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ABSTRACT 

A mathematica1 model arid' a numerical soll.iti"ori scheme· for thermal-hydraulic analysis 
of. fuel rod arrays. ar~ giyen . .The model alleviates the two major defic~encies associated with 
existing rod array analysis model~, that of a correct trans,verse momentum equ4tion and' the 
capabi'lity of. handling reversing and circulatory flows. Possible applications of the model 
include steady state and transient subchannel calculations as well as analysis of flows in heat 
exchangers, other engineering eqt1ipment, and porous medi4 . 

. . , 
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NOMENCLATURE 

Ah = heated surface area per unit volume 

Aw = wetted surface area per unit volume 

Bij = friction drag factor 
w 

cP = specific heat 

CI = speed of sound at constant specific internal energy 

D = divergence of v 

d·· 1 ( . = - V· · + V· ·) 1J ?. 1,1 J ,1 

p. = drag force in the ith direction 
1 

fi = friction factor in ith direction 
w 

gi = body force in the ith direction 

h = heat transfer coefficient for solid-fluid interface 

I = specific internal energy 

Is . = spe~ified boundary specific internal energy 

k = molecular thermal conductivity 
I 

kt = turbulent or eddy thermal diffusivity 

M· = fluctuating terms in momentum· equation 
1 

n· = components of outward unit normal 1 

p = pressure 

PB = specified boundary pressure 

fJ.C 
Pr = Prandtl number,T. 

q = local heat nux vector with coordinates qi 
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Og = volumetric energy supply 

Ow -. ,rate of wall heat supply pei unit volume 

Rew = Reynolds number 

sf = fluid: surface enclosing V f 

sff = part of Sf occupied by fluid only 

ssf = solid-fluid interface 

t = time 

Tb = coolant bulk temperature 

Ts = solid surface temperature 

UB = specified boundary velocity 

v = control volume used in averaging procedure 

vf = volume of fluid in V 

v = fluid velocity vector with coordinates vi or u, v, w -
ys = solid-fluid interface velocity vector with coordinates V~ 

1 

X = thermodynamic quality 

X = position vector with coordinates xi 

y = a position vector to the center of V with coordinates Yi 
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. Greek Letters 

weighting factor in iteration scheme 

time in<;:rement 

space increment in xi direction. 

porosity = V f/V 

molecular viscosity 

turbulent or eddy viscosity 

kinematic viscosity= J.L!P or(or lltfP) 

iteration weighting factor or relative roughness coefficient 

density 

specified boundary density 

stress tensor 

turbulent stress tensor 

two-phase friction multiplier 

· Other Sym bois . 

denotes an 'average taken over V; that is, mixture average 

denote_s ari average taken over V f; that is, fluid average 

denotes a fluctuating part 

denotes the most recent iteration 

definition 
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TRANSIENT THREE-DIMENSIONAL THERMAL-HYDRAULIC 

ANALYSIS OF NUCLEAR REACTOR FUEL ROD ARRAYS:. 

GENERAL EQUATIONS AND NUMERICAL SCHEME 

I. INTRODUCTION 

Recent advances in numerical solution techniques for systems of quasi-linear partial 
differential equations have led to more refined analyses of complex engineering problems. 
Currently available computers and numerical solution techniques have made construction of. 
mathematical models, more nearly exact so that less empiricism is required, and the 
empirical relations that are needed are of a more basic nature. Thus, the resulting cornputer 
programs can be used for extrapolative engineering design studies with increased confidence. 
The area of turbulent flow analysis is a good example of the application of such models to 
complex problems[ 1 l. 

The nuclear industry employs a large number of computer codes for both steady state 
design work and transient-incident safety analysis. A variety of codes have been written in 
order to analyze complete nuclear steam supply systems or·selected subsystems such as the 
primary pressure vessel, emergency core cooling system, and the reactor core. The 
thermal-hydraulic characteristics of the core are important with respect to both steady state 
design operation and transient response to an incident. In the former case, core 
thermal-hydraulic considerations dictate, to a large extent, the possible steady operating 
power obtainable from a given core design. In the case of incidents, thermal-hydraulic 
considerations are important because the core contains fission products that must not be 
allowed to escape into the atmosphere. Because the thermal-hydraulic characteristics of the 
core are so important, many experimental and analytical studies have been conducted on 
the parallel-rod-array geometry that is typical of a large number of reactor core designs. 
Thermal-hydraulic analysis and experimental studies of rod arrays are difficult t<? perform 
due to the geometric complexity of the rod array and the two-phase nature of the coolant 
employed in many nuclear reactors. 

The geometric complexity arises from the large number of degrees of freedom 
associated with parallel-rod arrays. Among the geometric variables that are known to affect 
the thermal-hydraulic characteristics of .rod arrays are the rod diameter, rod-to-rod pitch, 
spacing between rods, rod spacer type and location, and, for arrays within shrouds, the 
spacing between rods and shroud, and the shroud geometry. The rod power generation 
varies radially and axially throughout the array thereby causing the coolant flow rate and 
thermodynamic state to vary throughout the array. 

Two-phase 'flow of the coolant compounds the analytical and experimental difficulties 
due to the introduction of additional thermal-hydraulic variables, such .as the vapor volume 
fraction, velocity and temperature differences between the phases, and distribution of the 
phases within the flow field. A vast amount of data and associated literature exists on 
two-phase flow, and empirical correlations have been developed for friction factors, void 



fractions, liquid-vapor velocity slip, heat transfer coefficients, mass and energy mixing, 
critical heat flux, and flow regime. 

Because of the overall complexity of rod array analysis, many computer programs 
have been developed for steady state design studies and transient incident analysis. 
Representative of the codes in use are COBRA[2], COBRA-11[3], COBRA m[4,5], 
HAMBo[6,7], MICR0-3[8], LEUCIPPo[9], TEMP[lOi, and HOTROD[ll]_ All of these 

codes are based on a fluid flow model that assumes that the rod array can be represented by 
parallel interconnected channels. The Navier-Stokes equations are simplified to be consistent 
with this assumption and the resulting equation system is, in general, solved as an initial 
value problem with distance from the rod array inlet as the independent coordinate. 
Bowring[ 12 l and Berger[ 13 l have noted that this procedure can introduce errors if 
downstream effects such as spacers and flow blockages are not given careful consideration. 
The simplifications in the Navier-Stokes equations introduced by this assumption usually 
result iri an incomplete representation of the momentum component in the transverse or 
radial direction and an inability to handle flow reversals. "Transverse" refers to the direction 
normal to the primary direction of flow under steady state conditions. However, during 
some transients; conditions in the core may result in a very low velocity and possibly natural 
convection, so that the ·distinction· between transverse and primary becomes less clear. 

The method of analysis presented in this report differs from those used in the existing 
codes previously discussed in that the governing-equations are obtained by volume averaging 
the complete fluid-mechanical equations of continuity, momentum, and energy. The 
resulting averaged equations are three-dimensional. The equations are applied without 
invoking assumptions that would reduce the model to the parallel channel case. The 
equations are solved as an initial value problem in time and a boundary value problem in 
space. As a result, transport in the ·radial or transverse direction, due to turbulence and 
radial pressure gradients, is taken: into· account more rigorously than in previous treatments, 
and flow-reversals in the core are easily handled.· 

The mathematical description is quite general in that transient flow of a compressible 
fluid is assumed, and the distributions of the solids embedded in the flow and the heat 
energy sources can be any functions of position and time. In addition, to use for calculation 
of flows in nuclear reactor cores as discussed in the report, a wide· variety of other 
applications of the model is possible. Among these are calculation of flows in porous media, 
heat exchangers, and other engineering· equipment, arrd calculation of local phenomena in 
flows amenable to a Prandtl mixing length turbulence description. 

· ·The report is organized into the following sections .. Section II gives the development 
of the volume-averaged Navier-Stokes equations; Section III discusses the constitutive 
.equations required to close the equation system; and Section IV presents the numerical 
solution scheme. Example applications are given in Section V. 
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II. BASIC EQUATIONS 

The differential equations described in this section are derived by considering a· 
control volume V whose dimensions are small compared to the large scale phenomena of 
interest and large relative to the local phenomena, which are not of interest. The notion of 
large or small is relative. If a core-wide PWR analysis is of interest, then the control 
volume V might be composed of an axial section of several fuel assemblies, and phenomena 
on the scale ofthe rod channels within a bundle would be represented by average quantities. 
If a BWR single bundle or subchannel analysis is of interest, the typical control volume V 
would consist of an axial section of a single flow channel and parts of the adjacent rods. In 
this case, phenomena within a given flow channel would be represented by average 
quantities. In both these cases, the averaging process used on the equations is the same, but 
the correlations used to represent some of the averaged phenomena could be different. For 
this reason, the development of the averaged equations derived in this section is basically 
independent of the size of the control volume used in practice so long as appropriate 
correlations are employed in different applications. 

Before the averaged equations are developed from local equations, some basic 
mathematical results concerning volume averages are needed. The development given here 
follows that presente_d by Slattery [ 141. About each point y in the flow region (both solids 
and fluids occupy the flow region), a control volume, V, is constructed as shown in 
Figure 1. All control volumes V have the same shape and orientation. (In Figure 1, the 
volume has been shown to ·be spherical, but aiw fixed shape· could be used in th.e 
averaging.) As shown in Figure 1, a typical volume will contain regions of fluid and also 
regions occupied by the solid. The region of V occupied by fluid is denoted by V r(Y ,t), aJ!d 
the surface of this region is denoted by Sr(~ ,t). The surface Sr(y ,t) is further specified as tfie 
sum of Ssr(~ ,t) which denotes that part of Sr(y ,t) on the interface between the solid and 
fluid and Sfr(~ ,t) which denotes that part of Sr(~ ,t) occupied by the fluid. 

The volume average of any scalar, vector, or tensor property 'II (~,t) associated with 
the flow field is defined as 

• (y,t) - ~ f •(~,t) dV 

Vf(y,t) 

(1) 

The averaging process to be employed requires derivatives of the average property 'II (y,t) 
with respect to time, t, and position, Yi· General expressions for these derivatives are 
obtained as follows. 

The time derivative, ~t 'II (y ,t), is calculated by use of the generalized Reynolds 

transport theorem in the form 

~ j:t •<~,t) 
Vf(~,t) 

(2) 

3 



Fluid Component 

A'NC- A- 4936 

Fig. l'Typical· control volume. 

where Ykis the velocity ofthe surface Sf, and nk is the outward directed unit normal to Sf­
The velocity V~ is zero on ·that part of Sf denoted by Sff Cy ,t) and, in the absence of 
chemical reactions, on Ssf Cy ,t), Vk is equal to the fluid velocity vk, which may be nonzero 
due to time rateof change of porosity, E. With these val_ues of Vk, Equation (2) becomes 

a 1 J 1 fa 1 J at V '¥(~,t) dV = V at '¥(~,-t) dV + V '¥(~,t) vknkdS. 

Vt(!,t) Vf(~,t) . S 8 f(~,t) 
(3) 

An expression for the spatial derivative .2._ "IJ! can be obtained as in Reference 14. The 
ayi 

results are given by 

(4) 
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Adding ~1'J!(~,t) nkdS to both sides of Equation (4) and applying the divergence theorem 

ssf 
results in 

(5) 

Equations (3) and (5) are ·the formulas needed in the volume averaging of the local 
equations to be carried out subsequently .These equations are quite general as no restrictive 
assumptions were employed in the derivation. 

The results of the volume-averaging procedure are more convenient if expressed in 
terms of quantities that refer to fluid average properties instead of mixt1.1re average 
properties. The mixture average quantities in Equations (1) throuih (5) can be converted to 
fluid average values ·as follows. The fluid volume fraction, or porosity, is given by 

e: = vf = . .!. jdv. 
v v 

. v f (~' t) 

The fluid average value of a property 'J! is defined as 

- 1 f 'l'(y,t) = -v 'l'(~,t) dV 
. - f -

Vf(~,t) 

so that Equations (1) and (7), when us~d with Equation ( 6), give 

'l'(y,t) = E: 'l'(y,t). - -
Equation (8) is the relationship between the mixture average, 'J!, and the fluid average, 4't. 

(6) 

(7) 

(8) 

. . ae: ae:1 
Formulas for the time and spatial derivatives of the porosity,- and..,.-, respectively, 

at oyi 
can also be obtained from Equation (6). The time derivative is obtained by application of 

. . 
Equation (3) with '1J!(~,t) =I as given by Equation (6). Simplification of the resulting 
equation gives 

(9) 

~ 

Equation (9). explicitly shows the relationship between the time rate of change of the 
porosity and the motion of the solid-fluid interface that was discussed when Equation (3) 
was obtained. Application of Equation (5) yields the spatial derivative 

5 



a£ :" · 11 ·· 
ay.k = ;- v ~ds . 

s f(y,t) 
.s -

(1 0) 

Tl_le equations developed in this sectio:n are. now applied to vol~me averaging of the 
.local Navier-Stokes equations. · 

·I. VOLUME-AVERAGED CONSERVATION OF MASS 

The volume-av~raged equation for conservation of rmass will.be developed in detail. 
The local equation that applies a,t all points, such as shown in Figure 1, is.given by . . ' .. : : 

a ·a 22..+-
at' a~k (1 n 

The volume-averaged equation is ohtained by integrating Equation (11) over V f so that 

if ;t p dV +if ;"k (p vk)dV 0 ' .... (12) 

Vf(~,t) . Vf(~,t) 

Equation (12) is rearranged by using Equation {3) o·n. the first integral and Equation (5) on 
the second integral to obtain .. 

or, by using the definition 

a 
at 

- 0 , 
(13) 

a --
p +--pv =0 
. ()yk k (14) 

Equat16"~ (14) is the mixture-averaged conservation of mass equatioh. By using Equation 
"(8), Equation (14) can be expressed in teims of fluid averages as · · 

a (Ep) +_a- (£ ~) = o . 
at ayk k (15) 

.... 
Equation ( 15) contains the spatial average of the product of density and velocity. The 

momentum equation, likewise, will contain spatiaLaverages of the product of density and 
. two Velo~ity ·COmponents.· Th~ net result is that the aver~gi'ng process introduces mo~e . 

. . ·' . . . .. 

6 



unknowns than available equations. This problem can be partially solved by expressing the. 
instantaneous dependent variables as the sum of an average contribution plus a fluctuating 
part. That is, when 

..-.-
p p .+pI (pI = 0) , (16a) 

and 

~ 

v = k vk + vi 
k 

(vi = 
k 

0) , (16b) 

where the primed quantities are the difference in V f between the actual value and the fluid 
average value, then Equation ( 15) becomes 

a a 
( £ P) + - ( £ P vk) 

at ayk 

....-­
(£ PI vkl) . 

ayk 
(17) 

The term on the right-hand side of Equation (17) is analogous to corresponding terms in 
compressible turbulent flow and porous media equations. In turbulent flow, the term is 
usually obtained frqm time averaging of the Navier-Stokes equations. Here; it is the result of 
nonuniform spatial distributions of vk: and p as the fluid moves through· the void space 
between the solids. This term is nonzero even if the local flow is laminar. In the following 
analysis, this term is considered small compared to other terms in the equation and is 
neglected. The resulting mass conservation equation in terms of fluid average properties 
becomes 

a a . 
(£ P) + - (£ P vk) 

at ayk 
0 . 

(18) 

Equation (18) is the desired result for th.e conservation of mass equation .. Comparison 
of predictions from Equation (18) with experimental data, such as rod array subchannel 
data, may indicate that a model of the term on the right-hand side of Equation ( 17) is 
necessary. 

2. VOLUME-AVERAGED LINEAR MOMENTUM BALANCE 

The fluid average linear momentum equations will be developed from the local 
continuum equations. The process is similar to that used to obtain the conservation of mass 
equation and is not given in as much detail. 

The local momentum equations are given by 

(19) 
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Integrating Equation (19) over V f and applying Equations (3) and (5) to the time and 
space derivatives, respectively, results in 

a atp a v.+--pvv 
l. ayk i k 

a - a - -
- -..,- p + -..,- 0 . k + p g. 

oyi oyk l. l. 

+ ~ J [- p n i + a ik'\] dS . 

5sf 

(20) 

When the integral term in Equation (20) is denoted by Ii and when Equation (8) is used to 
introduce fluid averages, Equation (20) can be rewritten as 

-

or, by the use of Equation (16) as 

a.£p v. a£p v. vk 
----=-1.. + . l. 

at ayk 

a£ o
1
.k asp 

- -..,-- + + £ p g. + I. 
oyi ayk l. l. 

" a£ o ..... ·k 
- ~.+ + + ay ayk E:p g. ~l. •. 

i l. 

(21) 

(22) 

) + £P 'v'v' ---;--;- . J 
P vi i k 

The term Ii in Equation (22) represents the solid·fluid interfacial momentum 
exchange per unit volume and may be simplified as follows. The pressure, p, is written as the 
sum of a spatial average plus a fluctuating part: 

,.._...... 
p = p + p' ; (p' = 0) . (23) 

Substitution of Equation (23) for the pressure term in Ii results in 

V - p ni dS = V - p ni dS + V - p' ni dS (24) 1! 1!- 1! 
5sf 5sf 5sf 

The space average pressure, p, can be taken outside the integral in Equation (24) and by 
using Equation (1 0), Equation (24) can be written as 

1 f- pni dS - aE 1 f , n.dS v p ayi - v p l. (25) 

5sf 
5sf 
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When similar steps are performed for the viscous stress terms in Ii: 

- d£ I. = p 
1 ay. 

1 

a - +- [-- d£ 1 J 
ki ayk v P 'n. + a' ]dS 

1· ik nk 

5sf 

(26) 

The first two terms on the right-hand side in Equation (26) are solid-fluid interface forces 
due to a porosity gradient (analogous to the variable area, one-dimensional flow case) and 
the third term is the.remaining interfacial momentum exchange between the fluid and the 
embedded stationary suffaces. This latter term is generally expressed in terms of steady state 
friction factors that are appropriate for the flow field under consideration. In addition to 
the steady state friction factors, however, flow forces due to transients, such as the added 
mass (or virtual mass) ~nd Basset forces, are also included in this ·term. Slattery[ 141 has 
applied dimensional analysis to show that steady state momentum exchange may occur due 
to nonuniform porosity gradients. 

Of importance to note ·is that rigorous evaluation of the integral interfacial 
momentum exchange would require solutions of the pressure and velocity distributions, so 
that p' and aik are known, at the interface. In effect, such evaluation would require that the 
Navier-Stokes equations be solved within the fluid volume. At present, solution of these 
equations is impractical, and experimental data are required so that algebraic expressions 
can be substituted for this term. 

When Equation (26) is substituted into Equation (22), the result is 

" a a "k 
~+ 1 -s .., £ -..,-- + £ p g. + F. + M. 
ay i oyk 1 1 1 

(27) 

where 

P 'n. + a' Q) dS 
1 ik k (28) 

and Mi represents the primed terms on the right-hand side of Equation (22). In Equation 
(27), the average shear stress, is modeled as 

2 avs 
-- ~ --

3 ay 
s 

Modeling of the terms Fi and Mi is discussed in the next section. 

9 



3. VOLUME-AVERAGED CONSERVATION OF ENERGY 

The fluid average energy equation is obtained by the same process employed in the 
previous sections. 

The local equation for specific internal energy is given by 

a a 
-;;-t pI + -"-pv. I 
0 ox. l. 

~ 

aq. 
~ 

ax. 
~ 

pd .. + (J •• d.·. + pQ • 
~~ ~J ~J g 

(29) 

Integration of Equation (29) over V f, application of Equation (5) to the gadient of qi, and 
use of Equation (8) to introduce fluid averages results in 

· a - 1 f = - -- £q - - q n dS 
ayk k v k k 

. s 

1 J . + V cr .• d .. dv 
~J ~J 

. v 
f 

. sf 

+ £pQ . ' 
g 

. (30) 

where the volumetric. energy 'Supply, Qg, has been assumed constant. Writing the dependent 
variables as the sum of a spatial average plus a fluctuating part and substituting this sum into 
Equation (30) gives 

1 J --- V pdkk dV 

vf 

+ £PQ - E. 
g ~ 

where 

~ J (~k + qklnkdS 

8
sf · 

1 J ' ' d 1 v p d kk v + v 
vf 

f ;, .d .. dV 
~J ~J +~ J 

vf 

(J •• 
~J 

' 
d .. dV 
~J 

(31) 

Ei = ~t £;.1'1 
+ a~k [£P_'v\~' . ~ £~. v\I' + £Vk· ;;I'· + dp 'v'·k J (3~) 

10 



Equation (31 Y can be reduced to a simpler form as follows. The first integral on the 
right-hand side is evaluated in the same manner as the pressure gradient term in the 
momentum equation. The results are given by 

(33) 

(" 

"'sf 

where 

(34) 

The third and fourth terms on the right-hand side of Equation (31) represent the 
change in internal energy of the fluid due to pressure-volume work. The third term is 
reduced as follows. Writing thls lt:uu as 

··dv (35) 

and taking the sp(!tial averages from under the integral operation gives 

(36) 

When the fluid average definition of Equation (7) is used, Equation (36) can be written as 

and application of the divergence theorem to the right-hand side gives 

~ ~ J ::: dV ~ ~ [ ~ J "k"k dS + ~ J Vk dS] 
vf 8 ff 8sf 

or, by use of Equations (4), {8), and (9): 

- 1 J avk p- - dV v axk 

vf 
11 

(37) 

(38) 

(39) 



The fourth -term on the right-hand .side of Equation (31) involves volume averages of 
fluctuating terms and will be.assumed to be.small compared to the other terms in the energy 
equation. 

The fifth and sixth terms on -the right-hand- side of Equation (31) represent tht:: change 
in internal energy of the fluid due to viscous dissipation. Since viscous dissipation is usually 
neglected in .applications of ·the local equations, these volume integrals will also be assumed 
·small compared to internal energy changes due to energy exchanges related to temperature 
differences between the fluid and solid; that is: 

1 I.- --v : a_._. ·d .. dV == o j l..J 1J (40) 

·v .f 

and 

-v1 j· a . ! d! . dV == ·a • 
. 1J 1J 

{41) 

v . 
f 

The final formulation of the volume~averaged energy equation is -obtained by 
substituting·the results of Equations_(33) and (39) through (41) into Equation (31) to 
obtain 

+ e:pQ + 0 - E. 
g v 1 

(42) 

where Ei is given by Equation (32). The average molecular heat conduction, qk, in Equation 
(42}is modeled as 

(43) 

4. STATE EQUATION 

The state equation· is ~sed with density as a function of the independent variables 
pressure and internal energy. This form of the state equation is chosen because of the nearly 

. incompressible chara_cter o(subcooled water. The l_ocal state equation can be written as 

p =. f (p, I) . 
(44) 

12 



Integration of Equation ( 44) over V f gives. 

p = f (p, I) . (45) 

Expansion of the response function fin a Taylor series about (p,l) results in 

. . · af · af 
f (p,I) = f (p,I) + ap (p,I) p' + ai (p,I) I' + ... (46) 

Substitution of Equation (46)into Equation (45) results in 

. (47) 
p = f (p,I) 

if averages of the products of fluctuating variables are neglected. 

>',) 
. "'· . ':":.: 
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lll. CLOSURE OF THE EQUATION SYSTEM 

Use of the volume-averaging procedure given in the previous section has introduced 
several unknowns. Most of these are analogous to quantities that are introduced when the 
three-dimensional local equations are averaged to obtain the one-dimensional equations 
usually employed in engineering analyses. However,- treatment of these quantities in the 
volume-averaged three-dimensional equations will require additional considerations. The 
purpose of the present section is to present a discussion of these quantities. Specific models 
will not be given because the purpose of the -present report is to· present the general 
formulation of the equations. In addition, different applications of the formulation may 

· require different specific relations, all of which can not be covered here. 

The quantities introduced by the volume-averaging procedure are summarized for 
convenience. 

The conservation of mass equation, Equation (17), contains the term 

a --;---
-- (e:p'v') 
ay k • 

k 
(48) 

which has been assumed to be small. 

The linear momentum balance, Equation (27), contains the fluid-solid momentum 
exchange of Equation (28): 

+ a il~"k J dS 
(49) 

and the terms of Equation (22) due to spatial nonuniformity: 

The internal energy equation, Equation (42), contains the fluid-solid energy exchange 
of Equation (34): 

0 = l J q'n dS 'w v k ·k 

ssf 
(51) 

and the terms of Equation (32) due to spatial nonuniformity: 

Ei ;t op'I' + a~k [op'vki' + opvki' + ovkp'I' + oip~J . (52) 

1,4 



Several other terms introduced into the energy equation by the averaging process have been 
neglected as indicated in Section 11-3. 

The equation development given in Section II was quite general so that most of the 
assumptions associated with the general formulation will be invoked in evaluation of 
Equations ( 49) through (52). Many expressions are available for these terms for the case of 
single-phase flows in a wide variety of geomet!ies. However, the primary area of application 
of the model of interest to the nuclear industry, that is, to thermal-hydraulic analysis of fuel 
rod arrays, introduces several difficulties. The two major difficulties are ( 1) existence of 
two-phase flow structure and (2) lack of comprehensive data for heat transfer in nonparallel 
flows. These subjects will be discussed in this section along with the general requirements 
for closure of the equation system. 

1. FLUID-SOLID INTERFACIAL MOMENTUM EXCHANGE 

The interf~r.i~' momentum exchange is given uy E4uation (49). As previously 
discussed, rigorous evaluation of this term would require that the detailed pressure and 
velocity distributions be known within the fluid. However, since obtaining these 

·distributions is not practical at this time (although analytical solutions for simple physical 
approximations to the real situation can prove useful), real engineering flows must be 
analyzed by use of empirical correlations. To improve confidence in results obtained from 
the general inodel formulation, correlations that . have been derived from data that 

. correspond to the area of application should be used. . 

The momentum exchange is expressed in terms of friction factors as follows. The 
argument of the integral in Equation (49) is taken as some representative average value so 
that Equation (49) can be written as 

~ j[- p'ni + 

ssf 

B ij-
v. 

w J (53) 

If the solids in the core have orthotropic symmetry ,__then B~ = 0 when i =I= j. Orthotropic 

symmetry is assumed in the following. The nonzero B~ in this case are fur1ctions of (v·T, v~, 
v~) and scalars characterizing the fluid properties and geometry of the solids. By letting 

Ssf/V be denoted by Aw, the wetted wall surface area per unit volume, and by substituting 
Equation (53) into Equation (49), the following is obtained: 

F. 
l. 

A B ij-v. 
w w J 

(B ij = 0, 1.· 4 J.) w .,. . (54) 
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Although in general the momentum exchange may include transient effects, only the steady 
state contribution will be discussed here. The quantity Bij in Equation (54) is given by[a] 

0 w 

ii 1-1-1 i B =-p v. f 
w 8 1 w (55) 

·where f~ is the friction factor and lvil is the speed in the i direction. 

A great deal of experimental effort has been devoted to determine the functional 
dependency of f~ on fluid and flow ·field properties. A general relationship can be written 

f i 
w 

i i ' 
= Q (Re , E, othe_r geometric factors) 

w (56) 

where the Reynolds number is given by 

Re i 
w (57) 

and the speed in the ith direction is given by 

I ~.I·= 
1 

1/2 
(v. v.) 

1 1 
. (no sum on i) (58) 

The operational equation for~ as shown by Equation (56), depends on the geometry 

or" the· solid-fluid interfaces embedded in the flow field, and many general expressions have 
been generated from analysis-of experimental data. These may be summarized as-follows for 
parallel flows. For laminar, or slow, flows: 
. . . -

f i 
w (59) 

. and for turbulent, or high speed, flows: 

[a] 
.. .. 

f i 
w (60) 

This form for B1J is limited to geometries for which three perpendicular directions can w . . . 
be found along which the imbedded surf~<;:es resist the fluid motion but do not change 
the directio·n of the fluid. The form for B1J is given in these coordinates. 

'!' 
Other invariant forms for sij could be given. Bij could be modeled as dependent upon 

w w 

the total velocity I~ I=·(_~. vi\\) 1/2 insteadofvelocity components lvil. A Bwij form, 
1=1 

which was dependent on the total velocity, did not compare with data as well as 
Equation (55). 
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or 

l c
4 

log (Re i v;--i) + C v;-r= w w 5 • (61) 
w 

The last equation, which can be modified to include wall roughness effects, gives better 
agreement with data over a wider range of flow speeds than Equation (60). 

The constants in Equations (59) through (61), G1 through c5, and n have been 
determined for a number of rod array configurations[ l5-22l. For flows in porous media 
and fluidized-bed flows, the constants c1, c2, c3, and C4 usually become functions of the 

porosity, e. Expressions for friction forces for flows normal to rod arrays can be obtained 
from References 23 through 27. 

1.1 Friction Multipliers for Two-Phase Flow 

When the fluid in the flow field is present as two phases instead of one, the modeling 
of Equations (49) through· (52) may be changed. Most current two-phase flow analysis 
methods incorporate changes in the models. As an example of this modeling, the 
momentum exchange Fi of Equation (49) will be considered. 

Combining Equation (55) with Equation (54) gives 

1 - -
1

- I i F = -
8 

A pv. v. f 
i w 1 . 1 w. 

(62) 

The two-phase multiplier is the ratio between the frictional pressure gradient for the 
two-phase flow and the frictional pressure gradient for related single-phase flows. For 
example, if the two-phase mixture is of low quality, the friction factor may be taken as that 
obtained if the total flow (liquid plus vapor) flowed entirely as liquid. Then Equation (62) 
can be written 

- f 
1 A p v~ v. = - f 

1 1 . -~- 1- 1 . 
8 w w 1 1 8 wio 

A 
w 

where 0io is the two-phase multiplier and the velocity vii:; 

p v. 
1 

The appropriate Reynolds number is given by 

i 
Re 

w 

For this case, ~io in Equation (63) becomes 
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(64) 

(65) 



(66) 

A wide variety of two-phase multiplier rnodels have appeared in the literature. For 
example, different definitiops of the mixture viscosity can be used in the Reynolds numb.er 
of Equation (65) with Oto correspondingly changed. Or, for high quality flows, the 
reference frictional pressure gradient can be taken to be that for the case of only vapor 
present. Additional two-phase friction .multipliers are available from References 28 through 
34 .. Among the more interesting approaches are those of Deattie[29,30] who has considered 
the effect of flow regimes and that of Lombardi and Pedrocchi [341 who have directly 
correlated data without using a two-phase multiplier. 

1.2 Vapor Volume Fraction and Velocity Slip Ratio 

Some of the two-phase friction multipliers discussed previously require the vapor 
volume fraction, or void fraction, and the vapor velocity-liquid velo.city ratio, or slip ratio. 
These 'two quantities can .also be used t.o modify the time and space derivatives on. the 
left-hand side of Equations (18), (27), and ( 42) in order to account for some two-phase 
fluid effects. Void fraction and slip ratio correlations are available from References 28, 33, 
and 3 5 through 41 . 

2. SPATIALLY NONUNIFORM VELOCITY FLUCTUATION 

. Contributions due to spatially nonuniform velocity fluctu;1tions are given by Equation 
(50) and represent contributions to the momentum balance due to curved streamlines 
within the flow field. If the terms containing p' are assumed small compared to the other 
terms, Equation (50) becomes 

M. 
1 

.-
(67) 

This term, which is analogous to Reynolds' stress terms when time averaging is employed, 
will be assumed to have the form of an additional stress which acts as an effective increase in 
the viscosity of the fluid. The average of the .product of the fluctuating terms can then be 
written as 

t:pv'v' = "" i k c.. [- ~ ~ .. 3 t 

where f..Lt is the turbulent viscosity. 

av 
s 

ay 0ik + ~t 
s 
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All existing one-dimensional rod array analysis codes contain models for the turbulent 
viscosity and many experimental and analytical investigations have been conducted in order 
to determine its value. Among the more recent of these are the work of Rowe[ 421 and 
Rowe and Chapman [ 43 l . Rev~ews of the models available prior to 1972 have been given by 
Rogers and Rosehart[44] and Galbraith and Knudsen[ 45 l .-Kjellestrom[46, 471 has also 
measured turbulence properties in rod array subchannels and evaluated correlation models 
against data. The experimental work of Rowe ~nd Kjellestrom is expected to contribute 
significantly toward resolution of modeling questions associated with turbulent flows in the 
geometrically complex rod array subchannel. In particular, modeling based on "universal" 

··velocity distributions taken from simple channels will no longer be necessary. 

Most expressions for J.l.t can be written in the form 

k w (69) )Jt 
-= 
)J 

2 

or 

\Jt m 
- = C Re 
)J 7 w 

(70) 

Equations (69) and (70) are flow channel average values. The effects of the presence of two 
phases on J.l.t is not well known. Beattie [ 48] has given a simple preliminary model. 

3. FLUID-SOLID INTERF ACIAL.ENERGY EXCHANGE 

The fluid-solid interfacial· energy exchange is given by Equation (51) and may be 
obtained by either of two methods as follows: (1) the fluid-solid heat flux may be 
prescribed as a function of (x, y' z, t), or (2) the interfacial surface temperature may be 
prescribed (or calculated) and the energy exchange determined from correlations relating 
the heat transfer to the fluid-solid temperature difference. For nuclear reactor thermal­
hydraulic analysis, the latter is usually necessary. 

Equation (51) may be evaluated in a manner similar to evaluation of Equation (53) in 
Section III -1. The results are given by 

(71) 

where Ah is the heated area per unit volume, h is a heat transfer coefficient, T sis the surface 
temperature, and T b is the bulk tempe~ature of the fluid. Correlations for h and for 
departure from nucleate boiling (DNB) are available from References 49 through 51. 
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4. SPATIALLY NONUNIFORM ENERGY FLUCTUATIONS 

Terms for spatially nonuniform energy fluctuations are given in Equation (52) and 
represent energy exchange due to the spatially nonuniform. distribution of energy within the 
flow field. Again, evaluation is similar to that of the momentum terms in Section 111-2. The 
contribution from p' is considered small so that Equation (52) can be written 

where 

a 
E.=--

1. ayk 
--e:pv'I' 

k 

a 
e:_pvk'I' = -e:pk .-a-· I 

. t yk 

The turbulent thermal coefficient, kt, ·can be obtained from correlations. of the form 

or 

k 

\{i 
...:::!.__ Pr 

2 

__ t~ = C Re q ·Pr.r ·. 
-. c' 9 w 
k/p p 

(72) 

(73) 

(74) 

(75) 

where the constants c8, c9 , q, and r are determined from experimental data. As in the case 
of momentum, Equations (74) and (75) are flow channel average values that do not-consider 
the local details of the turbulence. 

5. FINAL FO.RM OF THE EQUATIONS 

The final form of the equations is oblained by substituting the modeling equations 
from Sections III-1 through Ill-4 into the averaged equations from Section II .. The results 
are summarized here for convenience: 

The conservation of mass equation is 

a - a --
~ e:p + -a- e:pvk 
0 yk 

0 (76) 

The linear momentum balance is 

a a lE._+ a +a T 
-;-t e:pvl.. + -- e:pv .v = -e: " e: -"-. a "k -a- e:pa "k + F. + e:pg. (77) 
o ayk l. k oyi oyk l. Yk l. l. l. 

. 20 



where 

av 
T 2 s 

0 ik = - 3 vt ay- 0ik + 
s 

The conservation of energy equation is 

a -- a 
-£pi + -- £plv 
at ayk k 
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· IV. NUMERICALTECHNIQUE 

The numerical technique used to solve Equations (76) through (79) is based on the 
MAC method for in-compressible flow as modified by Hirt and Cook [52 l and the ICE 
technique for compressible flow[ 53 l . The essential features of these two methods are: 
( 1) the continuity equation is implicit in density and velocity, (2) the linear momentum 
equation is implicit in pressure, and (3) the energy equation is purely explicit. 

1. BASIC SCHEME 

For convenience, the momentum equation for compressible flow is written in a form 
compatible with the incompressible MAC technique so that Equation (77) becomes 

-(80) 

+ F .;E ~ +~g. 
~ ~ 

For t~e stress terms in Equation (80), Jl, Jlt, and E • have been assumed to vary slowly ·in space 
and are taken outside the spatial derivatives. 

The region in which computations are to be performed is divided into a set of small 
rectangular cells of size ~xi, ~Yj, and ~zk. As shown in Figure 2, velocity components are 
located at cell faces; and density, specific internal energy, and pressure are located at cell 
centers. Cells are labeled with the index (i, j, k) as counted from the origin in the x, y, z 
directions, respectively. A time-dependent solution is obtained by expressing Equations (76) 
through (79) in finite difference form and advancing. the variables through a sequence of 
short time steps of duration ~t. The advancement for each time step is accomplished in two 
stages. In the first stage, all quantities are advanced purely explicitly. These quantities then 
provide the initial estimates for stage two in which t~e implicit quantities are obtained by 
means of a cell-by-cell interation process. 
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W· . k+ I 
l,j, ~ 

·Fig. 2 Th'e computational cell: 

The specific finite difference equations used are: 

( 1) The mass conservation equation: 

ANC -·A- 4435 

( ) n+ 1 _ ( ) n + L'l t { [ n+ 1 
EP ijk - EP ijk 2 .. ui-1/2jk [ 

n+1 n+1] 
(Ep)i-1jk + (Ep)·ijk 

· n+ 1 · [ · n+ 1 · · n+ 1 J ri+ 1 [ · n+ 1 n+ 1 ] 
+ axlui-1/2jkl (Ep)i-1jk -(Ep)ijk - ui+1/2jk (Ep)ijk + (Ep)i+1jk 

[ 
n+1 . n+1] 

(Ep). • 1k + (Ep) • 'k . 1J- . 1J 

23 



I 

n+1 

1 
+ a.z wijk-1/2 • 

(81) 

(2) The linear momentum equation: 

fit 
(flx.+llx. 

1
) 

~ ~+ 
[u ·(u - + ' i+1jk i+1/2jk ui+3/2jk/ 

( ui-1/2jk - ui+1/2jk)] - 2~;j [ vi+1/2j+1/2k ( ui+1/2jk +ui+1/2j+1k) 

- 2~~k [ wi+1/2jk+1/2 ( ui+1/2jk + ui+1/2jk+1) + a.z jwi+1/2jk+1/21 

(ui+1/2jk ·- ui+1/2jk+1) :- wi+1/2jk-1/2 (ui+1/2jk-1 + ui+1/2jk) -
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+ ~:k [ui+jk (wi+1/2jk+1/2 - wi+1/2jk-1/2)] 
£i+1/2jk c~+~T>i+1/2jk~t 

+ ~t + ( ) 
£P i+1/2jk 

(82) 

where 

I (t.xi + ~xi+1) + [z(ui+1/2j+1k- ui+1/2jk) 
j (~yj + ~yj+1) 

-z(ui+l/2jk - ui+1/2j~1k) I (~yj+~yj-1)] /~y. 
J 

+ [z ( ui+l/2jk+1 - ui+1/2jk) 

(83) 

and 

(
V•u) .. = ui+1/2jk- ui-1/2jk + vij+1/2k- vij-1/2k + wijk+1/2- wijk-1/2 

;~k . ~i ~~ ~~ 

with similar linear momentum equations for they and z directions. 
(3) The energy equation: 

f. ) 1n+1 = (£p)ijk ~t J~ ( ) 
~p ijk ijk l£p)ijk 1ijk + 2 l ~i-1/2jk 1

i-1jk + 
1
ijk 
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+ t:.t [(e:p) ijk 1ijk -

+ wijk+l/2 - wijk-1/2 J { [ ( ) 
t:.zk + t:.tkT 2 (e:p)i+l/2jk 1i+ljk- 1ijk 

(85) 

where, for convenience, the volume average symbol - has been omitted, and the velocity 
components are denoted by u, v, w. The superscript n + 1 denotes an advanced time 
quantity, whereas· no superscript denotes the previous time values of any quantity. In 
Equations (81) through (85), the donor cell and centered finite differencing have been 
combined so that ai= 1 (or ai) yields full donor cell differencing, and ai=O yields centered 
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differencing. Quantities required at positions other than where . they.c .are;rdefined · arer, H"•, . ;-• N> · - • 

calculated as simple averages; for example, uiik = (ui+ 1 /2jk + ui-l /2jk)/2. For th~ pressure 
volume-change terms in Equation (85), E has .been assumed to vary slowly and its space and 
time derivatives have been neglected.· 

To obtain the implicit character described, the following cell-by-cell calculational 
procedure is used: 

(1) The advanced time specific internal energies are calculated according to Equation 
(85). 

(2) The tentative advanced time velocities for each cell are calculated according to 
Equation (82) and the corresponding equations for v and w, etc., using the previous time 
pressures. 

(3) 'Fhe tentative advanced time pressure is calCulated such that the pressure change 
in each cell is proportional to the excess mass that accumulates in the cell beyond that 
consistent with mass conservation; that is: 

where 

n+l 
pijk 

op. 'k 1J 

s. 'k 1J 

·-~-rS. 'k 
1J 

(86) 

.(87) 

and A denotes the most recent tentative advanced time quantity, and th~ divergence term is 
differenced as in Equation (81 ). For the first iteration of any time step, p is calculated as 

p f ( n 1n+l_.\ . 
p , J 

. ( 4) The new advanced velocities are then calculated from the new pressures by 

n+l 
ui+l/2k 

n+l 
u._l/'J'k 

1 ·-J 
= 

n+l 
vij+l/2k 

((E:p)~~l/2jk) 

2~t 

( (€:p)~j+l/2k) 
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n+1 
vij-1/2k 

n+1 
wijk+1/2 

n+1 
wijk-J./2 

26t 
w ijk--1/2 

£. • 1/2k op. ·k l.]...., l.] 

( (E:p) ~jk-1/2) 
\ 

E .. ·k-1/? op. ·k · ].j - l.] 
n 

Ct:r) ijk-1/2 

(89) 

Equation (89) is evaluated for each cell in tum using the previous velocity iterates on the 
right, front, and top faces and the new velocity iterates on the left, back, and bottom faces 
so that the velocity on a face is modified due to the pressure changes in the two adjacent 
cells. The mesh is swept successively in the direction of increasing j for each (i, k) plane and 
in the direction of increasing k for each i column. Viecelli [54 1 has shown that this type of 
procedure is equivalent to successive overrelaxation and is superior to simply using the 
previous iterates. 

(5) The new tentative advanced time densities for each cell are then calculated from 
the equation of state in the form p = f (p, I) using the most recent value of p. Alternately, 

the linearized equation of state fJp = op/C.I may be used, where c
1 

is the sound speed at 
constant internal energy. 

(6) Steps 3 through 5 are repeated until the change in pressure between two 
consecutive iterations is below some specified tolerance; for example, op/Pmax <I o-5. 

(7) The advanced tjme quantities become ~he previous time quantities, and Steps 
through 6 are repeated for the next time cycle. 

The value of 6r in Equation (87) must be chosen so as to ensure convergence of the 
iteration scheme. In Appendix A, the pressure field is viewed as the iterative solution of a 
set of algebraic equations whose convergence properties are examined. To obtain a 
convergent scheme, the analysis shows that 6r must be of the form 

''k[! (! +~) £1.] 2 2 
c1 ~t + 2~t 
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L: 
j=1 

!2] ,0 < E;, < 2 
~y. 

J 
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The optimum value of ~ depends on the problem--being solved, and ~ may be varied to 
increase the convergence rate. Although, theoretically, the optimum value of ~ can be 
determined, to find it by experiment is more feasible. The range 1 ~ ~ ~ 1.8 has been 
observed to usually be appropriate. 

2. NUMERICAL BOUNDARY CONDITIONS 

Five types of boundary conditions may be applied at the walls of the computing 
mesh: (1) free-slip, (2) no-slip, (3) inflow, (4) outflow~ and (5) pressure. The prescription of 
these conditions consists of appropriately fixing the velocities, densities, pressures, and 

·specific internal energies in fictitious boundary cells which surround the computing mesh. 
This process is illustrated in Figure 3. The boundary conditions are set before and after each 
iteration. The reader should keep in mind that this section only indicates how to treat the 
various possible boundary conditions numerically and not what constitutes a proper set. A 
more complete discussion of boundary conditions can be found in References 55 through 
57. ·. 

··Wall 

Fluid Boundary Cell ell 
j 

·Wi-1jk+112 l wijk+t/2 
,....--------'--------+-------....__--------,---- k + 1/2 

Outlet Real Cell 

ui-3/2jk 

~ 

pi -1jk 

Ii -tjk 

pi-:-lik 

wi-tjk-1/2 · • 

I 
I 

i -1 

Inlet Reo! Cell 

ui-1/2 jk 
pijk 

riik 
f---+ 

pijk 

wijk-112 • 
-""------i;..._--------jl-~-- k- 112 

! I 
: - I 

i- 1/2 i i +1/2 
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Fig. 3 Position of variables in the (i, k) plane for left wall boundary COI'Hiitions. 

2.1 Free-Slip 

A free-slip adiabatic boundary represents a plane _of symmetry or a nonadhering 
surface that exerts no drag on the fluid; that is,~~= 0. The normal velocity component, 

mass flux, and heat flux are zero. The pressure need not be set because the normal velocity 
is not calculated. The free-slip boundary conditions are 
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ui-1/2jk 0 

vi-lj+l/2k vij+l/2k 

wi-ljk+l/2 wijk+l/2 

p. l'k 1- J pijk 

I. l'k 1- J I. 'k l.J (91) 

2.2 No-Slip 

A no-slip adiabatic boundary represents a viscous boundary that exerts a drag on the 
fluid. This boundary condition is implemented by setting the tangential velocity to zero. 
The no-slip boundary conditions are 

ui-1/2jk 0 

vi-jk+l/2k -vij+l/2k 

wi-ljk+l/2 -wijk+l/2 

p. l'k 1- J pijk 

I. l'k 1- J I. 'k 1J (92) 

2.3 Inflow 

An inflow boundary allows fluid to enter the system at a prescribed normal velodly, 
uR, which may vary with time. The other velocities ~re either zero or free-slip conditions are 
used. The specific internal energy 18 is prescribed. The pressure need not be fixed and the 
density is extrapolated. 
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The inflow boundary conditions are 

wi-ljk+l/2 ~ wijk+l/2 

P. l"k 1- J 

I. l"k I 
1- J B .• (93) 

A properly posed problem would still exist if the roles of p and I were to be interchanged; 
that is, if the inlet density were to be prescribed and the internal energy were to be 
extrapolated. 

2.4 Outflow 

A number of different types of outflow boundary. conditions can be used. Each type 
has its own characteristics. 

A prescribed outflow boundary allows fluid to be removed from the system at a given 
rate. This condition is implemented by the following formulas: 

ui-l/2jh = u 
B 

. wij+l/2k = + wi-lj+l/2k 

I. "k =I. l"k 1] 1- J (94) 

A continuative outflow boundary allows fluid to leave the system at a rate determined 
in such a manner as to have minimal effects on the flow region of interest. Although there is 
no unique prescription, the idea is to choose conditions which have the least upstream 
influence. Such a prescription consists of setting the normal velocity:.on .the boundary to 
that immediately upstream for the explicit stage 

(95) 
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and letting the normal velocity change freely during the iteration stage. The other variables 
are set as for the free-slip case. 

An extrapolative outflow boundary serves the same purpose as does the continuative 
one. It differs in that the variables in the fictitious cells are set such that variables in the real 
cell lying on the boundary are the averages of the values in the adjacent real and fictitious 
cells; that is: 

2.5 Outlet Pressure 

ui+l/2jk 

vij+l/2k = 

wijk+l/2 = 

pijk = 

P. "k 
l.J 

Zui~l/2jk ui-3/2jk 

Zvi-lj+l/2k vi-2j+l/2k 

Zwi-ljk+l/2 - w i-2jk+l/2 

Zp. l"k l.- J - p. z·k. l.- J 

Zp. l"k- p. 2"k l.- J l.- J (96) 

For specified pressure boundary conditions, the pressure in the fictitious boundary 
cells is set according to 

The other variables are set as for the continuative or extrapolative case. 

3. ACCURACY AND STABILITY 

The basic accuracy restriction on the size of the ti~e step is that fluid should not flow 
across more than one computational cell during each time step; that is: 

fit < minimum 
[

fiX ~ /::,Z J 
TuT JvJ M (97). 

This is an accuracy condition because the finite difference forms used to represent the 
convective fluxes assume exchanges only between adjacent cells. However, linearizing the 
difference equations and performing a Fourier analysis on them reveals that this is also a 
stability condition[ 52]. The linear analysis further reveals that for central differencing, the 
kinematic viscosity must be sufficiently large to insure stability; that is: 
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> 
p 

l:lt 
2 

·[ 2 ·maximum u , 
2 

v ' 

In addition, the time step is restricted by the conditions 

and 

l:lt < 1 

p 

k +. kT 

p c 
Llt: < -_,..,--'--71--~=---

2 1 "+ 1 + 1 
p 2 2 2 

(l:lx) (l:ly) ·(l:lz) 

(98) 

(99) 

(100) 

which limit the distances over whiCh momentum and heat diffuse during one time step to be 
Jess than one cell width. Equations (99) and (1 00) ·must be observed for both donor cell or 
centered -differencing. 

Truncation errors can be obtained by expanding in a Taylor. series .each term in the 
finite difference equations about a common point (x, y, z, ·o and retaining the l9west order 
terins which contribute to second spatial derivatives or diffusionai terms[ 58 l. ·A p~rtion of 
the truncation error in the one-dimensional momentum equation for centered. differencing 
~[59] . . 

l:l t · u (l:lx) 
2 .££..] 

2 2 ax 
(101) 

The first term is .negative if u 2 > C~/3 and results in a negative coefficient of the second 

derivative of u. Donor cell differencing removes this potentially unstable situation. 

Since the energy equation, Equation (85), is explicit, donor cell differenCing must be 
use.d to remove the convective instability that results from centered differencing. · 
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V. EXAMPLE APPLICATIONS 

In this section, two applications of the preceding equations and numerical method are 
given. The code used is called SCORE - EVET. The first application concerns a simple 
problem that has a known analytic steady state solution. The problem was chosen so that 
results could be compared with the known solution. The second application was run to 
demonstrate the capability of the code to handle recirculation and reverse flow situations. 

. . . . 
The first application is for plane parallel flow in a straight channel. The friction term 

Fi in Equation (23) was taken as linear with respect to the velocity; that is: 

F. = Avi 
-~ 

(102) 

The problem was run with no heat sources and no pressure voluine work term. The results 
were compared with ~n analytic solution for s~eady state flow[ 601. Figure 4 shows the 
mean velocity profiles as calculated .bY the code and from the known analytic solution. The 
agreement is excellent. 
1.5~------~--r---------~~---------.--------~.----------,----------~ 

Data: 

p = 62.45 1bm/ft3 , 11 = 10.75 x 165 tt2/sec 

D(channel width).= 6.1 ft, £ = 0.5 

Poutlet = 14.7 psi, Umax= 0.0352 ft/sec 

1.0 

0.5 

Analytic Steady State Solution 

• Code Predictions 

• 
0~----------L---------~----------~----------~--------~----------~ 

0 0.2 0.4 0.6 0.8 1.0 1.2 

Z/R ANC-A-4938 

Fig. 4 Porous media channel flow. 
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The second application is the calculation of the velocity distribution for the flow of 
liquid water in the rectangular region shown in Figure 5. As indicated in Figure 5, the region 
is composed of one smaller portion with € = 0.25 and one large portion with € = 0.50. Liquid 
water is introduced at a constant, uniform velocity over one half of the bottom of the 
region. The remaining one half of the inlet represents a blockage to the flow. The axial 
friction force was evaluated using the Colebrook formula [Equation (14)], and the 
transverse friction force was calculated using a correlation for laminar flow developed for 
tube bundles[ 23, 24 l. The wall heat supply per unit volume, Qw, was taken to be zero. 

€ =0.5 

----..., 
I 
I 

E =0.25: 
I ____ I 

Free-Slip Wall 

t t t t 
Inlet Flow Specified 

Free-Slip Wall 

Free-Slip Wall 

ANC-A-4939 

Fig. 5 Calculation region and boundary conditions for .blockage problem. 

The results of the calculation are shown in Figure 6. The velocity vectors show the 
fluid turning at the € = 0.25 portion and a recirculating flow behind the inlet blockage. These 
results show the capability ·of the codes to carry out calculations involving flow reversal 
recirculation.' 
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I 

' \ I J 

\ "" I J 

-----------------------~~ ANC-A-4940 

Fig: 6 Steady state velocity vectors for blockage problem. 
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VI .. CONCLUSIONS 

The present model includes the full NaVier-Stokes equations and thus can calculate 
natural circulation flows or flows with large transverse velocity components. The numerical 
solution scheme solves the equations as an initial value problem in time and boundary value 
problem in space. Consequently, flow· reversals and recirculation are easily handled and 

· downstream flow'effects are accounted for correctly . 

. The model is applicable to calculations of flows in a wide variety of engineering 
equipment as well' as flows in porous media. 
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APPENDIX A 

LINEAR ST ABlLITY ANALYSIS 

The following iteration scheme for· the solution of the mass conservation and linear 
momentum equations in one-dimensional conservative form is considered: 

n (P~+1 - p~) 
( ) m+1. ( )n L'lt I<, I<, + Rn (A-1) 
E:pv R-+ 1/2 =·· E:pV Q,+ 1/2 -· . E: R.+1/ 2 L'IX R-+ 1/ 2 .. 

m n · m+1 · m+1 
(E:p) Q, - (E:p) Q, (E:pv) R-+1/2 - (E:pv) R--1/2. _ _..;;;___ __ ___;.;;. + 

L'lt .L\X 
(A-2) 

m+1 m ·· m 
PR-. = P£ -- L'ITS (A-3) 

(A-4) 

where 

m = iteriltion number 

n = old. time level· 

= explicit calculation of convection, viscous, friction, and body force terms. 

In Equations (A-1) through (A-4 ), a one-dimensional form· has· been assumed for 
.convenience. Linearizing the state equation oyer a time step and substituting Equations 
(A-4) and (A-1) into Equation (A-2) and then using the result in Equation (A-3) gives 

m 
p -

Q, 

L'lt n m 
2 E:n (p"+1 

(LUC) I<, I<, 

(A-5) 

In obtaining Equation (A-5), e has been assumed slowly varying in time and space, and its 
time and space derivatives were neglected. 
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When the iteration has converged, an equation similar to Equation (A-5) results except 
that all the m and m+ 1 superscripts have become n+ 1. Subtraction of this converged 
pressure equation from Equation (A-5) gives 

(A-6) 

where 

· h d · · f h f n+l ts t e ev1atton o t e pressures rom p Q, 

The iteration scheme is convergent if <Sp~ ... o as m ... 00• If a perturbation of the form 

(A-7) 

is substituted into Equation (A-6), it is seen that the amplification factor~ must satisfy 

(2cos(a~x)-2) J · (A-8) 

Now if <SpT ... o as m ... oo for all wave numbers a,. a necessary condition for convergence is 

1~1 < 1 for all a. (A-9) 

In general, ~ < 1 and the least favorable case (as a varies) occurs as ~ approaches -1. ~ is 
most negative when cos (a.6.x) equals -1 and to have~> -Lin this case requires 

n (-1 + 4L'lt ) 
-1 < 1 - L'l<£t ciL'lt (L'IX)2 

or 

(A-10) 

If the analysis had been carried out in three dimensions and in nonconservative form, 
Equation (A-10) would be replaced by 
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(A-'ll) 

A similar analysis shows that if the new iterates for pressure are used as soon as they 
become available, 6r is limited by 

/5.-r < 
2 

(V•u) ) + 2/5.t ~ 1 
21 

- ijk i=l (l'lX.) 
l. 

(A-12) 

· for convergence of the iteration scheme. 
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