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ANALYSIS OF FTR PHASE B CRITICAL EXPERIMENTS
PART 2
ZPR-III ASSEMBLIES 52a, b, ¢, d, e, and f

W. R. Young and R. A. Bennett
ABSTRACT

Critical experiments in support of the design of the
Fast Flux Test Reactor have been carried out in ZPR-III Assem-
blies 48, 48A, 51, and 52a, b, ¢, d, e, and f, by personnel of
Argonne National Laboratory. This report presents the results
and analysis of the experiments performed in Assemblies 52a,
b, ¢, d, e, and f.
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ANALYSIS OF FTR PHASE B CRITICAL EXPERIMENTS
PART-2
ZPR-III ASSEMBLIES 52a, b, c, d, e, and f
W. R. Young and R. A. Bennett

INTRODUCTION

ZPR-III Assemblies 52 are the third series of fast plutonium
criticals assembled by Argonne National Laboratory (ANL) for
Battelle-Northwest as part of the Fast Test Reactor (FTR) criti-
(1,2)

reported in the monthly ANL Reactor Development Program Progress

cal experiments program Experimental results have been
Reports. These reports will be referenced as the data derived
from them is presented.

Assemblies 52a through 52f were fast criticals with central
fuel-free regions and with driver and reflector zones that had
the same composition as the corresponding zones of ZPR-III Assem-
bly 51(3). The critical masses of Assemblies 52 ranged from
201 to 309 kg of fissile material. The central fuel-free zones
were composed of a mixture of stainless steel and sodium with

volumes ranging from 0 to 119 liters.

These assemblies with simulated test zones were devised
to check methods for calculating effects of large dilute zones
in the FTR and to derive data that can be directly applied to
or extrapolated to the design of the FTR.

Critical masses and reaction rate distributions were
important parts of these studies. They are important because
the total thermal power of the FTR will be limited to 400 MW,
and the "Current Reference Design Value" of the peak flux is
0.73 x 1016 n/cmz—sec.(4) The design value of the peak flux
under the 400 MW limit cannot be assured unless reliable pre-
dictions of the critical mass and flux distributions are avail-
able for the early design of the FTR. These values are not
easily calculated because the large in-core heterogeneities

made a three-dimensional core analysis necessary.
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SUMMARY
MULTIPLICATION CONSTANT AND CRITICAL MASS

The six assemblies investigated in this series of experi-
ments may be divided into two classes on a geometric basis.
Four were slightly irregular, multizoned, right-circular cylin-
ders and two were essentially split-core assemblies. The
cylindrical systems with their range of fuel-free central zone
volumes were used to infer effective zone bucklings for use in

X-Y analyses of the split-core assemblies.

A test zone axial buckling of 4.52 rn_2 and a core-reflector
average axial buckling of 6.85 m_2 were used for the analysis.
The multiplication constants for these six critical assemblies
were calculated with a mean value of k = 0.9917 + 0.001 and
ranged from 0.9880 to 0.9962. This consistent underestimate
indicates a systematic error arising from either the data set
or the calculational model. These calculated eigenvalues are,
however, well within the Estimated Current Accuracy (ECA)(S),
+3% Ak/k, and within the "Expected Nuclear Design Uncertainties
for the FFTE," £2% Ak/k(z). In addition, one may consider these
cores, because of their many common features, e.g., composition
and general dimensions, to be essentially, a single-type system
which may be included with those of an earlier survey(6).

If the correction k = kCalC + 0.0083 is applied, the k
obtained for an additional assembly in this series would be,

k = 1.000 £ 0.0025. This uncertainty is within the Target
Design Accuracy (TDA)(S) of +1% Ak/k. The error corresponds to
a maximum of *1.4% AM/M for fissile material added at the core
edge or *0.5% AM/M for fissile material added evenly over the

core.

Uncertainties exist in extending these critical mass results
to cores with different fertile to fissile material ratios,

different reflectors, or different core spectra. Experience



BNWL-1139

with ZPR-III Assembly 51 indicates compensating errors in
239Pu and 238U cross sections data(s). The effect of the
compensating errors on critical mass calculations of varying

enrichments has not been determined.

Confidence can be gained in applying these results to
the FTR because the average fertile to fissile ratio of the
two zone FTR is expected to be nearly the same as these assem-
blies, 4:1. The fuel densities of the FTR driver zone are
also expected to nearly match the densities of the core in
each of these assemblies. Problems in extending these results
to FTR, in general, may arise because of the small platelet
heterogeneities of ZPR-III materials in contrast to fairly
homogeneous nature of pinned fuel in the FTR. Further prob-
lems are connected with large in-core heterogeneities of the
FTR. The plate heterogeneity problem has been investigated
through the use of flux-volume weighted cross sections. The
effect of large in-core heterogeneities will be measured in

future FTR critical experiments.

PERIPHERAL POISON ROD WORTHS

A single B4C (natural boron) rod, 2.7 liters; 18 vol%
B4C, at the core edge of Assembly 52a had a measured worth of
0.207 = 0.003% Ak/k. 1Its worth was calculated to be 0.206%
Ak/k giving a calculated to experimental ratio (c/e) of
0.995 £ 0.014. This compares with the measurement of the
same rod on the axis of Assembly 51, which was calculated
with a c/e of 0.917(3). The worth of this B4C edge rod may
be compared with a 91% enriched B4C rod in 48A. This rod was
worth 0.42% Ak/k and calculated to a c/e of 1.04 to 1.07(7).

A single tantalum rod, 2.7 liter, 18 vol% Ta, at the core
edge of Assembly 52a was measured to be worth 0.117
+ 0.002% Ak/k. 1Its worth was calculated to be 0.142% Ak/k
giving a c/e of 1.213 + 0.021. The same measurement on a

central rod in Assembly 51 gave a c/e of 0.935(3).
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Calculation of the worth of the natural B4C poison drawer
is well within the "Recommended, Expected Nuclear Design Uncer-
tainties" for the FFTF of iZO%(Z). The tantalum worth fits the

criteria marginally.

The B4C rod worth is within the ECA for ”Global”(s) pertur-
bations of *40% and the TDA of 15%. Tantalum rod worth falls
only within the ECA.

FISSION RATE DISTRIBUTIONS

Shapes of the spatial distributions of 239Pu fission rates

are calculated better in the core than in the reflector. Near
core-reflector boundaries the calculation of fission distribu-
tions is not reliable because of the uncertainty in resonance

absorptions and the shift in neutron spectrum.

Axial reaction rate distributions along a sodium filled
central column are not predicted well in the core or reflector.
The code calculates a monotonically decreasing reaction rate
distribution that differs greatly from the actual measured
distribution. These results imply that axial power density
calculations of dilute test zones in the FTR may be in consid-
erable error and should be used with caution. The inferred

error in axial peak-to-average power is *5%.

A linearly averaged peak-to-average radial flux ratio in
52d, the slotted core, was inferred from measurement to be
1.173 + 0.004 and calculated as 1.30. The calculated to experi-
ment ratio, c/e is 1.11. The same parameters in 52f, a quasi
cylindrical core with a central test zone, gave a c/e of 1.04.
The 7% variation between these two radial traverses is due to
the DB2 approximation for axial leakage in the X-Y calculation
for 52d. R-Z geometry was used in the 52f calculation making
the axial leakage directly calculable.
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DESCRIPTION OF ZERO POWER REACTOR III (ZPR-III)

The facilities of the ZPR-III at the National Reactor
Testing Station, Idaho Falls, Idaho are owned by the United
States government and operated, under contract with the U.S.
Atomic Energy Commission, by Argonne Laboratories. Detailed
descriptions of the facility have been published(s).

Briefly, the ZPR-III can be described as a split table
critical facility. Reactor materials are loaded as flat plates,
typically 1/8 to 1/4 in. thick. The plates are placed in long
drawers that fit into horizontal matrix tubes. One matrix cell
is made up of a matrix tube, the drawer, and the drawer contents.
A matrix cell is, on the average, 2.182 in. high by 2.178 in.
wide.

ZPR-II1I ASSEMBLIES 52, MATERIAL DENSITIES

CORE MOCKUP OF FTR DRIVER

The material densities of the cores of Assemblies 52 approxi-
mated those of the driver zone of the FTR. The core material
of the criticals, except for eight safety drawers and two con-
trol drawers, was contained in drawer types designated A and
A*, whose loadings of materials are shown in Figure 1 and average
compositions are listed in Table 1.

RADIAL REFLECTOR

The nickel-sodium radial reflector had a drawer loading
of three nickel plates per sodium filled can or about 17 vol% Na,
62 vol% Ni and 12 vol% 304 SS. This composition should be com-
pared to the present concept of the FTR reflector of 64 vol%
metal and 35 vol% sodium. Atom densities of the radial reflector
are given in Table 1. The drawer loading, as viewed from the
front of half I, is shown in Figure 1.
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TABLE 1. Assembly 52 - Average Compositions
Atom Density (x 10-24cm3)

239-241 240-242 235 238
Pu Pu

Drawer Type U U Mo Na C
Core Type A 0.001972 0.000170 0.000012 0.005703 0.000224 0.010262 0.003113
Core Type A* 0.001498 0.000175 0.000018 0.008306 0.000431 0.008244 0.003113
Control Rod  0.001990 0.000162 0,000015 0.007144 0.000197 0.010123 0.002746
Light Safety
Rod, 52a,b,c 0.002990 0.000329 0.000032 0.014635 0.000796 0.004039 0.000916
Heavy Safety
Rod, 52d,e,f 0.000902 0.000119 0.000012 0.005705 0.000224 0.010340 0.004150
Radial
Reflector --- --- --- --- --- 0.00416 ---
Axial
Reflector --- --- --- .- --- 0.010321 ---
Test Zone --- --- - --- --- 0.016335 ---

0 Al Fe Cr Ni Mn Si
Core Type A 0.011479 0.000110 0.01521 0.003783 0.001655 0.000158 0.000185
Core Type A* 0.014093 --- 0.01€00 0.003530 0.001544 0.000147 0.000173
Control Rod 0.008241 0.000124 0.016047 0.003992 0.001747 0.000167 0.000196
Light Safety
Rod, 52a,b,c 0.005362 0.000026 0.017198 0,003829 0.001675 0.000160 0.000188
Heavy Safety
Rod, 52d,e,f 0.017212 .- 0.016122 0.003561 0.001558 0.000149 0.000175
Radial
Reflector -- - --- 0.007605 0.00187 0.0564 --- 0.00009
Axial
Reflector --- --- 0.010426 0.002583 0.028926 0.000182 0.000120
Test Zone --- --- 0.013044 0.003245 0.001420 0.000136 0.000159

AXIAL REFLECTOR

The axial reflectors have three nickel plates per five
sodium filled cans. The resultant composition is 41 vol%

sodium, 32 vol% nickel and 16 vol% stainless steel. Atom

densities are listed in Table 1, while the drawer loading, as

viewed from the front half I, is shown in Figure 1.

TEST ZONE

The test zone drawers of Assemblies 52 had only sodium

filled cans. The composition was about 64 vol% sodium, 21 vol$%

stainless steel. The composition of the test regions is found

in Table 1. A drawing of platelets in this drawer is not shown

since it contains only sodium filled cans.



BNWL-1139
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FIGURE 1. Drawer Loadings for ZPR-III, Assemblies 52
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SAFETY DRAWERS

A safety requirement for ZPR-III operation is that a total
of 1.5% Ak/k of reactivity must be held in the safety drawers.(g)
This was achieved in Assembly 52 by placing safety drawers in
matrix positions which normally would be occupied by A* drawers.
For Assemblies 52a, b, and c¢ additional fuel was added in the
form of an 1/4 in. thick SEFOR fuel column; 1/4 in. thick ZPPR
fuel column, and a 1/8 in. thick U308 column to each A* drawer
loading used for the safety drawer in order to bring their
total worth to 1.5%. This fuel replaced two 1/4 in. thick
NaCO3 cans, a 1/8 in. stainless steel plate and a 1/8 in.
depleted uranium plate. Note that 5/8 in. of material replaced
3/4 in. of material of a normal A* loading. The other 1/8 in.
goes into the drawer walls of safety drawers. The drawer
loading, of the eight safety drawers (for Assemblies 52a, b,

and c), is shown in Figure 2.

Assemblies 52d, e, and f required more fuel in the safety
drawers to achieve the required shutdown margin. The FeZO3
plate of the light loading was replaced with a plutonium metal
plate. This loading, the heavy safety drawer loading, is also
depicted in Figure 2, while the atom densities of these safety

drawer loadings are given in Table 1.

The major difference between Assemblies 51 and 52a was the
method of safety drawer spiking. Fuel for spiking the safety
rods of 51 came from neighboring A* drawers such that the
average composition of the core was identical with an unspiked

(3)

safety drawers of 52a without a corresponding decrease of fuel

core. In contrast to Assembly 51, fuel was added to the

in neighboring drawers. The result was an increase in the

average concentration of 239

Pu in 52a of 4% over an unspiked
(10,11)

assembly. The increased concentration resulted in a
critical mass that is 8 kg less than the corresponding Assembly

51 configuration.
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FIGURE 2. Assemblies 52 Safety Drawer Loadings

Measurements were made on the reactivity effect of spiking
the safety drawers of Assembly 5Ze. These measurements, on
two safety drawers, predict an-increase of 2650 Ih* will
accompany the spiking of eight safety drawers in 52e.(12)
Using calculated edge worths for 52e, this increase in k cor-
responds to about 36 kg of fuel removed from the core edge.
The increase in fissile fuel concentration and consequent
decrease in the critical mass are undesirable because they
make analysis more difficult and decrease the relevance of the
experiment to the FTR design.

x19 Ak/k = 1086 1h 11/
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EXPERIMENTAL RESULTS AND ANALYSES

Critical masses, fission rate distributions, and single
peripheral poison rod worths were measured and analyzed as part
of the Assembly 52 experimental series. Critical mass was
measured for each of the six assemblies while peripheral poison
worths were measured only in the right cylinder, 52a, and fission

rate distributions were measured only in the cores 52d and 52f.

Analyses of experiments were done with the data sets and
computer codes presently in use for the physics design of the
FFTF. The basic cross section data, including resonance self
shielding factors and temperature dependencies, are from a modi-

fied version of the 26 group Bondarenko set.(13’14)

The energy
structure and fission source distribution of the 26 group set

are given in Appendix A.

Both diffusion and transport theory were used in the

analyses reported. The specific computer codes used were:

FCC-1IV Reference (15)
DTF IV (modified)?* " (16)
2DB " (17)
2DF " (18)
PERT-1IV " (19)

For most calculations of effective multiplication constants, a
convergence criterion of 10_5 was specified which yields an
eigenvalue converged to within 5 x 107° Ak/k. Mesh points were

two to four cm apart in interior core regions and four to five cm

*The modifications only extend to using the DITF IV transport
calculated fluxes for peripheral calculations such as flux-
volume weighting and collapsing cross sections and certain
reaction rate calculations.

10
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apart in the reflectors. Near zone boundaries they were sepa-
rated by less than 1 cm. Typical mesh structures for a two-
dimensional calculation contained between 500 and 900 spatial

mesh points.

-

CRITICAL MASS

The face maps of the cores are shown in Figures 3 through
8. All cores were 34 in. high and nominal 12-in. thick radial
and axial nickel-sodium reflectors. The test zones ran the

full height of the core and through the axial reflector.

Drawer inventories of the assemblies are given in Table 2.
The assembly may be supercritical with the fissile inventory
listed in Table 2 because the control rods may be only partially
inserted. If this is the case, a small mass must be subtracted
from the masses listed in Table 2 to bring the Assembly to
critical. If the reactor is slightly subcritical with the con-
trol drawers completely inserted mass must be added to the fis-
sile inventory. In all cases, the corrections were less than
1 kg of fissile. The corrected critical masses along with the

calculated eigenvalues are listed in Table 3.

The measured critical mass of each assembly is known only
to within 0.5 kg because core edge fuel worths were not measured.
As a consequence these cores were not cylindricized in the same
manner as Assembly 51. Cylindricization of Assembly 51 was
done by using measured drawer edge worths for drawers A and A%
at various radii. An empirical curve for each drawer worth
was inferred from these measurements as a function of distance
from the center. The centroid of each volume added or sub-
tracted was assumed to be the radius of the mass and its worth

was read from the curves.

A further uncertainty in the measured critical masses is
in the fissile content of platelets. ANL estimated this uncer-
tainty to be iO.S%.(ZO) This uncertainty has been added to the

11
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TABLE 2. Core Drawer Inventories of ZPR-III Assemblies 52(10'12)

Core Drawers 8 Safety 2 Control

Type A(a Type Ax(2) Drawers Drawers
Number Fissile, Number Fissile Fissile, Fissile, Totals, kg
Assembly kg ) kg (P) kg (P) kg (P) of Fissile
52a 107 111.82 93 74.21 12.72 1.85 200.6
52b 127 132.72 111 88.58 12.72 1.85 235.97
52c 148 154.67 139 110.92 12.72 1.85 280.16
52d 155 161.98 119 94.96 17.23 1.85 276.02
52e 155 161.98 127 101.35 17.23 1.85 282.41
S52f 163 170.34 151 120.50 17.23 1.85 309.92

(a)A in even numbered columns, A* in odd numbered columns.
(b)259Pu 241 235

+ Pu + U
+0.5 kg that has been quoted as the measured mass assuming a
nominal fissile inventory. The total uncertainty is quoted in
Table 3 with the result for each core. This corresponds to an
error of +0.004 Ak/k for all cores. A correction for cylindrici-
zation of the irregular core outline of Assembly 52a was calcu-
lated to be -0.01% Ak/k. This correction will be smaller for

the other cores because it diminishes with increasing core size.

The reactor calculations were made with the 2D diffusion
theory code 2DB with the 8 energy groups whose structure and
fission source distribution shown in Appendix A. Cross sections
from the basic 26 group set were prepared with the codes FCC-IV
and DTF-IV (modified). A separate FCC-IV run for each assembly
region composition at 300 °K was made for the resonance shielding
calculations. These calculations were made on an homogeneous
model with a Bell(21) correction for resonance absorptions. These
26 group resonance shielded cross sections were collapsed to
eight energy groups if they were associated with fuel free zones.
If they were associated with fueled zones, the 26 group resonance
shielded cross sections were used in a DTF-IV cell calculation

where they were corrected for spectral and spatial variations.

18
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TABLE 3. Critical Calculations of Assemblies 52

(10,12) X Calculated

ZPR-III Assemblies 52 Critical Mass, Experiment, eff
RZ XY
a-cylinder 200.7 = 1.5 0.9898 0.9864
b-24 liter central hole 235.9 = 1.7 0.9880
c-66 liter central hole 280.0 = 1.9 0.9925
£-98 liter central hole 309.2 + 2.0 0.9959
d-88 liter rectangular hole 275.2 = 1.9 0.9878
e-119 liter slotted core 282.0 = 1.9 0.9962

The cell calculations for flux-volume weighting Cross
sections were done for the A, A* and the safety drawers. They
have been described in the report on ZPR-III Assembly 51(3)

and will not be elaborated on here.

The effective multiplication constants for quasi-cylindri-
cal Assemblies 52a, b, c and f were calculated in R-Z geometry.
These had core zones that were approximately right cylinders
with one spiked safety drawer pair per quadrant. The spiked
safety drawers were treated as an annular zone with material
and volume equivalent to the four safety drawer pairs. The
center of the annulus coincided with the radial point of the
center of the safety drawer. This model gives a good approxi-
mation to the statistical weight of the added fuel.

This cylindricization was checked by comparing an R-6 cal-
culation with an X-Y calculation. The X-Y calculation gave an
eigenvalue that was 0.01% Ak/k larger than the R-6 calculation.
The increment in Ak is caused by a combination of effects. The
smooth boundary and the single smeared control drawer of the
R-6 model combined with the irregular boundary, A-A* drawer
distribution and discrete four control drawer pairs of the X-Y

model gave this very small change in k.

The R-Z calculations were used to infer the axial leakage
of the split Assemblies 52d and 52Z2e. Axial buckling for each

19
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quasi-cylindrical core was inferred by running a 1D cylindrical
calculation where radial mesh points of the core coincided with
the radial core mesh points of the R-Z run. The 1D calculations
were searches for an axial buckling that yielded the eigenvalue
of the corresponding R-Z calculation. The results are listed

in Table 4. It was first assumed that the axial buckling of

the core-reflector in each of these assemblies was 6.85 m'z.

The test zones and core reflector were each given a statistical
weight based upon a flux squared impdrtance. These were equated
to the total core buckling and solved for the test zone buckling.
The test zone bucklings were then plotted against test zone
“volume. This curve, when extrapolated to zero test zone volume,
gives an inferred buckling of the test zone of 4.52 m-z. A

plot of the curve is given in Figure 9.

The above method of buckling determination, where the buck-
ling is extrapolated to zero test zone volume, is appropriate

because the axial buckling, 6.85 n 2

, describes a particular
ratio of core statistical worth to radial reflector statistical

worth. This ratio is that of Assembly 52a.

The correct bucklings for the core-radial reflector zone
of 52d and 52e were estimated from the core to radial reflector
volume ratio by assuming that the correct average buckling for
the core plus the reflector depends upon the ratio of the vol-
ume of the core to the volume of the reflector. The eigenvalues
of these two assemblies were calculated with 2DB in X-Y geometry
with a 4.52 m-2 as the test zone buckling and 6.85 m-2 as the
core-reflector buckling. They were then corrected for the devia-
tion of the core-reflector buckling from 6.85 m°2. The correc-

tions were +0.0007 Ak/k for 52d and -0.0004 Ak/k for S52e.
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TABLE 4. Axial Buckling for Cylindrical Approximations

Whole Assembly

Assemblies 52  Axial Buckling, n” 2
a 6.85
b 6.58
c 6.39
f 6.31
6.00
52f
52¢ o
5.0 52b el
— o
4.52 = ==
1.0 |
3.0 |
2.0 |-
1.0 | | l | | | | | |
10 20 30 40 50 60 70 80 90 100

TEST ZONE VOLUME, LITERS

FIGURE 9. Effective Test Zone Buckling for
Assemblies 52b, 52c¢, and 52f

Argonne National Laboratory in analyzing the Assembly 52
series deduced an effective buckling for each of the test zones
of the series assuming a constant core-reflector buckling and
iterating between X-Y calculations and cylindrical calculations
for a test zone buckling. They used an average of the cylindri-
for Assemblies 52d and

These values are shown in Table 5 along with the

cal core test zone bucklings, 5.0 m~ 2
52¢ (22D

BNW values.

b
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TABLE 5. Axial Buckling Comparisons

Effective Buckling, Bg m” 2
Assembly No. Core + R. Refl. Test Zone
BNW ANL(22) BNw  ANL(22)

52a 6.85 6.72

52b 6.85 6.72 4,77 5.31

52c 6.85 6.72 5.15 4.69

52d 6.82 6.72 4.52 5.00

52e 6.87 6.72 4.52 5,00

52f 6.85 6.72 5.46 4.97

Cylindrical calculations using 2DB R-Z were compared with
2DF S4 R-Z transport calculations for Assembly 51(3). These
results, in conjunction with a study by O0'Dell, Little, and
Harclie,(23 were used to infer the transport correction for the
52 series cores. The transport corrections, 1.0% Ak/k for 52a
and 0.9% Ak/k for the other cores, are listed on the calcula-

tional summary for each core in Appendix B.

The effective multiplication calculation range from a maxi-
mum of 0.0132% Ak/k for 52d to 0.0031% Ak/k low for 52e. The
corresponding range in overcalculation of the critical mass is
15.5 kg, 7.7% AM/M, for the 52a X-Y calculation to 17 kg, 6.1%
AM/M for the 52d X-Y calculation. R-Z calculations range from
an overcalculation of 11.6 kg, 5.8% AM/M for 52a to an overcal-
culation of 6 kg, 1.9% AM/M for 52f. In the case of R-Z calcu-
lations, this is within the Estimated Current Accuracy (ECA) of
*6% in critical mass stated in the LMFBR Program Document.(4)
The X-Y calculations exceed these criteria but always such that
they underestimate k by 0.5 to 1.2%. Correcting for this would
put all future calculations on assemblies this size and of simi-
lar composition within the ECA.
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The differences in the accuracy of the calculated eigen-
values for the two slotted cores 52d and 52e reflect the uncer-
tainty in the buckling of the various zones in these cores.

The deviation of k as calculated for Assemblies 52d and 52e
is +#0.004 Ak/k from their mean value. This corresponds to an
error ig the axial buckling of the core-reflector of about
0.2 m “~.

PLUTONIUM FISSION RATE DISTRIBUTION

Fission rate traverses were made in assemblies 52e and
52f with a brass filled 2°°
mounted on a stainless steel carriage assembly and traversed
through a 5/8 in. OD SS tube.(lz)
and carriage assembly were described in the reports for
Assembly 51.(3’24)

Pu fission counter. The counter was

The counter, traverse tube

2
“39Pu fission rate distributions were made

Calculations of
with the 2D diffusion code 2DB in eight energy groups. Plutonium
cross sections were either core weighted or reflector weighted
for reaction rates. Fluxes were derived from the 2DB eigenvalue
calculations where cross sections were weighted as described
in Section 5.1. Reflector weighted cross sections were prepared
using reflector compositions for resonance shielding, infinite
dilution of 239Pu, and fundamental mode calculated reflector

spectra for collapsing from the 26 groups to 8 energy groups.

ASSEMBLY 52e, SPLIT CORE, FISSION RATE DISTRIBUTIONS

This assembly is only approximately handled by 2D reactor
codes. It roughly consists of two axially split halves of a
cylinder separated by about 6 in. of sodium and stainless steel
(Figure 7). Radial fission rate traverses were calculated in
X-Y geometry.

As an aid in evaluating the calculated flux distributions
in the split-core FTR three fission rate traverses were made in
52d. An axial traverse down drawer P16 and two radial traverses

1 1/4 in. from the reactor midplane in Rows P and L were made.
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The axial traverse was down a sodium-filled drawer whose
loading is shown in Figure 10. The fission rate is shown in
Figure 11. The statistical counting errors are less than 0.5%,
a deviation that is smaller than the plotted points size. Since
this traverse was on the assembly axis it was never in core
material or reflector material but the traverse was entirely
in the SS-sodium simulated test zone. The core and reflector
boundaries have been included to show what material is radially

adjacent to the test zone at the axial position of measurement.

It is apparent that there is a small maximum coincident
with the axial core-reflector interface. This indicates that
core leakage neutrons predominate in the test zone adjacent to
the core and that reflector leakage neutrons predominate in the
test zone outside the core.

The peak-to-average fission rate linearly averaged over
the axial traverse in the core was inferred from the measure-
ment to be 1.12.

Radial fission rate distributions are plotted in Figures
12 and 13. Radial fission rates traversed drawers whose load-
ings are shown in Figure 14. The uncertainties due to statistical
variations of count rates are less than 1.0%. They are less in
magnitude than the scale spanned on the ordinate by the plotted
point.

The shape of the radial fission rate distribution of 239Pu

is calculated well in the core and test zone but begins to devi-
ate near the core reflector boundary. These difficulties in
reaction rate calculations at the interface are caused by uncer-
tainties in the resonance self-shielding factors of the activa-
tion cross sections and the spectral variation there. Activa-
tions were calculated for both core and reflector weighted cross

sections.
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Calculated fission rate distributions in the radial reflec-
tors for both the P and L row traverses are low in relation to
the center point activities. Assuming that the center point
spectrum is correctly calculated it can be concluded that the
calculated reflector spectrum is too hard.

239Pu fission rate distribution measure-

The P-row radial
ment was linearly averaged over the traverse path and compared
with a calculated average. Linear averaging was used in this
case because more traverses or questionable extrapolations
would be needed to obtain a measured volume average over this
split core, 52d. The peak-to-average fission rate distribution
was inferred from measurement to be 1.173 * 0.004 and calculated

as 1.30. The calculated to experiment ratio is 1.11 = 0.004.

ASSEMBLY 52f, LARGE CENTRAL "HOLE", FISSION RATE DISTRIBUTION

Assembly 52f can be satisfactorily cylindricized (Figure 8)
such that an R-Z calculational model can be devised. This obvi-
ates finding an axial buckling for each zone of a multizone
assembly and simplifies calculations.

Axial 239Pu fission rates were measured through drawer P16

while radial fission rates were measured across Row P.(ZS) The
P16 drawer loading to accommodate the axial traverse tube is
shown in Figure 10. Drawer loadings to accommodate the radial
traverse tube are shown in Figure 14.

The plots of the fission rate activation are given in
Figures 15 and 16. The statistical errors in count rates are
less than 0.9% and smaller in size than the plotted point.

Calculated 239

for the axial distribution down the central test zone. The
surrounding region spectrum affects the test zone more strongly

Pu fission distributions are obviously poor

than calculations predict. This is evidenced by the change in

slope of the measured distribution at the axial core-reflector
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interface while the slope change is undetectable in the calcu-
lated distribution possibly because flux gradients are too
great for the diffusion approximation.

Calculated and measured radial in-core fission distribu-
tions were calculated with better agreement in Assembly 51 than
for this distribution in 52f.(3) Possibly the source of error
arises from the large dilute test zone that could influence
the core resonance absorptions or the core spectra to cause the
discrepancy.

The in-core peak-to-average fission rate was calculated as
1.35 for the radial traverse and 1.17 for the axial traverse.
The inferred measurements were 1.30 * 0.004 and 1.10 * 0.005.
The calculated to experiment ratio, c/e, is 1.04 and 1.05 for
the radial and axial traverses, respectively.

The c/e value of the 52d radial fission rate is 6% larger
than in 52e. The difference results from the uncertainty in
the DB2 leakage approximation and its effect on the neutron

spectra in these cores.

PERIPHERAL TANTALUM AND B,C ROD WORTHS IN ASSEMBLY 52a

The reactivity worths of simulated B4C (natural) and tanta-
lum rods were measured in 52a at the core edge in matrix posi-

(10)

tion P22 as shown in Figure 17. The poison drawer inven-

tories are listed in Table 6 and an end view of the drawer
loadings are shown in Figure 18. A comparison of the experi-
mental and calculated reactivity changes is given in Table 7.

The c/e of 0.995 * 0.014 for a B,C rod may be compared
with the same ratio for an identical B,C rod on the central
axis of Assembly 51. This assembly was practically identical
to 52a. The calculated to experiment ratio for the central rod
was 0.92.(3) The better agreement for the peripheral rod is
probably fortuitous and the 8% undercalculation is more repre-

sentative of the expected error for this calculation.
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TABLE 6. B4C and Tantalum Drawer Loadings(lo)

B4C 1262.2 g - 96

pieces

1/4 in. x 1/2 in.

x 3 in, 13.67 63.31 23.02 0
Ta 9432 g - 72

pieces

1/8 in. x 2 in.

x 2 in. 0 0 0 100.0

V4 304 STAINLESS STEEL

SODIUM SODIUM
NN
777
POISON 7774 VoID
Iy
SODIUM POISON
POISON IN POISON OUT

FIGURE 18. Drawer Loading for B,C and Tantalum Studies

4

Correlations with Assembly 48A calculational accuracy for
peripheral B4C rods are of limited value because the 48A rods
were 91% enriched in B-10, 690 g/rod, compared with 13 wt% B-10,
173 g/rod, in the 52a B,C rods. The c/e for the edge rod in 48A
were 1.04 to 1.07 depending on the calculational geometry. The
main difference between the 48A calculations and the 52a calcu-
lations were the treatment of spatial self shielding of the
poison cross sections and the high B-10 content.(7) Assembly

48A rod self-shielding calculations were made using 2DF X-Y models
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TABLE 7. Natural B4C and Tantalum Worth at Core Edge (P22)

Reactivity Change (a)

Excess Reactivity Relative to Void Th)
of Calculation
Test Region Core (Ih) Experiment 2DB 8 Group X-Y c/e
Reference + 15.3 0
B4C -198.3 -214.3 = 3.2 -213.0 0.99 =% 0.015
Ta -106.0 -121.3 £ 2.0 -147.0 1.16 + 0.019
B4C/Ta Worth 1.78 + 0.12 1.45 0.813 * 0.055

val (11)

1% Ak/k = 1036 Ih

in which actual rod geometries were specified in detail. The
self-shielding calculations for poison rods in this work were
made with flux-volume weighted cross sections which are
described below.

The reactivity worth of a single peripheral tantalum
drawer was calculated with a c/e of 1.213 * 0.021 in 52a. The
same rod was measured in the central column of 51 to be worth
573 Th with a c/e of 0.935. Since tantalum has an appreciable
resonance absorption component this element is more difficult
to calculate than B-10.

Analyses of these experiments were done in X-Y geometry,
using the two-dimensional diffusion code 2DB with an 8-group
cross-section set. The control rod cross sections were flux-
volume weighted to correct for heterogeneity. Flux-volume
weightings were made with S-12 26-group DTF-IV cell calculations.
The poison drawer cell was approximated with a one-dimensional
slab model. In this case, the peripheral rod model, a slab
core region and a slab reflector region were put on each side
of the poison region. The principle traverse dimensions of
the poison region were conserved as were average material con-
centrations. The poison was confined to a 1/2 in. thick region
similar to the experiment. The average flux spectrum in the

poison region was used to collapse the poison material cross
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sections from 26 to 8 energy groups. A description of the cal-
culational model for the cell calculation is given in Appendix B,
Figure B-9.

The X-Y calculations were made with quarter core symmetry.
This symmetry requires a minimum representation of two off cen-
ter rods. Such a model was used and the answer was divided by
two. In the analysis of Assembly 48A(5) it was shown that the
error in this assumption is less than 1% of the measured worth

of two core edge rods.
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TABLE A-1l. Energy Structure for 26-Group Cross-Section Set

Group Fission Source Energy Limit Velocity Delta o

1 2.0000-02 6.5000+00 3.5311+09 4,8000-01

2 9.8000-02 4.0000+00 2.7700+09 4,8000-01

3 1.9000-01 2.5000+00 2.1899+09 4,.8000-01

4 2.6800-01 1.4000+00 1.6388+09 5.7000-01

5 1.9600-01 8.0000-01 1.2388+09 5.7000-01

6 1.3500-01 4,0000-01 8.7595+08 6.9000-01

7 5.8000-02 2.0000-01 6.1939+08 6.9000-01

8 2.2000-02 1.0000-01 4,3798+08 6.9000-01

9 9.0000-03 4,6500-02 2.9866+08 7.7000-01

10 3.0000-03 2.1500-02 2.0308+08 7.7000-01

11 1.0000-03 1.0000-02 1.3850+08 7.7000-01

12 0.0000 4.6500-03 9.4444+07 7.7000-01

13 2.1500-03 6.4220+07 7.7000-01

14 1.0000-03 4,3798+07 7.7000-01

15 4.6500-04 2.9866+07 7.7000-01

16 2.1500-04 2.0308+07 7.7000-01

17 1.0000-04 1.3858+07 7.7000-01

18 4,8500-05 9.4444+06 7.7000-01

19 2.1500-05 6.4220+06 7.7000-01

20 1.0000-05 4,3798+06 7.7000-01

21 4,.6500-06 2.9866+06 7.7000-01

22 2.1500-06 2.0308+06 7.7000-01

23 1.0000-06 1.3850+06 7.7000-01

24 4.6500-07 9.4444+05 7.7000-01

25 ¢ 2.1500-07 6.4220+05 7.7000-01

26 2.5200-08 2.1986+05 7.7000-01
Sum 1.00000+00



TABLE A-2.
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Energy Structure for 8-Group Cross-Section Set

01d Groups Fission Source Lower Energy

New Group Per New Group For New Groups Limit, MeV

1 3 3.08000-01 2.5

2 3 5.99000-01 0.4

3 3 8.90000-02 0.0465

4 3 4.,00000-03 0.00465

5 2 0.00000 0.001

6 2 0.00000 0.000215

7 4 0.00000 0.00001

8 6 0.00000 0.0000000252
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APPENDIX B
EXPLANATION OF CALCULATIONAL MODEL DATA SHEETS

Cross Section Sets

522226 Flux-volume weighted A-A* macroscopic core cross
sections collapsed over central core zone fluxes to
8 energy groups

522326 Flux-volume weighted A-A* macroscopic core cross
sections collapsed over out core zone fluxes to 8
energy groups

511921 Flux-volume weighted safety rod macroscopic cross
sections collapsed over central core zone fluxes to
8 energy groups

FCC 74 8 group macroscopic radial reflector cross sections
collapsed from central reflector fluxes

FCC 110 8 group macroscopic axial reflector cross sections
collapsed from axial reflector fluxes

FCC 125 8 group macroscopic test zone cross sections collapsed
from test zone fluxes

522427 Flux-volume weighted heavy safety rod macroscopic
cross sections collapsed over safety rod, slab model,
fluxes to 8 energy groups

522730 Flux-volume weighted tantalum rod macroscopic cross
sections collapsed over tantalum rod, slab model,
fluxes.
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- - CRITICAL MAss 200-7 kg
CORE ABBREVIATIONS:
: : & IN HALF #1, IN HALF #2
< = SAFETY DRAWER
= CONTROL DRAWER
@@= ENRICHED DRAWER OF CELL
HALF NO. 1 OTHER:
TITIT
TIITT
KZH % T iL T 11 MI T ]] CALCULATIONAL MODEL
T a'lj!“‘ 1 mlli I cope 208 GEOMETRY ___RZ
H73.35c¢n 1 —T 1 +r+ )
~= ; - T T DIFFUSION ., if Sy, N =
| L it 1
X N g Ama symmeTRy _1/2 CORE
HHH RrppIaL R
FAXIAL T f per ECTOR 4T - SOURCE OF ATOM DENSITIES
H REFLECTORH e d e ] ]
§ D T D W W S ‘T;*_*_,,_.‘ 7‘,‘_ —+ pmae e ’*“’H . L |
HH A s e
143.265cmo— e ot H
TR} SAFETY 1::M§¥E%§ X-SECT. {GROUPS ___8
Cion Hiond F DRAVER L ey } HOMO. /HETERO. _REFL/CORE
| | L1 P TR R Sty
- SULe apanhtan &t 2= core wr.__86.51 cm
+ +3- - D IRt m i
+ ‘ - E::i:jj:é;j EFFECTIVE CORE RADIUS 32.006 cm
11 5 “@L?fiii‘@{i RADIAL 30 cm
%“' g 2ijf:fi ;TJ REFLECTOR THICKNESS AXIAL 30 cm
i ko.r***"‘*f% N 0
To gﬁ““ g}j BUCKLING
i LT TR CALCULATED K, = 1.0000
CALCULATED MASS = 220.5 k
CORE GAP _-0.0017
TEMPERATURE (NOT REPORTED) _0
ABBREVIATIONS: SAFETY ROD POSITION 0
)= SAFETY DRAWER DIFFUSION - TRANSPORT S4 +0.0100
€= CONTROL DRAWER CYLINDRICIZATION OF SAFETY
OTHER: ROD AND CORE EDGE
HOMOG. > HETEROGENEOUS +C. 0001
OTHER: A, A* IN ALTERNATE -0.00120
COLUMNS LESS 19.8 kg -0.01742
FISSILE AT CORE EDGE*
MASS CORRECT : CORRECTED DIFFUSION K, .. 0.9798
CORRECTED MASS _200.7 k CORRECTED TRANSPORT K_ .. 0.9898
*Worth = 97.15 Ih/kg
FIGURE B-1

B-2
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CALCULATION_# 2DB124

12 34 56 7 & 9 1011121318151617181920 1 32232825 26272829 3031

EXPERIMENTAL ASSEMBLY # 52a

EFFECTIVE CORE RADIUS

CORE HEIGHT

RADIAL

REFLECTOR THICKNESS {AXIAL

CRITICAL MAss _ 200.7 + 0.5 kg

CORE ABBREVIATIONS:

2 IN HALF #1,— IN HALF #2

B

= SAFETY DRAWER

= CONTROL DRAWER

[A= ENRICHED DRAWER OF CELL

OTHER:

T CALCULATIONAL MODEL

! cope 298 gpomeTry XY
DIFFUSTON __________, if S,, N =

N’

=
=
—
wm =
—
>

Ny symmeTRy 1 /4 CORE

SOURCE OF ATOM DENSITIES

RADIAL X-SECT. | GROUPS 8

REFLECTOR ‘ (HOMO./HETERO. REFL/CORE
T T CORE HT.__86.51 cm
T EFFECTIVE CORE RADIUS _32.0 cm

30 cm
AlA*FA JA* : RADIAL
, REFLECTOR THICKNESS 30 cm

S - AXIAL
Alf BUCKLING __6.85 m°

A CALCULATED K, ¢¢ = 0.97805

CALCULATED MASS = 200.6 kg

ABBREVIATIONS: CORE GAP -0.0017
Bl= SAFETY DRAWER TEMPERATURE 0
€= CONTROL DRAWER SAFETY ROD POSITION
OTHER: DIFFUSION » TRANSPORT S4 __0.01
A =REGION WITH A TYPE DRAWERS HOMOG. ~ HETEROGENEOUS

A*=REGION WITH A* TYPE DRAWERS OTHER: ADD O.L AT CORE +0.00009
EDGE

MASS CORRECT.: CORRECTED DIFFUSTON K_ .. 0.9764
CORRECTED MAss 200+7 kg CORRECTED TRANSPORT K 0.9864

eff
*93.24 Ih/kg
FIGURE B-2
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CALCULATION # 2DB32

EXPERIMENTAL ASSEMBLY # 52B
-t

EFFECTIVE CORE RADIUS
CORE HEIGHT

REFLECTOR THICKNESS {
235.9 =

RADIAL
AXTAL

CRITICAL MASS 0-5 kg

ABBREVIATIONS:
W IN HALF #1,
8 =
[ =
=

IN HALF #2
SAFETY DRAWER

CONTROL DRAWER
ENRICHED DRAWER OF CELL

OTHER:

CALCULATIONAL MODEL
cope _ 208 GEOMETRY
DIFFUSION . if s
SYMMETRY __1/2 CORE

SOURCE OF ATOM DENSITIES

RZ

N NF

It

by

4

I O prawer ‘?REFLECTOR

t t
fodeteb

L
t

FEE

IR b

st

ABBREVIATIONS:
Bl= SAFETY DRAWER
€l= CONTROL DRAWER
OTHER:

MASS CORRECT.:
CORRECTED MAsS _ 236 kg

GRoups 8
HOMO. /HETERO.

CORE HT. _86.51cm
EFFECTIVE CORE RADIUS

X-SECT.

REFL/CORE

37.6344 cm
30 cm
30 cm

RADIAL

REFLECTOR AXTAL

THICKNESS

BUCKLING _ O

CALCULATED K. =
CALCULATED MASS =

CORE GAP

TEMPERATURE

SAFETY ROD POSITION
DIFFUSION - TRANSPORT S4
HOMOG. - HETEROGENEOUS
OTHER:

LESS 22 kg AT EDGE*

1.0000
258 kg
-0.00200

0.00900

-0.01900

-0.9790
0.9880

CORRECTED DIFFUSION K
CORRECTED TRANSPORT K

eff
eff

FIGURE B-3
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ABBREVIATIONS:

= SAFETY DRAWER
€= CONTROL DRAWER
OTHER:

MASS CORRECT.:
CORRECTED MASS _280 kg

BNWL-1139

CALCULATION_# 2DB33

<EXPERIMENTAL ASSEMBLY # 52C

EFFECTIVE CORE RADIUS
CORE HEIGHT

RADIAL
AXIAL

280.0 = 0.5 kg

REFLECTOR THICKNESS {

CRITICAL MASS

ABBREVIATIONS:
Bl IN HALF #1,—— IN HALF #2
Bl = SAFETY DRAWER

[Cl= CONTROL DRAWER
A= ENRICHED DRAWER OF CELL
OTHER:

CALCULATIONAL MODEL
cope _2PB GEOMETRY __RZ
DIFFUSION , if Sy, N =
SYMMETRY 1/2

SOURCE OF ATOM DENSITIES

N’

X-SECT. | GROUPS 8
HOMO. /HETERO.

core HT. _86.51 cm
EFFECTIVE CORE RADIUS _42.0141 cm

RADIAL 30 cm

REFLECTOR THICKNESS AXTAL 30 cm

BUCKLING 0

CALCULATED K ¢ = 1.000
CALCULATED MASS 301 kg
CORE GAP __=-0.00170
TEMPERATURE

SAFETY ROD POSITION

DIFFUSION - TRANSPORT S4 +0.00900
HOMOG. - HETEROGENEOUS

OTHER:

LESS 21 kg FISSILE AT EDGE* 0.01480

CORRECTED DIFFUSION Keff 0.9835

CORRECTED TRANSPORT Keff 0.9925

FIGURE B-4
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BNWL-1139 *

CALCULATION_# 2DB34

EXPERIMENTAL ASSEMBLY # 52F
EFFECTIVE CORE RADIUS

CORE HEIGHT

RADIAL
AXIAL .

0.5 kg

REFLECTOR THICKNESS {

CRITICAL MAss _309-2 #

ABBREVIATIONS:

IN HALF #1, IN HALF #2

HALF No. 1

L1111
T 11T

73.255

o
]

]
_|
m
%)
—

)

o4

Z,CMe——
|

45.4919

14.315
1

[20. 511\

[75.4919

O
3
L T

x

3

ABBREVIATIONS:
Bl= SAFETY DRAWER
Cl= CONTROL DRAWER

[B1= SAFETY DRAWER
[C1= CONTROL DRAWER .
A= ENRICHED DRAWER OF CELL

OTHER:

CALCULATIONAL MODEL
CODE __¢DB _ GEoMETRY
DIFFUSTON , if s
SYMMETRY
SOURCE OF ATOM DENSITIES

RZ

, N =
1/2 N

GROUPS _8
HOMO./HETERO.
CORE HT. 86.511 cm
EFFECTIVE CORE RADIUS

X-SECT.

REFL/CORE ’

45.4919 cm

RADIAL _ 30 cm -
AXIAL _ 30 cm

REFLECTOR THICKNESS

BUCKLING 0
CALCULATED K¢
CALCULATED MASS 335.14 kg

CORE GAP -0.0017 .
TEMPERATURE 0

SAFETY ROD POSITION 0

+0.0090

1.0000

OTHER: DIFFUSION - TRANSPORT S 4
HOMOG. - HETEROGENEOQOUS
OTHER: -
LESS 25.9 kg AT CORE EDGE*-0.0114

MASS CORRECT.: CORRECTED DIFFUSION K 0.9869

309.2 k eff -
CORRECTED MASS __®27+% X9 CORRECTED TRANSPORT K, ¢ 0.9959 3
FIGURE B-5
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CALCULATION_# 2DB131

12 3 4 56 7 8 9 1011121314151617 18192021 22232425 2627282930 31

' EXPERIMENTAL ASSEMBLY # 52D
-

EFFECTIVE CORE RADIUS

CORE HEIGHT

REFLECTOR

RADIAL

CORE REFLECTOR THICKNESS {AXIAL

‘ CRITICAL MASs _275-2Kg

T 0 ABBREVIATIONS:

s \ B . IN HALF #1,—— IN HALF #2

| [B1= SAFETY DRAWER

| [= CONTROL DRAWER

X E <SS A0 DO VO 2ZIF R T~

[A= ENRICHED DRAWER OF CELL

OTHER:

4=
EE)
=

-

FT

CALCULATIONAL MODEL
CoDE 2 DB GEoMETRY X-Y
N

DIFFUSION —_ , if S
1/4

N’

SYMMETRY
SOURCE OF ATOM DENSITIES

RADIAL REFLECTOR

-
X-SECT. { GROUPS 8
HOMO. /HETERO.
CORE HT.___86.51
= EFFECTIVE CORE RADIUS
BO ORE o ) RADIAL 30 cm
. - REFLECTOR THICKNESS " 3¢ oo
B BUCKLING 685 CORE, 4.54 TEST m™2
CALCULATED K, e = _0.98246
CALCULATED MASS = _279.03 kg
ABBREVIATIONS: CORE GAP -0.0017
Bl= SAFETY DRAWER TEMPERATURE
Cl= CONTROL DRAWER SAFETY ROD POSITION
OTHER: DIFFUSION + TRANSPORT S +0.009
HOMOG. - HETEROGENEOUS
OTHER:
LESS 3.83 AT CORE EDGE* -0.80270
MASS CORRECT.: CORRECTED DIFFUSION K_ .. 0.978B
CORRECTED MASS _275.2 kg CORRECTED TRANSPORT K_ .. 0.9878
FIGURE B-6
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BNWL-1139

CALCULATION_# 2DB129

EXPERIMENTAL ASSEMBLY # 52
EFFECTIVE CORE RADIUS
CORE HEIGHT )
REFLECTOR RADIAL
REFLECTOR THICKNESS {AXIAL '
< CRITICAL MAss _282:0 * 1.9 kg
N  NeEN ABBREVIATIONS:
— ' 1 B IN HALF #1, IN HALF #2
S S
Bl= SAFETY DRAWER
El= CONTROL DRAWER «
A= ENRICHED DRAWER OF CELL
OTHER:
S = SAFETY ROD HALF 2 .
[C = CONTROL ROD T 11
EEEEEEN] 11T

GALCULATIONAL MODEL
CODE GEOMETRY
DIFFUSION , if Sy, N =
SYMMETRY
| SOURCE OF ATOM DENSITIES
RADIAL REFLECTOR
i
X-SECT. | GROUPS 8
HOMO . /HETERO. .
IBEEE CORE HT.__86.51 cm
TR = EFFECTIVE CORE RADIUS
Bz REFLECTOR THICKNESS RADIAL S0 cm *
= S _2 AXIAL 30 cm
BUCKLING 685 m  CORE, 4.54m-2 TEST
CALCULATED K, cp = 0.98311
CALCULATED MASS = 269.3
ABBREVIATIONS: CORE GAP -0.0017 .
Bl= SAFETY DRAWER TEMPERATURE
= CONTROL DRAWER SAFETY ROD™POSITION
OTHER: DIFFUSION -~ TRANSPORT S 4 +0 00900 .
HOMOG. - HETEROGENEOUS
OTHER : *+0.0062
-0.0004
MASS CORRECT.: 282 & CORRECTED DIFFUSION K, .
CORRECTED MASS _5°¢ Xg CORRECTED TRANSPORT K, ..
*50.58 Ih/kg
FIGURE B-7

B-8
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CALCULATION_# 2DB59

LA L
ByC AND Ta RGD TElsr S=SAFETY “<EXPERIMENTAL ASSEMBLY #

\}

CORE HEIGHT

3 2 CRITICAL MASS

EFFECTIVE CORE RADIUS

\ REFLECTOR THICKNESS {

AXIAL

RADIAL

CORE ABBREVIATIONS:

| CORE IN HALF
FREFLECTOR IN

IN HALF #1,

= SAFETY DRAWER

IDISIRIA R @ = CONTROL DRAWER
1= ENRICHED DRAWER OF CELL

IN HALF #2

OTHER:

HALF 2

T 11

CALCULATIONAL MODEL
-t

ZDB

TTTMATRIX CODE
MESH DIFFUSION

GEOMETRY

XY

if SN,

T SYMMETRY 1/4 CORE

N =

SOURCE OF ATOM DENSITIES

X-SECT. GROUPS

i CORE HT.

BUCKLING __5.06

8

m

A% REFLECTOR THICKNESS

-2

T HOMO . /HETERO.

- . EFFECTIVE CORE RADIUS

REFL/CORE

RADIAL
AXIAL

CALCULATED Keff
CALCULATED MASS
ABBREVIATIONS: CORE GAP
[B1= SAFETY DRAWER TEMPERATURE
[€1= CONTROL DRAWER

SAFETY ROD POSITION

OTHER: DIFFUSION - TRANSPORT S

P= PERIPHERAL POISON DRAWER HOMOG. - HETEROGENEOUS

A= REGION WITH "A" CORE DRAWERS  rueR:
A* =REGION WITH "A*" CORE DRAWERS '

MASS CORRECT.:
CORRECTED MASS ___197 kg_

FIGURE B-8

CORRECTED DIFFUSION Ke
CORRECTED TRANSPORT Ke

ff
ff

1.000(RODS 0UT)
197 kg
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