

EVALUATION OF HYPERBARIC FILTRATION

FOR FINE COAL DEWATERING

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DOE Grant No. DE-PS22-92PC92550

DE - FG22 - 92PC 92550

Ninth Quarterly Technical Progress Report (Oct. 1, 1994 - December 31, 1994)

by

B.K. Parekh (PI)
J.W. Leonard (Co-PI)
University of Kentucky

R. Hogg (Co-PI)
The Pennsylvania State University

A. Fonseca (Co-PI)
Consol Inc.

ADDITIONAL ASSISTANCE DIV.

95 FEB 10 PM:253

RECEIVED
U.S. DOE / PERMIT

MASTER

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

OBJECTIVES AND SCOPE OF WORK

The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture.

The program consist of three phases, namely

Phase I - Model Development

Phase II - Laboratory Studies

Phase III - Field Testing

The Pennsylvania State University is leading efforts in Phase I, the University of Kentucky in Phase II, and Consol Inc. in Phase III of the program. All three organizations are involved in all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in phase I and II will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit.

INTRODUCTION

Most of the coal presently used by the utility industry is cleaned at preparation plants employing wet processes. Water, while being the mainstay of coal washing, is also one of the least desirable components in the final product. Coarse coal (+3/4

inch) is easily dewatered to a 3-4 percent moisture level using conventional vibrating screens and centrifuges. However, the main problem of excess product moisture occurs in fine (minus 28 mesh) coal and refuse. Even though fines may constitute only about 20 percent of a contemporary cleaning plant feed, they account for two-thirds of the product surface moisture. This high surface moisture offsets many of the benefits of coal cleaning, and can easily undercut the ongoing programs on recovery of fine clean from refuse as well as producing an ultra-fine super clean coal fuel.

Currently, most of the coal preparation plants utilize vacuum disk or drum filter technology for dewatering of the fine coal, providing dewatered product containing about 25 percent moisture. The coal industry would prefer to have a product moisture in the range of 10 to 15 percent. Although the desired product quality can be obtained using thermal dryer, there are problems associated with this technology such as high capital costs and a source of air pollution.

In the present research project, an alternative to thermal drying, hyperbaric filtration which has shown potential in lowering moisture content in fine coal to less than 20 percent level, is being investigated in detail. The project will develop fundamental information on particle-liquid interaction during hyperbaric filtration and apply the knowledge in developing optimum conditions for the pilot plant testing of the hyperbaric filter system.

Phase 1 - Model Development

The extent of fine-coal dewatering which can be achieved by hyperbaric filtration is influenced by each of the stages in the filter cycle. The filtration rate and

overall capacity are determined by the cake-formation stage which also controls cake thickness and cake structure. These two factors, in turn, play a major role in establishing the dewatering characteristics. Cake formation in constant pressure filtration has been investigated in detail and well-established models are available in the literature. For materials such as coal which generally form incompressible cakes, the models lead to the following simple expression for the filtration rate:

$$\frac{t}{V} = \frac{\mu c \alpha}{2A^2 \Delta p} + \frac{\mu \alpha_m}{A \Delta p} \quad (1)$$

where V is the volume of filtrate passing in time t through area A with applied pressure Δp . μ is the liquid viscosity, α is defined as the specific cake resistance and α_m is the filter medium resistance.

Examples of the application of Equation 1 to the filtration of fine (-100 mesh) coal from the Pittsburgh seam are given in Figures 9-1 and 9-2. Generally consistent agreement can be seen; both α and α_m increase slightly with increasing applied pressure.

The specific cake resistance α is the model parameter which accounts for the characteristics of the solid. Laboratory measurements of α can provide the basic information needed for filter design. However, general relationships between cake resistance and material characteristics such as particle shape and particle size

Pittsburgh Seam

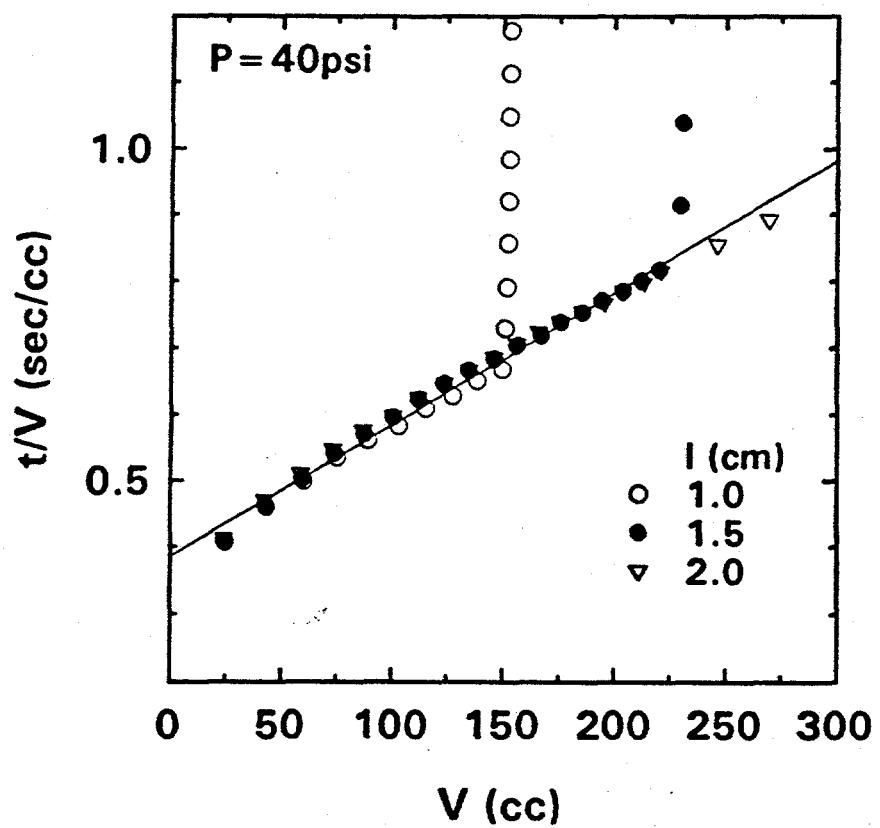


Figure 9-1. Cake formation kinetics for Pittsburgh seam coal at 40 psi.

Pittsburgh Seam

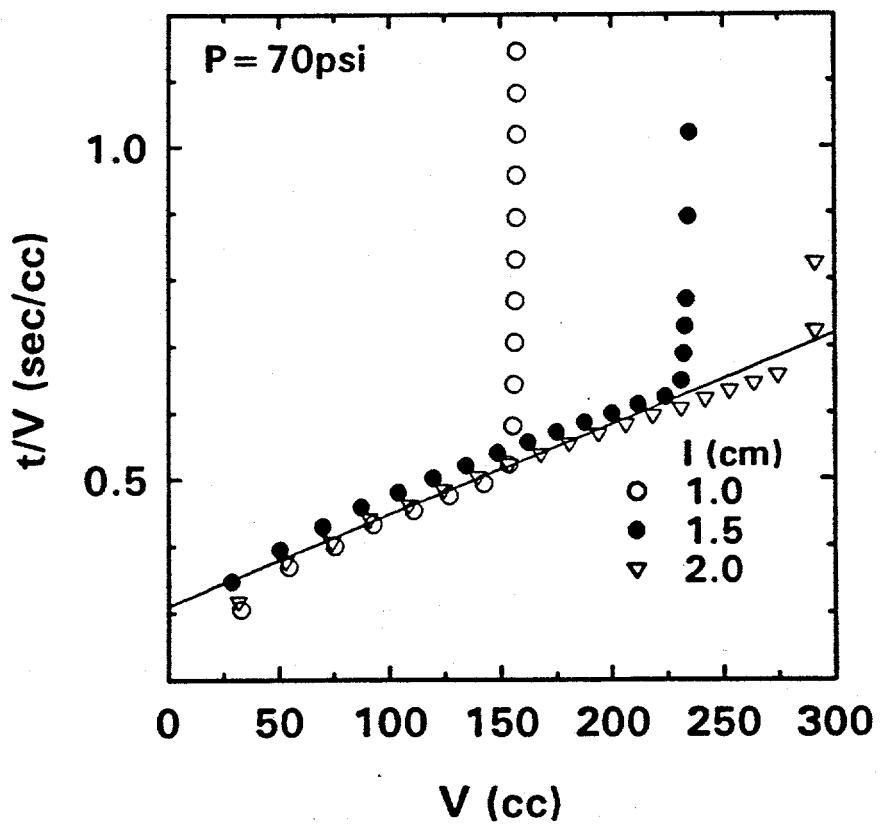


Figure 9-2. Cake formation kinetics for Pittsburgh seam coal for 70 psi.

distribution have yet to be established. Our investigations of packing behavior, discussed in previous reports, are aimed, in part, at the development of such relationships.

Application of the Carman-Kozeny expression for flow through porous media does provide some insight into the nature of the cake resistance. Thus,

$$a \approx \frac{k(1-\epsilon)S_v^2}{\epsilon^3 \rho_s} \quad (2)$$

where k is a tortuosity factor (usually approximated as $k \approx 25/6$), ϵ is the cake porosity and S_v is the volume specific surface area of the particles. It should be noted, however, that Equation 2 includes some important simplifying assumptions. In particular, it is assumed that the pores in the cake can be represented using a single mean hydraulic radius, defined in the usual way by

$$r_h = 2 \left(\frac{\text{Cross-sectional Area}}{\text{Wetted perimeter}} \right) \quad (3)$$

The area to perimeter ratio is equivalent to the pore volume to cross-sectional area ratio which leads to

$$r_h = \frac{2}{S_V} \left(\frac{\epsilon}{1-\epsilon} \right) \quad (4)$$

The use of a single effective mean radius is probably reasonable for beds of relatively uniform particles, but may be questionable for systems with the broad size distributions typically found in fine coal filtration.

An alternative approach is to obtain the effective mean pore radius by integrating the flow over the pore size distribution $f(r)$. This leads to

$$r_{\text{eff}} \propto \left[\int_0^{\infty} r^2 f(r) dr \right]^{1/2} \quad (5)$$

The corresponding expression, based on Equation 4, is

$$r_h \propto \left[\int_0^{\infty} \frac{f(r) dr}{r} \right]^{-1} \quad (6)$$

For broad pore size distributions, these two values can differ widely. An example of the disparity between the two definitions of mean pore radius is given, for log normal pore size distributions, in Table 1.

Table 1. Ratio of effective mean pore radii for log normal pore size distributions.

Log Normal Standard Deviation, σ	Radius Ratio, r_{eff}/r_h
1	1.0
2	8.7
3	228
4	5700

The use of Equation 3 to define the mean hydraulic radius of a single pore is also subject to question. This expression is appropriate for fully turbulent conditions where shear occurs primarily at the pore walls. Under the laminar flow conditions expected in cake formation, however, shear occurs mostly in the bulk fluid and flow is concentrated in the central part of a pore with an irregular profile. It might be assumed, for example, that the effective radius for flow through a smooth-walled pore of triangular cross-section would be defined by the inscribed circle. In this case, the effective radius would be one half the mean hydraulic radius defined by Equation 3. The difference would be substantially greater for rough-walled pores between irregular particles. Further analysis of these geometric factors in flow through filter cakes is in progress. The long-term objective is to relate cake resistance directly to particle size distribution.

Pore geometry and its effects on flow through the cake also play an important role in the dewatering stage of the filter cycle. The same factors determine the rate of liquid displacement and also air consumption by flow through the cake. In addition, the capillary pressures which oppose dewatering are themselves determined by the distribution of effective pore radii. Since capillary pressures are a direct consequence

of surface forces, the mean hydraulic radius should be the appropriate defining characteristic in this case. In other words, the effective pore size distribution which defines the capillary pressures may be significantly different from that which determines flow.

The limit of mechanical dewatering occurs when all of the liquid has been expelled from pores for which the applied (air) pressure is greater than the capillary pressure. In the literature, this is often taken to mean those pores for which the total pressure drop exceeds the capillary pressure. Implicitly, this assumes that all pores consist of continuous tubes extending through the entire thickness of the cake. More realistically, however, the pore structure should be represented by individual segments with a distribution of radius and length. Liquid displacement requires that the pressure drop across the segment length be greater than the capillary pressure.

If the pressure gradient across the cake is linear, the pressure drop along a pore segment of length ℓ will be

$$\Delta p = \frac{\ell \Delta p_o}{\lambda} \quad (7)$$

where Δp_o is the total pressure drop and λ is the cake thickness. The lengths of the individual pore segments are not generally known. However, it seems reasonable to assume that, on the average, the segment length will be proportional to the radius of the segment, i.e.,

$$\ell \approx \kappa r$$

(8)

where κ is a shape factor.

The limiting pore radius r_L for mechanical dewatering is then given by

$$\frac{\kappa r_L \Delta p_0}{\lambda} \approx \frac{2\gamma \cos\theta}{r_L}$$

(9)

or

$$r_L \approx \sqrt{\frac{2\lambda \gamma \cos\theta}{\kappa \Delta p_0}}$$

(10)

where γ is the liquid surface tension and θ is the solid-liquid-air contact angle.

The limiting cake saturation S_L is given by the fraction of pores whose radius is less than r_L , i.e.,

$$S_L = F(r_L)$$

(11)

where $F(r)$ is the pore size distribution.

Since the pore size distribution $F(r)$ is a monotonically increasing function of the pore radius r , Equations 10 and 11 indicate that the limiting saturation should be correlated with the pressure gradient $\Delta p/\lambda$. The fractional moisture content M is often more convenient than the saturation. Since

$$S \propto \frac{M}{1-M}$$

(12)

the latter should also be correlated with the pressure gradient.

Some examples of the limiting moisture - pressure gradient are given in Figure 9-3 for experiments on the Pittsburgh #8, Illinois #6 and Pocahontas coals performed at the University of Kentucky and described in previous reports. Generally, there is a clear correlation, especially for the finest (Pittsburgh Seam) coal. The relatively weak correlation for the coarse (Pocahontas) coal may reflect the low overall moisture content and a masking effect due to the presence of isolated water droplets on the surfaces of coarse particles.

Phase 2 - Laboratory Studies

Laboratory dewatering studies were conducted on three different froth flotation concentrate samples obtained from Consol Inc. preparation plant processing Illinois No. 6, Pittsburgh No. 8 and Pocahontas No. 3 coal seams. In this quarterly report, the results obtained on Illinois No. 6 clean coal froth samples are summarized, in addition, data obtained on Pocahontas No. 3 coal are also listed.

Illinois No. 6 Coal:

The Illinois No. 6 froth flotation concentrate had 6.4 percent ash; and about 45 weight percent of particles were of plus 100 mesh size. For this coal a filter cake with moisture of 20 percent was easily achieved using 60 psi pressure and 2 cm cake thickness. Detailed information on hyperbaric filtration studies of the Illinois No. 6 coal samples were described in earlier quarterly reports numbered two through four.

Figure 9-4 summarizes all the dewatering results obtained for the Illinois No. 6 coal slurry sample using various enhancement methods. Note, that because of large

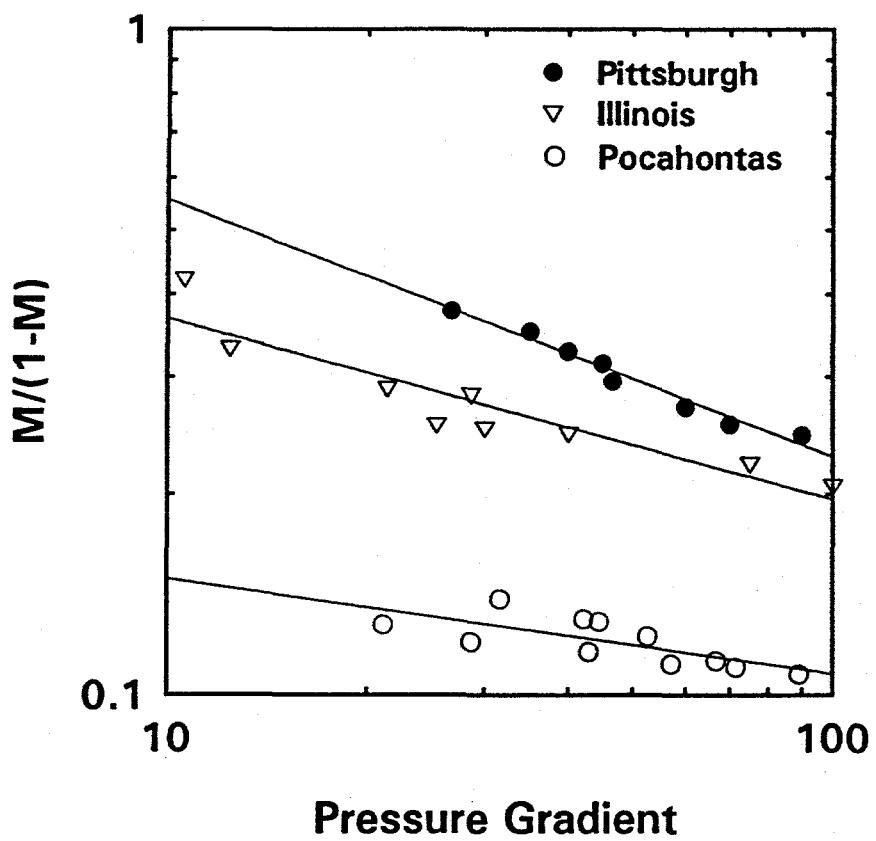


Figure 9-3. Correlation of final cake moisture content with pressure gradient.

Illinois No.6 Coal

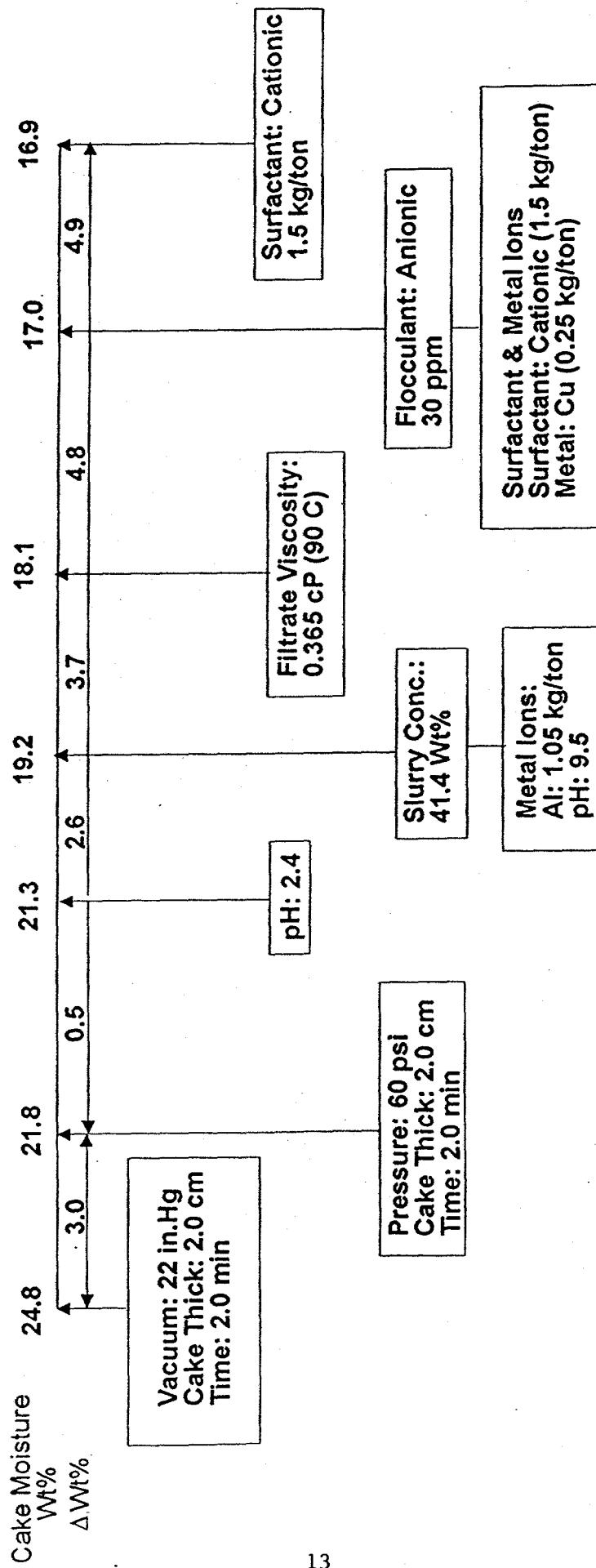


Figure 9-4. Summary of hyperbaric filter dewatering results for the Illinois No. 6 coal.

particle size hyperbaric filter provided 21.8 percent moisture filter cake which is only 3 percent additional moisture removal over that obtained using the vacuum filtration. Addition of 30 ppm of anionic flocculant or 1.5 Kg/t of the cationic surfactant provided 17 percent moisture filter cake.

Pittsburgh No. 8 Coal

Summary of the dewatering results of the Pittsburgh No. 8 sample were described in the last (eighth) quarterly report. For this coal slurry which had very fine (45% minus 500 mesh) particles, split size dewatering at 400 mesh provided 13 percent moisture filter cake compared to 25 percent moisture filter cake obtained in base line study.

Pocahontas No. 3 Coal

Effect of filtration time and pressure:

The effects of filtration time on the moisture content of 1.4 cm and 1.9 cm thick cake for the Pocahontas No. 3 coal at various applied pressures are shown in Figures 9-5 and 9-6, respectively. As expected, the optimum filtration time and filter cake moisture increased with increasing cake thickness. Figure 9-5 shows that for 1.4 cm thick cake, the optimum filtration time was about two minutes using 80 psi (5.5 bars) pressure. Similarly, Figure 9-6 shows that for 1.9 cm thick cake, the optimum filtration time was also two minutes using 80 psi (5.5 bars).

Figure 9-7 summarizes the effect of applied pressure on the filtration time for various thickness cake. The optimum filtration time and pressure for 1.4 cm cake

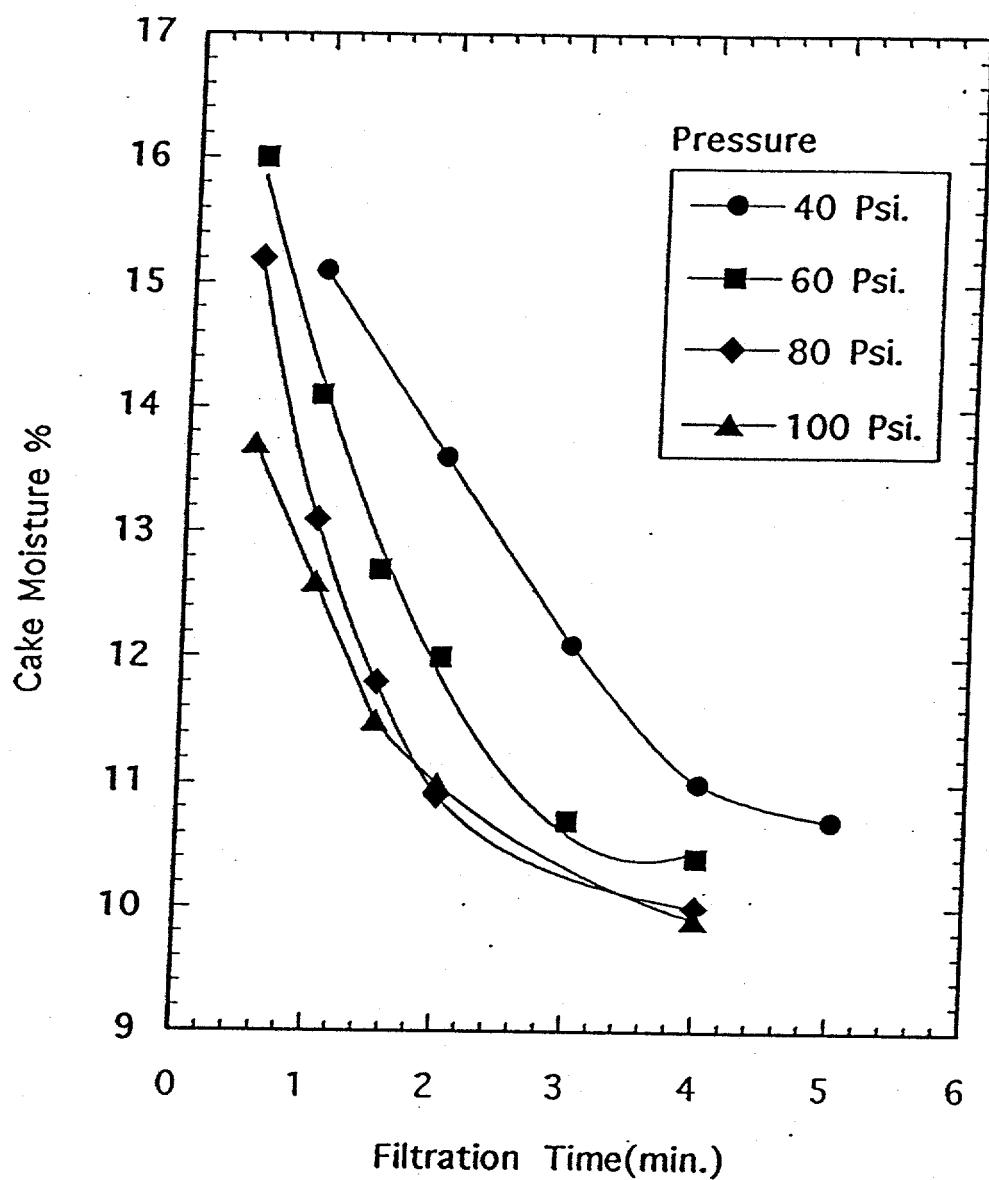


Figure 9-5. Effect of filtration time on cake moisture for the Pocahontas No. 3 coal.
(cake thickness: 1.4 cm)

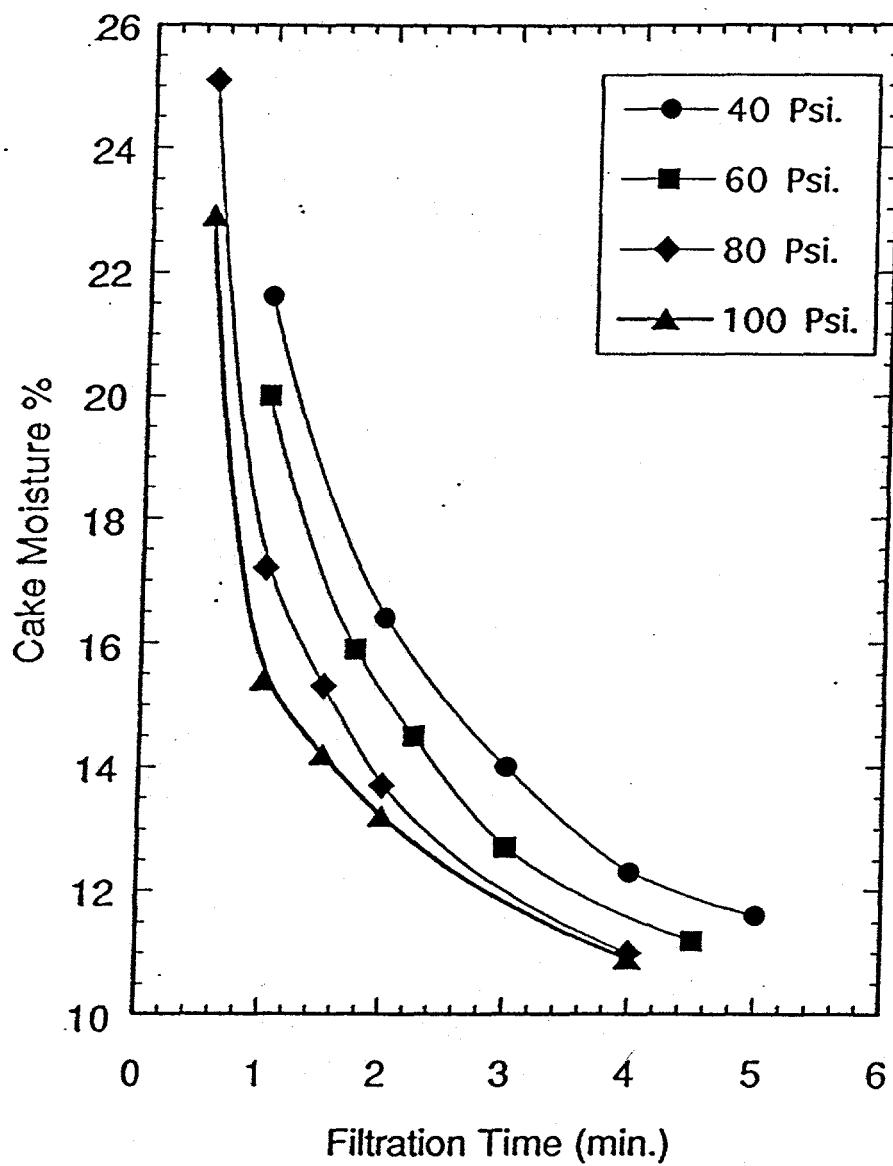


Figure 9-6. Effect of filtration time on cake moisture for the Pocahontas No. 3 Coal.
(cake thickness: 1.9cm)

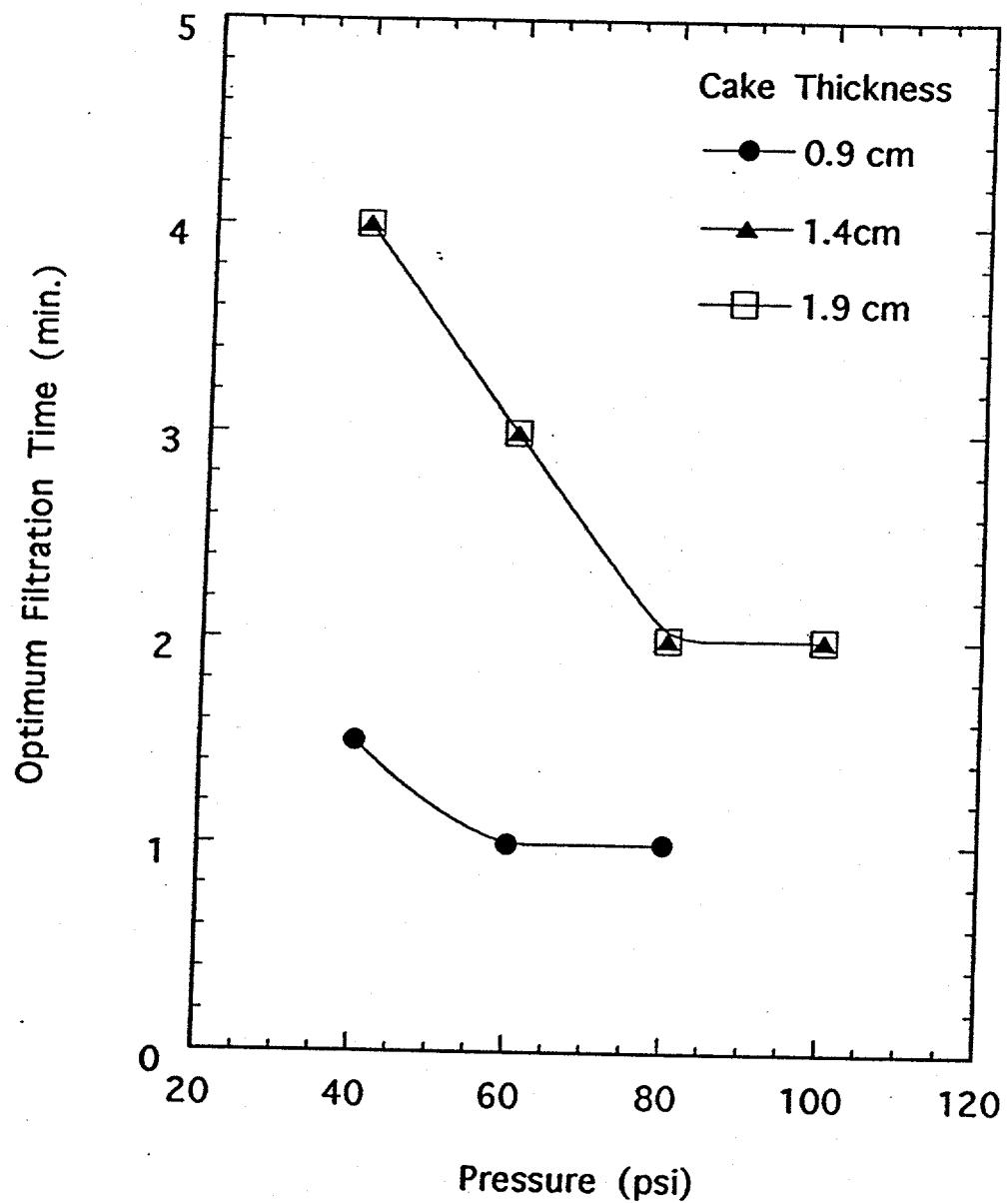


Figure 9-7. Effect of applied pressure on optimum filtration time for the Pocahontas No. 3 coal.

thickness were two minutes and 80 psi, which were the same as that for the 1.9 cm cake thickness. However, the moisture of 1.9 cm thick cake was 14 percent and that of 1.4 cm cake thickness was 11 percent. The subsequent dewatering studies on the Pocahontas No. 3 coal slurry were conducted using 1.4 cm cake thickness, 80 psi (5.5 bars) pressure and two minutes filtration time.

Cake Thickness:

Cake thickness is one of the most important factors in the filtration process because it affects both the final cake moisture and solids throughput. Figure 9-8 shows the effect of cake thickness on the cake moisture for the Pocahontas No. 3 coal at different applied pressures. The relationship between cake thickness and cake moisture was almost linear when applied pressures were between 40 psi (2.8 bars) and 60 psi (4.1 bars). However, this relationship changed at 80 psi (5.5 bars) applied pressure. It can also be observed that at 80 psi (5.5 bars) applied pressure, there was little increase in cake moisture for cake thickness between 0.9 cm and 1.4 cm; the cake moisture increases considerably for cake thicker than 1.4 cm. It is indicated that the optimum cake thickness for the Pocahontas No. 3 coal should be 1.4 cm using 80 psi (5.5 bars) pressure.

The above experimental results are summarized as follows, for the Pocahontas No. 3 coal, the optimum dewatering parameters are 1.4 cm cake thickness, 80 psi (5.5 bar) pressure and two minute filtration time, to obtain 11 percent filter cake moisture.

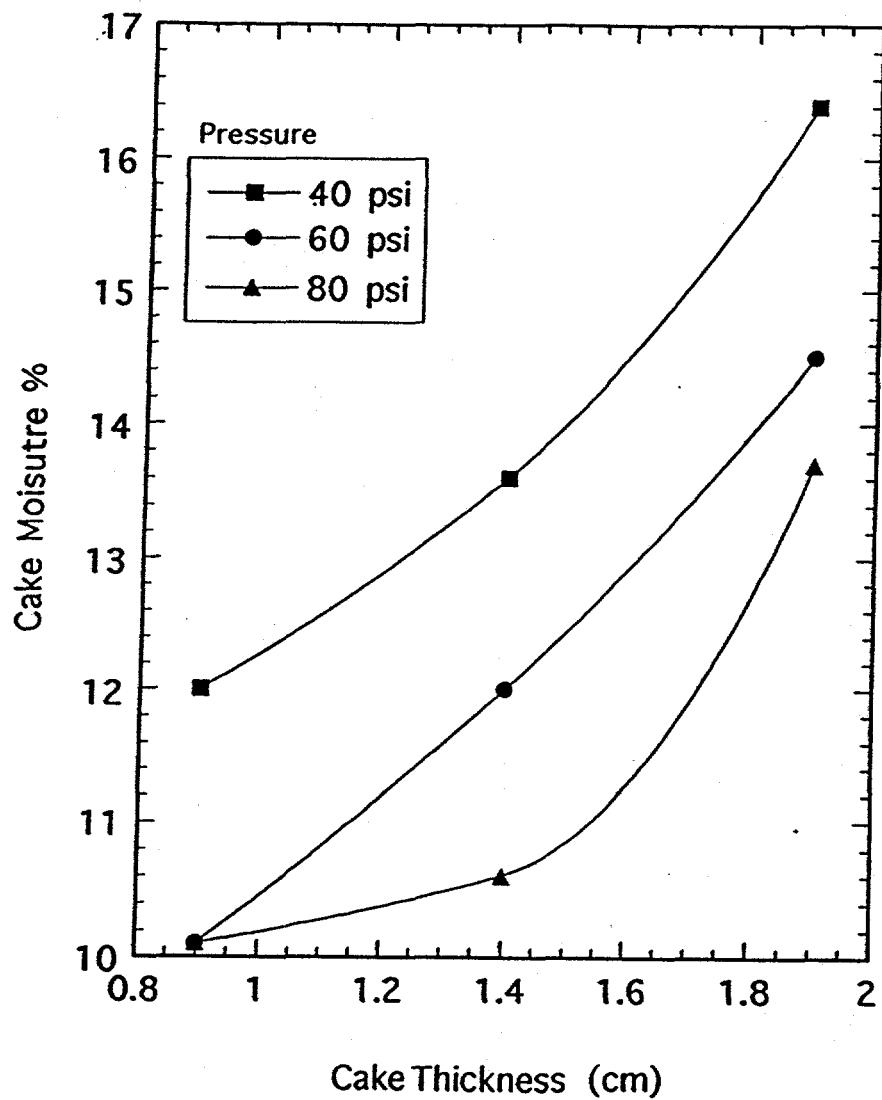


Figure 9-8. Cake moisture as a function of cake thickness under various applied pressures for the Pocahontas No. 3 coal. (filtration time: 2 minutes)

Discussion:

The above experimental results have shown that the interactions exist among cake thickness, applied pressure, and filtration time. In this study, the relationship between applied pressure gradient and cake moisture was investigated to identify the critical cake thicknesses and limits of fine coal dewatering under the set of given conditions. The applied pressure gradient is defined as:

$$\text{Applied Pressure Gradient} = \frac{\text{Applied Pressure}}{\text{Cake Thickness}}$$

Figure 9-9 shows the effect of the applied pressure gradient on the cake moisture for the Pocahontas No.3 coal. It can be seen that almost all the data obtained at various cake thicknesses are on the same curve. At the same applied pressure gradient, the moisture will be the same for different cakes thickness. The lowest moisture obtained for 1.9 cm thick cake was 14 percent. In other words, to achieve a cake moisture of less than 14 percent, the cake thickness must be less than 1.9 cm. It is indicated that for a given moisture specification, there is a critical cake thickness, beyond which it will be difficult to achieve that moisture specification. The critical cake thickness for the Pocahontas No. 3 coal was 1.4 cm for moisture ranging from 10.5 to 14 percent. The applied pressure gradient is a very important parameter in a hyperbaric filtration process. The relationship between applied pressure gradient

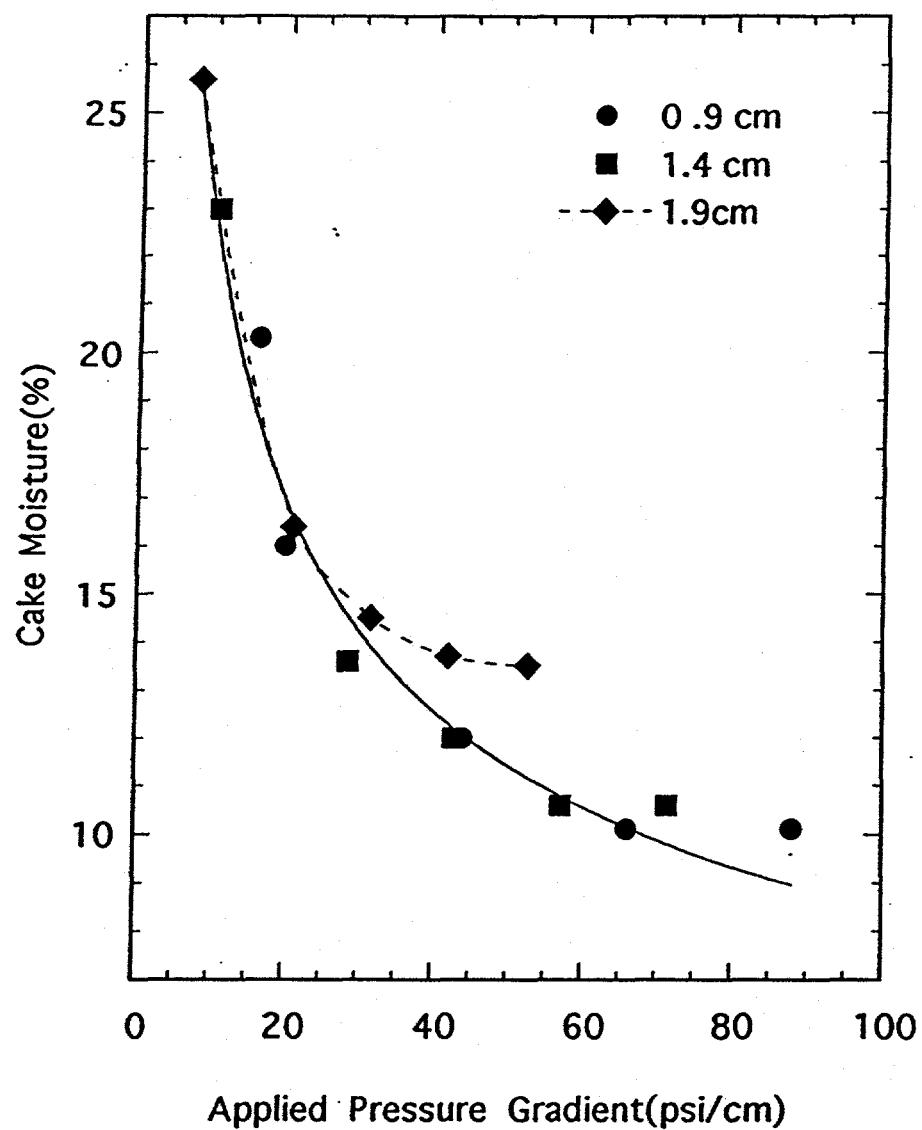


Figure 9-9. Effect of applied pressure on optimum filtration time for the Pocahontas No. 3 coal.

and cake moisture can provide information of how the applied pressure should be adjusted as the cake thickness changes. When the cake thickness changes and remains below the critical cake thickness, the applied pressure gradient should be kept constant to achieve the same cake moisture.

The equation for the curve in Figure 9-9 could be written as:

$$C_m = 61.44(\Delta P/L)^{-0.43} \quad (1)$$

where C_m is cake moisture and $(\Delta P/L)$ is applied pressure gradient. The relation between capillary number (N_{cap}) and pressure gradient ($\Delta P/L$) can be expressed as (Wakeman, 1979a):

$$N_{cap} = \{(\varepsilon^3 d^2)/[(\varepsilon-1)^2 \tau \cos \theta]\}(\Delta P/L) \quad (2)$$

For an incompressible cake, the value of $(\varepsilon^3 d^2)/[(\varepsilon-1)^2 \tau \cos \theta]$ can be regarded as a constant. Therefore, the relationship between capillary number and pressure gradient can be simplified as:

$$N_{cap} = A(\Delta P/L) \quad (3)$$

where $A = [\varepsilon^3 d^2]/[(\varepsilon-1)^2 \tau \cos \theta]$. According to Wakeman (1979b), the correlation between irreducible equilibrium saturation (S_∞) and N_{cap} is:

$$S_{\infty} = 0.155(1+0.031N_{cap})^{-0.49} \quad (4)$$

Accordingly, the relationship between S_{∞} and pressure gradient is expressed as:

$$S_{\infty} = B + C(\Delta P/L)^{-0.49} \quad (5)$$

where B and C are the constants related to the properties of the cake and filtrate.

It can be inferred, by comparing equation 1 with equation 5, that equation 1 is a specific expression of equation 5. Therefore, the curve in Figure 9-9 can be regarded as the limitation curve of cake moisture for the Pocahontas No. 3 coal. Moisture below this curve cannot be obtained without using an enhancement method.

Effect of pH:

pH is an important parameter in any process with respect to bulk chemistry and surface chemistry of solids suspended in an aqueous medium. In a solid/liquid/gas three phase system, pH affects the chemical species distribution in bulk, zeta potential at the interface of solid/liquid, and other surface chemical properties. The effects of pH on zeta potential and cake moisture for the Pocahontas No. 3 coal are presented in Figure 9-10. The cake moisture remained constant as the pH was changed from 3 to 9. In this pH range, even though the zeta potential of the coal changed from positive 10 mv to negative 20 mv, the effect of zeta potential was negligible in this pH range because of its low absolute value. When pH of the suspension is increased to

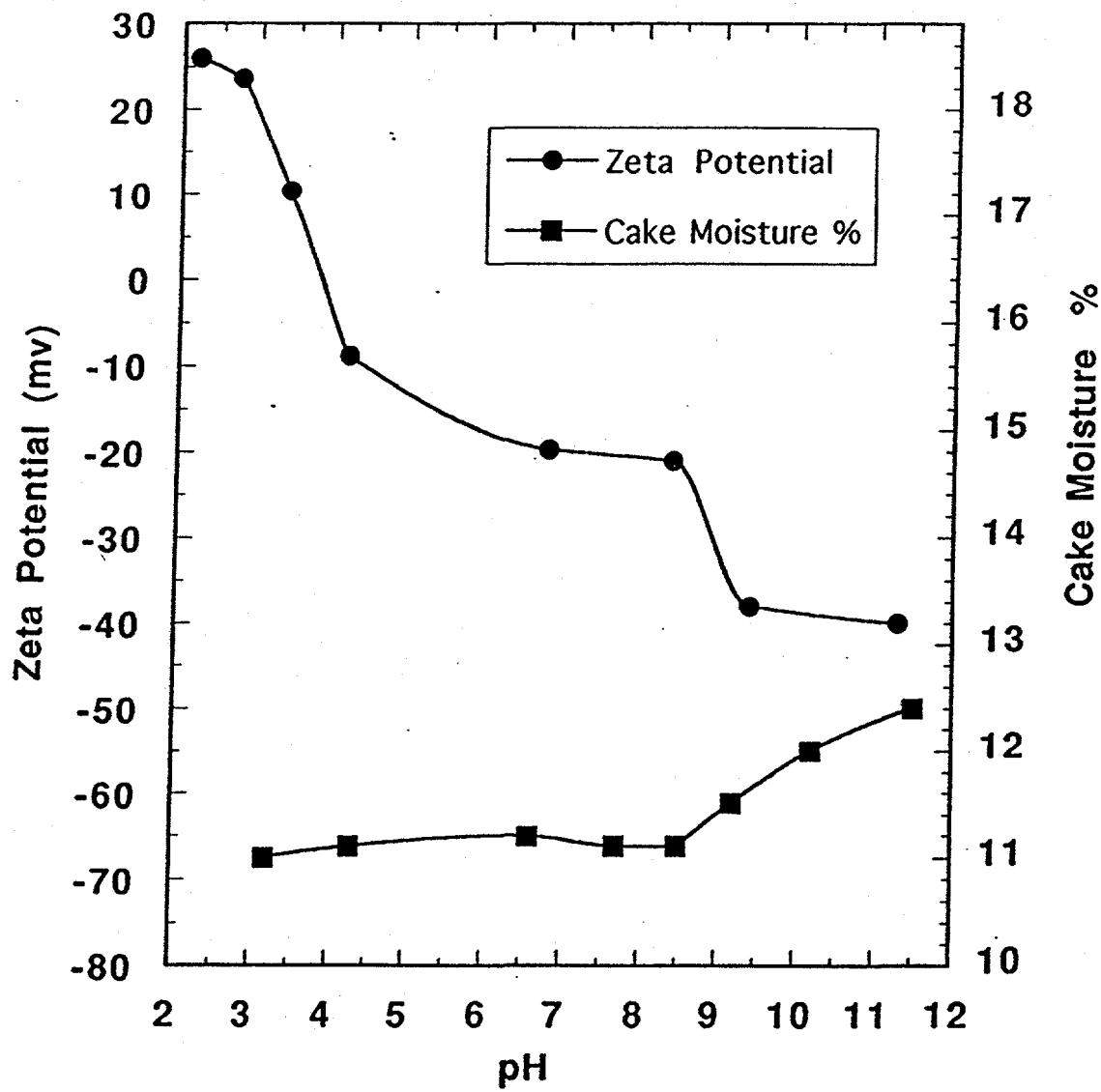


Figure 9-10. Effect of pH on zeta potential and cake moisture for the Pocahontas No. 3 coal.

9 or above, both the absolute value of the zeta potential increased and the cake moisture increased as the pH rose.

Temperature:

The relationship between cake moisture and filtration time at various temperatures for the Pocahontas No.3 coal shown in Figure 9-11 indicates that the increase of slurry temperature not only significantly reduces the cake moisture but also decreases the optimum filtration time. For the Pocahontas No.3 coal slurry, at 40 °C, the optimum filtration time is 1.5 minutes and corresponding cake moisture is about 11 percent, while at 80 °C, the optimum filtration time is one minute and corresponding cake moisture is 7.4 percent. The results show that increasing slurry temperature is very efficient in improving filtration process. Even though many researchers emphasized that the main effect of temperature on filtration process is to change filtrate viscosity, it was found in present study that the increase of temperature water from 20 °C to 80 °C lowered surface tension from 72 to 40 dynes/cm and the contact angle increased from 70° to 95°, as temperature increased from 20 °C to 60 °C. Thus, it appears that higher temperature has a combined effect of lower viscosity, lower surface tension and higher hydrophobicity of coal in reducing filter cake moisture.

Particle Size:

Particle size plays a very important role in a filtration process. The dewatering data of various size fractions of the Pocahontas No. 3 coal are listed in Table 2.

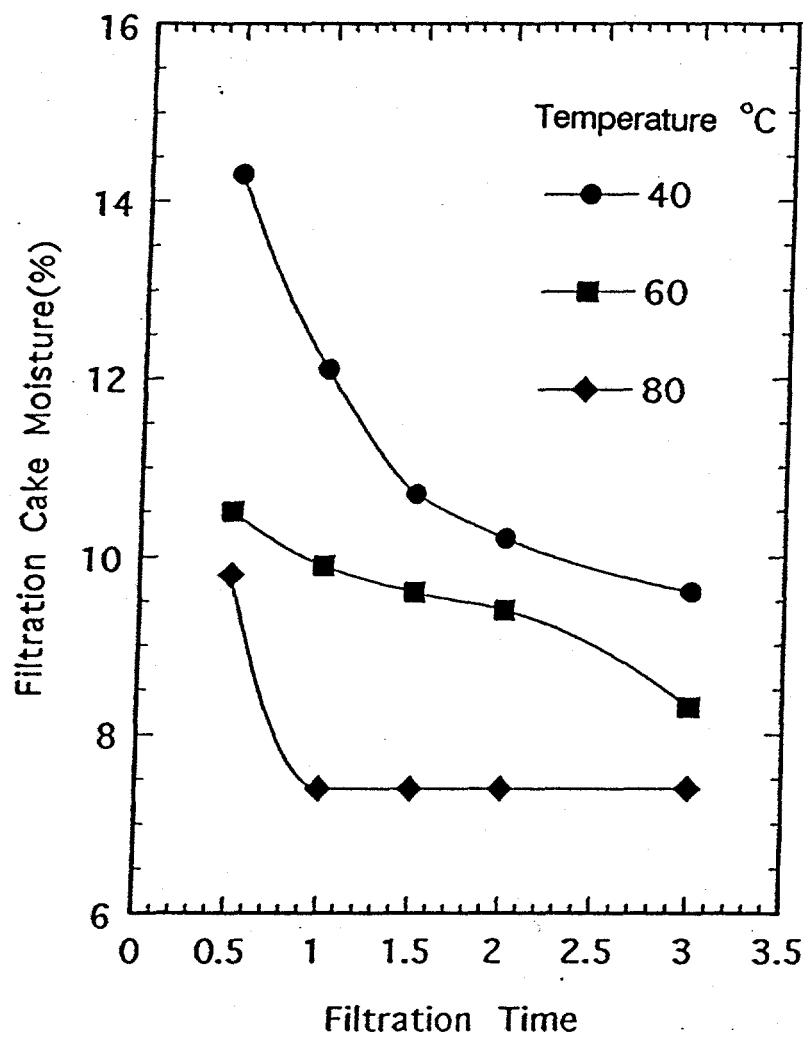


Figure 9-11. Effect of temperature on cake moisture for the Pocahontas No. 3 coal.

Table 2. Cake Moisture of Various Size Fractions of the Pocahontas No. 3 Coal Slurry Sample

Size Fraction (mesh)	Cake Moisture (%)
28x100	2.5
28x200	3.3
28x400	7.2
-100	15.42
-200	16.47
-400	23.9
Feed (as received)	11.0

As expected, the cake moisture increases as the particle size becomes smaller.

It can also be noticed that plus 200 mesh size fraction has a much lower cake moisture than minus 200 mesh size fractions. The particle sizes can be artificially increased using either by flocculation or agglomeration technique.

Phase 3 - Field Testing:

Field testing with the Andritz Ruthner Inc. hyperbaric filter pilot plant unit were conducted at Consol Inc., Bailey mine located at South-west of Washington, PA in Green County. At this plant, Pittsburgh No. 8 which is a High Volatile B rank coal is being mined and cleaned. Table 3 lists the total number of pilot scale tests conducted at the Bailey plant. Note, that 38 tests were conducted on filter feed (28x0 mesh), 54 tests on froth flotation product (100x0 mesh), and 12 tests on a classified froth flotation product. The pilot scale data for all the 104 tests conducted at the Bailey

Table 3. List of the pilot scale hyperbaric filter tests conducted at the Consol Inc. Bailey Mine.

A. FILTER FEED MATERIAL^a (38 TESTS)

1. Experimental Design (15 Tests)
2. Anionic Floc (8 Tests)
3. Cationic Surfactant (6 Tests)
4. Wood Pulp (2 Tests)

B. FROTH FLOTATION PRODUCT^b (54 TESTS)

1. Experimental Design (15 Tests)
2. Anionic Floc (5 Tests)
3. Coagulant (6 Tests)
4. Cationic Surfactant (5 Tests)
5. Anionic Surfactant (7 Tests)
6. Anionic Surfactant and Cu Ion (6 Tests)
7. Wood Pulp (5 Tests)
8. Pressure Variation (4 Tests)
9. Other (1 Test)

C. CLASSIFIED FROTH FLOTATION PRODUCT (12 TESTS)

1. Size, Pressure, and Solids Content Variation (6 Tests)
2. Anionic Floc (2 Tests)
3. Coagulant (4 Tests)

^a28x0 mesh

^b100x0 mesh

mine are listed in Table 4. Table 5 provides a brief summary of all the data. The data shows that for the filter feed (28x0 mesh) filter cake moisture was below 20 percent, and for the forth flotation product (100x0 mesh), the filter cake moisture was above 20 percent but below 25 percent. Classified froth flotation product did not show any improvement in filter cake moisture, however, the throughput of coal in the unit was increased with little lower air requirement.

FUTURE PLANS

Additional laboratory studies on dewatering of Pittsburgh No. 8 coal are being conducted using 'oriemulsion' and specially synthesized flocculant. The pilot scale data obtained at Bailey and Buchanan mines are being evaluated in detail. A technical presentation of the pilot data will be made at Coal Prep 95 meeting in May 95.

Table 4. Andritz hyperbaric filter plant data obtained at Bailey mine

3:00 PM
1/12/86
DOE.xls

Data HBF-Trailer																	
Project: B8-241410		Material: Coal concentrate		Filter fabric: GfG Supreme 165725/07 monofilament, Textile		H-Filter: 2410 / John Higgins, Area		Gary Meenendam, Detour		Randy Kecky		Anthony Porekka		Air- cake			
Code: Hyperbaric filtration		Filter area: 20, m ²		Filter area: 20, m ²		Filter area: 20, m ²		Filter area: 20, m ²		Filter area: 20, m ²		Filter area: 20, m ²		Filter area: 20, m ²			
Test- Nr.	Date	Test- time	Type	Vessel	Press- ure	Flow	Part.	Part.	Air	Air	Air	Air	Flow	Flow	Flow	Flow	
			concn.	pres.	CFA	mm/h	Lab	Lab	>600µ	<65µ	temp.	Compr.	Nm3/h	Nm3/h	Nm3/h	Nm3/h	
			nhmnm	bar	bar	bar	mm	%	%	%	°C	Nm3/h	Nm3/h	Nm3/h	Nm3/h	Nm3/h	
Froth Feed (20x0 Mesh)																	
CFA = 85 deg																	
#1	12/09/1994	14:28	280	6.0	0.0	2.01	10.5	38.7	28	213	365	6.90	0.6	130	226	0	
#2	13/09/1994	08:48	280	5.0	0.0	0.0	1.93	5.2	28	227	366	3.60	0.8	130	236	0	
#3	13/09/1994	10:04	280	5.0	0.0	0.0	0.46	3.0	28	152	269	1.87	0.5	130	139	0	
#4	13/09/1994	17:42	280	6.0	0.0	0.0	1.95	5.8	29	366	447	4.07	0.3	130	317	0	
#5	13/09/1994	17:58	280	5.0	0.0	0.0	0.47	3.4	28	236	290	2.17	0.1	130	160	0	
#6	14/09/1994	13:08	280	3.6	0.0	0.0	1.29	5.4	30	280	339	3.38	0.2	55	284	0	
#7	14/09/1994	14:30	280	2.0	0.0	0.0	2.03	5.9	30	225	304	3.57	0.2	0	304	0	
#8	14/09/1994	16:16	280	3.6	0.0	0.0	1.29	7.0	30	306	377	4.80	0.1	65	322	0	
#9	15/09/1994	08:48	280	2.0	0.0	0.0	0.48	5.4	28	220	338	3.20	0.1	0	338	0	
#10	16/09/1994	08:45	280	3.5	0.0	0.0	1.28	5.9	24	235	345	3.88	0.3	55	290	0	
#11	16/09/1994	10:20	280	0.7	0.0	0.0	0.48	3.9	25	99	145	1.82	0.1	0	145	0	
Froth Feed (100x0 Mesh)																	
CFA = 85 deg																	
#12	16/09/1994	13:10	1000	5.0	0.0	0.0	1.28	5.1	19.7	30	488	655	4.44	0.2	130	425	0
#13	16/09/1994	15:20	1000	3.5	0.0	0.0	1.93	4.0	18.8	30	457	538	3.40	0.3	55	483	0
#14	19/09/1994	08:05	1000	3.6	0.0	0.0	0.48	3.4	20.1	28	436	513	2.61	0.3	65	468	0
#15	19/09/1994	10:30	1000	2.0	0.0	0.0	1.26	4.1	20.4	26	284	382	3.01	0.4	0	382	0
Froth Feed																	
CFA = 125 deg																	
#16	20/09/1994	08:30	1000	5.0	0.0	0.0	1.98	7.2	20.4	27	398	479	5.84	0.3	120	369	0
#17	20/09/1994	08:55	1000	4.6	0.0	0.0	0.50	3.6	20	28	492	665	3.20	0.2	85	480	0
#18	20/09/1994	11:55	1000	3.6	0.0	0.0	1.29	4.5	20.5	28	379	453	3.12	0.3	25	428	0
#19	20/09/1994	13:15	1000	2.0	0.0	0.0	2.02	5.0	20.3	28	248	335	3.40	0.3	0	335	0
#20	20/09/1994	14:30	1000	3.5	0.0	0.0	1.28	5.1	21.1	28	233	314	3.98	0.3	25	289	0
#21	20/09/1994	16:40	1000	2.0	0.0	0.0	0.48	2.9	20.7	28	182	223	2.04	0.2	0	223	0
#22	21/09/1994	09:05	1000	3.5	0.0	0.0	1.25	5.3	20	28	248	365	4.22	0.2	25	330	0
#23	21/09/1994	11:35	1000	0.7	0.0	0.0	0.60	2.6	20	28	58	27	1.30	0.3	0	27	0
Froth Feed																	
CFA = 125 deg																	
#24	21/09/1994	12:51	1000	1.5	0.0	0.0	1.24	4.5	18.9	28	128	240	3.83	0.3	0	240	0
#25	21/09/1994	13:10	1000	2.7	0.0	0.0	1.24	4.4	20.3	28	215	335	3.61	0.2	0	335	0
#26	21/09/1994	13:25	1000	4.2	0.0	0.0	1.24	5.1	20.6	28	265	365	4.26	0.1	60	305	0
#27	21/09/1994	13:40	1000	5.8	0.0	0.0	1.24	6.1	20.7	28	335	377	5.03	0.1	165	211	0
Froth Feed																	
CFA = 125 deg																	
#28																	

Table 4 (continued)

3:00 PM

DOE.XLS

1/12/95

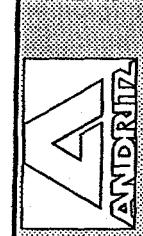

Data HBF-Trailer															
Project: 88-241410		Material: Coal concentrate		Hiltiener AG / John Hughes, A.T. Inc.		Gary Meenanum, Duane		Randy Kosky		Anthony Foronda		Mohr		Air- cake	
Code: Hyperbaric filtration		Filter fabric and filtercake 1.06/05/94 27/10/94/01/04/94, 1st run		Filter area: 2.0 m ²		Filter fabric and filtercake 1.06/05/94 27/10/94/01/04/94, 1st run		Filter area: 2.0 m ²		Filter fabric and filtercake 1.06/05/94 27/10/94/01/04/94, 1st run		Consumes: 0.35 mm		Np/R	
Test- #	Date 11/28	Test- time 12:00/11/94	Type Vessel Dives	Press- ure CFA	Vessel Dives	Press- ure CFA	Part. Leb	Leb mm	Leb mm	Leb mm	Leb mm	Leb mm	Leb mm	Leb mm	Leb mm
Test- #	Date 11/29	Test- time 17:00/11/94	Type Vessel Dives	Press- ure CFA	Vessel Dives	Press- ure CFA	Part. Leb	Leb mm	Leb mm	Leb mm	Leb mm	Leb mm	Leb mm	Leb mm	Leb mm
Test- #	Date 11/30	Test- time 08:10/11/94	Type Vessel Dives	Press- ure CFA	Vessel Dives	Press- ure CFA	Part. Leb	Leb mm	Leb mm	Leb mm	Leb mm	Leb mm	Leb mm	Leb mm	Leb mm
Test- #	Date 11/31	Test- time 11:50/11/94	Type Vessel Dives	Press- ure CFA	Vessel Dives	Press- ure CFA	Part. Leb	Leb mm	Leb mm	Leb mm	Leb mm	Leb mm	Leb mm	Leb mm	Leb mm
Filter Feed															
CFA = 125 deg															
#328	21/09/1994	14:25	280	3.5	0.0	0.0	1.94	4.6	38.8	29	280	342	3.24	0.3	25
#329	21/09/1994	17:00	280	3.5	0.0	0.0	0.43	3.3	36.2	30	204	223	2.08	0.1	25
#330	22/09/1994	08:10	280	5.0	0.0	0.0	1.23	5.8	34.8	28	278	378	4.16	0.2	120
#331	22/09/1994	11:50	280	2.0	0.0	0.0	1.24	4.8	26.8	28	123	204	3.11	0.3	0
Froth Feed															
CFA = 165 deg															
#332	23/09/1994	08:31	10000	2.0	0.0	0.0	1.23	5.3	19.8	28	110	231	4.32	0.2	0
#333	23/09/1994	08:50	10000	3.5	0.0	0.0	1.95	7.0	20	28	180	283	6.77	0.1	0
#334	23/09/1994	11:00	10000	3.5	0.0	0.0	0.47	4.6	18.4	28	286	345	3.89	0.1	0
#335	23/09/1994	12:15	10000	5.0	0.0	0.0	1.25	7.5	20.3	28	271	318	6.27	0.1	0
Filter Feed															
CFA = 165 deg															
#336	21/09/1994	17:52	280	5.0	0.0	0.0	1.82	6.9	37.8	28	207	272	4.09	0.2	0
#337	21/09/1994	17:59	280	5.0	0.0	0.0	1.24	6.4	36.6	28	220	251	3.75	0.1	0
Filter Feed															
CFA = 65 deg															
#338	26/09/1994	10:30	280	2.0	0.0	0.0	1.25	3.7	29	28	244	418	2.26	0.3	10
#339	26/09/1994	12:30	280	3.5	0.0	0.0	2.01	3.9	31.8	28	441	638	2.67	0.3	120
#340	26/09/1994	13:45	280	3.5	0.0	0.0	0.61	2.9	29.9	28	303	380	1.90	0.1	120
#341	26/09/1994	15:00	280	5.0	0.0	0.0	1.30	3.8	36	28	404	482	2.60	0.3	160
#342	26/09/1994	16:10	280	5.0	0.0	0.0	1.22	3.9	35.9	28	247	310	2.54	0.3	180
Test with polymer Nalco 8866 0.1%															
CFA = 65 deg															
#343	26/09/1994	16:50	280	5.0	0.0	0.0	1.27	9.3	33.3	28	439	621	6.32	0.0	160
#344	26/09/1994	17:05	280	3.3	0.0	0.0	1.33	8.8	32.8	28	496	621	5.99	0.1	110
#345	26/09/1994	17:20	280	2.0	0.0	0.0	1.23	7.5	32.6	28	472	565	4.89	0.1	10
Filter Feed															
CFA = 85															
Polymer Nalco 8810 0.1%															
#346	27/09/1994	14:26	280	3.5	0.0	0.0	1.24	6.8	35.1	28	222	354	4.49	0.2	50
Filter Feed															
CFA = 86 Polymer Nalco 9810 0.1%															

Table 4 (continued)

3:00 PM

DOE-XLS

Data HBF-Trailer

Material: Coal concentrate
 Filter fabric and membrane: Nitto TR-1000-000-1000-000
 Filter area: 2,000 m²

Project: St. 2.1.4.10
 Code: Hyperbaric filtration
 Customer: Consol USA
 Facility: Bailey Mine

Miller, AAC; John Hughes, ATE
 Gary Meenan, Jim Devore
 Randy Keckly
 Anthony Forneska

Test- nr.	Date	Test- time	Type	Vessel conc.	Pres. press.	Feed- speed	Ash	FS	Part.	Part. >500 Lab	<800 temp.	Concen.	filtrate flow	Air filtrate	air cor- rect.	Filtrat. flow	air cor- rect. factor	filtrat. flow	Polym. conc.	Polym. flow	Polym. dose	Calc. dose	Thickness mm	Consumpt. Nmf Pt.	Air- flow	Air- consumpt.	Thickness mm		
##64	03/10/1994	13:25	1000	3.6	0.0	1.23	4.8	20.7		26	184	271	3.99	0.1	0	271	0	none	0.0	0	48	1	22.6	853	134	22.9	207	111	11.5
Froth Feed CFA = 165																													
Froth Feed CFA = 165																													
##65	03/10/1994	14:05	1000	3.5	0.0	1.28	5.5	20.3		26	190	279	4.53	0.1	0	279	68	none	0.1	60	48	1	23.2	673	138	22.6	207	111	12.5
##66	03/10/1994	14:20	1000	3.5	0.0	1.30	6.5	20.3		26	203	302	5.32	0.1	0	302	154	none	0.1	96	48	1	27.2	802	164	21.4	188	100	13.8
##67	03/10/1994	14:35	1000	5.0	0.0	1.37	8.5	20		26	222	343	7.08	0.1	0	243	200	none	0.1	97	49	1	36.7	1027	211	23.8	187	89	17.5
##68	03/10/1994	14:55	1000	5.0	0.0	1.16	8.9	19.7		26	301	380	7.44	0.1	0	380	423	none	0.1	201	49	1	38	1052	218	24.1	181	96	19.0
##69	03/10/1994	15:12	1000	5.0	0.0	1.20	9.6	18.7		26	367	442	8.27	0.0	0	442	941	none	0.1	435	49	1	39	1080	221	24.3	205	109	20.0
Froth Feed CFA = 165																													
Surfactant Sigma 1-Hexadecylpyridinium Chloride																													
##70	04/10/1994	08:00	1000	3.5	0.0	1.27	5.4	18.5		24	94	258	4.49	0.1	0	258	134	none	0.1	114	61	1	25.3	586	120	22.1	220	118	11.0
##71	04/10/1994	08:20	1000	3.5	0.0	1.29	6.2	17.5		24	168	326	5.42	0.1	0	326	770	none	0.1	626	58	1	25.3	616	126	21.0	265	141	11.5
##72	04/10/1994	08:35	1000	5.0	0.0	1.26	8.6	16		24	284	409	7.85	0.1	0	409	1068	none	0.1	660	60	1	34.2	809	166	21.1	253	135	14.5
##73	04/10/1994	09:45	1000	5.0	0.0	1.25	8.3	17.9		26	243	385	7.20	0.1	0	366	207	none	0.1	120	60	1	38.9	860	176	22.2	212	113	16.0
Froth Feed CFA = 165																													
Cu+0.05% + Surfactant anionic 0.1%																													
##75	04/10/1994	12:05	1000	5.0	0.0	1.30	7.6	18.3		26	243	355	6.60	0.1	0	355	182	none	0.1	107	50	1	31	847	174	24.1	210	112	17.0
##76	04/10/1994	12:30	1000	3.5	0.0	1.25	6.2	19.3		26	176	303	5.32	0.1	0	303	154	none	0.1	116	59	1	28.8	685	136	24.8	228	122	15.5
Froth Feed CFA = 165																													
Cu+0.05% + Surfactant anionic 0.5%																													
##77	04/10/1994	16:00	1000	3.5	0.0	1.30	5.6	20		26	136	273	4.92	0.1	0	273	142	none	0.5	562	59	1	28.2	642	132	26.4	213	113	14.6
##78	04/10/1994	16:15	1000	5.0	0.0	1.30	6.7	20.2		26	182	289	5.83	0.1	0	298	188	none	0.5	525	60	1	35.2	780	182	25.2	189	101	17.0
##79	04/10/1994	16:30	1000	5.0	0.0	1.23	5.8	20		26	184	278	5.15	0.1	0	278	152	none	0.5	488	60	1	34	778	180	23.7	177	95	15.5
##80	04/10/1994	16:45	1000	5.0	0.0	1.34	6.6	20.1		26	136	249	6.03	0.1	0	249	324	none	0.5	1093	60	1	32.7	742	152	24.4	168	89	16.5
Froth Feed CFA = 165																													
Correlation to #75/#80																													
##81	04/10/1994	17:05	1000	5.0	0.0	1.37	6.8	20.8		26	217	329	5.89	0.1	0	329	0	none	0.0	0	60	1	36	808	186	25.4	204	109	16.0
Froth Feed CFA = 165																													
Correlation to #73/#86																													
##82	05/10/1994	08:55	1000	3.5	0.0	1.28	6.6	19.7		26	136	305	5.41	0.1	0	305	0	none	0.0	0	58	1	33.3	710	146	30.9	215	116	14.8

Table 5. Summary of pilot scale hyperbaric filter tests conducted at the Bailey Mine.

Material	% Moisture in Filter Cake	Throughput Dry lb/hr-ft ²	Air Consumption Scfm/t
Filter Feed (28x0 Mesh)	16-19	100-300	60-200
Froth Flotation Product (100x0 Mesh)	21-25	100-150	100-250
Classified Froth Flotation Product	21-25	130-160	100-150