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ABSTRACT

The problem of heat transfer from media that absorb and
scatter thermal radiation has been studied analytically. The funfia-
mental quantities and definitions of the theory of thermal radiation
are presented in a form useful for application to the radiant heat
transfer problems. The aim was to formulate the various concepts
with maximum generality. The basic equation of radiant heat trans-

 fer, which governs the radiation field in a media that absorbs, emits
and scatters thermal radiation, has been derived.- The mathematical
analogy between thermal radiation and neutron transport is pointed
out, and a few illustrations of the applicability of the solutions ob-
tained for neutron transport problems to the radiative transfer prob-
lems are given.

The derivation of the integral equations for radiant heat
exchange in a general enclosure composed of a system of surfaces
separated by an absorbing and scattering media is presented. The
enclosure walls under consideration can reflect specularly and the
scattering from the medium is not considered to be isotropic. The
equation for the conservation of energy, including contributions due
to thermal radiation, was derived by evaluating the energy trans-
ported into an imaginary .closed surface fixed in space and then by

applying Gauss's divergence theorem. The formulations developed
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are then used to gain insight into the problem by considering a few
simple physical situations and obtaining numerical results for the
grey case only.

The Rosseland approximation for the radiant flux vector is em-
ployed in the study of Couette flow. It is found that for large optical
thicknesses the temperature distributions calculated agree well with
those predicted by the exact formulation.

Numerical solutions of the boundary layer equations for the
flow of a radiating media along a wedge were obtained. The effect of
radiation is to decrease the temperature gradient for both the hot é.nd
the cool walls; however, the heat transfer is affected only little. The
validity of the diffusion approximation for radiation in boundary layer
problems is limited, and should be used with caution only in situations
where the mean free path of radiation is much smaller than the ther-
mal boundary layer thickness.

The transport of radiant energy between two parallel plate;
separated by an absorbing and scattering media is studied. Thé terh—
perature distributions were obtained by solving the nonhomogeneous
Milne integral equation of the first kind. It was found that the poly-
nomial approximation for the black body emissive power is satisfac-
tory for all values of the optical thickness.

The transport of energy by simultaneous conduction and
radiation in a one-dimensional system has been considered. A
nonlinear integral equation governing the temperature distribution in
an absorbing media was solved. The results showed that the temper-
ature distribution was strongly dependent on the optical thickness of
the slab and on the dimensionless parameter, N, which determines
the relative role of energy transfer by conduction to that by radiation.
The presence of radiation generally increases the heat transfer by

conduction,



I. INTRODUCTION

Little theoretical or experimental engineering work has been
done on heét transfer in media which absorb and scatter thermal
radiation. Some studies which are primarily limited to the problems
occurring in boiler furnaces and combustion chambers have been
made. On the other hand, during the past sixty years, dstrophysicists
have given considerable attention to problems connected with radiation
transfer in planetary atmospheres, the sun, nebulae, and galaxies.(lg’
68, 103, 4) Recent interest in radiation transfer has been stimulated
by its similarity with neutron transport, energy tran‘sfér from high-
temperature gases and plasmas, meteorological problems, atomic
explosions and fusion reactions. The recent developments in hyper-
sonic flight, missile reentry, rocket combustion chambers, gas~-cooled
nuclear reactors, and power plants for interplanetary flight have
further emphasized the need to better understand the transfer of
energy by radiation through absorbing and scattering media.

Heat transfer in an enclosure containing an absorbing and
scattering medium, whether the medium is stationary or in motion, is
one of the most complex problems occurring in engineering practice.
In this case, a determination of the energy fluxes requires the solution
of a system of coupled conservation equations, namely, the differential
equations of motion, the integrodifferential eqﬁation of energy and an
integral equation which expresses the radiosity at any point on the
enclosing surface. The complexity introduced by the radiative contri-

bution to the energy flux is in part due to the dependence of the flux on



the geometrical conﬁguratibns of the system, which is further compli=-
cated by the interreflections caused by the presence of walls - the
essential element of any engineéring system. There are no available
general solutions. for heat transfer problems in media which é.bsorb
and scatter thermal radiation, and only a few simplified attacks have

93, 58, 3, 30) Until recently, the temperature distribution

been rriade.(
in a radiating medium has been calculated on the assumption that. the
medium was nonradiating. The basis for this assumption was that
radiative energy exchanges do not affect temperature and velocity
distributions in a flow stream, as do the usual dynamic and convective
processes. The assumption is tenable when radiant energy transfer is
small compared to other transport phenomena. When radiant energy
transfer is of the same order of magnitude as other transport proc-
esses, a temperature distribution cannot be derived without considera-
tion of the radiative term.

The present work h'.a‘s been undertaken with the hope that it
will contribute to some extent toward better understanding of heat
transfer in thermal radiation absorbing and scattering media, as well
as in stimulating further interest in this technically important area.
Thus, the purpose of this study was twofold: (1) formulation of the
general heat transfer equations for thermal radiation absorbing and
scattering media in the pres‘ence of the usual dynamic and convective
processes, as well as (2) solution of specific heat transfer problems.

To this end, a thorough survey of literature on radiative
transfer through absorbing and scattering media was made. This in-
cluded surveying many contributions in _fields.usually unrelated to
engineering heat transfer, such as astrophysics, meteorology,
illumination, communication, and neutron transport. Certain works =
particularly some published in the USSR - ére not available in this

country. Although the survey is exhaustive, it therefore may not be

complete.




The radiative properties of the medium were not dealt with;
but the foundations of the theory of heat transfer in thermal radiation
absorbing and scattering media were examined and the general equa-
tions derived explicitly. |

Concepts and results of many uncorrelated investigations of
radiative transfer in the various fields, particular‘ly from astrophysics,
were used. The equations derivéd are detailed and assumptions
explicitly stated so that all steps can be readily foliowed. The general
equation of transfer is formulated and various special cases are dis-
cussed. The integral equations for a general enclosure are expressed
in two different forms. Finally, the general energy equation for a
medium in motion in the absence of electric and magnetic fields, as
well as when concentration gradients are absent, is derived.

To fulfill the second purpose of this work, it was first neces-
sary to gain insight into the problem. This was ;ione by considering
reasonably simple physical situations. In this way the essential
features of the formulations were retained and the distractions of
complex geometrical relationships were avoided. For this reason,
one~dimensional systems are considered and the effect of radiant
energy transfer on heat transfer is investigated, where the Rosseland
approximation for the radiant flux is used; the transport of radiant
energy between two parallel plates is studied; and simultaneous con-
duction and radiation between two parallel plates is considered.

Oppenheim(72) in discussing the engineering radiation problem
-made distinction between three methods of attack: accounting,
network and calculus. If energy transfer by convection or conduction,
or both, cannot be neglected compared to the energy transfer by
radiation, the temperature gradients are required for the calculation
- .of heat transfer rate. The accounting and the network methods are

not suitable for the calculation of temperature distribution and




temperature gradients in thermal radiation absorbing and scattering
media. For this reason, the calculus method of attack is used

throughout this work.




2 DEFINITIONS AND CONCEPTS

2.1 Introduction

The present section is intended to define some fundamental
quantities and to present certain of the results of the theory of thermal
radiation in a form useful for application to the problems of radiant
heat transfer. In formulating the various concepts, maximum gener -
ality is aimed at. The basic quantity is formed by the definition of the
intensity of radiation. No proofs are given. The reader is referred

(78)

to Planck's treatise on thermal radiation for the most complete
account of the physics and thermodynamics of radiation. The usual
treatment in books on radiation is supplemented, and the validity of
Kirchhoff's law to systems not in thermodynamic equilibrium is dis-

(68)

cussed by Milne.

2.2 The Monochromatic Intensity of Radiation

The analysis of the radiation field requires a consideration of
the radiant energy, Aqr,- in a specified wavelength interval between A
and A + AX which is emitted from, reflected from, and/or transported
across an element of area AA and confined to an element of solid angle
AQ in direction Q making an angle 6 with the outward normal n to
AA, during the time interval betweent and t + At (see Fig. 2.1). This
radiant energy is exprés sed in terms of monochromatic intensity of

radiation, I, , and is defined as radiant energy passing through the




surface (or emitted by the surface
and/or reflected from the surface)
per unit solid angle, per unit of time,
per unit of wavelength and per unit

area perpendicular to the solid angle.

Mathematically, the monochromatic

intensity of radiation is defined by F16. 2.1
DEFINATION OF THE INTENSITY OF RADIATION.

the following limit:

4 A qr ‘dqr'
I. = lim - _
AA AL, A0 ,AL——=0 |[cos BAA A AQAM cosBdAdtdQd

(2.1)

The appearance of cos 6 in (2.1) is due to the fact that we are consid-
-ering a pencil of rays, not in the direction of the normal T, but in the
_ direction a The quantity of-energy traveling across dA is deter-
-miné’a, ‘not by dA itself, but by its projection on a plane perpgndicular
to thédirection _Q.
| In the medium which absorbs, emits, and scatters radiation, it
follows from the definition that I, may be expected to be a function of
.the position coordinates, of the direction 5, of the time t and of the

wavelength A . Thus for a general radiation field, we can write

I>\' EA I>\‘ (X,Y)Z) QX’ QY, szt) = I)\’( r, Q ’ t)'

2.3 The Variation of Monochromatic Intensity

with the Refractive Index

Now we have to éonsider how the monochromatic intensity of
radiation varies with the refractive index, n, of the medium by con-
sidering Fig. 2.2. The integral nds taken along a curve C is known

‘ . . as the optical length of the curve.CThe radiation is propagated with the




- velocity of the light in the medium, v = c/n, along the ray:
nds = c/v ds = cdt,
where dt is the time needed for radiation to travel a distance ds along

the ray.

FlG. 2.2
BUNDLE OF RAYS PASSING THROUGH A MEDIUM
HAVING A VARIABLE INDEX OF REFRACTION.

The principle of Fermat, or the principle of the least time, ac-

cording to Born and Wolf(7)

PZ PZ .
nds = € dt (2.2)
Pl Pl - .

.of any ray between.any two points P, and P, is shorter than the optical

states that the "optical length

length of any other curve which Ajoins these points and which lies in a
certain regular neighborhood of it." In other Words, Fermat's prin-
ciple asserts that, given a starting and end point(s) for the path and ‘
given the velocities in the first and second media, the incident radia-
tion“travels along a path by which it reaches the th point of the second:
medium in the shortest possible time.

Denoting~by square brackets the optical length of the ray which

. joins points P; and P,, we have
P,

[
[PiP;] = nds = ¢ f dt = £ (Py) - £ (P>) , (2.3)
JP, JP, A

where / (T ) is the eikonal and [grad £ (T )] = n? is known as the

. eikonal equation; it is the basic equation of geometrical optiés.(7)



The surfaces:,e( T ) = constant are called geometrical wave surfaces

or geometrical wave fronts.

Finally, by applying the law of conservation for energy to an

(7)

arbitrary pencil of rays, as shown in Fig. 2.2, it can be shown' ’ that
the variation of intensity along each ray is expressed in terms of the

function <£ . Thus, the ratio of intensities at any two points of a ray is

52

2 -
f VZOZZ n, -f viy ds
ae n S3 n

1>“Z_ n 1 m (2.4)
I)»’l. ! n

2.4 The Monochromatic Energy Density

The monochromatic energy density of radiation at a givén
point, u;, is the amount of energy per unit wavelength in transit in a
unit volume, in the neighborhood of the point. Mathématically, the
monochromatic radiant energy density is defined by the following
limit:

lim Aclr _ dqr

YA T AV, AA—0 | Avax | T avda

(2.5)

The dependence of u) on I, can be obtained by considering

Fig. 2.3. Consider a small volume, AV, enclosed by a convex surface,
2, in such a way that the distance from it to any pofnt of the surface

2 is very iarge compared with the dimensions of the element AV itself,
Consider a beam of rays entering the volume bounded by 2 and pass-
ing through elements of area d3 and dA. Let 6 denote the angle which
the normal to dA makes with the line joining dA with dZ. Further, let
the element d2 subtend a solid angle dQ at dA. Then the quantity of
radiant energy passing through the area d2 which also flows across

dA in time dt in the solid angle d{} and in the wavelength interval




F1G. 2.3 .
GEOMETRICAL DATA FOR THE CALCULATION OF
RAD1ANT ENERGY. DENSITY.

between A and A +-d) is

I, cos 6dAdQd Adt,

A
where IX is the monochromatic intensity of radiation in a medium hav-
ing refractive index n. The radiation stays in AV as long as it takes
to traverse the length £, that is dt = ,Z/(c/n), where c is the velocity

of light in vacuum. Thus, the amount of radiant energy in course of

transit through AV by the pencil of radiation considered is
‘ n . '
Y ov - . f : l: f I, cos GdAds:, a2 . ' (2.6)
' Q=4m AV :

The product cos 6dA-£ is the volume of the cylinder dV, whose length

is £/ and base area cos 6dA. The monochromatic energy density be-

comes

uX;CZV f [f Ikdv:,dQ. | (2.7)

Q=47 AV

- For the special cas'e of isotropic radiation and constant index of re-

fraction equation (2.7) reduces to



10

2.5 The Absorption, Scattering and Emission Coefficients

-

~The interaction between radiation and matter is usually exl-
pressed iﬁ terms of an absorption coefficient, a scattering coefficient
and an emission coefficient, all of which are defined in this section.

In defining these fundamental quantities, "the Eulerian" instead

(52)

of "the Lagrangian point of view" is used. In the Lagrangian point
of view, the movement of individual particles (photons) is followed.

In the Eulerian point of view; local variations in the radiation field
itself are considered. The radiative transfer theory makes exclusive
use of the Eulerian point of view. The evolution of single particles is
not followed and no reference is made to the history of each individual
pAarticle.

The temperature distribution in any region of a medium is
determined by the interaction between radiation and matter. The proc-
esses of thermal conduction and convection play a part in establishing
th‘ebtemperature distribution as well. In the case of pure scattering,
radiation has no relation to the temperature. As soon, however, as
absorption and emission play a role, we should have information as to
how radiation is related to the temperature of the matter. At present,
we are interested only in those absorption processes which lead to the
conversion of radiant energy into thermal energy, and, conversely, of
thermal into radiant energy. ‘ '

It is implied with regard to processes of this kind that there is
no direct connection between the absorbed and emitted quanta. Each

absorbed quantum of wavelength A is entirely lost, and thermal energy
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thereby gained by the medium is emitted in other wavelengths after
some time. Absorption in which energy is converted into thermal
energy (with possible subsequent re-emission in other wavelengths) is
called true absorption. It can be further separated into true continuous
absorption and true selective absorption or line absorption. These two
types of absorption, as well as line broadening due to cqllisions and
statistical broadening of lines, the Doppler and pressure effecté, are
discussed by Ambartsumyan.(4)
A pencil of radiation traversing matter is usually weakened by
absorption as it is propagated. Consider a monochromatic pencil of
radiation of intensity I)& . As a result of passing through the medium of
thickness ds, the decrease in intensity will be dIX . The coefficient of

absorption or decrement in intensity of radiation, k. , is thus defined

A
as
L, = - Kk, I,ds. (2.9)

This definition is valid for both the continuous and the line absorption.

(13,4)

In some astrophysics books the decrement in intensity of radia-

tion is defined in terms of mass absorption coefficient, Km,x as
Kl: me,X '

The absorption coefficient is a property of a substance. It de-
pends on pressure, temperature and the chemical and physical condi-
tion of the substance. Physical theory, confirmed by experiments,
shows that the absorbing power of any material depends on the physical
conditions in which the material is placed. The absorbing power and
its dependence on the physical conditions are different for different
chemical elements. Hence, the resulting absorption coefficient, deter -
mined by the chemical composition of the whole medium, will depend

markedly on the relative content of various elements in the medium

under consideration.
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A pencil of radiation of monochromatic intensity I, is also
weakened by the loss of radiation which is not absorbed by the media
but merely redistributed, that is, scattered in direction. A material

is characterized by a scattering coefficient ¢, if from a pencil of

A
radiation incident on an element of volume of cross section dA and
height ds, the amount of energy scattered from it in all directions is
0,1, cos 6dA dsdQdXdt . | (2.10)
This definition of the scattering coefficient is equivalent to

definitions of references (13) and (4), in which the mass scattering

coefficient, © , is defined as
2 m,>\-

‘OX = pcm’k

To formulate more quantitatively the concept of scattering, .

Hopf(js) introduced the scattering function ~y( T, 0 — 5) such that
- - = 4O
Oxlk'y( r, Qr—Q) rm dvdQdadt (2.11)

 gives the energy which is scattered into an element of solid angle d {)'.

—

Referring to Fig. 2.4, we sée that ' is a unit vector in the direction
of pgnqil of rays before cbllision; K_Z.is the unit vector after coliision;
® is the angle between _S'; and EZ.; 0 is the polar angle and ¢ is the
azimuth. The loss of radiant energy from the pencil of rays due to
scattering in all directions is

o, dvdQdAdt f v, @ == IX(—;, QL tde . (2.12)

A Q'=4m am
This agrees with (2.10) if

— — — dQl
i
Q'=4m am

—

i.e., if v is dependent of direction § .
The process where the wavelength of the re-emitted quantum is
exactly the same as that of the absorbed quantum, the two quanta dif-

fering only in direction, is called coherent scattering. ‘In writing(2.12)
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we have obviously assumed that
we are concerned with purely co-
Q! herent scattering, since thé ab-
) sorbed energy is re-emitted in
‘the same wavelength. 'For non-

coherent scattering of radiation,

Q
5‘“7* Y the expression (2.12) has to be

// modified.(4)

Since the effect of

noncoherence in radiant heat

X > ~ transfer problems. is not known,

FIG. 2.4

COORDINATE SYSTEM FIXED ON STATIONARY VOLUME
OF THE RADIATING MEDIUM.

it will not be considered in this

work. Further discussion.on

~both coherent and noncoherent scattering can be found in books on

4,10
astr0physics.( 3)

Let a volume element, dV, of the medium emit radiant energy,
dqr, in all directions. Then in time dt and in the wavélength interval
between A and A+ dA this element will emit within the solid angle
dQ) an amount of energy ‘ A

dq_ = ek(_; ,Q,t) dvdQd adt . | (2.13)
The emission coefficient. €>\(_1.' ,5,t)* is defined as the energy emitted
by a unit volume of medium per unit solid angle, per unit wavelength
and per unit of time. In general, it depends on the wavelength, the
composition of the emittiﬁg media and on direction. The position vec-

tor —1" is included in € r,Q,'t)to indicate that the emission coefficient

3\

' depends on the location of the element of volume.

: — ,
*The emission coefficient, 6)\( r ,—Q,t), is not really a coefficient.

This nomenclature is used in all books on astrophysics, however.
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The monochromatic energy emitted from the volume element
dV in the time dt, in the wavelength interval dX, in all directions is
dq_= dthdx/ e(T.00de . (2.14)
Q=4
For the case of isotropic emission, that is €>\(—;

pression (2.14) may be written as

dq_ = 4me, (T ,t)dvdadt . (2.15)

For a more complete discussion of interaction of photons with
matter and the distinction between the photons incident and emergent

(52)

in a given direction, reference is made to Kourganoff.

2.6 Thermodynamic, Local and Radiative Equilibrium

A system which is not experiencing any change with time is
said to be in thermodynamic equilibrium. This means that three types
of equilibrium: thermal, chemical and mechanical, must exist simul-
taneously. First, there must be thermal equilibrium so that the tem-
perature is the same throughout the whole system or only a part of the
system, and this temperature is the same as that of the surroundings.
Second, if the system consists of more than one substance, there must
be chemical equilibrium, so that the system does not undergo a spon-
taneous change of internal structure. Finally, the system must be in
mechanical equilibrium, that is, there must be no macroscopic move-
ment within the system itself and also between the system and its sur-
roundings. The properties of a sysfem in thermodynamic equilibrium
provide a useful basis for consideration on nonequilibrium phenomena

which occur in all forms of energy transport.
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The thermodynamic analysis of radiation cilearly shows that
the value €>\/n2}c \? which is constant throughout any enclosure, is the
same for any two enclosures at the same temperature and is a univer-
sal function of temperature. The intensity of A radiation in the medi- A
um is equal to the value e:k/nZ Ky - The radiation in an isothermal
enclosure at a temperature T is called "black Body radiation" at a
temperature T. Thus, the coefficient of emiésion, €y » of any matter

in an enclosure at temperature T is given by the Kirchhoff law

€y = n’ky Ly A(T) (2.16)

Here Ibb >»(T) is the monochromatic intensity of black body radiation
given by Planck's law:
2 c®n

Lbb,>» - 5 .(exp ch 1) (2:47)

’

AkT
where k and h are Boltzmann's and Planck's constants, respectively.
It is sometimes useful'to express lbb,)\ as a function of a frequency
instead of a wavelength. We note that
VA = ¢
and

Lo, 37 = "L, M
hence

_{~2
Tb,v =% /Mg,
Introducing this result in (2.17), we find that
2hv?

lbb,v - 2 ( hv 1)

c® {exp T -

(2.18)

If the system we are considering is not an isothermal enclo-
sure, we still introduce the concept of thermodynamic equiliBrium so
' that we can define the temperature unambiguously. We assume that’
we can define at any small region of the medium of the system in con-

sideration a local temperature T, such that the emission and absorption
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coefficients are thé same as in thermodynamic equilibrium and that
Kirchhoff's law is valid.(68) This is clearly a simplifying assumption.

Thus, in a nonisothermal enclosure, the temperature may vary
from point to point, but each point may be characterized by a definite
temperature T so that an element of matter at each point is behaving
as if in local thermodynamic equilibrium at te/x:nperature T. It is to be
noted that the hypothesis of local thermodynamic equilibrium is dis-
tinct from the equilibrium case ;yhere the temperature is constant
fhroughout the region of the medium considered.

If the radiant energy absorbed per unit time by the volume AV
is equal to the radiant energy emitted per unit time by the same vol -
ume, then the system in consideration is in radiative equilibrium.
Radiative equilibrium prevails, for photon radiation, in any isothermal
system that is shielded from external radiation. In such an equilibrium
state, the entire system contains uniform energy density of photons,
moving indiscriminately in all directions at the speed of light. The
distributiop of energy density and direction of the photons is likewise
uniform for photons within any given wavelength interval. This kind
of radiétion is called isotropic. Such radiation produces no net energy
flux, due to the complete balance of oppositely directed photons at all

. points.

2.7 Radiation from Surface and Volume

It is nece'ssary to distinguish between radiation from a surface
and from a volume. The radiation from a surface element dA is taken
over the herﬁisphere; solid angle = 27, while the radiation from an
element of volume dV of a radiating medium in all directions is taken
over the sphere, solid angle = 4m(see Fig. 2.5). A summary of anal-

ogous quantities and definitions is given in Table 2.1.
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FiG. 2.5

GEOMETRICAL DATA FOR THE EVALUATION
OF SURFACE AND VOLUME RADIATION,

Table 2.1

Summary of Quantities and ‘Definitions for Radiation from a Surface and a Volume
Opaque Solid Transparent Media
oy Monochromatic absorbtivity Ky Monochromatic absorption coefficient
Py Monochromatic reflectivity 9 Monochromatic scattering coefficient
- I'{r,Q— Q) Reflecting function v{,Q—+Q) Scattering function
EX(-;’ t) Monochromatic emissive power gk(?' t) Monochromatic emission
' -
E;\ (r,t)  Monochromatic irradiation gk (r,t) Monochromatic incident radiation
E >\(i",t) Monochromatic radiation &’ N (¥,t) Monochromatic radiation absorbed
M . absorbed by a unit area 2 by a unit volume
E )\(i-’,t) " Monochromatic radiation Z (Tot) Monochromatic radiation
’ reflected from unit area s, A scattered from a unit volume
(T.t) Radiosity -monochromatic energy g )‘(;.t) Effective emission-monochromatic
leaving a unit area € radiant energy leaving a unit volume
E (Tot) Net radiant energy flux (f )»(?'t) Net emission - net monochromatic
A ™ radiant energy emitted from a unit
volume

The reflecting function I'( r,Q'—=Q) is similar to the scattering

.

function discussed previously, and it takes into account specular (non-

diffuse) reflection from surfaces. The quantity I'( r,Q'.— Q) dQ' rep-

—

resents the probabi‘lity that a pencil of rays of directioen‘ ' incident on

a surface is reflected into direction §!, making an angle © with the

original ray.
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The various definitions and identities describing the heat trans-

fer at a surface and on a volume of an emitting and scattering medium

are introduced below and the radiant flux vector defined:

Radiation from Surface

Monochromatic Emissive Power

Radiant energy emitted normally
from the surface per unit area,
per unit time, per unit wave-
length in all directions

EX( r,t) =

/ I (—r.,a,t) cos 64Q.
Q=21 (2.19)

Monochromatic Irradiation

Radiant energy incident normally

on a surface per unit time, per

unit area, per unit wavelength

from all directions

E, (T, t) =

f I, (r,Q,t) cos 6d Q. (2.21)
Q=2m ‘

Radiation Absorbed

Radiant energy absorbed by the
surface per unit time, per unit

area, per unit wavelength

E Tt) = axE;\(?, t)

ak(

—ocxfg 27le(r Q. ,t) cos 640 .
(2.23)

Radiation from Volume

Monochromatic Emission

Radiant energy emitted from a
unit volume of the medium per
unit volume, per unit time, per

unit wavelength in all directions

E () =

A -—-o

f9,4’n( 't d

Monochromatic Incident Relation

(2.20)

Radiant energy incident on a
unit volume of medium per unit
time, per unit area, per unit

wavelength from all directions

g;\(-r’,t) = cuy

f Iﬂzﬁﬂdﬂ.
Q=4m

Radiation Absorbed

(2.22)

Radiant energy absorbed by a
unit volume of the medium per
unit time, per unit volume, per

unit wavelength

AN EDROWAN )

a,

= ICX/Q—‘} I, (r.Q,t) 4.
= (2.24)




Radiation from Surface

Radiation Reflected

Radiant energy reflected from a
surface per unit time, per unit
area, per unit wavelength in all

directions

P
—- A
E 1) = —
r:X(r ) 2
[ r ?,-ﬁ Q)1 (?,ﬁ,t) dQ‘]
£2=27rl:£2'=2$r ’ A
cos 6 4. (2.25)
Radiosity

" Radiant energy leaving a sur-
face (7 = 0) per unit time, per
unit area, per unit wavelength in
all directions

(T, ) +E _(T,t).

R, (r,t) = E -

A A

Net Radiant Heat Flux

Net radiant energy exchange at
the surface per unit time, per

unit area, per unit wavelength

En,k(?,t) = RX(I-'.,t) - E;\(?, t)
= E)\ (-I?,t) - ax(?)
E, (T,1). (2.29)

19

Radiation from Volume

Radiation Scattered

Radiant energy scattered from
a unit volume, per unit time,
per unit volume, per unit wave-

length in all directions

(o

- A
,t) = A
EaFo= 2

CY (-r., S-Z.'-,-’Q)I (—;,—Ki',t)
/§‘2=4Tr [/Q=4ﬂ A '

dQ'] aq. (2.26)

Effective Emission

Radiant energy leaving a unit
volume in all directions per
unit time, per unit volume, per

unit wavelength in all directions

£ (F= E(T.0)+ (fs,x(-;,t).

e, X A

(2.28)

Net Emission

Net radiant energy emitted by a
unit volume per unit time, per

unit volume, per unit wavelength
gn, AT = ‘gx(i’t). (‘gga A5t
? [ bb, A7)

S (T t)]. (2.30)

]

al
>
0
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Radiation from Volume

Radiant Flux Vector

Radiant flux vector is defined

as the integral of the intensity

in the direction of the unit vec-

tor ?2.1 over the unit sphere

(solid angle, Q = 4m)

Ex (r.t) = / I, (T, %)% d0
{=dm (2.31)

2.8 Total Quantities

Thrbughout this work the monochromatic quantities (per unit
wavelength or in the wavelength interval between A and A + dA) are
denoted by a suffix A. The total values of~enefgy quantities (defined
in the previous sectioh), i.e., intensity, emissive power, emission,

etc., are defined as

[o0]
f =f £,d2, (2.32)
0

where f is the desired quantity. The average radiative properties are
obtained by integrating the monochromatic values over the entire

spectrum from o to » ,

fm
' gy Wy dA :
g= X —"— (2.33)
f Wy dx
0
where % is a weight function. The weight functions corresponding to

a given property are presented in Table 2.2.
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Table 2.2

Weight Functions for Radiative Properties

Property, g Oy Py Ty 2N a5

1 1
Weight function, wy, | Ey | By | B | £y | &

For the total quantities the suffix A will be omitted and no ambiguity is

likely to arise from it.

2.9 The Pressure of Radiation

The existence of radiation pressure follows from Maxwell"s
electromagnetic theory of light as well aé from quantum theory and
thermodynamics. According to quantum theory, the quantum of energy
hv possesses momentum h'u/é in its direction of propagation. It fol-

lows from this that radiant energy of amount . traversing a medium

in a specific direction carries w%th it a momentum qr/c. The momen
tum exerted is in the same direction as the pencil of radiation.

To detérmine the mechanical force exerted by the radiation in
any direction, consicier a thin cylinder of éross-sectio'nal area dA and
length ds the axis b‘ein‘g’in the direction _\5 (see Fivg. 2.6). The amount -
of energy incident onA dA in the directions contained in the solid angle
dQ about Q in the wavelength interval d A during time dt is

IX cos 6 dAdQdAdt . S (2.34)
The amount absorbed is obtained by multiplying by 'Ickds/cos 6. The
normal component of momentum in direction @ is obtained by multiply-

ing by cos 6 and dividing the radiation absorbed by c
(l/c) Ky 1y cos GQA'ds dQd >§dt
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et 48—t

FIG., 2.6
GEOMETRICAL DATA FOR THE EVALUATION - \
OF THE RADIATION PRESSURE ON THE SLAB
OF RADIAT:ING MEDIUM,

To obtain the normal force 'per unit area, we divide by the area dA and
the time dt. Integrating over all direction, we find that the radiation

pressure over all wavelengths of slab thickness ds is

. m '
_ kyds
p.= % / [é I, cos 6 dQ] dx (2.35)
0 =47 )

where the integral on the right side of the above equation is the total

radiation flux normal to the slab. Equation (2.35) gives the normal

force per unit area of slab thickness ds.

The pressure at a point P is defined as a rate of transfer of
momentum normal to an arbitrary chosen infinitesimal surface dA
containing P. To obtain the pressure we divide expression (2.34) by c.
The normal component of momentuim across dA by the pencil of radia-
tion in the wavelength interval A and A + dX is o

(l/c)IKcosZ 0dA dfidAdt

The total radiation pressure is the momentum transfef per
unit area and is obtained by integrating the above over all directi'ons,

) = 47, all wavelengths and dividing by dA.

oo .
_ 1 2
P, ——C-f [/ I, cos edQ] dx . (2.36)
0 Q=4m :
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A more general way of calculating the pressure due to radia-
tion is to consider an element of surface normal to the vector n. The
rate of transfer of the x component of momentum per unit area per

second by radiation confined in a solid angle dQ in the direction

(direction cosines  , Q , Q) is
x' 'y =z
(1/c)1 Q}i dQ

The total rate of transfer of momentum in the x direction across the

element per unit area per unit time is then

l/ IQ% 40
C Q=47T X

But this as well as (2.36) simply define the x-component of pressure
exerted across the element under consideration. We write it as By
In the same way, the y and z components of pressure across the same
element are, respectively,
1 1
P. == I Q d4dQ; p == I1QQ-dQ
Xy € Jocam XY Xz C Q=dm X'y

By considering the stresses exerted across three perpendicular

(68)

planes, each stress having three components, one obtains a stress

tensor whose components are

Bex pxy Bz 1
= == 1QQdQ i =xyz , (2.37
By Rrx By B " L8, j=xy (2.37)
P, P P Q=4m

ZX "zy "zz
where Qi and Qj are direction cosines. This tensor is partly analogous
to the stress tensor in fluid dynamics and elasticity. We observe that
it is symmetrical, Pij = le If the radiative viscosity as well as the
term depending on the second-order témpe_rature gradients are not
neglected, a more complete expression for the pressure tensor is

obtained.(4‘3)
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The mean pressure, p_, is defined as

1 1 u
P =3 (R + Pyy T 7,5) = 32 ./{2-47r1d9 = 3o (2.38)

when the radiation is isotropic. In the general case the x-component of

force on a unit volume dxdydz is

3p 3 op
F = - = Pxy + Xz dxdydz , -(2.39)

* Ox dy dz

with similar expressions for the y and z components.

For black gas radiation, equation (2.38) becomes

-4 4E 40T .
= b = bb = 3.66x 1072 T* psi (2.40)

3c 3c 3c

By

where T is in degrees Kelvin. ~The radiation pressure becomes 3.66 psi
at 10.5°K. Thus the pressure of radiation could become of kinetic im-
portance in fusion reactions. The minute, but definite, effects from
radiation sources at more read.ily attainable temperatures have been
studied both experimentally and analytically. In a recent paper Jones

(44)

and Richards considered experimentally some more complicated
phenomena due to propagation of radiation in refracting liquid media.
Their experiments show that not only does radiation exert a pressure

on a mirror, but that it also gains or loses momentum when it crosses

refractory surfaces.

2.10 Thermophysical Properties of Radiation

When radiation flows in an absorbing medium, there is a pro-
gressive reduction in intensity or in amplitude which is equivalent to
the existence of a mean free path for the associated photons. By
photon mean free path is meant a path Xp traveled over, on the average,

by the photons in that time interval which elapses between the moments
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of their emission and absorption by the atoms of the substance. It fol-
lows from this definition that in a mean free path of the photon, which
is a statisticalquantity, the radiation enérgy does not interact with the
medium. If the mean free path of the photon is small in comparison to
the dimensions of the space in which the radiation energy is being
propagated, then one can often apply diffusion concepts. Radiative
transfer in highly absorbing media thus acquires some of the proper-
ties of conductive transfer. ‘

If the mean free path is sufficiently small, we can associate a

(42)

diffusi\}ity as well as viscosity with the photons. Jeans , by a crude
calculation based on the analogy with the kinetic theory of gases,
showed that the "viscosity" arising from radiation can be expressed by

1
=3 PCA, . (2.41)

r .
where C is the velocity of the photons and >\p is the mean free path.
The "thermal conductivity" is given by
= 2.
kr By ’ ( 42)

where c, is the radiative "specific heat" for constant volume. Corre-
sponding to the temperature gradient BT/ 0%, the heat flux is given by

. or _ 1 oT
Q= - k S -3 pC )\Pcv Sx (2.43)

When the carriers of heat are not molecules or atoms as in
gases, but photons, the specific heat at constant volume per unit mass

is given by

A

For black gas radiation (wifh index of refraction n=1) this becomes

d(40T*/c)
oT

1
cC =—
vVop

v
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Since the velocity of the carriers C is equal to the velocfty of light, c,

we have
= 3 . )
c,=160T /3pc (2.44)
To find the mean free path of the photons we note that the stream is
_x .
reduced in strength by e P after traversing a distance x, while the

x, Thus, the mean free path for

beam of radiation is reduced by e~
the quanta is taken to be Kp = l/lc . Making thege substitutions in
(2.43), we find that - A
_160T® JT
3k ox

Since the photons are the only carriers for thermal radiation, the equa-

r

- - (2.45)

qll -

tion also defines the "thermal conductivity" of thermal radiation,
which is given by |

— — 3
k, =-160T%/3x =16 ApoT /3 ) (2.46)

The "density" of radiation in equilibrium with a body of tem-

perature T is obtained from Einstein's law m/V = E/ch and is given

by .
u/c? = 40T*/c* . (2.47)

Now, substituting the values C = ¢ and )\p = l/lc as well as the above
result into (2.42), we obtain for radiative "viscosity" the value
4 4
u == <4°T> <£>=<4°T ) (2.48)
r 3 Cz K 3CZ/C

By making a momentum balance on a pencil of photons passing through

an element of area, Eddington(lq) obtained the same value of
radiative viscosity. A more exact calculation by Jeans(43) showed
that the radiative viscosity is given by .

K = 8cT*/15c%k . " (2.49)

(31)

Hazlehurst and Sargent have considered radiation as a photon gas.

The relativistic terms of the order (v/c) and (v/c)? have been explicitly
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calculated. The radiative viscosity has been found to be twice that
predicted by Jeans, but identical with that obtained previously by
Thomas.(loz) |

The expression for radiative "thermal conductivity" may be
combined with the expressions for the radiative "viscosity" and
"specific heat" at constant pressure to give the dimensionless radia-

tive "Prandtl number." The value of this parameter is found to be

very small at ordinary temperatures.
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3 EQUATION OF TRANSFER

3.1 Introduction

The radiative transfer problem is a quantitative study, on a
phenomenological level, of the transfer of radiant energy fhrough the
media that absorbs, scatters and emits radiant energy. The problem
was formulated by Hopf(35) over twenty years ago, and the foundations
still remain unchanged. A new approach to the formulation of the prob-
lem was presented by Preisendorfer.(82) He introduced a set of phys-
ically motivated axioms phrased in the language of measure theory
from which,'as a speciai case, the prominent features of radiative
transfer were rigorously deduced.

Equations of transfer of less general form for a medium at rest
are given in the astrophysics books of Milne,(68) Rosseland,(86)
Chandrasekhar,(13) Ambartsumyan(4) and others. In all of these refer-
ences either the scattveri‘ng or the change of intensity with time or both
were not considered. Thomas(loz) derived an equation of transfer for
a medium in motion by using the Lorentz' transformation and obtained
the equation in a for.n_'lj including éll relativistic terrﬁs in £he ratio of the
velocity of motiox‘i to the velocity of light. More recently, Synge,(l()l)
by using a different approach, arrived at a similar equation.

In this chapter theAwriter derives the basic equation of radiant
heat transfer, the equation of transfer, and by so doing, generalizes all .
previous results in non;'élativistic terms. This equation governs the

radiation field in an isotropic medium at rest which absorbs, emits and
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scatters thermal radiation. In deriving this equation the Eulerian point
of view is taken. The detailed mechanism of the interaction processes
involving atoms and the field of radiation is not considered here. Only
the macroscopic problem consisting of the study of the transformation
suffered by the field of radiation passing through a medium is exam-
ined. Thus, it is unnecessary to retain the formulation of the quantum
theory of radiation. It is also sufficient jusf to consider a parallel
beam of radiation and to follow its depletion or growth as it moves
along. |
Thermodynamic states in which temperature varies frorh point
to point in space and time are considered. However, this presupposes
the existence of a definite temperature at each point at all time. The
temperature can be uniquely defined, as mentioned in Section 2.6, only
for a system in thermodynamic equilibrium: It is therefore assumed

that'the medium is in local thermodynamic equilibrium.

3.2 Derivation of the Monochromatic Equation of Transfer

Consider a small cylindrical element, Fig. 3.1, of cross section

FIG. 3.1
_TRANSFER OF THERMAL RADIAT{ON.
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dA and length ds in an absorbing, emitting and scattering medium. Ra-
diant energy in the wavelength interval betwéen A and A+ dA, confined
to a pencil of rays of solid angle d{} about direction 5, in the time in-
terval dt, will cross the two faces normally. This monochromatic in-
tensity Ix(;, (f,t) will decrease on account of absorption and scattering
from df2; it will increase because of contributions from the emission
and scattering into the volume element.

From the definition of intensity, it now follows that the net in-

crease in the radiant energy is given by

d I)(r,,t)

dAd2d Adt
dt
We can expand dI x(—;,a,t)/dt in a Taylor series and keep only the linear

terms; thus, we have

dI)  oI) - .
& - 5t +c Q- gradI)

Using the vector identity
div (51)\) = I, div Q4+ -Q.-grad Iy = 5-grad In ,

we can write

dl) oIy -
F_ST-*-Cle(QI)‘) ,
so that
dI -.,5; S (T,9,t .
——Mzt ) dAdQd Adt = {———K(at )+ div [QIx(r,Q,t)]} dAdQd\dt.
C

The quantity Q-grad Iy = div (QI)) is the directional derivative in the

direction . Thus, if the coordinate s is laid off in the direction {,

- then

Q-grad Iy = div (QI,) = S

The distance traveled by the pencil of rays is ds = cdt, and therefore
we can finally rewrite the above expression as

dIy(r,Q,t) A A(r,2,t) - -
dt

dAdidAdt ={T + ¢ div [QI)\(r,Q,t):}dAddedt.
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The components _r.and fl. are independent variables, so that,
when differentiating with respect to one variable, the other must be re-
garded as constant. Since differentiation with respect to 5wi11 never
occur, it is not necessary to give an index _r.or 5 to the operators
"grad" and "div" to specify the variable (_;,01; 5) with respect to which
the differentiation is to be undertaken.

The radiation scattered out of and absorbed in the pencil of
rays in time dt is given by

(ky + 0y) In(r, Ot) dAdsdQdr
according to the definition of the absorption and scattering coefficients.

The amount of radiant energy scattered from direction @ into Q

into the volume element, dV = dA ds, during time dt is

[‘% fQ' Y(irs—{'——'d) I, (r,Qt) dQ'] dAdsdQdr

where y(_;, 5’—*6) is the scattering function which gives the probability
that the pencgil of rays will be scattered into direction El.from_.(s'.

The radiant energy emitted from the volume element dV- during
the time ﬁterval dt is given by

ey(r,Q,t) dAdsdQdr
according t6 the definition of the emission coefficient.

Counting up the gains and losses of radiant energy in the pencil

of rays d) during its traversal of distance ds a.nd dividing by dA ds

d2d A, we obtain the equation
OIx(r,Q,t)

oS¢ +div [QI)(r,Q,t)] = € ;\(r,Q,f) = (K + 05 (r,Q,1)
+ '—f?(r,ﬂ' - Q) Ix(r,Q',t) daa!
4T
Q' =4m :

(3.1)
This integro-differential equation is called the equation.of transfer or
the transport equation. It is valid for coherent scattéfing only; for

noncoherent scattering processes it has to be modifiéd.(4)
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The processes of selective attenuation of radiation, i.e., those
taking place at discrete frequencies, require special attention. These
processes include: (1) true selective absorption caused by discrete
transitions of electrons, and (2) selective scattering. The equation of
transfer can be generalized,(4’103) to account for the processes of
true selective absorption and scattering. We can also allow for the
péssibility that a certain amount of thermal emission, 6 ), can be as-
sociated with the scattering coefficient, 0 ). Equation (3.1) can then

be written(1 3) aé

Ap(r,0t) | = - , .
YT +div [QIy (r,0Q,t)] =n® (k) +6)0) Ibb,l(r’t)

- (kyt oy) In(r,Q,t) + —an Yo & —=Q) I_)\(r, Q',t)dQ’

=47 (3.2)

If the processes of true selective absorption are disregardéd (6x=0),
this equation reduces to (3.1).

We define the monochromatic effective emission coefficient,
— - ’

€ e, (r,Q,t), as radiant energy leaving a unit volume of the medium
per unit velume, per unit solid angle, per unit wavelength and per unit

of time as
€ (1) = ex(r, ) + 22 [ y(r,Q' = Q).Ix(r.0',t)dQ" . (3.3

e,k \ 4.”. 'Y -
| .* - Q,:47r |

. Thus, €e, \(r,Q,t) represents the sum of the emitted and scattered ra-

diation. On substitution of (3.3), equation (3.1) becomes

—

le(r,Q,t) - — - -
T oar P AV IQIAE. Q)] = - (k) ton) In(r,Q.t)

reg (T2 . (3.4)
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3.3 Equation of Transfer for Nonscattering and Diathermal Medium

In case of a purely absorbing and emitting medium with no
scattering (0) =0, € ) = €) ), the equation of transfer (3.4) reduces

to

aI X(-;,h’,t) ) — — — — - v
Y div [QI(r,Q,t)]=-k) I\ (r,Qt)+ ey (r, Qt) . (3.5)

In a diathermal medium (K} =0) = €) = €¢ 3 = 0) the equation

of transfer (3.4) becomes

aIX (-;,5’t) . — —_ —.
3¢ + div [QI (r,Q,t)] = 0
From this it follows that
oI ,5,1: - - -
_xc(%t—) = - div [QIy(r,Q,t)] . . (3.6)

3.4 Equation of Transfer for Steady State

In a macroscopic sense, it will sometimes (usually) occur that
the intensity is independent of time. Thus, alx(r,Q,t)/c ot = 0, and the

equation of transfer, (3.4), reduces to

div [1y(r,9)] = - Bx I (r.8) + €45 (1.2) (3.7)
where
Br=Kx + Ox ' (3.8)

is the extinction coefficient. Even when the intensify varies rapidly
. with time, it is often justifiable to neglect the time de r‘ivative with
respect to other terms in equation (3.7). |

It is possible to reduce the time-dependeﬁt equation of transfer
to a stationary one. For instance, cohsider'the case

In(r,Q,t) = 0;  t<0 (3.9)

Introduce the Laplace transform, defined by
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0

I(rf,s) = "Stlx( 2. ,t)dt

0
Then, multiplying (3.1) by e~St and integrating from zero to infinity
9

),

yields, on using (3.

— - — — -

E Inr.Q,s) + div[QL\(rf,s)] = e:k(r,Q,t)e'slC dt -5 L, (r.Q,s)

The first integral on the right-hand side cannot be simplified. How-
ever, if it should occur that the emission coefficient describes a pulse

att =0, i.e., €X(-;’§’t)= €\ (-1",-\(.2)6(t), the above equation becomes
div[Q1, (r,0,5)] = €5(r.0) (; " Bx)lx(r,ﬂ,s)

IR, 1 QQ)L (1.0, 8)d . (3.10) -

With the definition

B =%+ By ‘ (3.11)

equation (3.10) may be brought into the form

— - - — -

div[Qy(r,f2,s)] = €y(r, Q) =By In(r :5:5)

+ —/ vz, Q=) (r, &, s)d . (3.12)
47T

This equation is the same as ) with a modified Bj.

3.5 Comparision of the Equation of Transfer with

the Continuity Equation

The equatic;n (3.4) is similar to the equation of conservation of

mass:
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%§+ div(pw) = Q , : (3.13)

where P is the fluid density, W the velocity vector, and QQ t.he source or
.sink. If we define the right side of equation (3.4) as )
QR = -:B>\,I>\,(r:9:t)+ €e, X(.I',Q,t) ’

then equation (3.4) becomes

—

al—kc(% +aiv[in(mat] = Qr - o (3.14)

This equation states the conservation of radiation intensity.

3.6 Equation of Conservation of Radiant Energy

Integrating equation (3.4) over all solid anglies (0= 4m), we

obtain

—

d1p(r .t - .- - ——
%/ —7% dQ +f div [ QIy(r,Q,t)]dQ = - B)\'é' In{(r,Q,t)d -0'-/‘ € )\(r,Q,t)dQ
Q=4m Q=4m =4 Q=4

(3.15)
In the special-case of diffuse radiation from or to the unit

volume of the medium, we have

L[ MR gan T

1 — L9 Ar,Qt)

c f St daf s Btf ]:)\‘(r,Q~,t)dQ: — 5
Q=4 ) Q

'7T =47
The assumptionofdiffuse radiation is introduced 6nly in this term,
which is ordinarily neg.ligible.in cdmparison with other terms in
equation (3.15). |
Using the definition of the radiant energy flux vector (2.31), we

— — —

have f div[Qn (7,0,t)]dQ = div Ey(r.t)
Q

=47

The right-hand side of equation (3.15) represents the net radiant energy

emitted or absorbed by a unit volume, per unit time, in the wavelength
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intergal between A and A + d), defined by equation (2.30). Then the
equation expressing the conservation of monochromatic radiant energy

becomes
dux(F,t)

3t + div Ex(;,t) = gn’x(-;,t) . (3.16)

3.7 The Radiant Energy Flux Tensor

Integration of the equation of transfer (3.4) vectorially over all

solid angles ( = 4m) yields

1 81 -,ﬁ,t - . —- e - - - — .-—' -
%/\ )é+) Qa8 +f div[QI)(r.Q,t)]Q,dQ = - B)i/‘ I\(r,2,t)2,d0 -{f - €q )\(;r,\Q,t)QIdQ
Q=41 Q=4m Q=4m Q=4m .

It is to be noted that this equation is different from (3.15). Every term

—

of equatian (3.15) has been multiplied by a unit vector {,.

From the definition (2.31) and the fact that for isotropic scat-

— -

tering and emission €e’>\(r,9,t) is independent of direction,

fh.ldQ:O N

we have that

aE —’,t —- — — - —_ .
L gir )t/‘div[ﬂlx(r,ﬂ,t)]ﬂldﬂz BBy (rt) - (3.17)
Q

:47‘[’
The integral on the left-hand side equation (3.17) is a tensor of
(86)

second order. It was defined by Rosseland as the monochromatic

radiant energy tensor:

/ div[-dl)\(_;,a,t) ]Elda = Bix 1>\(_;5,t)§1,§1d9 + a%f xxf;ﬁ,t)ny-ﬁ,dn + %/ Ix(;,ﬁ,t)nzﬁldn
Q=47 Q=4 Q=4m Q=4 (3.18)

where Qx’ ‘Qy’Qz are the direction cosines. The components of the

tensor P are defined as

Py, (1) =/§;_47r1>\(r,9,t)91~9jd9 ;L= xyz . (3.19)

On substituting (3.19) into equation (3.17), we obtain
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T T ot div Py (r,t) = =By E(r,t) . (3.20)

The radiant energy flux tensor is symmetrical: Pk,ij = PX,ji'

The invariantof this tensor is the sum of the diagonal components(86),

P)p,ii = Ph,xx + PAyy + P),zz

=j;2 ix('r.,ﬁ.,t) [Q;Hz; +02]aQ =g>\(?,t) . (3.21)
=47

3.8 Significa.nce of the Equation of Transfer

The mathematical foundations of the present day radiative
transfer theory rest on the integro-differential equation (3.1) and its
minor variants. This.type of equation also arises in several branches
of physical science and mathematics, namely: classical dynamics of
gases, neutron transport, probability theory and others. The
Boltzmann integro-differential equation in kinetic theory of gases de-

scribes the dynamics of molecular interactions.(l4)

Nuclear physicsts
view equation (3.1) as the linearized Boltzmann neutron transport ‘
equation,(106) and the role of the photon is replaced by a neutron.
Mathematicians concerned with the probability theory consider (3.1)
and related variants as a representation of certain Markhoff
processes.(23)

The significance of equation (3.1) in the problems of heat trans-
fer in thermal radiation absorbing and scattering media can be com-
pared to the importance of the Fourier-Biot equation in the
mathematical theory of heat conduction. The various forms of the.
equation of transfer presented in this chapter are used in the following

chapters. Equation (3.5) is utilized in deriving the integral equations

for an enclosure containing thermal radiation absorbing, emitting, and
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scattering media. Equation (3.16) is used in deriving the energy equa-
tion. The Rosseland definition of the radiant energy flux tensor,
equation (3.20), is employed in deducing the approximation for the

radiant flux vector in the case of intense absorption.
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4 PARTIAL SOLUTIONS OF THE EQUATION OF TRANSFER

4.1 Introduction

The equation of transfer (3.1) and its simpler forms are the
.usual starting points for heat transfér problems occurring in media
absorbing and scattering thermal radiation‘. It is therefore of interest
to look into the established solutions of this equation. Cohsiderations
‘of radiative transfer were first introduced in astrophysical problemé
in connection with the formation of‘abs_orption lines in solar:spectra
and have already attained a high degree of brganization.(l9’6§’103’4)
More recently, the theory of radiativ-e'trar.rsfé;'.h'a.s been apﬁlied to
neutron transport.* A sketch of the history and an extended bibliog- .‘
rapﬁy on radiative transfer problems may,'.be .found in references 68, -
13, 52, and 103. In this work only a few pe_rtiﬁent references dealing
with the transport of radiation and neutrorvl,s‘ will be cited.
Although the equation of transfer(3.1) has been much studied,
it is very difficult to solve even for the simplelst cases. The range é‘f
problems amenable to exact solution is quite small and for most cases
an approximate treatment is the best that canbe given. The equation
‘of transfer can be solved rigorously for the one‘-dimensiona.l case by

- the method based on the theory of complex variables, the basic ideas

*It is shown in Chapter 7 that the problem of transfer of thermal
radiation in an absorbing, scattering and emitting medium is
mathematically analogous to the problem of neutron transport in .
a capturing, scattering and fissioning medium. Therefore, a
solution of a transport problem is a solution of a similar problem
in transfer of thermal radiation.
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of which are due to Wiener and Hopf.(log) A penetrating analysis of

the nature of this problem and its solution was made by Lehner and

Wing.(56’507) Dealing with the one-velocity neutron transport

‘equation, they proved the existence and uniqueness of the solution for

both the infinite slab and the sphere. For the slab extending from -a
to +a they were able to discuss completely the structure of the solution.
A new method for the solufion of the neutron transport problems was
suggested by Case.(12) This approach is’ analogous to the classical
separation of variables méthod for partial differential 'equations.

Of the various approximations which have been used for total
radiative intensity, it seems that the best compromise between con-
sistent success and ease of numerical calculation is still that intro-
duced by Eddington(lg) and Milne (68), the latter using a somewhét
different but mathematically more elegant method. Both methods con-
vert the integrodifferential equation into an approximate second-order
differential equation and provide a considerable simplification with,
generally, a loss of accuracy.

Two methods are able to give results of arbitrarily high
accuracy, provided that a sufficient amount of labor is expended on
their calculation. The spherical harmonics method is the most power-
ful of the two. It was introduced by W.ic;k(107) and Marshak (65) and
developed. in detail for a general geometry by Mark(64’65) for the

solution of neutron transport equation. The method of discrete coor-

. dinates proposed by Wick(107) as an approximate method for solving

.the transport equation was developed by Chandrasekhar_(l3) into” a

powerful theoretical tool for the inveétigation of astrophysical prob-
lems. This method is not so powerful as the spherical harmonics’
method, which it resembles in some respects, and it has been applied

only to the case of plane geometry.
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Attention has so far beenilargely' confined to one-dimensional
radiation transfer problefns, usually in semi-infinite, pléne-parallél
media. To the author's knowledée, no analytical solutions have been
obtained for the problems with spherical and cylindrical symmetry.
The most extensive treatise on radiative transfer is by Cha‘ndrasekhar(1 3),
in which both the approximate Wick-Chandrasekhar method and more
general methods for solving radiative transfer problems a;fe presented.
The solution of transfer problems in semi-.infinite plane-parallel
atmospheres with laws of scattering more general than isotropic leads
to systems of integral equations which are nonlinear, nonhomogeneous,
and of high degree. The scattering functio.n,(3/4) (1 + cos.2®), leads to:
s-irﬁultaneous integral equations of second dégree. The more general
Rayleigh law of scattering leads to fourth-degree honlinear integral
equations. |

(52) gives a more general exposition of the various

Kourganoff
techniques used in transport theory, as well as a summary of most of
the available methods for treating the monochromati.c equation of |
transfer. For the compilation of tﬁe techniques used in solving multi;
dimensional problems in neutron .transport, reference is made to the

(17) (63)

book by Davison and the monograph by Marchuk .

4.2 Propagation of Radiation in a Diathermal Medium

For a diathermal (nonabsorbing, nonscattering and nonemitting)
medium’ in a steady state, equation (3.6) reduces to

G- grad Iy = div (O1)) = on (4.1
4 Ss ‘

where ds is a line element aiong the pencil of radiation Q. This equa-

tion obviousiy indicates that i) is constant along a line parallel to .
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GEOMETRICAL DATA FOR PROPOGAT.ION
OF RADIATION IN DIATHERMAL MEDIUM.
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For a general re-
gion enclosed by a surface
(Fig. 4.1), I is the same
at the points A, B and C,
which lie along the line in
the dili'ection.of the unit
vector 5 The intensity at
point A is equal to the in-
tensity at C, and only one
of these intensities is to
be specified to give a
complete boundary condi-

tion. If _;S is a point on

the enclosing surface which lies in the direction {! from ¥ and if the

intensity emitted by the surface at ;.é is given, namely, Iy (?é,_ﬁ), (4.1)

has then a solution

IK(—;: Q) = Iy (;g,_d) =1y (T-s0,).

If I is independent of ?g, i.e., if

—

(x5, ) = £ (@),
then by (4.2) _
I (7,8) = £ ().

(4.2)

(4.3)

(4.4)

Thus the intensity of radiation in the region is independent of position,

In particular, if the intensity on the surface is diffuse, it will also be

diffuse within the enclosufe.
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4.3 Solution of the Equation of Transfer for a Given Direction

<

4.3.1 Propagation of Radiation in an Absorbing and Scattering Medium

Consider a mediﬁm which absorbs, erriits and scatters thermal
radiation. The absorption and scattering coefficients are assumed to
depend on the position, and the direction of the pencil of rays is con-
sidered to be given. Hence for the pencil of rays in direction Q, the

directional derivative becomes
~d - - _dIy
Q- grad I = div (QI,) = el

and therefore the steady-state equation of transfer (3.4) reduces to

%S_) = _ﬁx (b) I)\'(S) +€e,>‘(S) . (4'5)

An equation of this form may be solved in the following manner.

JB(s)ds

Multiplying both sides by the integrating factor, e ,equation (4.5)

can be written in the form -
d [By(s)ds fﬁk(s)ds
35 \In(s) e =€, 5 (s)e

Consequently by integration we obtain the solution

In(s) o FPr(s)as =f€e’>\(s') JPA(s)as ds' + C
Dividing by efﬁk(s)ds, we get
L) = G o TBNSNS | JBx(s)as fee,x(s,) B
By (s)as

- which is the geheral solution of equation (4.5). The factor e
under the integral sign is a function of s' and cannot be taken outside
the integration sign. The constant C can be determined from the

boundary condition.
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One should keep in mind that equation (4.6) does not in any real
sense solve the equation of transfer in an absorbing and scattering
medium. It is clear that if the effective emission coefficient, €e,>\(s),
should depend on the intensity in-some specific way, then one can con-
vert the formal solution (4.6) into an integral equation for intensity.
Then if the temperature distribution-is known in the medium the mono-

chromatic intensity of radiation can be calculated.

4.3.2 Propagation of Radiation in a Purely AbsorEing Medium

For some engineering problems the assumption of the absence

“of scattering can be justified by considering the Rayleigh scattering

: law(13) for atoms and molecules,

ox= 8m¥(n? - 1)2/N2* ‘ ' - (4.7)
3

Awhere N is the number of molecules per cm’. The index of refraction,

n, of gases is a very weak function of density and wavelength. Thus

for CO, at a temperature of 32°F and 1 atm pressure the index of re-

fraction is 1.00045. The scattering coefficient at X = 2u = 2 x 10°* cm

is calculated to be g3 = 5.15 x 10 %em ™1,

It is seen that the scattering co.efficier:.tt is quite small eve'n for
short wavelengths and can .be neglected. In that case, 0) = 0, B) = K),
ée,)\ =€y, equation (4.6) reduces to A

Li(s) =C enf,c)‘(s)ds + e_flc)‘(s)dsfe:)\(s')eflc)‘(s)ds ds'. (4.8)

With the boundary condition, I\ (s) = I) (0) at s = 0, equation (4.8) be-

comes (see Fig. 4.2)

B(s) = I(0) e‘”(s’ohfo en(sr) ¢ T8 ggu (4.9)

where Ty (s,s') is the optical thickness:

Ty (s,8') = fsls €y (s) ds
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The first term on the right-
‘hand side of (4.9) is the term which
takes ‘into account the intensity of
radiation from the surface at s = 0.
The physical meaning of the solu-
tion (4.9) is clear. It expresses the

fact that the intensity of radiation

at any point s and in any given

direction ) results from the emis-

FIG. 4.2 . . . .
sion at all interior points s', re-
GEOMETRICAL DATA FOR THE ~T(s,s') to
DEFINITION OF OPTICAL THICKNESS. duced by the factor e AL,

allow for the absorption by the
intervening matter. Thus if the temperature distributioninthe medium
is known, the emission coefficient, € = nZIC)L Iyp, A can readily be de-

termined and the intensity calculated from equation (4.9).

4.3.3 Propagation of Radiation in a Purely Scattering Medium

For a scattering medium, K= 0, By = o), and €) = 0. Equa-

tion (4.6) then reduces to

Iys)=cC e—fOx(s)ds +4_17T e-fo)\(s)ds fg')\(S') g;\(s') efO)\(s)?st;
-(4.10

The incident radiation, g)\(s), is defined by equation (2.22). With the

boundary condition, I, (s) = I{(0) at s = 0, equation (4.10) becomes

IL(s) = I>\(O)e_’r>‘(s’o)+4%'£ f Gzi\'er') I)\(s')e_TMs’S'> ds'ziQ', )
‘= 4.11

where
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Thus, for a purely scattering medium, equation (4.6) reduces
to a linear integral equation in I)(s). The intensity of radiation at any
point s, as seen from equation (4.11), results from scattering at all
interior points s' as well as radiation reaching point s from the sur-

face at s = 0.

4.4 Radiation between Two Parallel Planes

" Consider a configuration consisting of a uniform, plane-parallel
slab of a medium of finite thickness bounded by two planes x = -a and
x=a. It ié convenient to measure distances normal to the plane of
stratification. Referring to Fig. 4.3, we see that x is this distance,

6 is the inclination of the pencil of rays of direction 5 to the outward
normal, and ¢ is the aximuth to a
suitably chosen axis.

An idealization in which
all spatial variations are one di~-
mensional and with azimuthal
symmetry of all functions about a

given direction may be introduced

< 9
n
8 |==—dx=ds cos G.J

=-a X = X

for the purposes of simplification.

I, then does not depend upon yand
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z; it is a function of x and

x
=
n
®

(= cos 8). The line element ds

FIG. 4.3 along the direction { is simply
COORDINATE SYSTEM FOR RADIATION
BETWEEN TWO PARALLEL PLATES.

ds = dx/}i.

The directional derivative becomes

Q- grad Iy = div(Q1y) = %%: g—lxl‘% = ué%. : (4.12)
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Isotropy of scattering helps to simplify the problem further. With
these assumptions, the fundamental equation of transfer (3.1),describ-
ing the steady-state condition with the help of (4.12) for |x ISOL and
I#I < 1, reduces to | '

ala(z “)- ex(x) (k) +o3) I (x,u) + gx (4.13)
where
- I [
Ixx Qnaq fjlxx cos ©8' )51n6'd6'd¢> 27Tf Iy(x,u)d

(4.14)

is the radiation incident on a unit volume of the medium. With certain
boundary conditions equation (4.13) defines I)(x ) everywhere within
a single homogeneous médium. The properties of these equations are
~such that the boundary conditions may be specified in terms of arbi-
trary assignment of radiation intensity distributions on the two sur-
faces. Thus for a homogeneous isotropic medium between the plénes
x = -a and x = a one may specify the intensities on the boundaries:
at x = -a, u< 01y (x,1) = In(-a,u);

a, > 0; In(x,p) = Ix(a,p),

Equation (4.13) can be written as

X

O ) L 830 gy 2100 4 ) ﬁx(X). (6.15)

. . . fEL(E&
Using the integrating factor e s

the solution of (4.15) is obtained in a manner similar to that of (4.5),

and we have
B(x)dx Bi(x)dx
f_A'T_ f f oo YA

o
(4.16)

Inx, ) =
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Introducing the boundary conditions, we obtain

:/%}Id_x_ a R f ﬁK(X)dx
B(a,e’™ Jf[ek(xr)uiok(xt)g)\(xn)]ex b
x n (4.17)

for 0< p <1

-/: B A(x)dx X_—_Bl(z)dx

Ix-a, e a K -If [(—:)\(x')+%rc>\(x')g;\(x')]ex gﬁc_'
-a
L . _ (4.18)

for -1 u< 0.

Ix(x"u') = <

The temperature distribution in the medium must be known
before the intensities can be calculated, and even then an integral
equation for intensity or incident radiation must be solved. Equations
(4.17) and (4.18) will be used in deriving the integral equations for

incident radiation and subsequently for temperature distribution.
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5 THE INTEGRAL EQUATIONS

5.1 Introduction

The local radiant heat flux at the bounding surface of an enclo-
sure receives contributions from every point in space as well as from
other parts of the boundiﬁg surfé.ce or surfaces and is given by an inte-
gral equation. Hilbert(34) was probably the first to apply thé theory of
integral equations to the study of this general problem of radiant heat
exchange in an absorbing and scattering medium without a bounding
surface. For instance, he proved Kirchhoff's law for the case of ther-
modynamic equilibrium. Poljak(so) derived the general integral equa-
tions which deécribe radiation in a closed system of gray radiating"
surfaces in the absence of a radiation-absorbing and scattering medi-
um, by assuming that the emissivity and temperature are constant over
each surface. A solution of a heat transfer problem in a radiating me-
dium is a combination of the two separate problems mentionéci above.

In this chapter the writer derives the integral equations for an
enclosure made of opaque walls and containing an absorbing and scat-
tering medfum, and, by so doing, generalizes previous results(34,80,79)
to include also th.e effects of non-diffuse reflection from theA surfaces
and nonisotroI;ic scattering from the medium. The derivation of the in-
tegral equations for monochromatic radiant heat exchange in a general
closed system composed of i surfaces separated by an absorbing and
scattering medium is quite straightforward and elementary. It is

based, for both surface and volume radiation, on the equation of
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transfer the expressions for irradiation, E', and incident radiation,
g)\, as well as appropriate boundary conditions. Other quantities de-
scribing radiant heat exchange readily follow from the definitions
(2.27), (2.28), (2.29), (2.30). The following assumptions are made:

(1) Steady state of radiant heat transfer exists.

(2) The enclosing surfaces are dense and opaque, the mono-
chromatic transmissivity of the enclosing surface is zero;
that is, the enclosing surfaces are. opaque.

(3) The monochromatic reflectivities of the enclosing surfaces
Py (A1), Py (A2)... py (Af) are functions of wavelength and
position. |

(4) The medium has constant (independent of density) index of

refraction, n.

5.2 The Integral Equations for Irradiation and Incident Radiation

| The irradiation at any point S on the surface of the enclosure is
defined by equation (2.21). Then, with reference to Fig. 5.1, the irra-
diation at point S is due to energy radiated from the enclosing surfaces
and due to energy emitted from the medium. The monochromatic in-
tensity of irradiation from a given direction at point S is obtained by
applying the boundary condition to the solution (4.6) of the equation of

transfer. Introducing the limits of integration, one obtains

; ' - 1 r _ 1
Ix(S) égaxg(z—m T ’S)+/ ’ €en (P)e ™ (P18, (5.1)
I'o ' :
where
5 (S, S) :frr:: By (s)ds (5.2)
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and
(P,5) =[5 py(s)as | (5.3)
P! '

are the optical thicknesses between points S and S', and S and P', re-
spectively. In equation (5.1), s'is the dummy variable and dR;\(S')/dQ
is the monochromatic intensity of radiation leaving the surface (point
S') in the direction of point S. Thus, the monochromatic intensity of
irradiation is due to radiant energy leaving the surface element dA at
point S' in the direction of point S and arriving at S, plus the energy
emitted by the unit volume dV at point P' in the direction of S and ar.—
riving at S. If the reflection frém the surface is specular, in addition
to the reflecting function,T’ (r, 5’—»5), the history of the pencil of rays,
i.e., the direction of the pencil of radiation incident on the surface,
must be known. However, for diffuse reflection de(S')/dQ reduces to
ng(s')/‘r .

Substituting equation (5.1) in (2.21), we find

' -Ty(S', S
EY(S) = dfé);z(S) e A ) cos 84N

rqgt
° -TA(P", 5)
+ € A (P") e cos 6ds'dQa. (5.4)
Q=2

The integrals over solid angles, appearing in equation (5.4), are trans-

formed to surface and volume integrals by the use of the following

relations: ,
cos B'qr cos B'q dA
cos 6dQ = __s — S
rS - rS||Z
and 65dV
cos 6ds'dQ} = c£os 9s5ceV

s - T’
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Introducing these two identities in equation (5.4), we finally get

E'\(S) =f<d—%§s—'>> Kaa(S, S') dA tfee’k(P') Ky (S, P')dV,
Ap...A

A
' v (5.5)
where
KaA(S,S") = o TAELS) COTS';C.OSG S
I'S - rS‘|Z
and

Kav(s, P = o HF"S) _cosOs

- Ts - Tp|”

The radiant energy incident on the unit volume of the medium at

any point P is defined by equation (2.22). The monochromatic intensity

of irradiation at point P in a given direction is obtained by applying the
boundary condition to the solution (4.6) of the equation of transfer. In-

troducing the limits of integration (see Fig. 5.1), we obtain

L(P) = (———dRX(S')> e—TK(S" P)-I'-/ " €e,>\(P')e-T>L(PI, 1:))ds' ,

dq
P (5.6)
where
'p
TX(S', P) :frs' Bx(s) ds (5.7)
and
e .
T)\(Pl’ P) :frp' By(s) ds (5.8)

are the optical thicknesses between points S' and P, and P' and P, re-
spectively. Thus, the monochromatic intensity of radiation incident on
the unit volume at point P is due to the radiant energy leaving the sur-
face element dA at point S' in the direction of point P and arriving at P
plus the radiant energy emitted by the volume element dV at point P' i1

the direction of P and arriving at P. Substituting equation (5.6) in the
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definition (2.22) of the incident radiation, we find
1 : R ' -T S', P
Ep) = f (E%S))e NS Plyg
Q=4m :

[P -TNPLP) |
+ €e,MP') e ds'dq. (5.9)
. JQ=4T Jr o )

We transform the integrals over solid angles appearing in the above

equation to surface and volume integrals with the help of the following

relations:
cosbgrdA
= ———————
— — 2
|1‘P - I‘sl |
and
d
dQds = v >
rp- ?P'l

With these substitutions equation (5.9) becomes

gx(P) ='/‘ <%) Kya(P,S')dA
L JALAy

+_/ €, NP')Kyy(P, P')dV, (5.10)
V .
where
- (8", P)
e cosBar
KVA(P’S.) = — P 2 2 ’
rP - rS,I
and
-Tx(P' P)
KVV (P, P")
T

In some problems, integral equations (5.4) and (5.9) might be in

a more convenient form than equations (5.5) and (5.10). If one assumes
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that the enclosing surfaces are diffuse, I"(;'., 5’—-5} = 1, the scattering
is isotropic, v(z, 5’-’9) = 1, and.the refractive index is equal to unity,
on using equations (5.5) and (5.10) one can easily arrive at the equa-

tions for radiosity and effective emission derived by Polack.(79)

5.3 Integral Equations for Net Emissive Power and Net Emission

The derivation of integral equations for net emissive power and
net emission is quite straightforward. Thus, for net emissive power

at point S' on the enclosure walls, from definition (2.29) we have

E, 3(S) = E)(S) - a)s) E!

5 (S)-

Substituting for the irradiation from equation (5.5), we obtain

E_ A(S) = Ex(S) - ay(s) f (XD ¢ yals. 5 an
‘ Ap.. A

-ax(s)'/ €e,->L(P') Kav (S, P')av. (5.11)
v .

The net emission at point P is expressed by equation (2.30) as

' .

£ P = E,(P) - kx(P) E5(P)

b

1
Substituting for gk from equation (5.10) in the above, one finds

gn,)\(P) = gx(p) - K X(P)f

A;...

<dR>\(S')> Kya (P, S dA
A dQ

- K x(P)f €e, NP ) Kyvy(P, P')dV. (5.12)
v .
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Equations for net emissive power and net emission in a less general
form were presented in references (2) and (99), but noderivations were
given.

It is to be noted that R ) and €¢,) can be expressed [see equa-
tions (2.27) and (3.3)] in terms of other variables which are more
appropriate in some particular cases. These relations can then be
substituted in the integral equations (5.5) and (5.10), or (5.11) and
(5.12).

5.4 Integral Equations for Diathermal Medium and

for Medium without an Enclosure

The system of integral equations (5.11) and (5.12) reduces to a
single, much simpler equation either for Ep j or for gﬁ,K in two parti-
cular cases: (a) when the enclosure surfaces are separated by a dia-
thermal medium, and (b) when the medium is not enclosed at all.

In the first case we have B3 = K)=0) =€, 5 =0.. Equation. ‘
(5.11) reduces to

Eq, A\(8) = E(S) -ax(s)f (%(S» Kaa(S, 844, (5.13)
Ay A

which gives the net emissive power at point S on the surface.
In the second case, since there is no enclosure, the radiosity at

the surface is R)(S') =0, and equation (5.12) reduces to

£ op=Em -K*(P)f €e.\(P) Kyy(P, P)aV.  (5.14)
Vv
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The integral equation (5.14) is analogous to the equation derived by
Hilbert for the case of an absorbing and scattering medium. It was
used by Hilbert as the basis of the proof of Kirchhoff's law for radia-

tion from a volume of radiating medium.

5.5 Resultiné Equations for Thefmodynamic Equilibrium

Examining the integral equations for a system of surfaces com-
pletely enclosing a radiatiﬁg medium at thermodynamic equilibrium,
from the second law of thermodynamics we know the following to be

valid:

En, 2= gn,)\zo

n,

ge,x = By g;ﬁ 4B Epp, 2

E'N=R)x=Epp, a=T Iyp,

With these values equations (5.11) and (5.12) for the case of diffuse

enclosure walls reduce to

1 =fA1___Ai Kaa(S,S")dA +fVB AP ) Kpy (S, P)dv, (5.15)

and

4= Ap Ay KVA(P'S') dA +-[V B (P') KVV (P, P')dV. (5.16)

Using eqﬁation (5.15), either the area or the volume term can
be eliminated from equation (5.11), similarly making use of equation
(5.16) the area or the volume term can be eliminated from equation

(5.12).
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6 MATHEMATICAL FORMULATION OF THE PROBLEM

6.1 Introduction

Heat transfer from a radiating and moving medium is one of the
most complex problems occurring in engineering practice. In general,
the medium consists of the gaseous substances CO,, H,O, SO;, and NH;
as well as H, CH, C,Hy, and others. Furthermore, the gas or gas -
mixtures may include admixtures of solid particles or ash. In addition,
each gas possesses its characteristic radiation properties. Thermal
radiation affects heat transfer both directly and indirectly. Radiation
can be absorbed directly by enclosing surfaces and cause heat transfer.
Indirectly, it can be partially absorbed in the medium and alter the
température distribution, thereby influencing conductivé and convective
heat transfer.

The objective of research in fluid flow and heat transfer is the
prediction of the state of flow or fluid and of heat. In a single-phase
fluid, in the absence of electric and magnetic fields as well as diffu-
sion, its state is specified by the velocity vector and two thermodynam-
ic properties (usually temperature and pressure).. A complete
description of the flow is a statement of the values taken by these three
quantities at every point within the fluid, and for all time subsequent to
some initial time. The basic problem is then this: predict the state of
flow and the temperature when a fluid flows in a duct of specified shape
and length, with the pressure drop and either the wall temperature or

the wall heat flux being specified. Regardless of whether the flow is
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laminar or turbulent, the flow may be describea by a coupled system
of differential, integro-differential and integral equations as well as

. appropriate boundary conditions.

6.2 Equations of Continuity and Motion

Now let us consider the effects of radiation on the general hy-
drodynamical equations.
The existence of thermal radiation does not affect the equation

of continuity,

—g§+div(p6v’) =0 . (6.1)

since radiation has no mass.

The hydrodynamics of a fluid moving in a field of radiation is
identical, as regards the dynamical equations with classical hydrody-
namics, pfovided terms are introduced to allow for the stresses
caused by the radiation. These, in general, form a stress-tensor,
partly analogous to the stress-tensor in ordinary viscous motion. The
radiative stress-tensor differs from the stress-tensor of viscous mo-
tion in that it does not reduce exactly to a simple hydrostatic préssure
when the velocity gradients are put equal to zero.” The tangential com-
ponents of the stress survive.(43’68’31) These terms are, however,
negligible for ordinary radiant heat transfer problems when compared
to the principal components of stress. If we neglect the "radiative vis-
cosity” (which is very small at ordinary temperatures, see Eqn. 2.49)
and neglect at-thé'"same time all terms depending <:;n the second-order
temperature gradients, the radiative stresses reduce to a hydrostati.c
pressure (2.38). In deriving the equations of motion all we need to do

is add pp to the ordinary fluid pressure p.
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Magee and Hirshfelder(\éz) have shown that at a temperature of
10° °K the radiation and hydrodynamic pressures are 2,523 and greater
than 100,000 atm, respectively. Thus even at these extremely high
temperatures the radiation pressure is 39.6 times smaller than the
fluid pressure. Therefore, in this work the radiation pressure is neg-
lected. The equation of motion for compressible flow becomes(88)

p___%\:’ = F - grad p + div(p gradw) +% grad(divw) -, (6.2)

where F is the body force.

6.3 Equation of Energy

6.3.1 Introduction

The interaction between thermal radiation and a fluid in motion
has been treated in astrophysical problems from various points of view
and with various objectives in mind by Jeans,(43) Eddingfon,(lg) Rdsse-
land,(85) Milne,(69) and Thomas.(loz) These authors have usually neg-
lected energy transfer by conduction, work by viscous dissipation; en-
ergy generation and small terms arising from the finite velocity of
light. Thomas was the only one who derived the energy equation in a
fluid in motion by using the Lorentz transformation. He obtained the
energy equation in a form including all orders in the ratio of the veloc-
ity of motion to the velocity of light. /In this thesis the energy equation -
is obtained by evaluating the energy flowing into a closed surface fixed
in space and then applying Gauss's divergence theorem. This method
differs from Milne's chiefly in that it evaluates the energy exchanges of
matter inside a fixed surface instead of a surface moving with the mat-

ter. The equation of energy derived by the method of Rosseland agrees
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with the equation derived by Milne when in-Rosseland's equation the
hydrostatic pressure p is replaced by p + pr.

In this work the Rosseland derivation is followed, except that a
macroscopic instead of the microscopic view is taken. The equation is
cierived for the case where electric and magnetic fields are absent;
howevér, as shown by Chu,(15) the electric and magnetic energies can
readily be included in the equation of energy. It is further assumed
that the energy of gravity is negligible and that there is'neither molec-
ular nor thermal diffusion. The diffusive energy transport can also be

readily included, as shown by Lees(54) and by Fay and Riddell.(22)
6.3.2 Derivation of the Energy Equation

We will proceed to derive the equation which represents the
change in energy in a given volume per unit of time. We consider the
heat transferred by conduction, convection and radiation across the
surface A, bounding the volume V, in which the amount of work done

per unit volume and time of the fluid is W, and the heat generated is

q'''. We can write the heat flux vector as
:f' = -k grad T + pew + E ) (6;3)

where -k grad T represents the heat flux vector due to thermal conduc-
: tion, ,Oe;v. is the heat flux vector due to convection, and E.:fowf)\dl
[see Eqn. (2.31) for the definition of Ex] is the energy flux due to ther-
mal radiatioﬁ. The energy per unit mass, e, is the sum of the internal
energy plus the kinetic energy,

WZ

e=2—+h-pv o (6.4)

T
where h is the enthalpy of the fluid, h :f cp dT.
) T,

We apply the law of energy conservation to volume V. The rate

of change of energy in V is due to the addition of heat across the
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boundary of V, due to the work done by any forces acting and due to the
heat generation inside V. Accordingly, the conservation of energy

.equatio’n for the fluid inside the boundary A is

d — - '
f (ua'f'tpe) dv + f_qn .dA = f (W +q"')dV ,
A" A Vv
uff u>\d>\
. . )

is the total radiant energy density. Using the Gauss divergence

where

theorem,

f?-dzzjgdiv?dv .
A v

to convert the surface integrals to volume integrals, and remembering

that the volume V is arbitrary and thus may be infinitesimal, we obtain

o(u + pe) + div aTq =W +q'" . - (6.5)
or _
%;-F B(g)te) + div(-k grad T) + div (pew) + div E =W + q'"

The work per unit volume and time, W, is the sum of the com-
pression work plus the friction work. It is shown by S’chlichting(ss)

that W can be expressed as

_Dp __D(pv) | |
W—'—DT-pT+[J.<D ’ (6.6)

where @ is the dissipation function:
® =2 ou \? ov? ow\ 2 dv  ou\? du Ow )2
i) F\Sy) t\Te), [P\ Sy f Bt
ow 5v>z‘-2<au dv aw)"‘.
+ 37+B_z_ -3 B_;+B7 t37/ . (6.7)

Using the vector identity
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divicew) = e div(pw) + pw - grad e

and the continuity equation (6.1), we can write

De

T—a(pte) + div(pe w) =P[§e—+ w - grad e] = Poe . (6.8)

Introducing the definition (6.4) of the internal energy, we can express

the substantial derivative of e as

De _p Dw? Dh D(pv)
Pot 2ot TPor P ' | (6-9)

Dt Dt
Finally, substituting (6.6), (6.8) and (6.9) in the energy equation (6.5)
and simplifying, we obtain

du Dh DP

S tPoet div E = = div(k grad T) + ot * q"" +u . (6.10)

Integrating equation (3.16) over all wavelengths and substituting in
equation (6.10), we obtain an alternative expression for the conserva-

tion of energy equation,

pg—?= div(k grad T) -f gf +q'"'" + ud , (6.11)

where the total net emission, gn’ is obtained by integrating equation

(5.12) over all wavelengths,

o) {Gom o] [ () saviesan
A4
Vv .

It should be kept in mind that, when deriving equation (3.16), an assump-

. . L . duy (T,t)
tion of diffuse emission was introduced in the term, T In addi-

tion, equation (6.12)is valid only for the steady-state problem, since in

its derlvatlon the equation of transfer without the transient term,

o —at——", was used. However, since this term is ordinarily small,

it may be neglected. To this approximation the solutions obtained

above may be considered valid also for transient problems.
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6.3.3 Equation of Energy for Diffuse Surfaces and

Non-scattering Medium

For the case where scattering is negligible compared to ab-
sorption, the equation of energy simplifies considerably. If we can
assume local thermodynamic equilibrium we can define at each point in
the medium a local temperature T, the emission coefficient is then
given according to Kirchhoff's law (2.17). Thus, the effective emission
coefficient (3.3) reduces to

€e, 1= €x =1 alpp, 2
In addition, if the walls of the enclosure are diffuse the equation for

total net emission’ (6.12) simplifies to

Zn(p)‘ =_/°° '<>\(P){4nZEbb,>\(P) - %[/ Ry (S')Ky 4(P,S")aA
0 Ay LA

+fnZICK(P')Ebb,x(P')KVV(P,P')dViI} dXx . (6.13)
v

A similar equation has recently been given by Surinov,(gg) but no deri-

vation was presented.

6.4 Expression for Heat Flux at the Wall

The heat flux at the wall of an enclosure containing a medium
that absorbs and scatters thermal radiation, in the absence of diffusion
and chemical rec_orhbination at the surface, is due to conduction and

radiation;

Qe = -kg—: ¥ En , : (6.14)

w
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where E, is the total net radiant heat flux at the enclosure boundai'y in
consideration. Equation (6.14) can be writteln,‘ according to previous

definitions, as ‘
[s] ' :
+ (Ex-axE'x) dx . (6.15)
w Jo

_ Substituting equation (5.5) for the monochromatic irradiation, we obtain

ST o ' dRy(S")
w=k=—| + E)(S) - ax(s) ———)Kaa(S,S")dA
: an‘w ,/; { {_/;1A< d{ ) AA.

1

+f ee,X(P')KAV(S,P')&V}}dX' . (6.16)
v ,

Thus, we see that even the evaluation of the wall heat flux is not a sim-

ple problem, since we have to solve equation (6.16) simultaneously with
(5.5) because the radiosity, R}, is a function of irradiation, E.
For the case of no scattering and black surfaces, the heat flux

at the wall reduces to

dw = -k Sin + Epp(S) '%fm{Ebb,x(s')KAA<s»S')dA
w 0
+f n® K (PYE Y K(P')KAV(S,P')deI dx . (6.17)
V ’

We see from equation (6.17) fhat, given the temperature distri-
bution in the medium and on the enclosing surfaces, the heat flux at any
point on the enclosure wall can be calculated directly. However, if the
geometry of the enclosure is irregular the kernels Ka(S,S') and
KAv(S,P') are quite comple-x, and the evaluation of the heat flux, even

for this simple case, is very involved.
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7 ANALOGY BETWEEN THERMAL RADIATION AND
NEUTRON TRANSPORT

7.1 Introduction

In recent years there has been an immense amount of work
cione on the desién and development of nuclear reactors. Associated
with these endeavors, problems arising in biological shielding design
and neutron diffusion have been investigated extensively and a large
amount of information has been accumulated in this field. It was hoped
that some of these techniques and results v;/ould be applicable to the
solutions of problems of thermal radiation in the presence of absorb-
ing and scattering media. It is the purpose of this chaptgr then, to
show the mathematical analogy between thermal radiation and neutron
transport, as well as to direct attention to its usefulness, by indicating
some solutions previously obtained for neutron transport problems
that can be borrowed for radiative transfer problems.

As far as gamma radiation is concerned, the analogy between
thermal and gamma (nuclear) radiations is complete. Thermal and
gamma radiations belong to the family of electromagnetic waves, the
"only difference being that gamma radiation has a higher frequency
(shorter wavelength). Both types of radiation obey the sa-rne physical
laws and equations. The work in gamfna radiation associated with
biological shield designs has been summarized by chkwe11(84) and
Goldstein.(27) The two books give extensive bibliographies to original
work. Therefore, weturn ouz; attention to neutron transport to see

what, if any, analogy exists.
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7.2 Mathematical Analogy

The analogy between thermal radiation and neutron transport in
absorbing and scattering media is mathematical and not physical. It is
to be noted that this analogy exists only when there are no other modes
of energy transport present in the thermal radiation problem, for ex-
ample, heat conduction. In radiative transport we have transport of
photons (quanta of energy), while in neutron transport we have trans-
port of material particles. The main physical difference between the
two phenomena is the fact that the photon has no rest mass. The ve-
lochity of propagétion of the photon is the velocity of light. A neutron
has a finite ma.xss, and its velocity is between zero and, in the limit,
the velocity of light. Definitions of some analogous quantities for
thermal radiation and neutron transport are given in Table 7.1.

The neutrons constitute a distribution in phase space (in the
terminology of Gibbs and Boltzmann); their ensemble can be fully de-
scribed only by a density in a six-dimensional phase space (x, Y, 2, U,
v, w). The fundamental variable in transport theory is the phé.se space
distribution, f(;, 5,_E, t),which is the number of neutrons'per unit vol-
ume and unit solid angle moving in the direction 5 The quantities E,
;’, t denote the energy, the space coordinates, and the time,
respectively.

The general Boltzmann neutron transport equation is given by
Davison(17) and by Weinbergv and Wigner.(106) A great simplification
of the Boltzmann neutron transport equation comes about if the neu-
trons are all assu;'ned to have the same speed, that is, if all scattering
occurs without change of energy. This is the usual assumption made
in dealing with thermal neutrons. Since the energy is constant, the
phase space distribution, f(;, 6, E, t), is then a distribution in direc-

tion; that is, f(r, Q, E, t) can be written as f(r, @, t)andthe scattering




Table 7.1

COMPARISON OF PHENOMENA AND DEFINITIONS FOR
THERMAL RADIATION .AND NEUTRON TRANSPORT
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Thermal Radiation

Neutron Transport

Carrier has no charge

Carricr has no charge

Between collisions the photon
travels in straight lines at
constant velocity (velocity

of light)

Between collisions the neutron
travels in straight lines at
constant velocity

Thermal radiation can be
absorbed, scattered and emitted

Neutrons can be absorbed, scattered
and emitted

The scattering can be specular or
isotropic

Scattering can be directional or

isotropic '

x (T, {, t) - monochromatic
intensity or radiation

f(r, E, ©, t) - angular distribution
of monoenergetic neutrons

g)\(;, t) - monochromatic
incident radiation

X(r,t) '[/‘Ik(rﬂ t) dQ
Q

®(r, E, §, t) - monoenergetic neutron
flux

o (T, E,t)=/]f(; E, 0 t)do
JQ=am

]
5’(;’, t) - total incident radiation

g(r. ’/‘dy‘lxr,Q t) dQ
Q=47

Q(? t) - total neutron flux

<I>(r,t)de::[‘/‘f(r,EQt)dQ
Q

E (T, t) - monochromatic
energy flux vector

Q= 4.

(v, T, t) QdQ

- -
j (r, E, t) - monoenergetic neutron
current

7(7, E, t)ﬂf(?, E, O, t) 0dQ
Q = 4m ‘

—_ - :
e(r, Q, t) - emission coefficient

S(T, @, t) - angular source density
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cross section, Zs(;’ E'— E, ar *-ﬁ),‘can be replaced by ZS(-I",'Q.'—-?I).

Thus in the monoenergetic (one-velocity) case the Boltzmann neutron

106)

transport equation becomes(

1,84, 3. grad (7, @, 1) = - 2(7) (7.7, )
v at (.
+s(7, Q, t)+fzs(?, T —=0) (7,0, t) dq, - (7.1)
Q 41

where Z(_r.) is the total cross section. This equation is identical in
form, except for the constants, to the equation of transfer- (3'.1).

The more common elementary neutron diffusion equatiqn,(106).

%)-%:T+—(1+3DZ ) a(p—DVZ@ - 2,2 +5, (7.2)
where v is the neutron velocity, D is the diffusion coefficient and Za is
the absorption cross section, is valid for a homogeneous system and
sources constant with time. In the diffusion approximation the mean
free path of the neutrons is vanishingly small but the diffusion coeffi-
cient is finite.. . Equation (7.2) is one of a general class of equations .in
rﬁathemétical physics which are first approximations of more compli-
cated transport integral equation. It has been shown by Weinberg and
Wigner that for the mononergetic case the neutron diffusion theory
(excepf for the neglect of the term &E/dt) is the P; approximation of the

spherical harmonic method. The analogous diffusion approximation

érising in thermal radiation problems will be discussed in Section 9.2.

7.3 Some Analogous Radiative Transfer Problems

In the previous section we have established the mathematical
analogy between thermal radiation and neutron transport. We need to
go only a step further and draw attention to a few solutions of neutron

transport problems.
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The general solution of the system of integral equations (5.5)
and (5..10), which are more basic than equation (5.11) and (5.12), is
very difficult. It is convenient, as a first approach to this problem, to
isolate the different parameters appearing in equations (5.5) and (5.10)
by choosing a favorable configuration for a system. The geometrical
complexities of most systems are avoided by consider;ng an infinite
plane paralle]l medium with no enclosure.

Thus the integral equations (5.5) and (5.10) for isotropically
scattering infinite.medium with no enclosure reduce to

' - -

g}\(;) ='/V€e,>\(r") e'TX(r’r')I;(-i%P )
since dV = Ad-r", where T' is understood to be a dummy position coor-
dinate and not a vector. Taking A as unity and substituting for the
effective emission coefficient, €e,X( T ), from equation (3.3),we obtain

(g;\(}’) =f[€>5;') +o>\.(?')g>\(}")jl - (7, 7) ao

4T l-;__-||2

(7.3)

The case in whichOKis independent of position will be dealt
with. By measuring distances in the units of the mean free path,
XP = I/GX (this is the same as saying that gy = 1), equation (7.3) can be
simplified to - : .

! ! ' —- - =

() =%/[ﬂ§;(_r) ; g}\(;)j| R l—?%l—z (7.4)
It should be pointed out, though, that the general case of variable 0
int_rodﬁces ‘considerable COrﬁplication. Absolute c;)o_rdinates instead of
only relative coofdinates between the field and the point of emission
enter the problem. In the rest of this section g, is going to be con-
sidered as grey, that is,Athe scattering coefficient, GX’ is independent
of wé.velength.

In the absence of emission, €(T) = 0, the integral equation (7.4) '

reduces to
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1

! 1 -|7 - '
5(?):&/‘5(?)6 B _r,,|,_dr . (7.5)

)

- 1

The solution of this equation has been obtained and the functions have
been tabulated by Case et al.{10) |

The integral equation (7.4) in the presence of an isotropic point
source, i.e., the emission coefficient, €o(7') 26 (T - rg) = 47T€(_1'~")/c ,

can be written as

£ ) =f[€o(;') " 8'(?')] Slr - T __art (7.6)

47 |I~' - T2
A detailed solution of this equation has also been worked out by
Case et a_l.(lo) Physically, for exémple, this problem can represent
the radiation incident at any point r mean free paths distant from the
center of an atomic explosion if the surrounding air does not absorb,
but only scatters thermal radiation.

For other illlllstrations of the applicability of the results ob-
tained for neutron transport problems to the problems of transfer of
thermal radiation reference is made to (10), (12), (17), (63) and (106).

There also exists a possibility that some of the numerical
codes available for the solution of neutron transport problems by
digital computers can be used, with only minor modi'fications, for the
solution of radiative transfer problems. ‘For instance, Carlson's Sn

(106)

method can be used for the solution of the one-dimensional

equation of transfer (4.13).
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8 LITERATURE SURVEY

8.1 Introduction

The aim of this chapter is to present a review of the literature

on heat transfer in absorbing and scattering media which are either

_gases, mixture of gases, solids, or gases and solid particles which

form luminous flames. Emphasis is placed on papers describing

more recent achievermments. Radiant energy transfer problems in

“meteorology will not be considered here. Most of the earlier litera-

ture will be briefly referred to by way of textbooks and previous sur-
vey articles,

The study of radiant heat transfer in absorbing media has been
a subject of very little theoretical and experimental investigation, and
has been mostly limited to the problems occurring in bo11er furnaces
and combustion chambers. Recent developments in hypersonlc flight,
re-entry, rocket combustion chambers, power plants for interplanetary
flight, and gas-cooled nuclear reactors have focussed more attention
on heat transfer by rad1at10n through absorbing media. ‘

The radiant propertles necessary for heat transfer calculatmns
have been summarized by Jakob,(4o) Pepperhoff,(76) and a recent sur-
vey of high-temperature radiative properties of gases has been given
by .Logan.(‘r’g) Timeoretical and experimental studies of radiative
properties of gases are given by Pennei'.(75)

The literature on heat transfer from radiating stationary

media without conduction, convection and other energy transfer
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mechanisms are summarized in.books on heat transfer by Jakob,(40) -

McAdams,(él) Schack,(87) and others. The paper by Wohlenberg
t a1.{109)

contains a bibliography of 60 entries on radiant heat trans-
fer in boiler furnaces and related topics. The papers reviewed in

the above-mentioned references will not be discussed here. However,
an effort will be made to review briefly all the papers dealing with
heat tranéfer from both stationary and moving radiating media in .
which other modes of heat transfer (i.e., convection) are also included.
In particular, the papers of the Russian engineers which have not been

referred to by Jakob(z‘&o) and ,McAdams(él) will be reviewed.

8.2 Heat Transfer in an Enclosure

. Many common problems of radiant heat transfer require the
evaluation of enérgy transport between various parts of an enclosure,
such as a combustion chamber, a rocket motor nozzle, etc. For in-
stance, in a furnace the primary mechanisﬁm of energy transfer is the
radiant exchange between the combustion gases, the enclosure walls.
and the absorbing area. Radiant interchange between surfaces form-
ing a part of an enclosure and separated by an absorbing and scattering
medium involves considerations of three kinds: (1) the configuration
. of the surfaces, (2) the radiation characteristics of the surfaces and
the medium, and (3) the temperature distribution in the medium. In
this section the papers concerned with heat transfer (energy transfer
by radiation is predominant) in an enclosure are briefly reviewed.

A general multisurface system of source-sink and grey
absorbing and emitting gas at constant temperature has been con-
sidered by Hottel(él) using a finite difference method. The problem

treated is very complex and no claim is made that the solution is




e .multinode network., Adrianov
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rigorous. A finite difference method for predicting heat exchange in
enclosures where allowance is made for temperature variation in the

(36)

medium is reported by Hottel and Cohen. The system is divided
into surface zones and gas zones, the number of zones being depend-
ent on the desired accuracy of the result. The direct exchange
factors are céiculated\ for gas-gas, gas-surfa.ce, and surface-surface
zone interchange. From these factors the net exchange factor for any
zone pair can be determined, taking into account the interaction with
all other zones. The resultant factors are.then introduced into a set
of energy balaﬁces, one for each zone. The simultaneous solution of
these permit determination of the gas and surface temperatures and
the distribution of heat flux over the surface.

The solution of a problem of heat exchange by radiation using
the electrical network method was proposed by Oppenheim(71) and
extended by Bevans and Dunkle.(é) An éxample to illustrate the use of
the network method was given by Dunkle and Bevans,(é) who solved a
(2) applied the electrical network
analogy to the solution of the two integral equations which describe the
process of radiant heat exchange in a closed system of surfaces with
an absorbiﬁg and scattering medium present in an enclosure. The
author has shown thét the two integral equations can be sufficiently
approximated by a system of linear algebraic equations. This scheme
is equivalent to the solution of electric networks as first suggested by

(71)

which the gas present in the enclosure is not at a constant tempera-

Oppenheim. The problem is extended by Adrianov to the case in
ture; however, the problem is still restricted to diffuse radiation
from enclosing surfaces. An electrical analog is given in the paper
for the solution of the integral equations of radiant heat transfer with
the help of an electrical integrator, but no specific problems are.

solved.
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The most practical solutions have been given by Hottel and
(37,38)

Egbert.

Data of various investigators on the emission and ab-
sorption of radiation by carbon dioxide and water vapor were re-
viewed. A series of new experiments on water vapor were carried

out(38)

to measure total radiation from gas columns. Recommenda-
tions for a procedure to calculate heat transfer by gas radiation was
given. A simplified procedure wa? pres'enteAd to allow for the effect
of gas shape on radiant heat exchange by introducing a mean value of
the beam length. The procedure of mean beam length has been ex-

tended by Fax(ZI)

for nonluminous radiation to tube banks.

The literature on configuration (some authors call it shape,
angle, view, geometric) factors for radiation through nonabsorbing
media, and for few simple geometries for radiation through absorbing
' (40)

media has been summarized by Jakob. More recently, configura-

tion factors for radiation through an absorbing medium were given by
Oppenhéim and Bevans.(73) ‘

A simplified practical method of calculating heat transfer in .
oil-fired, pulverized coal and gas furnaces has been suggested by
Mullkin.(70) A valuable additional contribution to the knowledge of
heat transfer by radiation in pulverized coal furnaces has been made

(110)

by Wohlenberg and Wise. Introducing the concept of the radiant
mean position of burning coal particles and ash, by distinguishing the
coal particle while Burning from the res.ulting ash particle, they were
able to study the energy distribution and the direct transfer of energy
between burning particles, ash particles, gases, refractory walls and
cold walls. o

Heat transfer in boiler furnaces has been studied by Poljak

(81) 49,50)

tions were given in references (50) and (81) in both differential and

and Shorin, Konakov,( and Mikhailov.(67) The energy equa-

integral form, but were not solved exactly. The energy equation was
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reduced to an algebraic one by introducing average quantities. Sim-
plified solutions of temperature were obtained in a dimensionless
form. In reference (81) the predicted dimensionless temperatures
were compared with the correlations of other Russian investigators,
and in reference (50) the calculated results were compared with the
experimental data for some furnaces. Radiant heat transfer in fur-

(111)

' naces was investigated by thand. Simple similarity theory was
applied and dimensionless quantities were deduced from the equation
of energy conservation.

The role played by the radiant heat transfer on the process of
combustion has been studied analytically by Shorin.(gz’gs) The
influence of radiant energy on the activation of molecules and the
contribution of the "radiant conductivity" are discussed. The energy
equations are given, but are not solved. The problem of heat transfer
by radiation in a combustion chamber from hot combustion gase-s has
been studied by Shorin and Pravoverov,(94) and by Konakov et a_l.(51)
Konakov has postulated that in combustion chambers with cooled walls
a region is always present where there is thermodynamic equilib~
rium. The temperature of this equilibrium iayer is determined by
the intersection of the curves of molecular and radiation'température
change. The theoretical considerations about the existence of an
equilibrium layer have been experimentally verified, and its location
determined. The experiments carried out show that in cornbustion
chambers an equilibrium layer is in close proximity to the heat- -
absorbing surface at a distance measured in millimeters and that the

temperature of the equilibrium layer determines the heat exchange by

radiation in combustion chambers.



8.3 Diffusion Approximation for Radiation

For the case of intense absorption, one can apply diffusion
concepts in solving the radiant transfer problems. This type of dif-

(42)

fusion approximation was first suggested by Jeans, later extended

(86)

by Rosseland, and has been successfully applied in a few quite
different problems.

The thermal radiation effects in atomic explosions, in partic-
ular the effect of radiant energy transfer on the shock wave, has been
studied by Magee and Hirsch_felder(éz) using the diffusion approxima-
tion. Brickwedde(S) studied radiant energy propagation by the
diffusion of photons at temperatures of atomic explosions in the fange
from 107 to 108 °K. He considered .photons traveling in broken paths
through the fireball in the emission-absorption-remission cycle. The
photons therefore flowed to the surface of the fireball by a compara;i-
tively slow diffusion process described by the diffusion equation. For
the heat flux by radiation the author wrote

— cA 40\

q". = - _3_p grad u = - 3 P grad T* = - % grad T*%. | (8.1)

'

Introducing an approximate value of the mean free path obtained by the
help of Wien's displacement law, he showed that the radiant heat flux

becomes

—

q", =const. T grad T . ' (8.2)

We note that the heat flux by molecular conduction is propor-

tional to grad T, while the energy flux by radiation is proportional to
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grad T® or T° times the grad T. This shows the dominance of "ther~
mal properties of radiation" over the usual thermal properties at the "
temperatures of thermonuclear expiosions.
The diffusion approximation was used by Lubny-Gertsyk.(SS)
to calculafe the emissivity of a gas enclosed by surfaces. Shorin(-93)-
‘used the same approximation to calculate the temperature distribution
in combustion chambers. _

Kolchenogova and Shorin(48) have studied both analytically and

experimentall‘y the diffusion of radiant energy in an absorbing media.

The authors started from the definition of radiant heat flux vector,

—

q"r = =D grad u= - (40'/m12,1 IC) grad T4 , ' (8-3)

where D is the diffusion coefficient of radiant energy defined by

D=c)»p/m121 = c/m;lc ,

and m,, is defined by equation (9.8). Solutions of equation (8.3) were
- obtained for the case of a'finite slab, cylinder, cylindrical and
spherical annuli. The experimental results for a strdngly absorbing
gas were in good agreement with the predictions based on
equation (8.3). This verifies the validity of the diffusion approxima-
tion.
The radiative conductivity has the effect of adding another
| ' term to the ordinary therrﬁal conductivity. This contribution to
molecular conductivity may be quite important even at ordinary tem-
peratures. Heat transfer by simultaneous conduction and radiation in

(76) ge110t(46)

gléss has been summarized by Pepperhoff. has treated
mathemat—icaily the problem of steady flow of heat through glass. He
found that even though infrared energy is absorbed within a short

distance by almost any glass, the irradiation of energy by the glass
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itself is sufficient at glass-melting temperatures to cause consider=-
able heat flov.v. As might be expected, the contribution of radiant
conduction increases rapidly with rise in temperature, and at 1200°C
the radiant heat flow in ordinary soda glass is about 50 times the
ordinary conductive flow. A method for calculating terﬁperaturé dis-
tributions in sheets of glass that are being heated or cooled was pre-~

(26)

Van der Held(32) has discussed the contribution of radiant

sented by Gardon.

energy to the conduction of heat in insulating materials, particularly
in connection with the experimental measurements of the thermal
conductivities of these materials. He was concerned with systems in
which the absorption of radiation was not so intense that the mean free
‘paths of the photons could not be taken as negligibly small quantities.
The Biot-Fourier equation was modified to include a term taking into
account the effect of radiant heat transfer:
. . .

oty %%:kVZT+4 n?ky(E} - Epp, ) 44 . (8.4)

The term E'; includes contributions due to the radiation from
the heat source, the heated absorbing medium, and also scattered and
reflected irradiation from the walls. He showed that as long as the
dista;nce d from the boundary of the system has a value so that
kyd > 5, then the effective irradiation E'K is equal to value Epp, )
estimated at the local temperature, and that (E) - Epp,)) becomes
proportional to the difference in the fourth power of two temperatures,
the local temperature and the source temperature. Verschoor and

Greembler(104)

have carried out thermal conductivity measurements
with four different gases in insulating materials. The measured
values of thermal conductivity at low pressures confirmed the theo-

retical considerations of heat transfer by radiation.




8.4 Heat Transfer in Moving Radiating Medium

Only the papers which deal with radiating media ét rest héve
been reviewed. The un'derlying hypothesis of the papers reviewed
previously is that, unlike dynamic and éonveétive effects, radiant
energy exchanges do not affect the velocity and the temperature dis-
tribution in the flow. Such an assu.mpfion is easily _a.cc'eptable when
radiant heat transfer is small compared to tﬁe usual transport
processes. However, this method fail’s 1n the presence of a large
radiant heat flux, since its presence-c'_a.,nnot be rec'onc'iled with the
postulated temperature distribution th'a.t. was derived without a |
radiative term. The determination of the true témperature distribu-
tion requires the solution of a coupled system of differential, integro-
differential and integral equations.

(93)

Shorin seems to be the first to consider a one-dimensional
problem of heat transfer by radiation in the presence of both sta-
tionary and moving absorbing media. He started from the simplified
equation of transfer, the definition of the rad_ianf flux vector and the
equation representing the energy balance. The e_qﬁa'tion 6f the energy
at any point of the combustion chamber in the~st’ééd§'-étate an.d neg-
lecting the energy dissipation, the work of pressﬁi‘e:‘:f:(")r‘ces and.

gravity was written in the form

4 kEbb - Kkl cos 6dQ = - div(pch) + div(k grad T) + q". | (8.5) }
Q=41

80
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The boundary condition pertaining to the cooling surface was
also derived., For the one-dimensional case with no heat sources be~
tween the two surfaces and neglecting the heat transfer by molecular

conduction, equation (8.5) reduced to

4 @Fpy vep @7 dT
3k dx? 32 gs3 P dx

=0 . (8.6)

To remove the nonlinearity of this equation with regard to tempera-
ture, the author introduced the following transformation:

dEbb_ 4E;, .
dT =~ T ’

then
aT ucpT dEpp
ucp 4— = =—
P dx 4Eyp  dx
. o AT . .. dT :
Neglecting the derivative 3 in comparison with ——, equation (8.6)
reduced to
d?E dE
bb bb
- II = .
. K i 0 (8.7)

The parameter Il = 3ucpT/16Ebb represents the ratio of energy
transferred per unit area, per unit of time by convection to the energy

of radiation transmitted through the unit area, per unit of time.

3.
According to the author, the assumption STE << j—:" in the case of non-

radiative equilibrium (4 KEp - Kcu ;! 0) is equivalent to the assump~
tion that

4 dEppb
" - -
Qrad = = 3% Tgx ’ (8.8)

an expression which signifies local thermodynamic equilibrium.




82

Solution of equation (8.8) is given for the radiation between
two parallel planes at constant temperatures T, and T, and having
emissi\.rities €, and €, for various values of the heat transfer
parameter II. The solution of the problem was then applied to the
calculation of heat transfer by radiation in boiler furnaces, with a
single surface being cooled. The relation obtained was then com=
pared to an empirical formula for heat transfer in furnaces.

Pukhov(83)

investigdted heat transfer from combustion gases
of a cylindrical shape moving at constant velocity. The source of
heat generation was the base f)lane of the cylinder, where the gases
enter the system. The gas temperaturé changes both in the direction
of the motion and along the cylindrical cavity in the radial direction.
From simple approximate calculations and the definition of the ef-
fective temperature, an expression for the effective temperature is
determined. The relation obtained, according to the author, takes
into account the influence upon the effective temperature, not only of
the temperatures of the heating and the cooling plane, but é.lso of the
properties of the radiating gas, and the shape and size of the volume
which these gases occupy. However, the author himself makes the
statement that the expression for the effective radiation temperature
cannot be considered as final, and it is an attempt to solve the given
problems.

Lubny-Gertsyk(Sg) has studied several problems of heat
transfer between a radiating gas, both stationary and moving, and the
fixed solid walls. In particular, an approximate method of calculation
for a selectively emitting suspended dust medium is presented as
well as a method for calculation of radiation of an emitting medium
moving through an infinite plane screen. The information about some

of the calculations leading to the given curves are lacking in the

paper.
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The paper by Adrianov and Shorin(3) is one of the first which is
concerned with coupling of convective and radiative heat fluxes. Tﬁe
problem considered by the authors is a steady-state cooling of a
radiating gas flowing in a circular pipe and between infinite parallel
plates having a prescribed wall temperature. Convection and radia-
tion are the two modes of heat transfer assumed to be present. The
scattering of radiation is neglected and it is postulated that the
radiant energy emitted by a unit volume uof'gas and absorbed by an-
other unit volume. is negligible compared to the radiant energy
emitted by the gas and absorbed by the duct surfaces. The so'lution of
a coupled system of equations of motion and the integro-differential
equation of energy conservation is eliminated by assuming one-
dimensional flow and various velocity profiles in the ducts. The
energy equation is solved, and temperature distributions are. deter-
mined for the following velocity profiles: for the circular pipe -
uniform and parabolic; for the flow between two infinite parallel
plates - uniform, u/uTn =3(1 - y/h)?‘ and u/u.rn = 3(y/h)3, where u is the
velocity and any point y, u,, is the maximum velocity and h is the dis=
tance between the plates. A

Several new dimensionless ﬁumbers, which enter radiative heat
transfer problems in a natural way, are introduced., In partiéular, a
use is made of dimensionless parameter which governs the coupling
between convéctive_and radiative energy fluxes. The results of calcu~
lations are presented in graphical form ‘as functions and parameters of
dimensionless nu‘fﬁbérs. The results show that there exists a value of
optical thickr.lessl at which the heat transfer is maximum. Some of the
calculated rlesﬁlts are compared with the predictions of other Russian

investigators.

The Rosseland approximation for the radiant heat flux vector

was applied by Kadanoff(45) to the problem of qalculating temperature

distributions within bodies in steady-state ablation. Numerical



results are presented for the temperature distribution with various
parameters characterizing the body, i.e., reflectivity, absorption and
scattering coefficients, etc. An analytical solution for temperature
distribution is given in the limit of zero ablation. The é.uthor points
;out the concept of apparent thermal conductivity "works quite well
whenever the temperature and the optical properties of the medium do
not change very much within one photon mean free path." There are,
however, some errors in the equations used. |

The problem of a chemically reacting and radiating gas in
Couette flow was studied by R. and M. Goulard.(3o) With ’t‘he assump-
tion of thermodynamic equilibArium and no viscous dissipation, the

energy equation reduced to

div (kgrad T+E) = 0 o (8.9)

—

where k is total conductivity, including the chemical part, and E is the
radiant energy flux vector. Since the energy equation in Couette flow

is one~-dimensional, after integration of (8.9) one obtains(30)

k oT + qy = constant, | (8.10)

%

“where

© A2 T ' ' '
qi = / / f Iy (6,9) cos 6 sin 6 d6d ¢
) _ 0 0 0 _ A

Since equation (8.10)-is nonlinear in T and quite complex, no closed~
form solutions for the temperature are obtained. The nt:rﬁerical 1;e-
sults-indicate that the effect of the "long-range" process of;ra..diatioﬁ
is to smooth out the temperature profiles and relieve shé.i'p temp‘é-ra.—
ture gradients at the cool wall. Aé a result, the application of this
exact method yields lower values of the total heat flux than préﬁously

calculated by approximate methods.
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9. HEAT TRANSFER BY SIMULTANEOUS CONDUCTION,
CONVECTION AND RADIATION

9.1 Introduction

One of the most serious mathematical difficulties is that, in
solving the equation of transfer, it is necessary to take account of the
variation of intensity of radiation with direction, i.e., as a function of
the angle 6 at each point in the medium, and on the surface of the en-
closure in consideratio.n. If high accuracy is not required in the final
results, it is possible to introduce some simplifying assumptions by
averaging I)I;:—f;) over all directions. Many times, in order to simplify
the problem, it is assumed that the intensity is ilsotropic dr diffuse.
Some of the schemes of the possible intensity dependence on the direc-
tion are shown in Fig. 9.1.

- All of the cases idealized in the sketches approximate the de-
pendence of intensity on direction for real surfaces and surface condi-
tions, as well as emission of radiation from a.nl elementary volume.
The cases a and e correspond to diffuse emission from a surface and
a unit volume, respectively; this is the case for biack. radiation. The
case b corresponds to Lambert's cosine law, which is more or less
valid for real bodies. All other cases give a more complicated de-
pendence of the intensity on thé direction. Knowing the dependence of
intensity on direction at the surface or from an elementary volume,
one can more easily calculate heat transfer to the surface or to the
elementary unitvolume of the medium. However, even with the assump-

tion of diffuse radiation the net emission from a unit volume, gn: is a
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(a) "(b) (c) (d)

(e} . (f) {(h)

FiG. 9.1
IDEAL'VZED 'INTENSITY DISTRIBUTIONS WiITH DIRECTION.

complicated integral over the entire radiating medium and the enclos-
.ing surfaces. The solution of a very simple equation of energy(11.1)is
quite difficult. Thus, in view of the present state of mathematical |
techniques available for the solution of integral and integro-differential
equations, an exact solution of (11.1) does not seem possible. There
are, however, two simple forms for fn; one is valid when the media is
optically thick and the other when it is optically thin. Both forms will
be presented in this chapter.

As an illustratioh of these types of analyses, the approximation
valid for optically thick mgdia is employed to simplify the energy
equation. The equations of motion and energy are solved for fluid in
laminar flow. Two different problems are considered: Couette flow'

and flow along a wedge.
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9.2 The Diffusion or Rosseland Approximation of Radiation

As a first simplification to the problem of radiative transfer of
energy in absorbing and scattering media, the Rosseland approximation
for the radiant energy flux vector is presented in this section. This
approximation is valid for intense absorption and scattering; however,
i;c fails completely at the boundary of the system. The Rosseland
approximation for the radiant flux vector has been applied to such dif-
ferent pfoblems as calculation of terhperature distribution in boiler
furnaces,(93) combustion chambers,(51) the effect of radiation on blast
waves caused by nuclear explosions,(éz) the transmission of radiant
energy through glass,(76) the radiative energy transport within an
ablating body,(45) and the transport of radiation through gases of low
density.(48)

The stress tensor in hydrodynamics can be separated into
normal and tangential components. Similarly, the energy tensor (3.19)
was resolved by Rosseland(86) into normal and tangential components.
For this purpose we resolve Iy into two parts: K and I>'\', where I)'\ is
defined as the average v'alue of I according to the equation

4n1ii/‘ IhdQ= cu>\=g>1. ' (9.1)

Q=47
On the other hand, the monochromatic intensity Ii' depends on the

direction. Correspondingly, we resolve a tensor 1% i related to this

intensity into two components B' i; and P;\' i3 which are determined by
the equations :
' 4 v cu),
- 2:0:d0= =— 135, = —2 5.
Pk’ij [ I)§2;€;d0 5 104 5~ 045 (9.2)
Q=4m '

where the Kronecker delta function <5i-

, , (1, i=j
j is defined as 6ij = { } ,

0, i#j

e
Q=4

and
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The tensor Pl)\,ij corresponds to normal stress, while P)::ij correspoﬁds
to shear stresses in a continuous medium.

From the definition of Iiit follows that when the system is in
thermodynamic equilibrium the tensor P)'\,ij will increase in propor-
tion to the monochromatic intensity of the black body r;adiation, or to
its integral over all wavelengths, which is proportional >to fourth power
of temperature, according to the Stefan-Boltzmann law. On the other
hand, the tensor P)'\',ij will behave quite differently. From the very
definition of Pi,ij we éee that it depends on the asymmetr& of the mon-
ochromatic intensity of radiation. The tensor Pi,ij will depend on the
change of I"xwith direction. As a result of this, the relative magnitude
of P;uij/P;»,ij can be estimated and given as a function of P;\,ij.(g'?)

The divergence of the radiant energy flux tensor can be ex-
pressed as a gradient of a certain scalar potential function. This is
possible only for thermodynamic equilibrium, that is, when
P'X',ij/P'X,ij ——~0.(86) Therefore, with this approximation we have

4m 4 1 t
Pyij = 5 Ipb,n 8ij = 5 Ebba 04 =38 8- (9.4)

Thus for intense absorption and scattering as well as when the system

is near to thermodynamic equilibrium, the nondiagonal components of

the energy tensor become small, and one has(86)

. 1
div B jj = 3 gradg;\. . (9.5)

Substituting (9.5) in equation (3.20), we get for a steady-state system

the monochromatic radiant energy flux vector

—-

1 ! '
Ex = - m’ gradgx. (9.6)

If the extinction coefficient depends on wavelength, the mean
free path of the photon, XP’ or the average extinction coefficient, may

be defined by,
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A=
p

) - 3
faEb—'—“dx 3p (o9 T

|~

<] [s4}
[amp (op o
o OT PBx_ o OT By _ _1 OEbb,x dX (9.7)
A oT By

oT
0

The Rosséland definitions of the radiant heat flux vector and the mean
free path, Xp, correspond to simple kinetic theory arguments. Photons
travel with the velocity c. At any time 4 of the photons are moving in
the x direction and -lg in the opposite direction. If the mean free path
is Ap = l/B_, the flux of radiation is given by equation (9.6). A similar
approximation in the neutron transport theory is known as the first-
order diffusion approximation.(106) 'Filippov(24) and Goody(29) have
derived the same expression for the radiant flux vector by a different
method. An improved relation for the radiant flux vector, which takes
into account the change of intensity with direction, was given by
Shorin(93) and will be presented in the next paragraph.

One can derive an improved relation for the radiant flux with
the help of a function introduced by Kuznetsov:(53)

/ 1dQ
Q=27

i = . ' (9.8)

/ I cosgdf}
Q=21

The radiant energy flux in the normal direction, q;, defined as

1 ¢

qr =E-'n , . (9.9)
which, with the help of (9.8), can be written as -

1
A =T [/ It 4Q -/ I inl . , (9.10)
noLJa=2m Q=-27

Using the definition of the absorption coefficient and the fact that
ds = dn/cos 6, Shorin{93) has shown that the radiant flux in the normal

direction is given by the following expression
1

"o 1 d(cu) _ 1 _dﬁ

qy = 3 = -T2
mpgk dn mi, K dn

(9.11)
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This eqﬁation differs from the Rosseland approximation for the radiant
flux(9.6) only by a constant. It was shown by Shorin(93) that for the
case of uniform distribution of intensity, as indicated in sketch(9.le),

m, = 2.

One should again émphasize the limitations of the Rosseland
approximatién. It is valid for both extreme cases 0O) = 0 and k) = 0.
The approximation is restricted to media. with large optical thicknesses
(T>>1) as well as to a system close to thermodynamic equilibrium, so
that equation (9.4) is valid. This is equivalent to saying that the terms
proportional to Ry vanish in equation (5.9), that is, the radiation inci-
dent at any point in the medium is given by the second term of equa-
tion (5.9) no matter what the radiosity is. In addition, the temperature

- and the radiative properties do not change much within one photonmean’

free path, or, expressing this condition mathematically, we must have

1 1

= grad (lo g <L

| B g (log >\)| 1

From the preceding discussion it is clear that the diffusional approxi-

mation of radiation breaks down completely in the vicinity of a surface,

since it does not take into account the radiation leaving from a surface.

9.3 Energy Equation with the Diffusional or

Rosseland Approximation for Radiation

The energy equation, including a radiative term, has been
derived in Chapter 6 and is reproduced here:

Dh , Ju _ .. ey —:
PDt+at—d1v(kgradT)—d1vE+q +Dt+p.<l>

Substituting the diffusion approximation (9.6) for the radiant energy
flux vector, E in the energy equation, we obtain

_gi‘ = div (kegf grad T) + g™ + %tp‘ﬂ‘ pe (9.12)
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g ' ' 16n%g T3 L
keff=k+kr=k+-n3—g‘T | (9.13)

is the effective or apparent thermal conductivity.

The same restrictions as in the diffusion approximation apply '
also té the effective thermal conductivity. This concept holds quite
well if the photon meén free path is much' shorter than the distance
over which the temperature changes significantly. Equation(9.13)holds

except in a neighborhood of a surface.

. 9.4 'Approximation for Weak Absorption

., The seéoﬁd’ approximation to the problem of radiative transfer
of energy in-an absorbing and scattering medium is obtained for very
weak absorption. "Physically this means that the medium is transpareht
to thermal radia.1_:-ion. In this case the appfoxirhation for net emission,
gn’ may be o.‘btained by the following consideration. The net emission

is defined by equation (2.30) as

P

or _ | '
gn /edQ IchdQ . o (9.14)

Since the black body intensity is isotropic, we can write (9.14) as

gn*:: 4n’cEyy -k 14Q . (9.15)
' Q=4mn

- The first term on the right hand side of (9.15) represents the
emission of thermal energy at the local temperature. The second term
.repre.sents the absorption of radiant energy which was emitted by other

' elerﬁénts of the fluid and by the bounding surfaces. If the mean free

‘path of radiation, >‘P’ is long, the main contribution to the second term



92

will come from the points spaced at about this distance from the point
" in consideration. I_pr/h > 1, where h is a character_istic dimension Qf
the system, the irradiation at each point will originate either far away
frorﬁ the point, or from the boundaries. In this case, the irradiation
will not. vary much over distances comparable to the characteristic
dimension of the system, and the variation of fn will chiefly be due to
the variation of Ey. Hence, applying the Laplace operatbr V2 to équa—
tion (9.15), we obtain o |
vzgn,e V2 (4n’k Eyy) . | ‘ (9.16) .
An operator such as "grad" or "div" could have been applied to
(9.15), but it is more convenient to use the Laplacian. If we assume
that the absorption coefficient, K, and the refractive index, n, are

"weak" functions of position, (9.16) can be written as

Vzgnz 4n*koVET* (9.17)
For a system in a steady state, we have from equation (3.16) fhat
(fn = div E that is, the net emission of radiant energy from a.v unit
volume per unit of time is equal to the rate of qhange of the radiant
energy flux vector with posifion. The oper'ationvZ gn =VV- —E.), how -
evef, has no simple physicalA intérpretation. Equation (9.17) will have
to be solved simultaneously with the energy equation (6.11)to determine

the temperatufe distribution in weakly absorbing media.

9.4 Couette Flow

9.4.1 Basic Equations

The complexity introduced by the radiative contribution to the
energy flux is in part due to the dependence of the flux on the geometri-

cal configuration of the problem. A very simple type of flow, the
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R T=T, Couette flow (see Fig. 9.2),
B e e will be considered. The geo-
1 metric effects are nonexistent
’ ‘ v = ufy) in this problem, and it is
i’ l | T=T, hoped that it will contribute
: X

/ 77 777777777 . )
Eaas to the overall understanding

FlG. 9.2

PHYSICAL MODEL AND COORDINATE
SYSTEM FOR COUETTE FLOW,

of heat transfer in a medium

absorbing thermal radiation.

The equations of motion (6.2) and energy (9.12) reduce to

%—3(#%) =0 (9.18)
and . 4
S er2emem) S en(3S -0 519

if the following assumptions are made:
1) The flow is one-dimensional.
2) Heat conduction in the x direction is negligible compared to
heat transfer in the y direction. | |
3) There are no pressure.gradients and heat sources.
4) Scattering is negligible compared to absorption.
5) Viscosity, thermal conductivity and absorption coefficient
are-'functions of temperature.
The heat due to viscous dissipation is important when the
Eckert number,
N = Ut
k(Tl-TW)

is of the order of unit magnitude. For the problem in consideration

)

here, we assume that Ny <<l. Since the viscous heat dissipation is

negligible, the equations of motion (9.18) and energy (9.19) become

uncoupled. Therefore, in the remainder of this section only the energy

equation shall be considered.
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A very simple solution for the temperature distribution is ob-
tained when it is postulated that the temperature is constant along the

wall, the boundary conditions being: T = T, aty = 0, and T = T; at

-y =h. Thus, to solve (9.21), let -

€ = y/h;
then '
d ddé 1 d

Introducing the new variable and dividing by h?, the equation of energy

(9.19) reduces to

2G5 T3 1 .
i[(k+—163gT)g—Z]=o . . (9.20)

- .9.5.2 Solution of the Energy Equation

' Solution of (9.20) requires the knowledge of the variations with

temperature of thermal conductivity and absorption coefficient. It is

-assumed here that these two properties can be approximated by .the

relations
(I N al .
k < T ) A
.S G A (9.21)
and . o .
L a '
k T ) z . 4
—_—= S (9.22)
“w o (Tw '
Substituting (9.21) and (9.22) into (9.20) and integrating, one obtains
a, +1° - 2 a2 n4-a '
1 . 16én°0 T T*7 92
T + w = ¢, e + s (9.23)

a . S 3(4 - ky K
T, ' (ar+1) (4 -2z) ky Ky
When the integration constants ¢, and c, are evaluated by using the .
boundaty conditions, eqﬁation (9.23) reduces to
1 —a. - aj+l +1 _ .
ATt 4 T4 322 p) [Tw‘ (1-£)+T,* ﬁ] + AZ[T;*,v 2z2(1 -6)+Ti 22 g] ,
C : (9.24)
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where
A 1
= a
17 (ag + 1) Ty,
and
A lénzci'l'{iz
2 7 3(4-a5)kywky
If the thermal conductivity and the absorption coefficient are
independent of the temperature variation, a; = a, = 0, equation (9.24)
simplifies to
T+B,T! = [Ty (1-€) + T1€]+ B, [T, (1 -€) + T €], (9.25)

where

B, = 4n’c/3k «

9.5.3 Discussion of Results for Couette Flow

The numerical results were obtained for the case in which the
thermal conductivity and the absorption coefficient are independent of
temperature, and the index of refraction is unity. For the Rosseland
approximation to apply it was assumed that for all values of the ab-
sorption coefficient considered h is much less than the mean free path
of radiation (h<< >‘p = l/IC). Predicted temperature distributions for
Couette flow are plotted in Figs. 9.3 and 9.4. We consider the effect
of varying k but holding the same temperature at the boundaries. The
physical nature of the results can be understood when we note that
16 nZOT3/3Ic represents "the radiative thermal conductivity," k...
Three separate cases must be considered: k >>k,, k <<k, and, that
in which the thermal conductivity is of the same order of magnitude as

"the radiative conductivity."
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For the first case (k>> k_, A} >> A;), equation (9.24) can be
approximated by

a1+lz [ a1+1(

w

1-g)+ TH e (9.26)

This is an equation for temperature distribution for a slab with

T T
temperature-dependent thermal conductivity. The temperature profiles
approach those for pure conduction as the absorption coefficient in-
creases. From Fig. 9.4 we see that the tefnperature profile for the
case in which k= 10* ft—l* is a maximum 1.5 percent higher
than that for pure conduction. This difference further decreases (see
Fig. 9.3) as the temperature level decreases.

When "the radiative conductivity'" predominates, that is, k<<kr,

A;<<A,, equation (9.24) reduces to

T47%2 = [T (1 - 8) + TH 22 €] . (9.27)
Thus, in the limit when energy transfer by radiation pfedominates, the
temperature distribution is independent of the value of the-absorption
coefficient, but depends on the variation of £ with temperature. The

results for k = 10 ft™?

and k=1 ft™! are indistinguishable, and separate
curves could not be drawn. ‘

For the case when thermal conductivity is of the same order of
magnitude as ithe radiative conductivity,'" we expect an increase in T
as K decreases. This increase in temperature should be accompanied
by an increase in the difference between the temperature predicted by
equation (9.26) for pure conduction and by equation (9.24) for simul-
taneous conduction and radiation. Figure 9.4 shows that this expected

increase in the temperature difference does indeed occur. A small «

indicates a large value of k,.; hence T should indeed increase with

*This value of k is quite high. However, much higher values of the
absorption coefficients have been obtained experimentally, i.e., at
a wavelength of 0.923u. Sun and Weissler(97) obtained a value of
95,700 975 ft™! for CO, gas.
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decre.asing absorption coefficient. For small values of Kk, less than
10 ft™!, the increase in temperature with the decrease in Kk is
negligible.

The results show that the presence of radiation increases the
temperature gradient above that of pure conduction at the cool wall
and decreases it at the hot wall. This trend in the temperature gradi-
ent is expected. Since the effective thermal conductivity increases
with temperature, the temperature gradients' must decrease to con-
serve the total energy flux (conduction pius radiation). The Rosseland
approximation breaks down in the close vicinity of the surface and
only the presence of conduction insures the continuity of the tempera-
ture near the wall. It is therefore expected that in close proximity to
the walls the temperature predicted by using the diffusion approxima-
tion for the radiant flux vector will be in error; however, this error

decreases as the mean free path of radiation decreases.

9.6 Flow Along a Wedge

9.6.1 Introduction

‘Two-dimensional laminar flow and heat transfer have been
studied by many investigators. Historical sketches and extended
bibliographies of analytical and experimeﬁtal studies are gi&en in the
texts of Goldstein,(28) Howarth;(39), Schlichting,(88) Pai(74)and others.
Factors that affect the develop‘ment of a laminar boundary layer are
pressure grédients, heat transfer, Mach number, and the properties of
the fluid under consideration. Since mathematical complexities pre-
clude solutions of this problem in a completely general fashion, the

literature consists largely of solutions treating particular combinations
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of these factors.(16) In previous analyses the heat transfer by radia-
tion has been ignored. The objective of this section is to investigate

'br_iefly the effect of the absorption coefficient on the temperature dis-
tribution and heat transfer in a medium that strongly absorbs thermal

radiation.
9.6.2 Basic Boundary Layer Equations
The first step in the analysis of laminar flow and heat transfer

along a wed‘ge is to apply the conservation laws of mass, momentum

and energy. The resulting par-

tial differential equations re-
' quire sirﬁpliﬁcation before they
y X

become amenable to numerical

solution. The coordinate system

. nB .
~ for the wedge is shown in Fig. 9. 5,
and the fundamental equations

which express the lawof conser-

PRrYEE vation of mass (6.1), momen-
COORDINATE SYSTEM FOR FLOW PAST A WEDGE.

tum (6.2), and energy (9.12), with

the standard laminar boundary layer a.pproximations,(ss) reduce to;

‘Continuity:
5 y . ,
Ix(ow) +3- (ov) = 0, (9-28)
MomentiJ.m:
3 .
pedte e Rog ufy Eeo 229
Energy:

‘ pu a(CEXT) CgT ___+ > [(k + ﬁl;_gz:‘)g_j] + “<aa—;1)z . (9.30)

The heat generation per unit volume has been neglected.
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The boundary conditions for this system of equations are

T at y=0 :
v } (9.31)

To at VN Amd

u=v=0, T

u =7y, T

9.6.3 Similarity Transformation

"Similar® solutions are discussed in reference 88. They
constitute a particularly simple class of solutions of u:(x,y), and in this
case the system of partial differential equations (9.28), (9.29), and
(9.30) ‘reduce to two ordinary differential equations. It is proved in
reference 88 that such similar solutions exist when the velocity of the
potential flow is proportional to a power series of the length coordinate
me;.sured from the stagnation point, i.e., for

U (x) = u; x™ . (9.32)
We now introduce dimensionless coordinate 7, first suggested

by Faulkner and Skan,(20) so that

_ (m+1) U
n=y 5 o - (9.33)

The asterisk designates a physical property evaluated at an arbitrary
temperature T*. The continuity equation (9.28) can be integrated by

introducing the stream function:

Boy) =n fmags v* w1 1(n). (9.34)

'The velocities in the conservation equations can be replaced through

the definitions

_5_?//__;)_ u4andé‘di = ——pv
'ax '

oy p* p*
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Thus the velocity components become

* * 0% '
. ‘pp g;kz %Uq m £1(n) :/O_p_ Uf'(n) (9.35)
and
' _ p*3Y p*-. /(m+1) .. m-l m-1 \ :
VeSSt .7)_'\/ ~ v¥u;x fn) + ——m+1nf(ﬂ) . (9.36)
From Bernoulli's equation:
p +%pU? = constant,
we have .
d dU :

Assuming that density and viscosity are functions of temperature and

substituting equation (9.37) into (9.29), we obtain

du . du du px\ O (g du

-— —= [ — * ) — _—
usy + vay U = TV ( o ) 3y \ uxdy o (9.38)
We define the dimensionless temperature, 8, as

e=T/T*

where T* is an arbitrary temperature. Assuming that the density,
viscosity, and thermal conductivity are functions of temperature and
introducing the dimensionless temperature, as -w.él'l as the pressure
gradient, in the equation of_ energy, (‘9_.‘3"0), we obtain
- 36 . 38 A 3 ‘ 2
098, 28 _wU AU (PO (kegro0), 1 (Oud
ox: oy cpT* dx p ) oy\ k* 3y pcp T* dy
(9.39)
Introducing in equations (9.38) and (9.39) the independent di-

mensionless variable 7, there result the equations

{BlEr @t @ e @e] -

and

(tat) o] e 5L () [(2) (&) ]} o
. ' 9.
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where the pressure gradient parameter B is defined as B = 2m/(m+1).
The prime on f and © denotes differentiation with respect tom. The
boundary conditions for this' set of equations are obtained from equa-
tions (9.31) and (9.33):
f=f=0, ©=0y at nN=0 }
f=1, © =9, at M) —-w

(9.42)

~are the transformed boundary conditions.

The pressure gradient barameter B is reiated to the exponent
'm of the velocity distribution (9.32) through the relation B= 2m/(m+1).
The case 3< 0 corresi)o'nds to an unfavorable pressure gradient;

B = 0 (m=0) corresponds to a flat-plate flow; and 'B = 2 (m=c) corre-
sponds to an infinitely favorable pressure gfadient; It is shown in
reference 88 that the case of stagnation poiﬁt in axisyrﬁmetric flow can
be transformed to the solution for B=% (m = %)

Because of the nonlinearity of the system, its high order, and
its classification as a "two-point boundary value problem," no standard
integration methods will yield results expressible in closed form.
Equations (9.40) and(9.41) were solved numerically by the forward
integration method, as indicated‘in Appendix C. '

The local heat transfer rate to ;che body is determined by the
sum of conductive and radiative transports. The conductive energy
transport is given by | l

ST
o

gl = - k(g (9.43)

In terms of the dimensionles.s temperature distribution, this heat flux

becomes
Q¢ = - k(’%—gy) (g%)w(%?) E
or . o
: § [ (d
ag = - = NRex(a—%)w y | o4
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Thus, the local heat flux by conduction is directly proportioned to the
square root of the Réynolds number based on x as fhe characteristic
dimension and inversely proportional to x.

Since the diffusion approximation fails at the surface, the radi-
ative energy flux at the wall is more difficult to estimate. It is neces-
sary to obtain the temperature distribution as a function of y and not
of the similarity variable 7, and then to calculate the net radiant
energy flux from equation (2.29). This procedure is quite awkwardand
very cumbersome. The total heat flux might be approximated in a
simpler manner. Instead of evaluating the heat flux at the wall, we can
estimate it'at a very small distance away from it, where the fluid
velocity is still small and where the Rosseland approximation for thé

radiant flux vector is valid.

9.6.4 Discussion of Results for Flow Along a Wedge

The flow along a wedge was investigated w'ith the pui'pose of
studying the effect of the absorption coefficient on the temperature
distribution in the flowing fadiating media. The numerical calculations
were performed for two distinct cases. First, in order to separate out
the effect of the absorption coefficient on the temperature dis'éribution
from other variables, the physical properties were assumed to be in-
dependent of the temperature. The dimensionless temperature distri-
butions for a Prandtl number of 1 and pressure gradient parameter B
of 0 and { are shown for both the hot and the cool walls in Figs. 9.6
through 9.10. Second, the case in which the viscosity is a very strong
function of temperature was considered. Both the velocity and temper-

ature profiles are therefore affected by this dependence. Pyrex glass,
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Fi1G. 9.6
DIMENSIONLESS TEMPERATURE PROF.ILES AS A FUNCTION
OF THE SIMILARITY VARIABLE n FOR =0, Np_=1.0,

“ k=0.05 Btu hr=! ft=1 R-1 AND T*=3000°R. :
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FIG. 9.7
s DIMENSIONLESS TEMPERATURE PROFILES AS A FUNCTION OF THE SIMILARITY

VARIABLE n, FOR 8=0 Np,=i.0, k=0.05 Btu hr=! ft=1 R-1 AND T*=3000°R.
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which is of physical interest in reentry problemé, was chosen as an
example. The results of these calculations are given in Figs. 9.11

through 9.13.

0.5
k,=0

0.4 x=10% ft-!

k=108 ft=!
=102 fto!

0.8

k, =0
x=10% ft=!

x=108 ft-!

x=102 ft-!

FIG. 8.10

DIMENSIONLESS TEMPERATURE GRADIENT ACROSS THE BOUNDARY LAYER FOR B=0.5,
Np,=1.0, k=0.05 Btu hr-! ft=! R-1 AND T*=3000°R.

The velocity profiles for the constant-property case are well
known(20) and therefore will not be considered in this work. Figures 9.6
through 9.9 show that, for NPr = 1 and a given k, the dimensionless
temperature varies monotonically across the boundary layer from the
wall value to the free stream value. When the absorption coefficient is
large, the temperature profiles approach those of a nonradiating media. -
For the hot wall when k= 10% ft™! (keffok),'the temperature distribu-
tions are indistinguishable. The temperature gradients are decreased
with the decrease in the absorption coefficient. In the case of boundary
layer problems in which the thermal boundary layer thickness is small,
the diffusion approximation of the radiant flux vector is not applicable,

even when the absorption coefficient is large. Hence, one cannot expect
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to find a value of Kk for which the‘ temperature gradient is a minimum.
The difference between the temperature gradients for the cool wall and
the hotwall is as expected. Because at the coolwall k.. is much smaller
than at the hotwall, the tempez;ature gradients for the latter are greater.
The temperature gradients for the case of a favorable pressure
gradient, B =%, are plotted in Fig. 9.10. As seen from the curves, the
changes in the gradients near the surface are qﬁite small. The total
heat flux was calculated at an ai'bitrary value of the dimensionless
similarity variable, 1 = 0.03, from equation (9.44) by replacing k with

keff- The heat transfer results are given in Table 9.1.

Table 9.1

Heat Transfer Results for Flow Along a Wedge

Expressed in Terms of the Ratio q"x/,/Nre

Cool wall Hot wall
B
kp =01 k=10"% [ k=10"3 | kp =0 | k=10"% |k=10"3
0| 43.1 39.9 29.3 43.1 43.8 44.7
+ 1 57.0 52.7 38.3 57.0 56.9 68.1

In order for the Rosseland approximation to be valid, it is
necessary for the thermal boundary layer thickness to be at least an
orde\r of magnitude greater than the mean free path of radiation. Con-
sequently, the heat flux was not calculated for k = 10%ft™! since the
mean free path is only 0.0l ft. For a flat plate (= 0) and the hot wall,
the heat flux for k = 10%t™! exceeds that for pur‘e conduction. This is
due to the fact thét the iz}c;.rease invthe effective conductivity is greater
than the decrease in the temperature gradient. In thé case of a favor-
able pressure gradient, B 2-%-, the results are similar in txjend, but the

heat fluxes are about 30 percent higher.
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" Pyrex glass is of physical interest because it has been con-
sidered(1,5,100) as an ablating material for protection of ballistic mis-
siles reentering the earth's atmosphere. In these studies the energy
transfer by thermal radiation has been ignored. Since it is possible to
change the absorption coefficient of Pyrex glass by addition of a car-
bonizing plastic,(l) it is of interest to study the effect of K on the heat
transfer. The values of the physical properties and the dependence of
viséosity on terﬂperature were taken from reference 100. The viscosity

variation with temperature was approximated by the relation

8720 ) 1.612

T-460/ (9.45)

KL= 0.0672e
The results are presented in Figs. 9.11 through 9.13. The dimension-
less stream function, £, the velocity ratio, {', and the shear function,

f", distributions are plotted in Fig. 9.10 as a function of 77. The shear

function f" is related to the shear stress 7 through the expression

du p* m+1 U :
= _— = —_— U f" . . 6
T ,LLE /J.( ) (9.46)

2 V*x

Because of a very strong temperature dependencé, the shear is a2 max-
imum, not at the wall, but at some point away from it. For other
values of £ the maximum shear occurs at different values of the simi-
larity variable”. The shear stress at the wall was found to vary little
with the absorption coefficient. Looking at Figs. 9.11 and 9.12, we can
see that the thermal boundary layer thickness is about five times
smaller than the momentum boundary layer thickness. 4

The Navier-Stokes equations of motion are not applicable for a
solid material, and since Pyrex glass possesses no definite melting
temperature, 2500°F was chosen as the boundary condition at the cool
wall. This value is higher than the working point for this type of glass. .
The dimensionless temperature, Fig. 9.12, varies monotonically across

the boundary layer from the wall value to the value at the edge of the
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.

boundary layer. The temperature gradients, Fig. 9.13, at the wall for
all values of k do not dif_fer’from one another by more thanone percent.
For k = 10% ft™!, the "radiative conductivity" at the wall is of the same
" order of magnitude as the thermal conductivity. Therefore, with the
increase in 7) the "radiative conductivity" also increaseé and the tem-
perature gradient has a slightly different trend than for other values
of k. The total heat fluxes for k. = 0, £ = 10* and 103 ft™! differ from

one another by a few percent only.

2.0

f1

FIG. 9.1
DIMENSIONLESS STREAM FUNCTION, VELOCITY RATIO AND SHEAR
FUNCTION VS. SIMILARITY VARIABLE n FOR PYREX GLASS B=0,
x=103 ft-! AND T*=UYS0°R.
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FIG. 9.12

DIMENSIONLESS TEMPERATURE AS A FUNCTION OF SIMILARITY
VARIABLE n FOR PYREX GLASS B=0 AND T*=4460°R.
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In boundary layer problems when the thermal boundary layer

thickness is small the Rosseland approximation for-the radiant flux

[k,=0

T=r0® !

x=108 ft-!

%=102 t-!

0.25 0.5 0.75

FIG. 9.13

DIMENSIONLESS TEMPERATURE GRADIENT AS A FUNCTION OF
SIMILARITY VARIABLE n FOR PYREX GLASS 8=0 AND T*=Mu60°R.
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,

vector must be used with caution and only in cases in which the mean

free path of radiation is much shorter than the thermal boundary layer

thickness. When the absorption coefficient is large, the radiative con-

ductivity is quite small, and the effect of radiation on the temperature

distribution and the gré.dients is not appreciable. The validity of the

diffusional approximation of radiation is further discussed in

Chapter 11.
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10 THERMAL RADIATION BETWEEN TWO INFINITE
PARALLEL PLATES

10.1 Introduction

With higher temperatures being utilized in various fields of
engineering, thermé.l radiation is becoming more important. Further,
the simplified approximate approaches presented in standard heat
transfer texts(61’4o’87) for calculation of energy transfer and temper-
ature distribution become unsatisfactory. It is therefore of interest to
take a more basic approach and attack the problem by starting from
the phenomenological equation, the equation of transfer of radiation.

The problem considered here is that of thermal radiation
between two parallel planes separated by a finite distance. The prob-‘
lem of this type requires the simultaneous solution of the system of
integral equations (5.5) and (5.10). To make the problem tractable by
analytical means, it is assumed that the planes are iflfinite in extent
in the directions parallel and normal to the plane of the Fig. 4.3.

This assumption simplifies the problem in that the irradiation be-
comes constant on the surfaces bounding the medium. In addition we
assume that the absorption and scattering coefficients are independent
of position. The medium under consideration can emit, absorb and
scatter thermal radiation. The formulation of the integral equation
for incident radiation and net emission from a unit volume as well as
derivation of the equation for radiant heat flux are presented. Finally,
the intvegral equation governing the temperature distribution is solved

approximately and heat transfer calculated.
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To the writer's knowledge, no work dealing with this type of a
problem has been reported in the literature. However, some related
problems for the special case of slabs of infinite thickness have been
dealt with extensively by a great number of astrophysicists and
mathematicians some time ago. No effort will be made to give a
survey or summary of the literature of these investigations, and only
a few pertinent references will be cited.

Schwarzschild(91) derived and solved the equation of transfer
for radiative equilibrium for the radiation in the outer atmosphere of
the sun. Schuster(go) dealt with the problem of pure scattering.
Hilbert(34) and Schwarzschild(91) showed that the boundary value
problems (solution of the equation of transfer) of elementary theory
of radiation reduce to an integral equation. Hilbert used this in his
effort to prove Kirchhoff's laws. A comprehensive exposition to the
theory of radiative equilibrium is summarized by Milne.(68) He
established integral equations for net emission in the case of an
infinite slab. The homogeneous form, (10.7), of this equation has been
investigated extensively, and Milne(68) has given approximate solu-
tions to this problem. Its solution, explicit as far as the angular dis-
tribution of emergingAradiation is concerned, has been obtained by
- means of Fourier-Laplace integrals by Wiener and Hopf(los) and
Hopf.(35) More recently, the solution of the nonhomogeneous form of
Milne's first integral equation has been obtained by Busbricige.(9) The
Wiener -Hopf technique for solving the homogeneous equation (10.7)
has been extended by Case.(ll)

The problems arising in neutron transport theory are mathe-
matically identical to those of the tranfer of radiation. A problem of
half space z -~ 0 bounded by the plane z = 0 filled by a noncapturing
medium, which scatters neutrons isotropically without changing their

velocity, has been considered by Placzek and Seidel.(77) No sources -
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are present in the medium and no neutrons enter the plane z = 0 from
outside. This problem, which represents an important case in the
study of neutron transport, is completely identical with the Milne
problem. More extensive bibliographies on neutron transport prob-
lems are given in the book by Davison(17) and the monograph by Case
e_ta_I.(lo) The discrete coordinate, the variational, the exact and other
methods used to solve the equation of transfer are described in the

book by Kourganoff. (52)

10.2 Derivation of Integral Equations

10.2.1 Egquation for Incident Radiation

‘The equation for incident radiation can be obtained from the
general equation (5.10). However, this equation will be derived ‘
directly by starting from the definition of incident radiation and the
intensity distribution. A general method of solving the simultaneous
equations in In(x, p.) is to solve the single integral equation 1ng>'\ (x) by
performing the integration of equation (2.22) on the functions I)\(x, u)
defined by equations (4.17) and (4.18). Thus equation (2.22) may be
put in the form

1 Bla-x) - Balatx)
g;\(x) = 2m / Lwe ¥ apten / IN-a, e P ap
0

~1

o N )
+Z’n’/ / exlx') e R SE o / / e:>L K dx'%
0o “x
B)\(x'-x) ﬁ)\(x -X)
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At this point it is advantageous to define the exponential

integral function:

D, X e oo '
E_(x) =,/ pP e ’udu=f e XL au = / e My ™an .. (10.2)
. 1 x

0

In the French and German literature the symbol Kn(x) instead of En(x)
is used, but the general tendency now is to use the notation En(x), in
order to avoid confusion with the Bessel functions. It is hoped that no
ambiguity will arise from this chéice, since the symbol E is used for
the emissive power. |

Substituting equation 4(10.2), interchanging the order of integra-
tion and introducing the Sy*rnmetricai kernel El(Bxlx - x'l) , the integral

equation (10.1) can be put in the form

a

1 G a 1
g)\(x) = f(x) + % f El(ﬁxlx - x'l) gx(x') dx! , (10.3)

where

£() = 27 {In(a) Ex [Br(a-)| + 1y(-2) Ea [ gy(a o]

+faE1 (B)»Ix-x") €)‘(x')dx'}

a
An interesting special case of the integral equation (10.3) arises
when one considers the monochromatic radiation in a infinite medium
and neglects the radiation from the surfaces, tﬁat is, we let I)L(—a) =
Ik(a) = 0. For pure scattering the emission coefficient, €>\(x), is equal
to zero. In this special case the integral equation (10.1) éimplifies to

O)\(x-x')

1 Y 1 X -
SX(X) =%£ [/ g)\(x')e H dx'

O'X(X' "X)

o R ] ap
+'/;g>¥(x)e dx:|# (10.4)
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=) ando(23%)

Within the limits of integration, the exponents 0‘)\(

are positive, so that one can write

_O)\l x—x'l

' 1 G 1 1 T
gx(X)=‘2L-/agx(x)dx'f e K i/ii . - (10.5)

Using the definition (10.2) of the exponential infegral function, we

arrive at Milne's integral equation of the first kind:

. N ' o -
gk(x) = / _El(Oxlex'l) Z?\(X') dx' . (10.6)
-a
in Milne's problem, I al = w. In addition, if one measures the distances

in the units of mean free path, >\p = 1/5 3\’ and considers a problem in
which the lower limit of integration inAequation (10.6) is zero, one

obtains

Z;&) =%/ E1<lx-x'|>£;<x'> dx' . (10.7)

This is the form of Milne's integral equation of the first kind which has

been studied by many mathematicians and physicists.

10.2.2 The Equation for Net Emission of Radiation

The net emission of radiation from a unit volume is defined by
equation (2.30). Thus for our system, the use of equation (10.3) leads

to

o} | a ,
£ = &\ - chl:f(x) E 7*/ E, (B lx-x|) &5 (x") dx'J . (10.8)

-a

Since €>\(x) = nzlcklbb, X(X) and gx(x) = 4mmn? K)\Ibb, X(X) for a medium

having a unit refractive index, n = 1, (10.8) becomes
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&30 = #ex By 50 - 265 {BaG) B [Ba0)] +E(-) B, [

- a ' oy 2 \
+:- IC)\/‘ EI(BXIX-x'l) E-bb, X(x')dx' +Tf El(ﬁklx-xw)g)\(x') dx'}

-a : ‘ -a (10.9)
No difficulty is introduced by considering a medium having refractive
index different from unity. It happens that for gases the index is very
close to one, i.e., for CO,,; n = 1.0'00449 to 1.000450 at 1 atm pressure

- and 0°C. '
- The total net emission from a unit volume per unit of time is

obtained by integrating (10.9) over all wavelengths:

£- [ {1y 260 2[E500) B2 [0 +,(-2) 55 [Bano]
NS . |

a Oy . a o '
+ 'Cx‘/' Ey (Bxx) By, \0xdx! +—2—f EI(BHX‘X'l)gx(X')dX']}d)‘ '

: | (10.10)

10.2.3 The Equation for the Radiant Heat Flux

The monochromatic radiant energy flux perpendicular to the
‘planes at any point in the medium is given with the help of equa-

tion (2.31) by

ql, = E""E’:/‘IK(?, a0, an . | (10.11)

Since d 2 = sinfd6d ¢, the radiant heat flux can be expressed as

+ _ 2T o, o [T S ‘
q;’ vy E-E = f d¢ / ' I,cosOsinbd 6+ / d‘q[)/’ I cos Bsinbd ©
o (] o /2

: B (10.12)
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Since M = cos@and dM = -sin6dg, the above relation can also be written
as

. 1 0
Qi oy = 2m /‘IXFLdp+ [ Lypde | . (10.13)
. 0

-1

Equation (10.12) expresses, for an infinitely small surjace
element of a layer, the net.rate of flow of photons across a layer per
‘unit area, per unit wavelength interval, and per unit interval of time.
With the proper choice of the direction of the normal to the layers of
the medium from wh1ch 6 is measured (see Fig. 4.3), q"y ) represents
the difference between the energy of wavelength A transmitted to the
left across each unit of surface area of a given layer from the layers
to the right of it, E+, and the energy E~ transmitted towards the right
across each unit of area of-thé same layer from the layers to the left
of it.

Substituting the appropriate Iy's from (4.17) and (4.18) in equa-
tion (10.13), one gets Bk(a-x)

Bx(a+x)
0

+ - ! e TR
N q'1'-, X\ E, - ‘EX =27 f Ik(a,u)e Hap+ 2”/ Ix(-a,“)e pdu
0 ~1

,BX(X'—X) Bk(x'-x)

) a —
+27f / €>Sx')e R dx'd u- 27T/ /Xe(x)e K dx'd u
0 " Jx

B(x'-x) . B, (x' ~x)

R[B! [P0

(10.14)
Interchanging the order of integration and introducing the exponential

integral function, En(x),. equation (10.14) becomes
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Q% x * Fr- Ex = 2{Ex@) Es[mia-x)] - Ea(-2) B3 [a + )]

X

+ f | B! X)] Epp 2 (x') dx' - kk/ E, [B)\(x-x')] Epp, (x)dx"
% xaEz By(x! x)]g;\(x')dx' _% LXEZ [Bx(x-x')](f;\(x')dx'} .

(10.15)

The total radiant heat flux is obtained by integrating (10.15) over all

wavelengths:
an = B = / {Ek(a) Es| fra-x)]| - Ex(-a) Es [Br(a + )]
0 . .
+ Ky E, ,Bx(x -x)] Eib, )\(x')dx'- ;cX/ E, [ka-x')] Ebb’k(x')dx'
-a

P
4

E, 'BXX x)]gk(x)dx -—/ E, 'BXX x')]gx )dx} dir
(10.16)

L
=

10.3 Methods of Solution of Fredholm Integral E uations

of the Second Kind

The solution of the linear Fredholm integral equation of the

second kind with parameter A

b )
Cp(x) = £(x) + & f K(x, ) ¢(€) ag | , (10.17)

where a and b are constants, can be obtained by five different
methods:(89)

(1) The first method, that of successive substitutions, due to
Neumann and Liouville gives the unknown function, ¢(x), as an integral

series in A.
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(2) The second method, due to Fredholm, gives the unknown
function, ¢(x), as a ratio of two integral series in A, each series has an
infinite radius of convergence. ‘

(3) The third method developed by Hilbert and Schmidt gives
the unknown function, (b(x), in terms of a set of fundamental functions.

(4) The fourth method is that of integral transforms: Fourier,
Laplace, Mellin, and others. This method is sometimes advantageous
because it can give a closed form solution expressed 'as contour inte-
grals. However, when the kernel K(x, €) or f(x) are complicated func-
tions, a series solution might be simpler.

(5) Integral equation (10.17) can also be studied either by
iterative methods or by variational methods. Both are extremely
flexible. The weak point about the variational methods is that they can
only give approximate solutions, though the order of approximation can
be extremely high.

The solution of equation (10.17) in terms of Neumann integral
series is given by Lovitt(0) if the following are satisfied.

(l) The kernel K(x,ﬁ) is real and continuous in the region R,
for whicha <x <b, al €Sb;|K(x, é)lSM, where M is the upper bound
and K(x, £) # 0.

(2) The function f(x) ¢ 0, is real and continous in I; a < x < b.

(3) The absolute value of the' constant paraﬁeter A is

| 2] <1/M[b-al

The equation (10.17) has tﬁen one and only one continuous

solution given by absolutely convergent integral series:

‘ b
<z>(x)=f(x)+kf K(x,£) £(€) d€

b
a

© b b |
» x“f K(x,e;,o/ K(&, az)---f K(E L6 )€(E) dE - - at,.
n=2 a a '
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10.4 Solution of the Equation for Incident Radiation ‘

Very little data are available on such radiative properties as
absorption and scattering coefficients. In particular, the dependénce
of these properties on wavelength, temperature, and pressure has been
investigated only in certain wavelength regions only for low preSSur.es
and temperatures. Since the data are so scanty, to make the problem
more tractable analytically, the medium is considered to be grey. In
the rest of this chapter the surfaces shall be considered to be sepa-
rated by a distance a, i.e., 0 Sx Sa. In addition, measuring the dis-
tances in the units of the mean free path, >“p = l/ﬁ, or intr‘oducing the
optical thickness, T = Bx, as the independent variable, equation(10.3)

reduces to

(10.19)

To
£tT)='f(T>+;—B/ £ (|=m) & (1) dr, 0< 7 <To, 0 <—g
0

Jo

£(r) = 2 [£(0) By(r) + Elr) Eolmoer) +5 f E\(|7-71) By (') ar]

and
Ty = Ba
Because of the properties of E;(|7-T'l), the geheral solution of
equation (10.19), which is a Fredholm integral equation of the second

kind, can be written in the form of an infinite Neumann series:

To
& - f‘T“(fB)f EA(|™E]) £(6) at

G\2. To '
* (—Z_B.) f E1 ('T'gll) f E(]§-€,]) £ z) dﬁz dg,
0

+(-2%)f |Tell)f £ (|6 ezl)f £, (16, 6]) £(6,) at,abydb, .. .

(10.20)
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The logarithmic infinity of the kernel function at zero argument

(I"'—gl) = 0, causes no difficulty, since

ek
Ef () at <1,
0

for To L, and therefore the convergence of the series may be easﬂy
demonstrated(35) for either 9/B<1 or Ty< w. The limiting case of
O/B = 1 and Ty = =« has been settled by Hopf.(35) One can further show
that no other bounded vcontinuous solutions exist. However, for a
medium in which the absorption coefficient is much smaller than the
scattering coefficient, CI/B ~ 1, the convergence of the series (10.20)
is very slow and a large number of terms would have to be included.
The reason that this happens is that the kernel E; (|x-£]) is not a well-
behaved function. In the other extreme case in which the scattering
coefficient is much smaller than the absorption coefficient, O/B =0,
the equation (10.20) reduces tog'(T) = £(7).

Before the incident radiation can be'calculated from equation
(10.20), the temperature distribution in the medium must be known.
In most problems this information is not available. The temperature
distribution (or the black body emissive power) can be obtained from

equation (10.10), which, if rewritten and rearranged, takes the form

To
Ebb( ) = g(T) + KB/ E](IT‘T'I) Ebb(T') dT7' , (10.21)

where

Zn( ) o To |
g(7) =5 S+ B(0) Ealr) + B(7o) EoTe=T) + 5 E1<|T-T'|)£’ ()ar |
For steady state, the net flow of radiation through each volume
element vanishes, that is, the radiant energy absorbed per unit time by
the volume AV is equal to the radiant energy emitted per unit time by

the same volume; thus for the net emission,gn = 0. This is defined as



123

radiative equilibrium.‘ However, this does not mean that energy is not
transferred from one surface to another by radiation. It should be
noted that in the general case in which other modes of energy transfer
are present, the net emission from a unit volume, gn’ could be nega-
tive as well as positive. Even for this simple orie-dimensioﬁal prob-
lem, the simultaneous solution of the integ.ral equations (10.19) and

(10.21) is not easy.

10.5 Equations for Heat Flux in the Medium

If the incident radiation and temperature are known, the heat
, _ :
flux at any point in the medium can be given directly by equation (10.16):
+ -
a" = ET-E = 2[E(10) Ey(T0-7) - E(0) By(7)
- :

K 0 ' ' K ~T .
+§ f E (1'-7) Ebb(T') dm - —B—f EZ(T-T')Ebb(’T')d‘T'
T 0

T .
o = f E(r-1) & () ar]

To - ‘ ;
r3p ) Ern & man -

(10.22)

Equation (10.22) expresses the conservation of radiant energy flux,
that is, for the system in consideration the flux is constant: dq" /dT =0.

At the plane 7= 0 (x = 0), the heat flux can be written as

1 K [0
q;L = Z[E(To) E3(7o) - 5 E(0) +gf E(7) E () d7'
=0 0 ‘ .

o] To

+ v 27" g'('r') d’r':I y (10.23)

and similarly the heat flux at the plane T = Ty (x = a) is given by
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1
qr

. T
= 2[%E(TO) - E(O) E3(’T°) —i;- f EZ(TO_Tv)Ebb(»Tv) ar

T _—'TO

T
g

Y
0

oEz(TO‘T') g'('r') dT'] . ‘ (10.24)

Since the radiant energy flux is constant, equations (10.23) and (10.24)

yield the same result for the heat flux.

10.6 Temperature Distribution for Radiative Equilibrium

The problem of radiative equilibrium has been inve stigated by
Milne, (68) Hopt(35) and others. The equation solved by these investi-
gators is of the same form as equation (10.7). The solution of Milne's
integral equation of the first kind becomes extremely complex. More-
over, the solutions obtained for the integral equation are usually
expressed as contour integrals. These are put in a tractable form for
numerical calculation only after transformations.

In order to obtain the temperature distribution in the radiating
medium when scattering is present, equation (10.21) must be solved

simultaneously with equation (10.19). For radiative equilibrium,

gn = 0, and hence equations (10.19) and (10.21) reduce to

To '
5 o) = 1{E0) B + B9 Bl + [ et NOrd
0

(10.25)
Since Ebb(’r) = 0T%T),the solution of (10.25) yields the temperature
distribution in the medium.

To the author's knowledge, no analytical solutions have been
obtained for this type of an integral equation. Integral equations of
the convolution or the Faltung type [equation (10.25) is of this typel
were first studied by Doetsch(lg) and Fock(zs) with the help of Laplace
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transforms. However, for the problem ofxconsidefation here it is very
difficult to obtain the transforms of the right-hand side of equa-

tion (1'0.25). Because of this aﬁd the inversion difficulties, the Laplace
transform method of solving'the integral equation had to be abandoned. -
Since an e)::act solution cannot be obtained, an effort was made to
arrive at an approximate solution. Of the several methods available
for soliring equation (10.25), the mefhod of successive substitutions

and the variational method are the most attractive. The variational

method as suggested by Sparrow‘(gf)) is more involved, since a doubie

'Aintegral of the type

’To To ' . X )
f / E,(|=7]) Ebb(T') Ebb(T) dr' dT
0 0

has to be evaluated, and the complexity of integration increases greatly

with the number of terms approximating the black body emissive power

Ebb(’r). We theréfore turn to the method of successive substitutions
with undetermined parameters, which is similar to the variational
method but less elegant mathematically.

When the unknown function, such as E b('l’), can be expressed

b
by equation (10.25), in which the unknown function appears explicitly
on the left-hand side of the equation and as part of the integrand on the
right, it is usualiy possible to find the unknown function by means of:

successive approximations resulting from a sequence of iterations. On

~ starting from a reasonable first approximation, a convergent sequence
N

of functions is obtained, each being found by substituting its predeces-

'sor in place of the unknown function on the right-hand side and evalu~

ating the resulting integral. The limit of which the sequence converges
is the rigorous solution of the equation.
" Various iterative methods for solving Milne's first integral

equation have also been presented by Kourganoff.(SZ) The iteration of
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functions containing parameters, as discussed in reference 52, will"

be followed in this work. The integral equation (10.25) can be written

as
1 To
Ebb’j(’r) = E[E(O)EZ(T) + E(To) Ep(To-T) +‘/ E (| 7-71) Ebb,j_l(T)dT'
’ (10.26)
If a function E (T) is assumed and inserted under the integral sign

bb,1

on the right side of equation (10.26), a function E (T) is produced on

bb, 2

(T) is inserted under the integral sign of

=
bb,l( )
(T) is obtained. This sequence converges, as j—eo,

the left. If the function E
. bb,2

(10.26) and the’proc‘edure repeated, a sequence of functions E
7). .
Ebb,?-( )- Ebb,j
to the rigorous solution of equation (10.25).

As a first approximation to E (T), we can assume a function

bb
such as

Ebb(T) = Co + ClT + Cy Ez(To'-T) + C3 E3(T) + C4E3(T°-T) . (1027)

This form is suggested by the fact that if the method of successive

substitution is applied to equation (10.26), beginning with
4 T
: = _— T -
Epp(7) = EO) +5 [m 0 E<o)] ,
the next approximation is

' : T 1 1 1 :
By 7 = B0) - | 270 - 500)] [ + 3 Balrar ) + S 2l - w01
However, the integrals of the form

T
f E\(|™7) E_(To-T") a7

0

when Ty is finite are very difficult to evaluate, and we are forced to

abandon this approximation for E,__ (7). Various other functions

bb
suggest themselves, but none appears quite as simple as the polynomial.
It should be pointed out that the polynomial approximation does not

. -seem to be well adapted to the problem we are considering in that it is
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not orthogonal. However, its simplicity outweighs this disadvantage.

One other advantage is that integrals of the type

To
/ CE(lm=7]) T a7
0 ' .

yield exponential integral functions which are already computed and
tabulated, i.e., in references 10 and 52. So, as an approximation to

Ebb('T), we assume
E, (1) = E(0) Z D, ™ . (10.28)

The parameters Dy, Dy, . . . Dn are to be determined. With
two parameters at one's disposal, it is clearly impossible to approxi-
mate the exact function in the whole interval 0L 7 < To. It is natural,
therefore, to suppose that better solutions would be obtained if a
larger number of terms were retained in (10.28). The conservation
of radiant flux, as expressed by equation (10.22), at optical depths
T ‘ Too o 0Ty g1ves us enough conditions to determine any desired
number of the constants As n—= 0, the approximation (10.28) con-
verges to the rigorous solution of equation (10.25).

The integrations necessary for the evaluation of the undeter -
mined parameters are given in Appendix A. The black body emissive
power is assumed to be approximated by five terms of the series
(10.28). The solution of the system of five simultaneous algebraic

_equations (A.7) through (A.9) is straightforward.

10.7 Discussion of the Results

The state of radiative equilibrium, when the medium is.
stratified in parallel layers, is characterized by a certain net radiant

energy flux,‘ and at the same time the net emission at any point from
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the medium vanishes. From the definition of the net emission, equa-

tion (2.30), we have that

Z =O=Kf'(1bb-1)d9 ,

n

Q=4
or .
E —i m ! ’ .

where the intensity I is obtained from the solution of the ecjuation of

transfer. The composition of E__(T) is shown in Fig. 10.1, and it is

bb

self-explanatory.

The physics of the problem considered here is well understood,
and the mathematics of the formulation is straightforward; neverthe-
less, the solution is most di'fﬁc'ult. The unfortunate fact is that the
kernel EI(I’T-T'|) is undefined at the exact point of interest. This
singularity is not physical, but only mathematical.

4 Infegral equ_atioﬁ (10.25) has very simple solutions for two
special cases. For a diathermal medium, B = 0, the solution of
equatidn (10.25) becomes |

E_ (%) = EI(O); E@) ' . (10.30)

For very large opticél thicknesses, To —®, the solution of equa-

tion (10.25) is given_ by
| Ebb(‘T) = E(0) + % [E('To) - E(O)] . | (10.31)

This can be readily verified by substituting (1(5.31){into the integral
equation (10.25). The Iva‘lue of this exact sblution for large optical
thickneéses lies in the fact that it tells us theié'syrnptotic form of
Ebb('r) for large va1u~e~s' of Tp when the proximity of the boundary is
taken into account. A trivial solution of the integral equation (10.25)

"can also be mentioned. When E(0) = E(T,), that is, if the two surfaces

are at the same temperature, the temperature at any point in the
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medium between the two plates is constant. This is the condition of
thermal equilibrium; thus we have not only radiative but thermal
equilibrium as well.

The results of calculations are presented in Figs. 10.2 throﬁgh
10.4 for several values of E(To)/E(O). It is evident that the black body
emissive power distributions are practically straight lines. The
biggest departure from a straight line occurs at larger ratios of
E(’ro)/E(O) when the optical thickness is equal to one (see Fig. 10.3).
The temperature distribution can readily be calculated from the
relation T(T) = [Ebb(T)/O]% )

It is seen from the figures that in all cases a temperature step
exists at the radiating surfaces, the magnitude of which depends on
the optical thickness of the medium and on the values of E(T,) and
E(O) (the amount of radiant energy transmitted). The temperature
step is small at large optical thicknesses (T = 10), and one can
readily see from equation (10.31) that no temperature step exists for
Tog —» w. Further, the step decreases with the decrease in the ratio
E(T(,)/E(o),~ and in the limit when E(T,)/E(0) — 1, the step vanishes.

The fact that a temperature step exists at the radiating sur-
féces is a little hard to understand physically. To shed more light
on this point, we consider an example. Take the case in which
E(To)/E(0) = 10 and Ty = 0.1. Since T is small, the contribution to
Ebb('r) will be due mainly to E(0) and E(7,). Thus, neglecting the

emission from the medium, at T = 0 we have that
1
Ebb(O) =—2[E(o) + E(T,) E;_(To)]:-;?E(O)[l +(10)(0.722545)] = 4.112725E(0),

a value which is considerably higher than what we postulated originally.

On the other hand, for E b(’r) at T = Ty, we have

b

Ebb(To) = %[E(O) E,(To) + E('To)] = %E(O) [0.722545 + 10] = 5.361275 E(0),



8.0

7.0

2.0

E('ro)_
E(0)
E(t,)
\ _—E(Q) =2
] I 1 ) | ] |
0.02 0.04 0.06 0.08 0.1
—_——
FIG. 10.2

VARIATION OF THE BLACK BODY EMISSIVE POWER
WITH THE OPTICAL THICKNESS FOR t,=0.1.

131




132

—_— T

FiG. 10.3
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énd thus a very sharp decrease in the temperature due to the emission
of radiation from the' surface at T= T,. A step increase in temperature '
- at the radiating surface was also predicted by Shorin(93) for a moving

radiating medium in the absence of energy transfer by conduction. |

[ The radiant energy fluxes computed from equation'(10.24) are

! gi\;en in Table 10.1. For instance, if the media were diathermal, the

E heat transfer for AE(TO)/E(O) = 2 would be q;/E(O) = 1, instead of 0.9172,

i 0.5281 and 0.1098 for 7o = 0.1, 1.0 and 10.0, respectively. ' Thus, the

‘ heat transfer is reduced considerably by the presence of an absorbing
and scattering medium. The absorption and scattering coefficients
enter then into the problem onl&r through the optiéai thic’knéss, which is

) ' the pertinent variable.

Table 10.1

The Calculated Values of the Normalized Heat Flux, q;/E(O)

o 79/E(0 '
| (ro/E( 2 4 6 8 10
I 'To .
0.1 0.9172 | 2.751 | 4.588 6.421 | -8.240
- 1:0 - | 0.5281 | 1.586 | 2.642 | 3.682 | 5.023
10.0 0.1098 | 0.3270 | 0.5471 | 0.7820 | 0.9847

To' the author's knowledge, there are neither numerical nor

analytical solutions' of the integral equation of the type (10.25). The
solutions obtained in this work are probably unique; however, the
validityvand .accuracy of the results obtained by using only five terl:'ns

in the equation approximating Ebb('r) could not be checked independently.
The difference between results obtained by using a smaller number of
terms in eq_ua'tionl (10.28) can be readily estimated. Thus, using only
two terms from'e.quations (A.7) and (A.8), we obtain ‘

‘ Ebb(T) =Dy + D;7T | (10.32)
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where

B3 + 7o + Bulro| £ + ToBa(ro)| - BTl (]} B 1B s (o)
Dot [1.4 Ex(o)l[1 + 7o - 2 E4(To) - ToE;(To)] '

and

[E(1o) - E(0))[1 - E}(T,)]

D, =
[1 + E(19))[1 + 79 - 2E3(70) ~ ToE(7o)]

For the range of parameters considered, the results obtained from
equation (10.32) differ only by a maximum of * 3 per cent from those
with five terms-in equation (10.28). In view of this fact, the results

are believed to be accurate to*0.5 per cent.
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11 HEAT TRANSFER BY SIMULTANEOUS
CONDUCTION AND RADIATION

11.1 Introduction

Energy e#change between an absorbing medium and the walls of
the duct takes piace by conduction, convection and radiation. However,
as higher temperatures are reached, the radiant energy contribution
tends to become a larger percentage of the total heat tranéport, and
the temperature distribution cannot be calculated by neglecting the
radiative energy transfer in the energy equation.

The problem is further complicated by the fact that the ab-
sorption coefficients of such common gases as CO,; and H,O are quite
distinct, and, although the absorption spectra of these and other gases
have been studied for a long.time, data on the frequency distribution of
absorption coefficients .are incomplete and the determination of inte-
gral absorption is complex.

Then, too, the equation of energy (6.11) is most intractable in
these cases. In fact, no general solutions are known. Therefore, as
the first step in the analysis of this general problem, the transport of
energy by simultaneous conduction and radiation is studied in this
chapter. The geometrical complexity is avoided by considering a one-
dimensional system. However, before we proceed to this problem we
will briefly consider the more general equation of energy for flow of

raaiating medium between two parallel plates (see Fig. 11.1).
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v=u(x,y)

FiGg. t1.1

PHYSICAL MODEL AND COORDINATE SYSTEM FOR FLOW
BETWEEN TWO PARALLEL PLATES.

Now the general energy equation (6.11) is simplified if the fol-

lowing assumptions are made:

I

2
3.
4

6.
7.

The flow is steady and in the x-direction only.

The physical properties. are independeht of temperature. |
The viscous dissipation of energy is negligible.

There are no body forces and the enefgy generatio.n due to
pressure gradients is negligible.

The surfaces are diffuse and the radiosity on a surface is
constant.

The index of refraction of the medium is unity.

The scattering is negligible compared to the absorption

and becomes

2 ~2 )
pepuZ - <5T+°T>+qm-£n , ' (11.1)

X% dy?
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and if the absorption coefficient is independent of wavelength the net

_emission can be written as

_.T(S',P‘

. * . )
gn = Kk(P) [4Ebb(P) -—/ R(S') € cosfdA
'IT;‘. - ?' 2 .
' AyLA, P S
-T(P', P)

- [ k(P E._.(PYE dv
bb — — 2
'TTII'P—I'PI|

v ‘ .

" The following simple boundary conditions are postulated:

x =0, . T =T

y =0, T = T, . } o (11.2)
}_’Zh, T=Th

A solution of the nonlinear integro-differential equat'ion (11.1) is
very difficult to obtain. Therefore, first, an attempt will be made to
take advantage of the knowledge built into the integro-differential equa-
tion and the boundary conditions to obtain information without attempt-
ing to solve the equation and, second, to restrict ourselves to the

solution of one specific problem.
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11.2 Analysis of the Dimensionless Energy Equation

The differential method of dimensional analysis as developed

47)

rigorously by Kline( will be used. Therefore, we non-dimensionalize

the dependent and independent variables by using
= M :l : @: l :
E=gi & h’ T* '’
where £ and h are the longest dimensions in the x and y directions,
respectively, and T* is an arbitrary temperature. It is to be noted
that the above definitions of the dimensionless variables are quite
arbitrary. However, these definitions make the dependent nondimen-

sional variables of the order of magnitude of unity, and the independent

variables run from zero to the order of unity over the range of

integration.
Then
OT 30 of T+ 0 T T* &6
ax—ac ax—,z C'aXZ_Z CZ ,
and
ar_ ek Tre ¥ _1t Fe6
By &ay 'h e’ ayz hZ 8&2

Substitution of the new variables in (11.1) yields

% @ * 2 . * 2
pcpuT* 06 kT* %0 L kT* &6 b g gn’ (11.3)
A I L - -
where ‘ |
' -7(S',P)
gn = 4kgT** @4(13) - 84(8') e cosBdA
— — 2
AI:AZ 47T|I'P - rS'I

. -'T(P',P)
f k(P) 84(P") 2 av

vV 4"’T|_r.P';.P'|Z
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' Dividing both sides of (11.3) by 4 k0 T**%, which is the energy
emitted by the unit volume of the medium at température T* per unit

time, we have ’

* 2 2 .
pPucpT* 3@ kT a@+ KT* e
44koT*t 0L 4b%oT** JL% 4nlkoT*t &2
qm n N
T icoT*t T 4kgT*% (11.4)

~ This equation is nondirnens.ional. It has been formulated in a
fashion that each set of terrhjs containing variables (that is, each de-
rivative term in this instancé) will be of the orderi of magnitude of unity
when integrated. The 'paraméters appearing in front of the partial

derivatives can be interpreted as follows:

m = pu cpT* - Energy content in the flowing fluid
4fKko T** - Energy radiated from the flowing fluid
= kT* _ Energy transfer by conduction in the x direction
44% koT** Energy radiated in the x direction from the
' flowing fluid
s = kT* _ Energy transfer by conduction in the y direction
" 4hfkoT** Energy radiated in the y direction from the
flowing fluid
S q™ - Energy generate.d in the fluid
4Kk oT** Energy radiated from the flowing: fluid

Thus the nondimensional equ_‘fation establishes ‘a relation\ship
between the dependent variable, thé independent variables, and the 7's.
It is possible to consider fixed values of 7's, which implies studying
one particular problem in the cLéss considered and then to study rela-

tions arriong the variables. It is also possible to consider the variables
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fixed, at é. given location, and then to étudy the variation of 7's, which
means comparing one problem of the class considered with a different
physical problem in the same class.

For large values of T* the dimensionless parameters 7 are
very much ‘lesvs than unity. In this case the transfer of energy is by

radiation only. In our particular problem £ >>h, so that 7, << 73; this

. az@
indicates that the term with - can be neglected in comparison with
z
: 320 o ‘
the term ——. If T, and T; are of the same order of magnitude, the

2

terms containing { and £ cannot be dropped and no further simplifica-

tion is possible. Two additional special cases arise: a) M, >>T3 (in this

case the energy transfef by convection is of a much greater order of

' magnitude than the energy transfer by molecular conduction and there-
fore the latter can be neglected when compared with m,), and b) 73

>> M, for which the reverse is true.

11.3 Equation of Energy for Simultaneous Conduction and Radiation

Consider the transfer of energy by conduction and radiation
only. 'Further, assume that energy transfer by conduction in the .
x direction is negligible compared with that in the y direction. Then,
introducing the dimensionless tgmperatufe and dividing by 4K¢T*4,

the steady-state energy equation (11.1) reduces to

kT* da’e gn
4K0T**  dy? 4koT**

(11.5)

Since there is no temperature variation in the x direction, the distances
can be measured in the units of the mean free path of radiation. In-

troducing the optical thickness, T = Ky, as the new independent variable

’
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and utilizing the expression for net emission, gn’ obtained in Section

10.2.2 for a media enclosed by two parallel planes, we have

A
- |

4K0T** ~ 20T*

[T, .
f E; (IT-7'1) Epi(TY) dT'] , (11.6)
A N ,

where To = Kh. Substituting (11.6) in the energy equation (11.5), one

2Epp(T)-E (0) E; (T)-E(To) EoTo-T)

obtains

kk?T* 4% 1 :
4Kk0T** 41?2 T 20T [ZEbb(T) - E(0) Eo(T).

'To'

-E(78) Ealro-) <[ Bu(|7-7]) Byp(r)ar | (11.7)
0 .

If we assume the surfaces are black, E = Ey =0 T*, equation (11.7)

can be written as

d2® 4 1 4 4 : |
N =04-2|0%0)E,(T) +O0%To)Es(To-T)
dr? - 2
_':/ El(lT_TII ) @4(Tl)d'rl} , . (11.8)
0 ' ' |
where i
k k3T * kk

A N = 4Kko T**t ~ 4gT*3

The magnitude of this dimenionless parameter determines the
relative role of the conduction term vs. the radiative terms. For
large values of N conduction predominates, while radiation is the im-

portant energy transport process for small values of N. The importance
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of the temperature in this‘param.eter is obvious. The influence of
other physical variables is as expected. Further, the integro-
differential equation (11.8) is nonlinear and of the second order in
which the unknown function, ©(7), occurs under the integral sigﬁ to the
fourth power.

The boundary conditions in dimensionless notation for equation

(11.8) are assumed to be

(11.9)
T=Toly=h), ©(T)=6(T).

The differential equation for temperature distribution can also
be obtained by a different consideration. Since the problem studied is
a steady-state one and one-dimensional along the y axis, after integra-

tion of equation (6.5) we obtain

where q" is the total energy flux (conduction + radiation), which must
stay constant. The energy flux by radiation, q;-', is given by equation
(10.16), except that the independent variable here is y instead of x.

The above differential equation, instead of (11.5), can also be the start-

ing point for the determination of the temperature distribution.

11.4 Methods of Solution of the Integro-Differential Equation

To the author's knowledge there are no exact mathematical

methods of solving the integro-differential equation (11.8). Three
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approximate methods of solving this equation will be indicated below.

1. The first method is that of linearization of the dependent
variable. If the temperature difference between © (0) and 8(T,) is small,

we can define the average temperature as

©(0) + ©(7y)
> ,

0=

and then the temperature difference

x(r) =@(7) - 8

8(0) - 8(7y)
5 .
the temperature can then be approximated by

does not exceed Expanding ©*(T) by binomial expansion,

8% (1) R 8% +48° (1),

which is linear in (7). Using this relation, the nonlinear integro-
differential equation (11.8) can be reduced to a linear one. The linear
integro-differential equation can then be reduced to a linear integral
equation and solved.

2. A solution of equation (11.8) can be obtained by an iterative

method. To this end, solve first the pure conduction equation ( gn =0):

d?e
d7*

The solution of this equation with the boundary conditions (11.9) can be

= 0. | (11.10)

written as

() - 6(0) +7- [o(m) -0(0)] . (11.11)
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Substitutiﬁg thié result for ©(7') under the integral sign of equation
(11.8), one obtains a very complex nonlinear ordinary differential
equation. The solution of this equation can again be substituted under
the integral sign of equation (11.8) and the procedure repeated until
convergence is achieved. Howéver, the equation becomes very in-
volved and already after the first substitution of (11.11) only a numeri-
cal solution of the differential equation is po.ssible.

3. The third method is also that of iteration. The integro-
differential equation is converted into a nonlinear integral equation.
The iteration is perfbrm'ed on this equation. The solution of equation

(11.8) will be obtained by this method and is described below.

11.5 Solution of the Integro-Differential Equation

To solve equation (11.8), Volterra(l05) has suggested to inte-
grate twice with respect to 7 from 0 to 7. This gives a nonlinear

- Fredholm integral equation of the second kind:

8(7) = G(7) +l§f (77 OXT")aT, - (11.12) -
0 . :
where . ' .
T - €
G(7) =LN{%f d§/‘ [64(0)532(@) +8%(75) Ex(To —C-):ldQ+C17+CZ},
' 0 0 B
“and ' ' : i

' T €
¢>(m'>i[ [1§f Ey ( IC-T'I)dC}dé :
. B g

Here C; and C; are integration constants to be determined from the
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boundary conditions of equation (11.8). The evaluations of functions
G(T) and ¢(7,7') as well as of the constants C; and C, are performed in
the Appendix B. In this way, equation (11.12) for the temperature

distribution reduces to

A [Ea('ro-'r') 'Es('r')]} O%(m)ar, (11.13)

where

To the author's knowledge there are no known solutions of the

equation of this type. It is to be noted that for the case when conduc-

tion predominates, the parameter N is large and equation (11.13)

reduces to (11.11).
A solution of (11.13) can be obtained by iteration.(89) If

8(T) is a monotonic function, then the following recursion relation:

To
l .
8 -G — - Ey(|T-T']) + E5(T
j.+1(T) (1) + ZNv[o { s(17-7'1) + E5(7")

+,;1 {E:;(TO-’T') - E3('r')]} @3-* (rt)ar, (11.14)
0



gives a sequence {®j (T)} which converges to the solution ©(T) of

equation (11.13). The limit to which the sequence converges when
J—o is the rigorous solution of the equation with appropriate constants
C, and C, which satisfy the boundary conditions (11.9) for given
parameters Tg and N. The numerical solution of equation (11.14) is

discussed in Appendix D.

11.6 Heat Transfer

Since the system considered here is in a steady state, the heat
flux is constant and is given by equation (6.14). In our particular case

this equation reduces to

a .
q" = —k—T— +E - I cosBdQl. ' (11.15)
ay w Q=2m
Since d? = sin6d0d¢ = - 27wdu, the heat flux at the upper wall (7=T)
becomes
0 A
q" :ka_T\ +E+27'T/ Ipdy, (11.16)
Y M w ey
where
T [ 70
n (To-T") /1
1=1(00)e - Ly () e /i Eui

and was obtained from equation (4.18). Introducing the exponential

integral function (10.2), equation (11.16) can be written as

T To
q" =k Sy + E - 2E(0) E;(79) -vZ/ Ey(To-T")Epp(7)dT' .
Y ' w :
0 (11.17)
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The dimensionless temperature gradient,

46 _d6. 4T dy _ 1 4T (11.18)
dT7  dT dy d7  «kT* dy '’ ) '

is ob_fained from equatio'n (11 13) by differentiation:

& - %{ 26%0) [E3<T> + 7= EalTo) + g,,l:']

To i |
+—;/ {Ez (lr-7) + %[Es(‘ro—f’) -E3(T')]} @4(T')d'r}
0

(11.19)
Substituting equations (11.18) and (11.19) into equation (11.17), one

obtains

. qnz% |:Th - TO] + ZG{Tg [E3(T0) + Tio E4(T°) b 3L'T0]
To

. + T [ Tio Elro) - + 3LTO]+_/ {EZ(T"_T')

+,ri0 [E;(To—'r") -Es(f)]} ?4(7")‘17"} +oTy

o - ’ .
- 20T§ E5(To) -Zosz (To-T") T*(7T)dT' . (11.20)
0 ) :

It is obvious that the presence of thermal radiation changes the tem-
perature distribution in the radiating media. If only thermal radiation
were present, the heat flux would be given by the first term of équation
(11.20). In the presence of absorbing media the energy flux by con/duc—_

. tion is given by the first two terms. The third, fourth and fifth terms



149

represent the heat transfer by thermal radiation. After cancellation

of some of the terms, equation (11.20) reduces to

k 20 | _, 1
o= : - — -—
q N [Ih Io] +.,-0 Ty I:E4(’o) 3 ]

T

‘o ' '
t Tﬁ [% - E4(7'o):| +f [Es(""o-"") "Ea(”")] T4(T')d7"}.. (11.21)

0

11.7 Discussion of Results

The solution of equation (11.14) by iteration is quite lengthy and
presents some mathematical difficulties. When the parameter N is
small, the convergence of this equation is poor, even when.a very
reasonable initial guess for temperature distribution is made. The
temperature profile and the function G(7) are plotted in Fig. 11.2 for
the case that N = 0.01. The contribution of the integral term, appear-
ing in equation (11:14), is predominant. Since the temperature under
‘the integral sign is raised to the fourth power;, the value of the integ.ral
is very sensitive to the initial guess.

The computed results for the temperature distributions are
presented in Figs. 11.3 through 11.5. The range of the dimensionless
parameter N covered in the calculations is from 10 to 0.01. The ‘
curves for values of N> 10 are in(iistinéuish‘able from those for pure
conduction (New), which are straight lines. The temperature profiles
for the casé that the parameter N = 1 are on the average less than one
percent higher than the temperature profiles for pure conduction. For
large values of the parameter N, the difference between the tempera-
ture profiles for pure conduction and simultaneous conduction.and
radiation is small; however, as the parameter N is decreased, the.dif-

ference, as seen from Fig.'11.3 and 11.4, between the temperature
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profiles for pure conduction and simultaneous conduction and radiation
widens. The temperature distribution for N = 0.01 agrees in trend with
the results of R. and M. Goulard,(30) who studied a similar problem,
but in their case the thermal conductivity varied with temperature and
N<<0.01. The results of the present work agree in trend with those of
Walther et é_l., as reported by Pepperhoff,(76) who investigated the flow
of heat through glass.

Temperature profiles for a medium having an optical.thickness
To = 0.1 are given in Fig. 11.5. The curves for N > 1l areindistinguish-
able from the temperature profile for pure conduction. Even for small
values of the parameter N, the difference between the profiles for pure
conduction and simultaneous conduction and ’radiation is small, i.e._,
for N = 0.01 the maximum difference is only three percent. From
Fig. 11.3 we see that when the optical thickness 7y = 1.0, the maximum
difference is about 25 percent. We can therefore conclude that for
radiative heat transfer problems the optical thickness, and not the
vspacing between the plate, is a pertinent parameter.

Since the system under consideration is in a steady state, the
total energy flux (conductior; plus radiation) across the medium is con-
stant. To insure this, it is necessary for the conductive energy flux
variations to be compensated by inverse variations in radiative energy
flux. The temperature .gradients at the cool wall are always steeper
than those for pure conduction, and they increase with a'decreasing
value of the dimensionless parameter N. Heat transfer by conduction
to a cool wall 1s therefore always increased if the medium is radiative.
On the other hand, at the hot wall the temperature gradients can be
larger or smaller than those for pure conduction, depending on the
parameter N. For larg;e values of N (N> 1), the temperature gradients
are a fraction of a percent smaller than for conduction alone. For

smaller values of N the gradients increase with the decreasing N.
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The results of heat transfer calculations are given in Table 11.1.

Table 11.1

Parameters and Results for Simultaneous Conduction and Radiation

T, h k K N T, Ty, qe q, q"
0.1 | 0.001 0.547 100 | 1.0 1000 | 2000 547,000 | 24,100 571,100
0.1 | 0.01 0.547 10 | 0.1 1000 | 2000 54,800 | 24,100 78,900
0.1 | 0.1 0.547 1| 0.01 1000 | 2000 5,340 | 24,200 29,500
1.0 | 0.01 0.547 100 | 1.0 1000 | 2000 55,800 | 15,500 71,300
1.0 | 0.1 0.547 10 | 0.1 1000 { 2000 7,150 | 14,600 21,800
1.0 | 1.0 0.547 1| 0.0l 1000 | 2000 2,090 | 14,200 16,300
0.1 | 0.0002 0.123 500 | 1.0 1500 | 3000 923,000 | 122,000 | 1,045,000
0.1 | 0.002 0.123 50 | 0.1 1500 | 3000 92,500 | 122,200 214,700
0.1 | 0.02 0.123 5 | 0.01 1500 | 3000 8,540 | 123,500 131,000
1.0 0.002 0.123 500 1.0 1500 3000 97,500 78,300 175,800
1.0 | 0.02 0.123 50 | 0.1 1500 | 3000 18,100 | 74,300 92,400
1.0 | 0.2 0.123 5 | 0.01 1500 | 3000 9,600 | 72,300 81,900
0.1 | 0.000125 | 0.0547 | 800 | 0.1 2000 | 4000 888,800 | 394,100 | 1,282,900
0.1 | 0.00125 | 0.0547 80 | 0.01 2000 | 4000 96,600 | 395,200 491,800
1.0 | 0.00125 | 0.0547 | 800 | 0.1 2000 | 4000 119,200 | 237,000 356,200
1.0 | 0.0125 0.0547 80 | 0.01 2000 | 4000 37,100 | 231,100 268,200
1.0 | 0.0025 1.095 400 | 1.0 400 | 4000 | 1,497,000 | 307,000 | 1,804,000
1.0 | 0.025 1.095 40 | 0.1 400 | 4000 147,500 | 282,000 429,500
1.0 | 0.25 1.095 4 | 0.01 400 | 4000 38,300 | 249,600 287,900
, 1.0 | 0.0025 2.13 400 | 1.0 500 | 5000 | 3,742,000 | 742,500 | 4,484,500
1.0 0.025 2.13 40 0.1 500 5000 368,000 | 692,000 1,060,000
1.0 | 0.25 2.13 4 | 0.01 500 | 5000 93,300 | 612,000 705,300
0.1 | 0.001 0.054 100 | 0.02916 | 1500 | 3000 81,800 |122,100 203,900
1.0 | 0.01 0.054 100 | 0.02916 | 1500 | 3000 17,800 | 72,100 89,900
- 10.0 | 0.1 0.054 100 | 0.02916 | 1500 | 3000 2,100 | 14,200 16,300
0.3 {0.0328 0.532 | 9.14 | 0.02575 | 3012 | 2292 29,400 | 73,400 102,800
0.1 | 0.0025 0.267 40 | 1.0 580 | 1160 61,960 2,780 64,740
1.0 | 0.025 0.267 40 | 1.0 580 | 1160 6,300 1,750 8,050

The separate conductive and radiative energy fluxes were obtained
from equation (11.20). It is obvious that in calculéting the energy
transfer by conduction by simply using the tempe%ature gradient for
the nonradiative medium [first term in equation (11.20) ], an incorrect .
result is obtained. It was found that for small optical thicknesses,

To = 0.1, the effect of radiation on the heat trans‘fer by conduction was
small. For the range of the dimensionless parameter N considered,
the maximum differenceoccurredatN = 0.01, and it was never greater
than 10 percent. For larger optical thicknesses, Ty = 1.0, the effect of

b radiation on heat flux by conduction was much greater. When the
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parameter.was small, N = 0.01, the energy transfer by conduction was
increased by at least a factor of two and in one .c.ase by a factor of 10.

As seen from equation (11.20), the energy radiated by the wall
at 7=0 (y=0) and reaching the wall at T= T, (y=h) is given by

20T4E3(T0 . The radiant energy flux due to radiation emitted from the
gy

0.
. medium which reaches the wall at T = Ty is 20 E,(To-T)THT)dT.
0

This latter flux is always greater than the first. These two effects
tend to reduce the net radiant flux and, in the limit when Ty{—=T,, the
net radiant energy flux vanishes. The results show that the radiant
heat flux for a given value of T, does not vary appreciably with N, and
that the variation of q; with T4 for al constant value of parameter N is
more pronounced.

The temperature distributions obtained by the exact formula-
tion are compared in Fig. 11.6 with thosepredictedbyusingthe Rosse-~
land approximation for the radiant flux vector. As expected, when the
medium is optically thick (the radiation mean free path, Ap = l/lc <<h),
the agreement between thé two sets of results is good. However, the
temperature gradiehts at the two bounding planes, as predicted by the
Rosseland approximation, are too small. This is not surprising since
the approximation fails completely in the vicinity of the boundary and
only the molecular conduction insures the continuity of the temperature.

Iﬁ Fig. 11.7 the same comparison is made, excepf now the mean
free path of radiation is of the same order of magnitude as the separa-
tion &istance between the two plates, that is, Ap = l/lc ~h. The tem-
perature gradients at the cool wall are in vel‘;y.good agreement, but at
the hot wall the temperature gradient for the Rosseland approximation
is lower than that for the exact formulation. The agreement between

the two temperature profiles.is poorer for this case than for 7, = 10.




155

7
e
. yd
o Ve
v 0.9 | ' ‘ <
ROSSELAND  APPROXIMAT 10N /
EXACT FORMULAT LON
0.8 |-
[ -]
T /
: 0.7 | /4 ’
0.6 - /
. /
0.5 " 1 1 L
0 2.0 4.0 6.0 8.0 10,0
- — T
FIG. 11.6

| COMPARISON OF DIMENSIONLESS TEMPERATURE DISTRIBUTIONS
- ' FOR k=0.054 BTU.HR-1 FT-1 R-1, x =100 FT-!, N=0.02016
AND <, EIO.

The resulting“temperature distributions and heat tra’ns.fer for-
a me‘dium of large optical thickness, To = 10, are worthy éf note. The
striking featu.re. of the results is that the heat flux is about 20 times
what would be expected frcgm conduction alone, without considering
the presence of a radiating medium, and about seven timesAlarger
than the ‘heat flux obtained by conisidering the medium to be radiative.,

Even though the primary radiation falling on the medium penetrates
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only a short distance (in 0.03 ft the intensity has fallen to e 0-03x100
= 5 percent), the proééss of absorption and emission within the me-
dium transports a qonéiderable quantity of energy. The radiant heat
flux of 14,200 Btu/(hr)(ftz) calculated from the exact formulation is in
substantial agreement with the value of 11,800 Btu/(hr)(ftz) obtained

by using the formula derived by Shorin:(93)

o (T} - T} _
ql = (T3 - T2 - (11.22)

T 1 1 1
= _ X 2 2T
. (< z)+(€2 2)+ 0
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This simple formula was deduced for a strongly absorbing medium at
rest by using the Rosseland approximation for the radiant energy flux
. ~ vector, but it predicts lower radiant fluxes than equation (11.21).
It is of interest to compare the theoretical results of

Kellett(46) with those of the present work. Kellett derived a differen-
tial equation which exprésses the energy conservation in a slab. An
approximate solution of this equation was obtained by replacing T*
occurringinthe radiative terms by a linear expression. Figure 11.8

shows the comparison between the tempefature profiles obtained from
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COMPARISON OF TEMPERATURE DISTRIBUTIONS FOR k=0.532
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the approximate formulation of reference 46 with the exact formulation
of the present section. The conditions and the physical property values

- for which the results have been evaluated are identical. The predicted
tempei'atures are on an average about one percent lower than those of
Kellett. The temperature gradients at both walls are in very good
agreémeht; howevér, the total heat flux calculated in the present study
is about 10 percent higher.

In summary, the problems considered here can be divided into
three classes: (1) that in which conduction predominates, (2) an inter-
mediate case wherein conduction and radiation are of the same order
of magnitude, and (3) that in which radiation predominates. In the first
class of problems the parameter N is large and/or the optical thick-
ness Ty is small. The energy transport by conduction predominates,
and the effect of radiation on the temperature distribution and the
gradients is negligible. In the intermediate class of problems and in
the problems where radiation predominates, the parameter N is small
and/or the optical thickness Ty is large. The temperature distribution

. - and the heat transfer cannot be calculated by neglecting the radiative
term from the energy equation. Generally, in these problems the
presence of radiation.changes the temperature distribution in such a
way as to increase the heat transfer by conduction. Finally, the
Rosseland approximation for the radiant flu# vector is satisfactory for

optically thick media.
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12 SUMMARY AND CONCLUSIONS

A systematic presenté.tion of energy transfer from thermal
radiation absorbing and scattering media is given. " The relations for
radiation from surfaces and from media (see Section 2.7) are funda~-
mental to the theory of rg.diant heat exchange. They are the basis for
the derivation of a system of integral equations for irradiatién and
incident radiation in an enclosure containing an absorbing and
séattering media.

The radiant flux vector has an integralbrepresentation and is
defined as a vectorial function of a point and also of a functional
operator which depends on the geometrical configuration, on the tem~-
. perature field in the media as well as on the enclosure walls, and on
the absorption and scattering coefficients. For the case of intense
absorption and a system near thermodynamic equilibrium the radiant
energy flux vector can be represented by a simple expression.

The equation of transfer which governs the intensity distribu-~
tion in a radiating medium was derived and various special cases |
. discussed. This phenomenological equation, which describes the
kinetics of radiation, is analogous in its form to integro-differential
equations encountered in other branches’ of physical scienc e. The in-
tensity of rad1at1on obtained from the solution of the equation of
transfer was used in the subsequent derivations of the integral equa-
tions for irradiation and incident radiation, as.well as the integro~
differential equation of energy conservation. |

The integfal equations derived in Section 5.2 are the basi.s for

analytical methods of investigation of the problem of radiant heat
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exchange in a system of nondiffuse surfaces séparated by an absorbing
and scattering media. They can readily be expressed in terms of
"other variables which are more appropriate to a particular problem.
The system of integral equations (5.5) and (5.10) is very complex,
however, and a general solution will be very difficult, if not impos-~
sible, to obtain. Since scattering generally is not isotropic and the
reflection from the surfaces is not diffuse, but depends on direction,
the scattering and reﬂecting functions must be known, or some sim-
plifying assumptions introduced, before a solution of this system of
equations can even be attempted. In addition, to obtain a solution of
radiant heat transfer problem for an enclésure, a number of other
simplifying assumptions will be required. These assumptions will be
inevitable because sufficient information does not exist regarding the
radiative properties of materials to permit a more accurate analysis
of the problem., A
The conservation of energy equation, including the contribution
due to thermal radiation, was derived. Since radiative transfer is an
integral problem, the analytical studies must be based on integral and
integro-differential equations, which have a general and rigorous
character. Differential equations in particular cannot be employed to
formulate the mathematics of this physical problem. Only in the
simplest particular case, that of very intense absorption and scat-
tering, as well as of a system close to thermodynamic equilibrium,
can the radiant flux vector be approximated by a differential equation.
The subject matter covered in this work may be regarded as

basic for the understanding of the specific problemé treated here, as
well as more complicated ones dealing with heat transfer from
radiating media. Since very little data are available on radiative
properties such as ;.bsorptibn and scattering coefficients and onlyv

scanty information exists in regard to the dependence of these
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properties on wavelength, temperature and pressure, the solutions ob-
tained for the specific problems were for the grey case. This is only
an approximation which might not correspond to physical reality, and:
in the future refinements will have to be made. However, the grey
case is of particular interest as it provides a physically significant
standard of comparison for interpreting the general case, and the
author is of the opinion that the simple problem must be solved first
before the non-grey case can be attempted.

It was shown that for large optical thicknesses the temperature
distributions calculated by using the Rosseland approximation are in
good agreement with those predicted by the‘ exact formulation. The
results for the flow along a wedge indicated that the effect of radiation
is to decrease the temperature gradients at both hot and cool walls,
but the heat transfer is affected only little.

The transfer of radiant energy between two parallel plates
separated by an absorbing and scattering media was studied. A non-

" homogeneous Milne integral equation was solved by the method of
undetermined parameters. The black body emissive power (tempera-
ture) distributions were determined. For the range of parameters
investigated, it was found that Ep(7) can be approximated by a
straight line, and the radiant heat fluxes were strongly dependent on
the optical thickness of the media. The polynomial approximation used
for Epp( 7) was satisfactory for all values of optical thickness and
ratios of E(To)/ E(0).

For the transfer of radiant energy by simultaneous conduction
and radiation, when the two transport processes are of the same order
of magnitude, or when radiation predominates, the temperature dis~
tribution and heat flux cannot be calculated by neglecting the radiative
terms from the energy equation. The results showed that the tempera-

ture distribution is strongly dependent on the optical thicknesses of the
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media and on the dimensionless parameter, N, which determines the
role of energy transfer by conduction to that by radiation. Radiation
effects are‘ relatively unimportant for small optical thicknesses; an
increased value of optical thickness increases the rolé of radiation.
The presence of radiation generally changes the temperature dis'c_ribu;
" tion in such a way as to increase the heat transfer by conduction, and
the energy transport by radiation is a weak function of the dimension-
less parameter N, .

The future work in the field of heat transfer, where thermal
radiation is important or predominant, should be undertaken along the
following general directions:

a) Since the accuracy of the results obtained for the tempera-
ture distribution and heat transfer depend largely on the radiative
. properties, theoretical and experimental effort should be directed
towards the evaluation of these propefties.

b) It is evident that microscopic analysis of the radiative
properties and other contributory effects will be excessively compli- -
cated. Moreover, a theory which starts out on such detailed premises
will, by its very nature, obscure the essential factors which are
operative. Therefore, in theoretical studies simple fhysical situa-
tions should be chosen so that the geometrical and the property
evaluation complexities would not conceal the effect of radiation on
temperature distribution and heat transfer.

c) The solution of the integral equations by iterative methods
takes up a considerable amount of time even on very fast digital
computers, e.g., IBM 704. Consequently, accurate approximate
methods are needed for solving complicated integral equations or
systems of integral equations occurring in radiant heat transfer

problems.
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APPENDIX A

Approximate Solution of Milne's Integral Equation (10.25)

We assume that the black body emissive power can be approxi-

mated by a fourth-degree polynomial:
Epp(7T) = E(0) [Dp + D7 + D72 + D373 + D7) . . - (A.1)

Epb(T) and Epp( 7") are the same functions, the only difference being
that 7 and T' are interchanged as independent variables. Substituting

(A.1) under the integral sign of equation (10.25), we have

Epp(7) = HE(O)E(7) + E(7)Eg(To=7)]

T
E(0 0
+..__(2_) f El(lT'T'l)(Do‘l‘Dl’T' +DZT'2+D3T'3
. * 0 ‘

+ Dy TH)dT! . - ' (A.2)

Introducing the definition of the exponential integral function, E,(T), in

equation (A.2) and integrating, we obtain

Ebb(7) = HE(O)EA(T) + B(To)Ex(To-7)] +1 E(0) {Dol2 - E4(7) - Eo( 70-7)]
+DY[27 + Ey(7) - ToEa(To=T) - Eo(To=7)] + Dyl2 72 +4- 2E4(7)
~TZE(To=-T) - 2ToE;(To= T) = 2E4{To~T)] + D3[273 + 47
+ 6E5(T) ~ T3E,(To=T) = 3TEE(To=T) = 6 ToE4(To-T) - 6E5(To-T)]
+ Dyl27% + 872 + 4 - 24 E(T) - TEE(To- T)-473E3(T;,-T)

= 12TEE,(To-T) - 24T Es(To-T) - 24E6('r°-*r)]} . . (A.3)
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For radiative equilibrium the radiant heat flux at any point in =
the medium can be written directly from equation (10.22), and we have

. h To
q:'[" = 2[E(T0)E3( TO-T). - E(O)E3(T) +f EZ(T'..'T)Ebb(TI)dTI
T

-
-f Ey(7-7T)Epp(7T')dT'] . (A.4)
0

Substituting equation (A.1), as well as the definition of the exponential

integral function, under the integral signs and integrating, we obtain

qr = 2[E(70)E3(To-T) - E(0)E;5(T)] + ZE(O){;DO[Eﬁ(T) = E3(To-T)]
+ Dy[2 - Eg(T) = ToE3(To-T) = Eg(To=T)] + D[ = T4 Es(To=T)

“ . 3
- 2ToE4(To=T) + 2E5(T) = 2E5(7o-T)] + D3[¥ + 27% = T4 E3(To-T)

3T§E4(To"r) = 6ToEs(To=T) = 6Eg(T) = 6E¢(To~T)]

3
- . 3 2 4
Dy[88" + 85— —T(E;(To=T) = 4ToEy(To=T) = 12T E5(To-T)

+

24T E¢( To=T) = 24E4(To-T) + Z4E7(T)]} . A (A.5)

We do not know the radiant energy flux, but we know that for
radiative equilibrium it is constant, that is, dq; dT = 0. Differen-

tiating (A.5) with respect to T, we obtain

ar - 0 = 2[E(To)Ex(To-T) +E(0)E,(T)] + ZE(O){DO[-Ez( T) = Ep(T1o-7)]
+ Dy[E3(7) - ToEa( To-7) -~ E5(7o~T)] + Dz[% - Tg'Ez( To=T)

. 3
- 2ToE3( Tg=T) = 2E4(T) = 2E4(To=T)] + D3[4T =~ T (E,(To-T)

BT E3(To=T) = 6ToE( To=-T) + 6Es(T) =~ 6Es(To~T)] + Dy[# + 872

4 3 2
ToE(To~T) = 4ToE3(To=T) = 12TgEy(To-T) = 24T E5(To=T)

24E((To-T) - 24E6(T)]} . (A.6)
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We need five equations to determine D's. Two of these can be ob-

tained by satisfying the emissive powers at the two boundaries:

at T=0, Epp(0) = E(0)D,
and
at T = Tos Ebb( ’To) = E(O)(Do + D;To + DZTS + DsTg + D4T§)

Introducing these in equation (A.3), we get
2
Do[-1 = Ep(To)] + Dy[% = ToE2(To) ~ Es(To)] + Da[§ - ToE,(Ty)
3 2
~ 2T oE3( To) = 2E4(To)] + D3[F = ToEz(To) = 3ToE;3(To) = 6T gE4(Ty)

- 6E5(To)] + D4[Z'5* - 7‘3 E,(Ty) - 4T(3> Es(Ty) - 1275 E4(To) - 24T E5(T,)

- 24mg(m)] = -1 - B B | (a.7)
and
Do[-1 = Ex(T¢)] + Dy[-To =5+ E5(T)] + Dz["rcz) ~ To +% = 2E4(T,)]

. . .
+ D3[-73 -3 73 +2Tg -3+ 6E5(Tg)] + Dy[=Tq - 273 + 47'(2,

- 6T, +%‘i- 24E6('To)] = =E,(To) - l

(A.8)

Three other equations can be obtained by satisfying the flux conserva-
tion equation (A.6) at optical depths T;, T, and T,. We then have
Do[-E,(T3) =~ Eo To=T3)] + D1[Es( i) -~ ToE2(To-Ti) = E3( To-Ti)l

2 .
+ Do - T Ea(To-Ti) - 2T 0E3(To=T;) - 2E4(T3) = 2E4(7To-T ;)]
+ D347y - T3E A To=T4) - 3’TZE3(T0-T-) - 6T Ey(To=T3) + 6E5(T1)

- 6Ey(To-Ti)] + Dy + 877 = ToEy(To=Ty) = 4To Eq TomTy) = 1272 E4(To-T3)

- 24 ToE5( To=T ) = 24E¢( To- T3) = 24E¢(T;)] = ~-E5( ;) -E(BO)Ez(T -T;)

where i =1,2,3.
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One should note that all five equations could hax)e beéﬁ ob-
tained from equation (A.6). It can readily be shown that, by satisfying
the flux conservation equation at optical depths 7 = 0 and 7T = Ty, we
would have obtained equations (A.7) and (A.8), res‘pectively.

The equation (A.9) was evaluated at three different optical
depths, T,, T, and T3, more or less arbitrarily. The values chosen
were T; = 0.27¢, T,=0.5Tg and 73 = 0.87,, and thereby three equa-
tions were obtained. Great cé,fe was exercised in the evaluation of
the coefficients appearing in the equations. In some cases for
To = 0.1, the exponential integral functions accurate to 10 significant
figures were used in order to obtain the coefficients with an accuracy

to four significant figures.
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APPENDIX B .

Reduction of the Nonlinear Integral Equation (11.12)

In this Appendix the functions G(T) and ¢ (7,7'), as well as the
constants C, and C,, appearing in the nonlinear integral equation(11.12)

are evaluated explicitly. Substituting the definition of the exponential

integral function, E,(T), in the expression of the function G(7), we have
C/-‘Ld“
=—<-={ d @4
To - C)K
» .+ @4(7-0)'/‘ 2 d“:|dC}+ C]_T+ Cz . (B.l)
' H
1

Interchanging the order of integration arnd integrating once, we obtain

[ Hlo [t

- @4(To)[ ( ~(To - € . e'ToF‘)dﬁJ}+ C,T+C, .(B.2)
0

One more integration reduces G(T7) to

o(r) = 3ot 0 -2 +3 0 - "]

+0*(To) [-E4(To - T) + Eg(To) + TEs(To)]} +CiT+ C, .(B.3)

Integrating the function $(7,7') once, we obtain

¢(7,7) =fT

- [%-%EZ(Iﬁ-T'I)]di ,

2
.
A
f‘
-
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and finally

WL 2o (T-T) 45 -5E (T-T1) . (B

The integral equation (11.12) can now be written as

| ; |
6(1) = Gln) + °[3(T-T') F BT T'l)} O4(art , (B.5)

0

where

’

(7 = ZI—N{@‘*(ox{- Ei(n +3 (1 - r)]

+€* (7o) [E.;(To) - Eg(To - 7) +'7'E3(7'o):|} +Ci7T + G
To evaluate the constant C, we apply the first of the boundary

conditions (11.9) and obtain

1
C; = 0(0) - 3N 0*(T,)

1

To 1 1 1 4, V' I
- N [-37’ - E5(1) +-2—]® (7)ar" . (B.6)

0
Constant C; is obtained by applying the second of the boundary

conditions (11.9):
1 1
C, = INT, 2Ne(To) - 8*(0) I:'_E4(To) > (1- To)jl

- @‘4(7—0) I:E4(To), - % + ToEs(To)] - ZNG,

T " ' ‘ k
_.f'o |:3(T0 - T"Y) - E4(Ty - T) '+%i|®4(7")d7'} . (B.7).
0

Substitution of C, and C, in equation (B.5) and simplification yields

(1) = G(7) +g§q]lo{—E3(rr -7+ Ey(r)
0

+ T—: l:E3(To -7 - Ea(T')]}®4(7")dT' o (B.8)

where
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APPENDIX C

Numerical Solution of Equations (9.40) and (§.41)

The differential equations derived in Section 9.6.3 were solved
numerically(33) by the Runge-Kutta and Milne methods on a digital
computer. The computer program used was originally coded to solve -
a system of first-order ordinary differential equations with the initial
conditions being specified.

Ir; general, integration methods which keep track of truncation
error, such as that of Milne,(33) are preferable to those which do not,
for obvious reasons. For the Milne method, the manner in which the
precision is computed is important, since its proper choice may re-
duce machine time more than by a factor of two. One disadvaﬁtage of
this method is that a starting procedure is required before the method
can be applied. 'The first three points (not counting the initial point)
were therefore computed by the Runge-Kutta method; then a switch to

the Milne method was made. When using the Milne method, the routine

" required the examination at each point of the sum of the absolute values

of maximum deviations for the last three pointé. When this sum was
exceeded by a certain specified quantity, the interval was doubled, and
the interval was decreased by a factor of two if the criteria were
violated. |

Equations (9.40) and (9.41) were reduced to a system to five
first-order ordinary differential equations. Unfortunately, the condi-

tions to be satisfied by the equations were specified on both ends of the
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integration interval. Thus, since only £(0), £'(0) and @ (0) were known,
the method of solution was to pick values of "(0), as well as ©'(0), and
integrate the equations; directly, recordin.g the resultant asymptotic
values of f' and © for large values of 7. 4After two such integrations, a
linear interpolation produced better values of f"(0) and 8'(0). After
the third integration the second-order Newton interpolation formula
with divided differences was used, and the procedure was repeated un-
til the required conditions at large 71 were met - i.e., f'(®o)—=1 and
©(w)—1. This interpolation was made an integral part of the numeri-
cal program so that by starting with two initial guesses for £"(0) and
©'(0) the program would run to completion.

In the numerical solution the right-hand side of equation (9.41)

. was neglected. The Rosseland approximation, which breaks down com-

pletely at the wall, was assumed to hold in the interval 0.03 <.

B'th the Runge~-Kutta and Milne methods yield fourth-order
precision, i.e., have truncat.ion errors of order (A 7))5 Any desired
accuracy Within reason i’nay be obtained by choosing appropriately
small values of 'An. A AmM of 0.01 was used iﬁitially for all solutions.
Generally, after the first three points were calculated this increment
was doubled.

The boundary conditions at 71-»» were considered met when f'
and © were satisfied simultaneously to within ¥0.5 percent of the values
at the boundary. The computer was programmed to print out the values

of f, f', f", © and ©' at specified intervals of 7).
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APPENDIX D

Numerical Solution of Equation (11.14)

The method of successive approximations used in sol\;'ing the
nonlinear integral equation (11.14) is as follows: A function @j(’T) is
assumed and inserted into the right side of equation (11.14). This pro-
duces a new function, ®j+1('7'), on t};e left. The procédure was repeated
until the convergence ériteria were satisfied. It was found that for
large values of N(N >0.1) with an assumed function ®j(7') of the form
(11.11), tﬁe convergence was achieved with less than six iterations.
For values at N =1 convergence was obtained after three iterations.
When the value of N for which solution was sought was sufficiently
small (N < 0.075), the successive iterations showed a tendency to os-
cillate and then to diverge if a linear approximation for ®j(’T) was sub-
stituted. In the presént case, the property of oécillation cannot be
developed analyticr;llly; however, it has been found by trial that if,

8,(7) + 9., ()
2

is.used in place of ®j+1(’r) to obtain ®j+2('r), the oscillation

in the first few iterations is reduced and convergence takes place.
The successive approximation calculations were carried out by

means of an IBM 650 digital computer. The exponential integral func-

_tions, En(T), are well behaved for n> 1, and the infinite series expres-

sions for these functions were taken from reference 10. The
integration interval O < T<T, was divided into i equally spaced sub- -
intervals. The number of steps selected depended on the value of the

optical thickness, T3. The inequality
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8. (r)e.(1)
J+1 J ]
5 ) <| 0.0005
J
A
had to be satisfied before the convergence criteria were considered as
met. Therefore, the accuracy of the solutions obtained by the method
of successive substitutions is believed to be + 0.1 percent.
|
!
|
[z 4}
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APPENDIX E

List of Symbols

Definition
Area
Parameter defined in equation (9.24)
Parameter defined in equation (9.24)
Slab thickness
Exponent in equation (9.21) for variation of
thermal conductivity with temperature
Exponent in equation (9.22) for variation of
absorption coefficient with temperature
Parameter defined in equation (9.25)
Velocity of light
Specific heat at constant pressure
Parameters defined by equation (10.28)
Emissive power defined by equation (2.19)
Irradiation defined by equation (2.21)
Radiant energy flux vector defined by
equation (2.31) ’
Exponential integral fﬁnction defined by
equation (10.2)
Net radiant energy flux defined by
equation (2.29)
Emission from a unit volume defined by

equétion (2.20)

183

none
none

R-3
ft/hr
Btu/( b, )(R)

Btu/(hr)(ftz)
Btu/(hr)(ftz)
Btu/(hr)(ffz)

Btu/(hr)(£t?)

Btu/(hr)(ft3)
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Symbol | . Definition . Units

g/ Incident radiati;)n on a unit volume defined Btu/(hr)(ftz)
by equation (2.22)

gn Net emission from a unit volume defined by Btu/(hr)(ftz)“

equation (2.30)

o5 Q ®

e : Internal energy defined by equation (6.4) Btu/lbm

f Function defined in equation (10.19) none

f Dimensionless stream function defined by | none

" equation (9.33)

Function defined in equation (10.21) | ~ Btu/(hr)(£t?)
Function defined in equation (11.13) none
Enthaipy Btu/1b,
Vertical distance between two pérallel | ft -
surfaces

I Intensity of radiation defined by equation Btu/(hr)(ftz)
(2.1) | )
Thermal conductivity | , Btu/(hr)(ft)(R)

K¢ Effective thermal conductivity defined by =~ Btu/(hr)(ft)(R)
equation (9.13) -

m Exponent in equation (9.32) , none

m,  Function defined by equation (9.8) ~ none

N Dimensionless parameter in equation (11.8) , none

n Index of refraction - none

n Unit vector normal to the surface none

NPi’ Prandtl number, NPr = “TCE_ none

P Pressure ‘ lbf/ft?‘

P Radiant energy flux tensor defined by , Btu/(hr)(ftz)

equation (3.19)
q" Heat flux ’ ‘Btu/(hr)(ftz)
q™ Heat generation Btu/(hr)(ftz)
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Definition
Radiosity defined by equation (2.27)
Position radius Qector |
Position coordinate in a given direction
Velocity in the x direction
Radiant/energy density defined by
equation' (2.7) ‘
Velocity outside the Boundary layer
Time '
Temperature
Velocity in the y di‘rection‘
Specific volume
Volume
Velocity in the z direction
Fluid velocity vector

Work done by the fluid

~Position coordinate

Position coordinate

- Position coordinate

Greek Symbols

‘Thermal diffusivity, a = k/p <p

) Radiation absorptivity of the surface

Radiation extinction coefficient defined
by equation (3.8)
Pressure gradient parameter defined as

B = 2m/m.+ 1

Reflecting function defined by equation (2.25)

Scattering function defined by equation (2.26)

Radiation 'emissivity of the surface
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Btu/(hr)(ftz)
it

it

ft/hr
Btu/ft?

ft/hr

hr

R

ft/hr
£t3/1b__ |
ft*

ft /hr
ft/hr
Btu/(hr)(ft?)
ft

£t

ft

ft?/hr
none

ft-!

none

none

none

none
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Symbol

Greek Symbols

Emission coefficient of the medium
Effective emission coefficient of the
medium defined by equation (3.3)

Dimensionless independent variable, x/ﬂ
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Units
Btu/(hr)(ftS)
Btu/(hr)(£t)

none

Dummy integration variable in equation (11.12) none

Dimensionless independent variable defined

by equation (9.33)

Angle between the outward normal 1 and the

—

direction of the percil at rays {2

. —— —
Angle between the direction rays ' and Q

Dimensionless temperature defined as
@ =.T/T* |

Absorption coefficient of the medium
defined by equation (2.9)

Wavelength

Mean free path of radiation

Dynamic viscosity

Cos 6

Frequency

Kinematic viscosity

Dimensionless independent variable, y/h
Dummy integration variable

Density |

Radiation reflectivity of the surface
Stefan-Boltzmann constant, 1.714 x 10-?
Scattering coefficient of the medium
defined by equation (2.10)

Optical thickness (dept‘sh)Aof the medium

defined as 7(s,s') = . B(s)ds
Sl

none
none

none

none
ft-!

microns
ft

(1b)(hr) /ft?
none
hr-!
fg/hr
none

none

b /ft?

none
Btu/(hr)(ftz)(R4)
ft-1

none
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\. Symbol Greek Symbols Units

¢ Azimuthal angle none
A ) Dissipation function defined by equation (6.7) hr-?
(/7 Stream function defined by equation (9.34)' £t?/hr
Q Solid angle none
Q Unit vector in the direction of the pencil ' none
of radiation
) EZ Unit vecfor _ | : none
Q Direction cosine in the x direction ' none
QY Direction cosine in the y direc'tlion none
Qz Direction cosine in the 2z direction none
‘ Subscripts
bb Black body ‘
c Refers to conduction
* r Radiant
ax ; A Refers to monochromatic (a given wavelength
» . . or per unit Wa_velength) )
>






