develop a simple model that
contains the essential features described by proponents of IEC systems; and then
to use this model as a basis for the calculation of collisional relaxation rates and
for estimates of the fusion power produced by the systems and the auxiliary
power required to maintain the non-equilibrium IEC configuration. A successful
IEC device must maintain a high convergence ratio, a/ro. We find this to be a
useful ordering parameter, and use it freely to identify leading terms in the
collisional relaxation rates and power balance. 1

In section 2 we present a model IEC ion distribution function and show
that it reproduces the central features envisioned by proponents of IEC systems.
In section 3 we compute the averaged fusion rate coefficient for this distribution
and show that it is not substantially greater than that for a Maxwellian
distribution with similar mean energy per particle. In section 4 we compute the

collisional rate of increase in the angular momentum squared <L2> (which

determines the rate of decay of the ion focus), and the collisional rate of increase
in the energy spread of the ion distribution due to collisions in the plasma bulk
and core between ions with large relative velocities. In section 5 we compute the .

collisional rates of change in<L2> and energy spread due to collisions in the

‘plasma bulk between ions with small relative velocities. Assuming that the ion
distribution is initially strongly focused and nearly mono-energetic, this analysis
‘indicates that it will relax on two characteristic collisional time scales. The

12\, Rosenberg and N.A. Krall, Physics of Fluids B 4, 1788 (1992).
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shortest collisional time is that at which the ion energy distribution evolves
towards a Maxwellian while retaining the strong ion focus [T¢ ~(ry/a)Ti; where
Io is the radius of the ion focus, a is the radius of the bulk plasma, and Tj; is the
ion-ion collision time evaluated at the volume averaged density]. The ion
anisotropy decays on a longer time scale, Tp, ~ Ti;, Clearly, some intervention is
required if the non-thermal ion distribution is to be maintained beyond the ion
collisional time scale. In section 6 we analyze two schemes proposed by
proponents of IEC systems,1012 and conclude that they will not be effective in
maintaining the non-thermal ion distribution function. In section 7 we examine
two additional schemes for maintaining a non-thermal ion distributions that rely
on controlling the life time of ions in the electrostatic trap. We find that these
schemes require the recirculating power be at least an order of magnitude greater
than the fusion power for the IEC reactor parameters of Table I. In section 8 we
conclude that IEC devices show little promise as a means for generating electric
power. However, they may be useful as a means of generatmg 14 MeV neutrons
for other applications.



2. The Model

"1t

Two constants of the single-particle motion for an ion of species "s" in a
spherically symmetric trap are the total energy,

€ =1/2mgv2 + qst(r) (D

and the square of the particle's angular momentum,
L2= (mgv xr )2 @)

We consider weakly collisional systems, in which the collision frequency
(v) and fusion rate (ng<ov>pr) are small compared to the transit frequency (o)

in the electrostatic well. Atleading order in v/, the ion distribution function is

then a function of the single-particle constants of motion. We assume an ion
distribution function of the form, :

fS = fs(e, LZ). (3)

The particle density at radius r is then given by

29(ve, v12)

ns(r) =7 J de dL 8(8, Lz) fs(e, Lz) P (4)

where the Jacobian between velocity space and (€, Lz)-space is given by

dvr, vi?) T

_ 1
aE,12) mgirlv, )
and
2 Sl —_—
Vr(er L9) = V mg (€- qs<1>) - ms2 2 - 6)

Initially, we consider ion distributions that are mono—enérgetic, and
strongly focused at the center of the sphere (i.e,, distributions with low angular
momentum). A ion distribution function with these properties is

£4(€, L) = Cg 8(e) H(LZ - 19, ' 7)

where Cg is a constant (to be evaluated below), and H(x) is a Heaviside function.




In our calculations we consider a "square-well" potential,

-0 r<a

¢(r)={ T

+0o r=a

A substantial confining potential (+¢,) is assumed in order to insure that the
dominant collisional effect is thermalization of the ion distribution, rather than
ion upscatter (in energy) followed by loss from the potential well. The ion
number density corresponding to our model distribution function is then

[ae]
. qsPo+L?/2mga2
_ 2 S 2 12
ns(r) = | dL J dS m53 r2 vy Cs 8(8) H(LO -L ) (8)
- qs¢0+L2/2m5r2 V
0
Min(Lo2,L;2)
_ dL2 __IE&__ o (9)
B mg3 12 vy
0
1 r<rp
= nso X r02/r2 (10)
r>Tp
1+41-1,2/12
where - 1
ZRVSCS _ 295¢0
Ngp = mg ’ Vs = mg
Lo

Ly=mvgr and rp= .
T St s 0 mSVS

. We evaluate the constant Cg by noting that the total number of ions in the
trap, N, is given by




o0

Ng = j47tr2 dr ng(r) (11)
S i .
47ad ’

= neo [ 1- (1-ro2/22)*?] | (12
= 2mry2a Ngg (ro<<a) (13)

Hence, we find that the central ion density, ng, is given by

Ng 272 .
Ngo zZRrOZa =~ 3 (r0)2<nS>VoI (14)
where
N
<ng> =77 (15)

is the volume averaged density, and

o

T
V=7 a3 _ (16)

is the volume of the trap. The corresponding value of Csis

mg Ng

C , (1)

s= .
47t2ry2avs

- Restricting the ions distribution function to low values of angular
momentum, |L| <Ly =mgvsry, has the effect of increasing the central ion density
relative to what it would be for an isotropic ion velocity distribution by the factor
0.67 (a/ro). This strong dependence of the central ion density on the ion
convergence ratio is illustrated in figure 2. We conclude that the model IEC ion
distribution function of Eq. (7) reproduces the essential features of inertial
electrostatic confinement schemes—electrostatic confinement, strong central
peaking of the fuel ion density, and a mono-energetic energy distribution.




Figure 2. n/(r)/ng,

ro/a =0.1

r/a

Figure 2 Ion number density plotted versus radius for model IEC ion
distribution function in a square-well potential. For the solid curve
Lo=0.1 mgvga (corresponding to ro/a = 0.1) . For the dashed curve
=0.25 mgvsa (corresponding to ro/a = 0.25) while Ng, ¢o , and a are
held fixed. Note the strong dependence of the central ion density on
ro/a. 1
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3. Fusion Power Generation

For a deuterium-tritium plasma, the total fusion power._is givenby . ... . =

Prusion = Yor [d3 na(r) nytr) <ov>p(0), (18)

Where Ypr =17.6 MeV is the fusion yield per event. We assume an equal mixture
of deuterium and tritium (with no impurities), and that deuterium and tritium
distribution functions have the same convergence ratio, so that

ni(r) = ng(r) + nr) = 2 ng(r) = 2 n(r). ‘ (19)

If the fusion rate coefficient, <ov> . , were independent of radius, then the
fusion power would be given by

1
Ptusion =7 Yor <ov>p,  [d3r nj2(r) (20)

2n - 3To
~3 o3 Nio? Ypr <ov>y, [ 82 *t },

where we have used the fact that, for the model distribution described in Sec. 2,

jd3r n;2(r) = r03 Nio [2— %%O' + ... } (21)

This motivates the definition

ff Prusi ' .
<ov>o | = gl @
4 Yor _[d3r n;(r) | -

The radial dependence of the fusion rate coefficient arises because, even
for mono-energetic distributions, the fusion rate has to be averaged over the
angle between the colliding particles. This angular distribution varies as a.
function of radius. For the model described in Sec. 2 the angular distribution

function g(y) is isotropic within the core (i.e., for r < ro) while outside of the core
(r > ro) this distribution satisfies

“11-




1 :
lul > V1-1.2/12

2+ 1-152/r2
gl = (23)

0 lul < V1-102/12

where L is the cosine of the angle between the ion velocity and the unit vector in
the radial direction, &,.

The averaged fusion rate coefficient for an ion with zero angular

momentum (i.e., an ion for which p ==+1) colliding with a background ions
described by the model IEC distribution is

1

<ov>p = | dp g o(Eem) viw) (24)
-1 g

where the relative velocity vy satisfies

ViAW) = vg2 - 2uvgv, +v2, | (25)
the center-of-mass energy is given by Ecmy = % mv,2, and the reduced mass by

mymy

The p-integral is evaluated numerically using the analytic fit to thd center-
of-mass fusion cross-section developed by Bosch and Halel3 (which is accurate to
within 2% over the relevant energy range). The radial variation of the fusion rate

coefficient is shown in Fig. 3 for three different well depths, ¢o.

13H.S. Bosch and G.M. Hale, Nuclear Fusion 32, 611 (1992).
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Figure 3. Radial Depéndence of <ov>_ .
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Figure 3. The radial variation of <ov>, for an ion with zero angular
momentum is plotted vs. radius for three potential well depths,
do = 25 kV, 50kV, and 75 kV. The integral over collision angle was
evaluated numerically using fusion cross-sections from Bosch and Hale.

¥
There is significant variation in <ov>,. with both radius and potential
well depth. The rate coefficient in the core (r <r,) is that of an isotropic, mono-
energetic distribution, as previously evaluated in this context by Miley et al., 14
and Santarius et al.1> In the bulkregion (r, <r < a) the rate coefficient rapidly
approaches that of two counter-streaming beams as considered by Bussard.10

In evaluating the total fusion power one should integrate over the angular
distributions of both incident ions. The rate coefficient shown in Fig. 3 is
averaged only over the angular distribution of one of the incident ions.
However, it reproduces the correct result for r <ro (where both distributions are -
isotropic), and for r 2 2ry, where the dominant contribution to the rate coefficient
comes from counter-streaming ions. -‘Hence, only a small etror is introduced by

14G H. Miley, J. Nadler, T. Hochberg, Y. Gu, O. Barnouin, and J. Lovberg, Fusion Technology 19,
840 (1991).

15].1'*‘. Santarius, K.H. Simmons, and G.A. Emmert, Bull. Am. Phys. Soc. 39, 1740 (1994).
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replacing this second angular average with its value for L2=0. Using this
approximation, we have evaluated the effective rate coefficient, as defined in

Eq. (22) as a function of the potential well depth for both DT and D-3He
reactions. These results are displayed in Fig. 4. : S

Figure 4. Dependence of <c7v>]e)f and <GV> on Potential Well Depth
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Figure 4, Effective fusion rate coefficient for DT and D3He reactions vs.
potential well depth, ¢o. The kinetic energy of all particles is taken as q¢o.

eff
In computing the effective rate coefficients, <0‘v> o dlsplayed in Fig. 4
we have assumed that the kinetic energy of the 1nc1dent ions "s" and "s' " are

given by qs¢ and gy, respectively because we find no advantage in choosing
the energy of the heavier ion to be smaller than that of the lighter ion by the ion
mass ratio. This ordering of the ion energies was recommended in Ref. 10 as a
means of minimizing the energy diffusion resulting from collisions in the "bulk"
region, ro <r < a. This issue is discussed further in Sec. 4.
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Finally, we compare the effective DT fusion rate coefficients for a mono-
energetic IEC system to the Maxwellian averaged rate coefficients in Fig. 5.

Figure 5. A\}eraged Fusion Rate Coefficients
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1
Figure 5. Averaged DT fusion rate coefficients for a mono-energetic IEC
distribution (solid line) and for a Maxwellian distribution (dashed line).

The Maxwellian-averaged DT fusion rate coefficient was computed following

ff
Bosch and Hale.I3 The mono-energetic IEC rate coefficient <csv>§T has a peak

value of 0.90x10-21 m3/s at a potential well depth ¢,=50.7 kV; while the
Maxwellian averaged fusion rate coefficient <<‘5v>1;/[rax has a peak value of

0.89x1021 m3/s at an ion temperature of 75.0 keV. We see that, despite claims to -
the contrary,10 the averaged rate coefficient for a mono-energetic IEC system is
not significantly greater than the Maxwellian-averaged fusion rate coefficient at
similar energies. In fact, the only significant qualitative difference between these

. . . of f
averaged rate coefficients is that <ov>le)..-

- goes to zero more rapidly at small ¢o




o _Ma : S .
than does <ov>_. * at small Ti. Hence, if it proves difficult to achieve mean ion

energies above 20—30 keV, then thermal ion distributions are superior to mono-
energetic IEC distributions because they have a higher reactivity. C

The Maxwellian-averaged D3He rate coefficient, <0V> may also be

compared to the corresponding mono-energetic IEC rate coeff1c1ent, <0‘v>D3H

The peak value of the mono-energetic rate coefficient occurs at ¢o = 140 kV,

f . . .
where it takes the value <c5v>ef = 2.8x1022m3/s. A direct comparison with

the Maxwellian averaged D3He rate coefficient of Bosch and Hale is not possible

. o Max . .
because their parameterization of <GV>D3:: is valid only for T; < 190 keV.
However, Miley16 reports a maximum value in the Maxwellian-averaged D3He

rate coefficient, <c5v> = 2.5x1022m3 /s at Tj = 250 keV. The somewhat
larger difference (about 11%) between these averaged rate coefficients is similar
in magnitude to the change in the magnitude of the D3He rate coefficient
associated with the improved parameterization of the fusion cross-section
developed by Bosch and Hale (see Fig. 22 of Ref. 13). 'However, the peak value
of the effective IEC rate coefficient for D3He is not significantly larger than that of
the corresponding Maxwellian averaged rate coefficient.

We conclude that significant increases in the power density of an IEC
system relative to other confinement systems result only from the choice of a
higher mean ion energy at the projected operating point and from the strong
central peaking of the ion density associated with the anisotropic ion distribution
function assumed by proponents of IEC systems.

16G H. Miley, H. Towner, N. Ivich, "Fusion Cross Sections and Reactivities", U. of Ill. Report C00-
2218-17 (June, 1974). .
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4. Collisional Relaxation of the Ion Distribution Function

The strong focusing of ions at the center of the well is the defining feature -~ -~~~ -

of IEC systems. This focusing leads to a substantial enhancement of the total
fusion power at fixed stored energy. The total fusion power within our square-
well model,

1
Pfusion =ZYDT J d3r ni(r) <0‘V>DT (r)

8 a <ni>\101 eff
z"g‘ g (——5‘“—" A% YDT <(5V>DT s

is enhanced relative to what would be obtained with an isotropic ion distribution

. . 8§ a .
function (for which nj = <nj>_ ) by the factor g o This enhancement results
) 0

from the central peaking of the ion density which, in turn, depends critically on
maintaining a strong anisotropy in the ion distribution function [i.e:, insuring
that fs(€, L?) goes to zero rapidly for- L2 > (mgvsro)2 1. Hence, it is important to
examine effects which will tend to reduce this anisotropy in the ion distribution
function.

Ion-ion collisions are an obvious mechanism for reducing the ion
anisotropy. It follows from the Boltzmann H-theorem that ion-ion collisions will
drive the system to an equilibrium in which fs(€, L2) ~ exp(-€/T), that is, to a
state in which there is no ion anisotropy and the only variation in the ion density
arises from variations in the potential, such that ng(r) ~ exp(-qs¢(r)/T). If the ion
distribution function is allowed to relax to thermal equilibrium, the key
advantage of IEC systems (enhanced fusion power at fixed stored energy due to
strong density peaking) is lost. However, ion collision rates are low (of the order
of 1 Hz) at the energy and densities projected for IEC reactors. Hence, the power
required to maintain a non-equilibrium ion distribution function might be less
than the fusion power produced. In order to investigate this possibility we must
first evaluate the collisional relaxation rates of the ion distribution function.

A. Collisional Relaxation of Ion Anisotropy.

Coulomb collisions will result in an increase in <L%> due to transverse
scattering (that is, scattering of the ion velocity so that it has a component in the

plane perpendicular to & ). In Appendix A we show that, in the limit 12— 0 (so
that the ion velocity is nearly radial over most of its orbit), the collisional rate of
increase in the mean-square transverse velocity for ions of species s and speed

-17-




<
w
I
5
LN
o

(27)
is given by
d S < 4
T <aviz> = 262 2wy Lo, us), (28)
o
where
Vs
Ug' = Vg 7 (29)
following Book,!” we have defined
s/s' 4ngs2qs?ng Ln Agg: ) (29)
Vo = Me2ves o :
and
0 r<rg
Ho = (30)

N1 —ro2/12 r>1.

is the cosine of the angle between v and &, at which the model IEC distribution
function goes to zero at a given radius. )

17pL. Book, NRL Plamsa Formulary, NRL Publication 0084-4040 (NRL, Washington DC, 1986).
See page 31.
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Figure 6. (11, u) is displayed as a function of test-particle speed (u) for
Ko = 0.995 (corresponding to r = 10 rp). The resonance at u=1 results
from self-collisions among.co-moving particles.

The variation of the collision integral I (1o,1) with particle speed is shown
in Fig. 6 for a typical location in the plasma bulk, r = 10 ro. At each location in this
region (ro < r <a) the ion distribution resembles two counter-streaming beams
[see Eq. (23)]. The resonance at u=1 (corresponding to vs=vg) in Figure 6
describes collisions between particles which are co-moving in the same beam.
Collisions between co-moving particles leads to strong coupling between the
transverse and longitudinal velocity dispersion of these beams as pointed out by
Rosenberg and Krall.12 ‘We will return to this important effect in Sec. 5. In this
section we will ignore the internal structure of these beams, focusing on the rate
of increase in velocity dispersion due to collisions between ions in counter-
streaming beams. We can remove the effect of collisions between co-moving
particles from our representation of the collision integral by replacing the

collision integral I (1o, u) with I';(1o, 1), which has been cut-off at pc = 0.95 to
eliminate the effect of collisions between co-moving particles in the bulk plasma

as. described in Appendix A. In the bulk region (where po=V1 - (ro/r)? = 1) this
modified collision integral is well approximated by :

1
uS'+1 :

1
Lim [I')(uo, 0] =5 (31)

!J.o—)l
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The variation of I'; (15, u) with particle speed in the plasma core (r <r,) is shown
in Fig. 7. '

I, (n,=0, u

0.8 T
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e

0.0 —
0.0 1.0 2.0 3.0 4.0 5.0

u

Figure 7. 1;(i,, u) is displayed as a function of test particle
speed for py=0, corresponding to radial locations in the plasma
core, r<ro.

At a given radius the collisional rate of increase in L? is simply related to

the collisional rate of increase in the transverse velocity dispersion, 1
dL? - d
Tt = mg2 r? at <AV Z>. (32)
collisions '

The rate of increase in L2 varies over the ion orbit. However, at the ion densities
and energies projected for an IEC reactor the change in L? due to collisions

during a single orbit is small. Hence, we average the collisional change in 1.2
over the ion orbit to eliminate the rapid time scale associated with ion orbital

motion, and obtain the bounce-averaged rate of change in L2 :
a

d 2 1 dr sz
<d—tL > — J o dr (33)

collisions Ty, collisions

0
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r/r,

Figure 8. Radial variation in the transverse collision integral, I' | (Uo(r), u)
is displayed for a test particle with speed u=1. The structure at r/ro=1 is
associated with the cut-off in I'j at pc=0.95 applied for r/ro21.

The radial dependence of the transverse collision integral, I'y (o(r), ) is
shown in Fig. 8. Except for a small region about the plasma core (r < 3rg), I'y is
well approximated by Eq. (31). Hence, the rate of increase in the transverse
velocity dispersion depends on radius mainly through the ion density. We may
isolate this dependence by multiplying and dividing by the ion density, and

noting that the factor, (v(s)/S /ng) is nearly independent of radius. Hence, we may

approximate the bounce-average collisional rate increase in L2 for ions of
species s as

s/s' a

d Yo Vg dr
= <L? ~ m2v.2 f dr , »
dt < >Collisions Ms™Vs ng Vvg+ VS.O a I'Ds (r) (34)

) .

s/s
2 Yo 2 s/s
= Cs La"<ns>, ne | cs La <vO >V°1 (35)
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where

G = 2 Vg + Vg ' (36)

and

La2 =

W

(mg vg 3)2 37)

is the value of <LZ> for an isotropic, mono-energetic ion distribution—that is,
an ion distribution that yields a constant ion density throughout the trap. For a

DT plasma we find
! + L 1.051 (38)
=35 + ————— =~ 1.05],
172 1+ \jmd/mt
and
c~l+——-——1—~—~0949 (39)
¢ 2 1+ \[mt/md . '

We were motivated to introduced the volume average scattering rate,

s/s' _ 47“152(]5'2 Ln Ags
} <Vo >Vol = mg2ve3

<Ng>,, (40)

because (assuming that the total number of ions is conserved) this rate is ¢onstant
\ as the ion distribution function relaxes towards isotropy. It follows that the rate

of increase in <L2> is independent of time and that, even after taking credit for

| the central concentration of the ion density, the ion distribution function relaxes
to isotropy in a time!8

s 1

T =
Cs <V(S)/S >

(41)

Vol

For the reference IEC reactor of Table I this works out to ’CS =043 s.

18The 2-D analogue of this calculation applies to systems with rotational symmetry like the
MIGMA. Here ion focussing results from the constancy of the canonical angular momentum
while that the ion density fall with radius as 1/r. Hence, off-axis collisions will again cause a
loss of the ion focus on the (volume-averaged) ion collisional time scale.
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If at t=0 we prepare an IEC trap with a well-focused ion distribution, the
collisional increase in <L?> will result in a spreading of the radius of the ion
focus with time. If we constrain the ion distribution to maintain the form defined
in Sec. 2, and evaluate L, at each instant in time such that <1.2> increases at

collisional rate, the radius of the ion focus will be given by

ro®=a\ o <V/*> b (42)

Vol

Note that, while the focus expands until the focal radius, ro =a and the ion

distribution is fully isotropic in time T , the instantaneous rate of increase in the
focal radius,

1 dro Cgr a 2 s/s
—Ez—z—(—) <Vo >Vol

To I'o
is much faster.

In the absence of particle sources and sinks, collisional effects define a
minimum rate of at which the ion focus degrades. The actual rate of can be
substantially higher. For example, asymmetries in the confining potential may
occur due to the inherent lack of symmetry in the magnetic fields needed to
confine the electrons that generate the potential well,1? asymmetries associated
internal or external electrodes, asymmetries associated with the apparatus that
injects the ions into the trap, or due to waves and instabilities.?? Even very small
asymmetries in the confining potential can substantially increase the rate at
which the ion distribution function relaxes towards isotropy because they scatter

longitudinal velocity into transverse velocity at a radius r = a (so for a fixed Av,2

we generate the maximum change in 1.2 ); and because a "collision" occurs
between each ion and the confining potential once each bounce period.- Hence,

we may estimate the rate of change in L? due to asymmetries in the confining
potential as

d = | %) 1

. 7
asymmetries T

where "m" is the mode number and 3¢ is the magnitude of the asymmetry in the
confining potential.

19T J. Dolan, Fusion Technology 24, 128 (1993).
20sce, e.g., C.W. Barnes, Ann. N.Y. Acad. Sci. 251, 370 (1975); S.K. Wong and N.A. Krall,
Physics of Fluids B 5, 1706 (1993).
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For the 50 keV deuterons in the reference IEC reactor described in Table I,
1/7, =~ 1.1 MHz, while <v2/¢ >

larger than the collisional rate of isotropization by a factor of 5x10°. Clearly,
- even very small asymmetries in the confining potential can lead to relaxation of
the anisotropy in the ion distribution function at a faster rate than Coulomb
collisions.

vet = 223 Hz. Hence, the bounce frequency is

B. Collisional Relaxation of the Ion Energy Distribution.

Despite the absence of any significant advantage in fusion reactivity or
direct impact on ion focusing, it is still important to examine the collisional
relaxation of the mono-energetic ion energy distribution function because the
energy dependence of the distribution function is important in determining the
equilibrium potential; and the rate of thermalization in energy has important -
implications regarding the effect of collisions between co-moving ions on the
evolution of the ion anisotropy (see Sec. 5).

li{p,=0,u)

1.0 T

06 T

0.4 T

0.0 1.0 2.0 3.0 4.0 5.0

u

Figure 9. [j(l1o, u) is displayed as a function of test particle speed for
Mo=0, corresponding to radial locations in the plasma core, r < 1p.
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In Appendix A it is shown that the collisional rate of increase in the
longitudinal velocity dispersion of ions of species "s" is given by

d s/s' Vg
_d—E <AV”2 >S = 2 V() VS2 V—;I”(HO/ uS') . (44)

S‘

The variation of the longitudinal collision integral with speed in the plasma core
(r<1o), is shown in Fig. 9. For u <1, [|(to=0, u) takes the same value (2/3) as

the transverse collision integral, I;(uo=0, u). Hence, the collisional diffusion is
isotropic in the core at low ion velocity (as expected for an isotropic distribution
function), while pitch angle scattering (and drag, which is not treated here) are
the dominant collisional effects for fast particles.

Unlike the transverse collision integral, the longitudinal collision integral
approaches zero in the bulk region (r > r,), where it may be approximated by

1. 2
I'y(po(r), w) ~1 -(‘Eri/ss)')g- - >>ry). (45)

Bussard!® first noted that bulk collisions would not cause energy diffusion.
However, Bussard based his conclusion on an additional requirement—that the
ion energies be chosen such that the energy of the heavier ion is smaller than that
of the lighter ion by the ratio of the ion masses. When this condition is satisfied
the center-of-mass frame for collisions between counter-streaming ions in the
plasma bulk is nearly identical to the lab frame. We obtain this same result more
generally, concluding that collisions in the bulk plasma do not cause energy
diffusion for any choice of the relative ion energies. Hence, the result s not a
consequence of the kinematics of two-body collisions in the center-of-mass frame
since, for general relative energies of the two ion species, the center-of-mass and
lab frames of reference are not identical. Rather, it follows from the assumption
that the scattering angle is small (which is always the case for the dominant
contribution to the Coulomb collision operator) together with the fact that, in the
bulk plasma region, the velocities of the colliding particles are nearly co-linear.
For small-angle collisions the momentum transfer between the colliding particles
can be obtained by treating the interaction as a perturbation, and integrating
along the unperturbed (i.e., parallel, straight-line) orbits. When the impact
parameter is finite (as required for small angle collisions) it is easily seen that the
momentum transfer (the time integral of the force on one particle due to
interaction with the other particle) must be perpendicular to the particle
velocities for any central force law. Hence, bulk collisions can produce pitch-
angle scattering (as described by the transverse collision integral) but not energy
diffusion. This conclusion holds independent of the relative energy of the
colliding ions. We conclude that only the plasma core contributes to the
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collisional increase in the longitudinal velocity dispersion. This is apparent in
Fig. 10, which shows the radial dependence of I'|(o, u).

I'(po(x), u)

1.0 T

6.0 ~ 8.0 10.0

r/’r

Figure 10, Radial variation in the logitudinal collision integral,
I'j(o(r), v) is displayed for a test particle with speed u=1. The structure
at r/ro=1 is associated with the cut-off in I'y at pc = 0.95 applied for
r/ro=1.

The bounce averaged collisional rate of increase in the ion energy is given
by ’

I

s 1 d
<v. > w2 ar <AvP > (46)

€7 orbit
Vs/ s’ a q
0 Vs r
= ng V—s_ f 'Y ng'(r) (o), us?))
0

1

-5 4 (1)< > “7)

I'O Vol 7/
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where

a
vsg  dr ng(r)
Vg a DNgo
0

I”(Ho(r), Vs/Vs') . (48)

S

We have computed the orbit integral numerically for a DT plasma with equal
deuterium and tritium fractions, finding

dg=173 (49)
and
de=191. (50)

At constant ion convergence ratio (a/rg), the ion energy distribution relaxes to a
- Maxwellian in a time of order

S 3 (&\ 1

Tg = << TS . (5].)
2ds | a ) <v(s)/s> L

Vol

d . .
For our reference IEC reactor of Table I this works out to 7, = 5.4 ms. Given this

relatively rapid rate of ion thermalization, it is clear that it is at least as difficult to
maintain the mono-energetic character of the IEC ion distribution function as it is
to maintain the anisotropy required for central focusing of the fuel iogs. One
must question the strategy of attempting to maintain a (nearly) mono-energetic
ion distribution function, and consider allowing the ion distribution to relax to a
Maxwellian in energy, while retaining the anisotropy. We will return to this
question in Section 6.
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5. Collisions Between Co-Moving ions

When mapped to radial locations in the bulk plasma (r, < r < a) the model
IEC ion distribution function of section 2 yields a local ion distribution that
corresponds to two ion beams counter-streaming at speeds v [see Eq. (23)]. In
this section we consider the effect of collisions between ions in the same beam
(that is, co-moving ions) on the longitudinal and transverse velocity dispersion of
that beam. In earlier work, Rosenberg and Kralll2 considered the collisional
evolution of the ion distribution function in a model in which the confining
potential has a finite gradient at the plasma surface. They point out that, for a
nearly mono-energetic ion distribution function, the mean-squared ion velocity
near the ion injection point (which is simply related to the longitudinal and
transverse velocity dispersion discussed in section 4) is small compared to ion
streaming velocity, vs. Hence, the ion collision frequency, which goes as 1/v3,
will be large at the plasma surface. Rosenberg and Krall conclude that these edge
collisions cause a relaxation of the longitudinal and transverse velocity

dispersion towards isotropy (<Av 2 >, =2 <Avj2 >, ) atarate

d<Av2 >1 vy o/s
At B g >
dt edge collisions a m<Av2 > As¢o 0 vol

-1
J (53)
r=a

is the potential gradient scale length at r = a. The effect of these edge collisions is
to transfer energy between the longitudinal and transverse degrees of freedom.
That is, to couple the energy spread of the ion beam to the quality of the ion
focus.

where

Edge collisions are omitted from . our square-well model because ry
vanishes for a square well. However, collisions between co-moving ions in the
plasma bulk have the same effect—i.e., these collisions couple the longitudinal
and transverse degrees of freedom, the collisional rate is large because the
relative velocity of the co-moving ions is small, and they act over most of the ion
orbit, rather than just at the plasma surface. Collisions between co-moving ions
change the beam velocity dispersion at a rate

—————d<AV2 > gs %o s/s
-\ / ‘ v v > . (59
dt co-moving ions m<Av2 > Asbo ° vol
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Since r¢/a is expected to be less than one, we conclude that bulk collisions
between co-moving ions dominate the edge collisions emphasized in Ref. 12.
These collisions are included in our square-well model, and will be examined in
detail in the remainder of this section.

Following Rosenberg and Krall, we resolve the singularity associated with
the delta function in the ion distribution function by modeling the internal
structure of the beam-like ion distribution function in the plasma bulk by
assuming that it is drifting bi-Maxwellian. The longitudinal and transverse
temperatures of the beam are chosen to reproduce the longitudinal and
transverse velocity dispersion discussed in section 4. The ion distribution
function has a longitudinal velocity dispersion

and a transverse velocity dispersion

, <> 2170
<AV_]_ >(r) = ms2r2 = .

(56)

mg

Note that the transverse velocity dispersion of the beam, <Av 12>, and the

transverse temperature, Tgf’), are simply related to the ion focal radius, r, [see

Eq. (57) below]. Hence, we only introduce one new parameter, T‘(ls), to describe

the internal structure of the counter-streaming ion beams.
: 1

The transverse temperature, Tff), is strong functions of radius. This strong

radial variation in Tf) results from the fact that different groups of ion orbits

intersect at each radial location. Hence, we find it convenient to compute the
contribution of collisions among co-moving ions to the transverse velocity

dispersion of the ion "beam" by relating it to &L%>/dt. We may then compute

the local value of Tfi)(r) and the ion focal radius from the relations

2
(s) (s) a2 1 ro? <L™>
T, @W=T @7 =3 WP 7 =577 - 57)

In the absence of collisions between co-moving ions the velocity
dispersion would increase at the (bounce-averaged) rates computed in section 4.
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These rates of increase in the beam longitudinal temperature and <1.2> for ions
of species s are

dT(s) 4
dt = ms g7 <Av?> (58)
core collisions
4 a s/s
~ 3 ds (;;) ds do <Vo >vO1 (59)
and
d<L?>
dt =~ CS Laz <V2/S>Vol ’ (60)
bulk collisions
or, equivalently,
d 1o 2 a s/s
dila =z 1<y, >, - (61)
dt (ra ) bulk collisions 37 (ro) ° Vol

(s)

T 2
A. Nearly Mono-Energetic Ions, . % r—°2-
qsbo a

We follow Kogan?! in computing the collisional relaxation of the beam
velocity dispersion between the longitudinal and transverse degrees of freedom.
In the spirit of the model IEC ion distribution function of section 2, we Begin by

considering a beam with a finite ion convergence radius (so that <l2>>0)and a

nearly mono-energetic ion distribution function, such that Tff)(a)ZTl(lS) or,

equivalently, Tl('S) /qsdo < 0.5192/a2. Then TEE) > Tl(IS)

the local rates of change in Tf) and Tl(‘S) due to collisions among co-moving ions

are2l

everywhere in the well, and

dT(s) - y
’ S/S

co-moving ions

21y 1. Kogan, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions (Pergammon
Press, New York, 1961}, Vol. 1, p. 153.
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and

(s)
dT 1

dt

~ ..% \[; ’G;)qsq)o VZ/S. - (63)

co-moving ions

It follows that the local rate-of-change in <12> due to collisions among co-
moving ions is

d<12>
dt

3 r3 s/s
e = _ 2
= -7 \/ T (az ro)La Vo - (64)

co-moving ions

These rates need to be averaged over that portion of the ion trajectory with
r >re, where

To

i

I'e ~3.20 1, ' (65)

1-pe

is the radius at which the cut-off in the longitudinal collisional integrals
introduced in section 4 to remove the effect of collisions among co-moving ions

becomes effective; and we have again taken pc = 0.95. The orbit-averaged rates
are

(s)
dT ‘\/; a 4 ra s/s
| = i) xg () st >, 69
co-moving ions
and !
d<12>

‘j_; a I 2 &8s
= — 8 ( )(1_32 )X La <V0 >VO] ’

dt To
(67)

co-moving ions

or, equivalently,
d 1o
dt (ra )

Both core collisions and collisions among co-moving ions lead to an
increase in the longitudinal velocity dispersion. However, even for a relatively
poorly focused ion distribution,

, 2
z~§ (i) (1_f§)<v§/s>vo] . (68)

co-moving ions

-31-




I'o \/ oo

- <
a 8cg

=0.21, (69)

the decrease in <L.%> due to collisions among co-moving ions will dominate the

increase due to collisions in the bulk plasma and <L?> will decrease. As a
(8) _ (s

result, the ion distribution will rapidly evolve until T," =T," atr=a.
(s)
11,2 T 1 1ry?
B. Moderately Thermalized Ion Distributions, 5 —05 <L <= —03
2 a qsPo ~ 2 Te

We are led to consider the effects of collisions among co-moving ions in
the limit that the longitudinal velocity dispersion is large compared to the

(s)

transverse velocity dispersion, T( LIS T,". In this limit the local rates of change

in Tfls ) and T(S) due to collisions among co-moving ions are?!
(s) 1/2 (s)
d1y i 2 (qsd0) G s/s
dt o (s) ro2 Gsbo Vo
co-moving ions R T, qsbo
(70)
and
4T 1) !
it _ L (ls% “( Jq o vs/s
= 5 | 9s®o .
dt co-moving ions 27‘ (S) Qsdo To
(71)

It follows that the local rate-of-increase in <L2> due to collisions among co-
moving ions is

2 (s)
d<L > 9 r2 qsq)o 1/2 8T r2 9 S/S
dt - = 7 ||@ | b 7|La” Vo -
co-moving ions 8n \a T dsbo To

I
(72)

We perform the orbit average by dividing the ion orbit into a portion at

(s)

small radius, r < rx, where T(f)(r) > T“ , and a portion at large r, r > rx, where
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TI(IS) > T(S)(r) using the expressions for the local rate of change in the longitudinal

and transverse temperatures appropriate for each region. The radius ry, where

(S)(rx) -T ,is given by

Jsfo o
Ix=Tg e (73)
N 27)

Averaging these rates over the ion orbit, we obtain expressions for the
rates of change in the longitudinal and transverse beam temperatures valid for
longitudinal beam temperatures in the range

(s)

2 T 1 .2
EF—Q' <“-"—£§r%~5><10‘2,
a Jsdo Te”
() "
dT 1 )
T - L B Jr 2 ) tata )
co-moving ions \[7; Tey @ \Ix/
Z(2 <> 74
X3 (ro) Qs 9o Vo Vol (74)
and
d<1?> 1 1, [L 2a Ix 2\ T a[rxl-rl
S| e R [ E e 2
dt co-moving ions ’\/; 2 ¢Ix) 2 ¢ 8 1< To ‘

X La2 <V(S)/S>

Vol

or, equivalently,

d (ro) 2 rx[L (2a ) I o (2) T a (rxz—r@ﬂ
dtla I PR U - Nl R
dt\a co-moving ions 3\/— € Ix a ¢ 8 rx To

x <>

(76)

Vol

where e =2.718... is the base of the Naperian logarithms.
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T 1 a2
C. Strongly Thermalized Ion Distributions, L 5’5
. ‘ qsdo 2 e
Finally, we consider the regime
(s) ’
T 1r 2
5220 L s5xa02, 77)
qsdo 2 Te

In this limit the longitudinal beam temperature is greater than the local value of
the transverse beam temperature everywhere in the plasma bulk, and the orbit-
averaged rates of change in the beam velocity dispersion are given by

(s)
dTIl

dt

co-moving ions

r 2 r 2e a
[ —>*< Ln( ¢ rc)_ = Ln(———. A
e T'x a 'k

Ealls

4 ra s/s :
X 3 (;g) qs o <V, > (78)
and
d<12> 1 rxro 2ay\ I 2rc
3t - = 2 [ ()T ()]
co-moving ions \/; a X x
x L2 <> “(79)
or, equivalently,
d (ro) 2 1 rx[ L (Za) e 1(Zrc)]
=i e S ar—a n-——\|-— —
dtla co-moving ions 3 \/;c— a € Ix a € Tx
x <VZ/S>V01 (80)
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D. Time Evolution of TI(IS) and <L2>

We are now ready to examine the time evolution of TI(IS)/ qsdo and rp/a.

Summing the term describing the rate of increase in '11"5) due to core collisions [as

given by Eq. (59)] with the appropriate term describing the rate of change in TI('S)

due to both collisions between co-moving ions [from Eq. (66), (74), or (78) as
appropriate] we obtain an expression for the total rate of change in the
longitudinal beam temperature,

(s)
dT
_dth— = GS(T(S)/C{S%/ ro/a) ( ) qs %o <VS/S>V01 : (81)

total

The function Gs(Tl(]S)/ qsPo, To/ a) is displayed in Fig. 11 for deuterium ions in a
DT plasma. We see that Gs- is weakly varying with both T( /qsdo and rp/a. A
further decrease in r/a beyond 104 results in only a very small downward shift

relative to the ro/a = 104 curve of Fig. 11; while at smaller values of TI('S)/ qsfo
the function Gs goes to

«\/ 2
T arlo (S) ol __rO
for any ro/a. We find that dT( /dt is positive for all interesting values of

/ gsPo and 15/a. Hence, collisions will result in a monotonic increase of TIl
m time.
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Figure 11. The variation of the longitudinal beam heating rate, includin
both core collisions and collisions with co-moving ions for deuterons in a
DT plasma is displayed for ro /a = 1072 (solid line), 1o /a = 10~3 (long
dashes), and ro/a = 10~4 (short dashes).

The behavior of the transverse velocity dispersion as measured by <L2>

is more interesting. Summing the term describing the rate of increase in <L2>
due to core collisions [as given by Eq. (60)] with the appropriate term describing
the rate of change in <L2> due to both collisions between co-moving ions [from

Eq. (67), (75), or (79) as appropriate] we obtain an expression for the total rate of
change in the <L2>, .

d <12> , |
—— | =H(T a0 r0/a) L2V > @)
total
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The function Hs(Tl(,S)/ qsbo, To/ a) is displayed in Figure 12.

d<L?>

(d)

Hd(T” /qcz%, 1‘Ola) = fotal

d/d
L,2 <v0 >

Vol

2.0
1.0 - CememmeTII
’l' 1 4111||n/4_ $ P 1 11K 1 1 1 1. 11111 i 1 1 11 Lixy
00 ¥ L4 12 1
1074 1073 1072 1071
i /
/
I,
-1.0 -
!
)
1 /
/
-2.0 I
T
qg0q

1
Figure 12. The variation in the total transverse beam heating rate as

measured by the rate of increase in <L2>>, including both bulk

collisions and collisions between co-moving ions, is displayed for
deuterium ions in a DT plasma for rg /a = 102 (solid line) , rp/a = 10-3
(long dashes) and ro/a = 10~4 (short dashes) as a function of Ty /qsbo.

When T!(IS)/ gs9o is small (less than about 0.1 ry/a) collisions between co-
moving ions dominate the bulk plasma collisions so that the net effect is rapid
decrease in <L2> (i.e, a rapid decrease in the size of the ion focus, ro).

However, for larger values of TﬁS)/ gsdo the orbit-averaged effect of collisions

between co-moving ions weakens, so that both <LZ> and T("S) increase

monotonically for T!(!S) /qsho > 0.1rp/a.




The transition from collisional focusing to collisional defocusing can be
understood by examining the leading terms in the expression for d <L2>/dt in

the moderately thermalized regime, 172 ro%/a2 < Tl(lS)/ Q0 £1/2102/1c2,

d <12>
dt

(84)

Vot /

i Vr gsto (%o o/
total~li o6 ( ) Laz <Vo >

(s) a
T

where we have used Eq. (73) to express (rx/ro)? as 1/2 T](]S) /qsdo- It follows that
the transition from focusing to defocusing occurs when

(s)

T
. N I . To

After initial transients, in which the ion focal radius may decrease in size

while TI(IS)/ Js9o increases, the system will reach a state in which Tl(ls') /qsho 2 ro/a.
The longitudinal temperature and ion convergence then satisfy the equations

d T 4 ;1o /
Sl F(le s/s
dt (qs% } -3 (3 ) <> (®0

where we have taken Gg = 1 (valid for and Tl(,S)/ gsto ~ In/a 2 1072, see Fig. 11);

and 1

d ro 2 ro _1 S/S
dt (;)z 3 (—a—) <V° >vm’ 87
where we have taken Hq = 1 (valid for Tl('S) /qsbo = ro/a, see Fig. 12).
These Equations have the solution
To T /s
S zZ\/3<v0 >t (89)

and
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T(s) ; T(s)
2o a3 e e (90)
s®o gsbo

We conclude that collisions between counter-streaming ions will initially
lead to rapid thermalization of the distribution of the ion radial velocities (at a

rate of order (a/r,) <vs/S > ) Once T
T(s)

I (s) has increased to the extent that

/qsdo 2 0.1 ro/a this process will be accompanied by the spreading of the ion
focus. Finally, when "[( ) /qsdo 2= ro/a, the increase in T” / gsdo and ro/a will

proceed in concert at a rate of order (a/rop) <vO >V01. As the ion focus spreads
the rate of increase in the focal radius decreases so that it takes a time of order

/ -1
Ti - <VZ ) >v°1

for the ion distribution function to relax to isotropy and the IEC configuration to
be destroyed.

Our conclusions regarding the time evolution of the IEC distribution
function is very different from that reached in Ref. 12, where steady-state, beam-
like solutions to the kinetic equation were found. Two key reasons for our
completely different results are

1) The artificial constraint imposed in Eq. (11) of Ref. 12, which prevents
collisions between counter-streaming ion beams from producing any net
increase in the velocity dispersion (i.e., heating) of the ion beams;

and t

2) The neglect of the dominant term in the evolution of the beam temperature—
the increase in the longitudinal velocity dispersion of the beam due to

collisions in the plasma core.

When this problem is treated correctly we see that there are no beam-like steady-
state solutions to the kinetic equation. :
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6. Schemes for Maintaining a Strongly Focused Ion Distribution
that Don't Work

We have shown that ion-ion collisions will cause the TEC distribution to
relax towards an isotropic Maxwellian, and that this process occurs on two time

scales. On the fast time scale, ’CZ ~(a/rg) <VZ/S >—1

Vol /

relaxes toward a Maxwellian, while on a the somewhat slower time scale, of

the energy distribution

-1 e .
order T ~ <vcs)/S >VoI , the angular distribution relaxes toward isotropy and the

ion focus is lost. At the high energies and relatively low volume-averaged
densities proposed for IEC devices the ion collisional time scale is rather long—

d/d
<v0/_ >v°1 is about 2.2 Hz (as compared to an ion bounce frequency of

1.1 MHz) for the IEC reactor parameters of Table I. Hence, it may be possible to
prevent this collisional relaxation through some process that acts only weakly on
the ion distribution function. We consider two such schemes which have been
proposed by proponents of IEC fusion reactors in this section.

A. Fusion Reaction Rates.

Bussard10 makes the rather surprising claim that the fusion reactions in an
IEC device will remove fuel ions at a rate sufficient to maintain a nearly mono-
energetic ion distribution function. In making this claim Bussard recognizes that
the fusion reaction rate must be greater than the collisional energy-scattering rate
if the loss of fuel ions by fusion reactions is to substantially alter the ion
distribution function. In section 5 we showed that the orbit-averaged collisional
rate of increase in the beam velocity dispersion is

(s)
d 1d T” 2 a d/d
<V8>orbit “2dt (&:{Dg otal =3 dd (ro )<Vo >va 4 (1)
while the orbit-averaged fusion rate for the deuterons is given by
a
Vo (dr
<nt <0V>Ur >orbit ~3 f;,’(; n(r) <C5V>D_T . (92)
0

Note that the orbit-averaged fusion rate scales with the core convergence ratio
and ion density as (a/r,) <ni>vOl — that is, in exactly the same manner as the

rate of increase in the longitudinal velocity dispersion. We computed the orbit-
averaged fusion rate following the methods described in section 3. This rate is
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plotted together with the orbit-averaged energy diffusion rate versus the
potential well depth in Fig. 13. We see that the orbit-averaged energy diffusion
rate substantially exceeds the orbit-averaged fusion rate at all potential well

depths considered (5 kV < ¢ <275 kV). We conclude that fusion reactions rates
are not sufficient to materially effect the form of the ion energy distribution
function.

1000 T \
100 T e
: \\N‘“‘wm
N ] %”“Wm
X ’ T
o M”M«
10 §
1 } } {
0 100 200 300
5 , (V)

Figure 13. Orbit-averaged fusion rate cocefficient (black curve) and orbi‘t-
averaged energy diffusion rate (grey curve) vs. potential well depth, ¢,
for deuterons in a DT plasma. The ion density, convergence ratio, etc.
are taken from Table I. The relative magnitude of fusion and collisional
rates are insensitive to the choice of nj and ro/a.

The rate of decay of the ion anisotropy is slower than the rate at which the
ion energy distribution relaxes to a Maxwellian. Hence, one might hope that the
loss of fuel ions through fusion reactions could maintain the ion anisotropy. We
may estimate the resulting ion core radius by replacing "t" in Eq. (89) with the
inverse of the orbit-averaged fusion reaction rate. After a bit of manipulation,
we can put this estimate in the form

-41-




d
o _ 1 <V orbit
a dq
| i <OV 2y

>> 1. (93)

We conclude that the removal of fuel ions by fusion reactions occurs at a rate that
is insufficient to maintain an ion focus. The situation regarding maintenance of
the ion anisotropy is essentially the same as that regarding maintenance of a non-
Maxwellian ion energy distribution because the orbit-averaged fusion rate
decreases as the ion focus spreads, thereby making fusion reactions less effective
as a mechanism for removing fuel ions before they are scattered further in angle.

B. Maintenance of Ion Anisotropy with a "Cold" Plasma Mantle

The basic idea inspiring the work of Rosenberg and Krall was that it might
be possible to control the ion distribution function in an IEC device by
manipulating the ion distribution function in the neighborhood of the ion
injection point. In section 5 we demonstrated that the calculation performed in
Ref. 12 is in error, and that collisions between ions with low relative velocities
cannot prevent thermalization of the ion distribution function. However,
perhaps this only demonstrates that the wrong problem was addressed both in
section 5 and in Ref. 12. In this subsection we consider the related problem in
which the ion distribution function at the injection point is treated as a boundary
condition. We are then able to force the transverse temperature to go to zero at

the lip of the potential well, which we take at (€ - L2/2mga?) = 0, rather than at

(€ — L2/2mga2) = +qs0p, so that this boundary condition will have greater
influence on the distribution of trapped ions.

It is convenient to adopt as velocity-space co-ordinates u, the particle

speed normalized to the thermal velocity, and y, the cosine of the angle that the
particle makes with the normal when it strikes the surface of spherical square
well potential. Note that both of these velocity-space co-ordinates can be

expressed as functions of € and L2,

‘\/ L2 (94)
== 1- N 94
H 2mga?(€ + qsbo)

2(€ + qs00) .
u= \/ T, (95)

so that u and p are themselves constants of the single particle motion. We
assume that the steady-state ion distribution function is nearly an isotropic
Maxwellian (and verify this assumption a posteriori) so that we may use the usual
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test-particle collision operator. In the high-velocity limit (u 2 2) the steady-state
kinetic equation may then be written as

02f 1yof 0 TN of o 7
il Y LS (1-2)E o
Ju? +(u u)au +au (1-u au %6)
We look for solutions in the form
f(u, ) = f(w) P (97)
L

where the P;(u) are Legendre Polynomials of index L, and the f; (u) satisfy

d?f 1\df
dué +(u—a)aﬁ + LA+, = 0. (98)

We solve this equation on the domain 0 £ u < umax = \] 2gs90/Ts , taking as our ’
boundary condition a plasma with finite phase-space density and zero velocity
spread at the ion injection point,

f,
fumax, =5 [ 8- +8(u+ 1 ]. (99)

Expanding this boundary condition in‘a Legendre series we obtain

f
fi(Umax) = 2 (2L + 1) for L even, (100)

and

fi(u=0 for L odd. (101)

The solutions of the kinetic equation with this boundary condition are
shown in Fig. 14 for the first four even Legendre harmonics. We see that our
highly anisotropic boundary condition has an appreciable effect on the
distribution function only at the highest speeds, u2 2. The bulk of the phase-
space density is contained in fp(u), an isotropic Maxwellian, providing the 4
posteriori justification for the use of the test particle collision operator.

The L=0 Legendre harmonic is the sum of a Maxwellian plus a small
constant term required to match the boundary condition at u=umax. The density
and temperature of this Maxwellian must be determined from consideration of




energy and particle balance in analogy to the Pastukhov solution of the problem
of electron confinement in magnetic mirrors.22, 23
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Figure 14. The first four even Legendre harmonics of the steady-state
ion distribution function when a zero transverse temperature boundary
condition is applied at u=umgax.

Another way of displaying this information is to compute the effective
radius of the ion focus from the root-mean-square value of the distance of closest
approach at each ion speed,

fotu) —1/5 £
reff(u)aa\/ 5 <1-12>(W) =a\/ et

This effective ion focal radius is displayed as a function of ion speed in Fig. 15.
We see that there is essentially no ion focusing at speeds less than twice the ion
thermal velocity. We conclude that it is not possible to maintain a strongly
anisotropic ion distribution function in an IEC device solely by controlling the
form of the ion distribution function at the ion injection point.

22y, P. Pastukhov, Nucl. Fusion 14, 3 (1974).
23R H. Cohen M.E. Rensink, A.A. Mirin and T.A. Cutler, Nucl. Fusion 18, 1229, (1978).
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Figure 15. The effective radius of the ion focus is displayed as a function

of the ion speed for the steady-state ion distribution function of Fig. 14

with a zero transverse velocity boundary condition applied at umax = 3.
1
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7. Schemes for Maintaining a Strongly Focused Ion Distribution
That Work, but Require too Much Power

We have shown that two mechanisms proposed by proponents of IEC
systems to maintain a strongly non-thermal ion distribution function will not be
effective. In the absence of intervention the ion distribution function will
thermalize in an ion-ion collision time. In this section we propose two
approaches for maintaining a strong ion focus in an IEC system. These
approaches are based on the assumption that some means can be found to
control the ion confinement time such that ions will be lost before they have time
to fully thermalize. The ion lifetime is in fact limited in electrostatic traps that
use grids (due to the finite grid transparency), and in Penning traps (due the
leakage of ions through the poles of the trap).

A. Power Cost of Maintaining a Nearly Mono-Energetic Ion Distribution

We first consider IEC systems in which ions are removed at a rate
sufficient to maintain a nearly mono-energetic ion distribution function. A
potential benefit of such an approach is that the collisions between co-moving. .
ions can be used to control the quality of the ion focus if we choose to maintain

the parallel velocity dispersion (as measured by T /qd¢o) such that

d<L2>/dt=0 (see Fig. 12). This requires ’I( /qq%o = 0.1 ro/a. The ion lifetime
required too achieve this velocity dispers1on is

(s)

Toump = k! - ooe (oY —L (103)
¢} Vol
dt collisions

where we have taken Hd(’[( /qabo, ro/a) = 1.21 consistent with T|(|d)/CId¢o

=1x10-3 and ro/a = 1x10-2. For the IEC reactor parameters of Table I we obtain
Tpump = 3.9 Us (or about four ion transit times).

The energy required to remove an ion is at least equal to the energy
spread in the ion distribution,

1/ r
Epump Z Msvs<Av2> '/ * = /28300 T = 0.45 Gudo "\ [Z. (104)
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Assuming ¢,=50.66 keV to maximize the DT fusion rate coefficient and

ro/a=1x10-2, this comes to 2.3 keV to remove each ion. The total power
required to maintain the ion distribution function is then

(105)

Vol 7

N; € o 372
Ppump 2 — 202 = 7.2 o N (—a‘-’) <>
pump

which comes to about 20 GW for the IEC reactor of Table I (which produces 590
MW of fusion power). The power balance in this operating mode can be
characterized by

eff
o< Ptusion 6.210-2 Ypr To <M Zva <GV>DT (106)
= Ppump T qu0 a <> .
0 Vo Vol

For the Reference IEC reactor of Table I this upper limit on Q is Q < 0.028. In fact,
Q will certainly be well below this limit as this estimate does not take account of
the power required to maintain the potential well and support energy losses in
the electron channel.

Apart from weak dependencies through Gs(TﬁS) /qsbo, o/ a), this estimate
of the upper limit on the fusion gain, Q, depends only on the potential well
depth, ¢o, and the ion convergence ratio, a/r,. For DT plasmas,

eff
<ov>

DT

qafo <Vg /d >

Q ~

Vol

is a very slowly increasing function of ¢, for ¢, = 50 kV, whose value has
increased by 10% as ¢, is increased from 50 kV to 75 kV; and by an additional
10% as ¢ is increased to 300 kV. Assuming that there must be some penalty to
increasing ¢o, we take ¢o = 75 kV, yielding a 10% improvement in Q (to
Q=0.031). Surprisingly, we see that fusion gain increases with decreasing ion

convergence ratio. Decreasing the convergence ratio to a/ro = 10 (which we take
to be the lower limit for an IEC system) produces a further increase in this upper-

limit on the fusion gain to Q < 0.097.

These very disappointing limits on the fusion gain follow from the fact
that the averaged fusion rate is small compared to the averaged collisional rate
[see Eq. (106) and Fig. 13], so that the power required to maintain the non-
thermal, mono-energetic IEC ion distribution is too high. This suggests that we
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relax our requirements on the ion distribution function, and examine the limit in
which the ion energy distribution is allowed to thermahze in energy, while
maintaining strong ion convergence.

B. Power Cost of Maintaining a Strongly Anisotropic Ion Distribution

It was shown in section 3 that the fusion rate coefficient for a nearly mono-
energetic ion distribution function peaks at a value that is not substantially
greater than the peak in the fusion rate coefficient for Maxwellian plasmas.
Given the relatively small penalty in fusion power from allowing the ion energy
distribution to thermalize, one is led to consider an operating mode in which the
ion speed distribution is allowed to relax to a Maxwellian, while ions are
removed at a rate sufficient to maintain the ion anisotropy and a strong ion
convergence ratio. The ion lifetime required to maintain a given convergence
ratio is

3 (1o 1
P p 4 a <V(S)/S >

Vol
If we assume a temperature of 70 keV to maximize the Maxwellian-averaged

fusion rate coefficient, while maintaining the same average density as the reactor
in Table I, this calculation yields a required ion lifetime of 75 us.

A potential well depth qs¢o= 3/2 Ts will be required to confine the ions,
which have a mean longitudinal energy of 1/2 Ts. We can imagine pumping
these ions using charge-exchange on a neutral beam with an energy 1/2 TS at an
energy cost of

1
gpump = E Ts = 35 keV (108)

for Ts = 70 keV. Hence, the required pumping power is

2
Ppump=3 NiTi (- ) <> (109)

which comes to 15 GW for the IEC reactor of Table L.

Assuming a Maxwellian distribution in ion energy together with the same
strongly peaked distribution in angular momentum, the ion number density is
less peaked radially than it is for the IEC distribution of section 2. Hence, the
fusion power is somewhat smaller,
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a Max

B 2
Ptusion = l/'9:<ni> V Ypr ( Io ><C5‘V>DT ’ (110)

or about 125 MW for the reactor parameters of Table I at an ion temperature
Tj=70 keV. The fusion power balance is now characterized by

Ptusion YDT (To DT
<& 2 PRI 4 .

For the IEC reactor parameters of Table I this yields Q < 8.1x1 0-3. However, can
we obtain a factor of 1.2 improvement in Q by reducing T, to ~40 keV, increasing

our limit on Q to Q $9.5x10-3. Further improvements in Q require a reduction in
the ion convergence ratio, a/ry. The scaling is now more favorable [being linear
in (ro/a)l. At the minimum convergence ratio consistent with an IEC
configuration, a/rq = 10, we find the optimal fusion power balance, Q < 0.095.
This is a particularly disappointing result in light of the fact that the upper limit

on Q due to ion pumping goes to Q S o0 if we continue to assume that a potential
well can be formed at little cost in power while abandoning the IEC concept and
letting a/ro — 1.

We conclude that at high convergence ratio there is an advantage to
operation with nearly mono-energetic distributions, while at low convergence
ratio there is an advantage in allowing the ion energy distribution to thermalize.
However, we always find that the optimal IEC reactor power balance occurs at
the lowest allowed ion convergence ratio, a/r,, and that the power required to
maintain the ion distribution function is that retains the defining charactgristic of
an IEC system (a/ry 2 10) is at least an order of magnitude greater than the
fusion power that this system might produced. Reactor studies indicate that an
economic DT fusion power reactor requires much more favorable energy
balance, Q > 10. Hence, there appears to be no prospect that an economic
electrical power generating reactor. can be developed based on an inertial
electrostatic confinement scheme.
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8. Conclusions

We have presented a model for the ion distribution function in an inertial
electrostatic confinement system. This model is shown to reproduce the essential
features of IEC systems—electrostatic confinement, strong central peaking of the
ions, and a mono-energetic energy distribution. Using this model distribution
function we are able to test key claims made by proponents of IEC systems. We
find:

1) After averaging over collision angle and volume, the peak in the effective
fusion rate coefficient for DT (<csv>§_ff =9.0x10"22m3/s at ¢ = 50 keV for
the IEC distribution vs. 8.9x1022m3/s at T =75 keV for a thermal

ff = 2.8x1022m3 /s at ¢, =~ 140 keV vs.

te
2.5x10-22m3/s at T = 250 keV'%) reactions are not significantly higher than
the peak in the corresponding thermal rate coefficient.

e
distribution) or D3He (<(5v>D

2) Ion/ion collisions will cause the ion distribution function to relax to a
Maxwellian in energy at a rate that is enhanced relative to the ion-ion
collision frequency (evaluated at the volume-averaged density) by one
power of the convergence ratio, a/r,.

3) Ion/ion collisions will cause a further relaxation to an isotropic ion
distribution on the ion-ion collisional time-scale (evaluated at the volume-
averaged density).

4) The means of preventing this relaxation of the ion distribution functidn so far
proposed by proponents of IEC schemes are not effective.

5) The energy cost of maintaining an anisotropic ion distribution function
through control of the ion lifetime is at least an order of magnitude greater
than the fusion power that would be produced by the IEC device.

This analysis is based on a particular model ion distribution function, while the
reactor operating point has been optimized over the parameters of this model. It
is possible that a more attractive power balance could be obtained by further
optimization of the form of the ion distribution function. A serious effort to
perform such an optimization would require the development of a bounce-
averaged Fokker Planck code in (€, L2)-space. However, it seems most unlikely
that such optimization will increase Q by the factor of 100 required to achieve an
acceptable recirculating power fraction for an economic power plant. Hence, we
conclude that inertial electrostatic confinement shows little promise as a basis for
the development of commercial electrical power plants.
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The analysis does not place a lower-limit on the unit size of an IEC reactor.
Such a lower limit on the unit size will (persumably) follow from an analysis of
electron energy confinement and the energy cost of maintaining the spherical
potential well. This leaves open the possibility that IEC based reactors may prove
useful as means of generating a modest flux of 14 MeV neutrons for applications
other than power generation, such as such as assaying, neutron imaging,
materials studies, and isotope production. In such applications a small unit size

(Pfusion 1 kW) and, hence, smaller unit cost might compensate for modest
values of Q (Q 2 10-3).
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Appendix A. Collisional Rate Coefficients for a Mono-Energetic
IEC Distribution Function.

In this appendix we compute the rate of increase in the transverse and

longitudinal velocity dispersion, <Av 2> and <Av2>, for a test particle of

species s and velocity v = v;&; colliding with field particles of species s'. The
distribution function of the field particles is taken to be the mono-energetic IEC
model distribution function defined in section 2. Since the model IEC velocity
distribution function varies as a function of radius, we expect these rates of
increase in the longitudinal and transverse velocity dispersion to vary with
radius.

Rosenbluth, M¢Donald, and Judd?? give a compact expression for the rate
of increase in the velocity dispersion due to Coulomb collisions. Following these

authors we use the symbols <Av;2> and <Avj2> in this appendix only to
denote the rate of increase in the velocity dispersion rather than the velocity
dispersion itself. In the main text these symbols are used to denote the velocity
dispersion. These rates are given by:

<AVAV>, = Z <AVAV>
Sl
where <AvAv> .., the rate of increase in the velocity dispersion in species s due
to collisions with particles of species s’, is given by

4ﬂq32qs'2 Ln Ass’ 82
mg?2 ovv

<AVAV> = jd3v' V) lv-v'|).

it

Defining a characteristic speeds v for species s, and using the vector identity

H -~ ~
92 . I -wWw
avv lv -] = tw] ’
we can write the rate of increase in the velocity dispersion as
&

S/S' VS I XU TA
- 2= 3o £ ot W W
<AVAV> . = v v N Jd v (V') ] ,

24M.N. Rosenbluth, W.M. MacDonald, and D.L. Judd, Phys. Rev. 107, 1 (1957). See especially
Egs. (18) and (19).
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>
where w = (v-v'), W = w/[wl, I is the identity tensor and, following Book,1é we
define

VS/S' _ 41tq52q5'2n5' Ln Ass'
(o] - mS2VS3 )

The mono-energetic IEC distribution evaluated at radius r may be written
in spherical co-ordinates as

ng(r) Hw'|-po)
2nvg?  2(1 - g)

fs'(V') = S(V' - Vs') P

where principle axis of the spherical co-ordinates is taken parallel toé;, p' is the
cosine of the angle between v' and &, ng(r) is the local value of the field ion
density as given by Eq. (10),

= 29s' 9o
Vs' = me
and
_ 0 r<rg
u,o =
V1-ro?/12 r>ro
The integral over the field ion speed is easily performed, yielding .
1
2w
do H(w|-po) _ T - WA
' - - WW
<AVAV>SS. = Vf)/s vsz Y_S_' dl—l' _q_) “J' l Ho
VS 271: 2(1 - ’J.()) V]. + u2 _ 2’,[' us'
0
-1
where

Uy =vs/vy'.
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The only dependence on the azimuthal angle, ¢, comes through the unit
vector

(ug—w)é - V1-p'2(&cosdp+ &sing)
\/1 + Ug2 - 20" Ug

W=

It follows that the integral over azimuthal angle acts only on the diads, yielding

d 1 1-u'2

ug? +1-2u ug)

+ 1op? ér &
e .
(u5'2+1—2p.' us') T

Because there is only one preferred direction in velocity space @) we are
able to write <AvAv>> in the form

1 ) ((——) R ,\) ) .
<AVAVS . = 5 <AVi- >0 \1 - & &/ + <Avys > e &y,

where the rate of increase in the transverse velocity dispersion is given by

1
s (4 H(w'| - po)
ve | 21—
-1

s/s
o

<AV_L2 >SS' = 2 \Y V52

1 1 1-u?
% _ =
—\/us'z +1-2p' ug 2 us? +1-2 ug )3/2 ’

and the rate of increase in the longitudinal velocity dispersion is given by

1
s/s_ o Vs J e Bl1-ho) ( 1-p2 )

<AV >0 = v
VI© Zss = Vo VST 5 201 -o) \(ug?+1 -2y ug )3/2

-1

-54-



Two integrals remain to be evaluated,

In(p, w) =

1
1 1
2(1 - Ho) J\fl +uZ-2)'u

_1_\f1+u2—2uu
I S TG T B

and
u
1 1-p'2
In(u, u) =
1-p2 (1+ uz—Zuu)—”2
u 2(1 - up)
24 (1 +u2-2pu )2
-l 2(1 - 1)
y) (1 +u2-2uu )3/2
© 3ud 2(1 - ug)
Combining these results, we obtain the rate of increase in the transverse
velocity dispersion, : t

- * A%
<Av,?2 > =2 ZVZ/S Vg2 {,3 11 (Mo, ug)

S

and the rate of increase in the longitudinal velocity dispersion,

s/s v
<AviE>, = 2 vy vg? {,’illl(liol ug),

Sv




where

11 (1L w) - Ti{po,w) + I(—ppu) - I1(-1,u)
2(1-up)

I_L(}io, u) E{

_ 12(1,1,1) - I2(“O/u) + IZ(_HO/u) - IZ(_llu) }
4 (1- o)

and

. _ 12(1,U.) - IZ(HOIU) + IQ(—HO,U) - 12(—1,1.1)
Ii(ko, w) = 2 () .

For po=1 (corresponding to radial locations in the bulk plasma, where
r >>rg the IEC distribution function corresponds to two counter-streaming
beams. We can remove the contribution of collisions between co-moving
particles from the collision integrals, I; and I} by replacing the upper limit of 1 in

the integrals Iy and Ip with pe<1. This results in the modified collision integrals

T1(e,w) = Iy(o,w) + Iy(—po,u) - Iy(=1,u)
2 (1 - l.lo)

I|..L(“'OI u IuC) E{

_ Dlugw) - Duow) + I(pow) ~ I(-1,u) }
4(1- P-o)

and

IZ(HQ,U) - 12(110111) + 12("'U'Olu) - 12("'1/11)
2(1-yo) .

I'i(ko, u 1o =

The angular width of the counter-streaming beams, lo, increases towards

the plasma core (r <ry). Hence, the proper choice of . involves a trade-off
between eliminating the effects of collisions between co-moving particles over
most of the plasma bulk, while minimizing the effect of the cut-off on the
collision operator near the plasma core where the ion distribution function
becomes isotropic, and the ansatz of counter-streaming beams breaks down. Our

experience indicates that [1c=0.95 provides an adequate compromise.
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Finally, we note that

11
=2 u5'+1

Lim [I'_j_(uo/ u)]
Ho =1
and

1~
(us' + 1)

. 1
Lim [y ] - 3 240 o
Ho =1
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