

UNCLASSIFIED

~~CONFIDENTIAL~~

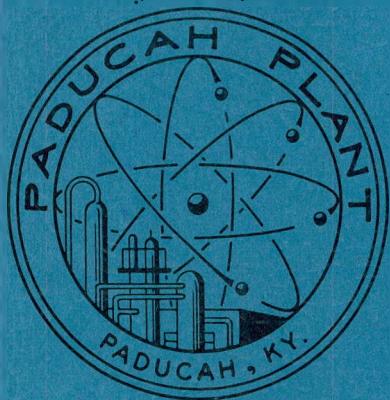
KY - 197

Technology

Feed Materials

[M - 3679, 18th. Ed.]

RECOVERY OF URANIUM HEXAFLUORIDE FROM VENT GASES


Authors:

W. R. Golliher

T. J. Mayo

W. R. Rossmassler

This document contains Confidential - Restricted Data
relating to Civilian Application of Atomic Energy.

UNION CARBIDE NUCLEAR COMPANY
A DIVISION OF UNION CARBIDE AND CARBON CORPORATION

Operating for the U. S. Atomic Energy Commission

Under Contract W-7405-eng-26

~~RESTRICTED DATA~~

THIS DOCUMENT CONTAINS RESTRICTED
DATA AS DEFINED IN THE ATOMIC
ENERGY ACT OF 1954. ITS TRANSMITTAL
OR THE DISCLOSURE OF ITS CONTENTS
IN ANY MANNER TO AN UNAUTHORIZED
PERSON IS PROHIBITED.

~~CONFIDENTIAL~~

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

- LEGAL NOTICE -

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

Printed in U. S. A. Price 20 cents. Available from the U. S. Atomic Energy Commission, Technical Information Service Extension, P. O. Box 1001, Oak Ridge, Tennessee. Please direct to the same address inquiries covering procurement of other classified AEC reports.

0317102A1030

UNCLASSIFIED

1

Date of Issue: December 14, 1956

Report Number: KY-197

Subject Category: TECHNOLOGY -
FEED MATERIALS
(M-3679, 18th Ed.)

RECOVERY OF URANIUM HEXAFLUORIDE
FROM VENT GASES

T. J. Mayo, W. R. Golligher, W. R. Rossmassler

Special Analysis Section

Laboratory Division
R. W. Levin, Superintendent

Classification cancelled or changed to UNCLASSIFIED
Memorandum from Dee. Blank,
by authority of dated 3-30-60

by JB TIE, date 4-7-60

UNION CARBIDE NUCLEAR COMPANY
A Division of Union Carbide and Carbon Corporation
PADUCAH PLANT
Paducah, Kentucky

RESTRICTED DATA

This document contains restricted data as defined
in the Atomic Energy Act of 1954. Its transmittal
or the disclosure of its contents in any manner to
an unauthorized person is prohibited.

UNCLASSIFIED

Report Number: KY-197

Subject Category: TECHNOLOGY -
FEED MATERIALS

Date of Issue: December 14, 1956

(M-3679, 18th Ed.)

Title: RECOVERY OF URANIUM HEXAFLUORIDE
FROM VENT GASES

Authors: T. J. Mayo
W. R. Golliher
W. R. Rossmassler

A B S T R A C T

Three materials, UO_3 , U_3O_8 and UF_4 , have been tested for their ability to absorb or react with low concentrations of UF_6 in the presence of large amounts of fluorine and air. It was found that at $400^{\circ}F$ a fluidized bed of UF_4 will react with the UF_6 and that UF_6 in the amount of 10% of the weight of the UF_4 can be reacted before detectable UF_6 is found in the gas leaving the reactor.

DECLASSIFIED

RECOVERY OF URANIUM HEXAFLUORIDE
FROM VENT GASES

The vent gases from the UF_6 cold traps in the Paducah Feed Processing Plant necessarily contain a small percentage of UF_6 due to the vapor pressure of this material at the temperatures involved. The average composition of these vent gases is in the range of 0.1 mole % UF_6 , 3 mole % F_2 and 15 mole % HF with the remainder nitrogen and oxygen. Reducing the quantity of UF_6 lost can be accomplished in several ways mechanically and by chemical absorption by various compounds. However, it appeared that recovery of UF_6 in a fluidized bed of powder such as UO_3 , U_3O_8 or UF_4 would possess several inherent advantages. Among these are simplicity of design and production of a material suitable for fluorination reactor feed. The intent of this investigation was to determine the feasibility of recovering this UF_6 by absorbing or reacting it with a uranium compound in a fluidized bed.

CONCLUSIONS

The amount of UF_6 that reacted with U_3O_8 was too small to be of significant value. UO_3 reacted with 6% of its weight of UF_6 from a mixture of air and UF_6 at 600°F. UF_4 reacted with 15% of its weight of UF_6 from a mixture of air and UF_6 . This value was reduced to 10% in the presence of 3 mole % fluorine. Two different types of UF_4 were tested, Mallinckrodt and Paducah, and no significant difference was found.

EXPERIMENTAL

Apparatus

The powder under consideration was heated and fluidized in a 2 inch monel tube reactor (Figure I). A porous nickel plate supported by a drilled plate was used to distribute the fluidizing air. Metered UF_6 and fluorine were admitted to the system by mixing the gases with the fluidizing air stream. The off gases from the reactor were filtered through a porous nickel filter. Sample points were located on the inlet and outlet gas lines.

Materials

The UO_3 used was unground Hanford continuous calcined powder designated SHS-10. The U_3O_8 was made from this UO_3 by heating the UO_3 at 850°C for 16 hours. Two types of UF_4 were used. Type I was metal grade D-38 UF_4 from Mallinckrodt. Type II UF_4 was material produced on "B" tray in the Paducah Feed Plant. This UF_4 was made from a shipment of sulfated Hanford pot calcined UO_3 received August 25, 1956. Chemical and physical data for these powders are shown in Table No. 1.

Procedure

The system used was a batch process. The powder was charged to the bed, fluidized, and heated to the desired temperature. In all cases a static

DECLASSIFIED

powder bed height of approximately 1 $\frac{1}{4}$ inches was used. UF₆ and/or fluorine were then admitted to the fluidizing air at the proper concentrations. Inlet and outlet gas samples were analyzed at regular intervals to determine the inlet and outlet concentrations of UF₆ and F₂. The amount of UF₆ absorbed by the bed was determined by the weight loss of the UF₆ feed cylinder.

DISCUSSION

The per cent UF₆ and per cent F₂ recovered at various temperatures by the different compounds are given in Tables No. 2 and No. 3, respectively. The capacities of the compounds for the absorption of UF₆ are shown in Table No. 4. The temperatures for determining the capacities of the various compounds were chosen to optimize the recovery of UF₆ and minimize the recovery of F₂.

The first powder studied was UO₃. It was the intent that the mixture of UO₃ - UO₂F₂ formed might be fed directly to the fluorine towers by blending this material with green salt. However, the data indicate that a relatively large amount of UO₃ would be needed for the recovery unit. This quantity of UO₃ - UO₂F₂ could not be handled in the existing process.

U₃O₈ was investigated next, with the theory that the U₃O₈ could be reclaimed in the reactor by pyrohydrolyzing the U₃O₈ - UO₂F₂ mixture. The ability of U₃O₈ to recover UF₆ under the conditions studied was so small that the process was deemed not to be feasible.

The data with UF₄ indicate that a fluidized bed of UF₄ would be capable of recovering UF₆ in the presence of fluorine and air. No attempt was made to determine the reaction products. However, the black color of the reaction products and the relatively high dissociation pressure of UF₅ at 400°F lead to the theory that the reaction products of UF₄ and UF₆ under these conditions are U₂F₉ and/or U₄F₁₇. Mixtures of these compounds could be fed directly to the fluorine towers.

There was no evidence that these intermediates formed in any part of the system other than in the bed. At all times the powder in the bed remained free flowing, and no evidence of any plugging in the bed, filter or outlet lines was found.

While the preliminary data indicate that a fluidized bed of UF₄ would be capable of recovering the UF₆ in the feed plant cold trap vent gases, additional information should be obtained. Some of the factors requiring further study include the effects of flow rates, HF, variations in gas composition, particularly large concentrations of F₂ and UF₆, UF₄ purity and composition, and the determination of the reaction products.

DECLASSIFIED

Table No. 1
PHYSICAL & CHEMICAL DATA FOR UF₄

	<u>Paducah (UF₄II)</u>	<u>Mallinckrodt (UF₄I)</u>
% UF ₄	78.1	>99
% UO ₂	11.5	< 1
% UO ₂ F ₂	10.4	< 0.2
Sieve Analysis, % Passing:		
Sieve No. 40	99.2	99.5
60	95.4	99.0
80	92.5	98.2
100	89.5	92.9
200	81.7	90.7
325	69.1	76.0
Density, g/cc.:		
Free Flow	2.8	3.0
Packed	3.6	4.2

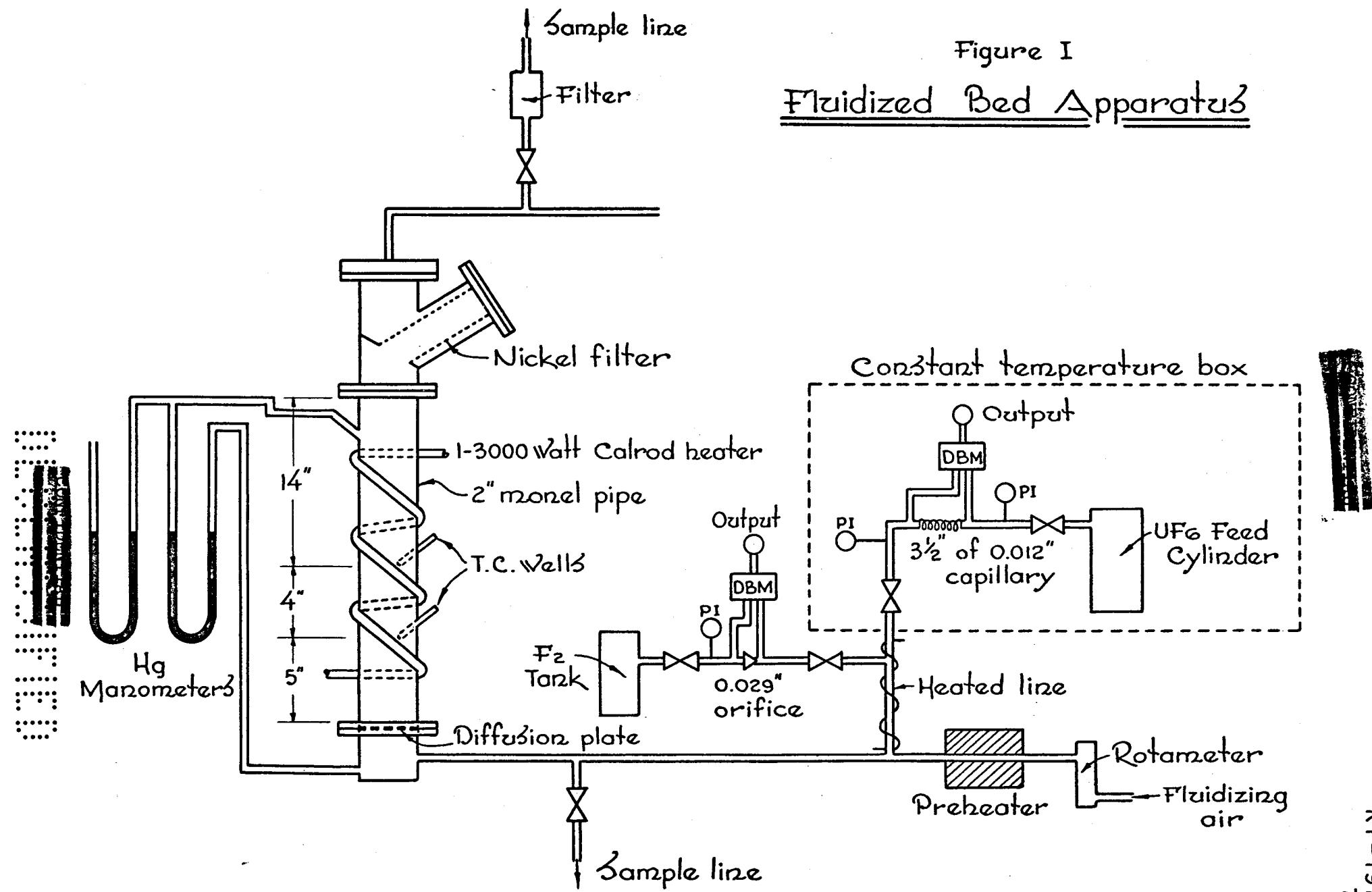
Table No. 2
RECOVERY OF UF₆ BY VARIOUS URANIUM COMPOUNDS

Type Powder	% UF ₆ Recovered At					Fluidizing Air Velocity, ft/sec.
	100°F	200°F	400°F	600°F	800°F	
UO ₃	-	37	45	99	93	1.0
U ₃ O ₈	-	-	56	88	97	1.0
UF ₄ (I)	91	90	98	-	-	0.4 - 0.5

Table No. 3
RECOVERY OF F₂ BY VARIOUS URANIUM COMPOUNDS

Type Powder	% F ₂ Recovered At					Fluidizing Air Velocity, ft/sec.
	100°F	200°F	400°F	600°F	800°F	
UO ₃	-	6	17	50	36	1.0
U ₃ O ₈	-	-	4	56	96	1.0
UF ₄ (I)	30	33	50	-	-	0.4 - 0.5

DECLASSIFIED


Table No. 4

CAPACITY FOR THE RECOVERY OF UF₆
BY VARIOUS URANIUM COMPOUNDS

Type Powder	Lbs. UF ₆ Per Lbs. Powder*	Temp. Determined	Fluidizing Air Velocity, ft/sec.	Fluidizing Gas Constituents
UO ₃	0.06	600°F	1.0	Mixture of air and ~0.1 mole % UF ₆ .
U ₃ O ₈	<0.030	800°F	1.0	Mixture of air and ~0.1 mole % UF ₆ .
UF ₄ (I)	0.15	400°F	0.2	Mixture of air and 0.1 - 0.7 mole % UF ₆ .
UF ₄ (I)	0.10	400°F	0.2	Mixture of air, 0.15 mole % UF ₆ and 3 mole % F ₂ .
UF ₄ (II)	0.10	400°F	0.2	Mixture of air, 0.36 mole % UF ₆ and 3 mole % F ₂ .

*Before the recovery efficiency dropped
below 95%.

DECLASSIFIED

