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ABSTRACT 

The problem of heat t ransfer  f rom media that absorb,and 

sca t te r  thermal  radiation has been studied analytically. The funda- 

mental quantities and definitions of the theory of thermal  radiation 

a r e  presented in a form useful f o r  application to the radiant heat 

t ransfer  problems. The a im was to formulate the various concepts 

with maximum generality. The basic equation of radiant heat t rans-  

f e r ,  which governs the radiation field in  a media that absorbs,  emi ts  

a d  sca t t e r s  thermal  radiation, has been derived..  The mathematical 

analogy betw6en thermal  radiation and neutron t ranspor t  i s  pointed 

out, and a few il lustrations of the applicability of the solutions ob- 

tained for  neutron t ransport  problems to the ,radiative tran.sfer prob- 

l e m s  a r e  given. 

The derivation of the integral equations for  radiant heat 

exchange in a general enclosure composed of a sys tem of sur faces  

separated by an absorbing and scattering media is presented. The 

enclosure walls under consideration can reflect specularly and the 

scattering f rom the mediu-m i s  not considered to be isotropic. The 

equation for the conservation of energy, including contributions due 

to thermal  radiation, was derived by evaluating the energy t rans-  

ported into an  imaginary closed surface fixed i n  space and then by 

applying Gauss ' s divergence theorem. The formulations developed 
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a r e  then used to gain insight into the problem by considering a few 

simple physical situations and obtaining numerical  r e su l t s  fo r  the 

grey  case only. 

The Rosseland approximation for  the radiant flux vector is em- 

ployed in  the study of Couette flow. It i s  found that for  l a rge  optical 

thicknes se  s the temperature distributions calculated ag ree  well with 

those predicted by the exact formulation. 

Numerical solutions of the boundary layer  equations for  the 

flow of a radiating media along a wedge were  obtained. The effect of 

radiation i s  to decrease  the tempera ture  gradient for  both the hot and 

the c o d  walls; however, the hea t  t ransfer  i s  affected only l i t t le.  The 

validity of the diffusion approximation for  radiation in  boundary layer  

problems i s  limited, and should be used with caution only i n  situations 

where th'e mean f r e e  path of radiation i s  much smal le r  than the ther-  

m a l  boundary layer  thickness. 

The transpDrt of radiant energy between two para l le l  plates 

separated by an absorbing and scattering media i s  studied. The tem- 

pera ture  distributions wer'e obtained by solving the nonhomogeneous 

Milne integral equation of the f i r s t  kind. It was ,found that the poly- 

nomial approximation for  the black body emissive power i s  satisfac- 

tory  for  a l l  values of the optical thickness. 

The t ransport  of energy by simultaneous conduction and 

radiation in a one-dimensional system has  been considered. A 

nonlinear integral  equation governing the tempera ture  distribution in  

an absorbing media was solved.   he' resu l t s  showed that the temper-  

a ture  distribution was strongly dependent on the optical thickness of 

the s lab and on the dimensionless pa ramete r ,  N, which determines 

the relative role of energy t ransfer  by conduction to that by radiation. 

The presence of radiation generally increases  the heat trazzsfer by 

conductiori. 



I. INTRODUCTION 

Litt le theoretical o r  experimental engineering work ha& been 

done on heat t ransfer  in media which absorb  and sca t te r  thermal  

radiatton. Some studies which a r e  p r imar i ly  l imited to the problems 

occurring in  boiler furnaces and combustion chambers  have been 

made. On the other  hand, during the pas t  sixty years ,  as trophysicis ts  

have given considerable attention to problems connected with radiation 

(19, t ransfer  in  planetary atmospheres ,  the sun, nebulae, and galaxies. 

68, lo3 ,  4, ~ e c e n t  in te res t  in radiation t ransfer  has  been stimulated 

by i t s  s imilar i ty  with neutron t ransport ,  energy tran'sfer f rom high- 

temperature gases  and p lasmas ,  meteorological problems,  atomic 

explo sions and fusion reactions. The recent  developments in  hyper - 
sonic flight, mis s i l e  reentry,  rocket combustion chambers., gas  -cooled 

nuclear reac tors ,  and power plants for  interplanetary flight have 

fur ther  emphasized the need to better understand the t ransfer  of 

energy by radiation through absorbing and scattering media.  

Heat t ransfer  in an enclosure containing an absorbing and 

scattering medium, whether the medium i s  stationary o r  in  motion, i s  , 

one of the most  complex problems occurring in engineering pract ice.  

In this  case ,  a determination of the energy fluxes requi res  the solution 

of a system of coupled conservation equations, namely, the differential 

equations of motion, the integrodiffe rential  equation of energy and an 

integral equation which expresses  the radiosity a t  any point on the 

enclosing surface.  The complexity introduced by the radiative contri- 

bution to the energy flux i s  in p a r t  due to the dependence of the flux on 



the geometr ical  configuratibns of the system, which i s  fur ther  cornpli- 

cated by the interreflections caused by the presence  of walls - the 

essent ial  element of any engineering system. There  a r e  no available 

general  solutions for  hkat t ransfer  problems in media which absorb  

and sca t te r  thermal  radiation, and only a few simplified attacks have 

been made. (932 5 8 y  3'  30) Until recently, the temperature distribution 

in  a radiating medium has been calculated on the assumption that the 

medium'was nonradiating. The basis for  this assumption was that 

radiative energy exchanges do not affect temperature and velocity 
. . 

distributions i n . a  flow s t r eam,  a s  do the usual dynamic and convective 

processes .  The assumption i s  tenable when radiant energy t ransfer  i s  

small  compared to other t ranspor t  phenomena. When radiant energy 

t ransfer  i s  of the same  order  of magnitude a s  other t ranspor t  proc-  

e s s e s ,  a tempera ture  distribution cannot be derived without considera- 

tion of the radiative t e rm.  

The present  work has  been undertaken with the hope that i t  

will contribute to some extent toward better understanding of heat 

t ransfer  in thermal  radiation absorbing and scattering media, .  as. well 

a s  in stimulating fur ther  in te res t  in this technically important a rea .  

Thus, the purpose of this study was twofold: (1) formulation of the 

general heat t r ans fe r  equations for  thermal  radiation absorbing and 

scattering media,  in the presence of the usual dynamic and convective 

processes ,  a s  well a s  (2) solution of specific heat t ransfer  problems.  

To this end, a thorough survey of l i t e ra tu re  on radiative 

t ransfer  through absorbing and scattering media was made. This in- 

cluded surveying many contributions i n  fields.usually unrelated to 

engineering heat t ransfer ,  such a s  astrophysics ,  meteorology, 

illumination, communication, and neutron t ransport .  Certain works - 
part icular ly some published in the USSR - a r e  not available in this 

country. Although the survey i s  exhaustive, i t  therefore m a y  not be 

complete. 



The radiative propert ies  of the medium were  not dealt  with; 

but the foundations of the theory of heat  t ransfer  i n  the rma l  radiation 

absorbing and scattering media were  examined and the general  equa- 

tions derived explicitly. 

Concepts. and resu l t s  of many 'uncorrelated investigations of 

radiative t ransfer  in  the various fields,  f rom astrophysics ,  

were  used. The equations derived a r e  detailed and assumptions 

explicitly stated so  that a l l  s teps can be readi ly followed. The general 

equation of t ransfer  i s  formulated and various special cases  a r e  dis- 

cussed. The integral  equations for  a general  enclosure a r e  expressed 

in  two different fo rms .  Finally, the general energy equation for  a 

medium in motion in the absence of e lec t r ic  and magnetic fields,  as 

well as when concentration gradients a r e  absent,  i s  derived. 

To fulfill the second purpose of' this work, i t  was f i r  s t  neces-  

s a r y  to gain insight into the problem. This was done by considering 

reasonably simple physical situations. In this way the essent ial  

features  of the formulations were  retained and the dis t ract ions of 

complex geometrical relationships were  avoided. F o r  this reason, 

one-dimensional sys tems a r e  considered and the effect of radiant 

energy t ransfer  on heat t ransfer  i s  investigated, where the Ros seland 

approximation for  the radiant f l u x  i s  used; the t ransport  of radiant 

energy between two paral le l  plates i s  studied; and simultaneous con- 

duction and radiation be tween two paral le l  plate s is considered. 

~ ~ ~ e n h e i m ' ~ ~ )  in discussing the engineering radiation problem 

.made distinction between three  methods of attack: accounting, 

network and calculus. Lf energy t ransfer  by convection o r  conduction, 

o r  both, cannot be neglected compared to the energy t ransfer  by 

radiation, the temperature gradients a r e  required for  the calculation 

,of heat t ransfer  .rate. The accounting and the network methods a r e  

not suitable for  the calculation of tempera ture  distribution and 



I 
temperature gradients in thermal radiation absorbing and scattering 

media. For this reason, the calculus method.of attack is .used 

1 throughout this work. 

i 

J 

.~ 



2 DEFINITIONS AND CONCEPTS 

2.1 Introduction 

The present  section i s  intended to define some fundamental 

quantities and to present  cer tain of the resu l t s  of the theory of thermal  

radiation in a f o r m  useful for application to the problems of radiant 

heat t ransfer .  In formulating the various concepts, maximum gener-  

ality is aimed at. The bas ic  quantity i s  formed by the definition of the 

intensity of radiation. No proofs a r e  given. The r eade r  is r e fe r red  

to P lanckls  t reat ise(78)  on thermal  radiation for the most  complete 

account of the physics and thermodynamics of radiation. The usual 

t reatment  in books on radiation i s  supplemented, and the validity of 

Kirchhoff's law to sys tems not in thermodynamic equilibrium i s  d i s -  , 

cussed by Milne. (68) 

2.2 The Monochromatic Intensity of Radiation 

The analysis of the radiation field requi res  a consideration of 

the radiant energy, Aqr, in a specified wavelength interval between X 

and X + AX which i s  emitted f rom,  reflected f rom,  and/or t ransported 

ac ross  an element of a r e a  AA and confined to an element of solid angle - 
AR in direction making an  angle 6 with the outward normal  to 

AA, during the t ime interval between t and t + At ( see  Fig.  2.1). This 

radiant energy is expressed in  t e r m s  of monochromatic intensity of 

radiation, IA , and i s  defined a s  radiant energy passing through the 



surface ( o r  emitted by the surface 

and/or reflected f rom the surface ) 

per  unit solid angle, per  unit of t ime,  

per  unit of wavelength and per  unit 

a r e a  perpendicular to the solidangle. 

 ath he ma tic all^, the monochromatic 

intensity of radiation i s  defined by 

the following limit:  

F I G .  2 .1  . 
DEF.IN4TION OF THE INTENSITY OF RADIATION. 

The appearance of cos 0 in (2.1) i s  due to the fact that we a r e  consid- 

l im  IX = 
AA,At,AR ,Ah-.O 

.ering .a pencil of r ays ,  not in  the direction bf the normal  x, but in the 
. - 

direction a .  The quantity of-energy traveling acr.oss dA i s  de te r -  

.mine:d, not by dA itself ,  but by i t s  projection on a plane perpendicular - 
to the direction . 

. . 

(2.1 ) 

' A  qr  

cos 6 AA At AQAX 

In the medium which absorbs ,  emits ,  and sca t t e r s  radiation, i t  

'dqr' 
- - 

cosedAdtdRd X 
. . 

follows f r o m  the definition that IX may be expected to be a function of 
4 

the position coordinates, of the direction S2 , of the t ime t and of the 

wavelength X . Thus for  a general  radiation field, we can wri te  

IX i IX(x ,y ,z ,R , R  , R  , t )  I X ( r  , R , t).  
X Y Z  

2.3 The Variation of Monochromatic Intensity 

with the Refractive Index 

Now we have to consider how the monochromatic intensity of 

radiation var ies  with the refract ive index, n, of the medium by con- 

sidering Fig. 2.2. The integral [ nds taken along a curve C i s  known 
Jc 

, a s  the optical length of the curve. The radiation i s  propagated with the 



4 

velocity of the light in the medi.um, 'v = c/n, along the ray: 

nds = c/v ds  = cdt, 

where dt i s  the t ime needed for radiation to t ravel  a distance ds  along 

the ray. 

F I G .  2.2 
BUNDLE OF RAYS PASSING THROUGH A MEDIUM 
HAVING A VARIABLE INDEX OF REFRACTION. 

The principle of Fe rmat ,  o r  the principle of the least  t ime,  ac -  

cording to Born and Wolf('l) s ta tes  that the ifoptical length 

o f  any ray  between-any two points Pl and P2 i s  shorter  than the optical 

length of any other curve which joins these points and which l ies  in a 

cer tain regular neighborhood of it." In other words,  F e r m a t ' s  pr in-  

ciple a s s e r t s  that, given a starting and end point(s) for the path and 

given the velocities in the f i r s t  and second media, the incident radia-  

t ionetravels along a path by which it reaches the end point of the second 
' 

medium in the shortest  possible t ime 

Denoting by square brackets  the optical length of the r ay  which 

. joins points PI and P2, we have 

[p1p21 = fp2 nds = c d t  = 2 (PI) - 4 ~ 2 )  , ( 2 . 3 )  
Jp1 

where & ( ) i s  .the eikonal and [grad ( ) ] = n2. i s  known a s  the 

(7)  eikonal equation; i t  i s  the basic  equation of geometrical optics.  



The sur faces  c4? ( F) = constant a r e  called geometr ical  wave sur faces  

o r  geometr ical  wave fronts.  

Finally, by applying the law of conservation for  energy to a n  

a rb i t r a ry  pencil of r ays ,  a s  shown in  Fig. 2.2, it can be shown(7) that 

the variation of intensity along each r ay  is expressed in term.s of the 

function&. Thus, the rat io  of intensit ies a t  any two points of a r ay  is 

2.4 The Monochromatic Energy Density 

The qonochromat ic  energy density of radiation a t  a 

point, u x ,  i s  the amount of energy per  unit wavelength in t rans i t  in a 

unit volume, in the neighborhood of the point. Mathematically, the 

monochromatic radiant energy density i s  defined by the'following 

limit: 

The dependence of ux on IX can be obtained by considering 

Fig. 2.3. Consider a sma l l  volume, AV, enclosed by a convex surface,  

C, in  such a way that the distance f r o m  i t  to any point of the surface 

C is very la rge  compared with the'dimensions of the element AV itself. 

Consider a beam of r ays  entering the volume bounded by 2 and pass -  

ing through elements of a r e a  dC and dA. Let  6' denote the angle which 

the normal  to dA makes  with the line joining dA with dC. Fur ther ,  le t  

the element dC subtend a solid angle dR a t  dA. Then the quantity of 

radiant energy passing through the a r e a  dC which a lso  flows a c r o s s  

dA in t ime d t  in the solid angle dR and in the wavelength interval  



FIG. 2.3 . 
GEOMETRICAL DATA FOR THE CALCULATlON OF 
RADIANT ENERGY. DENSITY. 

between X and X +.dX i s  

where 1 .  is, the monochromatic intensity of radiation in a medium hav- 
X 

ing refract ive index n. The radiation s tays in AV a s  long a s  it takes 

to t r ave r se  the length 1, that i s  d t  = i?/(c/n), where c i s  the velocity 

of light in vacuum. Thus, the'amount of radiant energy in course  of 

t rans i t  through AV by the pencil of radiation considered i s  

The cos BdA.1 i s  the  volume of the cylinder dV, whose length 

i s  1 and base  a r e a  cos 8dA. The monochromatic energy density be-  

comes 

: F o r  the special  cask of isotropic radiation and constant index of r e -  

fraction equation (2.7) reduces to 



2.5 The Absorption, Scattering and Emission Coefficients 

The interaction between radiation and matter i s  usually ex- 

pressed in t e rms  of an  absorption coefficient, a scattering coefficient 

and an emission coefficient, a l l  of which a r e  defined in this section. 

In defining these fundamental quantities, the Eulerian" instead 

of "the Lagrangian point of view" i s  used. (52) In the Lagrangian point 

of view, the movement of individual particles (photons) i s  followed. 

In the 'Eulerian point of view, local variations in 'the radiation field 

itself a r e  considered. The radiative t ransfer  theory'makes exclusive 

use of the Eulerian point of view. The evolution of single particles i s  

not followed and no reference is made to the history of each individual 

particle. 

The temperature distribution in any region of a medium i s  

determined by the interaction between radiation and matter .  The proc- 

esses  of thermal conduction and convection play a part  in establishing 

the temperature distribution a s  well. ' In the case of pure scattering, 

radiation has no relation to the temperature. As soon, however, a s  

absorption and emission play a role, we should have information a s  to 

how radiation i s  related to the temperature of the matter.  At present,  

we a r e  interested only in those absorption processes which lead to the 

conversion of radiant energy into thermal energy, and, conversely, of 

thermal into radiant ' energy. 

It i s  implied with regard to processes of this kind that there i s  

no direct  connection between the absorbed and emitted quanta. Each 

absorbed quantum of wavelength X i s  entirely lost, and thermal energy 



thereby gained by the medium i s  emitted in other wavelengths after 

some time. Absorption in which energy i s  converted into thermal 

energy (with possible subsequent r e  -emission in other wavelengths) i s  

called t rue  absorption. It can be further separated into t rue  continuous 

absorption and t rue  selective absorption or  line absorption. These two 

types of absorption, a s  well a s  line broadening due to collisions and 

statistical broadening of l ines, the Doppler and pressure  effects, a r e  

discussed by Ambartsumyan. (.4 

A pencil of radiation traversing matter  i s  usually weakened by 

absorption a s  i t  i s  propagated. Consider a monochromatic pencil of 

radiation of intensity I As a result  of passing through the medium of X ' 
thickness ds,  the decrease in intensity will be dIX. The coefficient of 

absorption o r  decrement in intensity of radiation, K i s  thus defined 
X J  

This definition i s  valid for both the continuous and the line absorption. 
(13,4) In some astrophysics books the decrement in intensity of radia - 

I tion i s  defined in  t e rms  of mass  absorption coefficient, K a s  
m, X 

The absorption coefficient i s  a property of a substance. It de-  

pends on pressure ,  temperature and the chemical and physical condi- 
j .  

tion of the substance. Physical theory, confirmed by experiments, 

shows that the absorbing power of any material  depends on the physical 

conditions in which the material  i s  placed. The absorbing power and 

i ts  dependence on the physical conditions a r e  different for different 

chemical elements. Hence, the resulting absorption coefficient, deter - 
mined by the chemical composition of the whole medium, will depend 

markedly on the relative content of various elements in the medium 

under consideration. 



A pencil of radiation of monochromatic intensity IX i s  also 

weakened by the loss of radiation which i s  not absorbed by the media 

but merely redistributed, that is ,  scattered in direction. A material  

i s  characterized by a scattering coefficient a if f rom a pencil of 
X 

radiation incident on an element of volume of cross  section dA and 

height ds,  the amount of energy scattered from i t  in all  directions i s  

O X  =A 
cos 8dA dsdRd Xdt . (2.10) 

This definition of the scattering coefficient i s  equivalent to 

definitions of references (13) and (4), in which the mass  scattering 

coefficient, a i s  defined a s  
m,X ' 

To formulate more quantitatively the concept of scattering, . 
( 3  5) + 4 

Hopf introduced the scattering function y ( r ,  R1 - ) such that 

gives the energy which i s  scattered into an element of solid angle dR1. - 
Referring to Fig. 2.4, we see  that 52' i s  a unit vector in the direction - 
of pencil of rays before collision; R i s  the unit vector after collision; . . 

4 + 
i s  the angle between 52' and R ;  8 i s  the polar angle and @ i s  the 

azimuth. The loss of radiant energy from the pencil of rays  due to 

scattering in al l  directions i s  - - - 
csX dVdR d Xdt . (2.12) 

a'= 4~ 
4 n  

This agrees with (2.10) if 

4 

i.e., if y i s  dependent of direction 52 . 
The process where the wavelength of the re-emitted quantum is  

exactly the same a s  that of the absorbed quantum, the two quanta dif - 
fering only in direction, i s  called coherent scatter.ing. .In writing (2.12) 



we have obviously assumed that 

we a r e  concerned with purely co- 

herent  scattering, since the ab-  

sorbed energy i s  re-emit ted in 

the s a m e  wavelength. F o r  non- 

coherent scattering of radiation, 

the expression (2.12) has to be 

m ~ d i f i e d . ' ~ )  s ince the effect of 

noncoherence in radiant heat 

F I G .  2.4 

COORDINATE SYSTEM FIXED ON STATIONARY VOLUME 
OF THE RADIATING MEDIUM. 

A 
, t ransfer  p r o b 1 e m s . i ~  not known, 

i t  will not be considered in this 

work. Fur ther  discussion on 

both coherent and noncoherent scattering can be found in books on 

astrophysics.  (4,103) 

~ e t  a volume element, dV, of the medium emit  radiant energy, 

dqr,  in all '  directions.  Then in t ime dt and in the wavelength interval 

between h .and X + d h  this element will emi t  within the solid angle 

6 dR an amount of energy 
-0 -0 

dqr 
= r ,Q, t )  dVdQd Xdt . 

- + 

The emission coefficient. E ( r ,Q, t )*  is defined a s  the energy emitted X 
by a unit volume of medium per  unit solid angle, per  unit wavelength 

and per  unit of time. In general,  i t  depends on the.wavelength, the 

composition of the emitting media and on'direction. The position vec- 
4 a' 

tor  i s  included in E ( r ,Q;t)to indicate that the emission coefficient 
X 

depends on the location of th&.element of volume. 

- 
*The emission coefficient, r , x , t ) ,  is 'not real ly  a coefficient. 

This nomenclature i s  used in a l l  books on astrophysics ,  however. 



The monochromatic energy emitted f rom the volume element 

dV in the time dt, in the wavelength interval dX, in all directions i s  - + 

dqr 
= d v d t d ~  /) r , n , t )  d n . (2.14) 

- 4 4 

For  the case of isotropic emission, that is  E ( r , n , t )  = ( r  , t ) ,  ex- 
X 

pression (2.14) may be written a s  

dqr = 4 (7 ,t)dVd Xdt . (2.15) 

For  a more  complete discussion of interaction of photons with 

matter and the distinction between the photons incident and emergent 

in a given direction, reference i s  made to Kourganoff. (52) 

2.6 Thermodynamic, Local and Radiative Equilibrium 

A system which i s  not experiencing any change with time i s  

said to be in thermodynamic equilibrium. This means that three types 

of equilibrium: thermal,  chemical and mechanical, must exist simul- 

taneously. F i r s t ,  there must be thermal equilibrium so that the tem-  

perature i s  the same throughout the whole system or  only a part  of the 

system, and this temperature i s  the same a s  that of the sur.roundings. 

Second, if the system consists of more  than one substance, there must 

be chemical equilibrium, so that the system does not undergo a spon- 

taneous change of internal structure. Finally, the system must be in 

mechanical equilibrium, that i s ,  there must be no macroscopic move- 

ment within the system itself and also between the system and i t s  su r -  

roundings. The properties of a system in thermodynamic equilibrium 

provide a useful basis  for  consideration on nonequilibrium phenomena 

which occur in all  forms of energy transport.  



The thermodynamic analysis of radiation clearly shows that 

the value cX/n2k which i s  constant throughout any enclosure, i s  the 

same  fo r  any two enclosures a t  the same temperature and i s  a univer- 

sa l  function of temperature.  The intensity of X radiation in  the medi- 

um i s  equal to the value E /n2 /cX.  The radiation in an  isothermal  X 
enclosure a t  a temperature T is called "black body radiation" a t  a 

temperature T. Thus, the coefficient of emiision,  of any matter  

in an  enclosure a t  temperature T i s  given by the Kirchhoff law 

2 
E X  = n K X  Ibb,$T) (2.16) 

Here $, (T) i s  the monochromatic intensity of black body radiation 
b, X 

given by Planck's law: 

where k and h a r e  Boltzmann's and Planck's constants, respectively. 

It i s  sometimes useful to express 
=bb,X 

a s  a function of a frequency 

instead of a wavelength. We note that 

and 

hence 

Introducing this resul t  in (2.17), we find that 

If the system we a r e  considering i s  not an isothermal enclo- 

sure ,  we sti l l  introduce the concept of thermodynamic equilibrium so  

that we can define the temperature unambiguously. We assume tha t -  

we can define a t  any smal l  region of the medium of the sys tem in con- 

sideration a local temperature T, such that the emission and absorption 



coefficients a r e  the same a s  in thermodynamic equilibrium and that 

Kir chhoff' s law i s  valid.(68) This i s  clearly a simplifying a s  sumption. 

Thus, in a nonisothermal enclosure, the temperature may vary 

f rom point to point, but each point may be characterized by a definite 

temperature T so that an element of matter  a t  each point i s  behaving 

a s  i f  in local thermodynamic equilibrium at  temperature T. It i s  to be 
r 

noted that the hypothesis of local thermodynamic equilibrium i s  dis  - 
. > 

tinct f rom the equilibrium case where the temperature i s  constant 

throughout the region of the medium considered. 

If the radiant energy absorbed per  unit t ime by the volume AV 

i s  equal to the radiant energy emitted per  unit t ime by the same vol - 
ume, then the system in consideration i s  in radiative equilibrium. . 

Radiative equilibrium prevails , for photon radiation, in any isothermal 

system that i s  shielded f rom external radiation. In such an equilibrium 

state,  the entire system contains uniform energy density of photons, 

moving indiscriminately in al l  directions a t  the .speed of light. The 

distribution of energy density and direction of the photons i s  likewise 

uniform for  photons within any given wavelength interval. This kind 

of radiation i s  called isotropic. Such radiation produces no net energy 

flux, due to the complete balance of oppositely directed photons a t  al l  

. points. 

2.7 Radiation f rom Surface and Volume 

It i s  necessary to distinguish between radiation f rom a surface 

and f rom a volume. The radiation f rom a surface element dA i s  taken 

over the hemisphere, solid angle a = 2 .rr , while the radiation f rom an 

element of volume dV of a radiating medium in a l l  directions i s  taken 

over the sphere, solid angle a = 4n(see  Fig. 2.5). A summary of anal- 

ogous quantities and definitions i s  given in Table 2.1. 



FIG.  2.5 
GEOMETRICAL DATA FOR THE EVALUATION 

Table 2.1 

Summary of Quantities and ,Definitions for Radiation f r o m  a Surface and a Volume 

-* d 

The reflecting function r( r ,  0I-a) i s  s imilar  to the scattering 

function discussed previously, and i t  takes into account specular (non- 

Opaque Solid 

Monochromatic absorbtivity 

Monochromatic reflectivity 
P ~ ,  - 
r(r,S2 - S2)  Reflecting function 

EX(?, t)  Monochromatic emissive power 

E; (T, t )  , Monochromatic irradiation 

E6X (?,t) Monochromatic radiation 
absorbed by a unit a r e a  

E (ct) ' Monochromatic radiation 
r ,  X reflected f r o m  unit a r e a  

RX (?,t) Radiosity-monochromatic energy 
leaving a unit a r e a  

E (7,t) Net radiant energy flux 
n. x 

4- 4 

diffuse) ref1,ection f rom surfaces.  The quantity I?( r,al.--R) d a '  rep-  
4 

resents  the probability that a pencil of rays of direction a' incident on . . 
-C 

a surface i s  reflected into direction a ,  making an  angle with the 

Transparent  Media 

X Monochromatic absorption coefficient 

'=X Monochromatic scattering coefficient -- 
y(r,Q-R) Scattering function 

&(?, t)  Monochromatic emission 

) Monochromatic incident radiation 

C (T,t) Monochromatic radiation absorbed 
a ,  X by a unit volume 

,$ (7,tj  Monochromatic radiation . 
S, scattered' f r o m  a unit volume 

r , t )  Effective emission-monochromatic 
Ce*X(- radiant energy leaving a unit volume 

( z t )  Net emission - net monochromatic 
n,X radiant energy emitted f r o m  a unit 

volume 

original ray. 



The various definitions and identities describing the heat t rans  - 
fe r  a t  a surface and on a volume of a n  emitting and scattering medium 

a r e  introduced below and the radiant flux vector defined: 

Radiation f rom Surface Radiation f rom Volume 

Monochromatic Emissive Power ,Monochromatic Emission 

Radiant energy emitted normally Radiant energy emitted f rom a 

f rom the surface per  unit a r e a ,  unit volume of the medium per  

per  unit t ime, per  unit wave- unit volume, per  unit time, per  

length in all  directions unit wavelength in a l l  directions 

E X ( 7 , t )  = - -m 

C ( Z t )  = X + -.. 
IX ( r ,R, t )  cos 9 dR. /RE4;X(r2 a d  dn. 

(2.19) (2.20) 

Monochromatic Irradiation mono chroma ti.^ Incident Relation 

Radiant energy incident normally 

on a surface per  unit time, per  

unit a r e a ,  per  unit wavelength 

f rom all  directions 

E; (7, t )  = 
+ 4 

IX(r ,R, t )  cos 8 d  R .  (2.21) 

Radiation Absorbed 

Radiant energy absorbed by the 

surface per  unit time, per  unit 

a rea ,  per  unit wavelength 

Radiant energy incident on a 

unit volume of medium per  unit 

t ime, per  unit a rea ,  per  unit 

wavelength f rom al l  directions 

C; (T, t )  = cuX 

Radiation Absorbed 

Radiant energy absorbed by a 

unit volume of the medium per  

unit t ime, per  unit volume, per  

unit wavelength 



Radiation f rom Surface 

Radiation Reflected 

Radiation f rom Volume 

Radiation Scattered 

Radiant energy reflected f r o m  a Radiant energy scat tered from 

surface per unit t ime, per  unit 

a rea ,  per unit wavelength in a l l  

directions 
P,  

cos 8 dR. (2.25) 

Radiosity 

Radiant energy leaving a su r  - 
face (rX = 0 )  per  unit t ime, per  

unit a rea ,  per  unit wavelength in 

a l l  directions 

%(;'t) = EX(; t)  + E r , x ( t .  . 

Net Radiant Heat Flux 

Net radiant energy exchange a t  

the surface per  unit t ime, per  

unit a rea ,  per  unit wavelength 

E; (7, t). (2.29) ' 

a unit volume, per  unit t ime, 

per  unit volume, per unit wave - 
length in a l l  directions 

Effective Emission 

Radiant energy leaving a unit 

volume in a l l  directions per  

unit t ime, per  unit volume, per  

unit wavelength in a l l  directions - 

C e, x ( ~ , t )  = CX(T,~)  + C (T# t). 
s ,  X 

Net Emission 

Net radiant energy emitted by a 

unit volume per  unit time, per  

unit volume, per  unit wavelength 

n, X 

-g; ( ?, tq. (2.30) 
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Radiation f rom Volume 

Radiant Flux Vector 

Radiant flux vector i s  defined 

a s  the integral of the intensity 

in the direction of the unit vec- 
+ 

tor 52, over the unit sphere 

(solid angle, R = 4 7~ ) 

2.8. Total Quantities 

~ h r o u ~ h o u t  this work the monochromatic quantities (per  unit 

wavelength o r  in the wavelength interval between X and X + dX) a r e  

denoted by a suffix X . The total values of .energy quantities (defined 

in the previous section), i.e., intensity, emissive power, emission, 

etc. ,  a r e  defined a s  

where f is the desired quantity. The average radiative properties a r e  

obtained by integrating the monochromatic values over the ent ire  

' spectrum f r o m  o to co , 

where w i s  a weight function. The weight functions 'corresponding to X 
a given property a r e  presented in Table 2.2. 



Table 2.2 

Weight Functions for Radiative Propert ies  

For  the total quantities the suffix X will be omitted and no ambiguity i s  

likely to a r i se  from it. 

2.9 The P re s su re  of Radiation 

The existence of radiation pressure  follows from Maxwell's 

electromagnetic theory of light a s  well a s  f rom quantum theory and 

thermodynamics. According to quantum theory, the quantum of energy 

hv possesses momentum hv/c in its direction of propagation. It fol- 

lows f rom this that radiant energy of amount q traversing a medium 
r 

in a specific direction ca r r i e s  with it a momentum q /c. The momen- 
r 

tum exerted i s  in the same direction a s  the pencil of radiation. 

To determine the mechanical force exerted by the radiation in 

any direction, consider a thin cylinder of c ross  -sectional a r ea  dA and 
d 

length ds  the axis being in the direction R (see  F;~ .  2.6). The amount , 

of energy incident on dA in the directions contained in  the solid angle 
4 

dR about Q in the wavelength interval d during time dt i s  

I~ COS e d ~ d ~ d ~ d t  (2.34) 

The amount absorbed i s  obtained by multiplying by ~ ~ d s / c o s  8 . The 
. + 

normal component of 'momentum in direction i s  obtained by multiply- 

ing by cos 8 and dividing the radiation absorbed by c 

(l/c) ~ ~ 1 , ~  cos 6 dAds d a d  Xdt . 

Property, g 
X 

Weight function, wX 
, Ei 



GEOMETRICAL DATA FOR THE EVALUATION 
OF THE RADIATION PRESSURE ON THE SLAB 

To obtain the normal force per unit a rea ,  we divide by the a r ea  dA and . -  
the time dt. Integrating over all. direction, we find that the radiation 

pressure  over al l  wavelengths of slab thickness ds  i s  . . 

where the integral on the right side of the above equation i s  the total 

radiation 'flux normal to the slab. Equation (2.35) gives the normal 

force per unit a rea  of slab thickness ds. 

The pressure  a t  a point P i s  defined a s  a ra te  of t ransfer  of . 8 

momentum normal to an arbi t rary  chosen infinitesimal surface dA 

containing P. To obtain,the pressure  we divide expression (2.34) by c. 

The normal component of momentum across  dA by the pencil of radia- 
. . .  

tion in the wavelength interval h and X + d l .  i s  

( ~ / c ) I ~ c o s ~  edA dndXd t  . 
The total radiation pressure  i s  the momentum transfer  per  

unit a r ea  and is  obtained by integrating the above over all  directions, 

ll = 4T,  all  wavelengths and dividing by' dA. 



A more  general way of calculating the pressure  due to radia- 
+ 

tion i s  to consider an  element of surface normal to the vector n .  The 

ra te  of t ransfer  of the x component of momentum per unit a r ea  per 
4 

second by radiation confined in a solid angle dR in the direction R 

(direction cosines R , R 4) i s  
x Y' 

The total ra te  of t ransfer  of momentum in the x direction ac ross  the 

element per  unit a r ea  per unit t ime i s  then 

But this a s  well' a s  (2.36) simply define the x-component of pressure  

exerted ac ross  the element under consideration. we write i t  a s  p,., 

In the same way, the y and z components of p ressure  ac ross  the same 

element a re ,  respectively, 

By considering the s t resses  exerted ac ross  three perpendicular 

planes, each s t r e s s  having three components, one (68) obtains a s t r e s s  

tensor whose components a r e  

pxx px y pxz 
- p.. =. - 

1 - 
p~~ p ~ z  

I Q R . d R ; . i , j = x , y , z  , (2.37) 
lJ C 6=, 

pzx pzy pzz 

where Q.  and a. a r e  direction cosines. ' This tensor i s  partly analogous 
1 J 

to the s t r e s s  tensor in fluid dynamics and elasticity. We observe that 

it i s  symmetrical,  p. = p... If the radiative viscosity a s  well a s  the 
lj ~1 

t e r m  depending on the second-order temperature gradients a r e  not 

neglected, a more  complete expression for the pressure  tensor i s  

obtained. (43)  



The mean pressure,  pr, i s  defined a s  

wheri the radiation i s  isotropic. In the general case the x-component of 

force on a unit volume dxdydz i s  

&I- =. - 1 - t - t -  I dxdy 

with similar expressions for the y and z components. 

For  black gas radiation, equation (2 .38)  becomes 

whereT i s  in degrees Kelvin. -The radiation pressure  becomes 3.66 psi 

at  105 '~ .  Thus the pressure  of radiation could become of kinetic im-  

portance in fusion reactions. The minute, but definite, effects from 

radiation sources a t  more  readily attainable temperatures have been 

studied both experimentally and analytically. In a recent paper Jones 

and Richards (44) considered experimentally some more  complicated 

phenomena due to propagation of radiation in refracting liquid media. 

Their experiments show that not only does radiation exert  a pressure  

on a m i r ro r ,  but that it also gains o r  loses momentum when i t  c rosses  

refractory surfaces. 

2.10 Thermo~hvs ica l  P r o ~ e r t i e s  of Radiation 

When radiation flows in an absorbing medium, there i s  a pro- 

gressive reduction in intensity or  in amplitude which i s  equivalent to 

the existence of a mean f ree  path, for the associated photons. By 

photon mean f ree  path i s  meant a path X' traveled over,  on the average, 
P 

by the photons in that t ime interval which elapses between the moments 



of their emission and absorption by the atoms of the substance. It fol- 

lows from this definition that in a mean f ree  path of the photon, which 

i s  a statisticalquantit'y, the radiation energy does not interact with the 

medium. If the mean f ree  path of the photon i s  s~ l i a l l  in comparison to 

the dimensions of the space in which the radiation energy i s  being 

propagated, then one can often apply diffusion concepts. Radiative 

t ransfer  in highly absorbing media thus acquires some.of the proper-  . 

t ies  of 'conductive transfer .  

If the mean f ree  path i s  sufficiently small,  we can associate a 

diffusivity a s  well a s  viscosity with the photons. by a crude 

calculation based on the analogy with the kinetic theory of gases,  

showed that the "viscosity" arising f rom radiation can be expressed by 

where C i s  the velocity of the photons and X i s  the mean f ree  path. 
P 

The "thermal conductivity" i s  given by 

k =  c 
r pr  v , (2.42) . 

where cv i s  the radiative "specific heat" for constant volume. Corre-  

sponding to the temperature gradient aT/ ax, the heat f l u x  i s  given by 

When the ca r r i e r s  of heat a r e  not molecules o r  atoms a s  in 

gases, but photons, the specific heat a t  constant volume per  unit mass  

i s  given by 

For  black gas radiation (with index of refraction n = l )  this becomes 



Since the velocity of the c a r r i e r s  C is  equal to the velocity of light, c, 

we have 

C~ = 1 6 a ~ ~ / 3 ~ c  (2.44) 

To find the mean f ree  path f the photons we note that the s t ream i s  
-xpx 

reduced in strength by .e P after traversing a distance x, while the 

beam of radiation i s  reduced by e-KX. Thus, the mean f ree  path for 

the quanta i s  taken to be X = 1 / ~ .  Making these substitutions in 
P 

(2.43), we find that . 

Since the photons a r e  the only ca r r i e r s  for thermal radiation, the equa- 

tion also degines the "thermal conductivity" of thermal radiation, 

which i .s  given by 

kr =-16aT3/3~  = 16 X oT3/3 . 
P 

The "density" of radiation in equilibrium with a body of tem- 

perature T i s  obtained from Einstein's law m/v = E/VC' and i s  given 

Now, substituting the values C = c and X = 1 / ~  a s  well a s  the above 
P 

result  into (2.42), we obtain for radiative "viscosity" the value 

By making a momentum balance on a pencil of photons passing through 

(19) an element of a r ea ,  Eddington obtained the same value of - 

radiative viscosity. A more exact calculation by Jeans (43) showed 

that the radiative viscosity i s  given by 

Hazlehurst and ~ a r ~ e n t ' ~ ' )  have considered radiation a s  a photon gas. 

The relativistic t e rms  of the order  (v/c) and (v/c)' have been explicitly 



calculated. The radiative viscosity 'has been found to be twice that 

predicted by Jeans, but identical with that obtained previously by 

(102) Thomas. 

The expression for- radiative "thermal conductivity" may be 

combined with the expressions for the radiative llviscosityn and 

specific heat" a t  constant pressure  to give the dimensionless radia- 

tive "Prandtl number." The value of this parameter  i s  found to be 

very small  a t  ordinary temperatures.  



3 EQUATION OF TRANSFER 

3.1 Introduction 

The radiative t ransfer  problem is  a quantitative study, on a 

phenomenological level, of the t ransfer  of radiant energy through the 

media that absorbs, scat ters  and emits radiant energy. The problem 

was formulated by ~ o ~ f ( 3 5 )  over twenty years  ago, and the foundations 

still remain unchanged. A new approach to the formulation of the prob- 

lem was presented by ~ re i s endo r f e r . ( 82 )  He introduced a set  of phys- 

ically' motivated axioms phrased in the language of measure theory 

from which, a s  a special f a s e ,  the prominent features of radiative 

t ransfer  were rigorously deduced. 

Equations of t ransfer  of l e s s  general form for a medium a t  r e s t  

a r e  given in the astrophysics books of ~ i l n e , ( ~ ~ )  ~os se l and , (86 )  

chandrasekhaT,(13) ~ m b a r t s u m ~ a n ( ~ )  and others.  In all  of these refer-  

ences either the scattering o r  the change of intensity with time o r  both 

were not considered. ~ h o m a s ( l O ~ )  derived an equation of t ransfer  for 

a medium in motion by using the Lorentz transformation and obtained 

the'equation in a form.'including all .relativistic terms in the ratio of the 

velocitk of motion to the velocity of light. More recently, synge, ( lo l )  

by using a different approach, arr ived a t  a s imilar  equation. 

In this chapter the writer derives the basic equation of radiant 

he,at t ransfer ,  the equation of t ransfer ,  and by so  doing, generalizes all 
. . 

previous results in nonrelativistic t e rms .  This equation governs the 

radiation field in an isotropic medium at  r e s t  which absorbs, emits  and 



sca t t e r s  thermal  radiation. In deriving this equation the ~ u l e r i a n  point 

of view i s  taken. The detailed mechanism of the interaction p rocesses  

involving a t o m s  and the field of' radiation i s  not considered here .  Only 

the macroscopic problem consisting of the study'of the transformation 

suffered by the field of radiation passing through a medium i s  exam- 

ined. Thus, i t  i s  unnecessary to  retain the formulation of the quantum 

theory of radiation. It i s  a l so  sufficient just to  consider a para l le l  

beam of radiation and to follow i ts  depletion o r  growth a s  i t  moves 

a1 ong. 

Thermodynamic s tates  in which temperature var ies  f r o m  point 

to point in space and time ape considered. However, this  presupposes 

the existence of a definite temperature a t  each point a t  a l l  t ime.  The 

temperature can be uniquely defined, a s  mentioned in Section 2.6, only 

for a system in thermodynamic equilibrium: It .is therefore assumed 

that. the medium is, in local thermodynamic equilibrium. 

3.2 Derivation of the Monochromatic Equation of Transfer  

Consider a smal l  cylindrical element,  Fig.  3.1, of c r o s s  section 

TRANSFER O F  THERMAL R A D I A T I O N .  



dA and length ds in an absorbing, emitting and scattering medium. Ra- 

diant energy in the wavelength interval between X and X t d X, confined - 
to a pencil of rays of solid angle di-2 about direction 0 ,  in the time in- 

terval  dt, will c ross  the two faces normally. This monochromatic in- 
4 4 

tensity I ~ ( r ,  R,t) will decrease on account of absorption and scattering 

f rom dR; it will increase because of contributions f rom the emission 

and scattering into the volume element. 

F r o m  the definition of intensity, it now follows that the net in- 

c rease  in the, radiant energy i s  given by 
4 -. 

- 4 

We can expand d1 X(r,R,t)/dt in a Taylor se r i e s  and keep only the l inear  . 

t e rms ;  thus, we have 

Using the vector identity 
4 - - -. 

div (RIA) = I x  div R t R - g r a d I ~ = R - g r a d I ~  , 

we can wri te  

- dlX - % t c div (51~) 
dt a t  9 

s o  that ' 
* -. + 4 

a ~ ( r , R , t )  ~ I X  ,t) 
dt 

dAdRd Xdt = { 
at  

4 4 

The quantity R.grad IX = div (RIA) i s  the directional derivative in the 
+ -0 

direction R. Thus, if the coordinate s i s  laid off in the direction R,  

then 
4 + a1 X 
Regrad I X  = div (RIA) = - a s  

The distance traveled by: the pencil of rays  i.s ds = cdt, and therefore 

we can finally rewrite the above expression a s  
4 4  +-0 

dIX(r,Q,t) 
dAdRd Xdt = 

dt 
t c div [ R ~ ~ ( r , R , t ) l  dAdsdXdt. 

. - -  > 



4  4  

The components r and R a r e  independent variables,  so  that, 

when differentiating with respect to one variable,  the other must be re -  - 
garded a s  constant. Since differentiation with respect to will never 

4 4  

occur, it is  not necessary to give an index r or 52 to  the operators - - 4  

"grad" and "div" to specify the variable ( r  .or a )  with respect to which 

the differentiation i s  to be undertaken. 

The radiation scat tered out of and absorbed in the pencil of 

rays in time dt i s  given by 

according to the definition of the absorption and scattering coefficients. - -L 

The amount of radiant energy scat tered f rom direction R'into 52 

into the .volume element, dV = dA ds,  during time dt is  

+ +  4 t -  [2 S y(r ,R1-R)Ix(r ,S2:t)dR1 dAdsdRdX , I R1 =47T 
- 4  4 

where y ( r ,  52'-R) i s  the scattering function which gives the probability 
+ 4 

that the pencil of rays will be scattered into direction 52 f rom R I .  

The 'radiant energy emitted from the volume element dV. during 

the time interval dt is  given by 

according to the definition of the emission coefficient. 

Counting up the gains and losses of radiant energy in the pencil 

of rays dR during its t raversa l  of distance ds and dividing by dA ds 

dRdX, we obtain the equation 
- 4  

31 x ( . , ~ , t>  - 4 +  + + 4 -. 
 at + div [ R ~ x ( r , R , t ) ]  = E: X(r,Sl,t) - ( K X  +.o X)IX(r,S2,t) 

This integro-differential equation i s  called the equation.of t ransfer  or  
. . 

the transport equation. It i s  valid f o r  coherent. scattering .only; for 

. . noncoherent scattering processes it has to be modified. (4) 



taking place a t  discrete frequencies, require special attention. These 

processes include: (1) true selective absorption caused by discrete 

transitions of electrons, and (2) selective scattering. The equation of 

transfer can be g e n e r a l i ~ e d , ( ~ , ~ ~ ~ )  to account for the processes of 

true selective absorption and scattering. We can also allow for  the 

I1 possibility that a certain amount of thermal emission, 6 A, can be a s -  

I sociated with the scattering coefficient, a 1. Equation (3.1) can then 

a1 x(r,fi,t) + 4-m a 

  at + div [521~( r , a , t ) ]  = n2 (,:A + 6 x 0 ~ )  $b,h(r#t)  

If the processes of true selective absorption a r e  disregarded (6 = O), 

I - ;  

this equation reduces to (3.1). 

We define the monochromatic effective emission coefficient, - + 
E (r ,R,t) ,  a s  radiant energy leaving a unit volume of the medium 

, . 

per unit' volume, per  unit solid angle, pe r  unit wavelength and per  unit 

I of time a s  
4 a 4 a 

""S -- - ' : ;  

- 4  

E i , " ( r , a , t )  = €x ( r ,R , t )  + - y(r~,52 ' -R)-I~(r ,52 ' , t )dR'  . (3.3) 
47r . . 

.. . 52 '=4 7T - -. 
. . Thus, Ee, ~ ( r , a , t )  represents  the sum of the emitted and scattered r a -  

diation. O n  substitution of (3:3), equation (3.1) becomes 
a - 

a1 ~ ( ~ , o , t )  + ++ - - 
, c a t  

+ div [521~(r ,R,t)]  = - ( K "  t a x )  I"(r,R,t) 



3.3 Equation of Transfer  for  Nonscattering and Diathermal Medium 

In case of a purely absorbing and emitting medium with.no 

scattering ( O X  = 0, c e , ~  = EX),  the equation of t ransfer  (3 .4 )  reduces 

In a diathermal medium ( K  = = 6~ = 6, , = 0) the equation 

of t ransfer  (3.4) becomes 

F r o m  this' i t  follows that - -0 

a1 x ( r 9  lt) * 4 -  

= - div [a ~ ~ ( r , n  ,t)] . 
, a t  

3.4 Equation of Transfer  fo r  Steady State 

In a macroscopic sense,  i t  will sometimes (usually) occur that - 4 

the intensity i s  independent of t ime. Thus, a IX(r,R,t)/c a t  = 0, and the 

equation of t ransfer ,  (3.4), reduces to 
4 - 4  -m 4 4 4 

div [aI , (r ,n)]  = - 'PA I x ( r , a )  + E , , X ( ~ , R )  , (3.7) 

i s  the e.xtinction coefficient. Even when the intensity varies  'rapidly 

with t ime,  i t  i s  often justifiable to neglect the time derivative with 

respect to other te rms in equation (3.7). 

It i s  possible to reduce the time-dependent equation of t ransfer  

to a stationary one. F o r  instance, consider ' the case 
+ 4 

I ~ ( r , S l , t )  = 0; t<O 

Introduce the Laplace t ransform, defined by 



Then, multiplying (3.1) by e-st and integrating f r o m  zero  to infinity 

yields, on using (3.9), 

The f i r s t  integral on the right-hand side cannot be simplified.  How- 

ever ,  if i t  should occur that the, emission coefficient descr ibes  a pulse 
4 -  44  

a t  t = 0, i .e ., ~ ~ ( r , R , t )  = ( r , R ) ~ ( t ) ,  the above equation becomes 

With the, definition 

equation (3 . l o )  may be brought into the f o r m  - +-  4 4  -- 
div[oIX(r,fi, s ) ]  = cX(r,fl) --PA1 IX(r,Q, s) 

4 -  - 4 -  

47r +"I y(r,Qt+Q) IA(r, Q', s)dllt (3.12) 
Rt=47r 

This equation i s  the same a s  (3.7) with a modified PA. 

3.5 Comparision of the Equation of Transfer  with 

the Continuity Equation 

The equatidn (3.4) i s  s imi lar  to the equation of conservation of 

mass :  



where p i s  the fluid density, the velocity vector,  and Q the source o r  

. sink. If we define,the right side of equation (3.4) a s  

then equation (3.4) becomes 

This equation s tates  the conservation of radiation intensity. 

3 . 6  Equation of Conservation of Radiant Energy 

Integrating equation (3.4) over a l l  solid angles ( a =  4n), we 

obtain 

4 4 

4 * -  
div [ RI X(r,n, t)] dn = - 

(3.15) 

In the special .case of diffuse radiation'from o r  to the unit 

volume of the medium, we have 

The assumption of diffuse radiation i s  introduced only in this t e rm,  

which i s  ordinarily negligible in comparison with other t e r m s  in 

equation (3.15). 

Using the .definition of the radiant energy flux vector ( 2 . 3  l ) ,  we 

have S - -- 
d iv [n1~  ( r  , a ,  t ) ]da  = div EA(;T, t) 

R=4n 

The right- hand side of equation (3.15) represents  the net radiant energy 

emitted o r  absorbed by unit volume, per  unit time, in the wavelength 
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intergal between X and X + dX, defined by equation (2.30). Then the 

equation expressing the conservation of monochromatic radiant energy 

becomes 

aUX(F1t) + div EX(;, t) = Cn, x ( ~ l t )  . 
at 

3.7 The Radiant Energy Flux Tensor 

I Integration of the equation of t ransfer  (3.4) vectorially over a l l  

I solid angles ( fi= 477') yields 

It i s  to be noted that this equation i s  different f rom (3.15). Every  t e rm 
4 

of equation (3.15) has  been .multiplied by a unit vector fi 

F r o m  the definition (2.31) and the fact that for isotropic sca t -  
4 + 

tering and emission Ee, X(r,fi,t) i s  independent of direction, 

I we have that 

I The integral on the left-hand side equation (3.17) i s  a tensor of 

second o r d e r .  It was defined by ~ o s s e l a n d ( ~ ~ )  as the monochromatic 

radiant energy tensor:  

I where fix, fiy, fi a r e  the direction cosines.' Tlie components of the 

I tensor P x a r e  defined a s  

On substituting (3.19) into equation (3.17), we obtain 



1 a ~ x ( r , t )  - - -m 

a t  + div n ( z t )  = - p ~ E ~ ( r , t )  

A The radiant energy flux tensor i s  symmetrical: P x , ~ ~  = PA, ji. 

The invariant of this tensor i s  the sum of the diagonal components(86), 

3.8 Significance of the Equation of Transfer 

The mathematical foundations of the present day radiative 

t ransfer  theory r e s t  on the integro-differential equation (3.1) and i t s  

minor variants.  This. type of equation also a r i s e s  in several  branches 

of physical science and mathematics, namely: classical dynamics 'of 

gases, neutron transport,  probability theory and others .  The 

Boltzmann integro-differential equation in kinetic theory of gases de- 

scribes the dynamics of molecular interactions.(14) Nuclear physicsts 

view equation (3.1) a s  the linearized Boltzmann neutron transport  

equation,(lo6) and the role of the photon i s  replaced by a neutron. 

Mathematicians concerned with the probability theory consider (3.1) 

and related variants a s  a representation of certain Markhoff 

(23) processes.  

The significance of equation (3.1) in the problems of heat t rans-  

fer  in thermal radiation absorbing and scattering media can be com- 

pared to the importance of the Fourier-Biot equation in the 

mathematical theory of heat conduction. The various-forms of the 

equation o f t rans fe r  presented in this chapter a r e  used in the following 

chapters.  Equation (3.5) is  utilized in deriving the integral equations 

for an  enclosure containing thermal radiation absorbing, emitting, and 



scattering media.  Equation (3.16) i s  used in  deriving the energy equa- 

tion. The Ros seland definition of the radiant energy flux tensor ,  

equation (3 .20 )~  i s  employed in deducing the approximation for  the 

radiant flux vector in the case  of intense absorption. 



4 PARTIAL SOLUTIONS O F  THE EQUATION O F  TRANSFER 

4.1 Introduction 

The equation of t ransfer  (3.1) and i ts  s impler  fo rms  a r e  the 

-usua l  starting points for  heat  t ransfer  problems occurr ing in media 

absorbing and scattering thermal  radiation. It i s  therefore ,  of interest  

to look into the established solutions of this equation. considerat ions 

-of radiative t r ans fe r  were  f i r s t  introduced in astrophysical problems 

in connection with the formation of. absorption l ines in so lar  : spec t ra  

and have already attained a high degree of brganieation.(l  9,6c82103~4) - 
More recently,  the theory of radiative ' tran'sfer . Eas . been apfilied to 

neutron transport .* A sketch of the his tory and an  extended bibliog- 

raphy on radiative t ransfer  problems may.'be found in re ferences  68, . 

13, 52 ,  and 103. In this work only a few pertinent re ferences  dealing ' 

with the t ranspor t  of radiation and neutrons will be cited. 

Although the equation of transfer(3.1) has  been much studied,: 

it i s  very difficult to solve even fo r  the s implest  cases .  The range of 

problems amenable to exact solution i s  quite smal l  and fo r  most  cases  

an  approximate t reatment  i s  the best  that can.be given. The equation 

'of t r ans fe r  can  be solved rigorously fo r  the one.-dimensional case  by 

. - the.rnethod based on the theory of complex variables',  the basic ideas 

*It is  shown in Chapter 7 that the problem of t ransfer  of thermal  
radiation in a n  absorbing, scattering and emitting medium i s  
mathematically analogous to the problem of neutron t ranspor t  in . 

, a capturing, scattering and fissioning medium. Therefore,  a 
solution of a t ranspor t  problem i s  a '  solution of a s imi lar  problem 
in t ransfer  of thermal  radiation. 



of which a r e  due to wiener  and ~ o ~ f . ( ' O ~ )  A penetrating analys isof  

the nature of this problem and i ts  solution was made by Lehner and 
' 

Dealing with the one-velocity neutron t ransport  

'equation, they proved the existence and uniqueness of the solution fo r  

both the infinite slab and the sphere.  F o r  the slab extending f r o m  -a 

t.0 +a they were able to discuss completely the structure.of the solution. 

A new method for  the solution of the neutron t ransport  problems was - 

suggested by case . (12)  This approach i s  analogous to the classical  

separation of variables method for  part ia l  differential equations. 

Of the various approximations which have been used for  total 

radiative intensity, it seems that the be s t  compromise.between con- 

sistent success  and ease  of numerical calculation i s  sti l l  that intro- 

duced by ~ d d i n ~ t o n ( l 9 )  and Milne (68), the la t te r  using a somewhat 

different but mathematically m o r e  elegant method. Both methods con- 

ve r t  the integrodifferential equation into an approximate s e  cond-order 

differential equation and provide a considerable simplification with, 

generally, a loss  of accuracy. 

Two methods a r e  able to give resul ts  of a rb i t ra r i ly  high 

accuracy,  provided that a sufficient amount of labor i s  expended on 

their  calculation. The spherical harmonics method is the most  power- 

ful of the two. It was introduced by Wick ( lo7)  and ~ a r s h a k  (65) and 

developed in detail for  a general geometry by   ark (64,65) fo r  the 

solution of neutron t ransport  equation. The method of discrete  coor- 

, dinates proposed by ~ i c k ( l 0 7 )  a s  a n  approximate method for  solving 

.the t ransport  equation was developed by Chandrasekhar . ( l 3 )  into' a 

powerful theoretical tool for  the investigation of astrophysical prob- 

lems.  This method i s  not so powerful a s  the spherical harmonics '  

method, which it  resembles in some respects ,  and it  has  been applied 
! 
I only to the case  of plane geometry. 



Attention has  so f a r  been l a rge ly  confined to one-dimensional 

radiation t ransfer  usually in semi-infinite, plane-parallel  

media. To the author 's  knowledge, no analytical solutions have been ' 

obtained for  the problems with spherical  and cylindrical; symmetry. 

The most  extensive t rea t i se  on radiative t ransfer  i s  by chandiasekhar('  3), 

in which both the approximate Wick- Chandrasekhar method and more  

general methods for  solving radiative t ransfer  problems a r e  presented. 
. . 

The solution of t ransfer  problems in semi-infinite plane-parallel 

a tmospheres  with laws of scattering more  general  than i.sotropic leads 

to sys tems of integral equations which a r e  nonlinear, nonhomogeneous, 

and of high degree.  The scattering function,(3/4) (1 t cos20) ,  leads to 

s,imultaneous integral equations of second degree.  The m o r e  general 

Rayleigh law of scattering leads to fourth-degree nonlinear integral 

equations. 

~ o u r ~ a n o f f ( ~ ~ )  gives a m o r e  gene ra l ' expb~ i t ion  of the various 

techniques used in t ranspor t  theory, a s  well a s  a summary  of most  of 

the available methods for  treating the monochromatic equation of 

t ransfer .  For  the compilation of the t e ~ h ' & ~ u e s  used in solving multi-  

dimensional problems in neutron t ranspor t ,  reference i s  made to the 

book by ~ a v i s o n ( ' ~ )  and the monograph by ~ a r c h u k ( ~ ~ ) .  

. . 

4.2 Propagation of Radiation in a Diathermal Medium 

F o r  a diathermal (nonabsorbing, nonscattering and nonemitting) 

medium'' in  a steady s tate ,  equation (3.6) reduces to 

i + a IA R . grad  IX = div (RIA) = - as.  
where d s  i s  a line element along the pencil of radiation 0. This equa- 

+ 
tion obviousiy indicates that i X  i s  constant along a line paral le l  to 0. 



For  a general r e -  
- 

Q gion enclosed by a surface 

( ~ i ~ .  4. l ) ,  Ix i s  the same 

a t  the points A, B and C,  

which lie along the line in 

the direction, of the unit - 
vector R .  The intensity a t  

point A i s  .equal to the in- 

tens<ty a t  C, and only one 

of these intensities i s  to 
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be specified to give a 

complete boundary condi- 

tion. If TS is  a point on 
" 

the enclosing surface which l ies  in the d i r e c t i o n B f r o m y a n d  if the 

intensity emitted by the surface a t  Fs i s  given, namely, IA ( ~ ~ , x ) ,  (4.1) 

has then a solution 

lx(TJ 3) = IX (%,XI) = I ~ ( T -  s3,TT). (4.2) 

If Ix  i s  independent of G, i. e . ,  if -- 
IX ( r S J ~ )  = f (a, (4.3) 

then by (4.2) 

+- 
I x (  r ,R)  = f (E). (4.4) 

Thus the intensity of radiation in the region i s  independent of position. 

In part icular ,  if the intensity on the surface i s  diffuse, i t  will a lso be 

diffuse within the enclosure. 



4.3 Solution of the Equation of Transfer  fo r  a Given Direction 

( 

4.3.1 Propagation of Radiation in an  Absorbing and Scattering Medium 

Consider a medium which absorbs ,  emi ts  and sca t t e r s  thermal  

radiation. The absorption and scattering coefficients a r e  assumed to 

depend on the position, and the direction of the pencil of rays  i s  con- 
+ 

sidered to be given. Hence fo r  the pencil of r ays  in direction R,  the 

directional derivative becomes - - a ~ x  
R .  grad Ix = div (RIA) = - 

d s  ' 

and therefore the steady- state equation of t ransfer  (3.4) reduces to 

An equation of this f o r m  may be solved in the following manner .  

Multiplying both s ides  by the integrating factor ,  e 
S P i s ) d s  equat ion  (4.5) 

can be written in the f o r m  

Consequently b.y integration we obtain the solution 

SPfis)ds 
Dividing by e , we get 

which i s  the solution of equation (4.5). The factor  e 
SPA(s)ds 

under the integral sign i s  a function of s '  and cannot be taken outside 

the integration sign. The constant C can be determined f r o m  the 

boundary condition. - 



One should keep in mind that equation (4.6) does not in any r ea l  

sense solve the equation of t ransfer  in a n  absorbing and scattering 

medium. It i s  c l ea r  that if the effective emission coefficient, Ee, ~ ( s ) ,  

should depend on the intensity in . some specific way, -then one can con- 

ve r t  the formal  solution (4.6) into an integral equation fo r  intensity. 

Then if the temperature distribution i s  known in the medium the mono- 

chromatic intensity of radiation can  be calculated. .' 

4.3.2 Propagation of Radiation in a Pure ly  Absorbing Medium 

F o r  some engineering problems the assumption of the absence 

'of scattering can  be justified by considering the Rayleigh scattering 

law(13) for  a toms and molecules,  

ax= 8n3(nZ - I ) ~ / N x ~  , (4.7) 

where N i s  the number of molecules p e r  cm3. The index of refraction, 

n,  of gases  i s  a very weak function of density and wavelength. Thus 

fo r  COZ a t , a  temperature of 32°F and 1 a t m  p r e s s u r e  the index of r e -  

' f radt ion i s  1.00045. The scattering coefficient a t  X = 2p = 2 x c m  

i s  calculated to be a 1 = 5.15 x 1 ~ - ~ c m - ' .  

It i s  seen that the scattering coefficient is  quite smal l  even fo r  

shor t  wavelengths and can  be neglected. In that case ,  = 0, = K x ,  

e . X  = E X ,  equation. (4.6) reduces to 

With the boundary condition, IX ( s )  = I X  (0) a t  s = 0, equation (4.8) be- 

comes (see  Fig. 4.2) 

where TX ( s , s l )  i s  the optical thickness: 

T ~ ( S , S ~ )  = LlS KX(s) ds . 
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The f i r s t  t e r m  on the right- 

hand side of (4.9) is the termwhich 

takes into account the intensity of 

radiation f r o m  the surface a t  s = 0. 

The physical meaning of the solu- 

tion (4.9) is c lear .  It expresses  the 

fact  that the intensity of radiation 

a t  any point s and in any given 
4 

direction Q resu l t s  f r o m  the emis -  

sion a t  a l l  interior points s f ,  r e -  
- T ~ ( S , S ~ )  to 

duced by the factor e 

allow fo r  the absorption by the 

intervening mat te r .  Thus if the temperature distribution in the medium 
2 

i s  known, the emission coefficient, E x =  ~ K X I ~ ~ , ~ ,  can readily be de- 

termined and the intensity calculated f r o m  equation (4.9). 

4.3:3 propagati6n of Radiation in a Purely Scattering Medium 

F o r  a scattering medium, K x =  0, p X =  ox, and €1 = 0. Equa- 

tion (4.6) then reduces to 

t - e  . I ~ ( s )  = C e 
47~ (4.10) 

The incident radiation, C;(s), is  defined by equation (2.22). With the 

boundary condition, 1x(s) = I (O) a t  s = 0, equation (4.10) becomes 

where 
S 
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Thus, for  a purely scattering medium, equation (4.6) reduces 

to a l inear  integral equation in IX(s).  The intensity of radiation a t  any . 
point s ,  a s  seen f r o m  equation (4.11), resu l t s  f r o m  scattering a t  a l l  

inter ior  points s t  a s  well a s  radiation reaching point s f r o m  the s u r -  

face a t  s = 0. 

. 

4.4 Radiation between Two Para l le l  Planes 

Consider a configuration consisting of a uniform, plane-parallel  

slab of a medium of finite thickness bounded by two planes x = - a  and 

x = a .  It i s  convenient to measure  distances normal  to the plane of 

stratification. Referring to Fig. 4 . 3 ,  we see  that x i s  this distance, 
-0 

8 i s  the inclination of the of rays  of direction 52 to the outward 

normal ,  and $I i s  the aximuth to a 

suitably chosen axis .  

COORDINATE SYSTEM FOR RADIATION 
BETWEEN TWO PARALLEL PLATES. 

An idealization in which 

a l l  spatial variations a r e  one di- 

mensional and with azimuthal 

symmetry of a l l  functions about a 

given direction may be introduced 

f o r  the purposes of simplification 

Ix then does not depend upon y and 

z ;  i t  i s  a function of x and 
x = a  

p ( =  cos 8 ) .  The line element ds  
4 

along the direction R i s  simply 

The directional derivative becomes 
+ + ~ I L  alxax 
R . grad Ix = div(R1X) = - - a1x 

as - ax  z = 
. 



Isotropy of scattering helps to simplify the problem further .  With 

these assumptions,  the fundamental equation of t ransfer  (3.1 ), de scr ib-  
s 

ing the steady- state condition with the help of (4.12) for  1 x I $U and 

< 1, reduces to 

where 

i s  the radiation incident on a unit volume of the medium. With cer ta in  

boundary conditions equation (4.13) defines I i x p )  everywhere within 

- a single homogeneous medium. The propert ies  of these equations a r e  

such that the boundary conditions may be specified in t e r m s  of a r b i -  

t r a r y  assignment of radiation intensity distributions on the two s u r -  

faces .  Thus for  a homogeneous isotropic medium between the planes 

x = - a  and x = a one may specify the intensities on the boundaries: 

Equation (4.1 3 )  can be written a s  
f 7 1  

Using the integrating factor e , 

the solution of (4.15) i s  obtained in a manner  s imi lar  to that of (4.5), 

and we have 



1 '  Introducing the boundary conditions, we obtain 

i for  0 2 IJ. 51 

fo r  -1< IJ.( 0 

The temperature distribution in the medium must  be known 

before the intensities can be calculated, and even then an integral 

equation f o r  intensity o r  incident radiation must  be solved. Equations 

(4.17) and (4.18) will be used in deriving the integral equations for  

incident radiation and subsequently fo r  temperature distribution. 



5 THE INTEGRAL EQUATIONS 

Introduction 

The local radiant heat flux at  the bounding surface of an enclo- 

s u r e  receives contributions f rom eve ry  point in space a s  well a s  f rom 

other pa r t s  of the bounding surface o r  surfaces and is given by an inte- 

g r a l  equation. ~ i l b e r t ( ~ I )  was probably the f i r s t  to  apply the theory of 

integral  equations to the study of this general  problem of radiant heat 

exchange in an absorbing and scattering medium without a bounding 

surface.  F o r  instance, he proved Kirchhoff's law for  the' ca se  of ther -  

modynamic equilibrium. ~ o l j a k ( ~ ~ )  derived the gene,ral integral equa- 

tions which descr ibe radiation in  a closed sys tem of g ray  radiating' 

sur faces  in the absence of a radiation-abso'rbing and scattering medi- 

um,  by assuming that the emissivity and tempera ture  a r e  constant over 

each surface.  A solution of a heat t ransfer  problem in a radiating m e -  

dium i s  a combination of the two separate  problems mentioned above. 

In this chapter the wr i te r  der ives  the integral  equations for  an 

enclosure made of opaque walls and containing an absorbing and scat-  

ter ing medium, and, by so  doing, general izes  previous results(3480J9) 

to include also the effects of non-diffuse reflection f rom the sur faces  

and nonisotropic scattering f rom the medium. The derivation of the in- 

. ,  t eg ra l  equations for  monochromatic radiant heat exchange in a general  

closed system composed of i sur faces  separated by an absorbing and 

scattering medium i s  quite straightforward and elementary.  It i s  

based, for  both surface and volume radiation, on the equation of 



t r ans fe r ,  the expressions for i r radiat ion,  E ' ,  and incident radiation, 

C X ,  a s  well a s  appropriate boundary conditions. Other quantities de-  

scribing radiant heat exchange readily fo'llow f rom the definitions 

(2.27), (2.28), (2.29), (2.30). The following assumptions a r e  made: 

(1) Steady s tate  of radiant heat t ransfer  exis ts .  

(2) The enclosing surfaces a r e  dense and opaque, the mono- 

chromatic t ransmissivi ty  of the enclosing surface i s  zero ;  

that i s ,  the enclosing sur faces  a r e  .opaque. 

(3 )  The monochromatic reflectivit ies of the enclosing surfaces 

pX(A1), p X  (A2). . . p (Ai) a r e  functions of wavelength and 

position. 

(4) The medium has constant (independent o'f density) index of 

refraction, n. 

5.2 The Integral Equations for  Irradiation and Incident Radiation 

The i r radiat ion a t  any point S on the surface of the enclosure is . 

defined by equation (2.21). Then, with reference to Fig.  5.1, the i r r a -  

diation a t  point S i s  due to energy radiated f rom the enclosing sur faces  

and due to energy emitted f rom the medium. The monochromatic in-  

tensity of i r radiat ion f rom a given direction a t  point S i s  obtained b y  

applying the boundary condition to the solution (4.6) of the equation of 

t ransfer .  Introducing the l imits of integration, one obtains 

where 



and 

a r e  the optical thicknesses between points S and S ' ,  and S and P ' ,  r e -  

spectively. In equation (5 . I ) ,  s '  i s  the dummy variable and d ~ ~ ( ~ ' ) / d a  

is the monochromatic intensity of radiation leaving the surface (point 

S t )  in the direction of point S. Thus, the monochromatic intensity of 

i r radiat ion is due to radiant energy leaving the surface element dA at 

point S t  in the direction of point S and arr iving at  S, plus the energy 

emitted by the unit volume dV at point P' in the direction of S and ar-  

riving a t  S .  If the reflection f rom the surface is specular ,  in addition 
- 4  - 

to the reflecting function,I' ( r ,  al-L?), the his tory of the pencil of r a y s ,  

i .e . ,  the direction of the pencil of radiation incident on the surface,  

must  be known. However, for  diffuse reflection dRX(sl)/dQ reduces to 

~ x ( ~ ' ) J r r  
Substituting equation (5.1) in  (2.2 l ) ,  we find 

cos BdR 

t -TX(Pf ,  S) cos Bds'dn.. 

The integrals  over solid angles,  appearing in equation (5.4), a r e  t r ans -  

formed to surface and volume integrals  by the use of the following 

relations : 

cos BtSt cos 8's dA 
cos BdR = , 

4 

ITS - r s t I 2  

and 
cos BsdV 

cos Bds'dR = 



Introducing these two identities in equation (5.4), we finally get 

. where 

and 

-7x(P' ,  s) cos 9 s  
KAV(S, ~ t j  = e , - 

The radiant energy incident on the unit volume of the medium a t  

any point P i s  defined by equation (2.22). The monochromatic intensity 

of i r radiat ion at: point P in a given direction i s  obtained by applying the 

boundary condition to  the solution (4.6) of the equation of t ransfer .  In- 

troducing the l imits of integration (see Fig.  5.1), we obtain 

- T I ( S ~ , P ) + ~ P  - r x ( P ' ,  P) 
6e, * ( P I )  e d s '  , 

a r e  the optical thicknesses between points S' and P , and P' and P, r e -  

spectively. Thus, the monochromatic intensity of radiation incident on 

the unit volume a t  point P i s  due to the radiant energy leaving the s u r -  

face element dA a t  point S '  in  the direction of point P and arr iving at  P 

plus the radiant energy emitted by the volume element dV at point P' il 

the direction of P and arr iving at  P. Substituting equation (5.6) in the 
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definition (2.22) of the incident radiation, we find 

We t ransform the integrals  over  solid angles appearing in the above 

equation to  surface and volume integrals  with the help of the following 

relations: . 

cos 6s' dA 
dR = 1 % -  ~~~l~ 

and 

dads = 
dV 

With these substitutions equation (5.9) becomes 

where 

and 

In some problems,  integral equations (5.4) and (5.9) might be in 

a more  convenient form than equations (5.5) and (5.10). If one a s sumes  
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that the enclosing surfaces a r e  diffuse, r ( r ,  fit-a) = 1, the scattering - -  + 
is isotropic,  y ( r ,  1;2'--1;2) = 1, and.the refract ive index i s  equal to unity, 

on using equations (5.5) and (5.10) one can easi ly  a r r ive  at  the equa- 

tions for  radiosity and effective emission de r ivedby  ~ o l a c k . ( ~ 9 )  

5.3 Integral Equations for Net Emissive Power and. Net Emission 

The derivation of integral  equations for  net emissive and 

net emission i s  quite straightforward. Thus, for  net emissive power 

a t  point S '  on the enclosure walls, f rom definition (2.29) we. have 

Substituting for  the i r radiat ion f rom equation (5.5), we obtain 

The net emission a t  point P i s  expressed by equation (2.30) a s  

Substituting for  C; f rom equation (5.10) in the above, one finds 

KVA ( P ,  S') dA 
n, X 



Equations for  net emiss ive  power and net emission in a l e s s  general  

f o r m  were  presented i n  re ferences  (2) and (99), but no derivations were  

given. 

It i s  to be noted that R hand ce, can be expressed [see equa- 

tions (2.27) and (3.3)] in t e r m s  of other var iables  which a r e  m o r e  

appropriate in some part icular  cases .  These relations can then be 

substituted in the integral  equations (5.5) and (5.10), o r  (5.11) and 

(5.12). 

5.4 Integral Equations for  Diathermal Medium and 

for  Medium without an Enclosure 

The sys tem of integral equations (5.1 1) and (5.12) reduces to  a 

single, much s impler  equation ei ther  for  En,h o r  for  in two par t i -  

cular cases :  (a)  when the enclosure surfaces a r e  separated by a dia- 

thermal  medium, and (b) when the medium i s  not.enclosed a t  a l l .  

In the f i r s t  case  we have p A =  K A =  a h  = ce ,  = 0..  Equation 

(5.11) reduces to 

which gives the net emissive power a t  point S on the surface.  

In the second case ,  s ince there  i s  no enclosure,  the radiosity a t  

the surface i s  RAS')  =0, and equation (5.12) reduces to 



The in tegra l  equation (5.14) is analogous to the equation derived by 

Hilbert for  the case  of an absorbing and scattering medium. It was 

used by Hilbert a s  the bas is  of the proof of Kirchhoff's law for  radia-  

tion f rom a volume of radiating medium. 

5.5 ~ e s u l t i ~ l g  Equations for  Thermodynamic Equilibrium 

Examining the integral equations for a system of sur faces  com- 

pletely enclosing a radiating medium at thermodynamic equilibrium, 

f r o m  the second law of thermodynamics we know the following to be 

valid: 

With these values equations (5.1 1) and (5.12) for  the case  of diffuse 

enclosure walls reduce to 

and 

Using equation (5.15), either the a r e a  o r  the volume t e r m  can 

be eliminated f rom equation (5.11), s imi lar ly  making use of equation 

(5.16) the a r e a  o r  the volume t e r m  can be eliminated f rom equation 

(5.12). 



6 MATHEMATICAL FORMULATION OF THE PROBLEM 

6.1 Introduction 

Heat t ransfer  f rom a radiating and moving medium i s  one of the 

most  complex problems occurr ing in  engineering pract ice.  In general,  

the medium consists of the gaseous substances GOL, H20, SOZ, and NH3 

a s  well a s  H, CH, C,Hm and o thers .  Fur thermore ,  the gas o r  gas 

mixtures  may include admixtures of solid par-ticles or  ash .  In addition, 

each gas possesses  i ts  character is t ic  radiation proper t ies .  Thermal  

radiation affects heat t ransfer  both directly and indirectly. Radiation 

can be absorbed direct ly  by enclosing surfaces and cause heat transfer.  

Indirectly, i t  can be partially absorbed in the medium and a l te r  the 

temperature distribution, thereby influencing conductive and convective 

heat t ransfer .  

The objective of r e sea rch  in fluid flow and heat t ransfer  i s  the 

prediction of the s tate  of flow o r  fluid and of heat.  In a single-phase 

fluid, in the absence of e lectr ic  and magnetic fields a s  well a s  diffu- 

sion, i ts  s ta te  is  specified by the velocity vector and two thermodynam- 

ic propert ies  (usually temperature and p res su re ) .  A complete 

description of the flow i s  a statement of the values taken by these three  

quantities a t  every point within the fluid, and fo r  a l l  t ime subsequent to 

some initial t ime.  The basic problem i s  then this: predict  the s ta te  of 

flow and the temperature when a fluid flows in a duct of specified shape 

and length, with the p res su re  drop and ei ther  the wall temperature o r  

the wall heat flux being specified. Regardless  of whether the flow i s  
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laminar  o r  turbulent, the flow may be descr ibed by a coupled sys tem 

of differential, integro -differential and integral equations a s  well a s  

, . appropriate boundary conditions. 

6.2 Eauations of Continuitv and Motion 

Now let  us  consider the effects of radiation on the general hy- 

drodynamical equations. 

The existence of thermal  radiation does not affect the equation 

of continuity, 

since radiation has  no mass .  

The hydrodynamics of a fluid moving in a field of radiation is ' 

identical, a s  regards  the dynamical equations with classical  hydrody- 

namics,  provided t e r m s  a r e  introduced to allow for  the s t r e s s e s  

caused by the radiation. These, in general, f o r m  a * s t r e s s  -tensor,  

partly analogous to the s t ress - tensor  in ordinary viscous motion. The 

radiative s t r e s s - t enso r  differs f rom the s t ress - tensor  of viscous mo- 

tion in that i t  does not reduce exactly to a simple hydrostatic p res su re  

when the velocity .gradients a r e  put equal to zero.' The tangential com- 

ponents of the s t r e s s  s ~ r v i v e . ( ~ ~ , ~ ~ , ~ l )  These t e r m s  a r e ,  however, 

negligible f o r  ordinary radiant heat t ransfer  problems when compared 

to the principal components of s t r e s s .  If we neglect the "radiative vis-  

cosity" (which i s  yery  smal l  a t  ordinary temperatures ,  s ee  Eqn. 2.49) 
. . 

and neglect a t  sthe' s a m e  time a l l  t e r m s  depending on the second-order 

temperature gradients,  the radiative s t r e s s e s  reduce to a hydrostatic 

p res su re  (2.38). In deriving the equations of motion al l  we need to do 

i s  add pr to the ordinary fluid p res su re  p. 
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Magee and ~ i r s h f e l d e r c ~ ~ )  have shown that a t  a tempera ture  of 

l o 6  OK the radiation and hydrodynamic p r e s s u r e s  a r e  2,523 and g rea te r  

than 100,000 a tm,  respectively.  Thus even a t  these extremely high 

tempera tures  the radiation p res su re  i s  39.6 t imes  smal le r  than the 

fluid p res su re .  Therefore,  in this work the radiation p r e s s u r e  i s  neg- 

lected. The equation of motion for compressible  flow becomes(88) - 
P 

. . 
= - grad p + div(p  +T grad(div f) . , (6.2) 

P~ 
4 

where F is the body fo rce .  

6.3 Equation of Energy 

6.3.1 Introduction 

The interaction between t h e r m a l  radiation and a fluid in motion 

has been t reated in astrophysical problems f r o m  various points of view 

and with various objectives in mind by ~ e a n s , ( ~ ~ )  Eddingfon, ( I9 )  ~ o s s e -  

land, (8 5, Milne, (69) and ~ h o m a s . ( ' O ~ )  These authors  have usually neg- 

lected energy t ransfer  by conduction, work by viscous dissipation, en- 

e rgy  generation and smal l  t e r m s  ar i s ing  .from the finite velocity of 

light. Thomas was the only one who derived the energy equation in a 

fluid in motion by using the Lorentz t ransformation.  He obtained the 

energy equation in a fo rm including a l l  o r d e r s  in the ratio of the veloc- 

ity of motion to the velocity of light. In this thesis  the energy equation 
I 

i s  obtained by evaluating the energy flowing into a closed surface fixed 

in space and then a,pplying Gauss's  divergence, theorem. This method . 

differs f rom Milne's chiefly in that it evaluates the energy exchanges of 

mat te r  inside a fixed surface instead of a surface moving with the ma t -  

t e r .  The equation of energy derived by the method of Rosseland ag rees  



* 

with the equation derived by Milne when in.Rosselandls  equation the 

hydrostatic p res su re  p i s  replaced by p + pr .  

In this work the Rosseland derivation is followed, except that a 

macroscopic instead of the microscopic view i s  taken. The equation i s  

derived fo r  the case  where e lec t r ic  and magnetic fields a r e  absent;  

however, a s  shown by chu,(15) the electr ic  and magnetic energies  can 

readily be included in the equation of energy. It is fur thkr  assumed 

that the energy of gravity i s  negligible and that there is-nei ther  molec- 

ular  nor thermal  diffusion. The diffusive energy t ranspor t  can a lso  be 

readily included, a s  shown by ~ e e s ( ~ ~ )  and by P a y  and  idd dell.(^^) 

6.3.2 Derivation of the Energy Equation 

We will proceed to der ive the equation which represents  the 

change in energy in a given volume per unit of t ime.  We consider the , 
heat t ransfer red  by conduction, convection and radiation a c r o s s  the 

surface A, bounding the volume V, in which the amount of work done 

per  unit volume and t ime of the fluid i s  W, and the heat generated is 

ql".  We can write the heat flux vector a s  
4 

q" = -k grad T t p e z  + , 

where -k grad T represents  the heat flux vector due to thermal  conduc- 
m, 

tion, pe w i s  the heat flux vector due to convection, and E =J E A ~ X  

[ see  Eqn. (2.31) for the definition of E X ]  i s  the energy flux due to ther- 

m a l  radiation. The energy per  unit m a s s ,  e ,  i s  the s u m  of the internal 

energy plus the kinetic energy, 

where h i s  the enthalpy of the fluid, h = LoT ,P dT*  

We apply the law of energy conservation to volume V. The ra te  

of change of energy in V i s  due to the addition of heat a c r o s s  the 



boundary of V, due to the work done by any forces  acting and due to the 

heat generation inside V. Accordingly, the conservation of energy 
I 

equation f o r  the fluid inside the boundary A i s  

where 

i s  the total radiant energy density. Using the Gauss divergence 

theor em, 

to c.onvert the surface integrals ,to volume integrals,  and remembering 

that the volume V i s  a r b i t r a r y  and thus may  be infinitesimal, we obtain 

4 a U  a(pe) t div(-k grad T) t div ( p e f )  t div E = W t q"' 
at 7+- 

The work per  unit volume and time, W, i s  the sum of the com- 

pression work plus the friction work. It is shown by ~ c h l i c h t i n ~ ( 8 8 )  

that W can be expressed a s  

where @ i s  the diss'ipation function: 

@ = 2 [ ( " " ) ' ( )  a, t (%)'I t(g++)' + (kt2)' 
+ ($t%-)' -f($t$ tk).2 . (6 

Using the vector identity 



div(pe z)  = e div(@) t p z  . grad  e 

and the 'continuity equation (6 . I ) ,  we can write 

a( pel 7 t div(pe G) = p 
De 

t w grad e 

Introducing the definition (6.4) of the internal energy, we can express  

the substantial  derivative of e a s  

Finally, substituting (6 .6) ,  (6.8) and (6.9) in the energy equation (6.5) 

and simplifying, we obtain 

au ~h + DP 
t p- t  div E = div(k grad T) t- + q"' $ p a  at Dt Dt 

. (6.10) 

Integrating equation (3.16) over a l l  wavelengths and substituting in 

equation (6 .  lo ) ,  we obtain an alternative expression for the conserva- 

tion of energy equation, 

where the total net emission, Cn, i s  obtained by integrating equation 

(5.12) over all wavelengths, 

It should be kept in mind that, when deriving equation (3 .16 )~  an  assump-  

tion of diffuse emission was introduced in the t e rm,  
auX(.f, t) 

a t  
. In addi- 

tion, equation (6.12) i s  valid only f o r  the steady-state problem, since in 

i t s  derivation the equation of t r ans fe r  without the t ransient  t e rm,  
4- 

1 a ~ x ( r . Q t )  - 
a t  

, was used.  However, since this t e r m  i s  ordinari'ly small ,  
C 

i t  may be neglected. To this approximation the solutions obtained 

above may be considered valid a l so  fo r  t ransient  problems.  



6.3.3 Equation of Energy for  Diffuse Surfaces and 

Non- scat ter ing Medium 

F o r  the case  where scat ter ing is negligible compared to ab- 

sorption, the equation of energy simplifies considerably. If we can 

a s sume  local thermodynamic equilibrium we can define a t  each point in  

the medium a local t e n ~ p e r a t u r e  T, the emission coefficient i s  then 

given accor'ding to Kirchhoff's law (2.17). Thus, the effective emission 

coefficient ( 3 . 3 )  reduces to 

Ee, = E = n 2 ~  x1bb, A . 
In addition, if the 'walls of the enclosure a r e  diffuse the equation for 

total net emission'  (6.12) simplifies to 

A s imi lar  equatio'n has recently been given by ~ u r i n o ~ ( 9 9 )  but no de r i -  

vation was presented. 
. . 

6.4 Expression for Heat Flux a t  the Wall 

' I  

The heat'flux a t  the wall of an enclosure containing a medium 

that absorbs and sca t t e r s  thermal  radiation, in the absence of .diffusion 

and chemical recombination a t  the surface,  i s  due to conduction and 

radiation; 



where En i s  the total net radiant heat flux a t  the enclosure boundary in 

consideration. Equation (6.14) can be written,' according to previous 

definitions, a s  

Substituting equation (5.5) for  the monochromatic irradiation, we obtain 

q = - 1  3I-l w t S{Ex(S) 0 - adsi[J ( ~ R x ( s ' )  d n  ')KAa(S,S.)dA 
A,. . .Ai 

Thus, we see  that even the evaluation of the wall heat flux i s  not a s i m -  

ple problem, since we have to solve equation (6.16) simultaneously with 

(5.5) because the radiosity, RX, i s  a function of irradiation, EX. 

F o r  the case  of no scattering and b1ac.k surfaces,  the heat flux ' 

a t  the wall reduces to 

We see  f rom equation (6.17) that, given the tempera ture  d is t r i -  

bution in the medium and on the enclosing sur faces ,  the heat flux a t  any 

point on the enclosure wall can be calculated direct ly .  However, if the 

geometry of the enclosure is i r regular  the kernels  K ~ ~ ( s , s ' )  and 

K A ~ ( S , P ' )  a r e  quite complex, and the evaluation of the heat f l u x ,  even 

for  this simple case,  i s  ve ry  involved. 



7 ANALOGY BETWEEN THERMAL RADIATION AND 

NEUTRON TRANSPORT 

7.1 Introduction 

In recent  years  there  has  been an immense amount of work 

done on the design and development of nuclear reac tors .  Associated 

with these endeavors, problems ar i s ing  in biological shielding design 

and neutron diffusion have been investigated extensively and a large 

amount of information has been accumulated in this field. It was hoped 

that some of these techniques and resu l t s  would be applicable to  the 

solutions of problems of thermal  radiation in the presence of absorb-  

ing and scattering media. It i s  the purpose of this chapter then, to 

show the mathematical analogy between thermal  radiation and neutron 

t ransport ,  a s  well a s  to. dire'ct attention to i t s  usefulness, by indicating 

some solutions previously obtained for neutron t ransport  problems ' 

that can be borrowed for radiative t ransfer  problems. 

As far  as gamma radiation is concerned, the analogy between 

thermal  and gamma (nuclear) radiations i s  complete. Thermal  and 

gamma radiations belong to the family of electromagnetic waves, the 

only difference being that gamma radiation has  a higher frequency 

(shorter  wavelength). Both types of radiation obey the same physical 

laws and equations. The work in gamma radiation associated with 

biological shield designs has  been summarized by ~ o c k w e l l ( ~ ~ )  and 

 olds stein.(^') The two books give extensive bibliographies to original 

work. Therefore,  we t u r n  our attention to  neutron t ranspor t  to see 

what, i f  any, analogy exis ts .  



* 

7.2 Mathematical Analogy 

The analogy between thermal  radiation and neutron t ranspor t  in 

absorbing and scattering media i s  .mathematical and not physical. It i s  

to be noted that this analogy exis ts  only when there  a r e  no other m0de.s 

of energy t ranspor t  present  in the thermal,  radiation problem, for ex- 

ample,  heat conduction. In radiative t ranspor t  we have t ransport  of 

photons (quanta of energy), while in neutron t ranspor t  we have t r ans -  

port  of ma te r i a l  particles.  The main physical difference between the 

two phenomena i s  the $act that the photon has no r e s t  m a s s .  The ve- . 

loc'ity of propagation of the photon i s  the velocity of light. A neutron 

has a finite m a s s ,  and i t s  velocity i s  between ze ro  and, in the l imit ,  

the velocity of light. Definitions of some analogous quantities for 

thermal  radiation and neutron t ranspor t  a r e  given in Table 7.1. 

The neutrons constitute a distribution in phase space (in the 

terminology of Gibbs and ~ o l t z m a n n ) ;  their  ensemble can be fully de- 

scr ibed only by a density in a six-dimensional phase space (x, y, z, u, 

v, w). The fundamental variable in t ranspor t  theory i s  the phase space 
+ - 

distribution, f ( r ,  a ,  ,E, t),which i s  the number of neutrons per unit vol- 
4 

ume and unit solid angle moving in the direction a .  The quantities E, 
-L 

r ,  t denote the energy, the space coordinates, and the t ime, 

respectively.  

The general  Boltzmann neutron t ransport  equation i s  given by 

~ a v i s o n ( l 7 )  and by Weinberg and wigner . ( l06)  A g rea t  simplification 

of the Boltzmann neutron t ranspor t  equation c.omes about i f  the neu- 

t rons a r e  a l l  assumed to' have the same speed, that i s ,  i f  a l l  scattering 

occurs  without change of energy. This i s  the usual  assumption made 

in dealing with thermal  neutrons.  Since the energy i s  constant, the - 4 

phase space distribution, f ( r ,  a,  E, t),  i s  then a distribution in d i rec-  
4 + * e 

tion; that i s ,  f (  r , R , E, t)  can be written a s  f (  r , 0 ,  t)  and the scattering 



Table 7.1 

COMPARISON OF PHENOMENA AND DEFINITIONS FOR 
THERMAL RADIATION .AND NEUTRON TRANSPORT 

Thermal  Radiation Neutron Transport  

1 Ca r r i e r  has  no charge Car r i c r  has no charge 

2 Between collisions the photon . Between collisions the neutron 
t rave ls  in s traight  l ines a t  t rave ls  in s traight  lines a t  
constant velocity (velocity constant velocity 
of light) 

3 Thermal  radiation can be Neutrons can be absorbed, sca t te red  
absorbed, sca t te red  and emitted and e-mitted 

4 The scattering can be specular o r  Scattering can be directional o r  
isotropic isotropic - - - 

5 ' IX ( r , R, t )  - monochromatic f ( r  , E, a ,  t )  - angular distribution 
intensit-y o r  radiation of monoenergetic neutrons - - 

6 cL( f,' t )  - monochromatic @ ( r , E, a ,  t )  - monoenergetic neutron 
incident radiation flux - - 
<*I;,  .I =&.ti. 0. t)  d~ @ (7. E. =l j;n E l  D: t )  d R 

7 f ( ~ ,  t )  - total incident radiation @(f, t) - total neutron flux 

hi:, t, =fdfJ-'y, " d "  @(?. t )  =JWdEJf(:. E. 5, t )  d R 
R =47l 

- - 
8 EX(T, t )  - monochromatic j (,r , E, t )  - monoenergetic neutron 

energy flux vector cur rent  

Ex(;, t )  = lX(T, E, t )  T d  i-2 L= 471. 

( 7 ,  E ) g E (i t ) ; idR 

9 E (T, 5, t )  - emission coefficient ~ ( 7 ,  5, t )  - angular source density 



a - + 
c r o s s  section, C (;, El- E, 5' -a), can be replaced by z S ( r  , 'R1-Q. 

S 

Thus in the monoenergetic (one-velocity) case  the Boltzmann neutron 

- t ransport  equation becomes (106) 

where C ( 7 )  i s  the total  c r o s s  section. This equation i s  identical in 

form, & k e p t  for the constants, to the equation of t ransfer -  (3: 1). 

The m o r e  common elementary neutron diffusion equation, (106) 

3D a 2 @  1 a@ - --+-(I + 3 ~ 2 , )  -=  DV% - Xa@ + S, 
v at. v a t  

where v i s  the neutron velocity, D i s  the diffusion coefficient and Ca  i s  

the absorption c r o s s  section, i s  valid for a homogeneous sys tem and 

sources  constant with time. In the diffusion approximation the mean 

f r ee  path of the neutrons i s  vanishingly sma l l  but the diffusion coeffi- 

cient i s  finite.. .Equation (7.2) i s  one of a general  c l a s s  of equations in 

mathematical physics which a r e  f i r s t  approximations of m o r e  compli- 

cated t ranspor t  integral  equation. It has  been shown by Weinberg and 

Wigner that for the mononergetic case  the neutron diffusion theory - 
(except for the neglect of the t e r m  dj/dt) i s  the PI approximation of the 

spherical  harmonic method. The analogous diffusion approximation 

ar is ing in thermal  radiation problems will be discussed in Section 9.2. 

7 . 3  some '  Analogous Radiative Transfer  Problems 

In the previous section we have established the mathematical  

analogy between thermal  radiation and neutron t ransport .  We need to 

go only a s'tep further and draw attention to a few solutions of neutron 

t ransport  problems.  



The general  solution of the sys tem of integral  equations (5.5) 

and (5. lo ) ,  which a r e  m o r e  basic than equation (5.11) and (5.12), i s  

ve ry  difficult. It i s  convenient, a s  a f i r s t  approach to this  problem, to 

isolate the different, parameters  appearing in equations (5.5) and (5.10) 

by choosing a favorable configuration for a system. The geometr ical  

complexities of most  sys tems a r e  avoided by considering an infinite 

plane paral le l  mediuin with no enclosure.  

Thus the integral  equations (5.5) and (5.10) for isotropically 

scattering infinite. medium with no enclosure reduce to 

+ - 
since dV = Adr ' ,  where r '  i s  understood to be a dummy position coor-  

dinate and not a vector.  Taking A a s  unity and substituting for the - 
effective emission coefficient, ), f rom equation (3.3),we obtain 

The case  in which0 i s  independent of position will be dealt X 
with. By measuring distances in the units of the mean f r ee  path, 

hp = l/oX (this i s  the same a s  saying that O X  = l ) ,  equation (7.3) can be 

simplified to 

It should be pointed out, though, that the genera l  case  of variable ox 

introduces considerable complication. Absolute coqrdinates instead of 

only relative coordinates between the field and the point of emission 

enter the problem. In the r e s t  of this section oh  i s  going to be con- 

s idered a s  grey,  that i s ,  the scattering coefficient, a i s  independent X ' 
', of wavelength. 

In the absence of emission, ~ ( 7 )  = 0, the integral  equation (7.4) 

reduces to 



The solution of this  equation has  been obtained and the functions have 

been tabulated by Case -- et al .  (10) 

The integral equation (7.4) in the presence of a n  isotropic point 
+ - 

source,  i.e.,  the emission coefficient, c o ( r l  ) = 6 ( r  - <) = 4'7T€(T)/CJ , 

can be written a s  

A detailed solution of this equation has a l so  been worked out by 

Case - e t  - a l . ( l O )  Physically, for example, this problem can represent  

the radiation incident a t  any point r mean f r ee  paths distant f rom the 

center of an atomic explosion if the surrounding a i r  does not absorb, 

but only sca t t e r s  thermal  radiation. 

For  other i l lustrations of the applicability of the resu l t s  ob- 

tained for neutron t ranspor t  problems to the problems of t ransfer  of 

thermal  radiation reference i s  made to ( lo) ,  (12), (17), (63) and (106). 

There a l so  exis ts  a possibility that some of the numerical  

codes available for the solution of neutron t ranspor t  problems by 

digital computers can be used, with only minor modifications, for the 

solution of radiative t ransfer  problems. For  instance, Carlson 's  S 
n 

method 
(1 0'6) 

can be used for the solution of the one-dimensional 

equation of t ransfer  (4.13). 



8 LITERATURE SURVEY 

8.1 Introduction 

The a im of this chapter i s  to present  a review of the l i te ra ture  

on heat t ransfer  in absorbing and scattering media which a r e  either 

gases ,  mixture of gases ,  solids,  o r  gases  and solid par t ic les  which 
. 

fo rm luminous f lames.  ~ m ~ h a s i s  i s  placed on papers  describing 

m o r e  recent achievements. Radiant energy t r ans fe r  problems in 

meteorology will not be considered here.  Most of the ea r l i e r  l i t e r a -  

tu re  will be briefly r e fe r red  to by way of textbooks and previous su r -  

. vey ar t ic les .  

The study of radiant heat t ransfer  in  absorbing media has  been 

a subject of ve ry  l i t t le .  theoretical and experimental investigation, and 

has  been mostly l imited to the problems occurring in boiler furnaces 

and combustion chambers .  Recent developments in  hyper sonic flight, 

re-entry,  rocket combustion chambers ,  power plants for  interplanetary 

flight, and gas-cooled nuclear r eac to r s  have focussed more  attention 

on he at t ransfer  by radiation through absorbing media.  

The radiant proper t ies  necessary  for heat t ransfer  calculations 

. have been summarized by Jakob, (40) Pepperhoff, ( 7 6 )  and recent  su r -  

vey of high-temperature radiative proper t ies  of g a s e s  has  been given 

by Logan. ( 5 9 )  Theoretical and experimental studies of radiative 

propert ies  of gases  a r e  given by Penner .  ( 7 5 )  

The l i te ra ture  on heat t ransfer  f rom radiating stationary 

media without conduction, convection and other energy t ransfer  



mechapisms a r e  summarized in.books on heat t ransfer  by Jakob, (40) 

McAdams, (61) Schack, (87) and others .  The paper by Wohlenberg 

et  al. -- (109) contains a bibliography of 60 ent r ies  on radiant heat t rans-  

f e r  in  boiler furnaces and related topics. The papers  reviewed i n  

the above-mentioned references  will not be discussed here .  However, 

an effort will be made to review briefly all the pape r s  dealing with 

heat t ransfer  f r o m  both stationary and moving radiating media in 

which other modes of heat t ransfer  (i.e., convection) a r e  a l so  included. 

In par t icu lar ,  the papers  of the Russian engineers which have not been 

r e fe r red  to by ~ a k o b ( ~ O )  and McAdams ) will be reviewed. 

8.2 Heat Transfer  in  an Enclosure 

, Many common problems of radiant heat t ransfer  requi re  the 

evaluation of energy t ranspor t  between various p a r t s  of an  enclosure,  

such a s  a combustion chamber,  a rocket motor nozzle, e tc .  F o r  in- 

stance, in  a furnace. the p r imary  mechanism of energy t ransfer  is the 

radiant exchange between the combustion gases ,  the enclosure walls . 

and the absorbing a r e a .  Radiant interchange between surfaces form-  

ing a p a r t  of an  enclosure and separated by an absorbing and scattering 

medium involves considerations of three  kinds: (1 ) the configuration 

of the sur faces ,  ( 2 )  the radiation charac ter i s t ics  of the surfaces and 

the medium, and (3) the tempera ture  distribution in the medium. In 

this section the papers  concerned with heat t ransfer  (energy t ransfer  

by radiation i s  predominant) in an  enclosure a r e  briefly reviewed. 

A general multisurface system,of  source-sink and g rey  

absorbing and emitting gas a t  constant t empera tu re  has  been con- 

- sidered by ~ o t t e l ( ~ ' )  using a finite difference method. The problem 

treated i s  ve ry  complex and no claim i s  made that the solution i s  



rigorous.  A finite difference method for  predicting heat exchange in 

enclosures  where allowance i s  made for  temperature variation in the 

medium i s  reported by Hottel and Cohen. (36) The sys tem i s  divided 

into surface zones and gas zones, the number of zones being depend- 

ent on the des i red  accuracy of the resul t .  The d i rec t  exchange 

fac tors  a r e  calculated for  gas-gas,  gas-surface,  and surface-surface 

zone interchange. F r o m  these fac tors  the net exchange factor fo r  any 

zone pa i r  can be determined, taking into account the interaction with 

al l  other zones. The resultant fac tors  a r e  ,then introduced into a s e t  

of energy balances,  one for  each zone. The simultaneous solution of 

these permit  determination of the gas  and surface tempera tures  and 

the distribution of heat flux over the surface.  . 

The solution of a problem of heat exchange by radiation using 

the electr ical  network mithod was proposed by ~ ~ ~ e n h e i m ( ~ l )  and 

extended by Bevans and ~ u n k l e . ( ~ )  An example to i l lustrate  the use of 

the network method was given by ~ u n k l e  and ~ e v a n s , ( ~ )  who solved a 

multinode network. ~ d r i a n o v ( ' )  applied the electr ical  network 

analogy to the solution of the two integral equations which descr ibe the 

process  of radiant heat exchange in a closed sy-stem of surfaces with 

an absorbing and scattering medium present  in an enclosure.  The 

author has  shown that the two integral equations can be sufficiently 

approximated by a system of l inear  algebraic equations. This scheme 

i s  equivalent to  the solution of e lec t r ic  networks a s  f i r s t  suggested by 

~ ~ ~ e n h e i m . ( ~ ' )  The problem is extended by Adrianov to the case  in 

which the gas present  in  the enclosure i s  not a t  a constant tempera-  

tur e ;  however,. the problem i s  st i l l  res t r ic ted  to  diffuse radiation 

f rom enclosing surfaces.  An electr ical  analog i s  given in the paper  

for  the solution of the integral equations of radiant  heat t r ans fe r  with 

the help of an electr ical  integrator ,  but no specific problems a r e .  

solved. 



The most  pract ical  solutions have been given by Hottel and 

Egbert .  (37238) Data of various investigators on the emission and ab- 

sorption of radiation by carbon dioxide and.water vapor were  r e -  

viewed. A s e r i e s  of new experiments on water vapor we're ca r r i ed  

out(38) to  measure  total  radiation f rom gas columns. Recommenda- 

tions for  a procedure to calculate heat t ransfer  by gas radiation was 

given. A simplified procedure was presented to allow for  the effect 

of gas  shape on radiant heat exchange by introducing a mean value of 

the beam length. The procedure.of .mean beam length has  been ex- 

tended by ~ a x ( ~ l )  fo r  nonluminous radiation to tube banks. 

The l i te ra ture  on configuration (s'ome authors call  i t  shape, 

angle, view, geometric) factors  for radiation through nonabsorbing 

media,  and for  few simple geometr ies  for  radiation through absorbing 

media has  been summarized by Jakob. (40) More recently,  configuia- 

tion factors  f o r  radiation through a n  absorbing medium were given by 

(73) . . Oppenheim and Bevans. 

A simplified pract ical  method of calculating heat t ransfer  in 

oil-fired, pulverized coal and gas furnaces has  been suggested by 

Mullkin.('l0) A valuable additional contribution to the kndwledge of 

heat t ransfer  by radiation in  pulverized coal furnaces has  been made 

by Wohlenberg and Wise. ( ' lo)  Introducing the concept of the radiant 

mean position of burning coal par t ic les  and ash, by distinguishing the 

coal par t ic le  while bxrning f rom the resulting a sh  part ic le ,  they were 

able to study the energy distribution and the d i rec t  t ransfer  of energy 

between burning part ic les ,  a sh  par t ic les ,  gases ,  re f rac tory  walls and 

cold walls. 

Heat t ransfer  in boiler furnaces has  been studied by Poljak 

and Shorin, (81 ) Konakov, (49350) and ~ i k h a i l o v . ( ~ ~ )  T h e  energy equa- 

tions were  given in re ferences  (50) and (81) in both differential and 

integral form,  but were  not solved exactly. The energy equation was 



reduced to an algebraic one by introducing average quantities. Sim- 

plified solutions of temperature were  obtained in a dimensionless 

form.  In reference (81) the predicted dimensionless tempera tures  

were  compared with the correlat ions of other Russian investigators,  

and in reference (50) the calculated resu l t s  were compared with the 

experimental data for some furnaces.  Radiant heat t ransfer  i n  fur -  

naces was investigated by Yhland. ) Simple similarity,  theory was 

applied and dimensionless quantities were  deduced f rom the equation 

of energy conservation. 

The role played by the radiant heat t ransfer  on the process  of 

combustion has been studied analytically by Shorin. (92995) The 

influence of radiant energy on the activation of molecules and the 

contribution of the I' radiant conductivity" a r e  discussed. The energy \ 

equations a r e  given, but a r e  not solved. The problem of heat t ransfer  

by radiation in a combustion chamber f rom hot combustion gases  has  

been studied by Shorin and ~ r a v o v e r o v , ( ~ ~ )  and by K o n a k o ~  -- et al. (51) 

Konakov has  postulated that in  combustion chambers  with cooled walls 

a region i s  always present  where there  i s  thermodynamic equilib- 

r ium. The temperature of this equilibrium layer  i s  determined by 

the intersection of the curves of molecular and radiation temperature 

change. The theoretical considerations about the existence of an 

equilibrium layer  have been experimentally verified, and i t s  location 

determined. The experiments ca r r i ed  out show that in combustion 

chambers  an equilibrium layer  i s  in  close proximity to the heat- 

absorbing surface a t  a distance measured in mi l l imeters  and that ' the 

tempera ture  of the equilibrium layer  determines the heat exchange by 

radiation in combustion chambers .  



8.3 Diffusion Approximation for  Radiation 

F o r  the case  of intense absorption, one can apply diffusion 

concepts in  solving the radiant t ransfer  problems. This type of dif- 

fusion approximation was f i r s t  suggested by Jeans,  (42) l a t e r  extended 

by .Ro s seland, (86) and has  been successfully applied in a few quite 

different problems. 

The thermal  radiation effects in atomic explosions, in part ic  - 
ular  the effect of radiant energy t ransfer  on the shock wave, has been 

studied by Magee and ~ i r s c h f e l d e r ' ~ ~ )  using the diffusion approxima- 

tion. Brickwedde(8) studied radiant energy propagation by the 

diffusion of photons at  tempera tures  of atomic explosions in  the r'ange 

f rom lo7  to l o 8  OK. He considered photons traveling in broken paths 

through the fireball  in the emission-absorption-remission cycle. The 

photons therefore flowed to the surface of the f i rebal l  by a compara- 

tively slow diffusion process  described by the diffusion equation. F o r  

the heat flux by radiation the author wrote 

- c X 4aXp 
qffr = - - grad u = - - 40 

3 3 
grad T~ = - - grad T ~ .  

3K 

Introducing an approximate value of the mean f r e e  path. obtained by the 

help of Wienfs displacement law, he showed that the radiant heat flux 

becomes 

--C 

qlk = const. T' grad  T . 

We note that the heat flux by molecular conduction i s  propor- 

tional to grad T, while the energy flux by radiation i s  proportional t o  



grad  T~ o r  T~ t imes  the grad T. This shows the dominance of " ther-  

m a l  propert ies  of radiation" over the usual thermal  proper t ies  a t  the 

tempera tures  of thermonuclear explosions. 

(58) The diffusion approximation was used by Lubny-Gertsyk. 

(93) to calculate the emissivity of a gas enclosed .by surfaces.  Shorin 

I1 used the same approximation to calculate the tempera ture  distribution 

in combustion chamber s. 

+olchenogova and shorin(18) have studied both analytically and 

experiment ally the diffusion of radiant energy in an absorbing media.  

The authors s tar ted-  f rom the definition of radiant heat flux vector ,  

4 

ql; = - D grad u = - (4o/mh K )  grad T~ , (8.3) 

where D i s  the diffusion coefficient of radiant energy defined by 

and mn i s  defined by equation (9.8). Solutions of equation (8.3) were  

I * 

obtained for the case  of a.finite slab, cylinder, cylindrical and 

spherical annuli. The experimental resu l t s  for  a strongly absorbing 

gas were  in good agreement  with the predictions based on 

equation (8.3). This ver if ies  the validity of the diffusion approxima- 

tion. . . 

The radiative conductivity has  the effect of adding another 

t e r m  to the ordinary thermal  conductivity. *his contribution to 

I. molecular conductivity may be quite important even a t  ord inary  tem- 

I pera tures .  Heat t ransfer  by simultaneous conduction and radiation in 

I glass  has  been s u q m a r i z e d  by Pepperhoff. (76) Kellet (16) has  t reated 

I ' mathematically the prdblem of s teady flow of heat through glass .  He 

I found that even though infrared energy i s  absorbed within a shor t  

distance by almost  any g lass ,  the i r radiat ion of energy by the g lass  I r ' .  



i tself  i s  sufficient at  glass-melting tempera tures  to cause consider- 

able heat flow. As might be expected, the contribution of radiant 

conduction increases  rapidly with r i s e  in temperature,  and a t  1 200°C 

the radiant heat flow in ordinary soda g lass  is about 50 t imes  the 

ordinary conductive flow. A method fo r  calculating tempera ture  dis-  

tributions i n  sheets  of g lass  that a r e  being heated o r  cooled was p re -  

(26) sented by Gardon.  

Van d e r  ~ e l d ( ~ ~ )  has  discussed the contribution of radiant 

energy to  the conduction of heat in insulating mater ia l s ,  par t icular ly 

in connection with the experimental measurements  of the thermal  

conductivities of these mater ia l s .  He was concerned with sys tems in 

which the absorption of radiation was not so intense that the mean f r e e  

paths of the photons could not be taken a s  negligibly smal l  quantities. 

The Biot-Fourier equation was modified to include a t e r m  taking into 

account the effect of radiant heat t ransfer :  

The t e r m  E'Xincludes contributions due to the radiation f rom 

the heat soirrce, the heated absorbing medium, and also scat tered and 

ref lected ' i r radiat ion f rom the walls. He showed that as long a s  the 

distance d f rom the'boundary of the sys tem has  a value so  that 

K ~d > 5., then the effective i r radiat ion E k  i s  equal to value Ebb, 

estimated a t  t he  local temperature,  and that (Ek - Ebb,x)  becomes 

proportional to the difference in the fourth power of two tempera tures ,  

the local tempera ture  and the source temperature.  Verschoor and 

Greembler  ( l  04) have ca r r i ed  out thermal  conductivity measurements  

with four different gases  i n  insulating mater ia l s .  The measured  

values of thermal  conductivity a t  low p r e s s u r e s  confirmed the theo- 

ret ical  considerations of heat t ransfer  by radiation. 



8.4 Heat Transfer  in Moving Radiating Medium 

Only the papers  which deal with r.adiating media a t  r e s t  have 

been reviewed. The underlying hypothesis of the papers  reviewed 

previously i s  that, unlike dynamic .and convective effects, radiant 

energy exchanges do not affect the veQ'city and the temperature dis- 

tribution in the flow. Such an assumption i s  easi ly  acc'eptable when 

radiant heat t ransfer  i s  smal l  compared to the usual t ransport ,  

p rocesses .  However, this method fail's in the presence  of a. l a rge  
. . 

radiant heat flux, since i t s  presence  cannot be reconciled with the 
. . 

postulated temperature distribution th'at was derived without a 

radiative t e r m ;  The determination of the t rue  temperature distribu- 

tion requi res  the solution of a coupled sys tem of differential, integro- 

differential and integral  equations. 

Shorin ( 9 3 )  seems  to .be the f i r  s t  to consider a one-dimensional 

problem of heat t ransfer  by radiation in the presence  of both s ta-  

t ionary and moving absorbing media.  He s tar ted f rom the,  simplified 
. . , 

equation of t r ans fe r ,  the definition of the radiant flux vector and the 

equation representing the energy balance. The equation of the energy 
.. . .  5 .  

a t  any point of the combustion chamber in the .  st'eady'.state and neg- 
. .  : 

lecting the energy dissipation, the work of f b r c e s  and 
. . 

gravity was written in the fo rm 

K I  cos 9 d R = - d i v ( ~ c ~ Z )  t div(k grad T) t q"'. (8.5) 



The boundary condition pertaining to the cooling surface was 

also derived. F o r  the one-dimensional case  with no heat sources  be- 

tween the two surfaces and neglecting the heat t ransfer  by molecular 

conduction, equation (8.5) reduced to 

To remove the nonlinearity of this equation with r ega rd  to tempera-  
. 

tu re ,  the author introduced the following transformation: 

then 

d3 T 
Neglecting the derivative - 

dT 
in comparison with -, equation (8.6) 

dx3 dx 
reduced to 

The parameter  n = represents  the rat io  of energy 

t ransfer red  pe r  unit a rea ,  p e r  unit of t ime by convection to the .energy 

of radiation t ransmit ted through the unit a rea ,  pe r  unit of t ime. 
d 3 . ~  dT According to the author,  the assumption - << - in the case  of non- 
dx3 dx 

radiative equilibrium (4 KEbb - Kcu f 0) i s  equivalent to the assump- 

tion that 

a n  expression which signifies local thermodynamic equilibrium. 



Solution of equation (8.8) i s  given for  the radiation between 

two para l le l  planes a t  constant tempera tures  TI and Tz and having 

emissivi t ies  and c 2  for  various values of the heat t ransfer  

parameter  11. The solution of the problem was then applied to the 

calculation of heat t ransfer  by radiation in boiler furnaces,  with a 

single surface being cooled. The relation obtained was then com- 

pared to an empir ical  formula for  heat t ransfer  in furnaces.  

~ u k h o v ( ~ ~ )  investigated heat t ransfer  f rom combustion gases  

of a cylindrical shape moving a t  constant velocity. The source  of 

heat generation was the base  plane of the cylinder,' where the gases  

enter the system. The gas temperature changes both in the direction 

of the motion and along the cylindrical cavity in the radial  directidn. 

F r o m  simple approximate calculations and the definition of the ef- 

fective temperature,  an expression for the effective temperature i s  

determined. The relation obtained, according to the author,  takes 

into account the influence upon the effective tempera ture ,  not only of 

the temperatures  of the heating and the cooling plane, but a lso of the 

propert ies  of the radiating gas,  and the shape and s ize of the volume 

which these gases  occupy. However, the author himself makes the 

statement that the expression fo r  the effective radiation tempera ture  

cannot be considered a s  final, and i t  i s  an attempt to solve the given 

problems. 

~ u b n ~ - ~ e r t s ~ k ( ~ ~ )  has  studied severa l  problems of heat 

t ransfer  between a radiating gas,  both stationary and moving, and the 

fixed solid walls. In par t icular ,  an approximate method of calculation 

for a selectively emitting suspended dust medium i s  presented a s  

well a s  a method for calculation of radiation of an emitting medium 

moving through a n  infinite plane screen .  The information about some 

of the calculations leading to the given curves a r e  lacking in the 

paper.  
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The paper by Adrianov and ~ h o r i n ( ~ )  i s  one of the f i r s t  which i s  

concerned with coupling of convective and radiative heat fluxes. The 

problem considered by the authors i s  a steady-state cooling of a 

radiating gas  flowing i n  a c i rcu lar  pipe and between infinite paral le l  

plates having a prescr ibed  wall temperature.  Convection and r a d i a -  

tion a r e  the two modes of heat t ransfer  assumed to  be present .  The 

scattering of radiation i s  neglected and i t  i s  postulated that the 

radiant energy emitted by a unit volume of 'gas  and absorbed by an- 

other unit volume. i s  negligible compared to the radiant energy 

emitted by the gas and absorbed by the duct surfaces.  The solution of 

a coupled system of equations of motion and the integro-differential 

equation of energy conservation is eliminated by a s  suming. one- 

dimensional flow and various velocity profiles in the ducts. The 

energy equation i s  solved, and temperature distributions a r e  deter-  

mined for  the following velocity profiles: for the circular  pipe - 
uniform and parabolic; for  the flow between two infinite paral le l  

plates - uniform, u/um = 3(1 - y/h)2 and u/% = 3(y/h)3, where u i s  the 

velocity and any point y, um i s  the maximum velocity and h i s  the dis-  

tance be tween the plate s. 

Several  new dimensionless numbers,  which enter  radiative heat 

t ransfer  problems in a natural  way, a r e  introduced. In par t icular ,  a 

use  i s  made of dimensionless parameter  which governs the coupling 

between convective and radiative energy fluxes. The resu l t s  of calcu- 

lations a r e  presented in graphical form 'as functions and pa ramete r s  of 
. . 

dimensionless nu-mbers. The 'results show that there .exists a value of 
. . 

optical thickness a t  which the heat t ransfer  i s  maximum. Some of the 
. . 

calculated resu l t s  a r e  compared with the predictions of other Russian 

investigators.  

The Rosseland approximation for  the radiant heat flux vector 

was applied by  ada an off(^^) to  the problem of calculating temperature 

distributions within bodies in steady-state ablation. Numerical 
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. resul t s  a r e  presented for  the temperature distribution with various 

parameters  characterizing the body, i .e. ,  reflectivity, absorption and 

scattering coefficients, etc. An analytical solution for  temperature 

distribution i s  given in the l imit  of zero ablation. The author points 

'out the concept of apparent thermal  conductivity "works quite well 

whenever the temperature and the optical propert ies  of the medium do 

not change very much within one photon mean f ree  path." There. a r e ,  

however, some e r r o r s  in the equations used. 

The problem of a chemically reacting and radiating gas in 

Couette flow was studied by R. and M. Goulard. (30) With the assump- 

tion of thermodynamic equilibrium and no viscous dissipation, the 

energy equation reduced to 

- 
where k i s  total conductivity, including the chemical part ,  and E is the 

radiant energy flux vector.  Since the energy equation in Coue tte flow 

is ,  one-dimensional, after integration of (8.9) one obtains (30) 

a~ 
k t qg = constant, 

where 

q: = /d m/o'2nlnly i s , $ )  cos 0 sin 6 d e d d  ..' 

Since' equation (8.10)- i s  nonlinear in T and quite complex, no closed- 

form solutions for  the temperature a r e  obtained. The nirnerical  r e  - 
sults.indicate that the effect of the "long-range1' process  of ;radiation 

i s  to smooth out the temperature profiles and relieve sharp temp&a- 

ture  gradients a t  the cool ,wall: As a resul t ,  the application of this 

exact method yields lower values of the total heat flux than previously 

calculated by approximate methods. 



9. HEAT TRANSFER B Y  SIMULTANEOUS CONDUCTION, 
CONVECTION AND RADIATION 

9.1 Introduction 

One of the most  ser ious mathematical difficulties i s  that,  in 

solving the equation of t ransfer ,  i t  i s  necessary  to take account of the 

variation of intensity of radiation with direction, i.e.,  a s  a function of 

the angle 8 a t  each point in the medium, and on the surface of the en- 

c losure in consideration. If high accuracy i s  not required in the final 

resu l t s ,  it  i s  possible to introduce some simplifying assumptions by -- 
averaging 1~(r,52) over a l l  directions.  Many t imes ,  in o rde r  to simplify 

the problem, i t  is assumed that the intensity i s  isotropic o r  diffuse. 

Some of the schemes of the possible intensity dependence on the d i rec-  

tion a r e  shown in Fig. 9.1 

All of the cases  idealized in the sketches approximate the de- 

pendence of intensity on direction fo r  r ea l  surfaces and surface condi- 

tions, a s  well a s  emission of radiation f r o m  a n  elementary volume. 

The cases  a and e correspond to diffuse emission f r o m  a surface and 

a unit volume, respectively; this i s  the case  fo r  black. radiation. The 

case  b corresponds to Lamber t l s  cosine law, which i s  m o r e  o r  l e s s  

valid for  r ea l  bodies. All other c a s e s  give a more  complicated de- 

pendence of the intensity on the direction. Knowing the dependence of 

intensity on direction a t  the surface o r  f r o m  an  elementary volume, 

one can m o r e  easi ly  calculate heat t ransfer  to the surface o r  to the 

elementary unit volume of the medium. However, even with the assump- 

tion of diffuse radiation the net emission f r o m  a unit volume, C n ,  is a 
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complicated integral over the ent i re  radiating medium and the e n c l o b  

ing surfaces.  The solution of a very simple equation of energy (1 1.1) i s  

quite difficult. Thus, in view of the present  state .of mathematical 

techniques available for  the solution of integral and integro -differential 

equations, a n  exact solution of (1 1.1) does not seem possible. There 

a r e ,  however, two simple fo rms  for  g n ;  one i s  valid when themedia  is 

optically thick and the other when it i s  optically thin. Both fo rms  will 

be presented in this chapter.  

As a n  illustration of these types of analyses,  the approximation 

valid for  optically thick media i s  employed to simplify the energy 

equation. The equations of motion and energy a r e  solved for  fluid in 

laminar- flow. Two'different problems a r e  considered: Couette flow 

and flow along a wedge. 



9.2 The Diffusion o r  Ro s seland Approximation of Radiation 

As a f i r s t  simplification to the problem of radiative t ransfer  of 

energy in absorbing and scattering media,  the Rosseland approximation 

for  the radiant energy flux vector i s  presented in this section. This 

approximation is valid fo r  intense absorption and scattering; however, 

it fa i ls  completely a t  the boundary of the system. The Rosseland 

approximation fo r  the radiant flux vector has  been applied to such dif- 

fe rent  problems a s  calculation of temperature distribution in boiler 

f ~ r n a c e s , ( 9 ~ )  combustion chambers , (51)  the effect of radiation on blast  

waves caused by nuclear explosions, (62)  the . transmission of radiant 

energy- through g lass  ,(76) the radiative energy t ranspor t  within a n  

ablating body,(45) and the t ranspor t  of radiation through gases  of low 

The s t r e s s  tensor  in hydrodynamics can  be separated into 

normal  and tangential components. Similarly,  the energy tensor  (3.19) 

was resolved by ~ o s s e l a n d ( 8 ~ )  into normal  and tangential components. 

F o r  this purpose we resolve IX into two par t s :  I i  and I r ,  where I i  i s  

defined a s  the average value of IX according to the kquation 

I I 
On the other hand, the monochromatic inten'sity IX depends on the 

direction. Correspondingly, we resolve a tensor  P related to this  
X,ij 

intensity into two components P I  . . and P I  ' , which a r e  determined by 
X , . ~ J  X , i j  

the equations 

where the Kronecker delta function d i j  is defined a s  dij = {i: :$I , 

and 
r 



The tensor pijij corresponds to normal  s t r e s s ,  while $Ii. corresponds 
1 J 

to shear  s t r e s s e s  in a continuous medium. 

F r o m  the definition of 1ki t  follows that when the sys tem i s  in 

thermodynamic equilibrium the tensor  $,ij will increase  in propor-  

tion to the monochromatic intensity of the black body radiation, o r  to 

i t s  integral over all wavelengths, which i s  proportional to fourth power 

of temperature,  according to the Stefan-Boltzmann law. On the other 

hand, the tensor PXij will behave quite differently. F r o m  the very 

definition of we see  that i t  depends on the asymmetry  of the mon- 

ochromatic intensity of radiation. The tensor  will depend on the 

change of 1;with direction. As a resul t  of this ,  the relative magnitude 
I1  

of P ~ , ~ ~ / P ~ , ~ ~  can be estimated and given a s  a function of F$ij.(93) 

The divergence of the radiant energy flux tensor  can be ex- 

pressed  a s  a gradient of a cer tain sca lar  potential function. This i s  

possible only for  thermodynamic equilibrium, that i s ,  when 
I P ~ , ~ ~ / P ~ , ~ ~  - 0. (86) Therefore,  with this approximation we have 

Thus for  intense absorption and scattering a s  well a s  when the sys tem 

i s  near  to thermodynamic equilibrium, the nondiagonal components of 

the energy tensor  become small ,  and one has(86) 

1 
div F),i j  = - grade;. 

3 

Substituting (9.5) in equation (3.20), we get fo r  a steady- state sys tem 

the monochromatic radiant energy flux vector 

+ 1 E X = ' -  3px g r a d C i .  (9.6) 

If the extinction coefficient depends on wavelength, the mean 

f r e e  path of the photon, Xp, o r  the average extinction coefficient, may 

be defined by. 



The Rosseland definitions of the radiant heat flux vector and the mean 

f ree  path, Xp, correspond to simple kinetic theory arguments. Photons 

travel with the velocity c .  At any time of the photons a r e  moving in 

the x direction and in the opposite direction. Lf the mean f ree  path 

i s  Xp = 1/6, the flux of radiation i s  given by equation (9.6). A similar 

approximation in the neutron transport  theory is  known a s  the f i rs t -  

order  diffusion approximation.(106)~ilippov(24) and ~ o o d ~ ( ~ 9 )  have 

derived the same expression for  the radiant flux vector by a different 

method. An improved relation for  the radiant flux vector,  which takes 

into account the change of intensity with direction, was given by 

~ h o r i n ( 9 ~ )  and bill be presented in t h e  next paragraph. 

One can derive an improved relation for  the radiant flux with 

the help of a function introduced by ~ u z n e t s o v : ( ~ ~ )  

L=::n 

The radiant energy flux in the normal direction, q:, defined a s  

which, with the help of (9.8), can be written a s  

Using the definition of the absorption coefficient and the fact that 

ds = dn/cos 8, ~ h o r i n ( ~ ~ )  h a s  shown that the radiant flux i n the  normal 

direction i s  given by the following expression 

- - 1 dC1 1 do- -- ' q; = -- 
m i ~  dn ' r n ; ~  dn 



This equation differs f r o m  the Rosseland approximation fo r  the radiant 

flux(9.6) only by a constant. It was shown by ~ h o r i n ( 9 3 )  that f o r  the 
c. 

, case  of uniform distribution of intensity, a s  indicated in sketch (9.1 e ) ,  

m n =  2 .  

One should again emphasize the limitations of the Rosseland 

approximation. It i s  valid fo r  both extreme cases  ax = 0 and I C x  = 0. 

The approximation i s  res t r ic ted  to media with la rge  optical thicknesses 

(7 >>I )  a s  well a s  to a sys tem close to thermodynamic equilibrium, so 

that equation (9.4)' i s  valid. This i s  equivalent to saying that the t e r m s  

proportional to RX vanish in equation (5.9), that i s ,  the radiation inci- 

dent a t  any point in the medium i s  given by the second t e r m  of equa- 

tion (5.9) no mat te r  what the radiosity i s .  In addition, the temperature 

. and the radiative propert ies  do not change much within one photonmean' 

f r e e  path, o r ,  expressing this condition mathematically, we must  have 

1 I-- g rad  (logC;).l << 1 . 
P x 

F r o m  the preceding discussion it i s  c l ea r  that the diffusional approxi- 

mation of radiation breaks down completely in the vicinity of a surface,  

since it does not take into account the radiation leaving f r o m  a surface.  

9.3 Energy Equation with the Diffusional o r  

Ro s seland Approximation for  Radiation 

The energy equation, including a radiative t e r m ,  has  been 

derived in Chapter 6 and i s  reproduced here:  

-C 

-- DP Dh + aU  - div(k grad  T )  - div E t q"' t - t O . 
P~ a t  ~t 

Substituting the diffusion approximation (9.6) fo r  the radiant energy - 
flux vector ,  E ,  in the energy equation, we obtain 

Dh p-= D 
Dt 

div (keff grad  T) t q"' + $ + p .O , 



where 

i s  the effective o r  apparent thermal conductivity. 

I The same restrictions a s  in the diffusion approximatiqn apply 

I also to the effective thermal conductivity. This concept holds quite 
. . 

well if the photon mean f r ee  path i s  much shorter  than the distance 

over which the temperature changes significantly. Equation (9.13) holds * .  

except in a neighborhood of a surface. 

I '  '.  , 9.4 Approximation for  Weak Abs-orption 

I . . ,  The second approximation to the problem of radiative t ransfer  

I ' . of energy in.an absorbing and scattering medium i s  obtained for  very 
. . 

weak absorption. 'Physically this means that the medium i s  transparent 

' . to thermal radiation. In this case  the approximation for  net emission, 

Cn, m a y  be obtained by the following consideration. The. net emission 
. . 

is  defined by equation (2.30) a s  

- k =  C - K C ' ,  

Since the.black body intensity is  isotropic, we can write (9.14) a s  

, .  The f i r s t  t e rm  on the right hand side of (9.15) represents  the 

emission of thermal energy a t  the local temperature. The second t e r m  

represents  the absorption of radiant energy which was emitted by other 

elements of the fluid and by the bounding surfaces. If the mean f ree  

p a t h  of radiation, Xp, i s  long, the main contribution to the second t e r m  

. . 



will come f rom the points spaced a t  about this distance f r o m  the point 

in consideration. If xp/h > 1,  where h i s  a character is t ic  dimension of 

the system, the irradiation a t  each point will originate either f a r  away 

f rom the point, o r  f rom the boundariks. In this case ,  the irradiation 

will not vary much over distances comparable to the character is t ic  

dimension of the system, and the variation of Cn will chiefly be due to 

the variation of Ebb. Hence, applying the Laplace operator  V2 to equa- 

tion (9.15), we obtain 

v2Cn& v 2 (4n2 K Ebb) . (9.16) 

An operator such a s  lfgradl1 o r  "div" could have been applied to 

(9.15), but i t  i s  m o r e  convenient to use  the Laplacian. If we assume 

that the absorption coefficient, K ,  and the refractive index, n, a r e  

"weak" functions of position, (9.16) can be written as ' . 

- For  a system in a steady state,  we kiave f r o m  equation (3.16) that - 
: Cn = div E l  that i s ,  the net emission of radiant energy f r o m  unit 

volume per  unit of t ime i s  equal to the ra te  of change of the radiant 

energy flux vector with position. The operationv ' = v 2 ( V .  E), how- 
n 

ever ,  has  no simple physical interpretation. Equation (9.17) will have 

to be solved simultaneously with the energy equation (6.1 1 )to determine 

the temperature distribution in weakly absorbing media.  

9.4 Couette Flow 

9.4.1 Basic Equations 

The complexity introduced by the radiative contribution. to the 

I energy flux i s  in pa r t  due to the dependence of the flux on the geometri-  

cal configuration of the problem. A very simple type of flow, the 



" I  - T = T ,  Couette flow (see Fig. 9.2), 

will be considered. The geo- 
I 

metr ic  effects a r e  nonexistent 
h in this problem, and it  i s  

T = T" hoped that i t  will contribute 

to the overal l  understanding 

of heat t ransfer  in a medium 

absorbing thermal  radiation. 
PHYSICAL MODEL AND COORDINATE 

I1 The equations of motion (6.2) and energy (9.12) reduce to 

and 

if the following assumptions a r e  made: 

I . 1) The flow is  one-dimensional. 

I 2) Heat conduction in the x direction i s  negligible compared to 

heat t ransfer  in the y direction. 

3) There a r e  no p ressu re  gradients and heat  sources.  

4) Scattering i s  negligible compared to absorption. 

5)  Viscosity, thermal  conductivity and absorption coefficient 

a r e  functions of temperature.  

The heat due to viscous dissipation is important when the 

Ecker t  number,  

is of the p rde r  of unit magnitude. For  the problem. in consideration 

he re ,  we assume that NE < <l .  Since the viscous heat dissipation is 

negligible, the equations of motion (9.18) and energy (9.19) become 
. 

uncoupled. Therefore,  in the. remainder  of this 'section only the energy 

equation shall  be considered. 



A very simple solution for  the temperature distribution i s  ob- 

tained when it i s  postulated that the temperature i s  constant along the 

wall, the boundary conditions being: T = Tw at y = 0, and T = T1 a t  

y = h. Thus, to solve (9.21), le t  . 

t = y/h; 

then 

Introducing the new variable and dividing by h2, the equation of energy 

(9.19) reduces' to 

9.5..2 Solution of the Energy Equation 

Solution of (9.20) requires  the knowledge of the variations with 

temperature of thermal  conductivity and absorption coefficient..' It is 
' 

.assumed here  that these two propert ies  can be approximated by .the 
, . .  

relations 

and ' . 

Substituting '(9..21) and (9.22) into (9.20) and integrating, one obtains 

When the integration constants cl  and c2 a r e  evaluated by using the 

boundary co'nditions, equation (9.23) reduces to 



where 

and 

If the thermal  conductivity and the absorption coefficient a r e  

independent of the temperature variation, a l  = a2 = 0, equation (9.24) 

simplifies to 

where 

9.5.3 Discussion of Results for  Couette Flow 

The numerical resul t s  were  obtained for  the case  in which the 

thermal  conductivity and the absorption coefficient a r e  independent of 

temperature,  and the index of refraction i s  unity. For  the Rosseland 

approximation to apply i t  was assumed that for  a l l  values of the ab- 

sorption coefficient considered h i s  much l e s s  than the mean f r e e  path 

of radiation (h<  < Xp = I/"). Predicted temperature distributions fo r  

Couette flow a r e  plotted in Figs. 9.3.and 9.4. We consider the effect 

of varying K but holding the same temperature a t  the boundaries. The 

physical nature of the resul t s  can be understood when we note that 

16 n 2 o T 3 / 3 ~  represents  "the radiative thermal  conductivity," k,. 

Three separate  cases  must  be considered: k > > k r ,  k < < k r  and, that 

in which the thermal  conductivity i s  of the same o rde r  of magnitude a s  

."the radiative conductivity. 



For  the f i r s t  case  (k>>  k r ,  Al >> A2), equation (9.24) can be 

approximated by 

This i s  an equation for  temperature distribution for  a s lab with 

temperature-dependent thermal  conductivity. The temperature profiles 

approach those for  pure conduction a s  the absorption coefficient in- 

c reases .  F r o m  Fig. 9.4 we see that the temperature profile for  the 
-1* 

case  in which K = 1 o4 f t  i s  a maximum 1.5 percent higher 

than that for  pure conduction. This difference further  decreases  (see  

Fig. 9.3) a s  the temperature level decreases .  

When "the radiative conductivity" predominates, that i s ,  k<<kr , 

A1 <<A,, equation (9.24) reduces to 

Thus, in the l imit  when energy t ransfer  by radiation predominates, the 

temperature distribution i s  independent of the value of the .absorption 

coefficient, but depends on the variation of K with temperature.  The 

resul ts  for  K = 10 ft-' and K = 1 ft-' a r e  indistinguishable, and separate  

curves could not be drawn. 

For  the case  when thermal  conductivity i s  of the same o r d e r  of 

magnitude a s  "the radiative conductivity, " we expect a n  increase in T 

a s  K decreases.  This increase in temperature should be accompanied 

by an  increase in the difference between the temperature predicted by 

equation (9.26) for  pure conduction and by equation (9.24) for  simul- 

taneous conduction and radiation. Figure 9.4 shows that this expected 

increase in the temperature difference does indeed occur .  A smal l  K 

indicates a large value of kr ;  hence T should indeed increase with 

*This value of K i s  quite high. However, much higher values of the 
absorption coefficients have been obtained experimentally, i .e . ,  a t  
a wavelength of 0 . 9 2 3 ~ .  Sun and ~ e i s s l e r ( 9 7 )  obtained avalue  of 
95,700 f 975 ft-' for  C02 gas. 
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decreasing absorption coefficient. For  small  values of K ,  l e s s  than 

10 ft-', the increase in temperature with the decrease in K is 
-. 

negligible. 

The resul t s  show that the presence of radiation increases  the 

temperature gradient above that of pure conduction a t  the cool wall 

and decreases  i t  a t  the hot wall. This .trend in the temperature gradi- 

' ent is expected. Since the effective thermal  co2ductivity increases  

with temperature,  the temperature gradients must  decrease  to con- 

serve the total energy flux (conduction plus radiation). The Rosseland 

approximation breaks down in the close vicinity of the surface and 

o.nly the presence of conduction insures  the continuity of the tempera-  

ture near  the wall. It is therefore expected that in close proximity to 

the walls the temperature predicted by using the diffusion approxima- 

tion for  the radiant flux vector wili be in e r r o r ;  however, this e r r o r  

decreases a s  the mean f r e e  path of radiation decreases .  

9.6 Flow Along a Wedge 

9.6.1 Introduction 

I Two-dimensional laminar  f1o.w and heat t ransfer  have been 

studied by many investigators. Historical sketches and extended 

bibliographies of analytical .and experimental studies a r e  given in the 
' 

texts of ~ o l d s t e i n , ( ~ 8 )  ~ o w a r t h , ( 3 9 ) ,  schlichting,'(88) ~ a i ( 7 4 ) a n d  others .  

Fac tors  that affect the development of a laminar  boundary layer  a r e  

p ressu re  gradients,  heat t ransfer ,  Mach number,  and the propert ies  of 

! the fluid under consideration. Since mathematical complexities p re -  

clude solutions of this problem in a completely general fashion, the 

l i terature consists largely of solutions treating particular colnbinations 



of these fdctors  . ( I  6, In previous analyses the heat t ransfer  by radia-  

tion has been ignored. The objective of this section i s  to investigate 

briefly the effect of the absorption coefficient on the temperature d is -  

tribution and heat t ransfer  in a medium that strongly absorbs thermal  

radiation. 

9.'6.2 Basic Boundary Layer  Equations 

The f i r s t  step in the analysis of laminar  flow and heat t ransfer  

along a wedge is to apply the conservation laws of m a s s ,  momentum 

and energy. The resulting pa r -  

t ial  differential equations r e -  

quire  simplification before they 

become amenable to numerical 

solution. The coordinate system 

for  the wedge is shown in Fig. 9.5, 

and the fundamental' equations 

which express  the law of conser-  

F16. 9.5 

COORDINATE SYSTEM FOR FLOW PAST A WEDGE. 

vation of m a s s  (6. l ) ,  momen- 

tum (6.2), and energy (9.12), with 

the standard laminar  boundary layer  approximations,(88) reduce to: 

Continuity: 

Energy: 

The heat generation pe r  unit volume has  been neglected. 



I 

-. 
The boundary conditions for  this sys tem of equations a r e  

u = v = O ,  T = T ,  a t  y = O  
-- (9.31) 

u = U, T = T ,  a t  y--KJ 

9.6 .'3 Similarity Transformation 

flSiinilarll  solutions a r e  discussed in reference 88. They 

constitute a par t icular ly 'simple c l a s s  of solutions of u(x,y),  and in this 

case  the sys tem of par t ia l  differential equations (9.28)) (9.29), and 

(9.30) reduce to two ordinary differential equations. It i s  proved in 

reference 88 that such s imi lar  solutions exis t  when the velocity of the 

potential flow i s  proportional to a power s e r i e s  of the length coordinate 

measured  f r o m  the stagnation point, i .e . ,  for 

u (x) = u1 xm 

We now introduce dimensionless coordinate 77, f i r  s t  suggested 

by Faulkner and ~ k a n , ( 2 0 )  so that 

The a s t e r i s k  designates a physical property evaluated a t  a n  a r b i t r a r y  

tempera ture  T*. The continuity equation (9.28) can be integrated by 

introducing the s t r e a m  function: 

The velocities in the conservation equations can 'be replaced through 

the definitions 

- " _- - u and & =-P p  * a~ P *  a x  



Thus the velocity components become 

P* a+ P* u = -  = - 
P ay P 

ulxm f'(7-j) = P' U f t  (q) 
P 

and 

I1 F r o m  Bernoulli 's equation: 

p t t P u 2  = constant, 

we have 

dp - -- - dU 
d x .  PU 

Assuming that density and viscosity a r e  functions of temperature and 

substituting equation (9.37) into (9.29), we obtain 

We define the dimensionless temperature,  0 , a s  

@=T/T* 

where T* i s  a n  a r b i t r a r y  temperature.  Assuming that the density, 

viscosity,  and thermal  conductivity a r e  functions of tempera ture  and 

introducing the dimen,sionless temp.erature,  a s  ,well a s  the p r e s s u r e  

I gradient, in the equation of energy, (9.3'0)~ we obtain 

Introducing in equations (9.38) and (9'.39) the independent di-  

mensionless variable 77, there  resu l t  the equations 

I and 



where t h e p r e s s u r e  gradient parameter  /3 i s  defined a s  P = 2m/(m+l). 

I1 The pr ime on f and 0 denotes differentiation with respect  to q .  The 

I - boundary conditions for  this se t  of equations a r e  obtained f r o m  equa- 

tions (9.31) and (9.33): 

f = f ' = O ,  0 = @  

f = 1,  0 = 0  a t  q-cx ,  

a r e  the t ransformed boundary conditions. 

The p ressu re  gradient parameter  /3 i s  related to the exponent 

m of the velocity distribution (9.32) thrdugh the relation P =  2m/(m+l).  

The case  P .<  0 corresponds to a n  unfavorable p ressu re  gradient; 

p = 0 (m=0) cbrresponds to a flgt-plate flow; and P = 2 (m=oo) co r re -  

sponds to an infinitely favorable p ressu re  gradient. It i s  shown in 

reference 88 that the case  of stagnation point in axisymmetric  flow can 

be t ransformed to the solution for  /3 = ( m  = +). 

Because of the nonlinearity of the system, i t s  high o r d e r ,  and 

i ts  classification a s  a "two-point boundary value problem," no standard 

integration methods will yield resul t s  expressible in closed form. 

Equatipns (9.40) and(9.41) were solved numerically by the forward 

integration method, a s  indicated in Appendix C. 

The local heat t ransfer  r a t e  to the body i s  determined by the 

sum of conductive and radiative t ransports .  The conductive energy 

t ransport  i s  given by 

I In t e r m s  of the dimensionless temperature distribution, this heat flux . . 

becomes 
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Thus,, the local heat flux by conduction i s  directly proportioned to the 

square root of the Reynolds number based on x a s  the character is t ic  . 

dimension and inversely proportional to x.  

Since the diffusion approximation fa i l s  a t  the surface,  the radi- 

ative energy flux a t  the wall i s  m o r e  difficult to est imate.  It i s  neces- 

sa ry  to obtain the temperature distribution a s  a function of y and not 

of the s imilar i ty  variable 77, and then to calculate the net radiant 

~ ,, 
energy flux f r o m  equation (2.29). This procedure is quite awkward and 

very cumbersome.  The total  heat flux might be approximated in a 

s impler  manner .  Instead of evaluating the heat  flux a t  the wall, we can 

est imate i t ' a t  a very  smal l  distance away f r o m  it, where the fluid 

velocity i s  st i l l  smal l  and where the Ro sseland approximation fo r  the 

radiant flux vector i s  valid. 

.. 
9.6.4 ~ l s c u s s i o n  of Results for  Flow Along a Wedge 

The flow along a wedge was investigated with the pur@ose of 

studying the effect of the absorption coefficient on the temperature 

distribution in the flowing radiating media.  The numerical  calculations 

were  performed fo r  two distinct cases .  F i r s t ,  in o r d e r  to separate  out 

the effect of the absorption coefficient on the temperature distribution 

f r o m  other var iables ,  the physical propert ies  were  assumed to be in- 

dependent of the temperature.  The .dimensionless temperature d is t r i -  

butions for  a Prandt l  number of 1 and p r e s s u r e  gradient parameter  /3 

of 0 and a r e  shown for  both the hot and the cool walls in Figs.  9.6 

through 9.10. Second, the case  in which the viscosity i s  a very strong 

function of temperature was considered. Both the velocity and temper-  

a ture  profiles a r e  therefore affected by this dependence. Pyrex  g lass ,  
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which i s  of physical interest  in reent ry  problems,  was chosen a s  a n  

example. The resu l t s  of these calculations a r e  given in  Figs.  9.1 1 

through 9.1 3 .  

0.5 

0. 4 

0.9 

0.2 

F I G .  9.10 

DIMENSIONLESS TEMPERATURE GRADIENT ACROSS THE BOUNDARY LAYER FOR 0 = 0 . 5 ,  
Np,=l.O, k = 0 . 0 5  B t u  h r - l  f t - l  R - ~  AND T * = 3 0 0 0 ° R .  

The velocity profiles for  the constant-property case  a r e  well 

known(20) and therefore will not be considered in this  work. Figures  9.6 

through 9.9 show that, f o r  Npr = 1 and a given K ,  the dimensionless 

temperature var ies  monotonically a c r o s s  the boundary layer  f rom the 

wall value to the f r e e  s t r e a m  value. When the absorption coefficient i s  

la rge ,  the temperature profiles approach those of a nonradiating media. . 

F o r  the hot wall when K = 1 o4 ft-' (keff-k),.the temperature distribu- 

tions a r e  indistinguishable. The temperature gradients a r e  decreased 

with the decrease  in the absorption coefficient. In the case  of boundary 

layer  problems in which the thermal  boundary layer  thickness i s  small ,  

the diffusion approximation of the radiant flux vector is  not applicable, 

even when the absorption coefficient i s  la rge .  Hence, one cannot expect 
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a 

to find a value of K for  which the tempera ture  gradient i s  a minimum. 

The difference between the temperature gradients for  the coolwall  and 

the hotwall  i s  a s  expected. Because a t  the coolwall  kr i s  much smal le r  

than a t  the hot wall, the temperature gradients fo r  the la t te r  a r e  grea ter .  

The temperature gradients f o r  the case  of a favorable p r e s s u r e  
1 gradient, P = 7, a r e  plotted in Fig. 9.1 0. As seen f r o m  the curves ,  the 

changes in the gradients near  the surface a r e  quite small .  The total 

heat flux was calculated a t  an  a r b i t r a r y  value of the dimensionless- 

s imilar i ty  variable,  77 = 0.03, f r o m  equation (9.44) by replacing k with . 

keff. The heat t ransfer  resu l t s  a r e  given in Table 9.1. 

I Table 9.1 

Heat ~ r a n s f e r  Results for  Flow Along a Wedge 

Expressed in T e r m s  of the Ratio q l l x / l / ~ R e x  

In o rde r  for  the Rosseland approximation to be valid, it i s  

necessary  for  the thermal  boundary layer  thickness to be a t  leas t  an 

P 

0 

o rde r  of magnitude grea ter  than the mean f r e e  path of radiation. Con- 

sequently, the heat flux was not calculated fbl; K = 102ft-' since the 

mean f r e e  path is  only 0.01 ft .  F o r  a f la t  plate ( P , =  0) and the hot wall, 

the'heat flux for  K = 103ft-I exceeds that f o r  pure conduction. This i s  

due to the fact  that the increase in the effective conductivity i s  g rea te r  

than the decrease  in the temperature gradient. In the case  of a favor-  

able p res su re  gradient,  ,B = *, the resu l t s  a r e  s imi lar  in t rend,  but the 

Cool wall 

I a \  heat fluxes a r e  about 30 percent higher.  

- 

kr = 

43.1 
57.0 

- 
Hot wall 

K =  10-4 

39.9 
52.7 

K =  10-3 

44.7 
68.1 

kr = o 

43.1 
57.0 

K =  10-3 

29.3 
38.3 

K =  

43.8 
56.9 



Pyrex  g lass  i s  of physical interest  because it has  been con- 

s idered(1~5,100) a s  an  ablating mater ia l  for  protection of ballistic m i s -  

s i les  reentering the ea r th ' s  atmosphere.  In these studies the energy 

t ransfer  by thermal  radiation has  been ignored. Since it  i s  possible to 

change the absorption coefficient of P y r e x  glass  by addition of a c a r -  

bonizing plastic(1) it i s  of in teres t  to study the effect of K on the heat 

t ransfer .  The values of the physical propert ies  and the dependence of 

viscosity on temperature were taken f r o m  reference 100. The viscosity 

variation with temperature was approximated by the relation 

The resul ts  a r e  presented ' in  Figs.  9.1 1 through 9.13. The dimension- 

l e s s  s t r eam function, f ,  the velocity ratio,  f '  , and the shear  function, 

f" ,  distributions a r e  plotted in Fig. 9.10 a s  a function of 77. The shear  

function f "  i s  related to the shear  s t r e s s  T through the expression 

Because of a very strong temperature dependence, the shear  i s  a max- 

i m u m ,  not a t  the wall, but a t  some point away f r o m  it. For  other 

values of K the maximum shear  occurs  a t  different values of the s imi-  

lar i ty  variable 7 7 .  The shear  s t r e s s  a t  the wall was found to vary little 

with the absorption coefficient. Looking a t  Figs.  9.1 1 and 9.12, we can 

see  that the thermal  boundary layer  thickness i s  about five t imes 

smaller  than the momentum boundary layer  thickness. 

The Navier-Stokes equations of motion a r e  not applicable for  a 

solid mater ial ,  and since Pyrex glass  possesses  no definite melting 

temperature,  2500°F was chosen a s  the boundary condition a t  the cool 

wall. This value i s  higher than the working point for  this type of glass .  

The dimensionless temperature,  Fig. 9.12, var ies  monotonically ac ross  

the boundary layer  f r o m  the wall value to the value a t  the edge of the 



boundary layer .  The temperature gradients ,  Fig. 9.13, a t  the wall for  

I1 al l  values of K do not differ f r o m  one another by m o r e  than one percent.  

For  K = lo2 ft-', the "radiative conductivity" a t  the wall i s  of the same 

o rde r  of magnitude a s  the thermal  conductivity. Therefore,  with the 

increase in the '!radiative conductivity" a l so  increases  and the tem- 

pera ture  gradient has  a slightly different t rend than for  other values 

of K .  The total heat fluxes fo r  kr = 0, K = l o 4  and l o 3  ft- '  differ f r o m  

one another by a few percent only. 
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DIMENSIONLESS TEMPERATURE AS A FUNCTION OF S I M I L A R I T Y  
VARl ABLE n FOR' P Y R E X  GLASS p = 0  AND T*=4460°R.  



F I G .  9 .  13 

DIMENSIONLESS TEMPERATURE GRADIENT AS A FUNCTION OF 
S I M I L A R I T Y  VARIABLE n FOR PYREX GLASS B=0 AND T*=4460°R.  

In boundary layer  problems when the thermal  boundary layer  

thickness i s  smal l  the Ro s seland approximation fo r  -the radiant flux 

vector must  be used with caution and only in cases  in which the mean 

f r e e  path of radiation i s  much shor te r  than the thermal  boundary layer  

thickness. When the absorption coefficient is la rge ,  the radiative con- 

ductivity i s  quite small ,  and the effect of radiation on the temperature 

distribution and the grddients i s  not appreciable.  The validity of the 

diffusional approximation of radiation i s  fur ther  discussed in 

Chapter 11. 
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10 THERMAL RADLATION BETWEEN TWO INFINITE 

PARALLEL PLATES 

10.1 Introduction 

With higher tempera tures  being utilized in various fields of 

engineering, thermal  radiation i s  becoming m o r e  important. Fur ther ,  

the simplified approximate approaches presented in s tandard heat 

t ransfer  texts (61y40J87) for calculation of energy t ransfer  and temper-  

a ture  distribution become unsatisfactory. It i s  therefore of in te res t  to 

take a m o r e  basic approach and attack the problem by starting f rom 

the phenomenological equation, the equation of t ransfer  of radiation. 

The problem considered he re  i s  that of thermal  radiation 

between two paral le l  planes separated by a finite distance. The prob- 

lem of this type requi res  the simultaneous solution of the sys tem of 

integral equations (5.5) and (5.10). To make the problem tractable  by 

analytical means,  i t  i s  assumed that the planes a r e  &finite in extent 

in the directions paral le l  and normal  to the plane of the Fig. 4.3. 

This assumption simplifies the problem in that the i r radiat ion be- 

comes constant on the surfaces bounding the medium. In addition we 

as sume  that the absorption and scattering coefficients a r e  independent 

of position. The medium under consideration can emit,  absorb  and 

scat ter  thermal  radiation. The formulation of the integral equation 

for incident radiation and net emission f rom a unit volume a s  well a s  

derivation of the equation for radiant heat flux a r e  presented. Finally, 

the integral equation governing the temperature distribution i s  solved 

approximately and heat t ransfer  calculated. 



To the wr i t e r ' s  knowledge, no work dealing with this type of a 

problem has been reported in the l i terature .  However, some related 

problems for the special  case  of s labs of infinite thickness have been 

dealt with extensively by a g rea t  number of astrophysicis ts  and 

mathematicians some t ime ago. No effort will be made to give a 

survey or summary  of the l i terature  of these investigations, and only 

a few pertinent references will be cited. 

~ c h w a r z s c h i l d ( 9 ~ )  derived and solved the equation of t ransfer  

for radiative equilibrium for the radiation in the outer a tmosphere of 

the sun. ~ c h u s t e r ( ~ ~ )  dealt with the problem of pure scattering. 

~ i l b e r t ( ~ ~ )  and ~ c h w a r z s c h i l d ( ~ ~ )  showed that the boundary value 

problems (solution of the equation of t ransfer )  of e lementary theory 

of radiation reduce to an  integral equation. Hilbert used this in his 

effort to prove Kirchhoff's laws. A comprehensive exposition to the 

theory of radiative equilibrium i s  summarized by Milne. (b8) He 

established integral equations for net emission in the case  of an  

infinite slab. The homogeneous form, (10.7), of this equation has  been 

investigated extensively, and Milne(68) has given approximate solu- 

tions to this  problem. Its solution, explicit a s  fa r  a s  the angular d is -  

tribution of emerging radiation i s  concerned, has  been obtained by 

means of Four ier  - Laplace integrals  by Wiener and ~ o ~ f ( l  08) and 

Hopf. (35) More recently, the solution of the nonhomogeneous form of 

~ i l n e ' s  f i r  s t  integral equation has  been obtained by ~ u s b r i d ~ e .  (9) The 

Wiener -Hopf technique for solving the homogeneous equation (1 0.7) 

has been extended by c a s e .  ( l  l )  

The problems ar is ing in neutron t ranspor t  theory a r e  mathe- 

matically identical to those of the t ranfer  of radiation. A problem of 

half space z > 0 bounded by the plane z = 0 filled by a noncapturing 

medium, which sca t te rs  neutrons isotropically without changing their  

velocity, has  been considered by Placzek and seide1.(77) No sources  ' 



a r e  present  in the medium and no neutrons enter  the plane z = 0 f rom 

outside. This problem, which represents  an  important case  in the 

study of neutron t ransport ,  i s  completely identical. with the Milne 

problem. More extensive bibliographies on neutron t ransport  prob- 

lems a r e  given in the book by ~ a v i s o n ( l ~ )  and the monograph by Case 

et  a i .  The d iscre te ,  coordinate, the variational, the exact and other -- 
methods used to solve the equation of t ransfer  a r e  descr ibed in the 

book by ~ o u r ~ a n o f f ;  (52) 

10.2 Derivation of Integral ~ ~ u a t i o n s  

10.2.1 Equation for Incident Radiation 

The equation for incident radiation can be obtained f rom the 

general  equation (5.10). However, this equation will be derived 

direct ly  by starting f rom the definition of incident radiation and the 

intensity distribution. A genera l  method of solving the simultaneous 

equations in 1 ~ ( x , p )  i s  to solve the single integral  equation inC;(x) by 

performing the integration of equation (2.22) on the functions IX(X, p) 

defined by equations (4.17) and (4.18). Thus equation (2.22) may  be 

put in the form 



At this point i t  i s  advantageous to  define the exponential 

integral function: 

In the French  and German l i terature  the symbol K (x) instead of E (x) 
n n 

i s  used, but the genera l  tendency now i s  to  use  the notation E (x), ,in 
n 

order  to  avoid confusion with the Besse l  functions. ,It i s  hoped that no . 

ambiguity will a r i s e  f rom this choice, since the symbol E i s  used for 

the emissive power. 

Substituting equation (10.2), interchanging the order  of integra- 

tion and introducing the symmetr ica l  kernel  E ~ ( P ~ I X  - x ' l ) ,  the integral 

equation (10.1) can be put in the form 

where 

An interesting special  case  of the integral  equation (10.3) a r i s e s  

when one considers the monochromatic radiation in a infinite medium 

and neglects the radiation f rom the surfaces,  that i s ,  we let I x(-a) = 

1x(a) = 0. F o r  pure scattering the emission coefficient, cX(x), i s  equal 

to zero.  In this special  case  the integral equation (10.1) simplifies to 

- h 

dx' 



X' -x 
Within the limits of integration, the exponents %(-I) and %(?) 

P 
a r e  positive, so that one can write 

Using the 'definition (10.2) of the exponential integral function, we 

ar r ive  a t  Milne's integral equation of the f i rs t  kind: 

In Milne's problem, I a 1 = m. In addition, i f  one measures the distances 

in the units of mean free path, X = 1/6 and considers, a problem in 
P 

which the lower limit of integration in equation (10.6) i s  zero, one 

This i s  the form of Milne's integral equation of the f i rs t  kind which has 

been studied by many mathematicians and physicists. 

10.2.2 The Equation for Net Emission of Radiation 

The net emission of radiation from a unit volume i s  defined by 

equation (2.30). Thus for our system, the use of equation (10.3) leads 

since E ~ ( x )  = n2 K A ~ ,  X(x) and CX(x) = 4 m 2  K X X I ~ ~ ,  JX) for a medium 

having a unit refractive index, n = 1, (10.8) becomes 



No difficulty i s  introduced by considering a medium having refractive 

index different f rom unity. It happens that for gases the index i s  very 

close to one, i.e., for C 0 2 , n  = 1.000449 to 1.000450 a t  1 a tm pressure  

and O°C. 

', The total net emission from a unit volume per  unit of time i s  

. . 
' , ,  obtained by integrating (1 0.9) over a l l  wavelengths: 

10.2.3 The Equation for the Radiant Heat Flux 

The monochromatic radiant energy flux per'pendicular to the 

.' 'planes a t  any point in the medium i s  given with the help of equa- 

tion (2.31) by . . 
. . . . 

+- - - -- 
q":  r ,X = E k n = p X ( r , ~ ) n - ~ l ' d a  (1.0; 11) 

Since d a =  sineded@, the radiant heat flux can be expressed a s  



Since P = cos dand  d P  = -sinede, the above relation can a lso  be written 

Equation (10.12) expresses ,  for an  infinitely sma l l  surface 

element o f  a layer ,  the net r a t e  of flow of photons a c r o s s  a layer  per  

unit a r e a ,  per  unit wavelength interval, and per unit interval of t ime. 

With the proper  choice of the direction of the normal  to the layers  of 

the medium f rom which 0 i s  measured  (see Fig. 4.3), q v I r , ~  represents  

the difference between the energy of wavelength X t ransmit ted to the 

left a c r o s s  each unit of surface a r e a  of a given layer  f rom the layers  

to the right of it,  E', and the energy E- t ransmit ted towards the right 

a c r o s s  each unit of a r e a  of the same layer f rom the layers  to  the left 

of it. 

Substituting the appropriate I i s  f rom (4.17) and (4.18) in equa- 

tion (10.13), one gets  

- 
t - 

= E X  - E X  = 2a I.1 p d p t  2n P 
q:, X P ~ P  

Inter changing the o rde r  of integration and introducing the exponential 

integral  function, E (x), equation (10.14) becomes 
n 



OX a 

+ - 4 
E [ ( x  x ( X I )  d x  - 2 i x E 2  [PAX-XI] C ~ x t ) d x t )  .* 

X 
4 

The total  radiant heat flux i s  obtained by integrating (10.15) over a l l  

wavelengths : 

10.3 Methods of solution of Fredholm Integral E uations 

of the Second Kind 

The solution of the l inear Fredholm integral equation of the 

second kind with parameter  X 

where a and b a r e  constants,. can be obtained by five different 

methods : (89) 

( I )  The f i r s t  method, that of successive substitutions, due to 

Neumann and Liouville gives the unknown function, @(x), a s  an  integral 

s e r i e s  in .A. 



(2) The second method, due to Fredholm, gives the unknown 

function, dx ) ,  a s  a rat io  of two integral s e r i e s  in X, each s e r i e s  has an 

infinite radius of convergence. 

(3)  The third method developed by Hilbert and Schmidt gives 

the unknown function, $(x), in t e r m s  of a set  of fundamental functions. 

(4) The fourth method i s  that of integral t ransforms:  Four ier ,  

Laplace, Mellin, and others.  This method i s  sometimes advantageous 

because i t  can give a closed form solution expressed  a s  contour inte- 

gra ls .  However, when the kernel  ~ ( x ,  o r  f(x) a r e  complicated func- 

tions, a s e r i e s  solution might be s impler .  

(5) Integral equation (10.17) can a lso  be studied either by 

i terative methods o r  by variational methods. Both a r e  extremely 

flexible. The weak point about the variational methods i s  that they can 

only give approximate solutions, though the order  of approximation can 

be extremely high. 

The solution of equation (10.17) in t e r m s  of Neumann integral 

s e r i e s  i s  given by ~ o v i t t ( ~ O )  if the following a r e  satisfied. 

(1) The kernel  K ( X , ~ )  i s  r e a l  and continuous in the region R, 

f o r  which a < x <b, a <  4 - < b; lK(x, Q ~ < M ,  - where M i s  the upper bound 

and ~ ( x ,  4) f 0. 

(2) The function f(x) f 0, i.s r e a l  and continous in I; a 5 x <_ b. 

(3)  The absolute value of the constant parameter  A i s  

The equation (1 0.17) has then one and only one continuous 

solution given by absolutely convergent integral  ser ies :  



10.4 Solution of the Equation for Incident Radiation 

. 
Very-lit t le data a r e  available on such radiative properties a s  

absorption and scattering coefficients. In particular,  the dependence 

of these properties on wavelength, temperature, and pressure  has been 

investigated only in certain wavelength regions only for low pressures  

and temperatures.  Since the data a r e  so scanty, to make the problem 

more  tractable analytically, the medium i s  considered to be grey. In 

the r e s t  of this chapter the surfaces shall  be considered to be sepa- 

rated by a distance a ,  i.e., 0 _(x <a. In addition, measuring the dis- 

tances in the units of the mean free path, h = 1/p, or introducing the 

optical thickness, = Px, a s  the independent variable, equation(10.3) 

reduces to 

where 

and 

T - 0 - P a  . 
Because of the properties of E ~ ( ~ T - T ' ~ ) ,  the general solution of 

equation (10.19), which i s  a Fredholm integral equation of the second 

kind, can be written in the form of an infinite Neumann series:  



The logarithmic infinity of the kernel  function a t  ze ro  argument 

(17-41) = 0, causes no difficulty, since 

for  To 503, and therefore the convergence of the se r i e s  may  be easi ly  

demonstrated(35) for  either^/^ <1 or  To < m. The limiting case of 
' 

a/p = 1 and 70 = m has  been sett led by Hopf. (3 5, One can further show 

that no other bounded continuous solutions exist. However, for a 

medium in which the absorption coefficient i s  much smal le r  than the 

scattering coefficient, 0//3 =. 1, the convergence of the s e r i e s  (10.20) 

i s  ve ry  slow and a large number of t e r m s  would have to be included. 

The r-eason that this happens i s  that the kernel  El (Ix-6 I) i s  not a well- 

behaved function. In the other extreme case  in which the scattering 

coefficient i s  much smal le r  than the absorption coefficient, G/P = 0, 

the equation (10.20) reduces toC ' (7)  = f (7) .  

Before the' incident radiation can be,calculated f rom equation 

(10.20), the temperature distribution in the medium must  be known. 

In most  problems this information i s  not available. The temperature 

distribution (or the black body emissive power) can be obtained f rom 

equation (10. l o ) ,  which, i f  rewri t ten and rearranged,  takes the form 

where 

For  steady state,  the net flow of radiation through each volume 

element vanishes, that i s ,  the radiant energy absorbed per unit t ime by 

the volume AV i s  equal to the radiant energy emitted per unit t ime by 

the same volume; thus for the net  emission,& = 0. This is defined a s  



. radiative equilibrium. However, this does not mean that energy is  not 
t 

t ransferred from one surface to another by radiation. It should be 

noted that in the general  case in which other modes of energy transfer 

a r e  present, the net emission from a unit volume, C could be nega- n ' 
tive a s  well a s  positive. Even for this simple one-dimensional prob- 

lem, the simultaneous solution of the integral equations (10.19) and 

(10.21) i s  not easy. 

10.5 Equations for Heat Flux in the Medium 

If the incident radiation and temperature a r e  known, the heat 
/ 

flux a t  any point in the medium can be given directly by equation (10.16): 
+ 

q: = E -E- = 2 [E(TO) E3(T0-T) - E(O) ~ ~ ( 7 )  

Equation (10.22) expresses the conservation of radiant energy flux, 

that is ,  for the system in consideration the flux i s  constant: d q " / d ~  = 0 . 
r 

At the plane T =  0 (x = o), the heat flux can be written a s  

and similarly the heat flux a t  the plane T = 'To (x = a )  is  given by 



- 21T0 E,(To-T') t!?(Tf) d~ 
> 4P 'I (1 0.24) 

Since the radiant energy flux i s  constant, equations (10.23) and (10.24) 

yield the s a m e  resu l t  for the heat flux. . , 

10.6 Temperature Distribution for Radiative Equilibrium 

The problem of radiative equilibrium has been inve s tigated by 

~ i l n e , ( ~ ~ )  ~ o ~ f ( ~ ~ )  and others.  The equation solved by these investi- 

ga tors  i s  of the same form a s  equation (10.7). The solution of Milnets  

integral equation of the f i r s t  kind becomes extremely complex. More- 

over,  the solutions obtained for the integral equation a r e  usually 

expressed a s  contour integrals.  These a r e  put in a tractable form for 

riumerical calculation only af ter  transformations.  

In o rde r  to  obtain the temperature distribution in the radiating 

medium when scattering i s  present ,  equation (10.21) must  be solved 

simultaneously with equation (10.19). For  radiative equilibrium, 

c f  = 0, and hence equations (10.19) and (10.21) reduce to 
n 

Since Ebb(7) =  the solution of (1 0.25) yields the temperature 

distribution in the medium. 

To the author 's  knowledge, no, analytical solutions have been 

obtained for  this type of an  integral equation. Integral equations of 

th? convolution or  the Faltung type [equation (1 0.25) i s  of this type] 

were  f i r s t  studied by ~ o e t s c h ( ' ~ )  and ~ o c k ( ' ~ )  with the help of Laplace 



t ransforms.  However, for the problem of consideration he re  i t  i s  ve ry  

. . difficult to obtain the t ransforms of the right-hand side of equa- 
4 tion (10.25). Because of this and the inversion difficulties, the Laplace 

t r ans fo rm method of solving the integral  equation had to  be abandoned. . 

. Since an  exact solution cannot be obtained, a n  effort was made to 

a r r i v e  a t  an approximate solution. Of the seve ra l  methods available 

for solGing equation (10.25), the method of successive substitutions 

, 
and the variational method a r e  the most  attractive.  The variational 

method i s  suggested by i s  m o r e  involved, since a double 

integral  of the type 

has to be evaluated, and the complexity of integration inc reases  great ly  

with the. number of terms '  approximating the black body emissive power 

E ~ ~ ( T ) .  We therkfore turn to the method of successive substitutions 

with undetermined parameters ,  which i s  s imi lar  to  the variational 

method but le s s elegant mathematically. 

When the unknown function, such a s  E (T), can be expressed 
bb 

by equation (10.25), in which the unknown function appears  explicitly 

on the left-hand side of the equation and a s  par t  of the integrand on the 

right, it i s  usualiy possible to find the unknown function by means of, 

s u c c e s s i ~ e  approximations resulting f rom a sequence of i terations.  On 

starting f rom a reasonable f i r  s t  approximation, a convergent sequence 

of functions i s  obtained, each being found by substituting i ts  predeces-  

'sor in place of the unknown function on the right-hand side .and evalu- 

ating the resulting integral. The l imit 'of which the sequence converges 

i s  the rigorous solution of the equation. 

Various i terative methods for solving Milnels  f i r s t  integral  

equation have a l so  been presented by ~ o u r ~ a n o f f .  (52) The i te ra t ionof  
*. . 



functions containing pa ramete r s ,  a s  discussed in reference 52, will 

be followed in this work. 'The integral  equation (10.25) can be written . 

a s  

If a function E (7) i s  assumed and inser ted  under the integral sign 
bb, 1 

on the right side of equation (10.26), a function E (7) i s  produced on 
bb, 2 

the left. If the function E (7) i s  inser ted  under the integral sign of 
bb, 2 

(1 0.26) and the procedure repeated, a sequence of functions E (T), bb, 1 

Ebb, 2 
(T). . . E .(T) i s  obtained. This sequence converges, a s  j -03, 

bb, J 
to the rigorous solution of equation (10.25). 

As a f i r s t  approximation to  E (T), we can assume a function 
bb 

such a s  

Ebb(T) = co + c,T + c2  E2(TO-T) + c3 ~ ~ ( 7 )  + c4E3(TO-T) . (10.27) 

This form i s  suggested by the fact that i f  the method of successive 

substitution i s  applied to equation (10.26), beginning with 

T 
E , 

bb, 1 

the next approximation i s  

However, the integrals of the form 

when i s  f ini te 'are  ve ry  difficult to evaluate, and we a r e  forced to  

abandon this approximation for E (7). Various other functions 
bb 

suggest themselves,  but none appears  quite a s  simple a s  the polynomial. 

It should be pointed out that the polynomial approximation does not 

seem to be well adapted to the problem we a r e  considering in that i t  i s  



not orthogonal. However, i ts simplicity outweighs this disadvantage. 

I One other advantage is  that integrals of the type 

E ~ ( ~ T - T ' ~ )  7'" d ~ '  lTO , 

yield exponential integral functions which a r e  already computed and . 

I tabulated, i.e., in references 10 and 52. So, a s  an approximation to 

 ebb(^), we assume 

E (7) = E(O) 
bb 2 D n ~ n  . 

The parameters Do, Dl, . . . D a r e  to be determined. With 
n 

I two parameters  a t  one's disposal, it i s  clearly impossible to approxi- 

I mate the exact function in the whole interval 0 5  7 1  To. It i s  natural, 

I therefore, to suppose that better solutions would be obtained i f  a 

I larger  number of terms were retained in (10.28). The conservation 

of radiant flux, a s  expressed by equation (10.22), a t  optical depths 

T1, T2 .  . . Tn,gives us enough conditions to determine any desired 

number of the constants. As n - m ,  the approximation (1 0.28) con- 
1 .  

verges to the rigorous solution of equation (10.25). , ' 

The integrations necessary for the evaluation of the undeter- 

mined parameters  a r e  given in Appendix A. Th.e black body emissive 

power i s  assumed to be approximated by five t e rms  of the ser ies  

(1 0.28). The solution of the system of five si&ultane6us algebraic 

equations (A. 7) through (A. 9) i s  straightforward. 
. , 

10.7 Discussion of the Results 

I . , The state of radiative equilibrium, ,when the medium i s  

stratified in parallel layers,  i s  characterized by a. certain net radiant . 
energy flux, and a t  the same time the net emission a t  any point from 

I . 

.. 



the medium vanishes. From the definition of the net emission, equa- 

tion (2.30), we .have that 
r, 

where the intensity I i s  obtained from the .solution of the equation of 

t ransfer .  The composition of E (i) i s  shown in Fig. 10.1, and it i s  
bb 

The physics of the problem considered here is  well understood, 

and the mathematics of the formulation i s  straightforward; neverthe- 

less ,  the solution i s  most difficult. The unfortunate fact i s  that the 

kernel E1(17-7-'1) i s  undefined at  the exact point of interest.  This 

singularity i s  not physical, but only mathematical. 

integral equation (10.25) has very simple solutions for two 

special cases.  For a diathermal medium, P = 0, the solution of 

equation (1 0.25) becomes 

E (x) = ~ ( 0 )  + ~ ( a )  
bb 2 

For very large optical thicknesses, To -03, the solution of equa- 

tion (10..25) i s  given by . .  

This can be readily verified b y  substituting (1 0.3 1)' into the integral 

equation (1 0.25). The val6e of this. exact solution for large optical 

thicknesses lies in the fact that i t  tells us the' asymptotic form of 

E (7) for large values ofTO when the proxfmity of the boundary i s  
bb 

taken into account. A tr'ivial. solution of the integral equation (10.25) 

can also be mentioned. ~ h e n E ( 0 )  = E(rO), ' that i s ,  i f  the two surfaces 
, 

a r e  at  the same temperature, the temperature a t  any point in the 



To / 
E ( T ~ )  MAKES A COHTRlBUTlON f E ( T ~ ) E ~ ( T ~ - T )  TO  ebb(^) 

) FRO# THIS LAYER I S  
.!. E , ( T ' - T ) E ~ ~ ( T ' ) ~ T ' .  
2 

d ~ '  CONTRI BUT lOll TD Ebb(7) 
-!- FROM THIS LAYER IS  

E(O) MAKES A CQNTRlBUTlON f E(O)E~(T)  TO Ebb(+]. 
0 

THE COMPOSITION OF  ebb(^).. 



medium between the two plates i s  constant. This i s  the condition of 

thermal equilibrium; thus we have not only radiative but thermal 

equilibrium a s  well. 

The resul ts  of calculations a r e  presented in Figs. 10.2 through 

10.4 for several  values of E(T~)/E(o). It is  evident that the black body 

emissive power distributions a r e  practically straight lines. The 

biggest departure from a straight line occurs a t  la rger  ratios of 

E(T~)/E(o) when the optical thickness i s  equal to one (see Fig. 10.3). 

The temperature distribution can readily be calculated from the 
#- - - 

relation T(T) = E (T)/CI T . 
l b b  l 1  - - 

It i s  seen from the figures that in a l l  cases a temperature step 

exists a t  the radiating surfaces, the magnitude of which depends on 

the optical thickness of the medium and on the values of ~ ( 7 ~ )  arid 

~ ( 0 )  (the amount of radiant energy transmitted). The temperature 

s tep i s  small  a t  large optical thicknesses (To = lo), and one can 

readily see from equation (10.31) that no temperature step exists for 

TO -a. Further ,  the step decreases with the decrease in the ratio 

E(T~)/E(o), and in the limit when E(T~)/E(o) - 1, the s tep vanishes. 

The fact that a temperature s tep exists a t  the radiating sur-  

faces i s  a little hard to understand physically. To shed more light 

on this point, we consider an example. Take the case in which 

E(T~)/E(o) = 10 and To = 0.1. Since To i s  small, the contribution to 

E (7) will be due mainly to ~ ( 0 )  and ~ ( 7 0 ) .  Thus, neglecting the 
bb 

emission from the medium, a t  7 = 0 we have that 

a value which i s  considerably higher than what we postulated originally. 

On the other hand, for E (7) a t  T = To, we have 
bb 
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and thus a very sharp decrease in the temperature due to the emission 

of radiation from the surface a t  T= To. A step increase in temperature 

a t  the r$diating surface was also predicted by ~hor in (93)  for a moving 

radiating medium in the absence of energy transfer  by conduction. 

The radiant energy fluxes computed from equation (10.24) a r e  

given in Table 10.1. For instance, if the media were diathermal, the 

heat transfer for E(T~)/E(o) = 2 would be q " / ~ ( ~ )  = 1, instead of 0.9172, 
r 

0.5281 and 0.1098 for To = 0.1, 1.0 and 10.0, respectively. Thus, the 

heat t ransfer  i s  reduced considerably by the presence of an  absorbing 

and scattering medium. The absorption and scattering coefficients 

enter then into the problem only through the optical thickness, which i s  

the pertinent variable. 

Table 10.1 

~ h &  Calculated Values of the ~ o r m a l i z e d  Heat Flux, q " / ~ ( ~ )  
r 

, To the author's knowledge, there a r e  neither numerical nor 

analytical solutions,' of the integral equation of the type (10.25). The 

solutions obtained in this work a r e  probably unique; however, the 

validity and accuracy of the resul ts  obtained by using only five t e rms  

in the equation approximating E (7) could not be checked independently. 
bb 

The difference between resul ts  obtained'by using a smaller number of 

t e rms  in equation (10.28) can be readily estimated. ~ h u s ,  using only 

two t e rms  f rom equations (A. 7) and (A. 8), we obtain 

. E  ( 7 ) = D 0 + D 1 T  , 
bb 

(10.32) 



where 

and 

For  the range of parameters  considered, the resu l t s  obtained f rom 

equation (10.32) differ only by a maximum of k 3 per cent f rom those 

with five t e r m s -  in equation (10.28). In view of this fact, the resu l t s  

a r e  believed to  be accurate  to +- 0.5 per  cent. 



11 HEAT TRANSFER B Y  SIMULTANEOUS 

CONDUCTION AND RADIATION 

11.1 Introduction . 

Energy exchange between an absorbing medium and the walls of 

the duct takes place by conduction, convection and radiation. However, 

a s  higher tempera tures  a r e  reached, the radiant energy contribution 

tends to become a la rger  percentage of the total  heat t ranspor t ,  and 

the temperature distribution cannot be calculated by neglecting the 

radiative energy t ransfer  in. the energy equation. 

The problem i s  fur ther  complicated by the fact that the ab- 

sorption coefficients of such common gases  a s  COz and H20 a r e  quite 

distinct, and, although the absorption spec t ra  of these and other gases  

have been studied for  a long:time, data on the frequency distribution of 

absorption coefficients . a r e  incomplete and the determination of inte- 

g r a l  absorption is complex. 

Then, too, the equation of energy (6.1 1) i s  most  intractable in 

these cases .  In fact, no general  solutions a r e  known. Therefore,  a s  

the f i r s t  s tep in the analysis of this  general  problem, the t ransport  of 

energy by simultaneous conduction and radiation i s  studied in this 

chapter.  The geometr ical  complexity i s  avoided by considering a one- 

dimensional system.   ow ever, before we proceed to this problem we 

will briefly consider the m o r e  general  equation of energy for  flow of 

radiating medium between two paral le l  plates (see Fig.  11.1). 



PHYSICAL MODEL AND COORDINATE SYSTEM FOR FLOW 
BETWEEN TWO PARALLEL PLATES. 

Now the general  ene'rgy equation (6.11) i s  simplified i f  the fol- 

lowing assumptions a r e  made: 

1. The flow i s  steady and in the x-direction only. 

2.  The physical propert ies .  a r e  independent of temperature.  

3 .  The viscous dissipation of energy is negligible. 

4. There a r e  no body fo rces  and the energy generation due to 

p res su re  gradients is negligible. 

5. The surfaces a r e  diffuse and the radiosity on a sur face  is 

constant. 

6.  The index of refraction of the medium i s  unity. 

7. The scattering i s  negligible compared to the absorption 

and becomes 



f m  

[ b ,  X p  - i l , 4 2  ~ds1)  -7X(S1, P) cos 8 dA - 2 nl;fp - ~ S I  I 

and if the absorption coefficient i s  independent of wavelength the net 

, emission can  be written a s  

The following simple boundary conditions a r e  postulated: 

. T = T i  I . , ,  . 

X = 0, 

T = To y = 0, , (1 1.2) 

y = h, T = Th 

A solution of the nonlinear integro-differential equation (1 1.1) i s  

very  difficult to obtain. Therefore,  f i r s t ,  an attempt will be made to 

take advantage of the knowledge built into the integro-differential equa- 

tion and the boundary conditions to obtain information without attempt- 

ing to solve the equation and, second, to r e s t r i c t  ourselves to the 

solution of one specific problem. 



1 1.2 Analvsis of the Dimensionless Enernv Equation 

The differential method of dimensional analysis a s  developed 

rigorously by  line(^^) will be used. Therefore,  we non-dimensionalize 

the dependent and independent variable s by using 

where $ and h a r e  the longest dimensions in the x and y directions,  

respectively,  and T* i s  an a r b i t r a r y  temperature.  It i s  to be noted 

that the above definitions of the dimensionless var iables  a r e  quite 

a rb i t ra ry .  However, these definitions make the dependent nondimen- 

sional variables of the o rde r  of magnitude of unity, and the independent 

var iables  run f rom zero  to the o rde r  of unity over the range of 

integration. 

Then 

and 

Substitution of the new variables in (1 1 . l )  yields 

where 
r 



Dividing both s ides  of (1 1.3) by  4 K a T * ~ ,  which is the energy 

emitted by the unit volume of the medium a t  tempera ture  T* per  unit 

t ime,  we have 

This equation i s  nondimensional. It has  been formulated in a 

fashion that each se t  of t e r m s  containing variables  (that i s ,  each de-  

rivative t e r m  in this  instance) will be  of the ordel: of magnitude of unity 

when integrated. The .parameters  appearing in front of the par t ia l  

derivatives can be interpreted a s  follows: 

! .  
pu cpT* - - Energy content in  the flowing fluid 

n1 = 
~ ~ K o T * ~  Energy radiated f rom the flowing fluid 

kT * - - Energy t ransfer  by conduction in the x direction 
.rr2 = 

4a2 K O T * ~  Energy radiated in the x direction f rom the 

. flowing fluid 

kT* - - Energy t r ans fe r  by conduction' in the y direction 
7T3 = 

4h2 K O T * ~  Energy radiated in the y direction f rom the 

flowing fluid 

q "' - Ener,gy generated in the fluid 
IT4 = , - 

4 K C J T * ~  Energy radiated f rom the flowing fluid 

Thus the nondimensional equation establishes a relationship 

between the dependent variable,  the independent var iables ,  and the n's. 

It i s  ppssible to consider fixed values of n ' s ,  which implies  studying 

one particular problem in the c1,ass considered and then to study re la -  

tions among the variables .  It i s  also-possible to consider the var iables  



fixed, a t  a given location, and then to study the variation of T 'S ,  which . 

means comparing one problem of the c l a s s  considered with a different 

physical problem in the same  c l a s s .  

For  large values of T* the dimensionless pa ramete r s  T a r e  

-' very much l e s s  than unity. In this case  the t ransfer  of energy i s  by 

radiation only. In our  particular problem >)h, so  that T 2  << T3; this 

azo 
indicates that the t e r m  with- can be neglected in comparison with - 

a 2 0  a<" 
the t e r m  -. If nl and nTT3 a r e  of the same  o rde r  of magnitude, the 

t e r m s  containing and cannot be dropped and no fur ther  simplifica- 

tion i s  possible. Two additional special  cases  a r i se :  a )  T l > > ~ 3  (in this  

case  the energy t ransfer  by convection is of a much g rea te r  o rde r  of 

magnitude than the energy t ransfer  by molecular conduction and there - 

fore  the la t ter  can be neglected when compared with T ~ ) ,  and b) T j  

>> -rrl, for which the - reverse  i s  t rue.  

11.3 ~ ~ u a t i o n  of Energy for  Simultaneous Conduction and Radiation 

Consider the t ransfer  of ' energy  by conduction and radiation 

only. Fur the r ,  assume that energy t ransfer  by conduction in the 

x direction i s  negligible compared with that in the y direction. Then, 

introducing the dimensionless temperature and dividing by 4~ 0 T * ~ ,  

the steady-state energy equation (1 1.1) reduces to 

Since there i s  no temperature variation in the x direction, the distances 

can be measured in the units of the mean f r e e  path of radiation. In- . 

troducing the optical thickness,  T = Ky,. a s  the new independent variable 



and utilizing the expression for net emission,  &, obtained in Section 

10 i2.2 for  a media enclosed by two paral le l  planes,  we have 

where T~ = K h. Substituting (1 1.6) in the energy equation (1 1.5), one 

obtains 

If we assume the surfaces a r e  black, E = Ebb = 0 T4, equation (11.7) 

I can be written a s  

where 
* ~ K ' T . *  k~ 

- N = ~ K O T * ~  - ~ O T * ~  

The magnitude of this dimenionless parameter  determines the 

I relative role of the conduction t e r m  vs.  the radiative t e r m s .  F o r  

I large values of N conduction predominates,  while radiation i s  the i m -  

portant energy t ranspor t  process  for  smal l  values of N. The importance 



of the tempera ture  in this parameter  i s  obvious. The influence of 

other physical variables i s  a s  expected. Fur ther ,  the integro- 

differential equation ( 1 1.8) i s  nonlinear and of the second o rde r  in 

which the unknown function, @(T), occurs  under the integral sign to the 

fourth power. 

The boundary conditions in dimensionless notation for  equation 

(1 1.8) a r e  assumed to be 

T =  = h) ,  @(T) = @ ( T o ) .  J 
The diff.erentia1 equation for  tempera ture  distribution can also 

be obtained by a different consideration. Since the problem studied i s  
' 

a steady-state one and one-dimensional along the y axis ,  af ter  integra- 

tion of equation (6.5) we obtain 

where q" i s  the total  energy flux (conduction t radiation), which must  
'I 

stay constant. The energy flux by radiation, q r ,  i s  given by equation 

(1 0.16), except that the independent variable he re  i s  y instead of x. 

The above differential equation, instead of (11.5), can also be the s t a r t -  

ing point for the determination of the temperature distribution. 

11.4 Methods of Solution of the Integro-Differential Equation 

To the author 's  knowledge there  a r e  no exact mathematical 

methods of solving the integro-differential equation (1 1.8). Three  



approximate methods of solving this equation will be indicated below. 

1. The f i r s t  method is that of .linearization of the dependent 

variable.  If the temperature difference between o (0) 'and @ ( T ~ )  i s  smal l ,  

we can define. the average tempera ture  a s  

and then the temperature difference 

does not exceed ' ( O )  - "o). ~ x ~ a n d i n ~ , @ '  (7) by binomial expansion, 
2 

the temperature can then be approximated by 

which i s  l inear in ~ ( 7 ) .  Using this relation, the nonlinear integro- 

differential equation (1 1.8) can be reduced to a l inear one. The linear 

integro -differ ential equation can then be reduced to a l inear integral 

equation and solved. 

2 .  A solution of equation (1 1.8) can be obtained by an i terat ive 

method. To this end, solve f i r s t  the pure conduction equation ( C = 0): n 

The solution of this equation with the boundary conditions (1 1.9) can be 

written a s  



Substituting this  r'esult for  @ ( T I )  under the integral  sign of equation 

(1 1.8). one obtains a complex nonlinear ord inary  differential 

equation. The solution of this equation can again be substituted under 

the integral  sign of equation (1 1.8) and the procedure repeated until 

convergence i s  achieved. However, the equation becomes ve ry  in- 

volved and already af ter  the f i r s t  substitution of (1 1.1 1)  only a numeri-  

ca l  solution of the differential equation i s  possible. 

3 .  The third method i s  also that of i teration. , The integro- 

differential equation i s  converted into a nonlinear integral  equation. 

The iteration i s  performed on this  equation. The solution of equation 

(1 1.8) will be obtained by this method and i s  described below. 

11.5 Solution of the Integro-Differential Equation 

To solve equation (1 1.8). vo l t e r r a ( lo5 )  has  suggested to inte- 

grate  twice with respect  to T f rom 0 to r. This gives a nonlinear 

Fredholm integral equation of the second kind: 

where . 

and 

Here C1 and CZ a r e  integration constants to be determined f rom the 
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boundary conditions of equation (1 1.8). The evaluations of functions 

G(T) and @(T,T')  a s  well a s  of the constants C1 and C2 a r e  performed in 

the Appendix B. In this way, equation (1 1.12) for  the tempera ture  

distribution reduces to 

where 

To the author 's  knowledge there a r e  no known solutions of the 

equation of this type. It i s  to be noted that for  the case  when conduc- 

tion predominates,  the parameter  N i s  large and equation (1 1.1 3) 

reduces to (1 1.11). 

A solution of (1 1.1 3) can be obtained by iteration. ( 8 9 )  If 

@(T) i s  a monotonic function, then the following recursion relation: 



gives  a sequence {B j (T)} which converges  t o  the solution @(T) of 

equation (1 1.13). The  l imi t  t o  which the sequence converges  when 

j - w  is the r igorous  solution of the  .equation with appropr ia te  constants  

C1 and C2 which sa t i s fy  the  boundary conditions (1  1.9) f o r  given 

p a r a m e t e r s  TO and N. The numer i ca l  solution of equation (1  1.14) is 

d i s cus sed  in Appendix D. 

11.6 Heat  T r a n s f e r  

Since the sy s t em cons idered  h e r e  is in a s t eady  s ta te ,  the  heat  

f lux is constant  and is given by  equation (6.14). In ou r  pa r t i cu l a r  c a s e  

th i s  equation reduces  to  

Since d!2 = sinedOdO = - 2 n d p ,  the  heat  flux a t  the  upper wal l  t ~ =  rO) 

becomes  

where  

and was  obtained f r o m  equation (4.18). Introducing the exponential 

i n t eg r a l  function (lO.2), equation (1  1.16) can  b e  wr i t t en  a s  



The dimensionless tempera ture  gradient,  

i s  obtained f rom equation (1 1.1 3) by  differentiation: 
. . 

Substituting equations (1 1.18) and (1 1.19) into equation (1 1.17), one 

obtains 
P 

It i s  obvious that the presence of the rma l  radiation changes'the tem-  

peratur e distribution in the radiating media. If only thermal  radiation 

were present ,  the heat flux would be given by the f i r s t  t e r m  of equation 

(1 1.20). In the presence of absorbing ,media the energy flux by conduc- 

tion i s  given by the f i r s t  two t e r m s .  The third,  fourth and fifth t e r m s  



I of some of the t e r m s ,  equation (1 1.20) reduces to 
, 

L Jo.' J J 

11.7 Discussion of Results 

The solution of equation (1 1.14) b-y i teration i s  quite lengthy and 

I presents  some mathematical difficulties. When the parameter  ,N i s  

small ,  the convergence of this  equation i s  poor,  even when.a ve ry  

reasonable initial guess f o r  temperature distribution is made. The 

temperature profile and the function G(T) a r e  plotted in Fig.  11.2 for  

the case  that N = 0.0 1. The contribution of the integral t e r m ,  appear -  

ing in equation (1 1;14), i s  predominant. Since the tempera ture  under 

the integra.1 sign i s  ra ised to the fourth power', the value of the integral  ' 

i s  very sensitive to the initial guess .  

The computed resul ts  for  the temperature distributions a r e  

presente.d in Figs .  11.3 through 11.5. The range of the dimensionless 

parameter  N covered in the calculations i s  f rom 10 to 0.01. The 

curves for  values of N >  10 a r e  indistinguishable f rom those fo r  pure 

conduction (N-a), which a r e  straight lines. The tempera ture  profi les  

for  the case  that the parameter  N = 1 a r e  on the average l e s s  than one 

percent higher than the tempera ture  profiles for  pure conduction. For  

large values of the parameter  N, the difference between the tempera-  

tu re  profiles for  pure conduction and simultaneous conduction.and 

radiation i s  small ;  however, a s  the parameter  N i s  decreased,  the .dif- 

ference,  a s  seen f r o m  Fig.  #11.3 and 11.4, between the tempera ture  



F I G .  1 1 . 2  

VARIATION OF'THE FUNCTION G AND THE DIMENSIONLESS 
TEMPERATURE 0 VS. OPTICAL THICKNESS FOR ~ ~ 0 . 0 1 .  

F IG.  11 .3  

DIMENSIONLESS TEMPERATURE DISTRIBUTION VS. OPTICAL 
THICKNESS, ~ ~ - 1  .o.. 



F I G .  1 I . q  
DIMENSIONLESS TEMPERATURE DISTRIBUTION VS. OPTICAL 
THICKNESS, roll.O. 

FIG; 11 .5  

DIMENSIONLESS TEMPERATURE DISTRIBUTION VS. OPTICAL 
THICKNESS, r,=0.'1. 
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profiles for  pure conduction and simultaneous conduction and radiation 

widens. The temperature distribution for  N = 0.0 1 ag rees  in t rend with 

the resul ts  of R. and M. ~ o u l a r d , ( ~ ' )  who studied a s imi lar  problem, 

but in their  case the thermal  conductivity var ied with tempera ture  and 

N<<0.01. The resu l t s  of the present  work agree  .in t rend with those of 

Walther - e t  - a l . ,  a s  reported by  ~ e ~ ~ e r h o f f , ( ~ ~ )  who investigated the flow 

of heat through glass .  

Temperature profiles for  a medium having an optical ' thickness 

I r0 = 0.1 a r e  given in Fig.  11.5. The curves for N - > 1 a r e  indistinguish- 

able f rom the temperature profile for  pure conduction. Even f o r  sma l l  

values of the parameter  N ,  the difference between the profi les  fo r  pure 

conduction and simultaneous conduction and radiation is small ,  i.e., 

for  N = 0.0 1 the maximum difference i s  only three  percent.  F r o m  

Fig.  1'1.3 we see that when the optical thickness r0 = 1 . O ,  the maximum 

difference i s  about 25 percent. We can therefore conclude that for  

radiative heat t ransfer  problems the optical thickness, and not the 

spacing between the plate, i s  a pertinent parameter .  

Since the system under consideration i s  in a steady' s ta te ,  the 

I total  energy flux (conduction plus .radiation) ac ross  the medium i s  con- 

stant.  To insure this,  i t  i s  necessary  for  the conductive energy flux 

variations to be compensated by inverse variations in radiative energy 

I flux. The temperature gradients a t  the cool wall a r e  always s teeper  

than those for  pure conduction, and they increase  with a decreasing 

value of the dimensionless parameter  N. Heat t ransfer  by conduction I 

to a cool wall i s  the refore always increased if the medium is radiative. 

On the other hand, a t  the hot wall the temperature gradients can be 

l a rge r  o r  smal le r  than those for pure' conduction, depending on the 

parameter  N. F o r  large values of N (N> l ) ,  the temperature gradients 

a r e  a fraction of a percent smal1e.r than for  conduction alone. F o r  

smal le r  values of N the gradients increase with the decreasing N. 
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The resu l t s  of heat t ransfer  calculations a r e  given in Table 11 . l .  

Table 11.1 

Pa ramete r s  and Results for Simultaneous Conduction and Radiation 

The separate  conductive and radiative energy fluxes were obtained 

f rom equation (11.20). It i s  obvious that in calculating the energy 

t ransfer  by conduction by simply using the temperature gradient for  

the nonradiative medium [first  t e r m  in equation (1 1.20) 1, an incorrec t  

resul t  i s  obtained. It was found that for  smal l  optical thicknesses,  

T = 0.1, the effect of radiation on the heat t ransfer  by conduction was 

small .  F o r  the range of the dimensionless parameter  N considered, 

the maximum difference o c c u r r e d a t N  = 0.01, and it was never grea ter  

than 10 percent.  For  la rger  optical thicknesses,  To = 1.0, the effect of 

radiation on heat flux by conduction was much grea ter .  When the 



parameter .was  small ,  N = 0.01, the energy t ransfer  by conduction was 

increased by at  least  a factor of two and in one case  by a factor of 10. 

As seen f rom equation (1 1.20), the energy radiated by the wall 

at  T = 0 (y  = 0) and reaching the wall a t  = To (y  = h) i s  given by 

~ ~ T * E ~ ( T ~ ) .  The radiant energy flux due to radiation emitted f rom the 

LTO , 

medium which reaches the wall at  .'r = To i s  20 E ~ ( T ~ - T ) T ~ ( T ) ~ T .  

This la t ter  flux i s  always grea ter  than the f i r s t .  These two effects 

tend to reduce the net radiant flux, and, in the l imit  when Th-'To, the 

net radiant energy flux vanishes. The resu l t s  show that the radiant 

heat flux for  a given value of To does not va ry  appreciably with N, and 

that the variation of q:! with To  for  a constant value of parameter  N i s  

more  pronounced. 

The temperature distributions obtained by the exact formula-  

tion a r e  compared in  Fig.  11.6 with those predicted by using the Rosse-  

land approximation for the radiant flux vector.  As expected, when the 

medium i s  optically thick (the radiation mean f r ee  path, X p  = 1 / ~  ((h), 

the agreement between the two se t s  of resu l t s  i s  good. However, the 

temperature gradients at the two bounding planes,  a s  predicted by the 

Rosseland approximation, a r e  too small .  This i s  not surpris ing since 

the approximation fai ls  completely in the vicinity of the boundary and 

only the molecular conduction insures  the continuity of the temperature.  

In Fig.  11.7 the same comparison i s  made,  except now the mean 

f r ee  path of radiation i s  of the same o rde r  of magnitude a s  the separa-  

tion distance between the two plates,  that i s ,  h p  = l / ~  = h. The t em-  
. . 

perature gradients at  the cool wall a r e  in very good agreement ,  but at 

I the hot wall the temperature gradient for the ROS seland approximation 

i s  lower than that for  the exact formulation. The agreement between 

the two temperature profiles i s  poorer  for  this case  than for  To = 10. 



COMPARISON OF DIMENSIONLESS TEMPERATURE DISTRIBUTIONS 

FOR k.0.054 B T U . H R - ~  FT- I  R - ~ ,  w = I 0 0  FT-I, N = 0 . 0 2 9 1 6  

The resulting temperature distributions and heat t ransfer  fo r  

a medium of la rge  optical thickness,  To = 10, a r e  worthy of note. The 

striking feature of the resu l t s  i s , t ha t  the heat flux i s  about 20 t imes  

what would be expected f rom conduction alone, without considering 

the presence of a radiating ,medium, and about seven t imes  l a rge r  

than the heat flux obtained by cofisiderilig the medium to be radiative.. 

Even though the p r imary  radiation falling on the medium penetrates  



ROSSEUNO APPROX INATION / 

EXACT FORMULATION 

COMPARISON OF DIMENSIONLESS TEMPERATURE DISTRIBUTIONS 
FOR k = 0 . 0 6 4  BTU HR-1 FT-1 u = 1 0 0  F T - ~ ,  N = 0 . 0 2 0 1 6  AND 

- 0 . 0 3 ~  100 
only a shor t  distance (in 0.03 ft  the intensity has  fallen to e 

= 5 percent),  the process  of absorption and emission within the me-  

dium t ranspor ts  a cons.iderable quantity of energy. The radiant heat 

flux of 14,200 Btu/(hr)(ft2) calculated from the exact formulation i s  in 

substantial agreement with the value of 1 1,800 Btu/(hr) (ft2) obtained 

by using the formula derived by ~ h o r i n : ( 9 3 )  



This simple formula was deduced for a strongly absorbing medium a t  

r e s t  by using the Rosseland approximation for the radiant energy flux 

vector,  but it predicts lower radiant fluxes than equation (1 1.21) .  

It i s  of interest  to compare the theoretical resu l t s  of 

~ e l l e t t ( ~ ~ )  with those of the present  work. Kellett derived a differen- 

t ia l  equation which expresses  the energy conservation in a slab. An 

approximate solution of this equation was obtained by  replacing T~ 

occurr ing in the radiative t e r m s  by a l inear expression. Figure 1 1.8 

shows the comparison between the tempera ture  profiles obtained ' f rom 

EXACT FORMULATI ON 

- 

I I 

F I G .  11.8 

COMPARISON OF TEMPERATURE DISTRIBUTIONS FOR k .0 .532  
BTU HR-I FT-1 R-1 ,  x=Q. I l l  FT-I, N = 0 . 0 2 5 7 5  AND r,=0.3.  

1 
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the approximate formulation of reference 46 with the exact formulation 

of the present  section. The conditions and the physical property values 

for  which the resu l t s  have been evaluated a r e  identical. The predicted 

tempera tures  a r e  on an average about, one percent lower than those of 

Kellett. The temperature gradients a t  both walls a r e  in very  good 

agreement;  however, the total  heat flux calculated in the present  study 

i s  about 10 percent higher. 

In summary ,  the problems considered he re  can be divided into 

three c lasses :  (1) that in which conduction predominates,  (2 )  an in te r -  

mediate case  wherein conduction and radiation a r e  of the .same o r d e r  

of magnitude, and ( 3 )  that in which radiation predominates.  In the f i r s t  

c lass  of problems the parameter  N i s  large and/or the optical thick- 

ness  To i s  small .  The energy t ranspor t  by conduction predominates,  

and the effect of radiation on the tempera ture  distribution and the 

gradients i s  negligible. In the intermediate c l a s s  of problems and in 
v 

the problems where radiation predominates,  the parameter  N i s  smal l  

and/or the optical t h i c k n e ~ s . 7 ~  i s  large.  The tempera ture  distribution 

and the heat t r ans fe r  cannot be calculated by neglecting the radiative 

t e r m  f rom the energy equation. Generally, in these problems' the 

presence of radiation changes the tempera ture  distribution in such a 

way a s  to increase  the heat t r ans fe r  by conduction. Finally, the 

Rosseland approximation for the radiant flux vector is sat isfactory for 

optically thick media. 



12 SUMMARY AND CONCLUSIONS 

A systematic presentation of energy t r ans fe r  f rom thermal  

radiation absorbing and scattering media i s  given. The relations fo r  

radiation f r o m  surfaces and f rom media ( see  Section 2.7) a r e  f&da- 

mental t o  the theory of radiant heat exchange. -They a r e  the bas is  for  

the derivation of a system of integral  equations for  irradi8tion and 
J 

incident radiation in  an enclosure containing an absorbing and 

' scattering media.  . . 

The 'radiant flux vector has  an integral  representation and i s  

defined as a vector ial  function of a point and also of a functional 

operator which depends on the geometrical configuration, on the tem- 

pera ture  field in the media a s  well as on the enclosure walls,  and on 

the absorption and scattering coefficients. F o r  the case  of intense 

absorption and a system near  thermodynamic equilibrium the radiant 

energy flux vector can be represented by a simple expression. 

The equation of t ransfer  which governs the intensity distribu- 

tion in  a radiating medium was derived and various special  cases  

discussed. This phenomenological equation, which descr ibes  the 

kinetics of radiation, i s  analogous in  i t s  fo rm to integro-differential 

equations encountered in other  bran-ches' of physical science. The in- 

tensity of radi-ation obtained f rom the solution of the equation of 

t ransfer  was used in the subsequent derivations of the integral  equa- 

tions fq r  i r radiat ion and incident radiation, a s  .well a s  ,the integro-' 

differential equation of energy c ons ervation. 

The integral  equations derived in  Section 5.2 a r e  the basis  for  

analytical methods of investigation of the problem of radiant heat 



exchange in a system of nondiffuse surfaces separated by an absorbing 

and scattering media.  They can readily be expressed in t e r m s  of 

other var iables  which a r e  m o r e  appropriate to a part icular  problem. 

.The sys tem of integral equations (5.5) and (5.10) i s  ve ry  complex, 

however, and a general solution will be ve ry  difficult, if not impos- 

sible, to obtain. Since scattering generally i s  not isotropic and the 

reflection f rom the surfaces i s  not diffuse, but depends on direction, 

the scattering and reflecting functions must  be known, o r  some sim- 

plifying assumptions introduced, before a solution of this  sys tem of 

equations can even be attempted. In addition, to  obtain a solution of 

radiant heat t ransfer  problem for  an  enclosure,  a number of other 

simplifying assumptions will be required.  These assumptions will be 

inevitable because sufficient information does not exis t  regarding the 

radiative propert ies  of ma te r i a l s  to permi t  a m o r e  accurate  analysis 

of the problem. 

The conservation of energy equation, including the contribution 

due to thermal  radiation, was derived. Since radiative t ransfer  i s  an 

integral problem, the analytical studies must  be based on integral  and 

integro-differential equations, which have a general and rigorous 

character .  Differential equations in par t icular  cannot be employed to 

formulate the mathematics of this physical problem. Only in the 

simplest  par t icular  case,  that of ve ry  intense absorption and scat-  

tering, a s  well a s  of a system close to thermodynamic equilibrium, 

can the radiant flux vector be approximated by a differential equation. 

The subject mat te r  covered in this work may  be regarded as 

basic for  the understanding of the specific problems t reated here ,  a s  

well a s  m o r e  complicated ones dealing with heat t ransfer  f rom 

radiating media. Since ve ry  little data a r e  available on radiative 
- -  

propert ies  such a s  absorption and scattering coefficients and only 

scanty information exis ts  in regard  to the dependence of these 



proper t ies  on wavelength, temperature and p r e s s u r e ,  the solutions ob- 

tained for  the specific problems were  for  the grey case .  This i s  only 

an approximation which might not correspond to physical real i ty ,  and. 

in the future refinements will have to be made. However, the g rey  

case  i s  of par t icular  in te res t  a s  i t  provides a physically significant : 

standard of comparison fo r  interpreting the general  case ,  and the 

author i s  of the opinion that the simple problem must  be solved f i r s t  

before the non-grey case  can be attempted. 

It was shown that for  la rge  optical thicknesses the temperature 

distributions calculated by using the Ro s seland. approximation a r e  in  

good agreement with those predicted by the exact formulation; The 

resu l t s  for  the flow along a wedge indicated that the effect of radiation 

i s  to decrease the temperature gradients at  both hot and cool walls, 

but the heat t ransfer  i s  affected only l i t t le.  . 

The t ransfer  of radiant energy between two paral le l  plates  

separated by an absorbing and scattering media was studied. A non- 

homogeneous Milne integral equation was solved by the method of 

undetermined parameters .  The black body emissive power ( tempera-  

ture)  'distributions were determined. For  the range of parameter  s 

investigated, i t  was found that Ebb(7) can be approximated by a 

straight l ine,  and the radiant heat fluxes were  strongly dependent on 

the optical thickness of the media. The polynomial approximation used 

for  Ebb( T) was satisfactory for  a l l  values of optical thickness and 

rat ios  of E ( T ~ ) /  ~ ( 0 ) .  

F o r  the t ransfer  of radiant energy by simultaneous conduction 

and radiation, when the two transport  processes  a r e  of the same  o rde r  

of magnitude, o r  when radiation predominates,  the temperature dis-  

tribution and heat flux cannot be calculated by neglecting the radiative 

t e r m s  f rom the energy equation. The resu l t s  showed that the tempera-  

ture  distribution i s  strongly dependent on the optical thicknesses of the 



media and on the dimensionless parameter ,  N, which determines the 

role of energy t ransfer  by conduction to that by radiation. Radiation 

effects a r e  relatively unimportant for  small  optical thicknesses;  an  

increased value of optical thickness increases  the role  of radiation. 

The presence of radiation generally changes the temperature distribu- 

tion i n  such a. way a s  to increase  the heat t ransfer  by conduction, and 

the energy t ransport  by radiation i s  a weak function of the dimension- 

l e s s  parameter  N. 

The future work in the field of 'heat t ransfer ,  where thermal  

radiation i s  important o r  predominant, should be undertaken along the 

following general directions: 

a )  Since the accuracy of the resu l t s  obtained for  the tempera-  

ture  distribution and heat t ransfer  depend largely on the radiative 

propert ies ,  theoretical and experimental effort should be directed 

towards the evaluation of these propert ies .  

b) It i s  evident that microscopic analysis of the radiative 

propert ies  and other contributory effects will be excessively compli- 

cated. Moreover,  a theory 'which s t a r t s  out on such detailed p remises  

will, by i ts  ve ry  nature,  obscure the essent ial  fac tors  which a r e  

operative. Therefore,  in theoretical studies simple physical situa- 

tions should be chosen so that the geometrical and the property 

evaluation complexities would not conceal the effect of radiation on 

tempera ture  distribution and heat t ransfer .  

c )  The solution of the integral equations by i terat ive methods 

takes up a considerable amount of t ime even on ve ry  fas t  digital 

computers,  e ,g . ,  IBM 704. Consequently, accurate  approximate 

methods a r e  needed for  solving complicated integral equations o r  

systems of integral equations occurr ing in radiant heat t ransfer  

problems. 
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APPENDIX A 

, .Approximate Solution of Milne ' s  Integral Equation (10.25) 

We assume that the black body emissive power can be approxi- 

mated by a fourth-degr ee polynomial: 

Ebb(7)  and Ebb( 7') a're the same functions, the only difference being 

that 7 and T I  a r e  interchanged a s  independent variables.  SubstiZuting 

(A. 1) under the integral sign of equation (10.25),. we have 

Introducing the definition of the exponential integral function, E 1 ( r ) ,  in 

equation (A.2) and integrating, we obtain 
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F o r  radiative equilibrium the radiant heat flux a t  any point in  

the medium can be written direct ly  f rom equation (-10.22), and we have 

Substituting equation (A.l) ,  a s  well as the definition of the exppnential 

integral function, under the integral signs and integrating, we obtain 

We do not know the radiant energy f l u x ,  but we know that for 

radiative ehuilibrium i t  i s  constant, that is, dq;/dr = 0. Differen- 

tiating (A.5) with respect  to T, we obtain 

ds: -- 
d7- - 0 = Z [ E ( T ~ ) E ~ ( T ~ - T )  t E(O)E~(T)]  + 2E(0){DO[-EL(~) - E ~ ( T ~ - T ) ]  



We need five equations to determine D ' s .  Two of these can be ob- 

tained by satisfying the emissive powers a t  the two boundaries: 

and 

Introducing these in  equation ( ~ . 3 ) ,  we get 

2 
~ 0 L - l  - ~ 2 ( 7 0 ) 1  + - r0E2(r0)  ,- E3( r0 ) ]  + D2[* - r0 E 2 ( r 0 )  

2 - 270E3( 70)  - 2 ~ 4 (  TO)] + ~ 3 [ 3  - 7 E 2 ( r 0 )  - 3T0 ~ ~ ( 7 0 )  - 6 r 0 E 4 ( r 0 )  

and 

Three other equations can be obtained by satisfying the flux conserva- 

tion equation (A.6) a t  optical depths r l ,  r2 arid r3. We then have 

where i = 1,2,3. 
(A.9) 
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One should note that all  five equations could have been ob- 

tained from equation (A.6).  It can readily be shown that, by satisfying 

the flux conservation equation a t  optical depths T = 0 and 7 = To, we 

would have obtained equations (A.7) and (A.8), respectively. 

The equation (A.9) was evaluated at three different optical 

depths, TI, T2 and T3, more  or. l e s s  arbi trar i ly.  The values chosen 

were r1 = 0.2r0 ,  T 2  = 0 . 5 ~ ~  and r3 = 0.8r0, and thereby three equa- 

tions were obtained. Great ca re  was exercised in the evaluation of 

the coefficients appearing in the equations. In' some cases for  

r0 = 0.1, the exponential integral functions accurate to 10 significant 

figures were used in order  to obtain the coefficients with an accuracy 

to four significant figures. 



APPENDIX B 

Reduction of the Nonlinear Integral Equation (1 1.12) 

In this Appendix the functions ~ ( 7 )  and$(7,Tt) ,  a s  well a s  the 

constants Cl and C2, appearing in the nonlinear integral equation (1 1.12) 

a r e  evaluated explicitly. Substituting the definition of the exponential 

integral function, E,(T), in the expression of the function G(T), we have 

Interchanging the o rde r  of integration arid integrating once, we obtain 

One more  integration reduces G(T) to 

1 1 
( = -I.. 2N (0) [-E4(T) + ( 1 - Ti] 

i @'(To) [-E4(To - 7) + ~ ~ ( 7 0 )  t TE 

Integrating the function $(T,T') once, we obtain 



and finally 

The integral equation (1 1.12) can now be .written a s  

where 

L J J  
To evaluate the constant C2 we apply the f i r s t  of the boundary 

conditions (1 1.9) and obtain 

Constant C1 i s  obtained by applying the second of the boundary 

conditions (1 1.9): 

substitution of C1 and C2 in equation ( ~ . 5 )  and simplification yields 

where 
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APPENDIX C 

Numerical Solution of Equations (9.40) and (9.41) 

The differential equations derived in Section 9.6.3 were solved 

numerically(33) by the Runge- Kutta and Milne methods on a digital 

computer. The computer program used was originally coded to solve ' 

a system of f i rs t-order  ordinary differential equations with the initial 

conditions being specified. 

In general, integration methods which keep track of truncation 

e r r o r ,  such as that of ~ i l n e , ( ~ ~ )  a r e  preferable to those which do not, 

for obvious reasons. For  the Milne method, the .manner in which the 

precision i s  computed is  important, since i t s  proper choice may re -  

duce machine time more than by a factor of two. 'One disadvantage of 

this method is  that a starting procedure is  required before the method 

can be applied. The f i r s t  three points (not counting the initial point) 

were therefore computed by the Runge-Kutta method; then a switch to 

the Milne method was made. When using the Milne method, the routine 

required the 'examination a t  each point of the sum of the absolute values 

of maximum deviations for the l a s t  three points. When this sum was 

exceeded by a certain specified quantity, the interval was doubled, and 

the interval was decreased by a factor of two i f  the cr i te r ia  were 

violated. 

Equatioris (9.40) and (9.41) were reduced to a system to five 

f i rs t-order  ordinary differential equations. Unfortunately, the condi- 

tions to be satisfied by the equations were specified on both ends of the 



the method of solution was to  pick values off "(O), a s  well a s  8 ' (O), and 

integrate the equations directly, recording the resultant asymptotic 

. . values of f '  and 8 for  la rge  values of q . After two such integrations, a 

l inear  interpolation produced bet ter  values of f "  (0) and 8 ' (0) .  After 

I the third integration the second-order Newton interpolation formula 

.. . . .  . I.* with divided differences was used, and the procedure was repeated un- 

til the required conditions at  large q were met - i . e . ,  f1 (co)d l  and 

8(~) '1 .  This interpolation was made an integral pa r t  of the numeri- 

cal  program so that by starting with two initial guesses for fl ' (0) and 

8 '  (0) the program would run  to completion. 

In the numerical solution the right-hand side of equation (9.41) 

. was neglected. The Rosseland approximation, which breaks down com- 

pletely at  the wall, was assumed to hold in the interval 0 .031 q(w. 

~ ' 0 t h  the Runge-Kutta and Milne methods yield fourth-order 
6 

precision, i .e . ,  have truncation e r r o r s  of order  Any desired 

accuracy within reason may be obtained by choosing appropriately 

I-. small  values of A q .  A A q  of 0.01 was used initially for  al l  solutions. 

Generally, after the f i r s t  three points were calculated this increment 

was doubled. 

The boundary conditions at  rj-w were considered met  when f '  

and 8 were satisfied simultaneously t o  within f 0.5 percent of the values 

at  the boundary. The computer was programmed to  print out the values 

of f ,  f ' ,  f" ,  8 and 0 '  a t  specified intervals of q. 



APPEND- D 

Numerical Solution of Equation (1 1.14) 

The method of successive approximations used in solving the 

nonlinear integral equation (1 1.14) i s  a s  follows: A function B j (7)  i s  

assumed and inser ted into the right side of equation (1 1.14). This pro-  

duces a new function, @j+l(T), on the left. The procedure was repeated 
, . 

until the convergence c r i t e r i a  were  satisfied. It was found that for 

la rge  values of N(N > 0 . l )  with an  assumed function @ .(T) of the f o r m  
J 

(1 1.1 l ) ,  the cqnvergence was achieved with l e s s  t-han s ix  i terat ions.  

F o r  values a t  N = 1 convergence was obtained af te r  three i terat ions.  

When the Galue of N for  which solution was sought was sufficiently 

smal l  (N < 0.075), the suc'cessive i terations showed a tendency 'to 0 s -  

cillate and then to diverge if a l inear  approximation for 0 .  (7) was 'sub- 
J 

stituted. In the presknt  case,  the property of oscillation cannot be 
' 

developed analytically; however, i t  has  been fdund by t r i a l  that if, 

B j ( ~ )  + 'j+l (7) 

2 
i s  .used in place of @ j + l ( ~ )  to  obtain @ jtZ(T), the oscillation 

in the f i r s t  few iterations i s  reduced and con6ergence takes place.  

The successive approximation calculations were ca r r i ed  out by 

.' means of an  IBM 650 digital computer.  The exponential integral func- 

. tions; E (T), a r e  well behaved for  n >  1, and the infinite s e r i e s  expres-  n 

sions for  these functions were taken f r o m  reference 10. The 

integration interval 0 < (To was divided into i equally spaced sub - 

intervals.  The number of s teps selected depended on the value of the 

optical thickness , T 0 .  The inequality 



had to be satisfied before the convergence c r i t e r i a  were  considered a s  

met .  Therefore,  the accuracy  of the solutions obtained by the method 

of successive substitutions i s  believed to be + 0.1 percent.  



APPENDIX 'E 

Symbol 

A 

A1 

A2 

a 

Lis t  of Symbols 

Definition 

Area  

Pa ramete r  defined in equation (9.24) 

Pa ramete r  defined in  equation (9.24) 

Slab thickness , 

Exponent in equation (9.21) for variation of 

thermal  conductivity with tempera ture  

Exponent in equation (9.22) for variation of 

absorption coefficient with tempera ture  

Pa ramete r  defined in equation (9.25) 

Velocity of light . 

Specific heat a t  constant p r e s s u r e  

P a r a m e t e r s  defined by equation ( 10.28) 

Emissive power defined by equation (2.19) 

Irradiation defined by equation (2.2 1) 

Radiant energy flux vector defined by 

equation (2.3 1) 

Exponential integral function defined by 

equation (10.2) 

Net radiant energy flux defined by 

equation (2.29) 

Emission f rom a unit volume defined by 

equation (2.20) 

Units 

ft  

none 

none 

R - ~  

ft/hr 

Btu/(lbm)(R) 

none 

Btu/(hr)(ft2) 

Btu/(hr)(ft2) 

Btu/(hr)(ft2) 

none 



Symbol Definition Units 

Incident radiation on a unit volume defined Btu/(hr)(ft2) 

by equation (2.22) 

Net emission f rom a unit volume defined by Btu/(hr)(fta) ' 

equation (2.30) 

Internal energy defined by equation (6.4) Btu/lbm 

Function defined in equation (10.19) none 

Dimensionless s t r e a m  function defined' by none 

equation (9.33) . 

Function defined in equation (10.2 1) Btu/(hr)(ft2) ' 

Function defined in equation ( 1 1.13) none 

Enthalpy Btu/lb, 

Vertical distance between two paral lel  f t  . 

surfaces . 

Intensity of radiation'defined by equation Btu/(hr)(ft2) 

(2.1) 

Thermal  conductivity 

Effective thermal  conductivity defined by Btu/(hr)(ft)(R) 

equation (9.13) 

Exponent in equation (9.32) I none 

Function defined by equation (9.8) none 

Dimensionless parameter  in  equation ( 11.8) , none 

Index of refraction none 

Unit vector normal to the ,surface none 

P r a n d t l q u m b e r , N  = "P 
P r  - k 

P r e s s u r e  

Radiant energy flux tensor defined by 

equation (3.19) 

none 

Heat flux Btu/(hr)(ft2) 

Heat generation Btu/(hr)(ft2) 



'b . , 

Symbol Definition 
I \ \  

R Radiosity defined by equation (2.27) 
I - 

:tl' r Position radius vector 

s Posit ion coordinate in a given direction 

u Velocity i n  the x direction 

u ~ a d i a n t '  energy density defined by 

equation (2.7) 

U Velocity outside the boundary layer  

t Time 

T '  Temperature 

v ' Velocity in the y direction'  

v Specific volume 

V Volume 

w Velocity in the z direction - 
W . Fluid veldcity vector 

W Work done by the fluid 
. . 

x Position coordinate 

Y Position coordinate 

z Position coordinate 
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Units 

Greek Symbols 

a Thermal  diffusivity, a = k / p  cp ft2/hr 

a Radiation absorptivity of the surface none 

P Radiation extinction coefficient defined ft- '  

by equation (3 .8 )  

P P r e s s u r e  gradient parameter  defined a s  none 

P = 2m/m .+ 1 

I7 Reflecting function defined by equation (2.25) none 

Y Scattering function defined by equation (2.26) none 

E Radiation emissivity of the surface none 



Svmbol Greek Symbols 

186 

Units 

Emission coefficient of the medium 

Effective emission coefficient of the 

medium defined by equation (3.3) . 

Dimensionless independent variable,  X/R none 

Dummy integration variable in equation ( 11.12) none 

Dimensionless independent variable defined none 

by equation (9'.33) 

Angle between the outward normal  F a n d  the none 
--C 

direction of the pencil a t  rays  fi 
--C - 

Angle between the direction rays  fi' and fi none 

Dimensionless temperature defined a s  none 

0 = T/T* 

Absorption coefficient of the medium ft -' 
defined by equation.(2,9) 

Wavelength 

Mean f r e e  path of radiation- 

Dynamic viscosity 

Cos 8 

Frequency 

Kinematic viscosity 

Dimensionless independent variable,  y/h 

Dummy integration variable 

microns 

ft 

(lb)(hr)/ft2 

none 

h r  - l  

ft2/hr 

none 

none 

Density lbm/ft3 

Radiation reflectivity of the surface none 

Stefan-Boltzmann constant, 1.7 14 x 10 - 9  ~ t u / ( h r ) ( f t ~ ) ( ( R )  

Scattering coefficient of the medium f t - '  

defined by equation (2.10) . 

Optical thickness (depth) of the medium none 

defined a s  T ( s ,  s ' )  = 



Svmbol Greek Svmbols 

@ Azimuthal angle 

I D  @ 
Dissipation function defined by equation (6.7) 

I $ .  Stream function defined by equation ( 9 . 3 4 )  

R Solid angle - 
0 Unit vector in the direction of the pencil 

of radiation 
--C 

52, Unit vector 

I R 
X 

Direction cosine in the x direction 

I R Direction cosine in the y direction 
Y 

52 
Z 

Direction cosine in the z direction 

Subscripts 

bb Black body 

Refers  to conduction 

Radiant 

Refers  to monochromatic ( a  given wavelength 

o r  per  unit wavelength) 

Units 

none 

h r  -' 
f t '/hr 

none 

none 

none 

none 

none 

none 




