
‘oiyoperated by Sandia Corporation,
Ey;-.forthe United States Department of.-. .

unlimited,

M4R 3 1999

I

I

Issued by San&a National Laboratories, operated for the United States Depart-
ment of Energy by San&a Corporation.

NOTICE This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express
or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or
any of their contractors.

Printed in the United Stat& of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available from (703) 605-6000
Web site: http :Iiwww.ntis.govlordering.htm

Available to the public from
National Technical Information Service
U.S. Depatiment of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy A03
Microfiche copy AO1

b

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

@

●

Weapon Systems

SAND99-0397
Unlimited Release

Printed February 1999

Requirements Analysis Employing a

Hybrid of Analytic Technologies

Michael Senglaub, Ph.D.
Distributed Systems Assurance

Sandia National Laboratories
PO 60X 5800

Albuquerque, NM 87185-0455
mesengl@sandia.gov

Abstract –

A rigorous effort was made to apply professional systems engineering standards to the
design of .a modified Mk4 fuze. This required that, as systems engineers, we assess the
system requirements from a force structure context in which the system is a single compo-
nent of a strategic capability. This high level requirements analysis objective required the
development of analytical capabilities that had previously not existed in a form suitable

—
for design development efforts. The analysis that was conducted necessitated the develop-
ment of a series of mission projections as well as a limited number of scenarios for which
a strategic response might be required. These missions and stockpile projections provided
a basis for assessing_a subset of the total system requirements. The analyses also provide

—

metrics in the mission dimension which could be used for concept development and sys-
tem trade studies. The data permits designers and decision makers to identify the most
cost effective solution to this design problem.

THIS PAGE INTENTIONALLY LEFT BLANK.

Table of Contents

Executive Summary ...5

Abstract ...5.
Introduction ...6

Systems EngineeringAnalysis.6

●
Projections/Scenario Development 7
Weapon System Optimization 7

Stochastic Covariance Transformations 7
ConceptDevelopment 7
Analytical Scope 8

TaguchiAnalyses. ..8
Sensitivity Analysis8

Confirmatory Calculation 8
Scenario/ProjectionDevelopment.9

Projections.9

Scenarios.9

Weapon System Inventories 9
Projected Missions 9

Analytical Architecture/Technologies.9
Fuzzy Logic (Targeting). 10

Fuzzification. 10

De-Fuzzification 10

Fuzzy Targeting 11

Hedges. 12

Genetic Optimization (Weapon System Allocation). 13
Multi-criteria Decision Analysis (Fitness Functions). 14

b

*

Mission Fitness Correlation

Objective Probability of Damage.
Minimum Yield.
HOB objectives.
Strategic Time Line.

Validation
Allocation Sensitivity Assessment.

Evolutionary Strategies (Weapon System Opt.).
Weapon System Capability Optimization.

Mission Analysis Results.

Sensitivity Space.
Current / START II (Series A)
START III Environments (Series B)
SRF Force Sensitivity

Confirmatory Analyses and Results.
Current / START 11(Series A)

15

15
15
15
16
16
17
18
18

.18
19

19
20

20
20
20

START III Environments (Series B) 22
SRF Force Confirmatory 23

Exploratory Analysis. ...24

Decision Issues ...24
Follow-on Activities ...25

Recommendations for further Development.25
Trend Analysis of Missions. , . . 25

Targeting Rule Base Issues. 25
C41SR Projections 25

References ...26

APPENDIXA ..27
Transformation between category codes

and descriptive parameters. ...27

APPENDIXB ..29
Experimental configurations for validation
calculations ...29

APPENDIX C ..3O
Inventories Used in current, START II,

and START HIscenarios. ...30

APPENDIXD ..3l
Experiment A, current and START II
environments. ...31

APPENDIXE ..32
Experiment B, START III environments.32

APPENDIXF ..33
SRFexperimental setup. ...33

APPENDIX G ..34
Sample input dataset. ...34

APPENDIx H ..35
Table of contents for code listings.35

APPENDIX I ...4O
Code listing for weapon system allocation models.40

APPENDzx J ...6o
Code listing for weapon system optimization
algorithms .60

APPENDIx K ..l5l
Code listing for fuzzy logic algorithms.151

DISTRIBUTION: ...199

111

List of Figures

Mission analysis sub-process ...6
Generic application ofrobustdesign. ...8
Basic algorithm structure. .10
Graphic representation ofruleprocessing. ...11
Membership functions for Mission,Function, and Counter_Lethality. 11
Target timing as afunction ofcategory code ...13
Target timing as afunctionoftarget Counter_Lethality. ..13
Target ranking bycategorycode. ...13
Target ranking byfunction ...13
Response surface characteristic ofaweapon system allocation problem.14
Objective probability ofdamage fitness function ...15
Fitness function forminimumyield constraints. ...15
Fitness function forheightofburst (HOB)preferences. ...16
Delivery time characteristics for IC’s, SL’s and air delivered weapon systems
using sigmoid functions. ...16
Target distribution for base mission. ...16
Allocations ofweapons totargetclass 871 with different response times. 16
Allocation differences forasecond target class. ...17
Timing allocation information for baseprompt mission. 17
Mission fitness sensitivity-..--17.
Mission Pd sensitivity results ...18
Sensitivity forexperiment series A. ...19
Sensitivity forexperiment series B,. ...20
Sensitivity results forthe SRFseries of experiments. ...20
Weapon radius range of targets assigned to weapon systems. ...21
Performance range ofsystem against targets allocated. ...21
Deployed stockpile allocation formission scenario A. ...21
Required effective CEPsand associated distributions.” ...22
Convergence information forexperiment series A. ...22
Weapon radius range oftmgets assigned toweapon systems. ..22
Performance range ofsystem against targets allocated. ...22
Deployed stockpile allocation formission scenario B. ...23
Required effective CEPS and associated distributions. ...23
Convergence information forexperiment series B. ...23
SRF effective CEP requirements and associated distribution. ...23
Stockpile optimization sensitivity assessment. ...24

Yield distribution foran optimized stockpile. ...24
Effective CEP requirements for each system in the optimized inventory.24

iv

Weapon Systems Requirements Analysis Employing a

Hybrid of Analytic Technologies

Michael Senglaub, Ph.D.
Sandia National Laboratories

PO BOX5800 MS0455
Albuquerque, NM 87185

mesengl@ sandia.gov

Executive Summary

The Mk41W76 is rapidly approaching it’s original design

service life. The result is an effort to bring the system in line
with current technologies and define system requirements

based on information that is not 20-30 years out of date.
System requirements include, safety, cost, reliability, certifi-

ability, dismantlement, as well as performance. The design

problem is multi-criteria in nature, is not single issue, and
requires information that can be used by decision makers to

make the best concept selection for inclusion in the nation’s
strategic inventory.

The effort discribed in this document explores the subset of
requirements, specifically the performance of the stockpile
and the requirements of the Mk4/W76 component of the

deployed stockpile. The effort required the development of
an analytic capability to explore multiple stragetic conftgure-
ations based on missions, targeting heuristics, operational
scenarios, inventories, and system concepts. The capability
developed is based on artificial life (A-life) concepts which

proved to possess well matched capabilities. These analytic
technologies included, fuzzy logic, evolutionary strategies,
and an approximation to simulated annealing.

These analytic technologies had to be integrated to a number
of classical techniques including, Taguchi analysis, multi-

criteria decision making, scenario development, and target
vulnerability calculations. T~getVulnerabiltiesreflected
overpressure, dynamic pressure, cratering and g-type target-
ing. The algoritms were based on Brode-Speicher correla-
tions and on correlations found in PDCALC.

The requirements development focused on three basic sub-
missions, START II projections(Series A in Table 1&4),
START III scenarios(Series B in Table 1&4), and a number
of strategic reserve force (MU?) missions. Within each of
these three sub-missions variations in the independent vari-
ables were considered to capture uncertainties in projections.
The independent variables included, operational status, mis-
sion, deployed inventories and mix, strategic reserve size,
reliabiliites, mission success criteria, and new system con-
figurations. Taguchi analysis techniques were used to iden-

tify the most stressing conditions for use in three

confirmatory calculations used as the basis of the require-

ments assessments. The table which follows defines the
results of the three confirmatory calculations. The informa-
tion includes percentage of the mission assigned to the

replacement SL system, the “normalized effective CEP” and

the fraction of the mission employing a particular evolved

fuze option.

Table 1: Confirmatory analysis results.

Series A Series B SRF
58% 39% 100%

I.0 11% 1.0 6% 1.0 4%

1.8 4% 1.03 3yo 2.5 96%

2.13 2% 1.79 4%

2.23 170 2.18 2970

2.5 40% 2.5 24qo

Abstract. A rigorous effort was made to apply professional
systems engineering standards to the design of a replacement
fuze. This required that, as systems engineers, we assess the
system requirements from a force structure context in which
the system is a single component of a strategic capability.

This high level requirements analysis objective required the

development of analytical capabilities that had previously
not existed in a form suitable for design development efforts.

The analysis that was conducted necessitated the develop-
ment of a series of mission projections as well as a limited

number of scenarios for which a strategic response might be
required. These missions and stockpile projections provided
a basis for assessing a subset of the total system require-
ments. The analyses also provide metrics in the mission
dimension which could be used for concept development and
system trade studies. The data permits designers and deci-

sion makers to identify the most cost effective solution to
this design problem.

The analytical hybrid developed employed a number of arti-

Weapon Systems Requirements Anafysis Employing a Hybrid of Analytic Technologies2/1 2/99 5

@
]

,,.,,

ScenmioDevelopment
Treat!es

Inventories
Policy

MRion
intelligence

Threat
Patrol Areas

O,,i.,
MissionObjectives

.D

COveriskfce
Tranefo?mation ~

Systemfsub-systelll
Reauimmeats

.*..- “ $7
~~..-, +-”’

Information & Requirements Generation

Pm-menfry CovsrisncesRange Distributions p . V-Y WI @vf=we b

Figure 1. Mission analysis sub-process.

ficial life technologies as well as a convolution with fuzzy Introduction.
logic and multi-criteria decision making constricts. The
problem associated with force structure analyses is the multi-
dimensional character of the problem, as well as qualitative
constraints which may be a product of the politics of strate-
gic development. The mechanics of force structure analyses

is a constrained multi-criteria optimization problem in which
we are maximizing system performance on a strategic mis-
sion. The tools provide an ability to perform massive
searches of concepts across a broad spectrum of missions in
order to identify the most robust, effective solution to the
constrained strategic force design problem.

The study explored a number of projections and explored
scenarios associated with strategic reserve forces in the effort
to identify a robust set of capabilities and avoid over specifi-

cation which can result from system assessments in the
absence of force structure considerations. The analyses were
performed within a Taguchi ffamework in order to improve
the efficiency of the calculations and provide insights into
system sensitivities. Taguchi analysis is a design of experi-
ment technique that has found favor in the commercial sec-

tors. Precursor sensitivity calculations were performed to
identify the most stressing conditions to be imposed on the
replacement SL weapon system. These conditions were then
used in sets of confirmatory calculations to identify the sys-
tem requirements in terms of weapon system circular error
probable (CEP) and associated weighings or the importance
of an option requirement given mission parameters.

The suggested and actual service life of nuclear weapons
ranges from 20 to 50 years depending on the system. The
Mk41W76 is reaching the end of design service life and as a
result requires the attention and re-evaluation by the DoD
and DOE design communities. The principle areas of
emphasis @e life extension issues and an increased nuclear
safety margins comparable to the newer systems within the
deployed stockpile. The measures of effectiveness (MOE’s)
for the system include cost, safety, mission, reliability, certi-

fication, retirement objectives, and the other “ilities” such as

availabilityy, maintainability, producibility y, vulnerability, test-
ability, etc. Mission effectiveness requirements pose a
unique problem because of the necessity of identifying mis-
sions 30-50 years in the future, which represents the poten-

tial service life of the system. Projections of strategic
systems missions, and operational environments have typi-
cally been less than 10 years. Design based on these projec-
tions could result in a system design that is obsolete at the
time of system deployment. Uncertainties associated with
future missions must be addressed by either, (1) flexibility of

design, which can result in significant cost impacts to the
customer or (2) as systems analysts we work to mitigate
uncertainty of future missions.

Systems Engineering Analysis.

The analysis effort to support the development effort

explores the transformation of mission needs to hardware
concepts. Mission needs can be defined as distributions of

Weapon Systems Requirements Amdysis Employing a Hybridof AnalyticTechnologies2/12/99 6

targets in which the dimensions of the distribution include,

geographic, clusterings, hardness or damage potential, areal

extent, terrain featur&, and position uncertainty. Hardware
concepts represent algorithms implemented in suites of sen-

sors and processors which transform reentry uncertainties
0

into pre-burst covariances which will result in suitable kills
of mission targets. A simplified graphic of the development

sub-process is depicted in figure 1. The force structure anal-.
ysis provides the foundations for identification of range
weighting distributions, target allocation distributions and

associated target vulnerabilities. The range weighings allow
us to identify sets of pre-reentry covariances to be used in

developing optimal system transformations. These covari-
ances represent the initial conditions for fuzing sub-system

design. The target distributions, associated with a particular
weapon systems mission, provide the final conditions. The

system concept is the black box that transforms the initial
conditions to the final pre-burst conditions.

Projections / Scenario Development. Projections and sce-

nario development represent the initial activities needed to

begin the systems analysis effort. Projections and scenarios
generate information concerning strategic missions, inven-

tories, and operational states for use in the development
efforts. Projections, while accurate, lack the ability to antici-

pate discontinuous effects. These might be advances in tech-
nology, major politicaI shifts, or common mode system
failures. Projections can be characterized as extrapolations
of trends observed in historical data. They can be extremely
accurate for short term predictions. Scenarios, provide capa-
bilities necessary for mission analysis efforts associated with
systems requiring service lives on the oder of decades. Sce-

narios explore predictions from fundamental dynamic con-
text. Predictions based on this approach might address

global states from which problem specific questions are
answered. For example, given a multi-polar high technology

future what might a strategic mission against a central amer-
ican adversary look like?

Weapon System Optimization. The mission profiles and
weapon system inventories which result for the projections
and scenario development effort are used as the basis for the
weapon system optimization analyses. The objective is to
identify one or more system configurations which when inte-
grated into the existing deployed stockpile will compliment
the inventories and not duplicate the other systems. Comple-
menting and- not duplicating capability has positive and neg,-+
ative connotations, a cost effective stockpile is one that
mitigates duplication, while a reliable stockpile is one that

e may possess limited amounts of redundancy to mitigate
effects resulting from common mode failures or delivery sys-
tem survivability issues. The weapon to target allocation
algorithms provide the basic fitness functions for use in the

optimization efforts. Massive searches can be conducted in

which system concepts are assessed within a force structure

context to identify the most suitable solution to the design
problem. The solution which best compliments the force

structure during this phase of the studies leads to robust sets
of system requirements.

Stochastic Covariance Transformations. The analysis
effort identifies sets of pre-reentry conditions and covari-
ances that characterize the initial conditions a weapon sys-
tem must operate from. We also see that the final conditions
are also represented by sets of conditions I covariances. The

system design effort involves finding the transformation
which can optimally transform the initial condition set into

the final condition set. The constraints that are imposed in

seeking this optimal transformation are based on the flexibil-
ity of the weapon system(sensor suites, aero-ballistic capa-

bility, etc.), and on the operational constraints (including
information, preset accuracies, word lengths, delivery sys-
tem accuracy, etc.) of the weapon and delivery system.

The search for this transformation is based on conventional
design paradigms. A tool that could prove highly useful for

this activity is the genetic programming approach being
developed and used in a number of design arenas. This tech-
nology is founded in the evolutionary analytical sciences and

is being used to design circuits, bridge trusses, and orbital
control systems. The effort did not possess the resources or
time to develop the unique operators for this type of genetic
programming problem.

Concept Development. A basic conventional approach to

design is being employed in the concept development activi-
ties. The optimization tools provide sets of effective CEPS
which must be generated by the system hardware. The rela-
tionship between an effective CEP and probability of target
kill is represented in the next equations.

(–)Wr 2

Pk = 1.0 – 0.5 CEP Eqn. 1

““8=* -‘qn-’
Concept development is achieved through a process of con-

cept specification and transfotmation functionality. Compar-
isons between capability and objective identify suitable
choices of concept architecture. Monti-Carlo techniques are
employed to convolve burst covariances with target damage
contours to identify system level probabilities of kill. This

result is then compared to the system requirement (effective

CEP) through the translations defined in equations 1 and 2.
The process while not elegant has proven suitable for many

Weapon Systems Requirements Anatysis Employing a Hybrid of Anatytic Technologies2/1 2/99 7

generations of strategic system development.

Analytical Scope. A broad set of mission projections were
proposed as well as scenario excursions developed in an
effort to capture the mission requirements for this system.
The system capabilities were assessed based on a system-of-

systems context in which the Mk4 wasconsidered to be part

of a larger deployed nuclear stockpile. The delineation of
the mission projections and the scenario projections pro-
vided a foundation from which weapon system optimizations

could be conducted to identify the most suitable Mk4/W76
weapon system configuration. This approach differed from

efforts in the past because it required analytical capabilities
that have not existed within the DOE community. While the
DoD community posses tools approaching the needed capa-

bilities, the DoD algorithms are designed to provide detailed
lay-downs and are ill suited for the studies needed to identify
system requirements. The effort, therefore, required the
development of tools which could be used to search for opti-
mal configurations of the Mk4/W76 system under a broad

spectrum of conditions. The tools needed to operate within a
Taguchi framework, capture targeting heuristics, and facili-

tate multi-criteria decision problems. A brief description of

these tools and the analytical framework follows in the next
sections.

Taguchi Analyses.

Taguchi design techniques are employed in environments
associated with non-linear complex systems and where engi-

neers are concerned with achieving robust designs. The

objective of robust design is to set design control parameters

to target values that minimize response variability. Classical
system response can be defined by the following relation.

y = .f(M,L z) Eqn. 3

M is the signal factor and defines external control of the sys-
tem by an operator in order to attain some intended response
values. x captures the noise characteristic of the system and
environment which cannot be controlled by the system

designer. Finally, z represents the control factors, the param-
eters that are under control of the designer to satisfy system
requirements.

Taguchi techniques recognize that parameter design and tol-
erance design are two distinct approaches to robust design
and there can be significant cost advantages associated with
parameter design in non-linear systems. Robust or Taguchi

design is founded on the premise that any deviation from a
target value has a cost associated with it, The classic design
margin approach assumes that all solutions within the design
margins are equally acceptable. The next figure attempts to
characterize this principle. When system cost is a function
of response variability, a designer can work to reduce the

uncertainties associated with the control factor, ie. tolerance
design, or find a control factor target value that corresponds
to a “fiat” part of the response curve(shift of control from 75
to 175 in Figure 2).

~ewOn= E<ploitkq NcmlinearitieS

0.4

0.2

./ Control
50 100 150 200 250

Figure 2. Generic application of robust design.

The techniques associated with these methodologies become
highly useful for system analysis problems. The design
problem being exploredpossessesa number of factors that
must be addressedfrom a multi-criteriaperspectivein order
to definesystem requirements. The sensitivi~ studies that
are basic to the technique allow us to identify combinations
of conditions that lead to the best design solution.

Sensitivity Analysis

A principle of Taguchi analysis is the identification of impor-
tant des;gn or analysis factors, usually in noisy environ-

ments. The analysis or experimentation that is typical of
Taguchi methodologies provides information that can be
used to optimize “level of effort” in design or analysis
efforts. The process involves a parameter study to identify

factors associated with the design problem and a noise analy-
sis to define the characteristics of the operational environ-

ment, The control factor levels are set based on engineering
judgement and constraints being imposed on the design

problem. Once the parameter analysis is complete the tech-
nique requires a selection of an orthogonal matrix, the

assignment of variables or parameters to the columns of the
othogonal matrix, and the execution of analytical experi-
ments. Subsequent to the experiments a statistical analysis is
conducted to determine sensitivities, non-linearities, con-
founding effects etc. The experimental layout for a number
of the analyses are included in the appendices.

Confirmatory Calculation. The preliminary sensitivity
analyses used in these studies aided in the identification of
the most stressing conditions being imposed on a replace-
ment SL weapon system. For the purposes of the weapon
system optimizations, we are attempting to identify the most
system stressing conditions, and options that can provide
the best performance under these concMions. The confirma-

Weapon Systems Requirements Anafysis Employing a Hybrid of Analytic Technologies2/12/99 8

tory calculation selects these conditions for use in a final cal-
culation to determine the force configuration and system

characteristics that best meets the needs of the customer.

Scenario / Projection Development.
<

There are two basic concepts for attempting to define envi-

ronments a system may experience, the operational condi-

tions that may be imposed and the functionality that may be.
assigned to a system in the future. The first, more basic
approach is that defined as “projections”. Projections are

based on trend analyses. The second approach is “scenario
development”. In this case attempts are made to define a
future environment and the system is then designed for func-
tionality requirements in this postulated future.

Projections.

As indicated projections are based on trend analyses in
which historical information is used to define conditions

which will exist in the near future. Projections can possess

high degrees of fidelity for these near term conditions but

lack the ability to anticipate the unknown. Unknowns might

be major political shifts and alliances, or major develop-
ments in technology.

A number of mission spectrums and stockpile inventories
were identified and assessed in order to identify the effective
CEP requirements for a replacement SL weapon system

intended to compliment the deployed stockpile. The series

A set of calculations, current and START II environments,
involved pure projections based on treaty developments,

operational trends, and target vulnerability trends.

Scenarios.

The series B set of calculations, START III, and the SRF

missions were based on a limited scenario development
approach. Environments were defined to capture inventories

and target sets that might be evident in a future in which
START III treaties were verified. The target sets used were
based on projections of START II type mission spectrums.

A more comprehensive scenario development effort would
have included effort to define the composition of future tar-
get characteristics.

A great deal of consideration should be expended in an effort
to capture future scenarios into which the replacement SL
weapon system might be placed. The effort expended in this

area will ultimately save. the nation money since the system
?

will possess the flexibility and robustness to deal with a

broad spectrum of missions. Some of the considerations that
may affect future missions include:

.

.

.

.

.

Hardness trends
Defensive weapon trends
C41 projections

Gee-political trend analysis-
New delivery platforms. Fast bomber fleet may impact

requirements.

Weapon System Inventories. The inventones of weapon
systems for the three analysis subsets are listed in table 4 of

Appendix C. The inventories vary due to projections by dif-
ferent organizations and reflect the differing assumptions

concerning possible treaty limits. The SRF inventories were
assumed to consist solely of W76 weapons with varying
quantities. This assumption was made to generate the most

significant system performance demands.

Projected Missions. The cm-rent and START II experi-

ments, Series A, explored three mission profiles. These are

Scenarios A, B, and C in the experimental layout defined in
the classified addendum. Scenarios D through G were esti-

mates of possible mission profiles in a START III, or Series
B, type environment. The target sets were generated statisti-

cally from extensive databases. The intent was to’ capture
system needs and not to define or speculate on potential a
adversaries and missions. Each experiment consisted of
1000 targets generated from statistical mission profiles. The
the weapon system inventories were scaled from full target

sets to the 1000 number to reflect or capture the implications

of target rich and weapon rich environments.

The last four scenarios were used in the strategic reserve
force (SRF) analyses and were designed to capture require-
ments which may arise due to third party belligerents. Again

conditions were sought to develop requirements rather than
plan an SRF mission. These cases were run against 500 tar-
gets per NW scenario.

Analytical Architecture / Technologies.

The optimization algorithms are based on three major analyt-
ical elements, the system optimization routines; the target
allocation routines, and a set of fuzzy logic routines.

——

Weapon Systems Requirements Anatysis Employing a Hybrid of Analytic Technologies2/12/99 9

AlgorithmStructure

I 1Weapon System s
Optimization

I

-&::~;iEi
Figure 3. Basic algorithm structure.

The two major sub-blocks can be executed independent of
the weapon optimization functions in stand-alone mode.
This provides us with a higher degree of modularity and re-
use as well as enhancing the validation and debug of the var-
ious algorithms, The targeting heuristics modeled in the

fuzzy logic sub-component represents our best attempt to
mimic the perceived targeting philosophy at strategic head-

quarters in an unclassified setting. The resultant rules could
be significantly improved by obtaining a current allocation
and using genetic programming principles to find an optimal

set of rules reflecting current targeting philosophies.

Fuzzy Logic (Targeting).

Fuzzy set theory is an extension of classic set theory. In
classic set theory component membership is defined by a
Dirac Delta function, either 1 or O. Fuzzy set theory allows

set members to possess membership values which range
continuously over the domain between 0.0 and 1.0. These

membership functions provide us with an ability to charac-
terize the degree to which an element might belong to a spec-
ified set. For example, given a set of “accurate weapons”, a

system possessing a CEP of “X’ feet might possess a mem-

bership value of 0.5, while a system with a “IOX’ foot CEP
has a membership value in the set of “accurate weapons” of
1.Oe-9, reflecting a fact that in some scenariosevena “1OX’
CEP might be considered accurate. Unlike statistical con-
cepts which consider the uncertainties associated with

assessing an observable, fuzzy deals wi~h the uncertainty
associated with the underlying physics or functionality.

Fuzzy logic extends this unique set theory by defining the
calculus that can be used to capture behavior in this problem

space. This treatment of fundamental functional uncertain-

ties provides us with another tool for modeling complex
dynamics, and non-linear systems. Implementation of the
calculus of fuzzy logic provides us with the ability to per-

form approximate reasoning. The dynamics of the system is
captured by semantic rule sets operating on semantic vari-

ables. The multi-faceted nature of targeting, both determin-

istic and heuristic, requires a hybrid approach for which
fuzzy logic is a good match.

Fuzzy provides us with the ability to model / approximate

the highly complex problem of weapon system allocation in
which many of the phenomena cannot be modeled determin-

istically. The politics, and psychology of strategic targeting
can be easily modeled in linguistic rules but is impossible in
closed form analytic form. Fuzzy also permits us to consider

conflicting guidance in the allocation process. As directives
evolve, allocation strategies may emerge which are in inter-
nal conflict. Unlike expert rule based systems which typi-
cally fail under these conditions, fuzzy logic can operate

under these conditions flawlessly.

Fnzzification. Fuzzy modeling requires transformations
between crisp and fuzzy domains in order to capture the
dynamics of a system. The objectives of fuzzy models is to

develop rule sets which operate on linguistic variables which
in turn capture the dynamics of the process or system. Fuzz-

ification is a process in which the concepts of numbers are
re-represented in terms of fuzzy linguistic entities. Once the
model representations are captured in this fuzzy linguistic
space the operations or transformations defined by the rule

set can be performed. The result of the fuzzy transforma-
tions is another set of linguistic fuzzy variables which must

be transformed back into the real domain for evaluation.
This process is de- fuzzification.

De-Fuzzification. After a rule set has been processed the
resulting consequent set must be quantified. This process is
called “de-fuzzification” in the literature (Cox, 1994). There
are three methods that have been considered in these devel-

opment efforts. They include the centroid method, the aver-
age maximum method and the maximum method. The next

●

✎

✟

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/1 2/99 10

figures provide a simple graphic of rule processing.

Cuunter_Lethdlty

E’

‘d ___7-

S
2* ~ /

/
s

% ~:

2
/\

/\~

S-J i’~.4.
kvel I Priority

I ‘~

Figure 4. Graphic representation of rule process-
ing.

Figure 4 graphically demonstrates the processing of a simple

set of rules as defined below.

. if COUNTER.LETHALITY is MODERATE then PRI-
ORITY is HIGH

. if MISSION is STRATEGIC_OFFENSE then PRIOR-

ITY is LOW

Assuming the value for COUNTER_LETHALITY was 57
and MISSION was 16.4. The lines between the charts reflect
the degree of truth of the antecedents and the resulting
impact on the consequent parameter, PRIORITY. The mem-

bership distribution for PRIORITY is represented by the two
clipped sigmoid distributions. The average maximum de-
fuzzification method would produce a priority result in the
neighborhood of 0.9. The centroid method would produce a
priority in the range of 0.6 to 0.8. The maximum method
would result in either 0.8 or 1.0 dependkg on the version of
the de-fuzzification method.

*
Fuzzy Targeting. In order to develop rules associated with
weapon system targeting we were forced to redefine a coding

● system for the targets based on a three parameter model.
The category code structure associated with strategic target
sets represent a book keeping scheme, as opposed to a char-
acteristic scale similar to a member of a fuzzy set. The raw
category codes do not allow us to take advantage of the

inherent strengths of fuzzy logic.

Counter_Lethality
—. _...

‘\\

‘:w,.../
Cc/ \

0 Low High
Q
z’s
~o

al

g~
~o.=L&~dera,e
100 = H,gh

z
Moderets

m+
.

0 . .. -.
01

0 20 40 60 so 100

Mission
_

Level

Function
-,

0 20 40 60 80 100 720 140
Level

Figure 5. Membership functions for Mission, Func-
tion, and Counter_Lethality.

The independent variables selected include the following
three parameters: Mission, Function, and Counter_Lethality.
Associated with each variable is a set of levels. Levels act as

units associated with the variable similar to the numbers
which belong to the positive integer set. The levels associ-
ated with Mission include: strategic offense and defense, tac-
tical offense and defense, and multi-missions.

Counter_Lethality is comprised of low, moderate and high.
Counter_Lethality in this context is the damage a surviving
target could inflict on us. Finally, function consists of fabri-
cation, support, command & control, combat, storage, attack,
and “weapons of mass destruction” (wMD) storage. The

next figure depicts the variables and the membership func-
tions for each level used in the studies.

The objective of the fuzzy targeting within this analytical
architecture involves the assessment of target weighting, rec-

Weapon Systems Requirements Anatysis Employing a Hybrid of Analytic Technologies2/1 2/99 .L 11

1 - ‘----1
ommended detonation altitudes and strategic time line con-
siderations associated with delivery system response times

and survivability. The consequent fuzzy variables include:

priority, timing and height of burst (HOB). The levels
defined for priority include: High, moderate, and low. The

levels of timing include: days, hours, and minutes. Finally,
the levels of HOB include: high, moderate, low, and contact.

Hedges. Hedges represent mathematical adjectives in the
arena of fuzzy logic. They are used as modifiers to semantic
variables and act to change the distribution associated with

the membership function. The membership function for

“high” of the semantic variable counter_lethality can be

modified by the hedge “very”. The effect of that operation is

a change in the membership function by squaring each point
on the membership function. This results in a sharpening of

the distribution function for “high”.

llte first cut at sets of fuzzy targeting rules are provided in

Table 2: Sample rule set used in the first strategic
targeting studies.

Rule
No. I Rule

I

al <if FUNCTION is FABRICATION then HOB is HIGH>

a2 <if COUNTER_LETHALITY is HIGH and MISSION is
STRAT_OFF then HOB is CONTACT >

a3 c if FUNCTION is SUPPORT then HOB is HIGH >

a4 <if FUNCTION is CCC then HOB is LOW>

a5 < then HOB is MODERATE>

bl < if MISSION is STRAT.OFF then PRIORITY is VERY
HIGH >

b2]< if MISSION is STRAT_DEF then PRIORITY is HIGH >

b3 <if MISSION is TAC_OFF then PRIORITY is SOME-
WHAT HIGH>

b4 c if MISSION is TAC_DEF then PRIORITY is MODER-
ATE >

b5 <if MISSION is MUL~_MIS then PRIORITY is VERY
MODERATE >

b6 <if MISSION is TAC_DEF and FUNCTION is FABRI-
CATION then PRIORITY is VERY LOW>

b7 <if MISSION is TAC_DEF and FUNCTION is STOR-
AGE then PRIORITY is LOW>

b8 e if MISSION is TAC.OFF and FUNCTION is SUPPORT
then PRIORITY is MODERA~ >

b9 <if COUNTER_LETHALITY is VERY HIGH then PRI-
ORITY is VERY HIGH>

b10 < if FUNCTION is SUPPORT then PRIORITY is LOW >

bll < if FUNCTION is CCC then PRIORITY is MODERA~
>

b12 I < if FUNCTION is FABRICATION then PRIORITY is

LOW >

Table 2: Sample rule set used in the first strategic
targeting studies.

Rule
No. I Rule

b15 < if FUNCTION is ATTACK then PRIORITY is VERY
HIGH >

b16 <if FUNCTION is W~_STORAGE then PRIORfTY is
HIGH >

cl < if COUNTER_LETHALITY is HIGH then TIMING is
MINUTES >

C2 < if COUNTER_LETHALITY is MODERATE then TfM-
ING is HOURS >

C3 <if COUNTER.LETHALITY is LOW then TIMING is
DAYS >

C6 <if MISSION is STRAT_OFF then TIMING is MIN-
UTES >

C7 < if MISSION is STRAT_DEF then TIMING is FEW
MINUTES >

C8 < if MISSION is TAC.OFF then TIMING is HOURS >

C9 < if FUNCTION is FABRICATION then TIMING is
DAYS >

Clo < if FUNCTION is SUPPORT then TIMING is HOURS >

Cll < if FUNCTION is CCC then TIMING is MINUTES >

C12 < if FUNCTION is COMBAT then TIMING is HOURS >

C13 < if FUNCTION is STORAGE then TIMING is DAYS >

C14 <if FUNCTION is ATTACK then TIMING is MINUTES
>

C15 < if FUNCTION is WMD_STORAGE then TIMING is
HOURS >

the table 2.

Appendix A contains tables defining the transformation

between category codes, and the metrics used in the weapon
system allocation code. As mentioned earlier, category
codes are unsuitable for use in the fuzzy targeting models

and had to be transformed into semantic variables that could
be used by the rule set defined. The approach was to select
roughly 80 plus category codes, transform them into the
semantic space discussed and execute the rule base on these

80 plus target types to generate values for the HOB, priority,
and timing variables which were used in the weapon system
allocation portion of the analytic models.

The de-fuzzification method used to generate the table is the
“centroid” de-fuzzification method, The average maximum
and the maximum methods were explored, however, the cen-
troid method appears to produce the best results for this
application. The next couple of displays provide results of
the rule set defined in table 2. Figure 6 provides a subset of
information useful for assessing the suitability of the target-
ing mle base. The axes represent target accounting codes

WeaponSystemsRequirementsAnatysisEmployinga Hybridof AnalyticTechnologies2/I2/99 12

*

.+

vesus the time urgency parameter.

.
●

—-..-.---,3g ●

s “m
5 ●

IA
.

,
.

.
.

●
.

.’. -
~ .
s ‘.
0 ●

“2 *
z

● .
● .. ,

●

%=

1,
..:g -..=..

ZOao 4mm Wm Cccao 4(

cdlilgo~ code
)

Figure 6. Target timing as a function of category
code.

Figure 7 provides information which correlates target

Counter_Lethality with the time urgency fuzzy variable.
The trend identified is consistent with expectations, i.e.

lethal targets should be attacked early in an a strategic opera-
tion.

—

●

. ●

●

✎
●

● .
,-

.

.

..
..

.“
:.. .. .
●

a 40 m m

Cmmte_Lethd@

Figure 7. Target timing as a function of target
Counter_LethaIity.

-?
Figures 8 and 9 provide information concerning the prioriti-
zation of targets. This dimension of the problem becomes

important in target rich environments. In target rich environ-
●

ments the process involves an allocation of weapons to the
targets starting with the highest priority (rank 1 in the charts)

to the lowest priority. The “b” series of rules, the rules asso-
ciated with priority, in table 1 were used to generate the fol-

lowing plots. The series of plots were used as part of a

validation process. The objective was to capture, within the

time frame of the analyses, a set of targeting heuristics that
reflected actual targeting mechanics. Additional effort
would be needed to add fidelity to the rule base as well as
provide a foundation from which policy issues associated

with strategic targeting could be explored.

8
7

3

a3 43 m m 400 420
Furctim

Figure 8. Target ranking by category code.

{5

+4

43

12

44

40

9

8

7

2

I

Pliniy

Figure 9. Target ranking by function.

Genetic Optimization (Weapon System Allocation).

—

The objective of the allocation algorithms is to select the best
weapon for use against a target consistent with a set of crite-
ria or objectives. A characteristic of this optimization prob-
lem is the multiple combinations of acceptable solutions. A
graphical depiction of the problem is the generic representa-
tion of the optimization complexity provided in Figure 10
below. The axises are indicative of combinations of alloca-

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/I 2/99 13

tions and the resulting fitness of the mission. The point to be
drawn from the figure is the complex response surface asso-
ciated with weapon system allocation optimization. The

initial effort to find a solution algorithm was to use genetic

algorithms with cyclic permutation operators. What became
evident, and it should have been obvious on my part, was the
inordinate amounts of computational effort required to find a

solution. Genetic algorithm can be characterized as directed
random searches for an optimal solution. The random

aspects of the search on a complex response surface is mech-
anistically inefficient. The complexity associated with the

optimization is in part due to the numerous combinations of
optimal solutions and to fitness functions that are at a mis-
sion level. The importance of unit allocation changes using
these fitness functions is averaged over the number of targets

in the strategic mission. The result is minimal impact to mis-

sion fitness due to small changes in the allocation scheme.

Figure 10. Response surface characteristic of a
weapon system allocation problem.

The allocation solution methodology which proved to be the
most efficient was based on a relaxation principle. The
mechanics of this optimization technique involves a pre-
screen for sub-optimal weapon allocations in which suitabil-
ity is defined by the user. Each sub-optimal solution is com-
pared randomly to other sub-optimal solutions in this

distribution, if mission fitness is improved by exchanging
weapon allocations, the exchange proceeds otherwise the

exchange of allocation does not occur. The pseudo code for

the optimization is presented in the following table.

Table 3: Optimization Pseudo code.

Loop on all allocations

{
Compare allocation fitness to user defined acceptance

If (fitness < acceptance)
Add to “unacceptable allocation distribution (UAD)”

}
Loop on UAD distribution

{
randomly select another allocation from UAD
exchange weapon allocations for the two targets
if{ fitness new > fitness old)

make exchange permanent

The fitness of an allocation is defined by sets of criteria to be

discussed in the next section.

Multi-criteria Decision Analysis (Fitness Functions).

Strategic targeting represents a multi-dimensional optimiza-
tion problem in which many of the criteria may possess qual-
itative foundations. Target priority is a clear example of a
qualitative criteria. Policy directives, military objectives,
and gee-political opinions all contribute to the dynamic of
target prioritization. The following set of criteria was used

in the force structure analysis documented in this note. The
criteria consisted of the following 7 factors.

●

✎

✎

●

✎

●

●

Minimum Yield

Objective probability of damage (Pal)

Stockpile constraints
Target importance
Strategic time lines
HOB objectives

Control sub-system Reliability

The factors listed can be grouped into two basic types, those
exhibiting threshold type behavior and those more appropri-
ately characterized as goal functions. Threshold criteria

drive the ‘suitability of a weapon to target allocation to zero if
the fitness threshold of the criteria is not reached. This is

used to capture stockpile limits, if there are insufficient num-
bers of systems to cover targets, the fitness contribution for

an uncovered target must be zero. With goal type criteria,
such as objective Pd, credit is given for an allocation which
produces a probability of target kill different from the mis-
sion goals. This characterization, while rather simple, cap-

tures the functionality of interest. Second order effects
might drive certain targets to transition into threshold type
criteria. Allocations failing to inflict a minimum level of
damage, would be equivalent to an allocation which inflicts
no target damage. The mission fitness correlation is defined

c

.

Weapon Systems Requirements Anafysis Employing a Hybrid of Analytic Technologies2/12J99 ,L 14

.

in the next section and characterizations of a number of the

fitness criteria are discussed in subsequent sections.

Mission Fitness Correlation. The functional form of the
mission fitness function is presented in equation 4. The

functionality captures threshold type criteria as well as goal

type criteria.

F total = F,t~ “Fwl - Flm . Fre
Eqn. 4

. (Fpd -i-Fh + Fy)

In this expression Fm is the fitness associated with strategic

timing issues, Fre addresses system reliability, Fpd captures

objective Pd issues, Fh covers to height of burst consider-

ations, and FYrepresents minimum yield considerations. F~tk

captures the stockpile fitness and is either O or 1 depending
on the ability to allocate a weapon system to a given target.
FWt captures target weighting concerns. When there are suf-

ficient numbers of weapons in the inventory the term takes

on the priority of the target, the problem becomes one of
maximizing the sub-fitness’ for high priority targets in order
to maximize mission fitness. The weighting parameters also
act as a threshold in target rich environments. Under these
conditions, a lower priority cutoff is established that corre-

sponds to the number of higher priority targets that can be
attacked.

The maximum mission fitness that is attainable is 3.0 and the
minimum fitness is 0.0. Each sub-criteria of the mission fit-

ness function can range in value from O to 1 with the
summed terms in parentheses driving the maximum value.

Objective Probability of Damage. Figure 11 defines
the functional form of the probability of damage fitness cor-
relation. The peak of the curve occurs at a value defined as
the objective Pd. The degradation in fitness for probabilities
of damage below and above that value is founded on the.
logic that too much capability is as bad as too little damage
capability. This effect shows up in the requirements for the

. weapon system. Fitness correlations that indicate “bigger is

better” will drive the system requirements up and potentially

impact cost.

Mission Suitability

0.2 0.4 0.6 0.8 1
Pd

Figure 11. Objective probability of damage fitness
function.

Minimum Yield. The functional form of this fitness cri-
teria, Figure 12, had to capture the targeting objective of

imposing the minimum yield available on the target while

still satisfying the other criteria. This criteria has founda-
tions in the desire to mitigate collateral damage in particular,
and topreserve our most capable systems for allocations for
more stressing problems.

0.2

t
I

200 400 600 800 1000

Yield

Figure 12. Fitness function for minimum yield con-
straints.

HOB objectives. The criteria associated with heights of
burst (HOB) captures issues associated with optimal or rec-
ommended HOBS. Physics of weapons, targets, terrain, or
trajectory can impose constraints on targeting HOB. This

is prob-

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic TechnologiesZ/l 2/99 15

lem mathematically. Validation. Validation of the allocation model was con-

ducted on a best guess of current targeting conditions and

HOB Objectives
1

0.8 t

~0.6

2
~

0.4

J
il.2

L,
HOB

Figure 13. Fitness function for height of burst
(HOB) preferences.

Strategic Time Line. Strategic time line is a decision

metric associated with target attack urgency, system delivery
times, and indirectly delivery system survivability. Target

time urgency takes target counter_lethality into consider-

ation when allocating weapon systems to the target. For
example, strategic offense targets are a class of target that
would be targeted early in a mission while strategic storage
facilities, under most scenarios, could be targeted late in a

mission. Survivability of the delivery system becomes a tim-
ing issue if there is some question of first strike survivability.
These systems might be best suited for allocation to time
urgent targets. The forms assumed for weapon system tim-
ing considerations are presented in Figure 14. These figures

represent ICBMS, SLBMS, and air delivered systems. In
conjunction with the fuzzy targeting model, which defines

timing urgency, these generic delivery time curves provide a

decision metric for proper assignment of system to target.

+C

1

0.8

0.6

0.4

0.2

I

SigmoidTimingDistributions

/

/
SL —-

/

2
Time

Figure 14. Delivery time characteristics for IC’S,
SL’S and air delivered weapon systems using sig-
moid functions.

associated allocation rules.

Base MissionTarget IXstribution

8]
I

2X03 4cc@n mm-a m icam

Twct Coding

Figure 15. Target distribution for base mission.

Two sets of base mission allocations were performed. The
first used response times for the air delivered assets such that

50% of the weapons could be delivered in 750 minutes. The
second-set of allocations set the mean delivery time to 1200

minutes. Figures 16 and 17 provides comparisons of a cou-
ple of target classes for the two response times.

Catcode 871

0 2 4 6 8 40

Systcm

0 2 + 6 8 {0

System

Figure 16. Allocations of weapons to target class
871 with different response times.

.

.

Weapon Systems Requirements Anatysis Employing a Hybrid of Analytic Technologies2/1 X99 16

0 2 4 6 8 to

System

Figure 17. Allocation differences for a second tar-
get class.

Figure 18 provides information related to the timing aspects
of the strategic timing problem. For reasons of survivability
and delivery delays, we expect the allocation algorithms to
preferentially select IC systems to attack time urgent targets
and air delivered assets to be used against targets that are not

time critical. From the figure we see that for a prompt
response scenario, these allocation patterns are evident.

{0

~

6

5

4

3

2

+

Base Mkskm(Pm-@

1,2-> SL t

3-5-> Ic i 00

6-10-> Air . ,g=J+ :

.
EEl”

i

t

t

u
*

m. a m“

0 m icm 4 sm

T inq

Figure 18. Timing allocation information for base
. prompt mission.

Other aspects of the targeting validation considerations were
~------ demonstrated in the fuzzy logic section presented earlier

(Figures 4-7). We found that the generic characteristics of

the targeting allocation algorithms demonstrated trends that
were expected for the missions assessed.

Allocation Sensitivity Assessment. A sensitivity set of
calculations were performed to assess the significance of
model and system parameters in the allocation process. The

exercise considered operational scenarios, mission suitabil-
ity, system reliabilities, code convergence parameters, de-

fuzzification methods, and the category code transformation

matrix. The sensitivities were based on the L] g orthogonal

matrix in which the 8 columns were fully assigned to analy-
sis parameters. The table of experiments and settings are

listed in the table of appendix B. A detailed description of
the Taguchi analysis methodology follows in later sections.

The result of these 18 calculations are shown in the next

figure.

SystemPerformance

‘~

2 + 6 8

Factor

Figure 19. Mission fitness sensitivity.

The metric displayed in the Figure 19 is the fitness function
defined by Equation 4. The expression provides numerical
foundations for making comparisons for the different alloca-

tions of weapons to targets. The next figure demonstrates the

sensitivity of mission Pd to the same set of parameters.

The vertical extent of a parameter in these plots indicates
sensitivity to a design or analysis parameter. We also need to
remember that each data bar represents the effect of that

parameter averaged over all the ~emaining parameters. What
we observe in these displays is a dominant system perfor-

mance sensitivity to the operational scenario. The probabil-
ity of damage (Pal) sensitivity plots really do not add a great
deal of extra information but simply reinforce the sensitivity

Weapon Systems Requirements Analysis Employing a Hybrid of Anatytic Technologies2/12/99 17

observations from Figure 20.

SystemPerformance

2 4 6 8

Fdctor

.

Figure 20. Mksion Pcl sensitivity results.

The fitness sensitivity plots indicate, that along with opera-
tional scenario, objective Pd or mission suitability is signifi-
cant. The plot also indicates that submarine launched (SL)
reliability and the de-fuzzification method needs to be exam-
ined closely when performing allocation studies. The impli-
cation of these results are a sensitivity of the design to
perceptions of mission success and operational scenario.

Analysis recommendations include the use of the “centroid’
de-fuzzification and a high user defined convergence accep-

tance level. The acceptance level acts as a threshold for
improvement considerations in the allocation process.

Evolutionary Strategies (Weapon System Opt.).

The system optimization methodology is based on evolution-
ary strategies (ES). Basically, ES is a genetic algorithm
which operates in a real solution space as opposed to a
binary representation of the solution space employed in
genetic algorithm optimization. The problem is to solve

equation 5 which is a representation of a vector function in x.
The response surface defined by f may be of any order or

complexi~. The objective of the ES search algorithms is to
identify an optimal solution to equation 4. It must be recog-
nized that for any complex surface, the probability of finding

the optimum is less than 1.0. What has been shown is that

optimization techniques founded in the biological sciences
do a better job of finding the optimal solution than classic
linear programming methodologies.

y = f(z) Eqn. 5

The “ES-chromosome” represents the vector solution to the
equation and is represented in equation 6. The two vector

components of the solution ci are the nominal value associ-

ated with the solution vector and a search strategy parameter.

Evolutionary strategies possess a characteristic that permits

searches to be conducted in preferential directions of an n-

dimensional space. These directions evolve during the
course of the optimization iterations.

.

——
Ci = (OP,SP) Eqn. 6 -

The following equations define the operators which are char-
acteristic of an evolutionary strategies optimization method-

ology. Parametric or nominal vahte mutation is defined as:

O;mur = 0; + NO(S>) Eqn. 7

In this expression No represents a normal distribution about

@ with a standard deviation of ~. The mutation process
involves updating the nominal solution with random draws

from the normal distribution defined by NO.

Strategy mutation is defined by:

.
sPrmul =j*~ Eqn. 8

(E <0.5
Ai= u Eqn. 9

I/a E >0.5

E is a random number E e (O, 1). ; is the vector of stan-

dard deviations used with NO, and a has been recommended

to be set to–l .3.

The equations delineated represent the optimization algo-
rithm that was implemented for the weapon system optimi-

zation section of the analysis algorithms.

Weapon System Capability Optimization. The objectives
of the weapon system optimization analysis is the identifica-
tion of weapon system characteristics that best represent the

solution to system needs which compliment the deployed
stockpile. The algorithms also possess a capability to
explore the broader question of stockpile composition based
on delivery system characteristics, treaties and future mis-
sion scenarios. The algorithm, based on evolutionary strate-
gies, has the ability to identify yields, inventories and option
performance requirements to satisfy a mission. .

Mission Analysis Results.
.

The analysis was executed on subsets of the scenarios and
projections defined for this upgrade design effort. The basic
subsets of missions consisted of START II scenarios, START
III scenarios and sets of strategic reserve force (SRF) mis-

Weapon Systems Requirements Anatysis Employing a Hybrid of Analytic TechnoIogies2/1 2/99 18

sions. The objectives were to identifj potential mission sets
for a strategic force in the near future as well as develop sce-

narios for system utilizations beyond a ten year time fkame.

Most projections of mission requirements do not explore
conditions beyond this short time horizon. The scenarios

.
that were developed were biased toward START III type pro-
jections. These scenarios defined inventories and targets that

possessed characteristics similar to STMT II projections but
at levels consistent with trends emerging in strategic treaties.

The SRF missions did the best job of developing scenarios
and provided some of the more stressing system require-
ments.

The first set of calculations performed for each of the three
strategic environments consisted of sets of sensitivity calcu-

lations designed to identify the stressing conditions for mis-
sion performance of a replacement SL weapon system. The
metric chosen to represent system suitability is defined in
equation 9. The metric is defined as the standard deviation

of the weapon radii assigned to the Mk4 divided by the stan-

dard deviation of the mission probability of damage.

Eqn. 10

This equation can be interpreted as characterizing a system
which is robust, in terms of target coverage, and flexible, in
terms of an ability to achieve a Pd close to the mission suc-
cess parameter. The greater the value of S the better the sys-

tem solution. The search for stressing conditions are
parameter settings that drive the metric S to minimaI values.

The first part of the effort is to identify combinations of
parameters in each of the three subsets of mission which

minimize the metric S. These parameters and options

become the basis for defining system requirements of the
modified system through confirmatory sets of calculations.

Sensitivity Space.

The independent variabIes identified consisted of

.

. .

.

.

.

Operational scenario (Prompt / Delayed).
A prompt scenario reflects “launch on warning” scenar-
ios, while the delayed operational scenario reflects the
situation in which we succumb to a first strike before
launching a retaliatory strike.
Inventory.
Inventory consists of the mix and numbers of ICBMS,

SLBMS and air delivered assets in the deployed stock-
pile.
Strategic reserve force size.
Mission.
Mission defines the target sets, the inventories, the pol-

icy, and the operational scenario.
. Objective probability of damage (Pal)

This parameter is a reflection of the targeteers criteria

for defining mission success.
. IC reliability.
. SL reliability.
● Number of replacement SL weapon system options.

Current / START II (Series A). The series A mission cap-

tures variations in the START II projections database. The
target inventories are the largest in these projections and the

weapon system inventories exhibit the broadest spectrum of
capabilities. As a result we expect these scenarios to be the

least stressing of the three subsets of strategic missions. The
sensitivity calculations are structured to provide information

indicating the most stressing set of conditions for this mis-
sion series. The results of these calculations provide the
conditions which will be used in the confirmatory calcula-
tions which follow in later sections.

SystemPerformance
o

; : %g%w”
4 . M6sim
5.02’ Uem

P6.IC eliab~w
7. SL Relii,liiy
8. Ne//76c@M6

~ ‘4 6 8

Fwmr

Figure 21. Sensitivity for experiment series A.

The performance metric employed in the assessment is the

metric defined by equation 9. Figure 20 is the results of the
series A set of analytical experiments. In these figures the
vertical extent of each factor represents the sensitivity of that

factor on the average of over all the other factors. The condi-
tions which stress the system include: delayed response,
inventory 2, mission C(definitions of inventories and mis-

sions are discussed in the classified addendum), a 2 boat
SRF, “objective probability of damage” of 0.6, IC reliabili-
ties of 0.85 and SL reliabilities of 0.9. The last three parame-
ters including the number of new options are somewhat
counter intuitive but may be attributed to confounding

effects of other parameters in the analysis. This is also indi-
cated by the change in slope of the parameters. The response
surface indicates a degree of non-linearity in the perfor-

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic TechnologiesZ/12/99 19

—

mance metric. Each factor in the analysis was monotoni-

cally changed and if the dependence of the performance

metric were linear we would expect monotonic changes in
the metric. Of significance is the fact that all of the parame-

ters exhibit consistently large sensitivities.

START III Environments (Series B). The series B mis-

sion set consisted of scenarios and projections that explore
conditions associated with START III environments. The

retirement of weapon systems and reduction of inventories
would tend to drive the requirements for a replacement SL
weapon system up. The series B sensitivity analysis utilized

an L32 orthogonal matrix which allowed for 10 parameters to

be studied.

The resuks of these experiments, Figure 21, indicate that

there exists factors which dominate the problem. Mission

and objective Pd are the dominant stressing conditions while
the number of options provides a significant capability for
countering these effects. As with the series A analysis the
stressing conditions were identified based on this set of cal-
culations and used in the confirmato~ calculations.

SystemPerformance
o

Figure 22. Sensitivity for experiment series B.

SRF Force Sensitivity. The SRF sensitivity analysis

explored a subset of factors explored in the series A and B
sets of conditions. The analysis was limited to four scenar-
ios and situations in which the surviving SRF consisted
solely of Mk4/W76 systems. This scenario was selected

based on delivery system survivability considerations and on
considerations for identifying the most robust set of system
design requirements. Assuming a solely Mk4fW76 SRF

force approximates a more stressing design environment.
The four SRF missions consisted of two former Soviet
Union satellite states, a North Korean mission and a Chinese
mission. The sensitivity was limited to mission, objective Pd

and the number of new options. This set of analytical exper-
iments was based on a modified Lg orthogonal matrix. The

modification consisted of combining the first two factors in
order to create a four level factor to capture the mission vari-

ability.

System Petfotmauce

9

, . Mksim
: d4eJ76cptbr6

.+.0U14
5=ch@tnem

+ 2 3 4 5

Factor

Figure 23. Sensitivity results for the SRF series of
experiments.

The results, Figure 22, indicate that performance of the sys-
tem is almost solely dependent on the SRF mission.

Confirmatory Analyses and Results.

The final phase of a Taguchi analysis is the confirmatory cal-

culations which bases factor settings on the results of the
sensitivity studies. The object of the analysis is to define the
system level requirements of a replacement SL weapon sys-
tem within the context of a strategic force. The sensitivity

studies were structured to identify conditions which would
lead to the most constrained set of system requirements for

the three mission subsets. Again these mission sub-sets con-
sisted of near term projections, moderate range scenarios /

projections, and the SRF mission subset.

Current / START II (Series A). The conditions of the con-
firmatory analysis were delineated in the series A sensitivity
section of this note. What follows is a series of plots provid-
ing detailed allocation information, stockpile allocation
information, convergence data, and the distributions associ-
ated with the effective CEP requirements developed for the
system. The decision metric is defined by equation 9.

Figures 23 and 24 are representations of the raw data cap-
tured in equation 9. The first figure shows the coverage of
each weapon system in the inventory in terms of target
weapon radius. Information contained in these plots
includes the mean, the dot inside the boxes. The inter-quar-

Weapon Systems Requirements Amdysis Employing a Hybrid of Anafytic Technologies2/12/99 20

tile range is defined by the box, while the whiskers define the
limits of the standard span, i.e. 1.5* inter-quartile range.

Points delineated “6iyond the whiskers are the outliers.
These figures provide regimes of weapon system responsi-

bility given specific system characteristics. The indices on
.

the vertical axis correlate to the weapon system within the
strategic inventory. Systems 1 and 2 are the SLS, 3,4 and 5
would represent the ICS and the remaining the air delivered

assets. Systems 3 and 4 are unallocated in the cases depicted
in the figures.

tlmfirmatoy [EXP A)

I 1 I I 1 1 1 I
.—. . E.

i

. [:--~; o 00

i’ ‘o

“ t“”””-”-+

D ------- .,.

-2
1. — A

1 t ! I 1 , , 1

‘w

Figure 24. Weapon radius range of targets
assigned to weapon systems.

Figure 23 delineates the assigned area of responsibility, the
next figure characterizes the capability of the system on the

assigned area of responsibility. A infinitely capable system

would result in a simple vertical line at a level equivalent to
the objective Pd value. As we can see from the figure none
of the systems (those with statistically significant alloca-

tions) exhibit this characteristic.

Confirmatory(EXP A)

J , , t , 1

.
t

“m
. t

. . &._...~

).0 0.2 0.4 06 0.8 10

Pd

Figure 25. Performance range of system against
targets allocated.

Figure 25 captures the allocation statistics for all systems
within the strategic inventory, including the newly optimized

Mk4/W76 system. From the figure we see that for the series
A mission subset 65-70 percent of the mission is being cov-
ered by the SL branch of the triad.

StockpHe Allocation (Exp. A)

1

2 4 6 8

Yield

Figure 26. Deployed stockpile allocation for mis-
sion scenario A.

The mission series A is a weapon rich scenario. Given the
optimized capabilities of the replacement SL weapon sys-
tem, this system is an extremely import component in a stra-
tegic weapons mix. The effective CEPS for the system are

defined in the lower left panel of Figure 26. Five options

WeaponSystemsRequirementsAnatysisEmployinga Hybridof AnalyticTechno10gies2/12/99 21

evolved which had targets assigned to them.

Mission Allocation Requirements(Exp. A)

1.01.52.02.5

,,1
—.

system 1

23

0 A
io i.52.02.5 1.0 1.5 20 2.5

Normalized Effective CEP

Figure 27. Required effective CEPS and associated
distributions.

Based on the two previous figures we see that nearly 50% of
the mission could be successfully attacked by a Mk4 system
capability of 2.5. Similarly, less than 14% would require a

Mk4 system with a 1.0 normalized capability.

A concern when using biologically inspired optimization
algorithms is the probability of convergence to a maximum
in the response space. Figure 27 shows that we indeed found

an optimum early in the calculational series. We can also see

that for this series in the mission subsets, we approached a
relatively high mission fitness, greater than 1.9 of a theoreti-
cal maximum of 3.0.

ConvergenceRate(Exp Aj

0 4an w Zm 403 s

Iterations ‘-

Figure 28. Convergence information for experi-
ment series A.

START III Environments (Series B). The series B mis-
sion subset is a target rich scenario. In this case some targets
will survive uncovered by a one-to-one targeting philosophy.

The figures which follow provide identical information to
the information generated for the series A mission subset.

The first point to notice with these calculations are the -

diminished responsibility assigned to the replacement SL
weapon system. This is potentially due to a number of fac-
tors including the uncovering of soft targets because of prior- -

ity considerations in a target rich environment, and a
different weapons mix resulting from treaty considerations.

A significant number of second order factors come into play

some of which are captured in the allocation and optimiza-
tion algorithms.

Confirmatory(EXP B)

J ! I , I

. . . . 0 ‘-+a-’’””; “o

}

~“”””-z

a E-~1
-—..... . .—. -...~

m,. . o“F-u-3 0

!-EEI 0000 “0 D

}
1 I I I I , !

w

Figure 29. Weapon radius range of targets
assigned to weapon systems.

Confirmatory(EXP B)

J I ! , I
o t

513

t

“ 1+-~

}
. 0 =’+

m .00. - t

E-”-–-3---3

+
I

). o 0.2 0.4 0.6 08 1.0

Pd

.

Figure 30. Performance range of system against -
targets allocated.

The figures which capture the essence of the roles and

requirements are shown in Figures 30 and 31. We see that

Weapon Systems Requirements Analysis Employing a Hybridof AnalyticTechnologies2/12/99 22

Iterations

given the strategic inventories associated with this mission
subset, we still see over half the mission being covered by

the SL branch of the triad. There is however a diminished
role of the Mk4/W76 in the allocations, less than 40%.

40

10

0

Slock@le Allocation (Exp. B)

2 4 6 8

Yield

Figure 31. Deployed stockpile allocation for mis-
sion scenario B.

As in the case of the series A mission subset, the recom-
mended set of effective CEPS range from 1.0 to 2.5 normal-
ized feet, the limits explored by the optimization algorithms.
We find in this case however that only 25?Z0of the mission

requires the largest effective CEP and approximately only
8% requires the tightest effective CEP.

Mission Allocation Requiremenls(Exp. B)

0123

;: ~ ~ ~ SWem8 ~ sysm,~

ti

~1syem4J ~ o

“’”””’”’-”””:” ““l ‘yskm2 n:Lll!l

0123 ot23

Normalized Effective CEP

Figure 32. Required effective CEPS and associated.
distributions.

As with series A, the convergence to a solution occurred

early in the calculational series. The solution converged to a

level lower than that of the first series in large part to the
uncovered targets which are considered to contribute a value

of zero(a penalty) to the fitness functions.

Convergence Rate(Exp B)

*~~

1
I

0 X0 403 m

Iterations

Figure 33. Convergence information for experi-
ment series B.

SRF Force Confirmatory. The SRI? mission subset con-
sisted of 4 missions generated from target databases on
regional missions. SRF missions are assumed to exist under
conditions of limited weapon system inventories, in this case
only M4/W76 weapon systems, and limited target sets. The
sensitivity analysis conducted was used to identify the most

stressing environment for the Mk4 system, the conditions

identified were used in the SRF confirmatory calculations.
The results of these calculations are defined in the next plot.

Stockpile Requirements (SRF)

1 I

1.0 1.5 2.0 2.5

Normalized Effective CEP

Figure 34. SRF effective CEP requirements and
associated distribution.

We find under these conditions that a system exhibiting max-

Weapon Systems Requirements Anatysis Employing a Hybrid of Analytic Technologies2/12/99 .< 23

—

imum capabilities will be employed 9570 of the time while
the lowest capability would be used only 570 of the time.

The implications are that the SRF mission, based on the 4

case subset, will not be a system requirements driver in this
design effort.

Exploratory Analysis.

The tool possesses the capability to optimize on yields,

inventones as well as accuracy constraints. Whh this capa-
bility we also have the ability to explore the optimal configu-

ration of the strategic stockpiles. An exploratory set of
calculations were performed to find the optimal stockpile

given a mission with a distribution of targets comparable to a
current mission, “Scenario A“ of our mission set. The sensi-

tivity study explored the effects of objective Pd, SRF force

size, reliabilities of the delivery systems, as well as the
effects of the number of potential yields and number of

options(effective CEPS) of the new systems. The results of
those analyses are provided in figure 34.

System P69f ormance

i
* I I

0 2 4 6

Factor

Figure 35. Stockpile optimization sensitivity
assessment.

The number of options per system is the most important
design parameter with yields and SRF force size being the
next most important design and operational parameters. The

confirmatory calculation produced the following results.

Stockpile Requirements

o 103 am 330 a Sal

Yield

Figure 36. Yield distribution for an optimized
stockpile.

The yield distribution requirements are presented in Figure
35. The optimal stockpile would contain five basic systems
with yields ranging from 25 to 500 Kt. The corresponding
option requirements are provided in Figure 36. The systems
are numbered from lower left to upper right, 1-6. The two 25

kt systems correspond to 2 and 6 in the figure. Of the
remaining systems, system 1 is a 431 kt system, system 3 is

167 kt, system 4 is at-500 kt and system 5 1s at 302kt.

Performance Requirements

100202 330 4m
1 1 , _L_+___

-

m

m

40

23

0

100203 mo 4ar Iar m zoo 4C0

Normalized Effective CEP

Figure 37. Effective CEP requirements for each
system in the optimized inventory.

Decision Issues.

The following table summarizes the system level require-
ments and the percent of target coverage associated with the

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 24

option for the three mission subsets. The percentages in the
headers is the percent of targets assigned to the Mk4 weapon
system.

Table 4: Confirmatory analysis results.

.
Series A Series B SRF

58°h Sgyo 100%

1.0 11% 1.0 6% 1.0 z$qo

1.8 dyo 1.03 3% 2.5 96%

~13 2% 1.79 4%

2.23 1% 2.18 2%

2.5 40% 2.5 24%

At the smailest normalized effective CEPS, series A and B,

the option is used on approximately 10% of the targets,
while for the largest effective CEP, the system is used on 24

to 40% of the series A or B targets.

Follow-on Activities

The results delineated in earlier sections provide information
for use in the system development effort. The remainder of
the section provides the context in which the data is used.
One of the responsibilities of the systems engineer is to pro-
vide transformations between system level requirements and

the sub-system level metrics used to assess the performance
of the sub-system. In the case of this effort the sub-system

design engineers are using Monte-Carlo techniques to deter-
mine the probability of kill (pk) of a concept against a target

set. The transformation between effective CEP requirements
and concept Pk is defined by equation 2.

A’re-statement of the development activity and the informa-
tion generated follows: Scenario development provides

mission details including weapon system inventories, target
distributions, range distributions, and mixes of delivery plat-

forms. Range distributions provide weighings of pre-reen-

try covariances. Target dktributions and locations provide
target clustering distributions which enable the analyst to
assess foot printing capabilities as functions of warhead
weight and yield. Weapon system optimization provides
information delineating the subset of mission targets allo-
cated to the new I modified weapon system concept. This

. effort also generates the effective CEP requirements for the

system and fuzing options.

. Recommendations for further Development.

The next couple of points capture considerations for further
work or efforts that should be considered in future develop-

ment efforts. The two basic issues concern the mission

developments, and the technology for completing the

requirements development process in a manner that is 1)
technically feasible, and 2) more attuned to classic systems

engineering development approaches.

Trend Analysis of Missions.

The scenario development considered a static target database

for use in defining future missions. This approach is a rea-

sonable first order approach to mission analysis. The prob-

lem with this approach is it lacks consideration of trends in
asset protection. We have seen from historical evidence that

targets are not static but under go design modifications that

in some cases result in diminished vulnerabilities, and / or
greater location uncertainties. Targets are deployed in

deeper bunkers, the bunkers are better engineered, or take
better advantage of the natural terrain and geology. Taking
these types of dynamics into consideration might have

resulted in modified target distributions from which the mis-

sions were developed.

Targeting Rule Base Issues.

Some effort should be expended to explore the use of genetic
programming techniques to find the rule set which most
closely approximates the current targeting, philosophy of

strategic targeteers. The rule set used in this study is based
on a bgst guess, based on generic targeting considerations.
The fuzzy approach was employed to provide a degree of
flexibility for the exploration of policy issues associated with
strategic targeting. In order to explore these excursions, a

rule set needs to be identified that exhibits a high degree of
fidelity with current policy.

There are two basic methodologies useful for developing tar-
get allocation rules. The first is to follow an evolutionary

approach similar to the process that resulted in the current
targeting heuristics. It is suggested that this evolutionary

approach be pursued in order to make the process of captur-
ing complex non-linear dependencies tractable. The second
more sophisticated approach is to write a wrapper for the –

allocation algorithms in which a genetic algorithm (GA)
employing cyclic permutations searches for combinations of
fuzzy operators and terminals to identify an optimal target

rule set, This approach requires a known solution to act as
the fundamental training set.

C41SR Projections

A replacement SL weapon system will remain in the

deployed stockpile for 30 plus years. Command and control
development efforts are likely to result in capabilities that
could permit re-targeting of a strategic weapon system in

real time. This requires that target recognition assets have
evolved capabilities sufficient to assess the status of a silo or

the location of re-locatable assets and could securely com-

WeaponSystemsRequirementsAnatysisEmployinga Hybridof AnalyticTechnologies2/12/99 25

municate this information to the missile / bus system. With

stockpile size trends resulting from treaties, the value of the
assets continues to increase.

The technology which may make real time targeting possible
revolves around the concept of cyber-agents. The possibility

exists for the agents to orchestrate the identification, location
and projected location of strategic targets at times consistent
with the speed of a SRT and the time from release to impact

and provide that information to targeting agents which could
correct preset conditions within the constraints of the bus

energy. What might the implications to system performance
be under these conditions. We no longer would have to

shoot at potentially hard empty holes, but could engage tar-
gets with a high degree of location uncertainty.

References.

Cox, E., The Fuzzy Systems Handbook, AP Professional,

Dr.

Cambridge MA, 1994, ISBN 0-12-194270-8.

Christian Jacob; “Evolutionary Algorithms with

Mathematical”, Tutorial at Genetic Programming Conf.

1997, Stanford U.

Defense Intelligence Agency, “Physical Vulnerability

Handbook for Nuclear Weapons’’,0GA-2800-23 -92

.
Klir, G.J., Folger, T.A., Fuzzy Sets, Uncertainty &

Information, Prentice Hall, 1988, ISBN 0-13-345984-5

R.R. Yager; “Multiple objective decision-making using

fuzzy sets”, Ions College, Int J Man-Machine Studies,

19779,375-382.

M.E. Senglaub, “Information Adendum To Weapon System

Requirements Analysis”, to be published.

This work was supported by the United States Department of
Energy under Contract

DE-AC04-94AL85000.

Weapon Systems Requirements Anafysis Employing a Hybrid of Analytic Tectmologies2/1 2/99 .< 26

APPENDIX A ‘Ik-ansformation between category codes and descriptive parameters.

Table 5: Category code and variable transformation with basic rule set. (Descriptions can be found in the classified
addendum)

CatCode Description Counter_lethality Mission Function HOB Timing Weight

21100 20 50 85 0 I774.77 0.496094

~1300 10 50 85 0 1785.28 0.496094

21500 10 50 85 0 1785.28 0.496094

41100 85 10 45 162,906 64.9121 0.59863

41400 80 10 45 164.151 123.194 0.59863

42100 10 50 90 0 1785.3 0.496094

42200 10 50 90 0 1785.3 0.496094

42600 10 50 90 0 1785.3 0.496094

42700 10 50 90 0 1785.3 0.496094

45100 20 50 90 0 1776.07 0.496094

45300 . 20 50 90 0 1776.07 0.496094

45500 10 40 85 0 1687.43 0.566804

45900 30 40 35 1979.33 1388.18 0.339355

60300 80 5 135 0.0310793 350,962 0.851451

60400 85 5 130 0.0260747 358.633 0.850451

60500 80 5 35 1926.85 349.161 0.543991

61100 20 15 10 2056.13 1748.24 0.344194

63200 15 15 15 1995 1746.39 0.403487

6340Q 10 15 15 1995 1747.89 0.403487

6350Q 10 15 15 1995 1747.89 0.403487

64400 10 15 15 1995 1747.89 0.403487

66100 75 30 135 0 365.458 0.818808

66200 75 35 - 130 0 364.996 0.807953

66500 75 30 135 0 365.458 0.818808

66600 75 35 130 0 364.996 0.807953

67200 90 15 30 2034.09 359.038 0.451828

68000 30 50 10 2056.13 1684.75 0.354194

681OQ 20 45 10 2056.13 1774.25 0.333109

68200 20 45 10 2056.13 1774.25 0.333109

68300 15 45 10 2056.13 1774.25 0.333109

6840Q 20 45 10 2056.13 1774.25 0.333109

68500 15 50 15 1995 1783.65 0.39039

68600 20 50 15 1995 1774,77 0.39039

68700 15 50 15 1995 1783.65 0.39039

74100 90 50 50 142.745 44.7661 0.580098

76000 90 50 50 142.745 44.7661 0.580098

80000 95 15 110 0.059728 126.551 0.881386

80Q50 90 30 110 0 359.217 0.818808

80100 70 40 65 0 363.039 0.566804

81100 90 10 55 160.759 44.7661 0.602328

81200 85 10 55 160.759 64.9121 0.593928

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 27

Table 5: Category code and variable transformation with basic rule set. (Descriptions can be found in the classified
addendum)

CatCode Description Counter_lethality Mission Function HOB Timing Weight

81300 80 25 55 164.699 356.11 0.588974

81400 60 25 55 164.699 360.824 0.588974

82200 85 70 110 0 64.9121 0.851482

82400 85 70 110 0 64.9121 0.851482

82600 85 70 110 0 64.9121 0.851482

83200 85 5 50 142.745 64.9121 0.584779

84100 85 10 55 160.759 64.9121 0.593928

84500 90 70 45 168.072 44.7661 0.624703

85100 90 70 110 0 44.7661 0.851482

85300 95 70 110 0 41,6943 0.851482

86100 70 45 90 0 1661.97 0.516997

86200 70 55 90 0 1661.97 0.516997

86900 70 55 90 0 1661.97 0.516997

87100 95 5 110 0.022495 41.6943 0.88307

87200 90 70 110 0 44.7661 0.851482

87400 90 5 50 142,654 44.7661 0.584779

87600 80 10 35 1926.85 349.576 0.522452

87800 95 5 50 142.407 41.6943 0.585192

87900 70 45 80 0 331.556 0.516997.-
88100 95 5 110 0.022495 41.6943 0.88307

89100 95 50 50 142.745 44.4562 0.584356

89200 90 50 50 142.745 44.7661 0.580098

8950Q 85 50 50 142.745 64.9121 0.566483

89700 80 50 55 164.699 127.29 0.548832

91000 55 30 55 164.699 365.186 0.627476

9200i) 50 55 90 0 1457.79 0.496992

95100 50 50 75 0 387.007 0.496094

95200 90 20 110 0.204469 293.47 0.858072

96100 50 30 55 164.699 365.186 0.627476

96200 40 30 55 164,699 867.286 0.627476

96300
—

30 30 55 164.699 1254.39 0.627476

97200 40 30 85 0 1330.21 0.818808

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99

.

.

28

APPENDIX B Experimental configurations for validation calculations.

The prompt operational scenario reflects a launch on warn- ophy of suffering a first strike and then retaliating with the
ing philosophy, while the delayed response reflects a philos- remaining

. Table 6: Sensitivity analysis setups.

Exp.
Plan

Objet
Iter. Accept

Ic SL
Defuzz Cat

. No. Pd Relia. Relia. Code

1 Prompt 0.6 100 1.0 0.7 0.8 centroid brad

2 Prompt 0.6 175 1.5 0.85 0.9 ave max mike

3 Prompt 0.6 250 2.0 1.0 1.0 max brad

4 Prompt 0.75 100 1.0 0.85 0.9 max brad

5 Prompt 0.75 175 1.5 1.0 1.0 centroid brad

6 Prompt 0.75 250 2.0 0.7 0.8 ave max mike

7 Prompt 0.9 100 1.5 0.7 1,0 ave max brad

8 Prompt 0.9 175 2.0 0.85 0.8 max brad

9 Prompt 0.9 250 1.0 1.0 0.9 centroid mike

10 Delay 0.6 100 2.0 1.0 0.9 ave max brad

11 Delay 0.6 175 1.0 0.7 1.0 max mike

12 Delay 0.6 250 1.5 0.85 0.8 centroid brad

13 Delay 0.75 100 1.5 i .0 0.8 max mike

14 Delay 0.75 175 2.0 0.7 0.9 centroid brad

15 Delay 0.75 250 1.0 0.85 1.0 ave max brad

16 Delay 0.9 100 2.0 0.85 1.0 centroid mike

17 Delay 0.9 175 1.0 1.0 0.8 ave max brad

18 Delay 0.9 250 1.5 0.7 0.9 max brad

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 29

APPENDIX C Inventories Used in current, START II, and START III scenarios.

See Classified Addendum for table of weapon system inven- ments Analysis”, to be published.

tories. “Information Adendum To Weapon System Require-

Weapon Systems Requirements Analysis Employing a Hybrid of AnaIytic Technologies2/12/99

.

.

30

APPENDIX D Experiment A, cnrrent and START II environments.

Table 7: Taguchi setup for Current and Start II scenarios, L18 matrix.

Exp
Ops Inventory

SRF
Mission Obj Pd

Reliability Reliability No. New
No. (Boats) lc SL Options

1 Prompt 1 1 A 0.6 0.7 0.8 2

2 Prompt 1 2 B 0.75 0.85 0.9 4

3 Prompt 1 3 c 0.9 1.0 1.0 6

4 Prompt 2 1 A 0.75 0.85 1.0 6

5 Prompt 2 2 B 0.9 1.0 0.8 2

6 Prompt 2 3 c 0.6 0.7 0.9 4

7 Prompt 3 1 B 0.6 1.0 0.9 6

8 Prompt 3 2 c 0.75 0.7 1.0 2

9 Prompt 3 3 A 0.9 0.85 0.8 4

10 Delayed 1 1 c 0.9 0.85 0.9 2

11 Delayed 1 2 A 0.6 1.0 1.0 4

12 Delayed 1 3 B 0.75 0.7 0.8 6

13 Delayed 2 1 B 0.9 0.7 1.0 4

14 Delayed 2 2 c 0.6 0.85 0.8 6

15 Delayed 2 3 A 0.75 }.0 0.9 2

16 Delayed 3 1 c 0.75 1.0 0.8 4

17 Delayed 3 2 A 0.9 0.7 0.9 6

18 Delayed 3 3 B 0,6 0.85 1.0 2

—

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 31

APPENDIX E Experiment B, START III environments.

Table 8: Taguchi setup for START Ill scenarios, L’32 matrix.

Exp
1 2 3 4 5 6 7 8 9

No.
Ops lnven- SRF Mission Obj Reliability Reliability No. New Ace. of IC

tory (boats) Pd Ic SL Options (Un-Modeled)

1 Prompt 11 0 D 0.6 0.7 0.7 2 0.7

2 Prompt 11 1 E 0.7 0.8 0.8 4 0.8

3 Prompt 11 0 F 0.8 0.9 0.9 6 0.9

4 Prompt 11 1 G 0,9 1.0 I .0 8 1.0

5 Prompt 12 0 D 0.7 0.8 0.9 6 1.0

6 Prompt 12 I E 0.6 0.7 1.0 8 0.9

7 Prompt 12 0 F 0.9 1.0 0.7 2 0.8

8 Prompt 12 1 G 0.8 0.9 0.8 4 0.7

9 Prompt 13 0 E 0.8 1.0 0.7 4 0.9-

10 Prompt 13 1 D 0.9 0.9 0.8 2 1.0

11 Prompt 13 0 G 0.6 0.8 0.9 8 0.7

12 Prompt 13 1 F 0.7 0.7 1.0 6 0.8

13 Prompt 14 0 E 0.9 0.9 0.9 8 0.8

14 Prompt 14 1 D“ 0.8 1.0 1.0 6 0.7

15 Prompt 14 0 G 0.7 0.7 0.7 4 1.0

16 Prompt 14 1 F 0.6 0.8 0.8 2 0.9

17 Delayed 11 0 G 0.6 1.0 0.8 6 0.8

18 Delayed 11 1 F 0.7 0.9 0.7 8 0.7!
19 Delayed 11 0 E 0.8 0.8 1.0 2 1.0

20 Delayed 11 1 D 0.9 0.7 0.9 4 0.9

21 Delayed 12 0 G 0.7 0.9 1.0 2 0.9

22 Delayed 12 1 F 0.6 1.0 0.9 4 1.0

23 Delayed 12 0 E 0.9 0.7 0.8 6 0.7

24 Delayed 12 1 D 0.8 0.8 0.7 8 0.8

25 Delayed 13 0 F 0.8 0.7 0.8 8 1.0

26 Delayed 13 1 G 0.9 0.8 0.7 6 0.9

27 Delayed 13 0 D 0.6 0.9 1.0 4 0.8

28 Delayed 13 1 E 0.7 1.0 0.9 2 0.7

29 Delayed 14 0 F 0.9 0.8 1.0 4 0.7

30 Delayed 14 1 G 0.8 0.7 0.9 2 0.8

31 Delayed 14 0 D 0.7 1.0 0.8 8 0.9

32 Delayed 14 1 E 0.6 0.9 0,7 6 1.0

Inventory Scaling . G -0.364
. D -0,345
● E -0.388
. F -0.364

.

.

,

Weapon Systems Requirements Anatysis Employing a Hybrid of Analytic Technologies2/12/99 32

APPENDIX F SRF experimental setup.

‘+ Table 9: Taguchi setup for optimized stockpile scenario, L16 matrix.

1

Exp Obj
2 3 4 5 6 7 8 9. 10 11 12 13 14 15

No. Pd
Air SRF No. Ic SL No.

Refia CEPS Relia Relia Yields

.
1 0.7 0.7 0 3 0.7 0.7 3

2 0.7 0.7 0 6 0.9 0.9 6

3 0.7 0.7 0 3 0.7 0.9 6

4 0.7 0.7 0 6 0.9 0.7 3

5 0.7 0.9 15% 3 0.9 0.7 6

6 0.7 0.9 15% 6 0.7 0.9 3

7 0.7 0.9 15% 3 0.9 0.9 3

8 0.7 0.9 15% 6 0.7 0.7 6

9 0.9 0.7 1570 3 0.7 0.7 6

10 0.9 0.7 15% 6 0.9 0.9 3

11 0.9 0.7 15% 3 0.7 0.9 3

12 0.9 0.7 15?to 6 0.9 0.7 6

13 0.9 0.9 0 3 0.9 0.7 3

14 0.9 0.9 0 6 0.7 0.9 6

15 0.9 0.9 0 3 0.9 0.9 6

16 0.9 0.9 0 6 0.7 0.7 3

.-

.

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99

APPENDIX G Sample input data set.

Sk_Confinn Name of the file

ScaledInv 0.357 Scaling of inventories to

match the ratio of tarpets to
weavons

Weapons 06 Old and new wea~ons

Options 06 Old and new ovtions

SysRelia 0.9 Svstem reliability

Response 120102400 Deliverv svstem

characteristic timing

eoi

Options 06 SysRelia 0.8 Response 45-360 eoi
Options 06 SysRelia 0.7 Response 1200753000 eoi

Options 06 SysRelia 0.9 Response 120102400 eoi
Options 06 SysRelia 0.8 Response 45-360 eoi

Options 06 SysRelia 0.7 Response 1200753000 eoi

Population 25
Convergence 400

Mutation 0.125

ObjectivePD 0.75
Conv_PPM 10000
Debug
Constraint 48

0.5

25500
2501275
100500
100500
100500
100500
100500
100500

25500
0 425
200500
200500
200500
200500
200500
200500

ES population size

Convergence integrations

Mutation probability

Mission success uaramter

Convergence criteria in PPM

Generates extra output data

Total number of parameters
being ovtimized: (6 svstems

with 6 vields. 6 inventories.

and 6 ovtions. 6*(1+1+6)

Scale factor for evolutionary

stratekw search parameter
Range for vield search

Rarwe of inventorv levels

Range of oution capabilities

...

..

25500

100850

50500
50500
50500
50500
50500
50500

25500
2501275
100500
100500
100500
100500
100500

100500

25500

0 425
200500
200500
200500
200500
200500
200500

25500
100850
50500
50500
50500
50500
50500
50500

Scenarios 1

6123456

Scenario.A

eoi

Number of scenarios
in the optimization

Number and which

warheads are in each

scenan”o

File name of the target
database used in

or3timization

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 34

APPENDIX H Table of contents for code listings.

+++++ Main Weapon System Allocation +++++ ----------------- -------------40
intmain(intargc, char* argv[]) ...40
+++++ Weapon System Optimization (WeaponOpt) +++++ -”------------------ -- 41

.
class WeaponOpt ...44
WeaponOpt::WeaponOpto .. —..45

. ostream& operator<<(ostream& out, WeaponOpt& A) .46
void WeaponOpt: :Dump_WeaponOpt(ostream& Dump_out)47
void WeaponOpt::Load_Data(istream& in) .48
void WeaponOpt::Set_Allocation(float* Means) .52
float WeaponOpt::WS_Fitness(int iter, int popu, ostream& Dump_out)52
float WeaponOpt::WS_Fitness_Validate(int iter) .53
void WeaponOpt::WS_Opto. ...54
void WeaponOpt: :File_Adj(fstream& FL_b, streampos f_strt, streampos f_end)58

+++++ Main Weapon System Optimization +++++ ------------------ ----------60
intmain(intargc, char* argv[]) ...60
+++++ Weapon System Allocation (Targeting) +++++ -------------------- ----- 61
class Targeting ...64
Targeting:: Targetingo ...65
istream& operator>>(istream& in, Targeting& adum) .66
ostream& operator<<(ostream& out, Targeting& A) .68
float Targeting:: Dist_Gamma(float alp, float bet, float x)68
float Targeting: :Dist_Sigmoid(float alp, float bet, float gain, float x)68
void Targeting:: Dump_suitabilityo ...69
void Targeting:: Dump_Targeting(ostream& out) .70
void Targeting:: IC_Alloco. ...71
float Targeting:: Fitness(int targ_indx, int sys_indx, float *cep, -73
float yld, intfz_opts) ...73
float Targeting:: Next_Iterationo. ...74
float Targeting:: Obj_HOB(int targ_indx, int sys_indx, int opt_indx) , . . .76
float Targeting:: Obj_Pk(int targ_indx, float cep, float yld)77
float Targeting:: Obj_Time(int targ_indx, int sys_indx) .77
float Targeting:: Obj_Yield(float yld) .79
void Targeting:: Peti_Resultso. ...79
float Targeting:: Pssk(int targ_indx, float cep, float yld) .82
void Targeting:: Storage_Setupo. ...82
void Targeting:: SuitabiIity_Setup() .-., .83
float Targeting:: Targeting_Opto ..84
+++++ Genetic Algorythm Optimization (GA_Alloc) +++++ -------------------- 88

$ class GA_Alloc” ...88
GA_Al]oc::GA_Alloco ...89
istream& operator>>(istream& in, GA_Alloc& adum) .89“
ostream& operator<<(ostream& out, GA_Alloc& A) .90
float GA_Alloc: :GA_Alloc_Fitness(float *data) .90
int GA_Alloc: :GA_Xchange(int jj, int *suit_set, int indx)92

—— int GA_Alloc::GA_Mutate(intjj) ...92

35

int GA_Alloc::GA_Reproduce(intjj). .’.93
void GA_Alloc::Init_GA_Alloc() ...93
float GA_Alloc::Next_Gen_GA_AIloc(float **suit, float acceptance)94
void GA_Alloc: :Setup_GA_Alloc(long seed_val) .95
++++ Evolutionary Strategy Opt (ES_Chromosome) ++++ -------------------- -- 96 .

class ES_Chromosome .96
ES_Chromosome:: ES_Chromosomeo ...97 ~
istream& operator>>(istream& in, ES_Chromosome& adum)97
ostream& operator<<(ostream& out, ES_Chromosome& A)98
void ES_Chromosome: :Setup_ES_Chromo(float** ml, float* * S1)99
float ES_Chromosome: :ES_Chromo_Fitness(float *data) 100
float ES_Chromosome: :Next_Gen_ES_Chromo() . 102
float ES_Chromosome::Mutateo ...103
float ES_Chromosome:: Xovero ...104
class Allocation ..,..... ...106
Allocation:: Allocationo ...107
istream& operator>>(istream& in, Allocation& adum) 108
ostream& operator<<(ostream& out, Allocation& A) . 109
float Allocation:: Allocation_Opto. 110
float Allocation: :Allo_Fitness(int *ga_soln, int *cep_index, float *suit) 111
float AIIocation::Fitness_PD(int targ_indx, float *cep, float yld, int fz_opts) 113
float Allocation:: Fitness_Stk_Lmt(int inv_num) . 113
float Allocation::Fitness_Time(int targ_indx) . 114
float Allocation:: Fitness_Wt(int targ_indx) . 114
float Allocation::Fitness_Yield(floatyld) . 114
void Allocation:: Genetic_Setupo . 115
void Allocation:: IC_Alloco ...115
void Allocation:: Perf_Results(int soln_index) . 117
float Allocation:: Pssk(int targ_indx, float cep, float yld) 118
float Allocation: :Obj_Pk(int targ_indx, float cep, float yld) 119
void Allocation:: Gen_Dump(ostream& out) . 119
void Allocation:: Gen_Restart(istream& in) . 120
+++++ Mission Definition (Mission_) +++++ ---------------- ---------------122
class Mission .. 122
Mission_:: Mission_() ...125
istream& operator>>(istream& in, Mission_& t) . 125
ostream& operator<<(ostream& out, Mission_& t) .. . 126

..Adj_vn(intt_vn, intt_k, float yld) . 127int Mission_..
float Mission_:: Brode_84(float xt, float yt). 127
float Mission_:: Brode_DP(float xt, floatyt) . 129 .
void Mission_:: CatCode_Transo. ...129
float Mission_:: CR_calc(int t_vn, int t_k, float yld) . 130

float Mission_:: DP_calc(int t_vn, int t_k, float yld) . 130 .
void Mission_:: Dump_Mission_(ostream& out) . 131

float Mission_:: Gr_coupling(float bob, float yld) . 131
float Mission_:: Relative_dist(inti, intj) . 132

36

float Mission_:: OP_calc(int t_vn, int t_k, float yld) . 132
void Mission_:: OP_contour(float yld) . 133
void Mission_ ::Vul_Setup(int targ_indx, float yld)’. 134
float Mission_:: WR_cr(float yld, float sig, float HOB) . 136

. float Mission_:: WR_dp(float yld, float sig, float HOB) 136
float Mission_::WR_gvn(int targ_indx, float yld, float HOB) - 138
float Mission_:: WR_op(float yld, float sig, float HOB) 139.
+++++ Random Number operations (randint) +++++ --------------------------141
class randint ...141
voidgetxo ...141
randint(longs = 1000) ...141
voidseed(long s)....... ...141
]ongget_seedo ...141

intdrawo ...141
float fdrawo ...142
intexp_disto, ...142
voidexp_dist_Rep(inttmp).. ...142
void Setup_exp_dist(int*hist, int siz) . 142
void CleanUp_disto ...143
void Swap(float* a, float* b). ...143
void Sort(float* A,intsz)... ...143
float gausso ...143
class WEAPON ...145
WEAPON_::WEAPON_()...... ...145
istream& operator>>(istream& in, WEAPON_& t) . 146
ostream& operator<<(ostream& out, WEAPON_& t) . 146
void WEAPON_ ::WEAPON_Load(istream& in) , 147
void WEAPON_: :WEAPON_Setup(int num_opts) . 149
WEAPON_& WEAPON_:: operator=(WEAPON_& aWeapon) 149
+++++ Main Fuzzy Analysis+++++ ----------------------- ---------------151
intmain(intargc, char* argv[]) ...151
+++++ Fuzzy Decision Algorithms (FzDecision) +++++ -------------------- ---152
class FzDecision .. 152
FzDecision::FzDecisiono ...155
void FzDecision: :Assess_Issues(float* info_in, float* info_out) 156
void FzDecision::DeFuzzify (int ijk) . - . . . 158
void FzDecision::Dump_Model(char* O_file) . 159

void FzDecision::Dump_Results(char* O_file) . 160
FzVariable* FzDecision: :Find_FzVariable(char* v_nam) 160
void FzDecision::Issue_ID().. ...161.
void FzDecision::Load_Model(char* I_file) . 162
void FzDecision::Parse_Rule() ...163

, void FzDecision::Reset_Varo. ...165
void FzDecision: :Rule_Aggregation(FzVariable* A, int aggr_op) . - 166
void FzDecision::Run_Model(char* O_file) . 167
void FzDecision: :Store_Results(int case_num, ostream& out) 170

.& 37

void FzDecision::Z_AND()....171
void FzDecision::Z_OR()..... ...171
int FzDecision::Z_Tratho ...171
+++++ Fuzzy Hedge Algorithms (Hedge_) +++++ ----------- ----------------173

class Hedge ...173

Hedge_:: Hedge_(Hedge_ *p)...... ...174
void Hedge_:: Tran(FzSet&bs).. .~l74
istream& operator>>(istream& in, Hedge_& t) . 174
ostream& operatorcc(ostream& out, Hedge_& t) - - - . . - ~ 174
+++++ Fuzzy Issue Control (Issue_) +++++------------------- -------------175
class Issue . 175

struct RO_ ...175
Issue_ ::Issue_(Issue_ *p) ...-176
void Issue_:: Load_issue(istream& in) . 176
void Issue_:: Dump_issue(ostream& out) . 176
+++++ Fuzzy Rule Operations(Rules_)+++++ ----------------------- ------177
class Rules . 177
struct RA_ ...177
Rules_ ::Rules_(Rules_ *p)...... ...178
void Rules_ ::Load_rule(istream& in) . 178
void Rules_:: Dump_rule(ostream& out) . 179
+++++ Fuzzy Sets Operations (FzSet) +++++ ------------------- ------------180
class FzSet .
FzSet::FzSet(FzSet*p) .
void FzSet::Helpo .
istream& operator>>(istream& in, FzSet& adum)
ostream& operator<<(ostream& out, FzSet& adum)
void FzSet::Alfacut_Above(double cut_val) .
double FzSet::Centroido .
double FzSet::Ave_Maxo .
double FzSet::Max_Edgeo .
double FzSeti:Degree_of_Truth(double scaler) .
void FzSet::Fz_Initializeo. .
double FzSet::Get_Maxo .
void FzSet::Normalize_FZS(). .
void FzSet::Reset_Wrko .
void FzSet::Setup_Betao .
void FzSet::Setup_Customo .

void FzSet::Setup_Gausso .
void FzSet::Setup_Linearo. .
void FzSet::Setup_Pio .
void FzSet::Setup_Sigmoido. .
void FzSet::Setup_Trio .
void FzSet::Setup_Uniformo .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

180
182
182
182
184
184
184
185
186
186
187
187
187
188
188
188
188
189
189
190
191
191

+++++ Fuzzy Variable Operations (FzVariable) +++++ -------------------- ----193

.

.

class FzVariable ...193

38

FzVariable::FzVariable(FzVariable *p) , 195
Hedge_* FzVariable::Find_FzHedge(char* v_nam) . 195
FzSet* FzVariable::Find_FzSet(char* v_nam) . 196
void FzVariable::Helpo ...196
void FzVariable::Reset_FS()... ...196
void FzVariable::Variable_ Output(ostream& out) . 196
void FzVariable::Variable_Setup(istream& in) . 197

39

APPENDIX I Code listing for weapon system allocation models.

// +++++ Main Weapon System Allocation +++++

#include ''/home/mesengl/Data_codes/Fuzzy_Targeting/header.h''

#include ''/home/mesengl/Data_codes/Fuzzy_Targeting/FzSet.h''
#include ''/home/mesengl/Data_codes/Fuzzy_Targeting/FzHedge.h''
#include ''/home/mesengl/Data_codes/Fuzzy_Targeting/FzVariable.h''
#include ''/home/mesengl/Data_codes/Fuzzy_Targeting/FzRule.h''
#include ''/home/mesengl/Data_codes/Fuzzy_Targeting/Fzlssue.h''
#include ''/home/mesengi/Data_codes/Fuzzy_Targeting/FzDecision.h''

#include “MES_random.h”
#include “MES_ES_opt.h”
#include “MES_Weapon.h”
#include l’MES_Mission.h”
#include “MES_Targeting.h”
#include “MES_WS_Opt.h”

//+++

int main(int argc, char ‘argv[]) -

{
tout <c “+++++++++ Begin Assessment +++++++++\n’’ccflush;
tout <c “\n”;

ifstream allo_in(argv[l]);
. tout e< “Input data file:” << argv[l] << %“ e< flush ;

ofstream d_out(’’Validatel .dat”);

Targeting tst_allo;
allo_in >> tst_allo; ‘–

tst_allo.Targeting_Opt();

d_out << `7n---\n'';
tst_allo.Dump_suitability(d_out);
tout e< “\n”; —

tout c< “+++++++++ End of Assessment +++++++++\n”;

}; // Block: 1

—

// +++++ Weapon System Optimization (WeaponOpt) +++++

//

//.
//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

II
% //

//
. //

.—
//
//
//

+++++ +++++*++++++++++++++++++++++++++++++++++++++

Weapon System Optimization

++

Weapon system optimization involves thesearch forsystem
configurations, including accuracies, yields, inventories, and the
numberoffuzing options perconfiguration which best meets the
needs ofastrategic mission scenario orsets of scenarios. The
weapon system optimization algorithm can be split into three(3)
seperate computational packages. They include the wea~on
svstem o~timization code, a wea~on svstem allocation algorithm
and a fuzzv Ioaic modeling environment.

These entities can be operate independent of each other provided
a driver routine is writen to load relevant data, execute the algorithm,
and provide for output./post processing control.

Tools being brought to bear include, evolutionary strategies, fuzzy
logic, and an “annealing” type of allocation optimization technique.
The genetic algorithm proved to be unsuitable for optimizing weapon
to target allocation.

References:

Dr. Christian Jacob; “Evolutionary Algorithms with Mathematical”,
Tutorial at Genetic Programming Conf. 1997, Stanford U.

(www.cpsc.ucalgary. ca/-jacob/ Qr www2.informatik.
uni-erlangen.de/-jacob/)

Defense intelligence Agency, “Physical Vulnerability Handbook for
NuclearWeapons’’,OGA-28OO-23-92

COX,E., The Fuzzy Systems Handbook, AP Professional
(a div of Harcourt Brace & Co.), 1994, ISBN 0-12-194270-8

Klir, G. J., Folger, T.A., Fuzzy Sets, Uncertainty& lnformtion,
Prentice Hall, 1988, ISBN O-13-345984-5

R.R. Yager; “Multiple objective decision-making using-fuzzy sets”,
Ions Colledge, Int J Man-Machine Studies, 19779,375-382.

JSTPS TR 91-1, “PDCALC A Computer Program For The
Probability Of Damage Calculations”, 1991.

H. Brode, S. Speicher, “Air Blast From Nuclear Bursts-analytic
Approximations”, Pacific-Sierra Research Corp.,
PSR Report 1419-1.

cPage410f59>

//

//

//

//

//

//

//

//

//

S. Speicher, H. Brode, “Extremely High Overpressure Analytic
Expression For Burst Height, Range And Time - Over An Ideal
Surface”, Pacific-Sierra Research Corp., PSR Note611

Capt. G. MarteIle, “3DPD HANDBOOK, Formulas and Algorithms for
Computing The Probability of Damage of New Generation
Nuclear Weapons’’,AF Operational Test& Evaluation Center.

Code Structure:

.

Load_Data
Dump_WeaponOpt

Fiie_Adj

Set_Allocation
WS-Ftness

WS_Ftiness_Validate
ws_opt

WEAPON_Load
WEAPON_Setup

(operator) =

Dump_suitability
Dump-Targetmg

Pef_Results
iC_AiloC

stOrage_setup
Suilabitity_Setup

FitneS$_PD
Ftines$_Stk

Fitness-Time
Fdness_Wt

Fitness_Yield
Ob~Pk

Pssk

I Targeting_Opt
Next_lteratiOn

.

Dump_M!s$iOn_
VuI-Setup

Adj_vn
Brode_64
CR_calc
DP_calc

G&ouu;g

oP_cOntOur

Relaiive-oist

WR_cr
WR_dp
WR 00

,

Setup_ES_Chmmo
ES_Chmmo_Fit ness

Nexl_Gen_ES_chromo
(operator) >>
(operator) cc

//

//

getx
seed

get_seed
draw
fdraw

exp-dist_Rep
setup_exp_dist
cleanup_dist

gauss

(operator) <<
(operator) >. I I (operaio~ <<

Re$et_Targ
(opera.to~ >> I

ProuramConstruction:

WEAPON_LOad
WEAPON_Setu~

(operator) .

gelx
Seed

get_seed
draw
fdraw

exfI_dist_Rep
setup-ex#_dist
CleamUp_dist

getx
seed

get_seed
draw
fdraw

e.%p-dist_Re
setup-exp_di
CleanUp_dis

gauss

gausi

.

c Page 42 of 59>

.

.

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

Lf
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
/’/
//
//
//

The driver for the optimization algorithms is simply a main program
in which an object is declared, data is loaded, and the optimization
is performed. An example of a driver for the optimization follows:

ifstream weap_in(argv[l]);
ofstream d_out(’’Validatel .dat”);
WeaponOpt NuSys;
NuSys.Load_Data(weap_in) ;
d_out << Nu!?qK << flush ;
NuSys.WS_Opto;

The first 2 statements define the input and output files. The third
line defines the WeaponOpt class object, NuSys.Load_Data loads
the data which is immediatelydumped. NuSys.WS_Opt begins the
sytem optimization.

Input Format: (typical dataset)

NuMk4
Weapons 20
Yield 333 Inventory 75 Options 02 Response 1.0 eoi
Yield 111 Inventory 225 Options 40 CEPS 450400750350

Response 1.0 eoi
Constraint 2
0.5
175250
200300
Population 20
Convergence 33
ObjectivePD 0.75
Mutation 0,05
Seed 555
Dump
Scenarios 1
212
target.db

eoi

target.dbis the data base of mission targets. We use a seperate
file for this input as it provides greater flexibility when decoupling the
various system codes. The data in this file looks like:

scenariol .
Dump
Convergence 50

< Page 43 of 59>

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

1/
//
//

Acceptance 1.0

Targets Targets 250
60841 L8 0.731766360361.93145 44.1054146 46.25955643
465 37M6 0.517706462658.98407 101.7777439179.97161811
500 37M6 0.431070416751.18029 157.6116195229.35555875
.. .

eoi

input Kevwords include:
Weapons, Yield, inventory, Options ,CEPs, Response, Constraint,
Population, Convergence, ObjectivePD, Mutation, Seed, Dump,
Debug, Scenarios, & eoi for termination.

The Targeting class is the subset of algorithms which perform the
weapon to target allocation. Targeting and WeaponOpt must load
weapon system characteristics, When we are performing the opti
mization function, WeaponOpt loads weapon characteristics and
passes this information to the Targeting object. When the alloca
tion function is being exercised weapon characteristics are loaded
from Targeting.

Wea~onOtX Member Functions:

Setup, input and output of information:
Dlmp_WeaponOpt, Load_Data, Set_Allocation,FkMj
This last function is used to capture and store the last two iterations
of the run.

Optimization and fitness evaluations are performed in:
WS_Fitness, WS_Fitness_Validate, WS_Opt

++++++++++++++++++++++ +++++++++++++++*+++++++++++

++++++++++ +++++++++++++++++++++++++++++++++++++++

class WeaponOpt

{
public:

//
// Define addiitonal model parameters:
//

int exists;
int DEBUG, DUMP ;
int PERF_OUT, freq_out;
char* obj_name;

c Page 44 of 59>

//

II __ An Enumeration Will Be Used To Facilitate Info Transfer To
// Processors In The MP Implementations
//

enum{ es_pop, max_scenarios, es_iter, total_WH , total_optimize,
mut_pr, fr, pd, XO_pr, lvec_sz };

int* Ivec;
float mutation_pr, Xover_pr;

WEAPON_ *SyS;
int” sys2scene;
float** constraint;
float** constraint_tmp ;
float fraction, pd_objective;
float Scale_lnv;

randint random;
long seed_val;
ES_Chromosome soln;
Targeting* scenario;

WeaponOpt(); // Constructor
//
// overload the input and output operators
//

friend ostream& operator<e(ostream& out, WeaponOpt&);
//
// Define addiitonal member functions:
//

void Dump_WeaponOpt(ostream& Dump_out);
void Load_Data(istream& in);
void Set_Allocation(float*);
float WS_Fitness(int, int, ostream&);
float WS_Fitness_Validate(int);
void WS_Opt();
void File_Adj(fstream&, streampos, streampos) ;

}: // Block: 2
// +++++++++++ +++++++++++++++++++++++++++++++++++++++

// NOTE: The integers in the constructor must be adjusted to reflect
// the number of variables and arguments in the model

WeaponOpt::WeaponOpt()

{
obj_name = new char[l O];

< Page 45 of 59>

//

// Define default conditions
11

exists= FALSE;
strcpy(obj_name,’’None”); .
DEBUG=FALSE;
DUMP=FALSE;
PERF_OUT=FALSE;
freq_out=25;

“Scale_lnv = 1.0 ;
Ivec = new int[10];
Ivec[lvec_sz]=1 O;
Ivec[es_iter]=75;
Ivec[es_pop]=75;

//
// corn 1 Default Is To Search For Fuzing Options
//

Ivec[total_WH]=0;
Ivec[total_optimize]= O;
Ivec[max_scenarios]= O ;

mutation_pr=O.01 ;
Xover_pr=0.25 ;
pd_objective= 0.75 ;
fraction= 0.25;
Ivec[mut_pr] = int(1OOO*mutation_pr);
Ivec[XO_pr] = int(1000*Xover_pr);
Ivec[fr] = int(1000*fraction);
Ivec[pd] = int(1000*pd_objective);
constraint = new float*[2];
constraint_tmp = new float*[2];

//
// The Next Set Operations Ensure That Each Processor Will
// Begin With A Different Random Nuber Seed Value.
//

seed_val=l1111 1;
random .seed(seed_val);

1; // Block: 3
//

{

//

//

++++++++++++++++++ ++++++++++++++++++++++++++++++++

ostream& operator<<{ ostream& out, WeaponOpt& A)

.

provide coding to represent the ouput desired for this object

,

.

< Page 46 of 59>

//

out << A.obj_name c< ‘In”;
out cc “Convergence “ CCA.Ivec[A.es_iter]<< %“;
out cc “Population “ ccA.lvec[A.es_pop] << %“;

. out << “hWeapon Systems \n”;
for(int kO=O; kOe=A.lvec[A.total_WH]; kO++) —

. {-
out c<” Master Warhead number:” cc kO <c %“;
out << A.sys[kO];

}
out << ‘lnObjectivePD “ << A.pd_objective << %“;
out cc “Mutation “ << A.mutation_pr cc %“;
out c< “lnConstraints: Strategy fraction =” <c A.fraction c< %“;
for(int k=C);k< A.lvec[A.total_optimize]; k++)

out c< A.constraint[O][k] c< “ “ << A.constraint[1][k] <c” \n”;
out cc ‘7nScenarios “ << A.lvec[A.max_scenarios] <c “h”;
for(int kl =0; kl cA.lvec[A.max_scenarios]; kl ++)

{
out <c” Scenario number: “ <c kl <c “h”;
for(int k2=O; k2c=A.scenario[kl].total_WH ; W++)

{
out c<” Warhead number: “ c< k2 cc %“;
out c< A.scenario[kl].sys[k2];

}
}

out c< “M” cc flush;
return out;

}; ii
//

void

{
//
//
//
//

Block: 4
+++++++++++ +++++++++++++++++++++++++++++++++++++++

WeaponOpt::Dump_WeaponOpt(ostream& Dump_out)

Routine To Dump Information Associated With Weaponopt For
Debug And Restart(?).

Dump_out cc “---- :: WeaponOpt Dump (bgn) :: ----” c< obj_name cc “\n”; .
Dump_out c< “---- :: WeaponOpt Dump (---) :: ----”

<c “Storage Parameters: (lvec[l 0]) \n” ;
& Dump_out cc “---- :: WeaponOpt Dump (-,-) :: ----”;

for(int k=O; kclvec[lvec_sz]; k++)
. Dump_out cc lvec[k] cc “M”;

Dump_out cc “h---- :: WeaponOpt Dump (---) :: ----”
<c “Random Seed : (seed_val) \n” ;

Dump_out cc “---- :: WeaponOpt Dump (---) :: ----” cc seed_val c< “h”;——

< Page 47 of 59>

Dump_out cc “----::WeaponOpt Dump (---) :: ----”
cc “Control Parameters : (DEBUG, DUMP, PERF_OUT, freq_out) \n” ;

Dump_out << I’---- :: WeaponOpt Dump (---) :: ----” <c DEBUG c< ‘N”
<c DUMP << ‘N” cc PERF_OUT << “V’{<< freq_out cc ‘%” ;

Dump_out << “---- :: WeaponOpt Dump (---) :: ----”
cc “Convergence Control : (mutation_pr, fraction, pd_objective) \n”;

Dump_out << ~~._- :: WeaponOpt Dump (---) :: ----”<< mutation_pr c< ‘N”
cc fraction c< “V”<c pd_objective << %“ ;

Dump_out << “...- :: WeaponOpt Dump (---) :: ----”
cc “Weapon Parameters : \n”;

for{ k=O; kc= lvec[total_WH]; k++)
Dump_out c< sys[k] ;

Dump_out << ‘i---- :: WeaponOpt Dump (---) :: ----”
<c “Weapon association to scenario : \n” ;

for(k=O; k<lvec[max_scenarios]; k++)

{
Dump_out <~ ‘<. .. . :: WeaponOpt Dump (---) :: ----”;
for(int kk=O; kkc=sys2scene[k][O]; kk++)

Dump_out << sys2scene[k][kk] cc ‘%” ;

Dump_out cc %“ ;

}

if{ DUMP)

{
Dump_out C< u---- :: WeaponOpt Dump (---) :: ----”
cc “Chromosome Information : \n” ;

Dump_out cc soln e< %“;
Dump_out << “---- :: WeaponOpt Dump (---) :: ----”
cc “Target Information : \n” ;

for{ k=O; keivec[ma)_scenarios]; k++)
scenario[k].Dump_Targeting(Dump_out) ;

}
Dump_out << II---- :: WeaponOpt Dump (end) :: ---- \n”;

return ;

1; // Block: 5
// +++++H+++++++++++++++ ++++++++++++++++++++++++++++

●

void WeaponOpt: :Load_Data(istream& in)

{
char tmp_in[l 5];
char tmp_file[30];

c Page 48 of 59>

int Fix_WH, Nu_WH;
exists=TRUE;
float tmp_del, trnp_av;
in >> obj_name;
in >> tmp_in;
while(strcmp(tmp_in,’’eoi”) !=0)

{
//
// Output The Keywords As They Are Being Loaded
//

Cout << “----- WeaponOpt Keyword :” cc tmp_in <c ‘W” c< flush;
if(strcmp(tmp_in,’’Weapons”) == O)

{
//
// Note: for input optimization, sensitivity studies we are allowing
// for a scaleing of the inventories. Thsi can be done is Scaledlnv
// is loaded pri;r to the weapons.
//

in >> Fix_WH >> Nu_WH ;
Ivec[total_WH] =Fix_WH + Nu_WH ;
sys = new WEAPON_[Ivec[total_WH] +1];
for(int k=l; kc= Ivec[total_WH]; k++)

{
sys[k].WEAPON_Load(in) ;
sys[k].inventory = int(float(sys[k].inventory) *Scale_lnv) ;
%

}*
else if(strcmp(tmp_in,’’Scaledlnv”) == O)

{
in >> Scale_lnv;

}
else if(strcmp(tmp_in, “Population”) == O)

in >> Ivec[es_pop];
else if(strcmp(tmp_in,’’Convergence”) == O)

in >> Ivec[es_iter];
else if(strcmp(tmp_in,’’ObjectivePD”) == O)

{
in >> pd_objective;
Ivec[pd]= int(1000*pd_objective);

}
else if(strcmp(tmp_in,’’Seed”) == O)

{
in >> seed_val ;
random .seed(seed_val);

}
else if(strcmp(tmp_in,’’Mutation”) == O)

< Page 49 of 59>

——

{
in >> mutation_pr;
Ivec[mut_pr]= int(1OOO*mutation_pr);

}
else if(strcmp(tmp_in,’’Crossover”) == O)

{
in >> Xover_pr;
Ivec[XO_pr]= int(1OOO*Xover_pr);

}
else if(strcmp(tmp_in,’’Constraint”) == O)

{
in >> Ivec[total_optimize];
constraint[O] = new float[Ivec[total_optimize]];
constraint[l] = new float[Ivec[total_optimize]];
constraint_tmp[O] = new float[Ivec[total_optimize]];
constraint_tmp[l] = new float[Ivec[total_optimize]];
in >> fraction;
Ivec[fr]= int(1000*fraction);
for(int kk=O; kk<lvec[total_optimize]; kk++)

{
in >> constraint[O] [kk] >> constraint[l] [kk];
tmp_del = constraint[l] [kk] - constraint[O] [kk];
tmp_av = (constraint[l] [kk] + constraint[O] [kk])/2.O;
constraint_tmp[O] [kk] = 1.Oe-4*tmp_del ;
constraint_tmp[l] [kk] = fraction*tmp_del ;

}
}

else if(strcmp(tmp_in,’’Scenarios”) == O)
c

.

t
in >> Ivec[max_scenarios];
scenario = new Targeting[Ivec[max_scenarios]];
sys2scene = new int”[Ivec[max_scenarios]];
if(Ivec[total_WH] e= O)

cerr cc “ERROR: Weapons must be declared prior to Optimize; “
cc” Abort and modify input data set \n” << flush;

for(int kl 1=0; kl 1c Ivec[max_scenarios]; kl 1++)
sys2scene[kl 1] = new int[Ivec[total_WH] +1] ;

//

// Load In The System To Scenario Correlation Matrix
// Note: location “O is the number of WH, remainder is
// the number of the masterlist WH assigned to the scenario
//

int k_cor;
for(int kO=O; kOc Ivec[max_scenarios]; kO++)

e Page 50 of 59>

.

//.
//

//

{

{
scenario[kO].APPEND_rslts=FALSE ;
in>> sys2scene[kO][O];
for(int kl =1; kl c= sys2scene[kO][O]; kl ++)

in >> sys2scene[kO][kl] ;

}

Need To Load New Concepts Into Selection Matrices

in >> tmp_file;
Cout c< “----- Begin Senario Load from file: u<e tmp_file cc ‘M” cc flush ;
ifstream tmp_bs(tmp_file);
for(int ijk=O; ijkclvec[max_scenarios]; ijk++)

{
scenario[ijk].total_WH=sys2scene[ijk][O];
scenario[ijk].sys= new WEAPON_[scenario[ijk].total_WH+l];
for(int kl 2=1; kl 2<=scenario[ijk] .total_WH; kl 2++)

{
k_cor= sys2scene[ijk][k12];
scenario[ijk].sys[kl 2].ceps= new float[sys[k_cor].total–fz_opt];
scenario[ijk].sys[kl 2].bobs= new float[sys[k_cor].total_fz_opt];
scenario[ijk].sys[kl 2].relia= new float[sys[k_cor].total_fz_opt];
scenario[ijk].sys[kl 2].opt_inv= new int@ys[k_cor].total_fz_opt];
scenario[ijk].sys[kl 2]= sys[k_cor] ;
}

trnp_bs >> scenario[ijk];

}
}

else if(strcmp(tmp_in,’’Debug”) == O)
DEBUG = TRUE;

else if(strcmp(tmp_in,’’Dump”) == O)
DUMP = TRUE ;

else
—

cerr cc “Error: (WeaponOpt Input) unacceptable input option : “ cc tmp_in
cc “\n” cc flush;

); // ~~QC~: 6
in >> tmp_in;

1; // Block: 7

+
int index;
float pr2;
soln.es_pop = Ivec[es_pop];
soln.max_factors = Ivec[total_optimize] ;
soln.mutation~r = mutation_pr;
soln.Xover_pr = Xover_pr;

CPage510f59>

Cout << “----- WeaponOpt:: Input Complete\n” cc flush;
return;

}; // Block: i
// +++

void WeaponOpt::Set_Allocation(float* Means)
.

{
//

// This routine provides theassessment ofsolution fitness; ie. how
// well does the new concept and targeting options perform against
// a mission spectrum of targets.
//

int k_opt=O ;
for(int kl =1; kl <=lvec[total_WH]; kl ++)

{
if(sys[kl].Yleld_opt == TRUE)

{
sys[kl].yield = Means[k_opt];
k_opt++;

}

if (sys[kl]. lnv_opt == TRUE)

{
sys[kl].inventory = int(Means[k_opt]);
k_opt++;

}

if (sys[kl].new_fz_opt >0)

{
for{ int k2=sys[kl].base_fz_opt; k2csys[kl].total_fz_opt; k2++)

{
sys[kl].ceps[k2] = Means[k_opt];
k_opt++;

}
//

{
//

}

}

}
return;
.
9 //

float

Block: 9
+++++++ +++

WeaponOpt::WS_Fitness(int iter, int popu, ostream&

Dump_out)

c Page 52 of 59>

,

// This routine provides the assessment of solution fitness; ie. how
// well does the new concept and targeting options perform against
// a mission spectrum of targets.
//

float sum_fit=O.O;
float *fit;
int k_cor;
fit = new float[Ivec[max_scenarios]];
for(int k=O; kc Ivec[max_scenarios]; k++)

{
//
// Need To Load New Concepts Into Selection Matrices
//

scenario[k].totaI_WH = sys2scene[k][O];
for(int kl =1; kl e=sys2scene[k][O]; kl++)

{
.

k_cor= sys2scene[k][kl] ;
scenario[k].sys[kl]= sys[k_cor] ;

}
if(DUMP)

{
Dump_out <c “Dump Iteration : “ c< iter cc “MScenario: “cc k

e< “Population : “ cc popu <c “W’ ;
Dump_WeaponOpt(Dump_out) ;

}
//

// Begin Optimization
//

seed_val= random.draw();
scenario[k]. RN_seed= seed_val ;
fit[k] =scenario[k].Targeting_Opt();
sum_fit += fit[k];

}
//
// Cleanup Storage
//

delete fit;
return(sum_fit);

}; // Block: 10

// ++++* ++

float WeaponOpt::WS_Fitness_Validate(int iter)

{
//

< Page 53 of 59>

// This routine provides the assessment of solution fitness; ie. how
Ii well does the new concept and targeting options perform against
// a mission spectrum of targets.
//

float sum_fit=O.O; <
float *fit;
int k_cor;
fit = new float[Ivec[max_scenarios]];

.

for(int k=O; kc Ivec[max_scenarios]; k++)

{
1/
// Need To Load New Concepts Into Selection Matrices
//
//

for(int kl =1; kl <=sys2scene[k][O]; kl ++)

{
k_cor= sys2scene[k][kl] ;
scenario[k].sys[kl]= sys[k_cor];

}
/’/
// Begin Optimization
//

seed_val= random .draw();
scenario[k].RN_seed= seed_val;
fit[k] =scenario[k].Targeting_Opt();
scenario[k].Perf_Results();
sum_fit += fit[k] ;

}
//
// Cleanup Storage
//

delete fit;
return(sum_fit);

1; // Block: ll_
// - +++++ +++

void WeaponOpt: :WS_Opt()

{
//

// Corn 2 This Routine Provides Control For The Optimization Of Weapon
// System Designs. Optimization Defined Within A Context Of
// Force Structure.
//
// Note: Scenarios Must Be Set Up And Loaded From This Class.
// inventories, Targeting Options, And Missions Are Defined In

c Page 54 of 59>

// The Allocation Class.
//

Cout << “ ----- WeaponOpt:: (WS_Opt) Begin system optimization\n”ec flush ;
streampos f_strt, f_end, f_zero;

. fstream Dump_out(’’WSO_Dump”, ios::inlios::out) ;
f_zero=O;

.
float *fit, *raw_fit;
float *fit_TmSr;
fit = new float[Ivec[es_pop]];
raw_fit = new float[Ivec[es_pop]];
fit_TmSr = new float[Ivec[es_iter]];

int term_crit=FALSE ;
float run_ave=O.O ;
if(DEBUG)

G_debug_out cc “h” c<
“+++++ Weapon System Fitness Debug +++++++++++++++++++++++++ \n”
<< flush;

soln.Setup_ES_Chromo(constraint, constraint_tmp);
//
// Corn 3 Begin Iteration To Find Optimal Weapon System Solution.
//

for(int iter=O; iterelvec[es_iter]; iter++)

{
//
// Force Storage Of One Generation Of Weapon To Target Suitability
//
// Dump File Position Location Identification

f_strt = Dump_out.tellpo;

if(iter == (Ivec[es_iter]-1))
PERF_OUT=TRUE;

else
PERF_OUT=FALSE;

//
// Corn 4 Build The Weapon System Attack Options Matrix
//

for{ int k=O; kclvec[es_pop]; k++)

{
G_debug_out << ‘ln\n” c< “+++++ Weapon System Iteration:”
e< iter <c” Population: “ <c k cc flush;

Setup And Calculate The Fitness For The Chromo Population

< Page 55 of 59>

if(k==O)

{
G_debug_cntl = TRUE;
tout cc “k” <c “+++++ Weapon System Iteration:”
c< iter cc” Population:” << k;

}

Set_Allocation(soln.es_mean[k]) ;
fit[k] = WS_Fitness(iter,k, Dump_out);
raw_fit[k] = fit[k] ;

}
//

//

//

//

float mn_

Identiy max and min fitness in order to perform a relative fitness
scaling as opposed to an absolute fitness.

fit=9999 ;
float mx_fit=O ;
for(int kO=O;kOc Ivec[es_pop]; kO++)

{
if(raw_fit[kO] e= mn_fit) mn_fit=raw_fit[kO] ;
if(raw_fit[kO] >= mx_fit) mx_fit=raw_fit[kO] ;

}
//
// Setup storage for fitness time series analysis.
II (convergence criteria ??)
//

float conv_fac=l 0000.0 ;
fit_TmSr[iter] = mx_fit;
if(abs(run_ave-mx_fit)*conv_fac c= 1.0)

if((mx_fit-mn_fit) *conv_fac <= 1.0)

{
term_crit= TRUE ;
PERF_OUT=TRUE;

}
if(run_ave >0.0000001)

run_ave =(run_ave + mx_fit)/2.O ;
else

run_ave = mx_fit;

G_debug_out cc %+++++ Weapon System Fitness : \t”;
for(kO=O; kO< Ivec[es_pop]; kO++)-.

{
fit[kO] =(fit[kO] - mn_fit)* conv_fac;
G_debug_out cc” (“CCraw_fit[kO] <<”-” c< fit[kO] <<”)“ ;

.

.

?

1

< Page 56 of 59>

}

if(DEBUG)

{
for(k=O; kclvec[es_pop]; k++)

{

G_debug_out <c “hResults, ail Chromosomes: (Iter” <c iter c<” Pop”
<< k <<”)\t”;
G_cfebug_out c< “M”<c raw_fit[k] ;
for(int kck=O; kck-dvec[total_optimize]; kck-t+)

G_debug_out c< “\t”<c soln.es_mean[k][kck] ;

}
}

//

// Corn 5 Transfer Fitness To ES Algorithms
//

float bs_TMP;
bs_TMP= soln.ES_Chromo_Fitness(fit);

//
II Setup A Convergence Monitor Function
//

if(DEBUG)

{
G_debug_out cc %“ -=< raw_fit[soln.opt_soln] <<” c--> “;

for(k=O; k<lvec[total_optimize]; k++)
G_debug_out cc soIn.es_mean[soln. opt_soln][k] <c””;

G_debug_out cc flush;

}
//
// Corn 6 Create The Next Generation
//

soln.Next_Gen_ES_Chromo();
//
// Note: The Validation is Performed On Population Member O
// Because Of The Greedy Optimization Algorithm.
// (Stored Best Soln In Pop Zero)
//

if(PERF_OUT)

{
Set_AIJocation(soln.es_mean[O]) ;
fit[O] = WS_Fitness_Validate(iter);
tout cc “lnFitness Time Series :” ;
for(int kll=O; klleiter; kll++)

Cout << “ “ <c fit_TmSr[kll] ;

}
//

< Page 57 of 59>

// If The Iterations Have Gone Beyond OThen Begin Shifting
// DUMP Data
II

f_end = Dump_out.tellpo;
if(DUMP && iter >0) .

{
File_Adj(Dump_out, f_strt, f_end);

}
.

//
// Termination criteria associated with time series on fitness reached
//

if(term_crit) break;

}

if(DEBUG)
G_debug_out <c %“ c<
“+++++ Weapon System Fitness Debug End ++++++++++++++++++++ \n”
<< flush;

//
// Cleanup Storage
//

delete fit;
delete raw_fit;
delete fit_TmSr;
Dump_out.closeo;

return;

1; // Block: 12
//

//

//

//

//

//

//

//

{

++++++++++ ++

This routine moves information from the end of the dump file to
the begining of the dump file. The purpose is to store only the
last two iterations worth of dump infomration.

tellpo or tellgo gets the position of the file pointer; while
seekp(O and seekg sets the file position pointer to a value.

void WeaponOpt: :File_Adj(fstream& FL_b, streampos f_strt,

streampos f_end)

char ch;
streampos f_l, f_2 ;
f_l = o; —

f_2 = f_strt;
FL_b.seekg(f_2);
while(FL_b.tellgo < f_end)

.

< Page 58 of 59>

{
FL_b.get(ch) ;
f_2 = FL_b.tellpo;

* FL_b.seekg(f_l);
FL_b <c ch ;
f_l = FL_b.tellpo;
FL_b.seekg(f_2);

}
FL_b.seekg(f_strt);
FL_b cc “h\n” ;
return ;

~; // BIock: 13

—

—

< Page 59 of 59>

APPENDIX J Code listing for weapon system optimization algorithms.

// ‘-+++++ Main Weapon System Optimization +++++

#include ''/home/mesengl/Data_codes/Fuzzy_Targeting/header.h''
.

//
// Global debug
//

ofstream G_debug_out(’’Z_Global_debug”);
int G_debug_cntl = FALSE;

#include ''/home/mesengl/Data_codes/Fuzzy_Targeting/FzSet.h''
#include ''/home/mesengl/Data_codes/Fuzzy_Targeting/FzHedge.h''
#include ''/home/mesengl/Data_codes/Fuzzy_Targeting/FzVariable.h''
#include ''/home/mesengl/Data_codes/Fuzzy_Targeting/FzRule.h''
#include ''/home/mesengl/Data_codes/Fuzzy_Targeting/Fzlssue.h''
#include ''/home/mesengl/Data_codes/Fuzzy_Targeting/FzDecision.h''

#include “MES_random.h”
#include “MES_ES_opt.h”
#include “MES_Weapon.h”
#include “MES_Mission.h”
#include “MES_Targeting.h”
#include “MES_WS_Opt.h”

// +++++++++++++++++ +++++ ++++++H++++++++++ ++++++++++

int main(int argc, char ‘argv[])

{
tout <e “+++++++++ Begin Assessment +++++++++\n’’ccflush;
ifstream weap_in(argv[2]);
tout cc “Input data file : “ c< argv[2] <c ‘In” c< flush ;
WeaponOpt NuSys;
NuSys.Load_Data(weap_in) ;

//
// Set a new output file based on info in argv[l]
//

strcpy(NuSys.scenario[O] .Results_file, argv[l]) ;
NuSys.WS_Opto;

for(int k=O; keNuSys.lvec[NuSys.total_optimize]; k++)
tout << “\n” << NuSys.soln.es_mean[O] [k] ;

tout cc “\n”;
tout cc “+++++++++ End of Assessment +++++++++\n”;

}; // Block: 14

*

.

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

+++++ Weapon System Allocation (Targeting) +++++

+++++++++++++++++ +++++++++++++++++++++++++++++++++

Weapon System Allocation

This class defines the allocation activities associated with weapon
system optimization or for simple weapon to target allocation
activities. This constitutes one of the three major calculational
activities which comprise weapon system optimization but also a
stand-alone sub function.

The algorithm must be able to treat multiple scenarios in support of
the system optimization activities. For simple allocations this capa
bility is not required.

References:

Defense Intelligence Agency, “Physical Vulnerability Handbook for
NuclearWeapons’’, OGA-28OO-23-92

COX,E., The Fuzzy Systems Handbook, AP Professional
(a div of Harcourt Brace & Co.), 1994, ISBN 0-12-194270-8

Klir, G.J., Folger, T.A., Fuzzy Sets, Uncertainty& Information,
Prentice Hall, 1988, ISBN O-13-345984-5

R.R. Yager; “Multiple objective decision-making using fuzzy sets”,
Ions Colledge, Int J Man-Machine Studies, 19779,375-382.

JSTPS TR 91-1, “PDCALC A Computer Program For The
Probability Of Damage Calculations”, 1991.

H. Brode, S. Speicher, “Air Blast From Nuclear Bursts-analytic
Approximations”, Pacific-Sierra Research Corp.,
PSR Report 1419-1.

S. Speicher, H. Brode, “Extremely High Overpressure Analytic
Expression For Burst Height, Range And Time - Over An Ideal
Surface”, Pacific-Sierra Research Corp., PSR Note611

Capt. G. Martelle, “3DPD HANDBOOK, Formulas and Algorithms for
Computing The Probability of Damage of New Generation
Nuclear Weapons’’,AF Operational Test& Evaluation Center.

Code Structure:

<Page61 of87> ..

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

—— //

Dump_suitability
Dump_Targathg

Perf_Results
ICJ4110C

StOrage_Set up
suitabiliiy_setup

Fitne$s_PD
Fitness_Stk

Fitne$s_Time
Filness_Wt

Filness_Yield
ObiPk

Pssk

Targeting_Opt
NeM_lferation

—

Dump_h4k$i0n_
Vu_Setup

Adj_vn
Erode_&l
CR_calc
DP_carc

Gr_coupling
OP_calc

OP_cOntour
Relative_Oisf

W R_cr
WR_dp
WR 011

I
(operator) c<
(operator) >> I (operator) <<

Reset_Targ
(operator) >>

I

getx
seed

get_seed
draw
fdraw

exp_dief_Rep
Setup_exp_disi

CleanUp_dist
gauss

WEAPON_Load
WEF4PON_Set up

(operaior) =

ProuramConstruction:

The driver for the allocation algorithms is simply a main program
in which an object is declared, data is loaded, and the optimization
is performed. When this algorithm is used in conjunction with the
weapon system optimization, control is treated in the WeaponOpt
class. IN stand-alone mode an example of a driver for the
optimization follows:

ifstream allo_in(argv[l]);
ofstream d_out(’’Validatel .dat”);
Targeting tst_allo;
ailo_in >> tst_allo;
tst_allo.lC_Alloco;

< Page 62 of 87>

//

//

//

//
P

//

//

. //

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//
+

//

//

.
//

//

//

//

tst_allo.Dump_suitability(d_out);
tst_allo.Targeting_Opt();

The first 2 statements define the input and output files. The third
line defines the Targeting class object, we then load the data via
the overloaded operator >>. The function call tst_allo.lC_Alloco
is the call which presets and defines information for use in the
allocation effort.. Finally, pre-processed information is dumped to
file and the optimization algorithm is fired.

Input Format: (typical dataset)

scenariol
Weapons 20
Yield 333 Inventory 75 Options 02 Response 1.0 eoi
Yield 111 Inventory 225 Options 40 CEPS 450400750350

Response 1.0 eoi
Dump
Convergence 50
Acceptance 1.0

Targets Targets 250
60841 L8 0.731766360361.93345 44.105414646.25955643 -
465 37M6 0.517706462658.98407 101.7777439179.97161811
500 37M6 0.431070416751.18029 157.6116195229.35555875
...
eoi

hmut Kevwords include:
Weapons, Yield, Inventory, Options , CEPS, Response,
Convergence, ObjectivePD, Mutation, Seed, Dump, Debug,
& eoi for termination.

Taraetincj Member Functions:

Setup, input and output of information:
lC_Alloc, Storage_Setup, Suitabili~_Setup
Dump_suitability, Dump_Targeting,

Fitness and Performance evaluations are petformed in:
Fitness, Obj_Time, 0bj_Yield5 Obj_Pk, Perf_Results, Pssk

Optimization evaluations:
Next_lteration, Targeting_Opt

+++++++++++++++++++++*+++++++++++++++++++++++++++

< Page 63 of 87>

// ++

class Targeting

{
public:

//
// Define addiitonal model parameters:
//

int exists;
char* obj_name;
char* Results_fiIe ;

long RN_seed;
int DEBUG, DUM~ FUZZY_TACTIC ;
int APPEND_rslts;
float acceptance, Mission_acceptance, Mission_fitness;

intmax_targets ;
int base_line_WH, new_WH, total_WH ;
int total_inventory, no_option;
int Restart_iter, iterations;
float pd_objective, Fl_form_factor, beta[4];
float Scale_lnv;

WEAPON_ ‘S)/S;

Mission_ startX;
randint random;
int **opt_index;
int *allo_vec;
float **suitability;
FzDecision tactic;

Targeting; // Constructor
//
// overload the input and output operators
//

friend istream& operato~>(istream& in, Targeting&);
friend ostream& operator<<(ostream& out, Targeting&

//
// Define addiitonal member functions:
//

float Dist_Gamma(float, float, float) ;
float Dist_Sigmoid(float, float, float, float) ;
void Dump_suitability();
void Dump_Targeting(ostream& out);

);

.

< Page 64 of 87>

void lC_Alloc();
float Fitness(int, int, float*, float, int);// Goal Fitness Function
float Next_lteration();
float Obj_HOB(int, int, int);
float Obj_Pk(int, float, float);
float Obj_Time(int, int); //Time Urgency Fitness Function
float Obj_Yield(float); // Minimum Yield Fitness Function
void Perf_Results();
float Pssk(int, float, float); // Determine the probability of “single shot” kill
void Storage_Setup();
void Suitabiiity_Setup();
float Targeting_Opt(); // Opt. The Targeting Of Weapons To Targets

1: // Block: 15

Targeting::Targeting()

{
obj_name = new char[l O];
Resuits_file = new char[25];

//
// Define default conditions
//

exists=FALSE;
strcpy(obj_name,’’None”);
strcpy(Results_file,’’ZresuIts”);
RN_seed=ll llllllll;
DEBUG=FALSE;
DUMP=FALSE;
FU~_TACTIC= FALSE;
APPEND_rslts=TRUE;
acceptance=l .25;

—

Restart_iter=O;
iterations=l 00;

max_targets=l;
base_line_WH=l;
new_WH=O ;
total_WH= base_line_WH+new_WH ;
no_option=O;

pd_objective=O.75;
FI _form_factor=O.025;
Scale_lnv = 1.0 ;

//

< Page 65 of 87>

// Corn 7 Beta Is The Decision Model Weighting Coefficients.
//

for(int i=O; i<4; i++)
beta[i]=l .0;

); // Block: 16 *
// ++

istream& operator>>(istream& in, Targeting& adum) ,

{
chartmp_in[15];
chartmp_file[15];
adum.exists=TRUE;
int tmp;
in >>adum.obj_name;
in>> tmp_in;
while(strcmp(tmp_inVeoi”)!=0)

{
//
// Output Of The Keywords Read For Targeting
//

Cout <c “----- Targeting Keyword : “ <e tmp_in cc %“ <c flush;
if(strcmp(tmpJh,’’Targets”) == O) - _

//
. //

//

//

//

//

//

//

{
in >> adum.startx;
adum.max_targets = adum.startX.ma_targets ;

}
else if(strcmp(tmp_in,’’Weapons”) == O)

{

First load baselines and other Targeting parameters
Next load the CEP values and associated stockpile assignments

Note: for input optimization, sensitivity studies we are allowing
for a“scaleing of the inventories. Thsi can be done is Scaiedlnv
is loaded prior to the weapons.

in >> adum.base_line_WH >> adum.new_WH;
adum.total_WH = adum.base_line_WH + adum.new_WH;
adum.sys= new WEAPON_[adum.total_WH+l];
for(int k=l; kc= adum.totaI_WH; k++)

{
adum.sys[k].WEAPON_Load(in) ;
adum.sys[k].inventory = int(float(adum.sys[k].inventory) *

adum.Scale_lnv) ;

}

v

< Page 66 of 87>

//

//

//

//

//

//

{

}
else if(strcmp{ tmp_in,’’Scaledlnv”) == O)

{
in >> adum.Scale_lnv;

}
else if(strcmp(tmp_in,’’Convergence”) == O)

in >> adum.iterations;
else if(strcmp(tmp_in,’’FuzzyTactics”) == O)

{
in >> tmp_in;
adum.tactic,Load_Model(tmp_in);
adum.FUZZY_TACTIC= TRUE ;

}
else if(strcmp(tmp_in,’’Acceptance”) == O)

in >> adum.acceptance;
else if(strcmp(tmp_in,’’Debug”) == O)

adum.DEBUG = TRUE ;
else if(strcmp(tmp_in,’’Dump”) == O)

adum.DUMP = TRUE ;
else if(strcmp(tmp_in,’’ObjectivePD”) == O)

Objective Mission Performance

in >> adum.pd_objective;
else if(strcmp(tmp_in,’’PD_fitness”) == O)

Factor Defining The Degree Of Acceptance Of The Objective Pd

in >> adum.Fl_form_factor;
else

cerr cc “Error: (Targeting Input) unacceptableinput option : “ cc tmp_in
cc “\n” cc flush;

); // Block: 17
in >> tmp_in;

1; // Block: 18
//
// Need To Initialize storage
//

Cout << “----- Targeting :: Input Complete:
r adum.Storage_Setupo;

Storage_Setup next\n” cc flush;

Cout << “----- Targeting :: Storage_Setup Complete\n” cc flush;
. return in;

1; // Block: 19
// +++++++++++++++ +++++++++++++++++++++++++++++++++++

< Page 67 of 87>

ostream& operator<c(ostream& out, Targeting& A)

{
//

// provide coding to represent the ouput desired for this object <

//
out << “ln\n” << A.obj_name cc “h”; 8

out <e “Objective Pd “ e< A.pd_objective <c %“;
out <c “Targets” cc A.max_targets <e %“;
out << “Weapons” << A.total_WH cc %“;
for(int k=l; kc= A.total_WH; k++)

out <c A.sys[k] <<” “cc %“;
out <c “Convergence “ << A.iterations << ‘fn”;
return out;

}; // Block: 20 “
// +++++++ +++

float Targeting:: Dist_Gamma(float alp, float bet, float x)

{
//

// This Routine returns values associated with a gamma distribution
//

float rslt;
float F5, Fnorm, mode_val ;
float gam_alf= 1.0;

//
.

// Evaluate for the probability given a timing objective.
//

for(int alf=alp-1; alf>O; alf--)
gam_alf *= alf;

F5= POW(bet, -alp)* POW(x, (alp-l))* exp(-X/bet) / gam_alf;
//
// Need To Normalize The Timing Fitness To Mitigate Gamma
/. Distribution Effects.
//

mode_val= be~(alp-1) ;

Fnorm= pow(bet, -alp)* pow(mode_val, (alp-l)) *

exp(-mode_val/bet) / gam_alf;
rslt = F5/Fnorm;
return (rslt);

}; // Bkxk: 21
// ++++++++++++++ ++++++++++++++++++++++++++++++++++++

.

float Targeting:: Dist_Sigmoid(float alp, float bet, float gain,

< Page 68 of 87>

float x)

{
//
// This Routine returns values associated with a sigmoid distribution.
// We will assume that a decreasing sigmoid (IC type response)
// will utilize a standard form. An increasing sigmoid begins with a
/1 value of zero progresses through the inflection point to a value
// of one. (questionable assumption, a PI function might be better).
//

float rslt;
II
// Is It An Increasing Or Decreasing Sigmoid ?
//
// beta c O => Decreasing !!
// beta >0 => Increasing !!
//

rslt = 1.0 / (1.0+ exp(-(x-alp)/bet)) ;
//
// Provide for a cutoff
//

if(x >= gam)
rslt=O.005 ;

return (rslt);

}; ii
//

void

{
//
//
//
//

Block: 22
+++++++++++++ +++++++++++++++++++++++++++++++++++++

Targeting:: Dump_suitability()

This Routine Dumps Information Associated With The Allocation
Of Weapons To Targets..

G_debug_out ce”\n Suitability Pre-Calculations \n”cc “ ----- total warheads : “
cc total_WH e< “\n”;

for(int k=O; kcmax_targets; k++)

{
G_debug_out <c startX.targs[k] .vntk cc” “<c startX.targs[k] .catcode cc”:”;
for(int sys_index=O; sys_indexc=total_WH; sys_index++)

G_debug_out c<” (“<copt_index[k][sys_index]<c””
ccsuitability[k] [sys_index]ee “) “;

G_debug_out cc %“;

}
.

G_debug_out <c’InGoal Acceptance (Unconstrained stockpiles) : “

< Page 69 of 87>

ceMission_acceptancecc” (Acceptance level = “<cacceptancecc”)\n”;
G_debug_out c<’’Goal Fitness (Unconstrained stockpiles) : “
e<Mission_fitness<c’’ln”;
return ;

1; // Block: 23
//

.
+++++++++++++++++ +++++++++++++++H++++++++++++++++

void Targeting:: Dump_Targeting(ostream& out)

{
//

// This Routine Dumps Information Associated With The Targeting
// Object Setup.
//

out c< “---- :: Targeting Dump (bgn) :: ----“<< obj_name <c “\n”;
if{ DUMP)

{
out << “---- :: Targeting Dump (---) :: ----”

cc “Storage Parameters : (max_targets, xxx_WH(3), total_inventory) \n” ;
out << “---- :: Targeting Dump (---) :: ----” c< max_targets <e” “
cc base_line_WH e< “\t” cc new_W1-1<e “\t”e< total_WH c< “\t”
cc total_inventory cc “\n”;

out <c “---- :: Targeting Dump (---) :: ---- Control Parameters: “
<e “(DEBUG, APPEND_rslts, Restafl_iter, iterations, RN_seed) \n”
<< “---- :: Targeting Dump (---) :: ----” cc DEBUG c< “Vi’
cc APPEND_rslts c< “\t”cc Restart_iter c< “\t”<c iterations cc “\t”
cc RN_seed <c “h”;

out << “---- :: Targeting Dump (---) :: ---- Convergence Parameters :”
cc “(acceptance, Mission_acceptance, Mission_fitness, pd_objective)\n” ;

out <’c “---- :: Targeting Dump (---) :: ----”
cc acceptancecc “\t”c< Mission_acceptance cc “\t”cc Mission_fitness
cc “\t”<c pd_objective cc “\n” ;

out cc “---- :: Targeting Dump (---) :: ---- Convergence Parameters : “
cc “(F1_form_factor, beta[3]) \n” ;

out << ‘---- :: Targeting Dump (---) :: ----” cc Fl_form_factor cc “\t”
<c beta[O] c< “\t”<c beta[l] cc “\t” cc beta[2] cc “\t’l<c ‘In” ;

out << “---- :: Targeting Dump (---) :: ---- Weapon Parameters: \n”;
for(int k=O; kc= total_WH; k++)

out c< sys[k] ;

}

out c< “---- :: Targeting Dump (---) :: ---- Mission Parameters: \n”;
startX.Dump_Mission_(out);

c Page 70 of 87>

{
//

// This Routine Provides Setups For The Targeting Problem.
//

int k_option;
//
// The First Step Of The Process Is To Use The Fuzzy “Tactical”Model
II To Establish Target Priorities And Strategic Time Line Criteria.
//
// Model tracking information is stored in file “Z_tactics”
// The objective is to loop through each target in the scenario and
// estimate the “weight” parameter and the “time urgency” parameter
// associated with each target. Run_modelo must accept the
// parameters and transfer the results for restorage in the appropriate
// target information.
//

if(FUZZY_TACTIC)

{
float in[l O];
float out[l O];
for(int fz=O; fzemax_targets; fz++)

{
in[O]= startX.targs[fz] .iethality;
in[l]= startX.targs[fz] emission;
in[2]= startX.targs[fz] .function;

tactic.Assess_lssues(in,out);

startX.targs[fz] .Wt = out[O];
startX.targs[fz] .Tm_obj = out[l];
startX.targs[fz] .HOB_obj = out[2];

}.
T }

//
II Setup An Experimental Distribution To Identify What The “Weight”
// Cutoff Will Be. (Target Rich Environments)
//
//——

< Page 71 of 87>

// Identify Total Warhead Inventories

JI ._
int total_stockpile=O;
for(int k2=l; kZ<=total_WH; k2++)

total_stockpile += sys[k2].inventory;
total_inventory= total_stockpile;

.

//
// Note: space allocation fortmp_wt should bethemax of either

.

// max_targets or total_inventory not the sum. The sum is easier to
// execute and will not degrade performance.
//

float *tmp_wt;
tmp_wt= new float[max_targets+total_inventory];
for(int fz=O; fzemax_targets; fz++)

tmp_wt[fz]= startX.targs[fz] .Wt;
random. Sort(tmp_wt, max_targets);
float ratio, wt_cutoff;
rahs float{ totai_inventory)/float(max_targets) ;
if(ratio >=1.0)

ratio= 1.0 ;
wt_cutoff= tmp_wt[total_inventory] ;

//
// Create An Experimental Distribution For Defining Initial Targeting
//

int *tmp_hist;
tmp_hist= new int[total_inventory];
int indx=O;
for{ int m=l; mc=total_WH; m++)

for(int n=O; nesys[m].inventory; n++)

{
tmp_hist[indx]=m;
indx ++;

}
random. Setup_exp_dist(tmp_hist, total_inventory);

//
// Set The Initial Targeting
//

for(int k=O; k<max_targets; k++)

{
if(startX.targs[k]. Wt > wt_cutoff)

{
k_option= int(random.exp_dist()) ;
allo_vec[k] = k_option;

}
else

allo_vec[k] = no_option;

c Page 72 of 87>

}
//

// Nefi Calculat The Suitabilities Of Potential Soutions
//

Suitability_Setupo;
//
// Cleanup storage
//

delete tmp_hist;
return ;

}; // Block: 25
// +++"+++

float Targeting:: Fitness(int targ_indx, int sys_indx, float ‘cell

float yld, int fz_opts)

{
//

// This routine provides the fitness based on goal or mission targets
// damage expectancy. Too little or too much is not a good solution.
//

float Pk, FO,FI ,F2,F3,F4, Fsum ;
int indx=O;
float max_pk=O.O;
float min_pk=99999.0;
int indx_cep=O;
float max_cep=O.O;
for(int kO=O; kO< fz_opts; kO++)

if(cep[kO] >= max_cep)

{
rnax_cep= cep[kO];
indx_cep=kO;

}
//
// Assess System response time Suitability
//

F1= beta[l]*Obj_Time(targ_indx, sys_indx);
//
// Assess Yield Suitability
//

F2= beta[2]*Obj_Yield(yld);
//
// Assess Probability Of Kill Suitability
//

for(int k=O; k< fz_opts; k++)

< Page 73 of 87> .U

{
FO = beta[O]*Obj_Pk(targ_indx, cep[k], yld);
F3 = beta[3]*Obj_HOB(targ_indx, sys_indx, k);
F4 = sys[sys_indx].relia[k] ;

// .
II Note: Discovered that some fitnesses are true trades, Pk vs yield
// while others are critical. Trades allow summation wh~e the critical
// conditions should be a product type total fitness.

I

1!
Fsum= FI *F4*(FO+F2+F3) ;

if(Fsum emin_pk)
min_pk= Fsum;

if(Fsum > max_pk)

{
max_pk=Fsum;
indx= k;

}
if((max_pk-min_pk) e= 0.0001)

indx= indx_cep;

};
opt_index[targ_indx][sys_indx] = indx;
return(max_pk);

1; \/ Block: 26
// ++++++++++ ++

float Targeting:: Next_lteration()

{
//

// This Routine Performs Series Of Iterations In An Effort To Relax
// The Problem To A Near Optimal Solution.
//

int *draw_from;
draw_from= new int[max_targets];
int indx= O;
int m ;
for(int df=O; df<max_targets; df++)

{
m= allo_vec[df];
if(suitability[df][m] c= acceptance) ,

{
draw_from[indx] = df;
indx++;

}

— }—

< Page 74 of 87>

//

// Perform Statistical Modifications To The Allocation Vector
//

int Iocl, Ioc2, Ioc3, tmp, k_option ;
float sOr, sNr, sO, sN, pr2 ;
for(int k=O; k< indx; k++)

{
locl=draw_from[k];
pr2 = random.fdrawo;
IOC2= int(pr2*indx);
Ioc3= draw_from[IOC2];
k_option= O;

//
// Check To See If Exchange or Replacement Is A Gain
//
// NOTE: Using average suitabilities insures that an exchange is
// better overall.
//

sO= (suitability Iocl][allo_vec[Iocl]] +
suitability IOC3][allo_vec[IOC3]])/2.0;

if(random. e_siz >1)

{
k_option= int(random.exp_dist()) ; -
sN= (suitability Iocl][k_option] +

suitability IOC3][allo_vec[IOC3]])/2.0;

}
else

{
k_option= O;
sN= 0.0;

}
,, sNr= (suitability IOC1][allo_vec[IOC3]] +

suitability IOC3][allo_vec[Iocl]])/2.0;
//
// - Is Th~re An Improvement?? Then Which Is The Best Exchange
// Or Replacement
//

if(sO c sNr II SOCSN)

{
if(sNr >= SN)

{
tmp= allo_vec[Iocl];
allo_vec[Iocl]= allo_vec[Ioc3];
allo_vec[loc3]= tmp ;

}
else

< Page 75 of 87>

{
tmp= allo_vec[locl];
alIo_vec[locl] = k_option;
random .exp_dist_Rep(tmp);
k_option=O;

}
}

if(k_option != O)
random .exp_dist_Rep(koptkm);

}

float mission_fit =0;
indx= O;
for(df=O; dfcmax_targets; df++)

{
m= allo_vec[df];
if(suitability[df][m] >= acceptance)

indx++;

}
mission_fit = float(indx)/ float(max_targets) ;

//
// Cleanup Storage
//

delete draw_from;
return mission_fit;

1; // Block: 27
// ++

float Targeting:: Obj_HOB(int targ_indx, int sys_indx, int

opt_indx)

{
//
// Simple Evaluation Of System Performance For A Weapon Concept
// Against a Target (targ_indx): HOB constraints are evaluated.
//

float FzHt, TgHt, F1 ;
float F2_form_factor;
FzHt=sys[sys_indx] .hobs[opt_indx] ;
TgHt= startX.targs[targ_indx].HOB_obj ;
F2_form_factor= 0.5*FzHt ;
if(FzHt >99998.0 && FzHt <100000.0)

F1 = 1.0;
else

F1 = exp(-(FzHt -TgHt)*(FzHt -TgHt)/F2_form_factor) ;
return(FI);

); // Block: 28

.

c Page 76 of 87>

I

// ++

float Targeting:: Obj_Pk(int targ_incfx, float cep, float ylcl)

{
//

// Simple Evaluation Of System
// Against a Target (targ_indx):
//

floatPk, Fl;
Pk = Pssk(targ_indx, cep, yld);

Performance For AWeapon Concept
Pssk constraints evaluated.

F1 = exp(-(Pk-pd_objective)* (Pk-pd_objective)/Fl _form_factor);
return(FI);

}; // Block: 29
// ++

float Targeting:: Obj_Time(int targ_indx, int sys_indx)

{
//
// This routine captures fitnessforatime urgencymetric; ie.
// reconstitution targets, time urgent targets, and those of uniform
// importances funcfionsoftime.
//
// Weareassuming thatthe system response can recaptured
// by a representative “gamma” distribution. This distribution can
// and has been used in queing problems and will be suitability for
// this application. Gamma distributioris require two parameters,
// a and ~ They should be reasonably easy to define since:
//
// Mean = a ~

// Variance = u f!2
// Mode =~(a–1) ifcx>=l zero (O) otherwise
//
// Knowing any two of the three characteristics can define the
// distribution form. The function assesses the probability of
// launching a system based on the targeting requirements
// (time-urgency).
// NOTE: correlation assumes u is an integer.

< Page 77 of 87>

//

Gamma DistHa=l,2,3,4L
0.5

0.4 -

0.3 -

0.2

0.1

Time
5 10 15 20 25

Gamma DistHb=l,2,3,4L
0.5 -

0.4 -

0.3 -

0.2 -

0.1

5
Time

10 15 20 25

//

// The routine has been expanded, 5/1 1/98, to consider sigmoid
//., functions as well as the gamma function. This routine will call
// either the Dist_Gamma or the Dist_Sigmoid function.
//

float ‘F5; –
float alp,bet,gam, response_tm ;
alp = sys[sys_indx].alpha;
bet = sys[sys_indx].beta ;
gam = sys[sys_indx].gamma;
response_tm= startX.targs[targ_indx].Tm_obj ;

//
// Evaluate for the probabilitygiven a timing objective.
//

if(gam e 0.0)
F5 = Dist_Gamma(alp, bet, response_tm) ;

else

< Page 78 of 87>

F5 = Dist_Sigmoid(alp, bet, garn, response_tm) ;
return(F5);

1; // Block: 3U
// ++

*
float Targeting:: Obj_Yield(float yld)

.
{

//

// This routine provides a rule to minimize yield applied to a target.
// Note: This Routine lsValid lfThe Yield Options
// Are Not Less Than 100
II

float min_yield=25.O ;
float F2;
F2 = pow((min_yield/yld),O .3333) ;
if(F2>l.0)

F2 = 1.0;

return(F2);

); // Block: 31
// ++

void Targeting:: Perf_ResuIts()

{
ofstream Monitor_out(Resuits_fi le,ios::app);

intsys_index, indxl ,avn, ak, wr_out ;
char att;
float Pk, yld, tmp_fl ;
float mission_PD=O.O ;
float cep, hob ;
Monitor_out.precision(6);

//
// Create A Database Of Mission Performance And Targeting
//

Monitor_out ee’’lnPerformance results: \n’’ <<” ::vntk ::”;
if(DEBUG)

Monitor_out <<” catcode :: r95 :: T depth :: Leth :: Mis :: Func-:: “;
‘. Monitor_out cc” Wt :: Timing :: HOB Pref :: wr:: index:: yield :: cep :: “;

Monitor_out <c” hob:: Pk ::b”;
for(int k=O; k<max_targets; k++).———

{
sys_index = allo_vec[k];
avn= startX.targs[k].vn;

< Page 79 of 87>

att= startX.targs[k].tc;
ak= startX.targs[k].k;
if(sys_index >0)

,
{
indxl = opt_index[k][sys_index] ;
cep= sys[sys_index].ceps[indxl];
bob= sys[sys_index].hobs[indxl];
yld= sys[sys_index].yield;
Pk =Pssk(k, cep, yld);
wr_out= startX. wrO;

}
else

{
Pk=O.O;
cep=l el O;
wr_out=O.O; ‘

}
mission_PD += Pk;
if(att == ‘G’)

Monitor_out cc startX.targs[k].gvnl e< att cc startX.targs[k].dsigl
e< startX.targs[k].tgl cc “\t”;

else
Monitor_out cc avn cc atl >< ak cc” \t”;

if(DEBUG)

{
Monitor_out <c startX.targs[k].catcode c<” “ << startX.targs[k].@5
<e “M”cc startX.targs[k].targ_depth <c ‘@;
Monitor_out cc startX.targs[k].lethality cc” “
<< startX.targs[k].mission cc “ “ <c startX.targs[k].function cc ‘N”;
}

Monitor_out cc startX.targs[k].Wt c< ‘N” cc startX.targs[k].Tm_obj
cc W“ cc startX.targs[k].HOB_obj << W“;
Monitor_out << wr_out cc ‘%”cc sys_index cc” “<C yki <C” “

cc cep cc” “ cc hob cc “V”<< Pk <e %“;

}
//
// Create A Series Of Allocation Databases
//

for(int ka=l; kac=total_WH; ka++)

{
Monitor_out cc “hWeapon Targeting : (inv no. “ cc ka <<”)\n”;
for(int kb=O; kbemax_targets; kb++)

{
sys_index = allo_vec[kb];
indxl = opt_index[kb][sys_index] ;

●

I

,

< Page 80 of 87>

if(sys_index == ka)

{
cep= sys[sys_index].ceps[indxl];
bob= sys[sys_index].hobs[indxl];
yld= sys[sys_index].yield;
avn= startX.targs[kb].vn;
att= startX.targs[kb].tc;
ak= startX.targs[kb].k;
Pk =Pssk(kb, cep, yld);
wr_out= startX.wrO;

if(att == ‘G’)

{
Monitor_out <c startX.targs[kb].gvnl <c att <c startX.targs[kb].dsigl

c< startX.targs[kb].tgl <e “\t”;
Monitor_out cc startX.targs[kb].gvn2 << att

c< startX.targs[kb].dsig2 cc startX.targs[kb].tg2 <c W“;

}
else

Monitor_out cc avn cc att <c ak cc “N”;

if(DEBUG)

{
Monitor_out cc startX.targs[kb].catcode <<” “ <c startX.targs[kb].r95
cc ‘M”cc startX.targs[kb].targ_depth << ‘ft”;
Monitor_out cc startX.targs[kb].lethaiity <e” “
cc startX,targs[kb].mission <e “ “ cc startX.targs[kb].function <c ‘ft”;

}
Monitor_out cc startX.targs[kb].Wt e< “M”<< startx.targs[kb].Tm_obj
cc “N”cc startX.targs[kb].HOB_obj cc ‘N” ;
Monitor_out << wr_out c<” \t” cc sys_index c<” “ e< yld cc” “
e< cep cc” “ cc hob cc” \t” cc Pk cc %“;

}
}

}
//
// Print Out Allocated Inventories
//

float mission_fit =0;
int m ;
int indx= O;
for(int df=O; dfemax_targets; df++)

{
m= allo_vec[dfl;
mission_fit += suitability[df][m] ; “ ‘
if(suitability[df][m] >= acceptance)

<Page 81 of 87>

!

indx-t+;

)
mission_PD /= float(max_targets) ;
Monitor_out c< ‘% Mission PD:” cc mission_PD cc ‘In”;
mission_fit = mission_fit /float(max_targets) ;
Monitor_out cc “Acceptance Criteria:” <c acceptance <<” Mission Fitness :”
cc mission_fit << “h” ;
Monitor_out << “h------------------- Weapon Systems -------------------an”;
for(k=O; kc= total_WH; k++)

Monitor_out c< “Weapon System : “c< k <<” \n” cc sys[k] c< %“;
//
// Cleanup Storage
//

return ;

); // Block: 32
// ++

float Targeting:: Pssk(int targ_indx, float cep, float yld)

{
float Pk =1.0 ;
float a, eff_cep, R95 ;
char ate;

//
// Define The Weapon Radius For The Target
//

startX.Vul_Setup(targ_indx, yld) ;
//
// Use A Simple WR/Cep Correlation For Kill Probability
//
// The effective CEP is used to capture the r95 characteristics of a
// target. This formula was pulled from PDCALC.
//

R95 = startX.targs[targ_indx].r95 ;
eff_cep = pow((cep*cep + 0.231 * R95*R95), 0.5);
a = (startX.wrO/eff_cep)*(startX.wrO/eff_cep);
Pk = 1.0- POW(0.5,a);
return(Pk);

1; // Block: 33
// ++++++++++++ +++++++++++++++++++++++++++++++"+++++++

,
void Targeting:: Storage_Setupo

-.
{

//

// Corn 8 Pass Parameters Read Into The Targeting Class To Initialize

< Page 82 of 87>

// The Genetic algorithms.

fi ___
allo_vec=new int[max_targets];
opt_index=new int’[max_targets];

“ suitability = new float’[max_targets] ;
for(int su=O; su<max_targets; SU++)

{.
opt_index[su] = new int[total_WH+l] ;
suitability[su] = new float[totaI_WH+l] ;

}
//
// Identify Total Warhead Inventories
//

int total_stockpile=O;
random .seed(RN_seed);
for(int k=l; ke=total_WH; k++)

total_stockpile += sys[k].inventory ;
total_inventot-y= total_stockpile;

return ;

); // Block: 34
// +++++++++ +++

void Targeting:: Suitability_Setup()

{
//

// This Routine Performs Suitability Setups For The
// Allocation Algorithm.
//

int sys_index, i2, indx;
float total_fitness, yld ;
float ‘cep;
for(int k=O; kemax_targets; k++)

for(sys_index=O; sys_indexc=total_WH; sys_index++)

{
if(sys_index != no_option)

{
cep= sys[sys_index].ceps ;
yld= sys[sys_index].yield ;

\ i2= sys[sys_index].total_fz_opt;
//

. // Find Optimum Performance For Each System Against Target K
//

total_fitness = Fitness(k, sys_index, cep,yld, i2);

}

< Page 83 of 87>

else

{
total_fitness=O.O;
opt_index[k][sys_index] = O;

}
suitability[k][sys_index]=total_fitness;

}
//
/1 Examine Allocation If Unconstrained
//

int tmp_indx;
indx= O;
Mission_fitness=O.O;
for-(k=(); kc max_targets; k++)

{
tmp_indx=O;
for(int jj=l; jje= total_WH; jj++)

{
if(suitability[k][jj] > suitability[k][tmp_indx])

tmp_indx=jj ;

}
if(suitabiiity[k][tmp_indx] >= acceptance)

indx++;
Mission_fitness +=suitability[k][tmp_indxl/ float(max–tar9ets);

}
//
// Optimum Fitness Acheivable With Unlimited Inventories
//

Mission_acceptance = float(indx)/ float{ max_targets) ;

//
// Cleanup Storage
//

return ;

); // Block: 35
// ++++++++ ++

float Targeting::Targeting_Opt()

{
float mission_fitness;
float mission_fit;
float fit;
float debug_fitness;

lC_Alloc();

< Page 84 of 87>

,

if(DEBUG) Dump_suitabiIity();

*

.

float *fit_TmSr;
fit_TmSr = new float[iterations];
float run_ave=Mission_fitness;
int term_crit=FALSE ; —

for(int iter=Restart_iter; iterciterations; iter++)

{
//
// Determin the total Targeting of weapons for a chromosome
//

for(int k=O; k<= total_WH; k++)

{
sys[k].aliocated =0;
for(int kop=O; kop e sys[k].total_fz_opt; kop++)

sys[k].opt_inv[kop] =0 ;

}
//
// Corn 9 Note: allo_vec Provides The Mapping Between Targets And WH’S
//

int jj, indxO ;
for(k=O; kc max_targets; k++)

{
jj = allo_vec[k];
sys[jj].allocated +=1;
indxO = opt_index[k]~j] ;
if(jj != O) sys[jj].opt_inv[indxO] += 1 ;

}
//
// Corn 10 Create The Next Iteration
//

mission_fitness= Next_lteration();
mission_fit =0;
for(int df=O; dfcmax_targets; df++)

mission_fit += suitability[dfl[allo_vec[df]];
mission_fit /= float{ max_targets) ;

//
// Evaluate convergence criteria (deviation from running average)
//

float conv_fac=l 0000.0 ;
fit_TmSr[iter] = mission_fit ;
if(abs(run_ave-mission_fit)*conv_fac e= 1.0)

term_crit= TRUE;

—— if(run_ave >0.0000001)

< Page 85 of 87>

I

run_ave =(run_ave + mission_fit)/2.0 ;
else _

run_ave = mission_fit;

//

// Setup For A Debug Calculation And Output
//

if(DEBUG)
{

G_debug_out c< “lter: “<<iter<<” Mission Acceptance =”
<c mission_fitness <<” Mission Fitness = “<c mission_fit
CC”\nTargeting Vector \n” ;
int indxl ,indx2 ;
for(int kb=O; kb<max_targets; kb++)

{
indx2= allo_vec[kb] ;
indxl = opt_index[kb][indx2] ;
G_debug_out cc” (“;
G_debug_out <<” “<< indx2 <<””;
G_debug_out ecindxl cc “ “cc suitability[kb][indx2] cc”) “;

}
G_debug_out c< %“;
G_debug_out << ‘%Weapon System Inventories \n”;
for(int kd=O; kdc= total_WH; kd++)
G_debug_out <c kd cc” \t” cc sys[kd] c< ‘%”;

}
//
// Provide tracking information for normal and post analysis
//
// Tracking output controlled by WS_Opt object

if(G_debug_cntl)

{
for(int kd=l; kdc= total_WH; kd++)

{
tout <c ‘7nWarHead” cc kd cc” “ c< mission_fit cc “\t” ;
for(int kd2=O; kd2c sys[kd].total_fz_opt; kd2++)

tout <<” “<< sys[kd].ceps[kd2] c<”:: “<c sys[kd].opt_inv[kd2]<e” “;
tout cc ‘%” cc flush ;
}

G~debug_cntl=FALSE;

}
if(term_crit II ite-=iterations-l)

{
G_debug_out <c “\n+++++ +++++ Target Opt Iter: “cciter;
G_debug_out cc” (Population fitness : “ <c mission_fit cc”)\t”;
for(int kd=O; kdc= total_WH; kd++)

< Page 86 of 87>

*

.

{
G_debug_out <c %“ c< kd << “\t” ;
for(int kd2=O; kd2c sys[kd].total_fz_opt; kd2++)

G_debug_out <<” “<c sys[kd].ceps[kd2] c< ..“‘- “<c sys[kd].opt_inv[kd2]
11 N .

G1~ebuglout << ‘In”;

}
break;

}
}

//
// Output The Results Of The Targeting
//

if(APPEND_rslts == TRUE)
Ped_Results();

//
// Cleanup Storage
//

random. CleanUp_dist();
return(mission_fit) ;

}; // Block: 36

< Page 87 of 87>

// +++++ Genetic Algorythm Optimization (GA_Alloc) +++++

11 ++++++++++++++ ++++++++++++++++++++++++++++++++++++
// Comll The GA Allocation Object Provides Optimizations Based On
// Selections From A Set Of Predefine Capabilities; Eg. Allocation ●

// Of Weapons To Targets, Vehicles To Routes Etc.
//
// Operators include: Mutation, X-over, (Splice, inversion ???)

.

// ++

// ++

class GA_Alloc

{
public:

//
// Defineaddiitonal model parameters:
// selections-maximum optionstochoose to allocattoagene
// max_gene -maximum genes on achromosome. (eg. maxtargets)
// ga_pop -Number ofchromosomes in the optimization population.
//

int exists;
char* obj_name;
int selections, max_gene, ga_pop;
int **ga_chromo;
int **ga_chromo_O;
float *repro_pr;

randint random;
int opt_soln;
float mutation_pr, xchange_pr;

GA_Alloc(); // constructor
//
// overload the input and output operators.
//

friend istream8i operator>>(istream& in, GA_Alloc&);
friend ostream& operator<c(ostream& out, GA_Alloc&);

//
// Define addiitonal member functions:
//

float GA_Alloc_Fitness(float’);
int GA_Xchange(int, int’, int);
int GA_Mutate(int);
int GA_Reproduce(int);
void lnit_GA_Alloco; // define storage chromo

< Page 88 of 95>

4

.

1

{

//
//
//

float Next_Gen_GA_Alloc(float**, float);
void Setup_GA_Alloc(long); // Initialize an evolutionary strategy chromo

.
7 // Bhxk: 3’?

GA_Alioc::GA_Ailoc()

obj_name = new char[l O];

Define default conditions

exists= FALSE;
strcpy(obj_name,’’None”);

ga_pop = 1;
max_gene = 1;
selections = 1;
mutation_pr=O.01;
.
3 // Block: 38

++++++++ ++

istream& operator>>(istream& in, GA_Alloc& adum)

char tmp_in[l 5];
adum.exists=TRUE;
in >> adum.obj_name;
in >> tmp_in;
while(strcmp(tmp_in,’’eoi”) !=0)

~ou~ << “--- GA_Alloc Keyword :” cc tmp_in <c ‘W” cc flush;
if(strcmp(tmp_in,’’Selections”) == O)

{
in >> adum.selections;

}
else if(strcmp(tmp_in,’’GA_setups”) == O)

{
in >> adum.ga_pop;
in >> adum.max~ene;
adum.lnit_GA_Ailoc();
~.

else if(strcmp(tmp_in,’’Probability”) == O)

{
in >> tmp_in;

e Page 89 of 95>

if(strcmp(tmp_in,’’Mutation”) == O)
in >> adum.mutation_pr;

else if(strcmp(tmp_in ,“X-over”) == O)
in >> adum.xchange_pr;

else
cerr e< “Error: (GA_Alloc: Probability Input) unacceptableinput option

. II

<< tmp_in << “\n” c< flush;

}
else

cerr cc “Error: (@_Alioc Input) unacceptable input option : “
cc tmp_in cc “\n” e< flush;

in >> tmp_in;

}; // Block: 39
return in;

1; // 1310ck: 40
// ++

ostream& operator<<(ostream& out, GA_Alloc& A)

{
//

// provide coding to represent the ouputiesired for this object
//

out cc “h\n” c< A.obj_name;
out cc “\nSelections “ cc A.selections;
out c< ‘!\nGA_setups “ << A.ga_pop cc” “ c< A.max_gene;
out cc “\nProbabiiity Mutation” cc A.mutation_pr;

out cc “\nProbability X-over” c< A.xchange_pr;
return out;

}; // Block: 41
// +++++++++++++++++++ +++++++++++++++++++++++++++++++

float GA_Alloc::GA_Alloc_Fitness(float *data)

{
//

// Corn 12 Need To Perform Whatever Normalization Is Required For Next Step
//

float average=O.O;
float variance=O.O;

—

float min_val, max_val;
float a,b, delta,f_prime;
float scale_factor=2.O;

//
// Corn 13 Capture Statistics Of The Fitness Values

“

.

e Page 90 of 95>

//

min_val=data[O];
max_val=data[O];
for(int i=O; icga_pop; i++)

. {
average += data~];
if(data[i] c= min_val)

min_vai = data[i];
if(data[i] >= max_val)

max_val = data[i];

}
average = average/ga_pop;
for(i=O; icga_pop; i++)

variance += (data[i]-average) *(data[i]-average) ;
variance = variance / (ga_pop-1) ;

//
// Corn 14 Perform Fitness Scaling And Shifts As Define[
// DE Goldbergs, Genetic Algorithms pgs 76-79.
//

delta = max_val-average;
a = average* (scaie_factor-1)/delta;
b = average* (max_val-scale_factor* average)/delta;
f_prime = a*min_val*b;
if{ f_prime <0.0)

{
delta=average-mi n_val;
a=average/delta;
b=-average*min_val/delta;

}
//
// Corn 15 Scale Results Of Fitness Evaluations
//

float sum_fit=O;
for(int j=O; jcga_pop; j++)

{
data[j] = a’data[j] + b;
sum_fit += data~];

}
repro~r[O] = 0.0;
for(j=O; jega_pop; j++)

\
{
data[j] = data[j] / sum_fit;

. repro_pr~+l] = repro_pr~]+data~];—.—.
}

//
// Corn 16 Find The Optimal Solution

<Page91 of95>

//

max_val=data[O];
opt_soln=O;
for(i=O; icga_pop; i++)

{
if(data[i] >= max_val)

{
max_val=data[i];
opt_soln=i;

}
};

return(max_val);

1; // Block: 42
// ++

int GA_Alloc: :GA_Xchange(int jj, int *suit_set, int indx)

{
float pr_bs;
float prl ,pr2 ; I

inttmp_ga, Iocl, loc2, loc3;

pr_bs=xchange_pr;
for(int k=O; kc indx; k++) “-

{
Iocl =suit_set[k];
pr2 = random.fdrawo;
IOC2= int(pr2*indx);

—

Ioc3= suit_set[IOC2];
tmp_ga= ga_chromo[jj][Iocl];
ga_chromo[jj][Iocl]= ga_chromo[jj][IOC3];
ga_chromo[jj][IOC3]= tmp_ga;

}
return{ loc3 J;

1; // Block: 43
// ++++++++++++ ++++++++++++++++++++++++++++++++++++++

int GA_AIloc::GA_Mutate(int jj)

{

int mut_loc=O;
int inc, cycle;
float prl, pr3;

for{ int IG=O; lGcmax_gene; IG++)

{

c Page 92 of 95>

prl = random. fdrawo;
if(prl c mutation_pr)

{
pr3 = random.fdrawo;

. //
// Note: we are petiorming a cyclic permutation hereto insure
// selection of a viable solution. This refIects mutation in an.
// integer space, as opposed to binary space.
//

inc= int(pr3*selections) + ga_chromo[jj][IG];
cycle= inc - (inc/selections)’selections;
ga_chromo[jj][IG]= cycle;
mut_loc++;

}
}

return(mut_loc);

); // Block: 44
// +++++++++++++++++ +++++++++++++++++++++++++++++++++

int GA_Alloc::GA_Reproduce(int jj)

{
float pr_val;
int nu_chain=O;

pr_val= random.fdraw();
for(int k=O; kcga_pop; k++)

if(pr_val >= repro_pr[k] && pr_val c repro_pr[k+l])

{
nu_chain=k;
for(int j=l; jcmax_gene; j++)

ga_chromo[jj][j] = ga_chromo_O[k][j];

}
return(nu_chain);

1; // Block: 45
// +++++ +++

void GA_Alloc::lnit_GA_Alloc()

{“
i //

// Corn 17 Allocate Space For The Ga Variables.
//.

ga_chromo = new int*[ga_pop+l];
ga_chromo_O = new int’[ga~op+l]; - ‘
repro_pr = new float[ga_pop+l];

e Page 93 of 95>

for(int i=O; ic=ga_pop; i++)

}
//

{

{
ga_chromo_O[i] = new int[max_gene];
ga_chromo[i] = new int[max_gene];

}
return;
.7 // Block: 46

++

float GA_AIloc::Next_Gen_GA_Alloc(float **suit, float

acceptance)

float pr_val=O.O;
//
// Corn 18 Randomly Select A Member Of The Old Pop. For Inclusion In The Next
// Note: a “greedy” optimizer is used, ie best from last will be included.
//

for(int i=O; iega_pop; i++)
for(int j=O; j<max_gene; j++)

ga_chromo_O[i][j] = ga_chromo[i][j];
//
// Corn 19 Begin The Selection Process
//

for(int j=O; jemax~ene; j++)
ga_chromo[O][j] = ga_chromo_O[opt_soln][j];

//
// Create A Database Of Mutation, Xchange And Reproduction Info
//
// ofstream GA_OUT(’’test.dat’’, ios::app);
// GA_OUT <<” \n”;
//

int rl ,r2,ml ,m2,x0,xl ;
int kk=O;
int *draw_from;
draw_from= new int[max_gene];

while(kkcga_pop)

{
//
// Corn 20 Create A Vector Of Poor Targeting Suitabilities
//

int indx= O;
for{ int df=O; df<max_gene; df++)

if(suit[kk][df] <= acceptance)

{

.

.

c Page 94 of 95>

draw_from[indx] = df;
in_dx++;

}

i rl =GA_Reproduce(kk);
//
// Corn 21 PerForm Cross-over operations.
//

xO=GA_Xchange(kk, draw_from, indx);
//
// Corn 22 Perform mutation operations
//
// ‘ ml =GA_Mutate(kk);

kk+=l ;
//
// GA_OUT c< rl e<” “<<r2<<” “<cxOCC” “<<ml<<” “<<m2ee” \n”;
//

};

return(pr_val);
1; // Block: 47

II +++++++++ +++

void GA_Alloc: :setup_GA_Alloc(long seed_val)

{
float pr_between;

//
//Corn 23 Define A Random Starting Chromosome Population.
// Note: Defining Random Starting Values Between 1 And Selections.
//

int k_option;
random. seed(seed_val);
for{ int i=O; iega_pop; i++)

{
for(int k=O; kcmax_gene; k++)

{
pr_between= random.fdrawo;
k_option= int(pr_between*selections);
ga_chromo[i][k] = k_option;

i }
}

. return;
}; // Block: 48

< Page 95 of 95>

II ++++ Evolutionary Strategy Opt (ES_Chromosome) ++++

// ++++++++++ ++

//

// Define an evolutionary strategy object
//

// Operators include: Mutation
//
// ++

class ES_Chromosome

{
public:

//
// DefineAddiitonal Model Parameters:
//

intexists;
char*obj_name;
int max_factors, es_pop;
float** mean_limits; // limits of the mean factor “i”i=l ,max_factors
float** strat_limits; // limits of thestrategy ’’i’’i=l,max_factors
float **es_mean;
float **es_strat;
float **es_mean_O;
float **es_strat_O;
float *repro_pr;

randint random;
int opt_soln;
float mutation_pr, Xover_pr;

II
// Define addiitonal member functions: _Fitness
//

ES_Chromosomeo;
void Setup_ES_Chromo(float**, float**) ;
float ES_Chromo_Fitness(float *data);
float Next_Gen_ES_Chromo();
float Mutate();
float Xover();

II
// Overload The Input And Output Operators
//

friend istream& operator>>(istream& in,.-ES_Chromosome&);
friend ostream& operatoree(ostream& out, ES_Chromosome&);

}; // Bioek: 49

< Page 96 of 105>

.

.

,

,

// ++

// NOTE: The integers in the constructor must be adjusted to reflect
// the number of variables and arguments in the model

ES_Chromosome:: ES_Chromosome()
—

{
obj_name =newchar[lO];

//
// Define default conditions

exists=FALSE;
strcpy(obj_name~None”);

max_factors= 1;
es_pop=l;
mutation_pr=O.Ol;
mean_limits = new float*[2];
strat_limits = new float*[2];

i

.
* // Block: 50

++++++++++++++++++++++ ++++++++++++++++++++++++++++

istream& operator>>(istream& in, ES_Chromosome& adum)

char tmp_in[l 5];
adum.exists=TRUE;
in >> adum.obj_name;
in >> tmp_in;
while(strcmp(tmp_in,’’eoi”) !=0)

Cout << “----- ES_Chromosome Keyword :” cc tmp_in <c “h” cc flush;
if(strcmp(tmp_in,’’Factors”) == O)

{
in >> adum.max_factors;
adum.mean_limits[O] = new float[adum.max_factors];
adum.mean_limits[l] = new float[adum.max_factors];
adum.strat_limits[O] = new float[adum.max_factors];
adum.strat_limits[l] = new fioat[adum.max_factors];
}

else if(strcmp(tmp_in,’’Population”) == O)
in >> adum.es_pop;

else if(strcmp(tmp_in,’’Means”) == O)

.-— {

< Page 97 of 105>

for(int i=O; icadum.max_factors; i ++)
_in >> adum.mean_limits[O] [i] >> adum.mean_limits[l][i];

1

el;e if(strcmp(tmp_in,’’Strategies”) ==0)
{

for(int i=O; icadum.max_factors; i ++)
in >> adum.strat_limits[O] [i] >> adum.strat_limits[l][i];

}
else if(strcmp(tmp_in,’’Probability”) == O)

{
in >> tmp_in;
if(strcmp(tmp_in,’’Mutation”) == O)

in >> adum.mutation~r;
else

cerr c< “Error: (ES_chromo:l%ob Input) unacceptable input option : “
e< tmp_in << “\n” cc flush;

}
else

cerr cc “Error: (ES_chromosome Input) unacceptable input option : “
cc tmp_in <c “\n” c< flush;

in >> tmp_in;

}; // Block: 51
return in;

}; // Block: 52

// +++++++ +++

ostream& operator<<(ostream& out, ES_Chromosome& A)

{
//

// provide coding to represent the ouput desired for this object
//

out cc ‘!n\t---- :: ES_Chromosome Dump (bgn) :: ----” cc A.obj_name;
out c< “h7\t---- :: ES_Chromosome Dump (---) :: ---- Factors “

cc A.max_factors cc “k”;
out cc “\t---- :: ES_Chromosome Dump (---) :: ---- Population “

cc A.es_pop c< %“;
out << “\t---- :: ES_Chromosome Dump (---) :: ---- Means “<< %“;
for(int i=O; icA.mw_factors; i ++)

out <c “\t---- :: ES_Chromosome Dump (---) :: ----” cc A.mean_limits[O][i]
cc “M”cc A.mean_limits[1][i] c< “hi’;

out << “\t---- :: ES_Chromosome Dump (---) :: ---- Strategies “ <c “h”;
for{ i=O; icA.max_factors; i++)

out ‘c< “\t---- :: ES_Chromosome Dump (---) :: ---- “<c A,strat_limits[O][i]
cc ‘N” cc A.strat_limits[l][i] <c “W;

.

c Page 98 of 105>

out << “\t---- :: ES_Chromosome Dump (---) :: ---- Probability Mutation “
cc A.mutation_pr c< %“;

for(int kk=O; kk< A.es_pop; kk++)
. {

out << “\t---- :: ES_Chromosome Dump (---) :: ---- Population “ cc kk cc ‘?n”;
for(int k2=O; k2cA.max_factors; k2++).

out <c “\t---- :: ES_Chromosome Dump (---) :: ----” <c A.es_mean[kk][k2]
cc “N”cc A.es_strat[kk][k2] c< %“;

}

out c< %---- :: ES_Chromosome Dump (end) :: ---- \n” cc flush;
return out;

}: // Block: 33

// ++++++++++++++++ +++++++++++++++++++++++++++++++++

void ES_Chromosome:: SetUp_ES_Chromo(float** ml, float** SI)

{
float pr_between;

//
// Seup An Equivalence Between The Opt Routine And The Es Arrays.
//

mean_limits = ml;
mean_limits[O]= ml[O];
mean_limits[l]= ml[l];
strat_limits = sl;
strat_limits[O] = sl[O];
strat_limits[l] = sI[l];

es_mean = new float*[es_pop];
es_strat = new float* [es_pop];
es_mean_O = new float*[es_pop];
es_strat_O = new float* [es_pop];
repro_pr = new float[es~op+l];

//
// define a random starting chromosome population.
// Note: defining random starting values between upper
// and lower Iimits(constraints) for both nominal and

. // strategies of search.
//

for(int i=O; iees_pop; i++)

{
es_mean_O[i] = new float[max_factors];
es_strat_O[i] = new float[max_factors];

< Page 99 of 105> .L

es_mean[i] = new float[max_factors];
es_strat[i] = new float[max_factors];
for(int k=O; kcmax_factors; k++)

{
pr_between= random.fdrawo;
pr_between= mean_limits[O][k] + pr_between*(mean_limits[l][k]

-mean_limits[O] [k]);
—

‘es_mean[i][k] = pr_between;

pr_between= random.fdrawo;
pr_between= strat_limits[O][k] + pr_between*(strat_limits[l][k]

-strat_limits[O][k]);
es_strat[i][k] = pr_between;

}
}
return;

J; // Block: 54

// +++++ +++

float ES_Chromosome:: ES_Chromo_Fitness(float *data)

{
//

// need to perform whatever normalization is required for next step
//

float average=O.O;
float variance=O.O;
float min_val, max_val;
float a,b, delta,f_prime;
float scale_factor=2.O;

//
// Corn 24 Capture Statistics Of The Fitness Values
//

min_val=data[O];
max_vai=data[O];
for(int i=O; ices_pop; i++)

{
average += data[i];
if{ data[i] e= min_val)

min_val = data[i];
if(data[i] >= max_val)

max_val = data~];

}
average = average/es_pop;
for(i=O; ices_pop; i++)— --

.

< Page 100 of 105>

variance += (data[i]-average)’(data~]-average) ;
variance = variance/ (es_pop-1) ;

//
// Corn 25 Perform Fitness Scaling And Shifts As Defined In

. // DE Goldbergs, Genetic Algorithms pgs 76-79.
//

delta = max_val-average;*
a = average* (scale_factor-1)/delta;
b = average* (max_val-scaIe_factor*average)/delta;
f_prime = a*min_val*b;
if(f_prime <0.0)

{
delta=average-min_val;
a=average/delta;
b=-average*min_val/delta;

}
//
// Scale Results Of Fitness Evaluations
//

float sum_fit=O;
for(int j=O; jees_pop; j++)

{
data[j] = a’data[j] + b;
sum_fit += data~];

}
repro_pr[O] = 0.0;
for(j=O; jces_pop; j++)

{
data[j] = data[j] / sum_fit;
repro_prfl+l] = repro_pr~]+data~];

}
//
// Find The Optimal Solution
//

maxlval=data[O]~
opt_soln=O;
for(i=O; ices~op; i++)

{
if(data[i] >= max_val)

{. max_val=data[i];
opt_soln=i;

}
};

return(max_val);

1; // Block: 55

< Page 101 of 105>

// ++

float ES_Chromosome:: Next_Gen_ES_Chromo()

{
float pr_val=O.O;

//
// Randomly Select A Member Of The Old Pop. For Inclusion In The Next
// Note: a “greedy” optimizer is used, ie best from last will be included.
//

for{ int i=O; ices_pop; i++)
for(int j=O; j<max_factors; j++)

{
es_mean_O[i][j] = es_mean[i][j];
es_strat_O[i][j] = es_strat[i][j];

}
//
// Begin The Selection Process
//

for(int j=O; jcmm_factors; j++)

{
es_mean[O][j] = es_mean_O[opt_soln][j];
es_strat[O][j] = es_strat_O[opt_soln][j];
}

for(int jj=l; jjces_pop; jj++)

{
pr_val= random.fdraw();
for(int k=O; k<es_pop; k++)

if(pr_val >= repro_pr[k] && pr_val < repro_pr[k+l])
for(j=l; jcmax_factors; j++)

{
es_mean[jj][j] = es_mean_O[k][j];
es_strat[jj][j] = es_strat_O[k][j];

}
}

//
// Next Perform The Mutation Operations Required Of An Es Optimizer
//

Mutate();
//
// Next Perform The Cross-over Operations Required Of An Es Optimizer
//

Xover();

.

.

c Page 102 of 105>

return(pr_val);

); // Block:%
// ++

, float ES_Chromosome:: Mutate()

.
{
float pr_val=O.O;
float Ai, alpha=l .3;
intmut_loc, int_loc;

//
// Note alpha settol.3is reccommended by Rechenberg. is usedin
// setting thestrategy parameter inES mutation.
//
// Com26 First Petiorm AMutation On The Mean Values in The Chromosome
//

for(int i=l; i<es~op; i++)

{
pr_val= random.fdraw();
if(pr_val e= mutation_pr)

{
int_loc= int(random .fdraw() *max_factors);
if(int_loceO)

int_loc=O;
if(int_loc>=max_factors)

int_loc=max_factors;

es_mean[i][int_loc] = es_mean[i][int_loc]+random.gausso”
es_strat[i][int_loc];

if(es_mean[i][int_loc] < mean_limits[O]~nt_Ioc])
es_mean[i][int_loc] = mean_limits[O][int_loc];

if(es_mean[i][int_loc] > mean_limits[l]fint_loc])
es_mean[i][int_loc] = mean_limits[l][int_loc];

}
}

//
// Corn 27 Next Perfrom Mutation On Strategy Parameter; Use Same Pr Of
// Mutation In Parallel With Mean Mutation
//

for(i=l; iees_pop; i++)
, {

pr_val= random.fdraw();
. if(pr_val c= mutation_pr)

{
int_loc= int(random. fdraw() *max_factors);
if(int_loccO)

< Page 103 of 105>

int_ioc=O;
if(int_loc>=max_facto rs)

int_loc=max_factors;

pr_val= random.fdraw();
if(pr_val c 0.5)

Ai = alpha;
else

Ai = 1.O/alpha;
es_strat[i][int_loc] = es_strat[i][int_loc]*Ai;

}
}

return(pr_val);

J; // Block: 57
// ++

float ES_Chromosome::Xover()

{
float pr_val=O.O ;
intpr_popl, pr_pop2 ;
floattmp;

//
// Can only cross over similar locations between populations. The
// probability is that each location represents a different independent
// variable thus can not be dislocated.
// —

for(int i=O; iemax_factors; i++)

{
for(int k=l; kces_pop; k++)

{
pr_val= random.fdraw();
if(pr_val e= Xover_pr/2.O)

{
pr_popl = 1+ int(random .fdraw() *(es_pop-1));
if(pr_popl <1)

pr_popl =1;
if(pr_popl >=es_pop)

pr_popl =es_pop;

pr_pop2 = 1+ int(random.fdraw() *(es_pop-1));
if(pr_pop2el)

pr_pop2=l;
if(pr_pop2>=es_pop)

pr_pop2=es_pop;

< Page 104 of 105>

s

.

.

.

*

.

tmp = es_mean[pr_popl][i];
es_mean[pr_popl][i] = es_mean[pr_pop2][i];
es_mean[pr_pop2][i]= tmp ;

}
}
for(k=l; k<es_pop; k++)

{
pr_val= random.fdraw();
if{ pr_val e= Xover_pr/2.O)

{
pr_popl = int(random .fdraw() *es_pop);
if(pr_popl <O)

pr_popl=O;
if(pr_popl>=es_pop)

pr_popl =es_pop;

pr_pop2 = int(random.fdrawo *es_pop);
if(pr_pop2<0)

pr_pop2=O;
if(pr_pop2>=es_pop)

pr_pop2=es_pop;

tmp = es_strat[pr_popl][i] ;
es_strat[pr_popl][i] = es_strat[pr_pop2][i];
es_strat[pr_pop2][i]= tmp ;

}
}
}

return{ pr_val);

); // Block: 58

●

< Page 105 of 105>

// ++

// ++

// Corn 28 Controlling Object ForTheAllocation Function OfStrategic Weapon
// Systems Against Scenario Specific targetss
//
// Note: must be able to handle multiple scenarios
// ++
// ++

class Allocation

{
public:

//
// Define addiitonal model parameters:
//

int exists;
char*obj_name;

long RN_seed;
int DEBUG, fit_func;
float fuzzy_ievel;

intmax_targets ;
intbase_iine_Wii ,new_VVH, total-WH;
inttotal_inventory, no_option;
int Restart_iter, ga_iter, ga_pop;
float pd_objective, Fl_form_factor, beta[5];
floatmutation_pr, xchange_pr;

WEAPON_ *SyS;
Mission_ startX;
GA_Alloc soln;
int**opt_index;

Allocation; // Constructor
//
// overload the input and output operators
//

friend istream& operato~>(istream& in, Allocation&); -
friend ostream& operatorc<(ostream& out, Allocation&);

//
// Define addiitonal member functions:
//

float Allocation_Opt(); //Opt. The Allocation Of Weapons To Targets
float Allo_Fitness(int’, int’, float*);// Controller For Total Fitness Assessment

●

✎

<Page 1060f 121>

float Fitness_PD(int, float*, float, int);// Goal Pd Fitness Function
float F@ess_Stk_Lmt(int); // Stockpile Limit Fitness Function
float Fitness_Time(int); //Time Urgency Fitness Function

float Fitness_Wt(int); //Target Weighting Fitness Function
float Fitness_Yield(float); // Minimum Yield Fitness Function
void Genetic_Setup();
void lC_Alloc();
void Perf_Results(int);
float Pssk(int, float, float); // Determine the probability of “single shot” kill
float Obj_Pk(int, float, float);

//
// Define a dump and restart capability
//

void Gen_Dump(ostream&);
void Gen_Restart(istream&);

); // Block: 59

Allocation:: Allocation()

{
obj_name = new char[l O];

//
// Define default conditions
//

exists=FALSE;
strcpy(obj_name,’’None”);
RN_seed=ll llllllll;
DEBUG=FALSE;
fi_func=l;
fu~_level=l .25;

Restart_iter=O;
ga_iter=75;
ga_pop=75;

max_targets=l;
base_line_WH=l;
new_WH=O ;
total_WH= base_line_WH+new_WH ;
no_option=O;

pd_objective=O.75;
F1_form_factor=O.025;
mutation_pr=O. 05;
xchange_pr=O.45;

//

< Page 107 of 121>

// Corn 29 Beta Is The Decision Model Weighting Coefficients.
//

for(int i=O; ic5; i++)
beta[i]=l .0;

1: // Block: 60
// ++

istream& operator>>(istream& in, Allocation& adum)

{
char tmp_in[l 5];
char tmp_file[l 5];
adum.exists=TRUE;
int tmp;
in >> adum.obj_name;
in >> tmp_in;
while(strcmp(tmp_in,’’eoi”) !=0)

{
if(strcmp(tmp_in,’’Restart”) == O)

{
in >> tmp_file ;
ifstream Restart_file(tmp_file) ;
Restart_file >> adum.Restart_iter >> adum.RN_seed;
adum.Gen_Restart(Restart_file) ;

}
else if(strcmp(tmp_in,’’Targets”) == O)

{
in >> adum.startX;
adum.max_targets = adum.startX.max_targets ;

}
else if(strcmp(tmp_in,’’Weapons”) == O)

{
//
// First load baselines and other allocation parameters
// Next load the CEP values and associated stockpile assignments
//

in >> adum.base_iine_WH >> adum.new_WH;
adum.total_WH = adum.base_line_WH + adum.new_WH;
adum.sys= new WEAPON_[adum.total_WH+l];
for(int k=l; kc= adum.total_WH; k++)

in >> adum.sys[k] ;

}
else if(strcmp(tmp_in,’’Population”) == O)

in >> adum.ga_pop;
else if(strcmp(tmp_in,’’Convergence”) ==”’0)

in >> adum.ga_iter;

.

.

c Page 108 of 121>

else if(strcmp(tmp_in,’’Mutation”) == O)
in >> adum.mutation_pr;

else if(strcmp(tmp_in,’’Xchange”) == O)
in >> adum.xchange_pr;

● else if(strcmp(tmp_in,’’Debug”) == O)

{
.in >> adum.fit_func;.
adum.DEBUG = TRUE ;

}
else if(strcmp(tmp_in,’’ObjectivePD”) == O)

//
// Objective Mission Performance
//

in >> adum.pd_objective;
else if(strcmp(tmp_in,’’PD_fitness”) == O)

//
// Factor Defining The Degree Of Acceptance Of The Objective Pd
//

in >> adum.Fl _form_factor;
else

{
cerr cc “Error: (Allocation Input) unacceptableinput option : “ <c tmp_in
cc “\n” <c flush;

1; // Block: 61
in >> tmp_in;

}; // Block: 62
//
// Need To Initialize The Genetic Chromosome
//

adum.Genetic_Setupo;
return in;

}; // Block: 63
// +++++++++ +++

ostream& operator<<(ostream& out, Allocation& A)

{
//

// provide coding to represent the ouput desired for this object
//

. out cc ‘%~” cc A.obj_name e< ‘fn”; .

. out cc “Objective Pd “ c< A.pd_objective cc %“;
out cc “Targets “ cc A.max_targets <c %“;
out cc “Weapons” cc A.total_WH cc %“;
for(int k=l; k<= A.total_WH; k++)——

< Page 109 of 121>

out cc A.sys[k] <<” “cc %“;
out << ~Population “ c< A.ga_pop <c %“;
out c<”‘Convergence “ cc A.ga_iter cc %“;
out c< “Mutation Pr “ cc A.mutation_pr <c %“;
out cc “Xover Pr “ c< A.xchange_pr cc “h”;
return out;

}: // Block: 64
// ++

float Allocation::Allocation_Opt()

{
float *fit;
float *raw_fit;
fit = new float[ga_pop];
raw_fit = new float[ga_pop];
float debug_fitness;
ofstream debug_out(’’ZALLO_debug .dat’’,ios::app);

if(DEBUG)
debug_out << %“ c<
“++++++++++ Allocation Fitness Debug ++++++++++++++++++++++ \n”;

lC_Alloc();

float **suitability;
suitability = new float’[ga_pop] ;
for(int SU=O;su<ga_pop; su++)

suitability[su] = new float[max_targets] ;

for(int iter=RestaR_iter; itercga_iter; iter++)

{
//
// Corn 30 Setup And Calculate The Fitness For Each Member Of The
// Chromosome Population
//

for(int k=O; k<soln.ga_pop; k++)
fit[k] = Ailo_Fitness(soln.ga_chromo[k], opt_index[k], suitability[k]);

//
// Dump Info For Restart Or Debug
//

ofstream dump_out(’’ZALLO_dump. dat”);
RN_seed = soln.random.get_seedo;
dump_out c< iter cc “” cc RN_seed cc %“;
Gen_Dump(dump_out);
if(DEBUG)

8

a

.

< Page 110 of 121>

.

{
debug_out << “Fitness Results, all Chromosomes: (iter “e<iterce”)\n”;
for(int ka=O; kacsoln.ga_pop; ka++)

debug_out<< fit[ka] cc””;

}
//
// Corn 31 Transfer Fitness To GA Algorithms
//

soln.GA_Alloc_Fitness(fit);
//
// Setup For A Debug Calculation And Output
//

if(DEBUG)

{
debug_fitness= Allo_Fitness (soln.ga_chromo[soln.opt_soln],

opt_index[soln. opt_soln], suitability soln.opt_soln]);
debug_out <c “lter: “<citercc” Fitness= “ccdebug_fitness
CC”(func no. “<cfi_funccc”) \nAllocation Vector \n” ;
for(int kb=O; kbcmax_targets; kb++)

debug_out cc soln.ga_chromo[soln. opt_soln][kb] <c””
cc opt_index[soln. opt_soln][kb] cc” “;

debug_out c< ‘~n”;

}
//
// Corn 32 Create The Next Generation
//

soln.Next_Gen_GA_Alloc(suitability, fuzzy_level);

}
if(DEBUG)

debug_out cc “h” cc
“++++++++++ Allocation Fitness Debug End ++++++++++++++++++++++ W’;

//
// Output The Results Of The Allocation
//

int k_soln=O;
Petf_Results(k_soln);

return(fit[soln.opt_soln]) ;

1; // Block: 65
// ++

float Allocation:: Allo_Fitness(int *ga_soln, int *cep_index,
float *suit)

{
//

ePagelll of 121>

// This routine provides the decision model, currently trivial, for
// assessing the various goals and objectives of an allocation
II algorithm.
//

int jj, sys_index, sys_inv;
float yld;
float *cep;

—

//
// Determin the total allocation of weapons for a chromosome
//

for(int k=O; kc= total_WH; k++)
sys[k].allocated =0;

//
// Corn 33 Note: ga_soln Provides The Mapping Between Targets And Options
// assign Provides The Mapping Between Options And Inventories
//

for(k=O; kc max_targets; k++)

{
jj = ga_soln[k] ;
sys[jj].allocated +=1;

}
//
// Assess Fitness For Each Decision Vriable, ie. FI -F5
// Assume equal importance for this version: 11/20/97
//

int indx, i2 ;
float total_fitness;
for(k=O; kcmax_targets; k++)

~ys_index = ga_soln[k];
//
// Note: Fitness Deined As Weighted Sum Of Obj Function;
// Product For All Targets Pl((1+sum(fi))j)
//

total_fitness=O.O;
if(sys_index != no_option)

{
cep= sys[sys_index].ceps;
yld= sys[sys_index].yield ;
i2= sys[sys_index].total_fz_opt;
indx = Fitness_PD(k, cep,yld, i2); .
cep_index[k] = indx;
total_fitness += beta[O]*Obj_Pk(k, cep[indx],yld) ;
total_fitness += beta[l]*Fitness_Yield(yld);

// total_fitness += beta[2]*Fitness_Stk_lmt(k);
//—— total_fitness += beta[3]*Fitness_Wt(k);

e Page 112 of 121>

// total_fitness += beta[4]*Fitness_Time(k);

}
suit[k]=total_fitness ;

}
* //

// Fitness For The Alocation Is The Percent Of Acceptable
// Individual Targeting.
//

total_fitness=O.O;
for(k=O; kemax_targets; k++)

if{ suit[k] >= fuzzy_level)
total_fitness +=1.0;

total_fitness /= float(max_targets);

return(total_fitness);

}
//

{
//

//

//

//

Y // Block: 66
++++++++++++++++++++++ ++++++++++++++++++++++++++++

float Allocation:: Fitness_PD(int targ_indx, float ‘cep, float yld,

int fz_opts)

This routine provides the fitness based on goal or mission targets
damage expectancy. Too little or too much is not a good solution.

float Pk, F1 ;
int indx=O;
float max_pk=O.O;
for(int k=O; kc fz_opts; k++)

{
,, Pk = Pssk(targ_indx, cep[k], yld);

F1 = exp(-(Pk-pd_objective)* (Pk-pd_objective)/Fl _form_factor);
if(F1 > max_pk-)

{
max_pk=Fl;
indx= k;

}
};

return(indx);> —
}: // Block: 67

// ++++++++++++++ ++++++++++++++++++++++++++++++++++++
.

float Allocation:: Fitness_Stk_Lmt(int inv_num)

{

e Page 113 of 121>

//

// This routine is a fitness representations for stockpile constraints;
II not a good idea to allocate weapons you do not have.
//

float F3=I; *
int num_avail, num_alloc;
num_avail= sys[inv_num].inventory;
num_alloc= sys[inv_num].allocated;

*

F3 = 1.0/(1.O+exp(num_alloc-num_avail));
return(F3);

1; // Block: 68
// +++++++++-t++

float Allocation:: Fitness_Time(inttarg_indx)

{
//

// This routine captures fitness for a time urgency metric; ie.
// reconstitution targets, time urgent targets, and those of uniform
// importance as functions of time.
//

float F5=1 .0;
return(F5);

1; // Block: 69
// ++++++++++++++ +++++++++++++++++++++++++++++++++++

float Allocation:: Fitness_Wt(int targ_indx)

{
II
// This routine is the fitness correlation based on target
// importance factors.
//

float F4=I;
F4 = startX.targs[targ_indx].Wt ;
return(F4);

1; // Block: 70

// +++++++ +++

float Allocation:: Fitness_Yield(float yld)

{
//

// This routine provides a rule to minimize yield applied to a target.
// Note: This Routine Is Valid If The Yield Options
// Are Not Less Than 100

c Page 114 of 121>

//

float min_yield=l 00.0 ;
float F2=1;
F2 = pow((min_yield/yld),0.3333);
return(

}; ii
II

void

{
//
// Corn 34
//
//

F2);
Block: 71
+++++++++ +++

#Uocation::Genetic_Setupo

Pass Parameters Read into The Allocation ClassTo Initialize
The Genetic algorithms.

solnselections = total_WH ;
soln.max_gene =max_targets;
soln.ga_pop= ga_pop;

opt_index=newint*[ga_pop];
for(int i=O; iega_pop; i++)
opt_index[i]= new int[max_targets];

soln.mutation_pr = mutation_pr;
soln.xchange_pr = xchange_pr;

//
// Corn 35 Initialize Space For Chromosomes In The Ga
//

.

soln.lnit_GA_Alloc();
//
// Identify Total Warhead Inventories
//

int total_stockpile=O;
soln.random.seed(RN_seed);
for(int k=l; kc=total_WH; k++)

total_stockpile += sys[k].inventory;
total_inventory= totai_stockpile;

return ;

); // Block: 72
// +++++++ +++

void Allocation::lC_AIIoc()

{
//

< Page 115 of 121>

// This Routine Provides GA Setups For The Allocation Problem.
// Normal GA Setup Is Handled By The Genetic Setup
// Routine: lnit_GA_Alloco.
//

int k_option; ,

float pr_alloc, pr_tmp;
pr_alloc = float(total_inventory/max_targets) ;

*

if(pr_alloc >=1.0)
pr_alloc= 1.0;

float *tmp_hist;
tmp_hist= new float[total_inventory];
for(int i=O; iesoln,ga_pop; i++)

{
//
// Create An Experimental Distribution For Defining Initial Allocations
//

int indx=O;
for(int m=l; m<=total_WH; m++)

for(int n=O; n<sys[m].inventory; n++)

{
tmp_hist[indx]=m; —

indx ++;

}
soln.random.Setup_exp_dist(tmp_hist, total_inventory);

//
// Set The Initial Allocations
//

for(int k=O; k<soln.max_gene; k++)-

{
, pr_tmp= soln.random.fdrawo;

if(pr_tmp <= pr_alloc)
.

‘k_option= fit(soln.random.exp_dist()) ;
soln.ga_chromo[i][k] = k_option;

}
else

soln.ga_chromo[i] [k] = no_option;

}

}

return ;

}; // Block: 73
// ++

<Page l160f 121>

void Allocation:: Peti_Results(int soln_index)

{
ofstream Monitor_out(’’Zresults. dat’’,ios::app);

, int sys_index, indxl, avn, ak;
char att;
float Pk, yld, tmp_fl ;.
float cep ;
Monitor_out.precision(6);
float *tmp_suit;
tmp_suit= new float[max_targets] ;

//
// Create A Database Of Mission Performance And Allocation
//

tmp_fl = Allo_Fitness(soIn.ga_chromo[soln_index],
opt_index[soln_index], tmp_suit);

Monitor_out c< ‘qnPerformance results: \n”
<c t.. :: k:: :: index:: :: yield :: :: cep:: :: Pk ::W’;

~r(in~~=~~-kemax_targets; k++)

{
sys_index = soln.ga_chromo[soln_index][k];
avn= startX.targs[k].vn;
att= startX.targs[k].tc;
ak= startX.targs[k].k;
if(sys_index >0)

{
indxl = opt_index[soln_index][k];
cep= sys[sys_index].ceps[indxl];
yld= sys[sys_index].yield;
Pk =Pssk(k, cep, yld);

}
else

{
Pk=O.O;
cep=lel O;

}
Monitor_out c< avn <<” \t” <c att <e” \t” << ak <<” \t” << sys_index
<c” \t” <c yld c<” \t” c< cep <<” \t” cc Pk cc ‘%”;

}
.

//

// Create A Series Of Allocation Databases
. //—

for{ int ka=l; kac=total_WH; ka++)

{
Monitor_out << ‘lnTarget Allocations : (inv no. “ <e ka <c”)\n”;

< Page 117 of 121>

for{ int kb=O; kbcmax_targets; kb++)

{
sys_index = soln.ga_chromo[soln_index][kb];
indxl = opt_index[soln_index][kb];
if(sys_index == ka)

{
cep= sys[sys_index].ceps[indxl];
yld= sys[sys_index].yield;
avn= startX.targs[kb].vn;
ak= startX.targs[kb].k;
Monitor_out <c avn cc” \t” cc ak cc” \t” cc sys_index cc” \t” cc yld
cc” \t” << cep c< %“;

}
}

}
//

.

// Print Out Allocated Inventories
//

Monitor_out << “hWeapon System Inventories \n”;
for(k=O; kc= total_WH; k++)

Monitor_out cc k c<” \t” cc SYS[k].inventory cc” \t” <c sys[k].allocated
<c “in”;

return ; .

1; // Block: 74
// ++

float Allocation:: Pssk(int targ_indx, float cep, float yld)

{
float Pk =1.0;
float a;
int avn,at,ak;
char ate;

//
// Define The Weapon Radius For The Target
//

avn= startx.targs[targ_indx].vn;
atc = startX.targs[targ_indx].tc;
ak = startX.targs[targ_indx].k;

startX.Vul_Setup(avn,atc,ak, yld) ;
//
// Use A Simple WR/Cep Correlation For Kill Probability
//

a = (startX.wrO/cep) *(startX.wrO/cep);
Pk = 1.0- POW(0.5,a);

<Page 118 of 121>

.

.

.

.

.

return(Pk);

// ++

float Allocation:: Obj_Pk(int targ_indx, float cep, float yld)

{
float Pk =1.0 ;
float a, F1;
int avn,at,ak;
char ate;

//
II DefineTheWeapon Radius ForTheTarget
//

avn=startX.targs[targ_indx].vn;
atc = startX.targs[targ_indx].tc;
ak = startX.targs[targ_indx].k;

startX.Vul_Setup(avn,atc,ak, yld) ;
//
// Use A Simple WR/Cep Correlation For Kill Probability
//

a = (startX.wrO/cep) *(startX.wrO/cep);
Pk = 1.0- pow(0.5,a);

F1 = exp(-(Pk-pd_objective) *(Pk-pd_objective)/Fl _form_factor);
return(F1);

}; // Block: 76
// +++

void Allocation:: Gen_Dump(ostream& out)

{
II
// Dump All Information Related To Allocation To A File For Restart
//

int k;
out c< exists << ‘%” ;
out << DEBUG << ““<<fit_func<c”W’ ;
out << max_targets <c %“ ;
out << base_line_WH c<”” cc new_WH <<”” cc total_WH cc ‘In” ;
out cc ga_iter cc “” c< ga_pop cc “In” ;
out <c pd_objective c<”” cc FI _form_factor cc”” <e beta[O] c< “”
<< beta[l] c< “” << beta[2] cc “” <c beta[3] c< “ “ e< beta[4] << ‘M” ;
out <c mutation_pr cc “” cc xchange~r cc %“ ;
for (k=O; kc= total_WH; k++)

< Page 119 of 121>

out <c sys[k] <c %“;
out <c ‘M” ;
out cc startX.max_targets <e “k”;
for(k=O; k<startX.max_targets; k++)

out e< startX.targs[k];
out <e “k” ;
out cc soln.selections <<”” cc soln,max_gene e<”” << soln.ga_pop <c””
<c soln.mutation_pr cc “” << soIn.xchange_pr <c “” << soln.opt_soln <c” \n”;

.

for{ k=O; kcsoln.ga_pop; k++)

{
for(int kk=O; kkcsoln.max_gene; kk++)

out <e soln.ga_chromo[k] [kk] <e” “cc opt_index[k][kk] cc” “ ;
out << %“ ;

}
out cc ‘~n” ;
return;

); jj
//

void

{
//
//
//

Block: 77
++

Allocation:: Gen_Restart(istream& in)

Read All Information Related To Allocation To A File For Restart

in >> exists ;
in >> DEBUG >> fi_func ;
in >> max_targets ;
in >> base_line_WH >> new_WH >> total_WH ;
sys= new WEAPON_[total_WH+l];
for(int k=O; kc= total_WH; k++)

in >> sys[k];
in >> ga_iter >> ga_pop ;
in >> pd_objective >> F1_form_factor >> beta[O] >> beta[l] >> beta[2] >>
beta[3] >> beta[4] ;

in >> mutation_pr >> xchange_pr;
in >> startX.max_targets;

startX.targs= new TARGET_[startX.max_targets] ;
for(k=O; kcstartX.max_targets; k++)

startX.targs[k] .Reset_Targ(in) ;
in >> soln.selections >> soln.max_gene >> soln.ga_pop >> soln.mutation_pr
>> soln.xchange_pr >> soln.opt_soln ;

soln.lnit_GA_Alloco;
for(k=O; kesoln.ga_pop; k++)

for(int kk=O; kkcsoln.max_gene; kk++)‘ - “-
in >> soln.ga_chromo[k] [kk] >> opt_index[k][kk] ;

e Page 120 of 121>

I . * r ,,

. .

A
w
&
(-9

1

// +++++ Mission Definition (Mission_) +++++

// ++++++++++++ ++++++++++++++++++++++++++++++++++++++

//

// This class define target characteristics and vulnerabilities
//
// ++
//

.
++

class Mission_

{
public:

//
// Define addiitonal model parameters:
//

int exists;
char*obj_name;
intDUMP;

structTARGET_ {
float Iat, Ion, r95, elevation, targ_depth ;
intcatcode, vn, k, lethality, mission, function ;
intgvnl, dsigl, gslopl, gvn2, dsig2, gslop2;
chartc, tgl,tg2;
char vntk[6], gvn[6];
float Wt, Tm_obj, HOB_obj;
TARGET_()

{ lat=O.O; lon=O.O; r95=0.001; elevation=O.O; targ_depth=O.O;
Wt=l .0; Tm_obj=30.O; lethality=O; mission=O; function=O; }

friend istream& operator>>(istream& in, TARGET_& t)

{
chartmp[6];
in >>t.catcode>> t.lat>>t.ion>> t.r95>>t.eievation >>t.targ_depth ;

// in >>t.lethality >>t.mission >>t.function ;
in>>t.vntk;
t.tc=t.vntk[2];
if(t.tc == ‘G’)

{
tmp[O]=t.vntk[O];
tmp[l]=t.vntk[l];
tmp[2]= ‘\O’;
t.gvnl = atof(tmp);
tmp[O]=t.vntk[3];
tmp[l]=’\O’;
t.dsigl = atof(tmp);

c Page 122 of 140>

*

.

t.tgl =t.vntk[4];
in >>t.gvn;
tmp[O]=t.gvn[O];
tmp[l]=t.gvn[l];
tmp[2]= ‘\O’;
t.gvn2 = atof(tmp);
tmp[O]=t.gvn[3];
tmp[l]=’\O’;
t.dsig2 = atof(tmp);
t.tg2=t.gvn[4];

}
else

{
tmp[O]=t.vntk[O];
tmp[l]=t.vntk[l];
tmp[2]= ‘\O’;
t.vn = atof(tmp);
tmp[O]=t.vntk[3];
tmp[l]=’\O’;
t.k = atof(tmp);

}
return in;

}
friend ostream& operatorce(ostream& out, TARGET_& t)

{’
out <c t.catcode cc” “ << t.lat cc” “ << t.lon <c” “ cc t.r95 <<” “
c< t.elevation cc “ “ cc t.targ_depth cc” “ cc t.Wt cc “ “ cc t.Tm_obj
<< “ “ cc t.HOB_obj cc”” <c t.lethality <<” “ cc tmission e<” “
<< t.function cc “ “ ;
if(t.tc == ‘G’)

out <e t.gvnl c< t.tc cc t.dsigl <e t.tgl cc” “cc t.gvn2 << t.tc
cc t.dsig2 <c t.tg2 cc” “ ;

else
out cc t.vn cc t.tc cc t.k <<” “;

// out c< “\n” ;
return out;

}
};

struct LP_ {
float Iat;
float Ion;
LP_()

{ Iat= 0.0; lon=O.O;}
friend istream& operator>>(istream& in, LP_& t)

{
in >> t.lat >> t.ion;

< Page 123 of 140> ,<

return in;

}
friend ostream& operator<<(ostream& out, LP_& t)

{
out cc “Launch Pt(Iat: “<e t.late<” long: “c< t.lone<’[) “ cc “\n”;
return out;

}
—

};
int max_targets;
TARGET_* targs;
int catcodes ;
int **trans_tbl;
int max_lps;
LP_* lpS;
int pts_curve;
int DC_req;
float overpressure, dynamicpressure, g_shock, wrO;
float* rr;
float* hh;

//
// Define addiitonal member functions:
//

Mission_(); // constructor
int Adj_vn(int, int, float);
float Brode_84(float, float);
float Brode_DP(float, float);
void CatCode_Trans();
float CR_calc(int, int, float);
float DP_calc(int, int, float);
void Dump_Mission_(ostream& out);
float Gr_coupling(float, float);
float OP_calc(int, int, float);
void OP_contour(float);
float Relative_dist(int, int);
void Vul_Setup(int, float);
float WR_cr(float, float, float);
float WR_dp(float, float, float);
float WR_gvn(int, float, float);
float WR_op(float, float, float);

//
// overload the input and output operators
//

friend istream& operato->(istream& in, Mission_&);
friend ostream& operatore<(ostream& out, Mission_&);

}; // Block: 79

—-

< Page 124 of 140>

// ++

// NOTE: The integers in the constructor must be adjusted to reflect
// the number of variables and arguments in the model

* Mission_:: Mission_()

{
.

obj_name = new char[l O];
//
// Define default conditions
//

exists= FALSE;
strcpy(obj_name,’’None”);
DUMP=FALSE;
max_targets=l;
pts_curve=50;
DC_req=FALSE;

char tmp2[4];

1; // Block: 88

// +++++*+++

istream& operator>>(istream& in, Mission_& t)

{
chartmp_in[15];
t.existsQTRUE;
in >> tmp_in;
while(strcmp(tmp_in,’’eoi’’)!=O)

. {
//
,, .

Output The Mission_ Keywords As They Are Loaded
//

Cout <c “----- Mission_ Keyword : “ <c tmp_in c< “\n” cc flush;
if(strcmp(tmp_in,’’Targets”) == O)

{
in >> t.max_targets;
t.targs = new TARGETfl t.max_targets];
for(int k=O; kc t.max_targets; k++)

, i
in >> t.targs[k];

. }
}

else if(strcmp(tmp_in,’’Launch_Pts”) == O)

{

< Page 125 of 140>

— I

in >> t.max_lps;
t.lps = new LP_[t.max_lps];
for(int kk=O; kkc t.max_lps; kk++)

in >> t.lps[kk];

}
else if(strcmp(tmp_in,’’Dump”) == O)

t.DUMP=TRUE ;
else if(strcmp(tmp_in,’’Translation”) == O)

{
in >> tmp_in;
ifstream tbl_in(tmp_in);
tbl_in >> t.catcodes;
t.trans_tbl = new int’[t.catcodes];
for(int tb=O; tbc t.catcodes; tb++)

{
t.trans_tbl[tb] = new int[4];
for(int tb2=O; tb2 < 4; tb2++)

tbl_in >> t.trans_tbl[tb][tb2];

}
}

else if(strcmp(tmp_in,’’Contour_pts”) == O)

{
in >> t.pts_curve;
t.rr = new float[t.pts_curve];
t.hh = new float[t.pts_curve];

}
else

{
cerr <e “Error: (Mission_ Input) unacceptableinput option : “ <c tmp_in
cc “\n” cc flush”;

}; // Block: 81
in >> tmp_in;

); // Block: %2
//
// Provide Mapping From Catcodes To Fuzzy
//

t.CatCode_Transo;
tout << “----- Mission_ :: Input Complete\n” << flush;
return in;

); // Block: 83

// ++++++++++++ ++++++++++++++++++++++++++++++++++++++

ostream& operator@ ostream& out, Mission_& t)

{

●

✌

< Page 126 of 140>

//

// provide coding to represent the ouput desired for this object
//

out << t.obj_name;
return out;

}; // Bloek:iM
//+++

9‘Adj_vn(int t_vn, int t_k, float yld)int Mission_..

{
floatavn;
float a,b,c,d,e;
a=t_k/10-l.O;
b = pow((20.0/yld),0 .3333);
c = 0.5*pow((t_k*b/.l 0),2) - a;
d = sqrt(C*C- a’a);
e = c+d;
avn = 5.485* log(e)+t_vn;

return(avn);

1; // B1ocIc85
//+++

float Mission _:: Brode_84(float xt, float yt)

{
float a,b,c,d,e,f; .

float g,h,p,q,r;
float x,y,z;
float deltap,dpl ,dp2,dp3,dp4,dp5;

deltap = 0.0;
x=xt/looo.o;
y=yt/looo.o;
r=sqrt(x*x+y*y);
if(xeO.00005) x=O.00005;
z = y/x;

if(fabs(z)e= 100.0)

{
a = 1.22-(3.908*z*z) / (1.0+810.2*pow(2,5.0));
b = 2.321 + (f)OW(2,18.0) / (1.0+1.1130*pow(2,18.0)))*6.195

- 0.03831 *pow(2,17.0)/(1.0+0.02415*pow(2,17.0))
+ 0.6692/(1.0+ 4164. O*pow(2,8.0));

c=4.153 - (1.149* pow(z,18.0))/(1.0+1 .641* pow(z,18.0))

< Page 127 of 140>

-1.1 / (1.0+2,771*pow(z,2.5));
d = -4.166+ (25.76*pow(z,l .75)) / (1.0+1 .382*pow(2,18.0))

+ 8.257*z / (1.0+3.219*z);
e = 1.0- 0.004642*pow(2,18,0) / (1.0+0.003886*pow(2,18.0));
f = 0.6096+ 2.879*pow(z,9,25) / (1.0 +2.359*pow(2,14.5))

-17.15’2’2 / (1.0+71 .66*Z*Z*Z);
g = 1.83+ 5.361 ‘Z*Z / (1.O+O.3139*pow(z,6.O));
h = -(64.67*pow(z,5.O) +0.2905) / (1.0+441 .5*pow(z,5.O))

- 1.389*z / (1.0+49.03*pow(2,5.0))+ (8.808*pow(z,l .5))
/ (1.0+154.5*Pow(2,3.5)) + (0.0014*r*r / (1.O-O.158*r +
0.0486*pow(r,l.5) + 0.00128*r*r)) * (1.0/(1 .0+2. O*y));

p = 0.000629- 2.67*y*y / (1.O+10000OOO.O*pow(y,4.3));
q = 5.18+ 74000 .O*pow(y,3.5) / (1.0+264000.0*pow(y,4.O));

dpl = 10.47/pow(r,a);
dp2 = b/pow(r,c);
dp3 = d*e/(1.O+f’pow(r,g));
dp4 = h;
dp5 = p/pow(r,q);
deltap = dpl +dp2+dp3+dp4+dp5;

}
else

{
a = 1.22- (3.908*z*z) / (1.0+810.2*pow(2,5.0));
b = 2.321 + (6.195/1.113) - (0.03831/0.02415);
C = 4.153- (1.149/1.641) - 1.1/(1.0+2 .771*pow(z,2.5));
d = -4.166+ 8.257*z / (1.0+3.219*z);
e = 1.0- 0.004642/0.003886;
f = 0.6096- 17.15*z*z / (1.0+71 .66*2*2*2);
g = 1.83+ 5.361*z*z / (1.O+O.3139*pow(z,6.O));
h = -(64.67*pow(2,5.0)+0.2905)/(1.0+441 .5*pow(2,5.0))

- 1.389*z / (1.0+49.03*pow(2,5.0))+ 8.808*pow(z,l .5) /
(1.0+154.5*pow(2,3.5))+ (0.0014*r*r / (1.O-O.158*r+

0.0486~pow(r,l.5)+0.00128*r*r)) * (1.0/(1.0+2.O*y));
‘ p = 0.000629- 2.67*y*y / (1.0+1 0000000 .O*pow(y,4.3));

q = 5.18+ 74000.O*pow(y,3.5) / (1.0+264000.0*pow(y,4.O));
deltap = 10.47/pow(r,a) + b/pow(r,c) + d*e/(1.O+f*pow(r,g))

+ h + p/pow(r,q);
if(deltap <0.0) deltap = 0.0;

} .

return deltap;

1; // Block: 86
//++

c Page 128 of 140>

float Mission _:: Brode_DP(float xt, float yt)

{
//

. // Define the dynamic pressure at xt,yt
// Note: This curve is based on a correlation from Brode & Speicher.
Ii Ref. Air Blast from Nuclear Bursts-analytic approximations;.
// PSR Report 1419-1; H. Brode, S. Speicher
//

float scaled_hob, dpprs ;
float a,b,c,d, psi, xi, scaled_gr;

psi = yt + 0.09;
xi= 0.914*pow(psi,2.5) + 170.O*psi / (1+337. O*pow(psi,O.25)) ;
a = 2.28+ 12.5’ yt’yt / (1+1 .292*yt) ;
b = 3.0+(0.86+2 .47*yt) / (1.0+1 14. O*pow(yt,3.O)) ;
c = (0.21 +2.2*yt)/(1.o+200.o*pow(yt,3.o)) ;
d = (0.008+0.24*yt) / (1.0+260.O*pow(yt,3.O)) ;

dpprs= a / (pow(xt,b) + 0.025*pow(xt,4.5)) + c / (xt + d“pow(xt,4.O)) ;

return dpprs;

}; // Block: 87
//+++

void Mission_:: CatCode_Trans()

{
int CC,CC1,cvl,cvlp, indx;
for(int k=O; kc rnax_targets; k++)

{
cc = targs[k].catcode;
for(int tb=O; tbccatcodes-1; tb++)

{
if(cc >= trans_tbl[tb][0] && cc e trans_tbl[tb+l][0])

{
CVI= cc - trans_tbl[tb][0] ;
cvlp = trans_tbl[tb+l][0] - cc;
if(CVI= cvlp)

indx=tb;
+ else

indx=tb+l;
& break;

}
}

targs[k].lethality= trans_tbl[indx][1];

< Page 129 of 140>

targs[k].mission= trans_tbl[indx][2];
targs[k].function= trans_tbl[indx][3];

}
return ;

1; // Block: 88
//+++

‘-CR_calc(int t_vn, int t_k, float yld)float Mission_..

{
float R=2.O ;
float a, vnl, pl, Rn,dlta ;

//
// Determine Ground Shock ForCratering Targets
//

a= float(t_k)/float(l 0);
dlta=999.O;
while(dlta>O.001)

{
Rn = 1.0- a+ a*pow(R,0.5)*pow((20. O/yld), 0.333);
dlta=abs(Rn-R);
R= Rn;

}
vnl=5.485*log(R) +float(t_vn);
pl = 1.1216* POW(1.2,vnl);
return(pi) ;

}; // Block: 89
//+++++++++++++++++++++++++H+++++++++++++*++++++++++++++++

float Mission_.. ‘mDP_calc(int t_vn, int t_k, float yld)

{
float R=2.O ;
float a, vnl, pl, Rn,dlta ;

//
// Determine the Overpressure
//

a= float(t_k)/float(l O);
dlta=999.O;
while(dlta>O.001)

{
Rn = 1.0- a+ a*pow(R,0.3333) *pow((20.O/yld), 0.333);
dlta=abs(Rn-R);
R= Rn;

}
vnl = 2.742 * Iog(R) +float(t_vn);

e Page 130 of 140>

.

●

pl = 0.02893* pow(1.44,vnl);
return(pl) ;

1; // Block: 90
//+++

void Mission_:: Dump_Mission_(ostream& out)

f

1;
// This Routine Provides Information Related To Mission And A
// Dump Capability To Be Used in Debug, And Potentially Restart
// Function.
//

out << “---- :: Mission_ Dump (bgn) :: ----” cc obj_name <c “\n”;
out << “---- :: Mission_ Dump (---) :: ----“

<C “Storage Para: (max_targets, max_lps, pts_curve)kf’;
out << “---- :: Mission_ Dump (---) :: ---- “ << max_targets << “\t”cc max_lps

cc “\t” <c pts_curve << “\n”;

out << “---- :: Mission_ Dump (---) :: ----”
cc “Convergence Parameters: (overpressure, dynamicpressure, g_shock, WIQ

)\n”;
out << “---- :: Mission_ Dump (---) :: ----” cc overpressure cc “\t”

cc dynamicpressure cc “\t”<e g_shock cc “\t”cc wro cc “\n”;

if(DUMP)

{
out << “---- :: Mission_ Dump (---) :: ---- Target Information : \n” ;
for(int k=O; k<max_targets; k++)

out << “---- :: Mission_ Dump (---) :: ----” cc targs[k] cc “\n”;

}
out <c “---- :: Mission_ Dump (end) :: ---- \n”;
return ;

1; // Block: 91.
//+++++++++++++++++++++++++++++++*++++++++++++++++++++++++++

float Mission _:: Gr_coupling(float bob, float yld)

{

float H_scale,HOB_coupling=l .0;
//
// The Following Is The DNA Equation For A Cool Spectrum
// (Scaled Meters/ret)
//

H_scale= pow((yId/l 000.0),0.333)*hob/ft2rneters;
HOB_coupling= 1.75/pow((H_scale+l),1 .3)+4.5*pow(H_scale,2 .77)/

< Page 131 of 140>

pow((H_scale+l .8),3.6);
//
// The New Dna Correlation (5/92) Is For A Hot Spectrum
// (Scaled Meters/kt)
//

H_scale= hob*ft2meters / POW(yld,O.33333);
,

HOB_coupling= 0.75* POW(H_scale,-O.l 06);
.

return(HOB_coupling);

}; // “Block: 92
//+++

float Mission _:: Relative_dist(int i, int j)

{
//

// Calculate Relative Distance Between Dia’s And Targets For Use
// In Target-dia Assignment
//

float r_earth=3958.76;
float angle, cos_angle;
float distance;

//
// Insert Algorythm For Estimating Distance Between Targets
//

cos_angle= sin(lps[i].lat*deg2rad)“sin(targs~].lat*deg2rad)*
COS((lpsfi].Ion-targs~] .lon)*deg2rad) +
COS(ipsfi].lat*deg2rad)*COS(targs~].lat*deg2 rad);

angle= acos(fabs(cos_angle));
distance= r_earth*angle;
return(distance);

); // Block: 93
//+++

float Mission _:: OP_calc(int t_vn, int t_k, float yld)

{
float R=2.O ;
float a, vnl, pl, Rn,dlta ;

//
// Determine the Overpressure
//

a= float(t_k)/float(l O);
dlta=999.O;
while{ dlta>O.001)

{

.

< Page 132 of 140>

Rn = 1.0- a+ a*pow(R,0.5)*pow((20.O/yld), 0.333);
dlta=.abs(Rn-R);
R= Rn;

}
. vnl = 5.485 * log(R) + float(t_vn);

.pl = 1.1216* pow(1.2,vnl);
return(pl) ;.

}; // Block: 94

//++

void Mission_:: OP_contour(float yld)

{
//

// Define the overpressure damage contour
// Note: This curve corresponds to a Weapon Radius (WR)
// if sigma(d) is zero WR = R50
//

int i,j;
float cube_root;
float rmin =4050.0;
float rmax = 50.0;
float eps = 0.001;
float pfi3],r_pr[3], x,z,angle,angle_rad, delta;

cube_root= pow(yld, 0.33333);
delta = 90.0/ (pts_curve-1);

for(angie=().(),j=O; jepts_curve; angle+=deha,j++)

{
r_pr[2] = rmin;
r_pr[l] = (rmin + rmax) / 2.0;
r_pr[O] = rmax;
pr[2] = Brode_84(rmin,O.O);
pr[O]= Brode_84(O.O,rmax);
angle_rad = angle* deg2rad;
while{ (pr[O]-pr[2]) > eps’ (overpressure))

{
for{ i=O; ie3; i++)

{
b x = r_pr[i] * COS(angle_rad);

z = r_pr[i] * sin(angle_rad);
. pro] = Brode_84(X,Z);

}
if((overpressure) > pr[l])

r_pr[2] = r_pr[l];

< Page 133 of 140>

else
r_p@]= r–ptil];

r_pfil] = (r_pr[O] + r_pr[2]) /2.0;
}

rr~] = cube_root * r_pr[l] * COS(angle_rad);
hh~] = cube_root * r_pr[l] * sin(angle_rad);
// r~] = r_pr[l] * COS(angle_rad);
// hhlj] = r_pr[l] * sin(angle_rad);

}
return;

}; // Block: 95
//++

void Mission_:: Vul_Setup(int targ_indx, float yld)

{
II
// This Routine Sets The Sigma Values And Defines The Weapon
// Radius For Targets Based On The VNTK System.
//

float t_sigma[l 5]={ 0.1,0.3,0.4,0.5,0.2, 0.3,0.1,0.2,0.4,0.5, 0.5,0 .4,0.2,0.1,0.3 };
float sigma, adj_vn ;
float HOB=O.O;

//
// Note: Adding 1 To Indx For Each Offset From L, Q, & V For
// ~ Q & Z Type Targets. The Vector t_sigma Contains The Sigma
// Values For Each T Of The VNTK Classification System.
//

int avn,at,ak;
char ate;
avn= targs[targ_indx].vn;
atc = targs[targ_indx].tc;
ak = targs[targ_indx].k;

int indx=O;
switch(atc)

{
case ‘G’ :

wrO= WR_gvn(targ_indx, yld, HOB) ;
break;

case ‘P’ :
indx = indx+l; ..

case ‘O’ :
indx = indx+l;

.

.

< Page 134 of 140>

case ‘N’:
indx = indx+l;

case ‘M’:
indx = indx+l;

case’lJ :
sigma= t_sigma[indx];
overpressure= OP_calc(avn,ak,yld) ;
wrO= WR_op(yld, sigma, HOB) ;
break;

case ‘U’ :
indx = indx+l;

case ‘T’ :
indx = indx+l;

case ‘S’ :
indx = indx+l;

case ‘R’ :
indx = indx+l;

case ‘Q’ :
indx = indx+5;
sigma= t_sigma[indx];
dynamicpressure= DP_calc(avn,ak,yld) ;
wrO= WR_dp(yld, sigma, HOB) ;
break;

case ‘Z :
indx = indx+l;

case ‘Y’ :
indx = indx+ 1;

case ‘X’ :
indx = indx+l;

case ‘W :
indx = indx+l;

case ‘V’ :
indx = indx+l O;
sigma= t_sigma[indx];
g_shock= CR_calc(avn,ak,yld) ;
wrO= WR_cr(yld, sigma, HOB) ;
break;

default:
tout cc “h ERROR in vntk coding tc =” <e atc cc “W’ cc flush;

}
return ;

}; // Block: 96
//+++

< Page 135 of 140> .L

float Mission_::WR_cr(float yld, float sig, float HOB)

{
//

// Define the overpressure damage contour .
// Note: This curve corresponds to a Weapon Radius (WR)
// if sigma(d) is zero WR = R50

—

//
.

float wr_appx, r50 ;
float rmin =4050.0;
float rmax = 50.0;
float eps = 0.001;
float pr[3],r_pr[3], x,z;

r_pr[2] = rmin;
r_pr[l] = (rmin + rmax) /2.0;
r_pr[O] = rmax;
pr[2] = Brode_84(rmin,O.O);
pr[O] = Brode_84(O.O,rmax);
while((pr[O]-pr[2]) > eps’ (g_shock))

{
for{ int i=O; i<3; i++)

{
x = r_pr[i] ;
z= HOB;
pr[i] = Brode_84(X,Z);

}
if((g_shock) > pr[l])

r_pr[2] = r~r[l];
else

r_p~O] = r_pr[l];

r_pr[l] = (r_pr[O] + r_pr[2]) / 2.0;
r50 = pow{ yld, 0.33333) * r_pr[l] ;

}
//
// Correlation between r50 and WR
//

wr_appx= r50/(1.0- sig”sig);
return(wr=appx);

): // Block: 97
//+++

float Mission_:: WR_dp(float yld, float sig, float HOB)

.- {—

c Page 136 of 140>

//

// Define the dynamic pressure weapon radius
// Note: This curve is based on a correlation from Brode & Speicher.
// Ref. Air Blast from Nuclear Bursts-analytic approximations;

. // PSR Report 1419-1; H. Brode, S. Speicher
//

float r50,wr_appx, scaled_hob ;
float a,b,c,d, psi, xmin, xi, xipl ;
scaled_hob = (HOB/1000.0)/pow(yld,O.333) ;
psi = scaled_hob + 0.09;
xmin = 0.914*pow(psi,2.5) + 170.O*psi / (1+337.O*pow(psi,O.25)) ;

//

// Perform An Iteration To Define The Ground Range For Specific
// Dynamic Pressure
//

float rmin =1 50.0;
float rmax = xmin;
float eps = 0.001;
float pr[3],r_pr[3], x,z;

r_pr[2] = rmin;
r_pr[l] = (rmin + rmax) / 2.0;
r_pr[O] = rmax;
pr[2] = Brode_DP(rmin,scaled_hob);
pr[O]= Brode_DP(rmax,scaled_hob);
while((pr[O]-pr[2]) > eps’ (dynamicpressure))

{
for(int i=O; i<3; i++)

i
x = r_pr[i] ;.
pr[i] = Brode_DP(x,scaled_hob) ;

,, }
if((dynamicpressure) > pr[l])

r~fi2] = r=p~l];
else

r@r[O] = r_pr[l];

r_pr[l] = (r_pr[O] + r_pr[2]) / 2.0;
r50 = 1000.0 * r_p~l] * pow(yld, 0.33333) ;

}b //
—

// Correlation between r50 and WR
A

//

wr_appx= r50/(1.0- sig’sig);
return(wr_appx);

1; // Block: 98

< Page 137 of 140>

//+++

floal

{
//
//
//

Mission_::WR_gvn(int targ_indx, float yld, f!oat HOB)

Define the weapon radius for GVN type targets

charbaseC=’A’ ;
float slope[22]={ 0.1,0.2,0.25,0.3,0.325, 0.35,0.375,0.4,0.425, 0.45,0.475,

0.5,0.525,0.550,0.6, 0.65,0.7,0,75,0.8,0.85, 0.9, 1.0 };

int gvnl, gslopl, gvn2, gslop2, sl_indxl, sl_indx2 ;
float sig ;
gvnl = targs[targ_indx].gvnl;
gvn2= targs[targ_indx].gvn2;
sl_indxl = targs[targ_indx].tgl - baseC ;
sl_indx2= targs[targ_indx].tg2 - baseC ;

//
// Next Begin The Depth-to-Effect (DTE) Calculations.
//

float dtel ,dte2,dte, Yover, eff_yld ;
if(HOB >=0,5)

{
eff_yld = yld * Gr_coupling(HOB, yld) ;

}
else

eff_yld= yld;

Yover = 20. O*pow(1.07,((gvn2-gvnl)/(slope[sl_indx2]-slope[sl_indxl]))) ;
dtel = (pow(eff_yld/20,0, slope[sl_indxl]))*(4000.O/pow(l .07,gvnl)) ;
dte2 = (pow(eff_yld/20.0, slope[sl_indx2]))*(4000. O/pOW(l.07,gvn2)) ;

//
// Now Choose Based On The Effective Yield Relative To The
// Cross Over Yield.
//

if(eff_yld c= Yover)

{
sig= float(targs[targ_indx].dsigl)/ 10.0;
dte = dtel ;

}
else

{
sig= float{ targs[targ_indx].dsig2)/ 10.0;
dte = dte2 ;

}

4

.

c Page 138 of 140>

//

// The Next Calculation Estimates A Vertical Weapon Readius Which
// Is Used To Approximate The Horizontal Wr.
//

float wr_appx, vert_wr;
vert_wr = dte / (1- sig’sig) ;

//
// Also if the depth to target is greter than the depth to effect we need
// to force conditons which will yield a Pk of 0.0
//

if{ abs(targs[targ_indx].targ_depth) >= vert_wr)
vert_wr = 0.0001;

//
// (Appears That The Assumption Is That The Damage Contour Or
// DTE Is Spherical And A root(2) Approximation Is Used.)
//

.

wr_appx = 1.414213562 * vert_wr;
return(wr_qq3x);

); // Block: 99
//++++++++++H+++

float Mission_::WR_op(float ylcf, float sig, float HOB)

{
//

// Define the overpressure damage contour
// Note: This curve corresponds to a Weapon Radius (WR)
// if sigma(d) is zero WR = R50 –
//

float wr_appx, r50;
float rmin =4050.0;
float rmax = 50.0;
float eps = 0.001;
float pr[3],r_pr[3], x,2;

r_pr[2] = rmin;
r_pr[l] = (rmin + rmax) / 2.0;
r_pr[O] = rmax;
pr[2] = Brode_84(rmin,O.O);
pr[O]= Brode_84(O.O,rmax);
while((pr[O]-pr[2]) > eps’ (overpressure))

{
for(int i=O; ic3; i++)

{
x = r_pr[i] ;
z= HOB;

< Page 139 of 140>

pr[i] = Brode_84(X,Z);

}
if((overpressure) > pfil])

r_pr[2] = r_pr[l];
else

r_pr[O] = r_pr[l];

r_pr[l] = (r_pr[O] + r_pr[2]) / 2.0;
r50 = pow(yld, 0.33333) * r_pr[l] ;

}
//
// Correlation between r50 and WR
//

wr_appx= r50/(1.0- sig”sig);
return(wr_appx);

}; // Block: 180

*

< Page 140 of 140>

// +++++ Random Number operations (randint) +++++

#include climits.h>

x

class randint
.

{
// ----------------------------- --------------------------- --------------------

// Object for generating random numbers
// gauss is used to draw from a normal distribution
// ----------------------------- ------------------------------ -----------------

long randx;

void getxo

{randx=randx*1103515245 + 12345;}

public:
int e_siz;
int **e_dist;

randint(longs = 1000)

{
randx =s;
e_siz=O;

// e_dist= new int*[2];
// e_dist[O]= new int[s];
// e_dist[l]= new int[s];

}

void seed(longs)

{ randx =s; }

long get_seed()

{ return randx; }

+ int drawo

.
{
getxo;
return randx & LONG_MAX;

1

< Page 141 of 144>

float fdrawo

{
getxo;
return (randx & LONG_MAX) / (float) LONG_MAX;

}

int exp_dist()

{
int valu=O.O ;
int indx2;
indx2= int(fdrawo*e_siz) ;
valu= e_dist[1][indx2] ;

//
Ii Draw Without Replacement
//

for(int k=indx2; k<e_siz-1; k++)
e_dist[1][k]= e_dist[1][k+l] ;

e_siz -=1;

return (valu) ;

}

void exp_dist_Rep(int tmp)

{
e_dist[1][e_siz]= tmp;
e_siz +=1;
return ;

}

void Setup_exp_dist(int’ hist, int siz)

{
float valu=O.O ;
e_siz= siz;
e_dist = new int’[2];
e_dist[O]= new int[e_siz];
e_dist[1]= new int[e_siz];

for(int k=O; kc siz; k++)

{
e_dist[O][k] = k;
e_dist[1][k] = hist[k] ;

}

< Page 142 of 144>

return ;

}

\ void CleanUp_dist()

{
.

e_siz=O;
delete e_dist;
return;

}; // Block: 181

void Swap{ float* a, float* b)

{
float temp;
temp= *a;
*a=*b;
‘b=temp;
return;

); // B1ock: 1.02

void Sort(float* A, int sz)

{
int top, search;
for(top=O; topcsz-1; top++)

for{ search=top+l; searchcsz; search++)
if(A[search] > A[top])

Swap{ &A[search], &A[top]);
return;

); // Block: 103

float gausso

{
static int iset=O;
static float gset;
float fac,r,vl ,v2;

if(iset == O)*
{
do

~ {
—

V1 = 2.0’ randint::fdrawo - 1.0; .. .
V2 = 2.0’ randint::fdrawo - 1.0;
r = vI*vI + v2*v2;

< Page 143 of 144>

} while(r>=l.0);

fac = sqrt(-2. O*log(r)/r);
gset = vl ‘fat;
iset = 1;
return v2*fac;

}
else

{
iset=O;
return gset;

}
/’/ Block: 184

.

.

,

< Page 144 of 144>

// ++

II __ ++++++++++++++++++++++*++++++++++++++++++++++++++
// Controlling Object For The WEAPON_ Function
// ++

x // ++

class WEAPON_

{.
public:

//
// Define addiitonal model parameters:
//

int exists;
char*obj_name;

float yield, faIlout_free ;
int inventory, allocated ;
intbase_fz_opt, new_fz_opt, total_fz_opt;

//
// NOTE: System Response Characteristics Are Being Defined By
// A Gamma Distribution.
//

float alpha, beta, gamma ;
float*ceps, *hobs, ‘relia;
int*opt_inv;
intYield_opt, lnv_opt;

WEAPON_(); // Constructor
//
// overload the input and output operators
//

friend istream& operato~>(istream& in, WEAPON_&);
friend ostream& operatorcc(ostream& out, WEAPON_&);

//
// Define addiitonal member functions:
//

WEAPON_& operator=(WEAPON_&);
void WEAPON_Load(istream&);
void WEAPON_Setup(int) ;

/ }; // ~k3Ck: 106

WEAPON_::WEAPON_().

{
obj_name = new char[l O];

< Page 145 of 150>

exists=FALSE;
strcpy(obj_name,’lNone”);

Yield_opt= TRUE ;
lnv_opt= TRUE ; /
yield= 10.O;
inventory=O;
base_fz_opt=O; .

new_fz_opt=O;
total_fz_opt=base_fz_opt+new_fz_opt;
alpha=2.O;
beta=l .0;
gamma=-l .0;
allocated=O;

1; // Block: IW

istream& operator>>(istream& in, WEAPON_& t)

{
char tmp_in[l 5];
char tmp_file[l 5];
t.exists=TRUE;
in >> t.yield >> t.inventory >> t.base_fz_opt >> t.new_fz_opt ;
t.total_fz_opt= t.base_fz_opt + t.new_fz_opt;
t.ceps= new float[t.total_fz_opt];
t.bobs= new float[t.total_fz_opt];
t.relia= new float[t.total_fz_opt];
t.opt_inv= new int[t.total_fz_opt+l];
for(int k=O; kc t.total_fz_opt; k++)

in >> t.ceps[k] >> t.hobs[k] >> t.relia[k] ;
in >> t.alpha >> t.beta >> t.gamma;

//
// Note: Define The Fallout Free HOB To Be The Following
//

t.fallout_free = 180.O*pow(t.yield,O.3333) ;
return in;

): 1/ Block: 108
// +++++++++++++ +++++++++++++++++++++++++++++++++++++

ostream& operatorc<(ostream& out, WEAPON_& t)

{
//

// provide coding to represent the ouput desired for this object
//

.

< Page 146 of 150>

out << “\t---- :: Weapon_ Dump (bgn) :: ----”<< t.obj_name <c “\n”;
out << W---- :: Weapon_ Dump (---) :: ---- Yield:” cc t.yield

<c ‘N Inventory:” c< t.inventory cc ‘N Allocated : “ cc t.allocated cc” \n” ;

k out <c “V---- :: Weapon_ Dump (---) :: ---- Total Fuze Options: “
cc t.total_fz_opt <c” \n” ; —

.
out <c “\t---- :: Weapon_ Dump (---) :: ----” ;
for(int k=O; kc t.total_fz_opt; k++)“ -

out <<’N”<< t.ceps[k] cc’’lt”c< t.hobs[k] <clt”ec t.relia[k] ec’’lt”ce t.opt_inv[k] ;

out cc ‘ln\t---- :: Weapon_ Dump (---) :: ---- Delivery Time: \t”
c< t.aipha <e ‘N” <c t.beta << ‘N” << t.gamma <<” \n”;

out c< “\t---- :: Weapon_ Dump (end) :: ----\n”;
return out;

); // Block: 109

void WEAPON_:: WEAPON_Load(istream& in)

{
char tmp_in[l 5];
char tmp_file[l 5];
exists=TRUE;
int tmp;
in >> tmp_in;
while(strcmp(tmp_in,’’eoi”) !=0)

{
//
// Output The Weapon_ Class Keywords As They Are Loaded
//

Cout <c “----- WEAPON_ Keyword : “ cc tmp_in c< %“ << flush;

//

II
//

,

.

——

if(strcmp(tmp_in,’’Yield”) == O)

{
in >> yield;
Yield_opt=FALSE;

Note: Define The Fallout Free HOB To Be The Following

fallout_free = 180.O*pow(yield, O.3333) ;

}
else if(strcmp(tmp_in,’’lnventory”) == O j

{
in >> inventory;
lnv_opt=FALSE;

}

< Page 147 of 150>

else if(strcmp(tmp_in, “Options”) == O)
[

;n=> base_fz_opt >> new_fz_opt;
totaI_fz_opt=base_fz_opt+new_fz_opt;
ceps= new float[total_fz_opt];
bobs= new float[total_fz_opt];
relia= new float[total_fz_opt];
opt_inv= new int[total_fz_opt+l];

//
// Default Hobs: Imply Variable Hob Settings
//
// Default relia: 1.0
//

for(int kl =0; kl ctotal_fz_opt; kl ++)

{
hobs[kl] = 99999.0 ;
relia[kl] = 1.0;
opt_inv[kl] = O ;

}
}

else if{ strcmp(tmp_in,’’CEPs”) == O)

{
for(int k=O; k< base_fz_opt; k++)

in >> ceps[k] ;

}“
else if(strcmp(tmp_in,’’HOBs”) == O)

{
for(int k=O; kc base_fz_opt; k++)

in >> hobs[k] ;

}
else if(strcmp(tmp_in,’’SysRelia”) == O)

{
float tmp_relia;
in >> tmp_relia;
for(int k=O; kc base_fz_opt; k++)

relia[k] = tmp_relia;

}
else if(strcmp(tmp_in,’’Reliability”) == O)

{
for(int k=O; kc base_fz_opt; k++)

in >> relia[k] ;

}
else if(strcmp(tmp_in,’’Response”) == O)

{
in >> alpha >> beta >> gamma ;

}

c Page 148 of 150>

‘

4

else
cerr cc “Error: (WEAPON_ Input) unacceptableinput option : “ c< tmp_in
<e “\n” cc flush;

in >> tmp_in;

}; // Mock: 110

return;

}; // Block: 111

void WEAPON_ ::WEAPON_Setup(int num_opts)

{
//

// Set Space For Fuzing Options Of A Weapon System
//

ceps= new float[num_opts];
bobs= new float[num_opts];
relia= new float[num_opts];
opt_inv= new int[num_opts+l];
return;

}; // Block: 112

WEAPON_& WEAPON_: :OPWWOt’=(WEAPON_& aWeaPOII)

{
//

// Equating One Weapon To Another “ A = B “
//

yield= aWeapon.yield ;
inventory= aWeapon.inventory;
base_fz_opt= aWeapon.base_fz_opt ;
new_fz_opt= aWeapon.new_fz_opt ;
total_fz_opt= aWeapon.total_fz_opt;
for{ int i=O; ieaWeapon.total_fz_opt; i++)

{
ceps[i] = aWeapon.ceps[i];
hobs[i] = aWeapon.hobs[i];
relia~] = aWeapon.reiia[i];
opt_inv[i] = aWeapon.opt_inv[i];

}
alpha = aWeapon.alpha;
beta = aWeapon.beta;
gamma = aWeapon.gamma;

Yield_opt= aWeapon.Yield_opt;

< Page 149 of 150> .<

lnv_opt= aWeapon.lnv_opt;
allocated= aWeapon.allocated;

return *this;

); // Block: 113

—

—

< Page 150 of 150>

.

.

APPENDIX K Code listing for fuzzy logic algorithms.

// +++++ Main Fuzzy Analysis +++++

#include “header.h”

#include “FzSet.h”
#include “FzHedge.h”
#include “FzVariabie.h”
#include “FzRule.h”
#include “Fzlssue.h”
#include “FzDecision.h”

int main(int argc, char *argv[])
.

{
tout cc “+++++++++ Begin Assessment +++++++++\n”;

FzDecision bsl;
bsl .Load_Model(argv[l]);
bsl .Dump_Model(“z_info”);
bsl .Run_Model(“z_tracking”); --
bsl .Dump_Results(“z_result”);

tout cc “+++++++++ End Assessment +++++++++ln”;

}; // Block: 114

// +++++ Fuzzy Decision Algorithms (FzDecision) +++++

class FzDecision

{
//

//

//

//

//

//

//

//

//

//

//

//

//

//

++

.

This class represents the highest (or lowest) block of atributes and
functions needed topedorm fuzzy modeling. Another classes are
supporting members of the FzDecision c/ass.

References:
COX,E., The Fuzzy Systems Handbook, AP Professional
(a div of Harcourt Brace & Co.), 1994, ISBN 0-12-194270-8
Klir, G.J., Folger, T.A., Fuzzy Sets, Uncertainty& Information,
Prentice Hall, 1988, ISBN 0-13-345984-5

Code structure :

T
FzDecision ~

—.”
Load_Model

_ Pare.e_Rule
lssue_lD

Dump_Model
Dump_Re$ulfs
Store_Results

Run_Model
Rule_AggregaUon
Find_FzVariable

DeFuzzify
Z_AND f Z_OR

I

Variable_Setup
Variable_Oufput

Resaf_FS
FMd_FzSet

Find_FzHedge

Load_Rule Load_lssue
Dump_Rule Dump_ls$ue

—

“- r————1
I

10
Fz_bdtieJze

Setup_CustOmize
Setup_Gauss
Setup_Linear

Setup_Sigmoid
Set up_Tri

Setup_UnifOrm

Centroid
Ave_Max

MaX_Edge

Degree_of_Trufh
Get_Max

Alfacut_Above
Normelize_FZS

//

< Page 152 of 172>

//

//

If
//

. //
//
II.
//
//
//
//

//

//

II
//
If
//
//
//
//
II
//
//
//
//
//

.

i
.

Proaram construction:

Main program requires a FzDecision variable declaration, a call to
Load_Model, a call to Run_Model, and Dump_Results to
constitute a fuzzy program. An example follows:

FzDecision bsl;
bsl .Load_Model(argv[l]);
bsl .Dump_Model(“z_info”);
bsl .Run_Model(“z_tracking”);
bsl .Dump_Results(“z_result”);

File names are passed as arguments for defining; input, tracking,
and output.

Member Functions include:

Setup and output related functions:
Load_Model, Dump_Model, Dump_ReSUl@lSSUdD,
Manipulation& transformationrelatedfunctions:
Store_Results,Find_FzVariable,Parse_Rule,Reset_Var,
Rule_Aggregation,
Executionrelatedfunctions:
Run_Model, DeFuzzify, Z_AND,Z_OR();

The following depicts the processing of a fuzzy rule(s):

Taraet Hardness

---..----;----25.25

Soil Moderate Moderate; Hard
soil Hard ;

. .

,
Taraet OtTensiveness

..w

,. -----,-

:onstiiution CnTensive

Taraet Importance

Low

if Taraet HardnessisHardand Taraet OffensivenessisOffensivethenTaraet lm~ortmceis-me

ifTaraet HardnessisModerateHardand Taraet Offensivenessis Defensive thenTaraet importance is Moderate

c Page 153 of 172>

//

//

}1
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
II
//

public:

The degree of truth of each preposition is ascertainedand then a
Zadah type AND_ function is activated to determin the level to
associate with the then part of the proposition. As a result of the
2 rules the heavy surface is defined from which defuzification will
produce a quantitative assessment of the targeting importance.

r

The Issue_ construct of these algorithms permits a structured 4

approach for answering multiple issues as well as coupling a
number of variables into a global model.

hmut Format:

Load_Nlodelo controls input of all elments of the fuzzy model, it
may transfer control to another function but the call is initiated in
FzDecision member functions.

Input Keywords include:
rule, variables, issues, defuzzify, runs, & eoi for termination.

+++++ ++

int De_Fuz;
int max_runs;
FzVariable* var;
FzVariable* last_var;

Rules_* first_rul~
Rules_* last_rule;
Rules_* current_rule;

Issue_* first_issue;
Issue_* iast_issue;
Issue_* current_issue;

struct Parsed_
.

/:

// Note: more space has been allocated(4)than allowed(3) for
// rule atoms to mitigate a problem that surfaced during initial
// development. The problem surFace in the function which parses
// the rules. no idea 10/30/94
//

char ID[5];
int n_pred;

.

,

< Page 154 of 172>

FzVariable* Vr[4];
Hedge_* Hd[4];
FzSet* St[4];
int Opij[4];

. int Aggregation_Op ;
Parsed_ *next;
Parsed_(Parsed_ *p).

{ next=p; n_pred=3; }
1; // Bkxk: 115

Parsed_* pi_r;
Parsed_* pi_first;

double final[VECMAX];
double wrk[VECMAX];

//
// Define Addiitonal Member Functions:
//

void
void
void
void
FzVariable*
void
void
void
void
void
void
void
void
void
int

FzDecisiono;
Assess_lssues(float*, float*);
DeFuzzify(int);
Dump_Model(char*);
Dump_Results(char*);
Find_FzVariabIe(char*);
lssue_lD();
Load_Model(char*);
Parse_Ruleo;
Reset_Varo;
Rule_Aggregation(FzVariable*, int);
Run_Model(char*);
Store_Results(int, ostream& out);
Z_AND();
Z_OR();
Z_Truth();

}; // Block: 116
// +++++++++ ++
// NOTE: The integers in the constructor must be adjusted to reflect
// the number of variables and arguments in the model

FzDecision::FzDecision()
.

{
● // Define default conditions

De_Fuz=CENTROID; .

first_rule=O;

< Page 155 of 172>

last_rule=O;

first_issue=O;
last_issue=O;

last_var=O;
.

pi_first=O;
.

max_runs=l;

1; // Block: 117
// +++++++++++++ ++++++++++++++++++++++++++++++++++++
// FunctionThat Runs The Fuzzy Logic Algorythmsforan issue
// assumingthatthe algorithm is buried inacodethatcan set
// casesclervalues onthefly.

void FzDecision::Assess_lssues(float* info_in, float* info_out)

{
FzVariable* V[3];
Hedge_* H[3];
FzSet* S[3];
double tr_V;
double final_truth;
int i,j,i_if,i_then, aggr_op;
lssue_::RO_* loc_ro;
int issue_index=O;

//

//

//

//

//

//

//

//

for(current_

Set Outer Outer Loop To Handle Multiple Issues In
The Decision Space.

Issues correlate to finding consequent fuzzy sets, e.g. A problem is
searching for priorities of a process as well as trying to determine
overall risk, in this case we are dealing with two basic issues.

issue= first_issue; current_issue != O;current_issue= current_issue-
>next)

{
int j=O;

{
for(i=O; ieVECMAX; i++)

final[i]=O;
//
// Each Issue Is Comprised Of A Number Of Rules, 1-Many.
//

for(loc_ro= current_issue-> rll; loc_ro != O; loc_ro= loc_ro->next)

{

,

.

< Page 156 of 172>

pi_r= (Parsed_*) loc_ro->add_;
Reset_Varo;

//

//

. //

//

//

//

//

//

//

//

//

//

//

//

//

//

Identify All Variables In The Rule, All Hedges And All Fuzzy Sets

for(i=O; icpi_r->n_pred; i++)

{
V[i]= (pi_r->Vr[i]);
H[i]= (pi_r->Hd[i]);
S[i]= (pi_r->St[i]);

}

Perform All Hedge Operations

for(i=O; i<pi_r->n_pred; i++)
if(H[i] != O)
H[i]->Tran(‘So]);

This Identifies The Proposition Predicate Portion Of The Rule And
The Consequent Portion Of The Rule Under Evaluation.

i_if=i_then=O;
for(i=O; icpi_r->n_pred; i++)

{
if(pi_r->Opij[i] == lF_) i_if=i;
if(pi_r->Opij[i] == THEN_) i_then=i;

}

Assess The Degree Of Truth For The If Predicates. Each
proposition predicate exhibits a degree of truth based on the value
of the scalers used in the current run, These values are used to
condition the consequent.

final_truth=l .0;
for(i=i_if; i<i_then; i++)

{
V[i]->scaler~] = info_in[i];
switch (pi_r->Opij[i])

{
case lF_:
case AND_:

tr_V= S[i]->Degree_of_Truth(V[i]->scaler~]);
if(tr_V < final_truth)

final_truth= tr_V;
break;

case OR_:

< Page 157 of 172>

tr_V= S[i]->Degree_of_Truth(V[i]->scaler~]);
if(tr_V > final_truth)

final_truth= tr_V;
break;

default:
break;

.

}
}

.

//
// Work The Then Side Of The Predicates; assumes A Zadah Type And
//

for(int k=O; kcVECMAX; k++)
if(final_truth c S[i_then]->mu_wrk[k])

wrk[k]= final_truth;
else

wrk[k]= S[i_then]->mu_wrk[k];
//
II Final rule(s) combinatorics
//

if(i_then c= O)
aggr_op=M lN_Ml N;

else
aggr_op=pi_r->Aggregation_Op;

Rule_Aggregation(V[i_then], aggr_op);

}
//
// Corn 36 De-fuzzification Must Now Be Performed
//

DeFuzzify(j);

}
// --------------------------- ----

V~_then]->result_var = FALSE;
info_out[issue_index] = V[i_then]->scaler~] ;
issue_index +=1;

// ----------------------------- -.

}
return;

1; // IUock: 118

// +++++++++++ +++++++++++++++++++++++++++++++++++++++

//Fuction which de fuzzifies the solution variable after a model run

void FzDecision::DeFuzzify(int ijk)

{
double result=O;

.

FzSet* fs_tmp;

< Page 158 of 172>

.

●

Reset_Varo;

var=last_var;
. while(var!=O)

{
if(var->result_var == TRUE).

{
fs_tmp = var->fs_result;
if(var->num_scaler <= O)

{
var->num_scaler= max_runs;
var->scaler= new double[max_runs];
var->D_o_T = new double[max_runs];

—

}
switch (De_Fuz)

{
case CENTROID

result= fs_tmp->Centroido;
break;

case AVGMAXIMUM:
result= fs_tmp->Ave_Maxo;
break;

case MAXiMUM :
result= fs_tmp->Max_Edgeo;
break;

default:
result=l .0e9;
break;

}
var->scaler[ijk]= result;
var->D_o_T[ijk]= fs_tmp->Degree_of_Truth(result);

}
var=var->next;

}

return;

}; if
//

. void

● {

Mock: 119
++

FzDecision::Dump_Model(char* O_file)

ofstream out(O_file);

for(current_rule= first_rule; current_rule !=0; current_rule= current_rule->next)——

< Page 159 of 172>

{
out cc “\nRule: “ c< (*current_rule) .ID c< “\n”;
current_rule->Dump_rule(out);

}
for(var= last_var; var !=0; var= var->next)

var->Variable_Output(out);
return;

1; // Block: 120
// +++

void FzDecision::Dump_Results(char* O_file)

{
ofstream out(O_file);
int i;
var=last_var;
while(var!=O)

{
if(var->result_ == TRUE)

{
out cc “\n Fuzzy Variable:” cc var->Fz_Var_i D c< “\n”;
for(i=O; icvar->num_scaler; i++)

out c< “ “ cc var->Fz_Var_l D <c “[” cc i+l <c “] “
e< var->scaler[i] cc “ DoT “<< var->D_o_T~] c< “\n”;

//
// Print Out Again For Use With Plotting Programs
//

out << “\n\n Fuzzy Variable:” c< var->Fz_Var_lD <c “(Scaler Values)\n”;
for{ i=O; i<var->num_scaler; i++)

out << “ “ cc var->scaler[i];
out cc “\n\n Fuzzy Variable:” <c var->Fz_Var_lD c< “(Deg of Truth)b”;
for(i=O; ievar->num_scaler; i++)

out c< “ “ cc var->D_o_T[i];

}
var=var->next;

}
//
// for(var= last_var; var !=0; var= var->next)
// var->Variable_Output(out);

return;
}; // Block: 121

// ++++++++++++ ++++++++++++++++++++++++++++++++++++++

FzVariable* FzDecision::Find_FzVariable(char* v_nam)

.

{

< Page 160 of 172>

FzVariable* rtn_v;
rtn_v=O; .
var=last_var;
while(var!=O)

. {
if{ strcmp(var->Fz_Var_lD, v_nam) == O)

rtn_v=var;.
var=var->next;

}

return(rtn_v);

1: // Block: 122
// ++++++++++++++++++++ ++++++++++++++++++++++++++++++

//a then logic function

void FzDecision::lssue_lD()

{
lssue_::RO_* loc_ro;

for(current_issue= first_issue; current_issue != O;current_issue= current_issue-
>next)

{
ioc_ro=(current_issue->rll);
while (1)

{
//
// Now compare the rule with a parsed rule for a series of matches
//

pi_r= pi_first;
while(pi_r != O)

{
if(strcmp(loc_ro->r_lD, pi_r->lD) == O)

loc_ro->add_ = pi_r;
pi_r= pi_r->next;

}
if(loc_ro == (current_issue->rln))

break
loc_ro= loc_ro->next;
.

f }*
return;

e); // Bloek:123
// +++++*+++

ePage1610f172 > .U

void FzDecision::Load_Model(char* l_file)

{
ifstream in(l_file);
char tmp_in[l 5];
in >> tmp_in;

.

while(strcmp(tmp_in,’’eoi”) !=0)
—

{
.

Cout << “----- FzDecision Keyword :” cc tmp_in cc %“ << flush;
if(strcmp(tmp_in,’’ ruie”) ==0)

{
current_rule = new Rules_(last_rule);
last_rule= current_rule;
current_rule->Load_ru le(in);
in >> tmp_in;

}
else if(strcmp(tmp_in,’’variables”) ==0)

{
var = new FzVariable(last_var);
last_var= var;
var->Variable_Setup(in);
in >> tmp_in;

}
else if(strcmp(tmp_in,’’issues”) ==0)

{
current_issue = new lssue_(last_issue);
last_issue= current_issue;
current_issue-> Load_issue(in);
in >> tmp_in;

}
else if(strcmp(tmp_in,’’defuzzify”) ==0)

{
in >> tmp_in;
if(strcmp(tmp_in, “CENTROID”) == O)

De_Fuz=CENTROID;
else if(strcmp(tmp_in, “AVGMAXIMUM”) == O)

De_Fuz=AVGMAXIMUM;
else if{ strcmp(tmp_in, “MAXIMUM”) == O)

De_Fuz=MAXIMUM;
else

tout cc “\nERROR: Not a developed defuzzification routine” cc flush;
in >> tmp_in;

}
else if(strcmp(tmp_in,’’runs”) ==0)

{
— in >> max_runs;

< Page 162 of 172>

in >> tmp_in;

}
else

{
. cerr cc “Error: (FzDecision Input) unacceptable input option : “ <c tmp_in

cc “\n” << flush;

}
1.
17

//
// Identify the first rule in the decision space
//

for(current_rule= last_rule; current_rule->prev != O;
current_rule= current_rule->prev)

{
(current_rule-> prev)->next= current_rule;

}
first_rule= current_rule;

//
// Corn 37 Execute The Function Which Parses The Rules;
// Rules And Variables Must Be Loaded
//

Parse_Ruleo;
//
// Corn 38 Identify The First Issue In The Decision Space
//

for(current_issue= last_issue; current_issue-> prev != O; current_issue=
current_issue-> prev)

{
(current_issue->prev) ->next= current_issue;

}
first_issue= current_issue;

//
// Corn 39 Identify & Associate The Address Of The Parsed Rule With An Issue
//

—

lssue_lD(); ‘–

return;

): // Block: 124
// +++++++ +++

< void FzDecision::Parse_Rule(-)

. {
FzSet* tmp_St;
Hedge_* tmp_Hd;
FzVariable* tmp_Vr;

< Page 163 of 172>

int cnt;
//

// Corn 40 Parse The Rules In Order To Prepare For Execution
//

for(current_rule= last_rule; current_rule != O;current_rule= current_rule->prev)

{
pi_r = new Parsed_(pi_first);
pi_first= pi_r;

//

//

//

//

//

//

//

/[

//

//

//

//

Zero Out Elements In The Parsed Structure

for(int i=O; iepi_r->n_pred; i++)

{
pi_r->Vr[i]=O;
pi_r->Hd[i]=O;
pi_r->St[i]=O;
pi_r->Opij[i]=999;

}

strcpy(pi_r->lD, current_rule->lD);
pi_r->Aggregation_Op=current_rule->Aggregation_Op;
current_rule->at=cu rrent_rule->atl;
cnt=O;
while(current_rule->at != O)

{

Check On Next Atom Being A Variable

tmp_Vr = Find_FzVariable((current_rule->at) ->atom);
if(tmp_Vr != O)

{
pi_r->Vflcnt]= tmp_Vr;
current_rule->at= (current_rule->at) ->npl;

If We Found A Variable, Chect On Likelihood Of A Hedge

tmp_Hd= tmp_Vr->Find_FzHedge((current_rule->at) ->atom);
if(tmp_Hd != O)

{
pi_r->Hd[cnt]= tmp_Hd;
current_rule->at= (current_rule->at) ->npl;

}

if we found a variable, chect on likelihood of a fuzzy set

tmp_St= tmp_Vr->Find_FzSet((current_rule->at) ->atom);

>

.

c Page 164 of 172> ,.

if(tmp_St != O)

{
pi_r->St[cnt]= tmp_St;
current_rule->at= (current_rule->at) ->npl;

}
else

pi_r->St[cnt]= tmp_Vr->fs_resuit;
cnt++;

1
else

//
// chect on likelihood of a operator
//

{
if(strcmp((current_rule->at) ->atom, “AND”) == O II
strcmp((current_rule->at) ->atom, “and”) == O)

pi_r->Opij[cnt]= AND_;
else if(strcmp((current_rule->at) ->atom, “OR”) == O II
strcmp((current_rule->at) ->atom, “or”) == O)

pi_r->Opij[cnt]= OR_;
else if(strcmp((current_rule->at) ->atom, “THEN”) == O II
strcmp((current_rule->at) ->atom, “then”) == O)

pi_r->Opij[cnt]= THEN_;
else if(strcmp((current_rule->at) ->atom, “IF”).== O II
strcmp((current_rule->at) ->atom, “if”) == O)

pi_r->Opij[cnt]= lF_;
else

cerr cc “ERROR: could not find an operator for RULE ID “
<< current_rule->lD cc flush;

current_rule->at= (current_rule->at) ->npl;

}

1
}

return;

1; [I
//

void

{

Block: 125
+++++ +++

FzDecision::Reset_Var()

var=last_var;
while(var !=0)

{
var->Reset_FS();
var= var->next;

}

< Page 165 of 172>

for(int i=O; icVECMAX; i++)

{
wrk[i]=O;

}

I

return;

1; // Block: 126
//

//

//

//

//

//

//

{

++

A“Then’’LogicF unction. This function provides the mechanism for
combining sets of rule consequent. Given a set of rules in which
RISK is a consequent variable, the results must be convolved to
generate the final consequent fuzzy set.

void FzDecision::Rule_Aggregation(FzVariable* A, int

aggr_op)

FzSet* s_tmp;
int j;

//
// If the “solution fuzzy set” (sfs) is zero everywhere, then use a
// MIN_MAX operator to define a default consequent fuzzy set. -
// (used in conjunction with unconditional propositions)
//

if(Z_Trutho == FALSE)
aggr:op = MlN_MAX;

switch(aggr_op)

{
case MI N_MAX:

//
// This is te rule combinatorics associated with precedents and
// consequent using the Zadah intersection operaor. (Z_AND)
// - (Cox, page 226, The Fuzzy Systems Handbook)
//

for(j=O; jcVECMAX; j++)
if(wrk~] > final~])

final~]= wrkfi];
break; —

case MIN_MIN :
//
// Used for unconditional consequent. E.g. then RISK is HIGH
// This is basically the Zadah Union operator (Z_OR)
// (Cox, page 239, The Fuzzy Systems Handbook)
//

< Page 166 of 172>

for(j=O; jeVECMAX; j++)
if(wrk~] < final~])

finalfi]= wrk~];
break;

. case ADDITIVE :
//
// This rule aggregation mechanism is best used for situations

*
// building evidence. (See Cox, The Fuzzy Systems Handbook,
// page 227)
//

for{ j=O; jcVECMAX; j++)

{
final~]+= wrkjj];
if(final~] > 1.0)

final~]=l .0;

}
break;

default:
for(j=O; jcVECMAX; j++)

final~]=O.O;

}

s_tmp = A->fs_result;

if(A->result_var != TRUE)

{
A->result_var=TRUE;
A->result_ =TRUE;
s_tmp->domain[O]= (A->last_fs)->domain[O];
s_tmp->domain[l]= (A->last_fs)->domain[l];

}
for{ j=O; jeVECMAX; j++)
s_tmp->mu~]= final~];

return;

); // Block: 127
// ++++++++++++++ ++++++++++++++++++++++++++++++++++++
// Corn 41 Function That Runs The Fuzzy Logic Algorithms

void FzDecision::Run_Model(char* O_file)
\

{

w
ofstream tr_out(O_file);
FzVariable* V[3];
Hedge_* H[3];

..

FzSet* S[3];

c Page 167 of 172>

double tr_~
double final_truth;
int i,j,i_if,i_then, aggr_op;
lssue_::RO_* loc_ro;
ofstream out_store(“z_store”);

//
// Set Outer Outer Loop To Handle Multiple Issues In
// The Decision Space.
//
// Issues correlate to finding consequent fuzzy sets, e.g. A problem is
// searching for priorities of a process as well as trying to determine
// overall risk, in this case we are dealing with two basic issues.
//

for(current_issue= first_issue; current_issue != O;current_issue= current_issue-
>next)

//

//

//

//

//

//

//

//

//

//

//

//

//

{
tr_out cc “\nl ---> Processing “ << current_issue->lD cc” issues” <c flush;

Set Outer Loop To Handle Multiple Variable Value Runs;
basically what value do the consequent fuzzy variables become
given a set of MODEL variable settings.

for(j=O; jcmax_runs; j++)

{
tr_out cc “\n2-----> Processing case “ <e j e< “” cc flush;

----------------------- --------

for(i=O; ieVECMAX; i++)
final[i]=O;

Each Issue Is Comprised Of A Number Of Rules, 1-Many.

for(loc_ro= current_issue-> rll; loc_ro != O; loc_ro= loc_ro->next)

{
tr_out cc “\n3------- > Processing rule” cc ioc_ro->r_lD cc”” cc flush;
pi_r= (Parsed_*) loc_ro->add_;
Reset_Varo;

Identify All Variables in The Rule, All Hedges And All Fuzzy Sets

for(i=O; icpi_r->n_pred; i++)

{
V~]= (pi_r->Vr[i]);
H[i]= (pi_r->Hd[i]);
SD]= (pi_r->St[i]);
}

4

,

< Page 168 of 172>

.

.

If
//

//
//
//
//

//
//
//
//
//
//

//
//
//

Perform All Hedge Operations
..-
for(i=O; icpi_r->n_pred; i++)
if(H[i] != O)
H[i]->Tran(“Sfi]);

This Identifies The Proposition Predicate Portion Of The Rule And
The Consequent Portion Of The Rule Under Evaluation.

i_if=i_then=O;
for(i=O; icpi_r->n_pred; i++)

{
if(pi_r->Opij[i] == lF_) i_if=i;
if(pi_r->Opij[i] == THEN_) i_then=i;

}

Assess The Degree Of Truth For The If Predicates. Each
proposition predicate exhibits a degree of truth based on the value
of the scalers used in the current run. These values are used to
condition the consequent.

final_truth=l .0;
for(i=i_if; iei_then; i++)

{
switch (pi_r->Opij[i])

{
case lF_:
case AND_:

tr_V= S[i]->Degree_of_Truth(V[i]->scaler~]);
if(tr_V c final_truth)

final_truth= tr_~
break;

case OR_:
tr_V= S[i]->Degree_of_Truth(V[i]->scalefi]);
if(tr_V > final_truth)

final_truth= tr_V;
break;

default:
break;

}
}

Work The Then Side Of The Predicates; assumes A Zadah Type And

for{ int k=O; k<VECMAX; k++)
if(final_truth e S[i_then]->mu_wrk[k])

< Page 169 of 172>

wrk[k]= final_truth;
else

wrk[k]= S[i_then]->mu_wrk[k];
//
// Final rule(s) combinatorics
//

if(i_then <= O)
aggr_op=MIN_M IN;

else
aggr_op=pi_r->Aggregation_Op ;

Rule_Aggregation(V[i_then], aggr_op);

}
//
// Corn 42 De-fuzzification Must Now Be Performed
//

DeFuzzify(j);
Store_Results(j, out_store);

}
// -------------------------------

V~_then]->result_var = FALSE;
// ------------------------ -------

}
return;

}: // Block: 128
// *++

void FzDecision::Store_Results(int case_num, ostream& out)

{
FzSet* fs_tmp;
int i;

var=last_var;
while(var!=O)

{
if(var->result_var == TRUE)

{
fs_tmp = var->Find_FzSet(“RESULT_”);
out << “\n Case Number:” c< case_num+l <e ““;
out <e “ Fuzzy Variable:” <e var->Fz_Var_l D cc “\n”;
out <c *fs_tmp;

}
//
// Print Out Again For Use With Plotting Programs
//

..

out cc “h\n Fuzzy Variable:” cc var->Fz_Var_lD <c “(Scaler Values)\n”;

< Page 170 of 172>

for(i=O; icvar->num_scaIer; i++)
out << “ “ cc var->scaler~];

out cc “k\n Fuzzy Variable:” <c var->Fz_Var_lD cc “(Deg of Truth)\n”;
for(i=O; ievar->num_scaler; i++)

, out << “ “ cc var->D_o_T[i];
var=var->next;

,, }..
.

.

// for(var= last_var; var !=0; var= var->next)
// var->Variable_Output(out);

return;

1; // Block: 129
// +++++ +++
//
// Zadah and function
//

void FzDecision::Z_AND()

{
for(int j=O; jcVECMAX; j++)

if(wrk~] c final~])
final(j]= wrk~];

return;

1; //
//
//
//
//

void

{

Bbek: 130
++++++++++++ +++++++++++++++++++++*+++++++++++++++

Zadah or function

FzDecision::Z_OR()

for(int j=O; jcVECMAX; j++)
if(wrk~] > final~])

final~]= wrk~];
return;

}: // Block: 131
// ++
// Need afunctionto checkthe degree oftruth ofthe ’’final”vector
// for usewiththesetting of defaultconsequent fuzzysets.*
//

< int FzDecision::Z_Truth()

{—— intz_truth=FALSE;

< Page 171 of 172>

for{ int j=O; jcVECMAX; j++)
if(final~]>O.001)

{
z_truth= TRUE ;
return z_truth ;

}
return z_truth

); // Block:

< Page 172 of 172>

// +++++ Fuzzy Hedge Algorithms (Hedge_) +++++

class Hedge_

{
//

//

// Corn 43
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

public:
//
//
//

char *ID;

++++++++++++++ ++++++++++++++++++++++++++++++++++++

Class Defines Thecharacteristics Of Hedges.
Hedge_ are modifiers to members of a fuzzy variable’s set. They
are elements of the FzVariable class. They are stored as linked
lists.

Hedges can be adders, factors or employ a power law.

Member functions include:

Overloaded input and output operators; operator>> & operator<<
and a transformation function; Tran which is used to perform the
fuzzy level modification.

input format is as follows:

hedge
SIGNIFICANTLY power 2.0

Keyword is “hedge” (keyed on in Variable_Setup of FzVariable)
The semantic modifier “SIGNIFICANTLY uses a power law with
the exponent set to 2.0.

+++++ +++

Assume all hedges are public...

double adder, factor, expon;
Hedge_ *next;

Hedge_(Hedge_ *P);
void Tran(FzSet&);
friend istream& operator>>(istream& in, Hedge_& t);
friend ostream& operator<c(ostream& out, Hedge_& t);

); // Block: 133
// +++++++ +++

< Page 173 of’174> .<

Hedge_:: Hedge_(Hedge_ *p)

{ next=p; adder=O; factor=l; expon= 1; ID= new char[15]; }

// ++ *

void Hedge_:: Tran(FzSet& bs) —
.

{.
for(inti=O;i<VECMAX;i++)

{
bs.mu_wrk[i]=(adder+bs.mu[i])’factor;
if(bs.mu_wrk[i]>l.O)bs.mu_wrk[i]=l.0;

bs.mu_wrk[i]=pow(bs.mu_wrk[i],expon);
}

}; // Block: 134

// ++++++++++++++++++++H++++++++++++++++++++++++++++

istream& operator>>(istream& in, Hedge_& t)

{
chartmp[15];
in>>t.lD;
in>>tmp;
if(strcmp(tmp:add”)==0)

in>>t.adder;
else if(strcmp(tmp:multiply”) == O)

in >> t.factor;
else if(strcmp(tmp,’’power”) == O)

in >> t.expon;
else

cerr cc “Error: (Hedge_ Input) not an input option : “ <c tmp cc “\n” cc flush;
return in;

}; // Block: 135
// ++

ostream& operatorcc(ostream& out, l-ledge_& t)

{
out << “ “ cc t.lD cc “Add: “ c< t.adder<<” Prod: “<c t.factor << “ Exp: “
<e t.expon cc “\n”;
return out;

}; // Block: 136

—-

c Page 174 of 174>

// +++++ Fuzzy Issue Control (issue_)+++++

class Issue_

.
{

//

‘b //

// Corn 44
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

— public:

+++++++++++++++++ +++++++++++++++++++++++++++++++++

Defines Characteristics And Function Of Fuzzy Issues.

lssue_consistof blocks of rules associated with an issue.
Issuesare partof the’’FzDecision class’’ variable list andare
elements ofa linked list.

Memberfunctions for rules define into and outputofa issues.
i.e. Load_issue &Dump_issue

Issue format is as follows:

issues risk al a2 a3 a4 a5 eoi

Keyword is “issues” (keyed on in Load_Model of FzDecision)”
The variable following the keywor~s an ID term descriptive of the ~
issue at hand. The five(5) al ...a5 are the ID’s associated with a
rule.

RO_ is the structure inernal to lSSUE_ which contains the set
of rules comprising an issue. Detail usage is discussed in
FzDecision.
++++++++++++ +++++++++++++++++++++++++*+++++++++++

char ID[40];
Issue_ *next;
Issue_ *prev;

struct RO_

{
char* r_lD;
void* add_;
RO_ ‘prev; .

? RO_ *next;
RO_(RO_ *p)

. {prev=p; next=O; r_lD= new char[5]; }

1; // Block: 137

RO_ *rIn;

< Page 175 of 176>

RO_ “rll;
lssue_(Issue_ *p);

void Load_issue(istream& in);
void Dump_issue(ostream& out);

1; // Block: 138 }
II ++

lssue_::issue_(Issue_ *p)

{ prev=p; next=O; rll=O; rln=O; }
// ++

void lssue_::Load_issue(istream& in)

{
chartmp[15];
RO_ “rl;

in >> ID;
in >>tmp;
while{ strcmp(tmpveoi”) != O)

{
rl=newRO_(rln);
rln= rl;
strcpy(rl->r_lD, tmp);
in>>tmp;

};

for(d =rln; rl->prev !=0; d =ri->prev)
(rl->prev)->next =rl;

rll= d;
return;

): // Block: 139
// ++

void lssue_::Dump_issue(ostream& out)

{
RO_ ‘rl;
for(rl=rll; rl !=0; rl=rl->next)

out << “ “ << rl->r_lDc<” “;
return;

); // Block: 140

r

.

●

✎

<Page 1760f176 >

// +++++ Fuzzy Rule Operations (Rules_) +++++

class Rules_

{
//

//

// Corn 45
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

public:
char ID[5];

+++++++++++++ +++++++++ ++++++ ++++++++ ++++++ +++++H+

Class defines the structure of a rule.
Rules_ consist of “rule atoms” RA_ie the parts of a rule
Rules which arepart ofthe ’’FzDecision class’’ variable list are
elements ofa linked list. The rule atoms makeingup arule are
also structured as linked lists.

Member functions for rules define into and output of a rule sets.
i.e. Load._rule & Dump_rule

Rule format is as follows:

rule cl e if SERVCIE_LIFE is LONG then MATERIALS is EXOTIC >

Keyword input is “rule” (keyed on in Load_Model of FzDecision)
follwed by the rule enclosed in angle brackets “C >“
it is, then, and: are the logic elements of the rule

+++++++++++++++ ++++++++++++++++++++++++++++++++++

—

int Aggregation_Op ;
Rules_ *next;
Rules_ *prev;

struct RA_

{
char *atom;
RA_ *nml;
RA_ ‘npl;
RA_(RA_ *p)

{nml=p; npl=O; atom= new char[15];}
friend istream& operato~>(istream& in, RA_& t)

{
in >> t.atom;
return in;
.

fr~nd ostream& operator<<(ostream& out, RA_& t)

{

<Page 177 of 179>

out cc” &” c< t.atom cc” &” ;
return out;

}
); // JMock:141

RA_ ‘atl;
4

RA_ *atn;
RA_ *at; m

Rules_(Rules_*P);
void Load_rule(istream& in);
void Dump_rule(ostream& Out);

): J/ Block: 142

// ++++++++++++++++ ++++++++++++++++++++++++++++++++++

Rules_:: Rules_(Rules_ *p)

{prev=p; next=O; atl=O; atn=O; Aggregation_Op=MIN_MAX; }

// ++

void Rules_:: Load_rule(istream& in)

{
.-

chartmp[15];
in >> ID;
in>>tmp;
while(strcmp(tmp~>”)!=0)

t
if(strcmp(tmp~Op”)==0)

{
in>>tmp;
if(strcmp(tmpVMIN_MAX))

Aggregation_Op=MI N_MAX;
else if{ strcmp(tmp;MiN_MIN”))

Aggregation_Op =MIN_MIN;
else if(strcmp(tmpvADDITIVE”))

Aggregation_Op =ADDITIVE;
else

Aggregation_Op=MI N_MAX;
—

in >> tmp;

}
else if(strcmp(tmp,”c”) ==0)

in >> tmp;
else if(strcmp(tmp,’’is”) == O II strcmp(tmp,’’lS”) == O)

.

c Page 178 of 179>

in >> tmp;
else

{
at= new RA_(atn);
atn= at;
strcpy(at->atom, tmp);
in >> tmp;

}

};
//
// Next go through and define next atom npl
//

for(at =atn; at->nml !=0; at =at->nml)
(at->nml)->npl =at;

atl = at;
return;

1; fj

//

void

Bkxk: 143

++

Rules_:: Dump_ruie(ostream& Out)

{
for(at=atl; at !=0; at=at->npl)

out << “ “ cc at->atom cc “ “;
return;

}; // Block: 144

< Page 179 of 179>

// +++++ Fuzzy Sets Operations (FzSet) +++++

class FzSet

{
//

//

// Corn 46
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
II
//
//

+++++++++ +++

Define The Characteristics Of Fuzzy Sets
d

Fuzzy sets capture the levels associated with a semantic variable.
They arestored aslinked lists. Fuzzy sets capture aspects ofa
semantic or qualitative problem by defining levels to be associated
with a variable. Fuzzy sets are members of the FzVariable class.

Member functions include:

A significant number of functions such as; Setup_Beta(),
Setup_Custom(), Setup_Gauss(), Setup_Linear(), Setup_pi(),
Setup_Sigmoid(), Setup_Tri() ,Setup_Uniform() are used to
define the shape of the membership function. Note: not all are
defined at this point in time(2/27/98).

The second block of functions define defuzzification methods;
Centroido, Ave_Maxo & Max_Edgeo

The remaining functions address the following functions:
—.

Alfacut_Above sets values associated with an element to zero
beyond a specified level.
Degree_of_Truth
Fz_lnitiaIize simply sets values to the membership function over
the range specified in domain.
Get_Max
“Normalize_FZS
Reset_Wrk resets the working vector of membership levels back to
the original level.

Input and output is acheived through the overloaded redirection
operators.

Input format is as follows:

fuzzy_set
HIGH domain O 50 func_form sigmoid 52545 increase
eoi

*

< Page 180 of 192>

//

//

//

//

//

//

//

//

//

//

//

public:
int exists;

//
//
//

char*lD;

Keyword is “fuzzy_set” (keyed on in Variable_Setup of FzVariable)
The ID for member of the set follows the keyword, “HIGH” in this
case. “domain” defines the range of the variable for the set element,
while “func_form” triggers input of the shape of the member
element. In this case the shape is an increasing sigrnoid function
with low, mid, and high points defined to be 5, 25, & 45.
The levels associated with the shape function are stored in
the variable parms

++++++ ++

Fuzzy Set Descriptor Block (FSDB)

// FZS id or name
char* C_typ;
int conv_trend;
int set_stat;
int fz_order;
double domain[2];
double parms[4];
double alfacut;
double mu[VECMAXl;
double mu_wrk[VECMAX];
FzSet* next;

// FZS curve type
// Converted trend for linear& sigmoid func
// FZS status,set or not set
// FZS order ?
// FZS min and max domain values

// FZS alfacut
// FZS membership array
// FZS membership working array
// Linked list, last fuzzy set was...

//

// overload the input and output operators
//

friend istream& operator>>(istream& in, FzSet&);
friend ostream& operatorc<(ostream& out, FzSet&);

//
// Define additional member functions:
//

FzSet(FzSet*);
void Helpo;
void Alfacut_Above(double);
double Centroido;
double Ave_Maxo;
double Max_Edgeo;
double Degree_of_Truth(double);
void Fz_lnitialize(); ..
double Get_Maxo;
void NormaIize_FZS();

<Page 181 of 192>

.

voi{
voi(
voi[
voit
voi{

Reset_Wrk();
Setup_Beta();
Setup_Custom();
Setup_Gauss();
Setup_Linear();
Setup_Pi();

4

Setup_Sigmoid();
Setup_Tri(); ‘$

Setup_Uniform();
// Block: 145

// ++

// NOTE: The integers in the constructor must be adjusted to reflect
// the numberofvariables andargumentsin themodel

FzSet::FzSet(FzSet *p)

{
exists= FALSE;
ID= new char[15];
C_typ = new char[l 5];
set_stat=FALSE;
next= p;

1: // Block: 146

// ++++++++++++ ++++++++++++++++++++++++++++++++++++++

// Note: Provide output to the terminal to assist in defining the object
// model and the information required

void FzSet: :Help()

{
return; -.

}; // Block: 147

// ++

istream& operator>>(istream& in, FzSet& adum)

{
char tmp_in[l 5];
char trend[15];

—...— adum.exists=TRUE;
in >> adum.lD;
in >> tmp_in;
while(strcmp(tmp_in,’’eoi”) !=0)

.

.

< Page 182 of 192>

{
if(strcmp(tmp_inj’’domain”) == O)

in >> adum.domain[O] >> adum.domain[l];
else if(strcmp(tmp_in,’’alfa_cut”) == O)

% in >> adum.alfacut;
else if(strcmp(tmp_in,’’func_form”) == O)

-{*
in >> adum.C_typ;
if{ strcmp(adum.C_typ,’’gauss”) == O)

in >> adum.parms[O] >> adum.parms[l];
else if(strcmp(adum.C_typ,’’linear”)== O)

{
in >> adum.parms[O] >> adum.parms[l];
in >> trend;

}
else if(strcmp(adum.C_typ,’’sigmoid”)== O)

{
in >> adum,parms[O] >> adum.parms[l] >>
in >> trend;

}

—

adum.parms[2];

else if(strcmp(adum.C_typ,’’triangular”)== O)
in >> adum.parms[O] >> adum.parms[l] >> adum.parms[2];

else if(strcmp(adum.C_typ,’’uniform”)== O)
in >> adum.parms[O] >> adum.parms[l];

else
cerr cc “Error: (FzSet Input) unacceptableform option : “ << tmp_in
cc “\n” <e flush;

}
else

{
cerr cc “Error: (FzSet Input) unacceptableinput option : “ << tmp_in
c< “\n” cc flush;

}
in >> tmp_in;

1
//
// Initialize The Fuzzy Set
//

if(strcmp(adum.C_typ,’’linear”)== O
.
{

* if{ strcmp(trend, “increase”)== O)
adum.conv_trend= INCREASE;

II strcmp(adum.C_typ,’’sigmoid”)== O)

& else if{ strcmp(trend, “decrease”)== O)
adum.conv_trend= DECREASE;

else
—— cerr <e “Error: (FzSet Input) not a trend option : “ cc trend << “\n” e< flush;

< Page 183 of 192>

}
adum.Fz_lnitialize();
return in;

}; // Block: 148

// +++++++++++++++++++++++++*+++++++++++++++++++++++
..

ostream& operator<<(ostream& out, FzSet& adum) #

{
//

// Provide Coding To Represent The Ouput Desired For This Object
//

out c< adum.lD <e “\n”;
double domain_width;
double member_value;
int i;
domain_width= adum.domain[l]-adum.domain[O];
for(i=O; ieVECMAX; i++)

{
member_value = adum.domain[O] + (float)i * domain_width / VECMAX;
out c< “ “ <e member_value cc “ “ cc adum.mu[i] cc “ “
cc adum.mu_wrk[i]
cc “\n”;

}
return out;

}; // Block: 1.49
// ++
// Note: Modify fuzzy set with an alfa cut
//

void FzSet: :Alfacut_Above(double cut_val)

{
int i;
for(i=O; ieVECMAX; i++)

if(mu[i] e cut_val) mu[i] = 0.0;
return;

1; // Block: 150
// +++++ +++
// Note: determine the maximum membership value
//

double FzSet: :Centroid()

{
int i;

c Page 184 of 192>

●

.

double domain_width;
double member_value;
double SI =0.0;
double s2=0.O;
domain_width= domain[l]-domain[O];
for(i=O; ieVECMAX; i++)

{
member_value = domain[O] + (float)i * domain_width / VECMAX;
SI += mu_wrk[i];
s2+= mu_wrk[i]*member_value;

}
if(sl == o) S1 =999999.9;
return(s2/sl);

); // Block: 151
// +++++++++ +++
// Note:determine the maximum membership value
//

double FzSet::Ave_Max()

{
int i;
double mx_mem;
mx_mem= Get_Maxo;
double domain_width;
double member_value;
double S1=0.0;
double s2=0.O;
domain_width= domain[l]-domain[O];
for(i=O; icVECMAX; i++)

{
member_value = domain[O] + (float)i * domain_width / VECMAX;
if(mu_wrk[i] >= mx_mem)

{
S1+= mu_wrk[i];
s2+= mu_wrk[i]*member_vaiue;

}
}

if(S1 == o) S1 =999999.9;
return(s2/sl);

1; // Block: 152

// ++++++++ ++

// Note: determine The Maximum Membership Value
//

< Page 185 of 192> .L

double FzSet::Max_Edge()

{
int i;
double mx_mem;
mx_mem= Get_Maxo;
double domain_width;
double member_value;
domain_width= domain[l]-domain[O];
i=O;
member_value = domain[O];

—

e

while{ mu_wrk[i] c mx_mern)

{
member_value = domain[O] + (float)i * domain_width / VECMAX;
i++;

}
return(member_value);

1; // Block: 153
// ++++++++ +++++++++++++++*+++++++++++++++++++++++++
// Note: assess The Degree Of Truth Given A Scaler Value
//

double FzSet::Degree_of_Truth(double scaler)

{
double domain_width;
double member_value;
double truth_val;
int i;
truth_val= 0.0;
domain_width= domain[l]-domain[O];
for(i=O; icVECMAX; i++)

{
member_value = domain[O] + (float)i * domain_width / VECMAX;
if(member_value > scaler)
return(truth_val);
truth_val= mu_wrk[i];

}
return(truth_val);

}; // Block: 154
// +++++++++ +++
// Note: Determine The Maximum Membership Value
//

——

< Page 186 of 192>

void FzSet::Fz_Initial izeo

{
if(strcmp(C_typ,’’gauss”) == O)

Setup_Gausso;
else if(strcmp(C_typ,’’linear”) == O)

Setup_Linearo;
else if(strcmp(C_typ,’’sigmoid”) == O)

Setup_Sigmoido;
else if{ strcmp(C_typ,’’triangular”) == O)

Setup_Trio;
else if{ strcmp(C_typ,’’uniform”) == O)

Setup_Uniformo;
else

cerr cc “Error: (FzSet Input) unacceptableform option : “ <c C_typ cc “\n”
<< flush;

return;

}; // Block: 155
// ++++++++++*++ ++++++++++++++++++++++++++++++++++++

// Note:determine the maximum membership value
//

double FzSet::Get_Max() -

{
int i;
double rnax_mem=O.O;
for(i=O; ieVECMAX; i++)

if(mu_wrk[i] > max_mem) max_mern = mu_wrk[i];
return(max_mem);

}; // Block: 156
// ,, ++++++++++++++++++++++ ++++++++++++++++++++++++++++
// Note: renormalize the fuzzy set
/1

void FzSet::Normalize_FZS()

{
int i;
double norm_val;
norm_val = FzSet::Get_Maxo;
for(i=O; icVECMAX; i++)

mu_wrk[i] = mu[i]/norm_val;
return;

} ; // Mock: 157
// ++++++++ +++

<Page 187 of 192>

// Note: renormalize the fuzzy set
//

void FzSet::Reset_Wrk()

{
int i;
for{ i=O; icVECMAX; i++)

mu_wrk[i] = mu[i];
return;

}; /f
//
//
//

void

{
return;

}; ii
//
//
//

void

{
return;

); if
//
//
//

Block: 158
++
Notetintiialize membership function toabeta function

FzSet::Setup_Beta()

Block: 159
++
Notefintiialize membership function toacustomized inputfunction

FzSet::Setup_Custom()

Block: 160
++
Notefintiialize membership function toagauss function

void FzSet::Setup_Gauss()

~

double domain_width;
double thiscaler,gausspt;
double center, sigma, tmp;
int i;
center= parms[O];
sigma=parms[l];
tmp = sigma*pow(2*Pl,0.5);
domain_width= domain[l]-domain[O];
for(i=O; icVECMAX; i++)

{
thiscaler= domain[O] + (float)i * domain_width / (VECMAX-1);

f

4

e Page 188 of 192> .U

.

gausspt= -pow(((center-thiscaler)/sigma),2);
mu[i]= exp(gausspt/2);

}
return;

); // Block: 161
// ++
// Notefintiialize membership functionto alinear function;also provides
II forthecapability ofputingsholders on the linearfunctions.

void FzSet::Setup_Linearo

{
double slope_width;
double domain_width;
double member_value;
double 10,hi;
int i;
10= parms[O];
hi= parms[l];
slope_width = hi-lo;
domain_width= domain[l]-domain[O];
for(i=O; icVECMAX; i++) -

{
rnember_value = domain[O] + (float)i * domain_width / VECMAX;

if(member_value > hi) —
mu[i]= 1.0;
else if(member_value >10 && member_value <= hi)
mu[i]= (member_value - 10)/ slope_width;
else
mu~]= 0.0;

}
if(conv_trend == DECREASE)

for(i=O; i<VECMAX; i++)
mu[i]= 1.0- mu[i];

return;

1; // Bkxk: 162
// +++

// Note: intiialize membership function to a pi function
//

{

void FzSet::Setup_Pi()

e Page 189 of 192>

return;

): // Block: 163

// ++

// Notefintiialize membership function to a sigmoid function
//

void FzSet::Setup_Sigmoid()

{
doubleslope_width;
double domain_width;
double member_value;
double tmpl, left, flexpoint, right;
int i;

left= parms[O];
flexpoint= parms[l];
right= parms[2];
slope_width = right-left;
domain_width= domain[l]-domain[O];

for{ i=O; icVECMAX; i++)

{
member_value = domain[O] + (double)i * domain_width / VECMAX;
if(member_value >= right)

mu[i]=l .0;
else if(member_value > flexpoint && member_value e right)

{
tmpl = (member_value-right)/slope_width;
mu[i]= 1-(2*(pow(tmpl ,2)));

‘“ }
else if(member_vaIue >= left&& member_value e= flexpoint)

{- -

tmpl = (member_value-left)/slope_width;
mu[i]= (2*(pow(tmpl ,2)));

}
else

mu[i]=O.O;

}

if(conv_trend == DECREASE)
for(i=O; icVECMAX; i++)

mu[i]= 1.0- mu[i];

c Page 190 of 192>

return;

1; f~
//
//

\ //

void
L

{
double
double

Block: 164
++
Notefintiialize membership function toatriangular function

FzSet::Setup_Tri()

domain_width;
member_value;

double tmpl ,tmp2, left, flexpoint, right;
int i;

left= parms[O];
flexpoint= parms[l];
right= parms[2];
tmpl =right-flexpoint;
tmp2 = flexpoint-left;
domain_width= domain[l]-domain[O];
for{ i=O; icVECMAX; i++)

{
member_vaiue = domain[O] + (float)i * domain_width / VECMAX;
if(member_value > left&& member_vaiue c= flexpoint)

mu~]= (member_value - left) / tmp2;
else if(member_value > flexpoint&& member_value c right)

mu[i]= 1.0- (member_value - flexpoint) / tmpl;
else

mu[i]= 0.0;

}
return;

); // Block: 165
// ++++++++++++++++++++++ ++++++++++++++++++++++++++++
// Note: intiialize membership function to a uniform distribution function
//

void FzSet::Setup_Uniform()

{
double domain_width;
double member_value;+
double 10,hi;

> int i;
—. .. 10= parms[O];

hi= parms[l];
domain_width= domain[l]-domain[O];

< Page 191 of 192>

for(i=O; icVECMAX; i++)

{
member_value = domain[O] + (float)i * domain_width / VECMAX;
mu[i]= 0.0;
if(member_value c= hi && member_value >= 10)

mu[i]= 1.0;

}
return;

}; // Block: 166

< Page 192 of 192>

// +++++ Fuzzy Variable Operations (FzVariable) +++++

class FzVariable

{
//

Ii
// Conl 47
//
//
//
//
//
//
//
// Corn 48
//
//
//

//

//

//

//

//

//

//

//

//

//

//

//

II

//

//Corn 49
//
//
//
//
//
//
//
//
//
//
//

++

Defines The Characteristics of Fuzzy Variables

Fuzzy variables, FzVariable, are the descriptors for the model
being developed. They mayrepresent time, temperature, or
service life. Fuzzy variables are typically used in the “FzDecisiion
class”and are defined as a linked list. Fuzzy variables are
associated with fuzzy sets described by the “FxSet class”.

Member functions include:
Find_FzHedge, Find_FzSet which are used to locate
characteristics for hedges and fuzzy sets used in the rule model.
Reset_FS
Variable_Output, & VariabIe_Setup, which provide functions
for loading and printing fuzzy variables.

Fuzzy variables represent a characteristic of the problem. We
normally recognize that the real set of numbers are members of
the set temperature we do not think in terms os sets. In the case
of fuzzy variables we also must define the space and membership
associated with a variable. For this reason we define the
levels/descritization of the variable through fuzzy sets, identifying
a range of applicability, modifiers or hedges, and in this specific
implementation, the values used in the exercise of the system
model.
Loading of data is controlled or orchestrated by this class.

Input format is as follows:

variables
MISSION_PROFILE
scaler 6 1030507090 70
fuzzy_set
COMPLEX domain O 100 func_form linear O 100 increase
eoi
fuzzy_set
ROUTINE domain O 100 func_form linear O 100 decrease
eoi .

hedge

c Page 193 of 198>

//

//

II
// Corn 50
//
//
//’
//
//
// Corn 51
//
//
//
//
// Corn 52
//
//
//
//
//
//

public:
//
//
//

VERY power 2.0
eoi

Keyword is “variables” (keyed on in Load_Model of FzDecision)
In this case “MISSION_PROFILE” is the variable name. “scalet’
is a local input keyword indicating that 6 test runs will be conducted i

and the quantitative values to be assigned to MISSION_PROFILE
will be, 1030507090 70. 4

The next local keyword, “fuzzy_set” triggers input of set information
and is described in FxSet classheaders. Suffice to say COMPLEX
and ROUTINE represent linguistic levels associated with the
variable “MISSION_PROFILE”.

The last local keyword is “hedge” which triggers input of hedge
type information. Hedges act as modifiers in the semantic fuzzy
model being developed. In this case the modifier allows us to
examine linguistic rules associated with
VERY COMPLEX MISSION_PROFILE S.

++++++++++++++++++++ ++++++++++++++++++++++++++++++

Define model parameters:

int result_var;
int result_;
char* Fz_Var_lD;
int num_scaler;
double* scaler;
double* D_o_T;

FzVariable* next;
FzSet* fs;
FzSet* last_fs;
FzSet* fs_result;

Hedge_*hedge;
Hedge_*last_hedge;

//
// Define addiitonal member functions:
//

FzVariable(FzVariable*);
Hedge_* Find_FzHedge(char*);
FzSet* Find_FzSet(char*);
void Helpo;

< Page 194 of 198>

void Reset_FS();
void Variable_Output(ostream& out);
void ‘- Variable_Setup(istream& in);

}; // Block: 167

1

// ++

// NOTE:The integers in the constructor must be adjusted to reflect
; // the numberofvariables and argumentsin the model

//

FzVariable::FzVariable(FzVariable *p)

{
// Define default conditions
//

result_var=FALSE;
result_ =FALSE;
Fz_Var_iD = new char[25];
last_fs=O;
last_hedge= O;
next= p;
scaler= O;
D_o_T= O;

//
// Setup A Result Fuzzy Set For Use In The De-fuzzification Process
//

fs = new FzSet(last_fs);
last_fs= fs;
fs_result= fs;
strcpy(fs->lD, “RESULT_”);

1; // Block: 168
// ++++++++++++++ ++++++++++++++++++++++++++++*++++++

Hedge_* FzVariable::Find_FzHedge(char* v_nam)

{
Hedge_* rtn_v;
rtn_v=O;
hedge= last_hedge;
while{ hedge!=O)

“{/
if(strcmp(hedge->lD, v_nam) == O)

Y rtn_v=hedge;
hedge=hedge->next;

}

c Page 195 of 198>

return(rtn_v);

1: // Block: 169
// ++

FzSet* FzVariable::Find_FzSet(char* v_nam)

{.
FzSet*rtn_v;
rtn_v=O;
fs=last_fs;

while(fs!=O)

{
if(strcmp(fs->lD, v_nam) == O)
rtn_v=fs;
fs=fs->next;
.
1

return(rtn_v);

1; // Block: 170
// +++
// Note: Provide output to the terminal to assist in defining the object
// model and the information required

void FzVariable::Help()

{
return;

}; //Block:171
// ++

void FzVariable::Reset_FS()

{
fs=last_fs;
while(fs!=O)

{
fs->Reset_Wrko;
fs=fs->next;

}
return;

}; }/ Block: 172
// ++

void FzVariable: :Variable_Output(ostream& out)

{
out<< ’’\n Fuzzy Variable:’’ eeFz_Var_lD;’
for(fs=last_fs; fs != O;fs=fs->next)

<Page 1960f198 >

{
out << “bFuzzy set: “;
out << *fs;

}

~,
out c< “\n Fuzzy Variable:” c< Fz_Var_lD <e “\n”;
for(int i=O; ienum_scaler; i++)

—

; out << “ “ c< Fz_Var_lD << “[” c< i+l c<”] “ <c scalefli] << “\n”;

out cc “\n Fuzzy Variable:” << Fz_Var_lD;
for(hedge=last_hedge; hedge != O; hedge=hedge->next)

{
out e< “\n Fuzzy Hedges: “;
out e< *hedge;

}
return;

); /1 Block: 173
// ++

void FzVariable: :Variable_Setup(istream& in)

{
char tmp_in[l 5];
in >> Fz_Var_lD;
in >> tmp_in;
while(strcmp(tmp_in,’’eoi”) !=0)

{
if(strcmp(tmp_in,’’scaier”) == O)

{
in >> num_scaler;
scaler = new double[num_scaier];
D_o_T= new double[num_scaler];
int icas=O;
in >> tmp_in;
while(strcmp(tmp_in,’’eoi”) !=0)

{
scaler[icas]= double(atof(tmp_in)) ;
icas++;
in >> tmp_in;
if(icas > num_scaler)

cerr cc “Error: (Scaler input) too many values: “ cc icas <c “\n” << flush;<
}

‘, }

else if(strcmp(tmp_in,’’fuzW_set”) == O)

{
fs = new FzSet(last_fs);— ..

< Page 197 of 198>

in >> ‘fs;
las~_fs= fs;

}
else if(strcmp(tmp_in,’’hedge”) == O)

{
hedge = new Hedge_(last_hedge);
in >> *hedge;
last_hedge= hedge;

}
else

{
cerr cc “Error: (FzVariable input) unacceptableinput option: “ e< tmp_in
e< “\n” c< flush;

}
in >> tmp_in;

1
return;

}; // Block: 174

. .

< Page 198 of 198>

1

I
1

..

1

1

1

1

1

1

1

1

1
. 1

2\
1

1

2

DISTRIBUTION:

Michael Maglich, SP282

Strategic Systems Programs
1931 Jefferson Davis Hwy.
Arlington, Va 22241-5362

Mike Wagner

I’ITS
1500 Garden of the Gods Rd.

PO BOX 7463

Colorado Springs, CO 80933

Dwayne Curtiss

I’ITs
1111 Jefferson Davis Hwy.
Suite 700

Arlington, VA 22202

Rick Verbanec
Lockheed-Martin Missiles & Space
PO Box 3504

89-20/157
Sunnyvale, CA 94089-3504

Alex Loewenthal
Dept. 2514, Bldg. 611
Plant 10
Lockheed Martin Skunkworks
1011 Lockheed Way
Palmdale, CA 93599-2514

Wallace Louie
NSWC DL

Code K-44
17320 Dahlgren Rd.

Dahlgren, VA 22448

Doug P. Anson
LANL
TSA-5 MS F602
LOS Alkos, NM 87545

Dr. C. Christopher Reed
The Aerospace Corporation—
PO BOX92957- M4/943
Los Angeles, CA 90009-2957

MS0457 W.J. Tedeschi, 2001

MS0429 J.H. Stichman, 2100

MS0475 R.C. Hartwig, 2105

MS0475 J.B. Godfrey, 2105

MS0481 T.F. Hendrickson, 2167

MS9005 J.B. Wright, 2200

MS0501 M.K. Lau, 2338
Attn: T.E. Owen, 2338

1 MS1221 J.S. Rottler, 5400

1 MS1221 A.B. COX, 5405

1 MS0417 W.H. Ling, 5413

Attn: D.M. Fordham, 5413

10 MS0455 M.E. Senglaub, 6232

1 MS9018 Central Technical Files, 8940-2

2 MS0899 Technical Library, 4916

1 MS0619 Review & Approval Desk 15102
For Doe/OSTI

—

—

199

)

THIS PAGE INTENTIONALLY LEFT BLANK.

*

200

