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This paper presents experimental data and computational modeling for a
well-defined glass material. The experimental data cover a wide range of
strains, strain rates, and pressures that are obtained from quasi-static
compression and tension tests, split Hopkinson pressure bar compression
tests, explosively driven flyer plate impact tests, and depth of penetration
ballistic tests. The test data are used to obtain constitutive model constants
for the improved Johnson-Holmquist (JH-2) brittle material model. The
model and constants are then used to perform computations of the various
tests.

INTRODUCTION

Recently, much effort has been directed at understanding and modeling brittle materials
subjected to impact conditions. Under these conditions brittle materials experience large
strains, high strain rates, and high pressures; and under certain conditions may also exhibit
bulking or dilatation effects [1]. This paper presents experimental data, for a well-defined
glass material, over a wide range of strains, strain rates, and pressures. The data are used to
obtain constitutive model constants for the improved Johnson-Holmquist (JH-2) model [2).
The technique used to obtain model constants is discussed and computations of the flyer plate
impact and ballistic tests are presented.

TEST DATA

The float glass used for all experiments is the same material that was used for the ballistic
penetration tests performed previously [3]. The chemical composition and density are
presented in Table 1.

Table 1. Float Glass Chemical Composition and Density

Percent Chemical Composition Density
SiO2 Nay0O CaO MgO | AlO3 | K20 | Fex03 | (kg/m3)
73.7 10.6 94 3.1 1.8 1.1 0.2 2530

The results of 16 tests performed on the float glass are summarized in Table 2. Tests 1
through 11 are compression and tension tests at two strain rates. These tests were performed
on cylindrical specimens where the z-axis is the axis of symmetry. Tests 1 through 4 are
quasi-static uniaxial compression tests. Tests 5 through 8 are dynamic compression tests
performed using a split Hopkinson pressure bar. Tests 9 through 11 are quasi-static tension
tests where the test technique (radial loading) is similar to that used to determine the tensile
strength in concrete [4]. For tests 1 through 11 the stress state at failure (Ox,0y,02,7) is

rovided, as well as the equivalent stress, o, pressure, P, and average equivalent strain rate, E.
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Table 2. Summary of Test Data for Float Glass

Compression and Tension Tests
Test Ox (4] Oz T o P A
Number | Description | (GPa) (Gga) (GPa) | (GPa) | (GPa) | (GPa) sH
1 Compression | 0.0 0.0 -1.12 0.0 1.12 0.37 | 0.001
2 Compression | 0.0 0.0 -0.92 0.0 092 | 0.31 | 0.001
3 Compression | 0.0 0.0 -1.17 0.0 1.17 0.39 | 0.001
4 Compression | 0.0 0.0 -0.88 0.0 0.88 0.29 | 0.001
5 Compression | 0.0 0.0 -1.45 0.0 1.45 0.48 250
6 Compression | 0.0 0.0 -1.10 0.0 1.10 | 0.37 250
7 Compression | 0.0 0.0 -1.05 0.0 1.05 0.35 250
8 Compression | 0.0 0.0 -1.00 0.0 1.00 | 0.33 250
9 Tension 0.16 | -0.48 0.0 0.0 042 | 0.11 | 0.001
10 Tension 0.17 | -0.52 0.0 0.0 046 | 0.12 | 0.001
11 Tension 0.12 | -0.35 0.0 0.0 0.31 0.08 | 0.001
Flyer Plate Tests
HEL Hugoniot State
Test Oz p Oz p €
Number | Description | (GPa) | (kg/m3)| & | (GPa) (kg/m3) | €&y 1)
12 Flyer Plate 5.95 2718 | -0.069 | 11.46 | 3285 |-0.230| 105
13 Flyer Plate 5.95 7718 | -0.069 | 14.25 | 3408 |-0.258| 105
14 Flyer Plate 5.95 2718 | -0.069 | 18.76 | 3617 |-0.301] 105
Ballistic Penetration Tests [ Anderson et. al. (1993)]
Test Impact Velocity | Penetration, P
Number Description (m/s) (mm) P/L
15 Depth of Penetration 1250 129 1.78
16 Depth of Penetration 1700 172 2.38

Three flyer plate impact expe
Hugoniot Elastic Limit (HHEL),

wave profiles. The volumetric s

compressed volume and initial volume,

presented in Table 2 and the wave profiles are presented in Figure 1.

Ballistic penetration
penetrators impacting

of penetration are provided in Table 2.
DETERMINATION OF CONSTANTS FOR THE JH-2 MODEL

The JH-2 model is summarized in Figures 2 and 3. The strength of the material is described
by a smoothly varying function of the intact strength, fractured strength, strain rate, and
damage. The normalized strength is given by .

where o*; is the normalized intact strength, 0*fis the normalized frac
ormalized equivalent stresses (0%, 0%j

the damage (0<D<1.0). The n
the actual equivalent stress and OHEL is the equivalent stress

form, o* = G/OHEL, where C is

o* = 0% - D(0%; - 6¥p)

at the HEL. The normalized intact strength is given by
o*; = A(P* + T*)N (1 + CeIne¥)
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experimental results were reported by Anderson et. al. [3]. Tungsten
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Figure 1. Flyer Plate Impact Tests for Float Glass

and the normalized fractured strength is given by -
o*s=BE*M (1 + Colne*) 3

where the material constants are A, B, C, M, N, and SFMAX. SFMAX is an optional fracture
strength parameter that allows the normalized fracture strength to be limited by
o*; < SFMAX. The normalized pressure is P* = P/PHEL, where P is the actual pressure and

Pygy is the pressure at the HEL. The normalized maximum tensile hydrostatic pressure is
T* = T/PHEL, where T is the maximum tensile hydrostatic pressure the material can
withstand. ‘The dimensionless strain rate is €% = &/&,, where € is the actual strain rate and
£, = 1.0 s is the reference strain rate.

The damage for fracture is accumulated and is given by

where Agp is the plastic strain during a cycle of integration and z—:pf = f(P) is the plastic strain
to fracture under a constant pressure, P. The specific expression is given by

epf =D1(P* + T*)D2 ®)
where D1 and D2 are constants and P* and T* are as defined previously in equation (2).
The hydrostatic pressure is given by

P =Klep +K2ep2 + K3ep3 + AP 6)
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where K1, K2, and K3 are constants (K1 is the elastic bulk modulus), and 1 = p/po - 1 for
current density p and initial density po. After damage begins to accumulate (D>0), bulking
can occur by adding an additional incremental pressure AP. The pressure increment is
determined from energy considerations. The incremental internal elastic energy decrease due
to damage is converted to potential internal (hydrostatic) energy by incrementally increasing
AP. An additional constant, BULK, is the fraction of the elastic energy loss converted to
potential hydrostatic energy. When BULK = 1.0, all the internal elastic energy loss is
converted to potential hydrostatic energy.

A summary of the constants for float glass is presented in Figures 2 and 3. The strain rate
constant, C, provides a measure of the strain rate effect. It influences both the intact and
fractured material strength and is determined directly from the test data. C is determined
from tension data and uniaxial compression data at two strain rates (tests 1 through 11 from
Table 2) and is presented in Figure 4. On the left side of Figure 4 the average uniaxial
compressive strength is shown for two strain rates as a function of the pressure. A straight
line is drawn from the maximum hydrostatic tensile pressure, T, through each point. The
change in slope between the two lines is a measure of the strain rate effect. The change in
strength, due to strain rate alone, must be determined at a constant pressure, P. The strength
is determined at a constant pressure P = 0.30 GPa. The normalized data are plotted as a
function of strain rate on the right side of Figure 4. A straight line is drawn though the data
and the strain rate constant C = 0.003 is obtained. The tensile strength, T =0.015 GPa, is
determined by taking the average Ox from tests 9 through 11.
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Figure 4. Strain Rate Sensitivity and Constant Determination for Float Glass

Equation 2 describes the intact material strength. It is defined by three constants A, N, and C.
The constants A and N are determined by initiating the curve at T*, driving it through the
average normalized uniaxial compressive strength (tests 1 through &) and the normalized HEL
equivalent strength at a strain rate €%=1.0. If the hydrostat of the material is known, the
components of pressure, Pggr,, and the equivalent strength, GHEL, ¢an be determined by the
relationship HEL = PygL, + (2/3)0HEL, and constants A and N can be determined explicitly.
If the hydrostat is not known, as is the case for float glass, an initial estimate of the pressure at
the HEL is made using the relationship Pggj, = K1+iygy, where yrr=prri/Po - 1.0 and X1
is the elastic bulk modulus. The initial estimates of A and N are determined from the
estimated hydrostat. These constants are finalized after the hydrostat is determined. .
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The hydrostatic behavior of brittle materials is difficult to obtain directly. Different
techniques have been investigated by various researchers, but questions remain as to their
validity [5, 6, 7). Here, a computational iterative technique has been developed to obtain the
hydrostat, damage model, and fractured material strength using results from flyer plate impact
tests and ballistic tests.

Using the estimated intact material strength determined previously, computations of the flyer
plate impact tests and ballistic tests are performed. Various hydrostat constants, damage
model constants, and fractured strength constants are investigated. These constants are
iterated until the computational results match the test results for both the flyer plate impact
tests and the depth of penetration ballistic tests. The resulting hydrostat, damage model and
fractured material strength are presented in Figures 2 and 3.

Using this technique, it became apparent that the results for the flyer plate impact
computations were most sensitive to the hydrostat, damage model, and SFMAX, while the
results for the penetration computations were most sensitive to the fractured material strength
below SFMAX. This is probably due to the fact that the average pressures that occur in the
flyer plate impact tests are much higher and cover a much larger range than those that occur
in the penetration tests. —

The hydrostat for float glass, shown in Figure 1, displays an interesting characteristic where
the bulk modulus decreases between the HEL and test 12. This behavior is characteristic of
glass and is consistent with previous observations [8,9].

Using the defined hydrostat in Figure 1, the components of pressure, PHgL, = 2.92 GPa and
the equivalent strength, oggL = 4.54 GPa at the Hugoniot Elastic Limit (HEL) are
determined. These values are used to update the intact material strength constants to obtain
A =0.93 and N =0.77.

COMPUTATIONAL RESULTS

Computational comparisons to the flyer plate impact tests are presented in Figure 5 and show
good correlation. Also shown is the equivalent stress-pressure path that the model produces
for test 12. This demonstrates the gradual softening that occurs between points 2 and 3 which
produces the di§Pursed wave front between the HEL and peak Hugoniot stress. ’

The ballistic tcs¥ data from Anderson et. al. [3] were simulated to not only provide constant
determination, but to investigate the penetration process and the effect of bulking. Figure 6
shows CTH computational results for both ballistic tests. Note that bulking of the float glass
tends to close the hole behind the penetrator. Similar results were obtained with the SPH
option in the EPIC code.

SUMMARY

Experimental data, on a well-defined glass material, has been presented for a wide range of
strains, strain rates, and pressures. The test data were used to obtain constitutive model
constants for the Johnson-Holmgquist improved (JH-2) brittle material model. The technique
used to obtain constants, including computations of the flyer plate impact and ballistic tests,
was also presented. The results of the computations show that the model and constants can be
used to simulate both wave propagation and penetration. The effect of bulking has also been
demonstrated.
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