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ABSTRACT

A mathematical model and a numerical solutiori scheme for thermal-hydraulic analysis
of fuel rod arrays are given..The model alleviates the two major deficiencies associated with
existing rod array analysis models, that of a correct transverse momentum equation and the
capability of handling reversing and circulatory flows. Possible applications of the model
include steady state and transient subchannel calculations as well as analysis of flows in heat
exbhangers, other engineering equipment, and porous media.
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NOMENCLATURE

heated surface area per unit vol&mé
wetted surface area per unit volume
friction drag faétor

'specific heat

speed of sound at constant specific internal energy

divergence of v

—l?j-(viﬂ'-‘ + Vj,i)
drag force in the ith direction
friction factdr in it direction
body force in the ith direction
heat transfer coefficient for solid-fluid interface

specific internal energy

specified boundary specific internal energy

molecular thermal c(onductivity

turbulent or eddy thgrmal diffusivity ‘
fluctuating terms in momentum’ equation
components of outward unit normal
pressure

specified boundary pressure

uCpy
Prandtl number, <

local heat flux vector with coordinates q;

iii



1<

volumetric energy supply

rate of wall heat supply per unit volume

Reynolds number

fluid surfa;:e enclosing Vg

part of S¢ occupied by fluid only
solid-fluid interface

time

coolant bulk temperature

solid surface temperature
spécified boundary velocity

control volume used in averaging procedure

volume of fluid in V

fluid velocity vectér with cbordinates.vi or -ﬁ, vV, W
solid-fluid' .i.r;t;arfacée vélocity vectof w1th .coordinates ViS
thermodynamic quali'tyA |

p(;siti'on ve.c‘t;)Ar Qith coordihatés; xi.

.-

a position vector to the center of V with coordinates y;
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X
At

Ax

Ht

v (or vy)

Il

.Greek Letters

weighting factor in iteration scheme
time increment

space increment in X, direction.
porosity = Vf/V

molecular viscosity

turbulent or eddy viscosity
kinematic viscoéity = u/p or(or ut/p)

iteration weighting féctbr or relative ;oughness coe‘fficient
density

specified boundary densily

stress tensor

turbulent stress tensor  °

two-phase friction multiplier

-Other Symbols .

denotes ah average takenvover V; that is, mixture average
denote’s an average taken over Vf; that is, fluid average
denotes a fluctuating part

denotes the most recent iteration

definition
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TRANSIENT THREE-DIMENSIONAL THERMAL-HYDRAULIC
ANALYSIS OF NUCLEAR REACTOR FUEL ROD ARRAYS:.
GENERAL EQUATIONS AND NUMERICAL SCHEME

I. INTRODUCTION

Recent advances in numerical solution techniques for systems of quasi-linear partial
differential equations have led to more refined analyses of complex engineering problems.
Currently available computers and numerical solution techniques have made construction of
mathematical models. more nearly exact so that less empiricism is required, and the
empirical relations that are needed are of a more basic nature. Thus, the resulting computer
programs can be used for extrapolative engineering design studies with increased confidence.
The area of turbulent flow analysis is a good example of the application of such models to

complex prob]ems[ 11 ‘

The nuclear industry employs a large number of computer codes for both steady state
design work and transient-incident safety analysis. A variety of codes have been written in
order to analyze complete nuclear steam supply systems or selected subsystems such as the
primary pressure vessel, emergency core cooling system, and the reactor core. The
thermal-hydraulic characteristics of the core are important with respect to both steady state
design operation and transient response to an incident. In the former case, core
thermal-hydraulic considerations dictate, to a large extent, the possible steady operating
‘power obtainable from a given core design. In the case of incidents, thermal-hydraulic
considerations are important because the core contains fission products that must not be
allowed to escape into the atmosphere. Because the thermal-hydraulic characteristics of the -
core are so important, many experimental and analytical studies have been conducted on’
the parallel-rod-array geometry that is typical of a large number of reactor core designs.
Thermal-hydraulic analysis and experimental studies of rod arrays are difficult to perform
due to the geometric complexity of the rod array and the two-phase nature of the coolant
employed in many nuclear reactors. N

The geometric complexity arises from the large number of degrees of freedom
associated with parallel-rod arrays. Among the geometric variables that are known to affect
the thermal-hydraulic characteristics of rod arrays are the rod diameter, rod-to-rod pitch,
spacing between rods, rod spacer type and location, and, for arrays within shrouds, the
spacing between rods and shroud, and the shroud geometry. The rod power generation
varies radially and axially throughout the array thereby causing the coolant flow rate and
thermodynamic state to vary throughout the array.

Two-phase flow of the coolant compounds the analytical and experimental difficulties
due to the introduction of additional thermal-hydraulic variables, such as the vapor volume
fraction, velocity and temperature differences between the phases, and distribution of the
phases within the flow field. A vast amount of data and associated literature exists on
two-phase flow, and empirical correlations have been developed for friction factors, void



fractions, liquid-vapor velocity slip, heat transfer coefficients, mass and energy mixing,
critical heat flux, and flow regime.

Because of the overall complexity of rod array analysis, many computer programs
have been developed for steady state design studies and transient incident analysis.
Representative of the codes in use are COBRA[2], COBRA—II[3], COBRA III[4’5],
HAMBO!6.7] Micro-3[8], LEUCIPPO[?], TEMPI10]  and HOTRODI!!] . All of these
codes are based on a fluid flow model that assumes that the rod array can be represented by
parallel interconnected channels. The Navier-Stokes equations are simplified to be consistent
with this assumption and the resulting equation system is, in general, solved as an initial
value problem with distance from the rod array inlct as the independent coordinate.
Bowring[12] and Berger“3] have noted that this procedure can introduce errors if
downstream effects such as spacers and flow blockages are not given careful consideration.
The simplifications in the Navier-Stokes equations introduced by this assumption usually
result in an incomplete representation of the momentum component in the transverse or
radial direction and an inability to handle flow reversals. “Transverse’’ refers to the direction
normal to the primary direction of flow under steady state conditions. However, during
some transients, conditions in the core may result in a very low velocity and possibly natural
convection, so that the distinction-between transverse and primary becomes less clear.

The method of analysis presented in this report differs from those used in the existing
‘codes previously discussed in that the governing-equations are obtained by volume averaging
the complete fluid-mechanical equations of continuity, momentum, and energy. -The
resulting averaged equations are three-dimensional. The equations are applied without
invoking assumptions that would reduce the model to the parallel channel case. The
equations are solved as an initial value problem in time and a boundary value problem in
space. As a result, transport in the radial or transverse direction, due to turbulence and
radial pressure gradients, is taken into account more rigorously than in previous treatments,
and flowreversals in the core are easily handled.- S

The mathematical description is quite general in that transient flow of a compressible
fluid is assumed, and the distributions of the solids embedded in the flow and the heat
energy sources can be any functions of position and time. In addition, to use for calculation
of flows in nuclear reactor cores as discussed in the report, a wide- variety of other
applications of the model is possiblc. Among these are calculation of flows in porous media,
heat exchangers, and other engineering equipment, and calculation of local phenomena in
flows amenable to a Prandt] mixing length turbulence description. ‘

" The report is organized into the following sections. Section II gives the development
of the volume-averaged Navier-Stokes equations; Section III discusses the constitutive
equations required to close the equation system; and Section IV presents the numerical
solution'scheme. Example -applications are given in Section V.



I1. BASIC EQUATIONS

The differential equations described in this section are derived by considering a
control volume V whose dimensions are small compared to the large scale phenomena of
interest and large relative to the local phenomena, which are not of interest. The notion of
large or small is relative. If a core-wide PWR analysis is of interest, then the control
volume V might be composed of an axial section of several fuel assemblies, and phenomena
on the scale of the rod channels within a bundle would be represented by average quantities.
If a BWR single bundle or subchannel analysis is of interest, the typical control volume V
would consist of an axial section of a single flow channel and parts of the adjacent rods. In
this case, phenomena within a given flow channel would be represented by average
quantities. In both these cases, the averaging process used on the equations is the same, but
the correlations used to represent some of the averaged phenomena could be different. For
this reason, the development of the averaged equations derived in this section is basically
independent of the size of the control volume used in practice so long as appropriate
correlations are employed in different applications.

Before the averaged equations are developed from local equations, some basic
mathematical results concerning volume averages are needed. The development given here
follows that presented by Slattery[ 14]. About each point y in the flow region (both solids
and fluids occupy the flow region), a control volume, V, is constructed as shown in
Figure 1. All control volumes V have the same shape and orientation. (In Figure 1, the
volume has been shown to be spherical, but any fixed shape could be used in the
averaging.) As shown in Figure 1, a typical volume" will contain regions of fluid and also
regions occupied by the solid. The region of V occupied by fluid is denoted by Vf(y t), and
the surface of this region is denoted by Sg(y,t). The surface Sf(y t) is further spec1f1ed as the
sum of sz(y t) which denotes that part of Sf(y t) on the interface between the solid and
fluid and Sff(y t) which denotes that part of Sf(y t) occupied by the fluid.

The volume average of any scalar, vector, or tensor property ¥ (x,t) associated with
the flow field is defined as :

v -1
y (g,t) =37 /W()f,t) av . - )
Vf(g,t)

The averaging process to be employed requires derivatives of the average property ¥ (y,t)
with respect to time, t, and position, y;. General expressions for these derivatives are
obtained as follows.

The time derivative, _g_ N7 (y t), is calculated by use of the generalized Reynolds
transport theorem in the form
9 1 1 1
9 2 = = 3 vs
T \P(:f,t) dv v at w(x t) dv + v /‘P(:f,t) knkd§ o
Vf(g,t) Vf(g,t) Sf(g,t)
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Fig. 1 Typical control volume.

where Y?(is the velocity of.the surface S¢, and ny is the outward directed unit normal to Sg.
The velocity Vi is zero on that part of S¢ denoted by Sgr (y,t) and, in the absence of
chemical reactions, on sz (y,t), Vﬁ(is equal to the fluid velocit§/ Vi, which may be nonzero
due to time rate pf change of pqrosity, €. With these values. of vS , Equation (2) becomes

a1 _1[a 1
Yo, ‘i’()f,t) dv = v 5t W()f,t) dv + v ‘1’()~<,t) ande. )
Vf(}:;t) Vf(z’;‘t) S : sz(z,t)
An expression for the spatial derivative a—a— ¥ can be obtained as in Reference 14. The
. . yi
. results are given by , _ )
3 1 _1 o
3y v ‘P(:f,t) dv = v W()f,t) nde. :
K A ~ @)
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Adding V/\Il()“(’t) n; dS to both sides of Equation (4) and applying the divergence theorem

. sz
results in

gyﬁ/wx 0 dv-%f_-wx 0 dv-gfm omas.

Ve(y,t) Vey,t) ‘ Sf(y,t)

Equations (3) and (5) are ‘the formulas needed in the volume averaging of the local ’
equations to be carried out subsequently .These equations are quite general as no restrictive
assumptions were employed in the derivation. "

The results of the volume-averaging procedure are more convenient if expressed in
terms of quantities that refer to fluid average properties instead of mixture average
properties. The mixture average quantities in Equations (1) through (5) can be converted to
fluid average values as follows. The fluid volume fraction, or porosity, is given by

1
== fdv. '
Vf 6)

Vey,t)

The fluid average value of a property W is defined as '

<| <
+h

‘A’(y,t) = —/‘i’(x,t) av

(7)
(y,t)
so that Equations (1) and (7), when used with Equation (6), give
q’(y,t) = e Y(y,t). 8)

Equation (8) is the relationéhip between the mixture average, E’, and the fluid average, 7,

de o€
Formulas for the time and spatlal derivatives of the porosity, a_t and 5— respectlvely,

Yi
can also be obtained from Equation (6). The time derivative is obtained by application of
Equation (3) with ¥(x,t)=1 as given by Equatlon (6). Sunphflcatlon of the resultmg

equation gives
e 1
3t -V / vy ds. ‘
: . ©)

sz(g,t)

Equation (9). explicitly shows the relationship betweé;l the time rate of changé of the
porosity and the motion of the solid-fluid interface that was discussed when Equatlon 3)
was obtamed Application of Equation (5) yields the spatial derivative



' ‘ (10)

The equations developed in this section are now applied to volume averaging of the
local Navier-Stokes equations.

‘1. VOLUME-AVERAGED CONSERVATION OF MASS ’

The volume-averaged equation for conservation of amass will be developed in detail.
‘The local equation that applies at all point's, such as shown in Figure |, isgi\_/en by

at +- 3%, (PVk)" 0. S (1)

The volume-averaged equation is ob'taine'd by integratting Equation (11) over V¢ so that

1 5 L1 B
V (Y,t) , V (y:t) ‘

(12)

‘Equation (12) is rearranged by using Equatlon 3) on the first integral and Equation (5) on
the second mtegral to obtain 4

5 1 3.1 . L
— = | pdV + —={ pv.dV =10, :
at v[ 3y, V/ Kk » (13)
Vely,t) L TV
or, by using the definition
B =3 _
et P T oy P Yk =0 (14)

k .

Equatlon (14) is the mixture-averaged conservation of mass equatlon By using Equatlon
'(8), Equation (14) can be expressed in terms of fluid averages as ' :

S ~
_t (ep) +a_yk_ (e p Vk) =0 . (15)

Equation (15) contains the spatial average of the product of density and velocity. The
momentum equation, likewise, will contam spat1a1 averages of the product of den51ty and

. two veloc1ty components The net result is that the averaglng process 1ntroduces more o



unknowns than available equations. This problem can be partially solved by expressing the
instantaneous dependent variables as the sum of an average contribution plus a fluctuating
part. That is, when

~ . r~—~ .
p=p+p' 5 (p'=0), (16a)
and
- ' ~ (16b)
vk=vk+vk s (v =0), |

where the primed quantities are the difference in V¢ between the actual value and the fluid
average value, then Equation (15) becomes

a - a - o a T ————
°_ s . y = - & LR AN
" (e p) + v, (e p Vk) v, (e p Vk) . (17)

The term on the right-hand side of Equation (17) is analogous to correspending terms in
compressible turbulent flow and porous media equations. In turbulent flow, the term is
usually obtained from time averaging of the Navier-Stokes equations. Here; it is the result of
nonuniform spatial distributions of vi and p as the fluid moves through the void space
between the solids. This term is nonzero even if the local flow is laminar. In the following
analysis, this term is considered small compared to other terms in the equation and is
- neglected. The resulting mass conservation equation in terms of fluid average properties
becomes ; :

d U ‘
gzi(e o) + ayk(e p vk) 0. | (18)

Equation (18) is the desired result for the conservation of mass equation. . Comparison
of predictions from Equation (18) with experimental data, such as rod array subchannel
data, may indicate that a model of the term on the right-hand side of Equation (17) is
necessary. :

2. VOLUME-AVERAGED LINEAR MOMENTUM BALANCE

The fluid average linear momentum equations will be developed from the local
continuum equations. The process is similar to that used to obtain the conservation of mass
equation and is not given in as much detail.

The local momentum equations are given by

3o, .
- _ 3p_ ki (19)
k- 8x, + o, tesgy -

3 3
ot (pvi) + axk (pvi) v



Integrating Equation (19) over V¢and applying Equatlons (3) and (5) to the time and
space derivatives, respectlvely results in

3 9 — _ 3 = 3 — =
atpv'+3yka1Vk_ ——-—ay p+——o,k+pg

—/ [-p ni+oiknk] ds

sz

1 (20)

<

When the integral term in Equation (20) is denoted by [; and when Equation (8) is used to
int;oduce_ fluid averages, Equation (20) can be rewritten as

dep vy Jdep vivk dep ae Oik ~ 2n
at'+ 5 =-3 +a +epg, + 1,
: Tk i Tk ot
“or, by the use of. Equation (16) as
aep vy s dep ViV _ 851; . 9e O N - . -
3t 7 By, Toay, T ey, eI
o ' 22)
' “' . 9 ‘ T R R R
a_ - + + €p v v'
- ot (e p vi) ayk \:(e o vy vk) + (e vl p | Vk) (e Vie PV ) k

The term Ii in Equation (22) represents the solid-fluid interfacial momentum
exchange per unit volume and may be simplified as follows. The pressure, p, is written as the
sum of a spatial average plus a fluctuating part: .

c =0y . C @3y

Substitution of Equation (23) for the pressure term in I results in

1 _ -1 _ - 1 ot 3 .
V/ pnidS Vf pnidS+V/ pnidb 24)

sz . sz sz

-~

The space average pressure, p, can be taken outside the 1ntegral in Equatlon (24) and by
using Equation (10), Equation (24) can be written as

1 ~3e 1 '
= - d = .dS .
\ f Py S p ay V/ Py A (25)

sz sz



When similar steps are performed for the viscous stress terims in L

= —_— - _— = - 1 1
i TP oy, 7 % 3y, ¥ / [~ p'n; + o'y mlds . (26)

The first two terms on the right-hand side in Equation (26) are solid-fluid interface forces
due to a porosity gradient (analogous to the variable area, one-dimensional flow case) and
the third term is the.remaining interfacial momentum exchange between the fluid and the
embedded stationary surfaces. This latter term is generally expressed in terms of steady state
friction factors that are appropriate for the flow field under consideration. In addition to
the steady state friction factors, however, flow forces due to transients, such as the added
mass (or vir.tual mass) and Basset forces, are also included in this term. Slatter'y[M] has
applied dimensional analysis to show that steady state momentum exchange may occur due
to nonuniform porosity gradients. -

Of importance to note ‘is. that rigorous evaluation of the integral interfacial
momentum exchange would require solutions of the pressure and velocity distributions, so
that p' and o'ik are known, at the interface. In effect, such evaluation would require that the
Navier-Stokes equations be solved within the fluid volume. At present, solution of these
equations is impractical, and experimental data are required so that algebraic expressions
can be substituted for this term. '

When Equation (26) is substituted into Equation (22), the result is

~

. e - 3o, ‘ 27)
3 ) 3 ik ~ :
— + - -
ac (eovy) + 3o (eovyvp) = e —P—ay, tegs o teog tE *M
k : i k
where o
F, =+ -p'n + o' ds '
i v i ik "k (28)
S, . . A

and M; represents the primed terms on the right-hand side of Equation (22). In Equation
(27), the average shear stress, is modeled as

~ ~ ~

- av_ - av, v

2 s
O. =__u.__ 6. +u ___+_
k
i 3 ays ik 8yk ayi

Modeling of the terms F; and M; is discussed in the next section.



3. VOLUME-AVERAGED CONSERVATION OF ENERGY

The fluid average energy equation is obtained by the same process employed in the
previous sections. '

The local equation for specific internal energy is given by

' ; ; aqi _
= —_— I = w ——= = * .
ae P ox, " i ax Pdis ¥ 955 435 * PG (29)

Integration of Equation (29) over Vy, application of Equation (§) to the gadient of a;> and
use of Equation (8) to introduce fluid averages results in

a—€;+3—spﬁ=;Lec~1 -l'-‘qnds—L “pd, 4V
at 8yk k ayk k V "k 'k v kk
sz Vf .
1 , . (30)
+ v /Oijdijdv + z?.pQg s
‘ Vf

where the volumetric.energy supply, Q,, has been assumed constant. Writing the dependent
variables as the sum of a spatial average plus a fluctuating part and substituting this sum into
Equation (30) gives

TR 5~ 1 - ‘
—_— —_— = - — ] [ + v
e L 3y epv, L oy, kT V } (q + q)n,dS
S .
sf - G31)
I rgt 1] 1 vt
- = - = + = + = v
v [ Pl V- 3 f TtV Ty foijdijdv v | %5 Y43
v, v, v, v,

E. = — ep'I' +—-[ep_'v'k1' +ep v I" +ev. p'I" + elp'v' . (32)

i k- k-~ k

10



Equation (31) can be reduced to a simpler form as follows. The first integral on the
right-hand side is evaluated in the same manner as the pressure gradient term in the
momentum equation. The results are given by

1 T de

v / (qk + Q'k)nkfis =9 a—y; - Q, o (33)

o]
9

st

where

= l . ' -
QW =3 /q knde . (34)
S ..

sf-

- The third and fourth terms on the right-hand side of Equation (31) represent the
change in internal energy of the fluid due to pressure-volume work. The third term is
reduccd as follows. Writing this teinn as

——

' oV
1 P -1 S _k . ' 39%)
v /pdkkdv Ty /p 3%, dv
’ v v

£ B

and taking the spatial averages from under the integral operation gives

r———r

. 8V ) V. . dv
1=k av--£f, , (36)
\Y axk \Y X

|

o

Q
~

Ve

When the fluid average definition of Equation (7) is used, Equation (36) can be written as
ov
v, 37)
k

and application of the divergence theorem to the right-hand side gives

v, - . ¢ : . .
1 M oL 1 |
Py / Bxk dv.= p v / vknde + V/ vknde , - (38)

Es 1
\Y Vf

<
Qi (o)
X<
~ =
o
<
1
s o N}
< i

Ve See St
or, by use of Equations (4), (8), and (9):
av
-1 k -9 - >
P = — dV =p — ev, + p — . .
\ 3Xk ayk k ot (39)
Ve

11



The fourth -term on the right-hand side of Equation (31) involves volume averages of
fluctuating terms and will be .assumed to be small compared to the other terms in the enérgy
equation.

The fifth and sixth terms on the right-hand side of Equation (31) represent the change
in internal energy of the fluid -due to viscous dissipation. Since viscous dissipation is usually
neglected in applications of -the local equations, these volume integrals will also be assumed
'small compared to internal energy changes due to energy exchanges related to temperature
differences between the fluid and solid ; that is:

l: 6..'&.. dv = 0 .
vy o - @0
.Vf
and '
i /o d'.dav=0. | 1)
v ij ij : . . ‘ .
‘Vf

The final formulation of the volqme.—averaged energy equation is -obtained by
substituting ‘the results of Equations (33) .and (39) through (41) into Equation (31) to
obtain - o

3 X 3
9o + =< I = -
st =Pl 3%y EPVYE €

.~ o~ ~ .o~ ~ ~3

3 3
g U - Ia,yk Yk T Pat
Co (42)

+ spQg + Qw -.Ei

where Ei is given by Equation (32). The average molecular heat conduction, C.lk, in Equation
(42)is modeled as

oT
. qk h -k

. 3yk * ) . . } (43)

4. STATE EQUATION

The state equation is used with density as a function of the ind’ependeﬁt variables
pressure and internal energy. This form of the state equation is chosen because of the nearly
.incompressible character of 'subcooled water. The local state equation ¢an be written as

44
P = f (.PyI) “44)

12



Integration of Equation (44) over V¢ gives:

——

' D = f (p,I) (45)
Expan§ion of the response function f in a Taylor series‘ab(_)ut (;-)',I) results in
£ (p,I) = f (I;,E)‘ + -S—If) (;,i)“ p' + —g—% (1~34,i) I' +... (46)
' Substit_utioﬁ of Equatidﬁ (1'16‘),into 'Equation (45) results in
| - ~ o~ : : (4‘7)

; = f (P,I)

if averages of the products of fluctuating variables are neglected.
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II. CLOSURE OF THE EQUATION SYSTEM

Use of the volume-averaging procedure given in the previous section has introduced
several unknowns. Most of these are analogous to quantities that are introduced when the
three-dimensional local equations are averaged to obtain the one-dimensional equations
usually employed in engineering analyses. However, treatment of these quantities in the
volume-averaged three-dimensional equations will require additional considerations. The
purpose of the present section is to present a discussion of these quantities. Specific models
will not be given because the purpose of the present report is to-present -the general
formulation of the equations. In addition, different applications of the formulation may

- require different specific relations, all of which can not be covered here.

The quantities introduced by the volume-averaging procedure are summarized for
convenience. :

The conservation of mass equation, Equation (17), contains the term
_ (ep I'v') : (485
Yy kK’ :

which has been assumed to be small.

The linear momentum balance, Equation (27), contains the fluid-solid momentum
exchange of Equation (28):

=1 - p! ' (49)
Fi v /|: pni+ciknk] as ) |

and the terms of Equation (22) due to spatial nonuniformity:

— 3__ R L __a___ N ] L - | L - 1 \] L} L} 1 -
M, = ep'v! + Y l:(spvivk) + (evip vk) + (evkp vi) + €p vivk:| . (50)

The internal energy. equation, Equation (42), contains the fluid-solid energy exchange

of Equation (34):
1 1
W=V | WS s
. ) shH
. sf

and the terms of Equation (32) due to spatial nonuniformity:

a 1 1 a \ ] \ N | 1] - 1 \ -z \ T
= — = I' + + eI .
Ei 3¢ P ' + 5 lep v]I + epv'1 eV, P 1 elp’vy ’ (52)

14



Several other terms introduced into the energy equation by the averaging process have been
neglected as indicated in Section II-3.

The equation development given in Section II was quite general so that most of the
assumptions associated with the general formulation will be invoked in evaluation of
Equations (49) through (52). Many expressions are available for these terms for the case of
single-phase flows in a wide variety of geometries. However, the primary area of application
of the model of interest to the nuclear industry, that is, to thermal-hydraulic analysis of fuel
rod arrays, introduces several difficulties. The two major difficulties are (1) existence of
two-phase flow structure and (2) lack of comprehensive data for heat transfer in nonparallel
flows. These subjects will be discussed in this section along with the general requirements
for closure of the equation system.

1. FLUID-SOLID INTERFACIAL MOMENTUM EXCHANGE

The interfacia! momentum exchange is givein Ly EBEyuation (49). As previously
discussed, rigorous evaluation of this term would require that the detailed pressure and
velocity distributions be known within the fluid. However, since obtaining these
“distributions is not practical at this time (although analytical solutions for simple physical
approximations to the real situation can prove useful), real engineering flows must be
analyzed by use of empirical correlations. To improve confidence in results obtained from
the general model formulation, correlations that have been derived from data that
_correspond to the area of application should be used.

The momentum exchange is expressed in terms of friction factors as follows. The
argument of the integral in Equation (49) is taken as some representative average value so
that Equation (49) can be written as

1 Sef ij- ‘

sz

.
If the solids in the core have orthotropic symmetry, then ijv_ 0 when i +# j. Orthotropic

symmetry is assumed in the following. The nonzero BJ in this case are functlons of (v 2 %,

2) and scalars characterizing the fluid properties and geometry of the solids. By lettmg
Sf/V be denoted by A,,, the wetted wall surface area per unit volume, and by substituting
Equation (53) into Equation (49), the following is obtained:

F, = A B 1y 8 13
i ww ] w

=0,i# 3) . (54)
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Although in general the momentum exchange may include transient effects, only the steady

state contribution will be discussed here. The quantity BY in Equation (54) is given by[a
- . W

~ ‘ ~ i

o] v

f (55)

ii _
B
w

mHA

i
‘where xf‘lN is the friction factor and |\7i| is the speed in the i direction.

A great deal of experimental effort has been devoted to determine the functional
dependency of fiv on fluid and flow field properties. A general relationship can be written

i i i ’
f = (Re ", ¢, other geometric factors
w Q - s g ) (56

where the Reynolds number is given by

Re = = 1 (57)

w
qu

and the speed in the ith direction is given by
‘ /2 .
I v, I (v v, ) . (no sum on i) (58)

’

The operatlonal equation for fl as shown by Equatlon (56), depends on the geometry

of the solid- ﬂuld interfaces embedded in the flow field, and many general expressions have
been generated from analysis-of experimental data. These may be summarized as-follows for
parallel flows. For laminar, or slow, flows:

i i : '
fw = Cl/Rew _ : (59)
- and for turbulent, or hiéh speed,' flows:

£ =cC (Rew ) .+ C (60)

-{a] This form for BY is limited to geometries for‘_ which three perpendicular directibns can
be found along which the imbedded surfaces resist the fluid motion but do not change

the direction of the fluid. The form for BY is given in these coordinates.
w .

Other invariant forms for Bil could be given. Bl could be modeled as dependent upon
w w

' -3
the total velocity | v | = (‘2 viYi )1/2 instead of velocity components [V;]. A B1J form,
l_
which was dependent on the total velocity, did not compare with data as well as
Equation (55). :

16



or

i\/ i
fW ) + c5 . 61)

1
‘/f—-i—— C4 log (Rew
w .

The last equation, which can be modified to include wall roughness effects, gives better
agreement with data over a wider range of flow speeds than Equation (60).

The constants in Equations (59) through (61), Cl through Cs, and n have been
determined for a number of rod array configurations! '~ . For flows in porous media
and fluidized-bed flows, the constants C;, C5, C3, and Cg4 usually become functions of the
porosity, €. Expressions for friction forces for flows nonnal to rod arrays can be obtained
from References 23 through 27.

1.1  Friction Multipliers for Two-Phase Flow

When the fluid in the flow field is present as two phases instead of one, the modeling
of Equations (49) through (52) may be changed. Most current two-phase flow analysis
methods incorporate changes in the models. As an example of this modeling, the
momentum exchange F; of Equation (49) will be considered. '

Combining Equation (55) with Equation (54) gives

1~~~
Fi ) Awpvi

i

vilET , (62)

The two-phase multiplier is the ratio between the frictional pressure gradient for the
two-phase flow and the frictional pressure gradient for related single-phase flows. For
example, if the two-phase mixture is ot low quality, the friction factor may be taken as that
obtained if the total flow (liquid plus vapor) flowed entirely as 11qu1d Then Equation (62)
can be written

1.1 Nt I 1 i A S A
= f = =
8w Aw PIViVi 8 fw!Lo Aw ¢Zo PolVilV1 (63)
2. . oL
where (2)20 is the two-phase multiplier and the velocity v is
g P Yy , (64)
v, = = .
i
2
The appropriate Reynolds number is given by
. gbp |V,
Re i_ L] i ) - (65)
w ! A

For this case, ¢5L20 in Equation (63) becomes
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(66)

© ¢

2

alo

[
[
+
]
O 2
|
!
-

g

A wide variety of two-phase multiplier models have appeared in the literature. For
example, different definitioz"ns of the mixture viscosity can be used in the Reynolds number
of Equation (65) with ’DSLO correspondingly changed. Or, for high quality flows, the
reference frictional pressure gradient can be taken to be that for the case of only vapor
present. Additional two-phase~friction multipliers are available from References 28 through
34. ‘Among the more interesting approaches are those of Beattie[29:30) who has considered
the effect of flow regimes and that of Lombardi and Pedrocchil34) who have directly
correlated data without using a two-phase multiplier.

1.2 Vapor Volume Fraction and Velocity Slip Ratio

Some of the two-phase friction multipliers discussed previously require the vapor
volume fraction, or void fraction, and the vapor velocity-liquid velocity ratio, or slip ratio.
These two quantities can also be used to modify the time and space derivatives on. the
left-hand side of Equations (18), (27), and (42) in order to account for some two-phase
fluid effects. Void fraction and slip ratio correlations are available from References 28, 33,
and 35 through 41.

2. SPATIALLY 'NONUNIFORM VELOCITY FLUCTUATION

. Contributions due to spatially nonuniform velocity fluctuations are given by Equation

(50) and represent co_ntributions to the momentum balance due to curved streamlines
within the flow field. If the terms containing p' are assumed small compared to the other
terms, Equation (50) becomes S

l'c i (67)

This term, which is analogous to Reynolds’ stress terms when time averaging is employed,
will be assumed to have the form of an additional stress which acts as an effective increase in
the viscosity of the fluid. The average of the product of the fluctuating terms can then be
written as '

Epv = € _3“ ~— 6§, +u —_— + — (68)

| .
'v
ik

where p; is the turbulent viscosity.
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All existing one-dimensional rod array analysis codes contain models for the turbulent
viscosity and many experimental and analytical investigations have been conducted in order
to determine ils value. Among the more recent of these are the work of Rowel42] and
Rowe and Chapman[43] . Reviews of the models available prior to 1972 have been given by
Rogers and Rosehart{44] and Galbraith and Knudsen[45] .-Kjellestrom[46’ 471 has also
measured turbulence properties in rod array subchannels and evaluated correlation models
against data. The experimental work of Rowe and Kjellestrom is expected to contribute
significantly toward resolution of modelihg questions associated with turbulent flows in the
geometrically complex rod array subchannel. In particular, modeling based on ‘“‘universal”

“velocity distributions taken from simple channels will no longer be necessary.

Most expressions for pt can be written in the form

M i
Elore, VR (69)

6 w —
or

u .

Lt _Cc R .. (70)

u 7w .
Equations (69) and (70) are flow channel average values. The effects of the presence of two

phases on y is not well known. Beattie [48] has given a simple preliminary model.

3. FLUID-SOLID INTI_ERFACIAL"ENERGY EXCHANGE

The fluid-solid interfacial energy exchange is given by Equation (51) and may be
obtained by either of two methods as follows: (1) the fluid-solid heat flux may be
prescribéd as a function of (x, y, z, t), or (2) the interfacial surface temperature may be
prescribed (or calculated) and the energy exchange determined from correlations relating
the heat transfer to the fluid-solid temperature difference. For nuclear reactor thermal-
hydraulic analysis, the latter is usually necessary.

Equation (51) may be evaluated in a manner similar to evaluation of Equation (53) in
Section III-1. The results are given by

Q = A (T - T) 7
where Ay is the heated area per unit volume, h is a heat transfer coefficient, Ty is the surface

temperature, and Ty is the bulk temperature of the fluid. Correlations for h and for
departure from nucleate boiling (DNB) are available from References 49 through 51.
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4. SPATIALLY NONUNIFORM ENERGY FLUCTUATIONS

Terms for spatially nonuniform energy fluctuations are given in Equation (52) and
represent energy exchange due to the spatially nonuniform distribution of energy within the
flow field. Again, evaluation is similar to that of the momentum terms in Section I1I-2. The
contribution from p'is considered small so that Equation (52) can be written

= 9 __ T aqi .
Ei 3y ekaI _ (72)
k
where
e;v'I' = —gpk .___3 : I (73)
Tk t 9y, ) '

The turbulent thermal coefficient, kt,'can be obtained from correlations. of the form

k | Vs * | (74)

t
= C_ Re — Pr
C 8
k/o"p v 2
or
k

—t—=cyRe d o’ (75)
k/pp

where the constants C8, C9, q, and r are determined from experimental data. As in the casé
of momentum, Equations (74) and (75) are flow channel average values that do not-consider
the local details of the turbulence.

5. FINAL FORM OF THE EQUATIONS

The final form of the equations is obtained by substituting the modeling equations
from Sections III-1 through III4 into the averaged equations from Section II..The results
are summarized here for convenience:

The conservation of mass equation is

s~ 3 3 -
3F €°P + —ayk epvy o . . (76)

The linear momentum balance is

3 ) ap d T N
—_— —_— = - —_ 4 —
Nt SPVy + ayk EPV, V. € ayi + € ayk 9k ayk epoik + Fi + epgi 7

20



where

T

The conservation of energy equation is -

) avs avl
= -=V —'—6, +\) — +
Sik T T3t oy, Cik T F\ay,

R N 3 3T 3
— epl + — eplv, = ¢ (k ) +
ot Byk k Byk .Byk

S 3 - - 3¢ -
-p 2 -p — + + .
P ayk Yk-T P ot Qw €pQg
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- IV. NUMERICAL TECHNIQUE

The numerical technique used to solve Equations (76) through (79) is based on the
MAC method for incompressible flow as modified by Hirt and Cook(°2] and the ICE
technique for compressible ﬂow‘[53 1 The essential features of these two methods are:
(1) the continuity equation is implicit in density and velocity, (2) the linear momentum
equation is implicit in pressure, and (3) the energy equation is purely explicit.

1. BASIC SCHEME

For convenience, the momentum equation for compressible flow is written in a form
compatible with the incompressible MAC technique so that Equation (77) becomes

Bvi a(vi Vk)_ 1 3 - v
5t T 3y % 3y, Vi Y
Yk 'k

9~ -

v av

1 i l k

+ <0+ ) o o+ ) ~(———->
p t 3yk ayk yi'

(80)

+ Fi//% P +;gi

For the stress-terms in Equation (80), u, Kt and € have been assumed to vary slowly in space
and are taken outside the spatial derivatives.

The region in which computations are to be performed is divided into a set of small
rectangular cells of size Axi, ij, and Azk. As shown in Figure 2, velocity components are
located at cell faces; and density, specific internal energy, and pressure are located at cell
centers. Cells are labeled with the index (i, j, k) as counted from the origin in the x, y, z
directions, respectively. A time-dependent solution is obtained by expressing Equations (76)
through (79) in finite difference form and advancing.the variables through a sequence of
short time steps of duration At. The advancement for each time step is accomplished in two
stages. In the first stage, all quantities are advanced purely explicitly. These quantities then
provide the initial estimates for stage two in which the implicit quantities are obtained by
means of a cell-by-cell interation process.
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Fig. 2 The computational cell.

The specific finite difference equations used are:

(1) The mass conservation equation:

n+l _ At n+l n+l n+l
(ep)ij (eo)ljk ) {[Ui—l/ij [(eo)i_ljk + (so)ijk}

“ptl n+l- n+l] o+l T+l n+l
+ 0‘x\“i-l/zjk [(ep)l 13k ~(e0) 4 Yi41/25k {(ep)ijk + (€p)i+ljk]

ntl n+l n+l ] ntl [ n+l : n+l]
B 0‘x\”‘i+1/2jk [(5 )i ~ (P ir15k ]/Axi + {Vij—'I/Zk | ey +(e0) g
1 n+l
n+l n+l} _ . ntl ntl | . }
+ “yl 1/2k| [(59)13 1w~ 5P gk Vij+l/2k (ep) 4 ( p)ijflk
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n+l n+l n+1l . n+l n+l n+l
- - +
0‘yl"ijﬂ/zk Bep)ijk (ep)ij+1£]] /ij [wijk—l/Z [(ep)ijk-l + (Ep)ijk]

n+l

o lu . [(Ep)n+l _ (ep)n+l] _ ntl (eo)™L 4+ (ep)1 ]
z| ijk-l/2’ ijk-1 ijk ijk+1/2 [‘®P71i3k P744k+1

) n+l n+l n+l

81)
(2) The linear momentum equation:
< n+i_ n+l )
n+l _ 24t AP1jkPir1ik
Yi+1/25k T Yitl/29k © [oax.+oax, ) {(ep) Ei+1/29k T A8y
( 1 i+l) ( i+1/2jk)
ALFE / ( )"" A _ At [u , N -\
- . . Y P ..
t i+1/23k €p i+1/2jk (Axi+Axi+l) 1+13k i+1/2jk ui+3/2jk/

* “x‘“i+1jk'<fi+1/2jk - “i+3/2jk> T Yk (ui—l/ij * ui+1/2jk> " oyl
At

<ui—l/2jk - ui+l/2jk>] - szj [Vi+1/25+1/2k (ui+l/2jk +ui+1/2j+1k>

+ o‘yi"i+1/2j+1/2k| : <ui+1/2jk - ui+l/2jk+lk> T Vit1/25-1/2k

<“i+1/2j-1k + ui+1/2jk> - aylvi+l/2j-l/2k . (“1+1/2j—1k - ui+l/2j€ﬂ

_At w u +u + a Iw |
2Azk i+1/2jk+1/2 i+1/2jk i+l/2jk+l) z' i+1/23k+1/2

(“i+1/2jk B ui+1/2jk+1> ~ Yi41/2ik-1/2 (“i+1/2jk—1 * ui+1/2jk)‘

0‘z|‘“’i+1/2jk—1/2| (ui+l/2jk-l - ui+l/2jk>]
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At [y : - S ST S '
t A [ui+l/2jk (“i+1jk. uijk)] by [ui+l/2jk <Vi+l/2j+l/2k Vi+l/2j-l/2k>]
1

+ 48 [y W - )] + . €i+1/24k Grtup) 5417258t
bz, [i+jk ( i+1/2jk+1/2 i+l/2jk-1/2 At (ep)i+1/2jk
2 . ol
Do 2 T Winge ~ TWy5
/2 + 3 ix, + 82
' X P My (82)
where ~

2 ) ‘

v =2 - - ‘
( %/ 1+1/23k [(ui+3/2jk l.li+l/2jk) /0% 41 (“i+1/2jk * ui—l/ij)/. »A«xi]
i A + ! . -

/ (Axi Axi+1) * [2 (ui+l/2j+lk ui+1/2jk) / (ij * ij+l)

R N1 TN | T )
Yi1/25k T Cier/25-1k) TS| T 12 (i 0 T Y /24K

/ (Azk 82141 ) 2 (ui+l/2jk “i+1,/2jk-1) / (Azk R >] /bz, (83)
“and
(V'u) _ Mi+1/23k ~ i-1/2gk | Yiged/2k - Vig-1/2k | Yigler1/2 T Vigk-1/2
Jijk Axi ij Azk

with similar linear momentum equations for the y and z directions.
(3) The energy equation:

(ep) .., At
n+l _ ijk
(ep)ijk Lise = Py Lige t 2 {[ui—l/ij <Ii—ljk * Iijk)

] - + - '
xlui—l/ij| (Ii—ljk. Iijk) —ui+l/2jk(Iijk Ii+ljk> ax|ui+l/2jk‘
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- . o+ v, - (1., + I, v,
(Iijk Ii+ljk)] /% [}13-1/2k (113-1k Ile) + ?y\ Vii-1/2k]

-1 - V.. + -a -
(Iij—lk. ijk) Vij+1/2k (Iijk Iij+1k) “yl Vij+l/2k‘(lijk Iij+1k>] /ij

+ + o . -
+ [wijk—l/z (Iijk-l Iijk) azlwijk—l/2’ (Iijk-l Iijk)

- ' : ) -
- Viik41/2 (Iijk + Iijk+1> az.wijk+l/2. (Iijk Iijk+1>] ! }

.

Axi ij

w - W
19kt1/2 " Yiik-1/2 A ( ) )
+ bz, +aeky §12080) 50 ok (Tiv1gk T Tijk

- - + ’
/(Axi + Axi+l) z(gp)i_l/zjk (Iijk Ii_ljk) / (Axi _Axi_l)] /bx,
: - + - . ... - 1. )

- +
/(ij * ij-l)} /ij * [Z(EQ)ijk+l/2 (Iijk+1 Iijk) /<Azk Azk-+1)

o
- - Az, + A A +Q,,, + (e0),,
200 5k-1/2 (Iijk Iijk—l) /( %k zk—l)] [z, % Qg ¥ ¢ p)lijgijk

(85)

where, for convenience, the volume average symbol ~ has been omitted, and the velocity
components are denoted by u, v, w. The superscript 'h+ 1 denotes an advanced time
quantity, whereas no superscript denotes the previous time values of any quantity. In
Equations (81) through (85), the donor cell and centered finite differencing have been
combined so that a;=1 (or a;) yields full donor cell differencing, and ;=0 yields centered
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differencing. Quantities required at positions other than where- they.care:rdefined --arés. e -2

calculated as simple averages; for example, u; = (ui+1/2jk + ui-1/2'k)/2' For the pressure
volume-change terms in Equation (85), € haslbeen assumed to vary sllowly and its space and
time derivatives have been neglected.:

To obtain the implicit character described, the following cell-by-cell calculaﬁonal
procedure is used:

(1) The advanced time specific internal energies are calculated according to Equation
(85).

(2) The tentative advanced time velocities for each cell are calculated according to
Equation (82) and the corresponding equations for v and w, etc., using the previous time
pressures.

(3) The tentative advanced time pressure.is calculated such that the pressure change
.in each cell is proportional to the excess mass that accumulates in the cell beyond that
consistent with mass-.conservation; that is:

ntl =~ °
= + 6 .
Pisk = Pijk " “Pijk (86)
where A
Gpijk = '—ATSijﬂk . . (87)
A - o 3 v
Pk T Pidk Vel
Sisk = T F < | :
] a *J o ijk

and " denotes the most recent tentative advanced time quantity, and the divergence term is
differenced as in Equation (81). For the first iteration of any time step, p is calculated as

o= £, Y ~ " (88)

. (4) The new advanced velocities are then calculated from the new pressures by

! _ .28t €5+41/24k SPijk
) . . . L
i+1/2k i+1/23k . (Axi+Axi+l) | ((ep)iﬂ/zjk).
£, . 8p.. s
n+l ) 2At i-1/2Jk ilk
u, . = u,_ . - - = =
i-1/2jk i l:/ZJk (Axi+ Axi_l). ((ep)i—1/2jk)
Sl Y + 2At ®iJ+1/2k Gpijk
ij+1/2k  ij+l/2k (Ay,+Ay, ) . n
j 7itl (Ep)ij+l/2k
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n+1 ~ 2At €55-1/2k °Pijk

P = V.. -
Vij-1/2k ij-1/2k (ij+ij_1) ((ep)zjk_l/2>
\
wrilJ'rllwl/z - v, ik+1/2 T 72 Z-Arz fijkﬂ/zn il
) + ( x zk+1) | ((Ep)ijk+l/2)
\
e+ _ _ aar fik-1/2 OPijk
ijk-1/2 ijk-1/2 z, + 2

k k=1 (Ep)zjk—l/Z
(89)

Equation (89) is evaluated for each cell in turn using the previous velocity iterates on the
right, front, and top faces and the new velocity iterates on the left, back, and bottom faces
so that the velocity on a face is modified due to the pressure changes in the two adjacent
cells. The mesh is swept successively in the direction of increasing j for each (i, k) plane and
in the direction of increasing k for each i column. Viecelli[54] has shown that this type of
procedure is equivalent to successive overrelaxation and is superior to simply using the
previous iterates.

(5) The new tentative advanced time densities for each ccll are then calculated from
the equation of state in the form p = f (p, I) using the most recent value of p. Alternately,

the linearized equation of state 8p = SE/C% may be used, where CI is the sound speed at
constant internal energy. .

(6) Steps 3 through 5 are repeated until the change in pressure between two
consecutive iterations is below some specified tolerance: for example, 6p/pmax<10'5.

(7) The advanced time quantities become the previous time quantities, and Steps 1
through 6 are repeated for the next time cycle.

The value of A7 in Equation (87) must be chosen so as to ensure convergence of the
iteration scheme. In Appendix A, the pressure field is viewed as the iterative solution of a
set of algebraic equations whose convergence properties are examined. To obtain a
convergent scheme, the analysis shows that AT must be of the form

AT = £ A
D
1 /1 ijk 1 |,0<g<2 - (90)
eijk [T [T t 3. 5
CI At + 2At E Ay,
=1
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The optimum value of ¢ depends on the problem.being solved, and § may be varied to
increase the convergence rate. Although, theoretically, the optimum value of £ can be
determined, to find it by experiment is more feasible. The range 1 < ¢ < 1.8 has been
observed to usually be appropriate. .

2. NUMERICAL BOUNDARY CONDITIONS

Five types of boundary conditions may be applied at the walls of the computing
mesh: (1) freeslip, (2) no-slip, (3) inflow, (4) outflow, and (5) pressure. The prescription of
these conditions consists of appropriately fixing the velocities, densities, pressures, and
‘specific internal energies in fictitious boundary cells which surround the computing mesh.
This process is illustrated in Figure 3. The boundary conditions are set before and after each
iteration. The reader should keep in mind that this section only indicates how to treat the
various possible boundary conditions numerically and not what constitutes a proper set. A
more complete discussion of boundary conditions can be found in References 55 through
57. - :

. Wall -
Boundary Cell Fluid -Cell
Wi-ljk+1/2 1 Wijk +1/2
— — Kk +1/2
Outlet Real Cell ) Inlet Real Cell
Pi-1jk Piik
Yi-3/2 jk L. i Yi-1/2 j R Yi+ 172 jk
" i -1k S —— N —_—
Pi- ik Piik
W 4 . w..
i-tjk-1/2 . . ijk-1/2 .
, A ve
| | .
' i |
) H -
i1 i-1/2 i i+1/2
ANC-A-4937

Fig. 3 Position of variables in the (i, k) pléne for left wall boundary conditions.

2.1 Free-Slip

A free-slip adiabatic boundary represents a plane of symmetry or a nonadhering
surface that exerts no drag on the fluid; that is, a—)—‘:— = 0. The normal velocity component,
mass flux, and heat flux are zero. The pressure need not be set because the normal velocity

is not calculated. The free-slip boundary conditions are

~
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Y1724k - 0

Vi-1341/2k  Vij+1/2k

Yiljk+1/2 © Vijk+1/2

Pic15k  ~ Pijk

Ticage T Tige * D

2.2 No-Slip

A no-slip adiabatic boundary represents a viscous boundary that exerts a drag on the
fluid. This boundary condition is implemented by setting the tangential velocity to zero.
The no-slip boundary conditions are

Y1725k 0 0
Vi-jktl/2k © Vi3+1/2k
wi—1jk+1/2 T TViik+1/2
Pi-15k = pijk
Ticige = Tige R (92)

2.3 Inflow

An inflow boundary allows fluid to enter the system at a prescribed normal velocily,
up, which may vary with time. The other velocities are either zero or free-slip conditions are
used. The specific internal energy IB is prescribed. The pressure need not be fixed and the
density is extrapolated.
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The inflow boundary conditions are

Yi-1/25k -~ B
Vi—13+1/2k T Vij+1/2k
Yi-1jk+1/2 © T Vijktl/2

Pi-15k T Pijk

I, ... =1
1—le“ B. L (93)

A properly posed problem would still exist if the roles qf p and I were to be interchanged;
that is, if the inlet density were to be prescribed and the internal energy were to be
extrapolated.

24  Outflow | - -

A number of different types of outflow boundary conditions can be used. Bach type
has its own characteristics.

A prescribed outflow boundary allows fluid to be removed from the system at a given
rate. This condition is implemented by the folléwing formulas:

“i-1/23h ~ B

Vi1j+1/2k

Vii+1/2h

S Yiger/2k T T Vi-1341/2k

Piik - Pi-1jk

Lisk = Li-1gk - (94)

" A continuative OutﬂQw boundary allows fluid to leave thé system at a rate determined
in such a manner as to have minimal effects on the flow region of interest. Although there is
no unique prescription, the idea is to choose conditions which have the least. upstream
influence. Such a prescription consists of setting the normal velocity:.on the boundary to
that immediately upstream for the explicit stage :

Yi-3/25k T Yi-1/23k. - : (95)
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and letting the normal velocity change freely during the iteration stage. The other variables
are set as for the free-slip case.

An extrapolative outflow boundary serves the same purpose as does the continuative
one. It differs in that the variables in the fictitious cells are set such that variables in the real
cell lying on the boundary are the averages of the values in the adjacent real and fictitious
cells; that is:

Uirl/24k © 2%i-1/23k T Yi-3/24k

Vij+l/2k = 2Vic13+1/2k T Vi-2441/2k

Visktl/2 = Mio14k+1/2 T Vi-24k+1/2
oo = 2

ijk = “Pi-1jk T Pi-2ik

Lisk = 2Lio15k ~ Tio2jx

Pijk = 2Pi—13k T Pis2k (96)

2.5 Outlet Pressure

For specified pressure boundary conditions, the pressure in the fictitious boundary
cells is set according to

Pijk = Pp

The other variables are set as for the continuative or extrabolative case.

3. ACCURACY AND STABILITY

The basic accuracy restriction on the size of the time step is that fluid should nbt flow
across more than one computational cell during each time step; that is:

At < minimum [—A[%l— , % R -?—STI—} . COR

This is an accuracy condition because the finite difference forms used to represent the
convective fluxes assume exchanges only between adjacent cells. However, linearizing the
difference equations and performing a Fourier -analysis on them reveals that this is also a
stability condition[5 2] The linear analysis further reveals that for central differencing, the
kinematic viscosity must be sufficiently large to insure stability; that is:
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—~—'I," > A—§ ‘maximum [uz, v2, wz] ) ©8)
p

In addition, the time step is restricted by the conditions

(_U‘:liﬁ 1 (99)

= At <
P 2 (g S
w0l en? o)

and
~ .7 1 . 1 . 1 . (100)
p C 2 5t 7t 7
P (8x) (Ay)“  (b2)

which limit the distances over which momentum and heat diffuse during one time step to be
less than one cell width. Equations (99) and (100) must be observed for both donor cell or
centered-differencing.

Truncation errors can be obtained by expanding in a Tayldr series .cach term in the
finite difference equations about a common point (x,y, z,'t) and retaining the lowest order
terms which contribute to second spatial derivatives or dlffusmnal terms(281.-A portion of

the truncation error in the one-dimensional momentum -equation for centered. d1fferencmg
[59]
is

N 2 . 2 '
2 2) At - u(Ax)” 3p 3 u (101
[(CI R A S ax] 7 . (_ )

The first term is negative .if u2>C /3 and results in a negative coefficient of the second
derivative of u. Donor cell dlfferencmg removes thlS potentlally unstable SItuatlon

Since the energy equation, Equation (85), is explicit, donor cell differencing must be
used to remove the convective instability that results from centered differencing. ‘

33



u/Umax

V. EXAMPLE APPLICATIONS

In this scction, two applications of the preceding equations and numerical method are
given. The code used is called SCORE - EVET. The first application concerns a simple
problem that has a known analytic steady state solution. The problem was choesen so that
results could be compared with the known solution. The second application was run to
demonstrate the capability of the code to handle recirculation and reverse flow situations.

The first application is for plane paréllel flow in a straight channel. The friction term
F; in Equation (23) was taken as linear with respect to the velocity ; that is:

F. = Av ) (102)
i i
The problem was run with no heat sources and no pressufe volume work term. The results
were compared with an analytic solution for steady state flow![ 601 Figure 4 shows the
mean velocity profiles as calculated by the code and from the known analytic solution. The
agreement is excellent.
'3 T T T 1 T

‘ Data:

" p62.45 by /t13 v = 10.75 x 16° f1/sec
D(channel width).= 6.1 ft, ¢ = 0.5

P

outiet = 147 psi~, Umax = 0.0352 ft/sec

202y = 2 x 164, Re=7x 10
1.0
o

. /.
e
0.5 /
/ .
Analytic Steady State Solution
® Code Predictions
. .
o : 1 | l | l
] 0.2 0.4 0.6 0.8 1.0 ) 1.2

Z/R ANC-A-4938

_ Fig. 4 Porous media channel flow.
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The second application is the calculation of. the velocity distribution for the flow of
liquid water in the rectangular region shown in Figure 5. As indicated in Figure 5, the region
is composed of one smaller portion with € =0.25 and one large portion with € = 0.50. Liquid
water is introduced at a constant, uniform velocity over one half of the bottom of the
region. The remaining-one half of the inlet represents a blockage to the flow. The axial
friction force was evaluated using the Colebrook formula [Equation (14)], and the
transverse friction force was calculated using a correlation for laminar flow developed for
tube bundles[23’ 24] . The wall heat supply per unit volume, Qw, was taken to be zero.

€ =0.5

-
|
I
€ =o.25:
|
—_

Free-Slip Wall . ) Free-Slip Wall

Free-Slip Wall

T ? 1 ? : Anfc-A-493é

Inlet Flow Specified

Fig. 5 Calculation region and boundary conditions for 'blockage problem.

The results of the calculation are shown in Figure 6. The vélocity vectors show the
fluid turning at the € = 0.25 portion and a recirculating flow behind the inlet blockage. These
results show the capability of the codes to carry out calculations involving flow reversal
recirculation.; :
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VI. CONCLUSIONS

The present model includes the full Navier-Stokes equations and thus can calculate
natural circulation flows or flows with large transverse velocity components. The numerical
~ solution scheme solves the equations as an initial value problem in time and boundary value
problem in space. Consequently, flow reversals and recirculation are easily handled and
- downstream flow effects are accounted for correctly.

‘The model is applicable to calculations of flows in a wide variety of engineering
equipment as well as flows in porous media. ' ' -
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APPENDIX A
LINEAR STABILITY ANALYSIS

The following iteration scheme for the solution of the mass conservation and linear
momentum equations in one-dimensional conservative form is considered:

e p™) .
m+1 n n 241 - 2 ‘N
T - At —_— : A-1
(epv)otaya = (EOV) i1y T A €041/ X * Ry AD
(ep) = (ep)” (EDV) L (€DV)m+1
S % L L z+1/2 2-1/2. (A-2)
2 At AX o ) .
SRS ¢ D (A-3)
2. ~ Py -
mFl m+1 n+1 : (A-4)
where
m = iteration number
n = old.time level
: RE = explicit calculation of convection, viscous, friction, and body "force terms.

AN

In Equations (A-1) through (A-4), a- one-dimensional form- has been assumed for
- convenience. Linearizing the state equation over a time step and substituting Equations
(A-4) and (A-1) into Equation (A-2) and then using the result in Equation (A-3) gives

noom ay. :
mtl _ om E_,Q, pl_'pﬂ._/}t e (% - 2o 4 o8 )
Py TP TAT| T T ar T2 % ‘Pay1 T Py TP
cs (AX) o
n ‘1 .. , .
+ (Epv)2+l/2 (epv)y 172 ¥ Rora72 ~ Roc1/2 (A-5)

In obtaining Equation (A-5), € has been assumed slowly varymg in time and space, and its
time and space derivatives were neglected. .
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When the iteration has converged, an equation similar to Equation (A-5) results except
that all the m and m+1 superscripts have become n+1. Subtraction of this converged
pressure equation from Equation (A-5) gives

s

m+1 m el Gpm At n m m m
= - —= - - +
8Py =%y ~ At % 5 € (Opgyy ~ 2P v 00 D (A
Ct (Ax) :
where
5 m+1 _ m+l _ n+l
Py Py Py

. . +
is the deviation of the pressures from pnzl‘

The iteration scheme is convergent if (Spr;z‘1 + 0 as m » <o, If a perturbation of the form

-, de; _ AEm eiale (A7)

is substituted into Equation (A-6), it is seen that the amplification factor & must satisfy

€
- At e (2cos(ahx)-2)

At (Ax)2 L ’

E=1- ar (A-8)

c

H N B

Now if 6pr£‘-.o as mwoe for all wave numbers a, a necessary condition for convergence is

|g] < 1 for all a. - (A-9)

In general, £ < 1 and the least favorable case (as o varies) occurs as ¢ approaches -1. £ is
most negative when cos (aAx) equals -1 and to have £ > -1.in this case requires

n 1 + 4At
-1 <1- Arez C2At (AX)Z

I

or

AT < .
n/l 4Ot
, + 2> (A-10)

o2
&CIAt (AX)

If the analysis had been carried out in three dimensions and in nonconservative form,
Equation (A-10) would be replaced by
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2

At < — - 3 .
n 1 1 1
e, .. — {— + (V‘U) + 4At y —F S . o
el o <At - ijk> 1=1(8%,)° (A1)

A similar analysis shows that if the new iterates for pressure are used as soon as they
become available, A7 is limited by

At < 2
et 1 {1 3 1 A-12
ijk =\ + (Veu) + 24t ¥ — (A-12) .
cI \ ~ ijk i=1(8X,)

for convergence of the iteration scheme.
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