MAR 3 1999

Pregared by
Sandia National Laborate
Albuquerque, New:Me

FECEIVED
e MR 12 1959
OST}

P

94AL85000.

Issued by Sandia National Laboratories, operated for the United States Depart-
ment of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express
or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or
any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy. '

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available from (703) 605-6000
Web site: http://www.ntis.gov/ordering.htm

Awvailable to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: AO1

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

SAND99-0397
Unlimited Release
Printed February 1999

Weapon Systems Requirements Analysis Employing a
Hybrid of Analytic Technologies

Michael Senglaub, Ph.D.
Distributed Systems Assurance
Sandia National Laboratories
PO Box 5800
Albuquerque, NM 87185-0455
mesengl@sandia.gov

Absiract B

A rigorous effort was made to apply professional systems engineering standards to the
design of a modified Mk4 fuze. This required that, as systems engineers, we assess the
system requirements from a force structure context in which the system is a single compo-
nent of a strategic capability. This high level requirements analysis objective required the
development of analytical capabilities that had previously not existed in a form suitable
for design development efforts. The analysis that was conducted necessitated the develop-
ment of a series of mission projections as well as a limited number of scenarios for which
a strategic response might be required. These missions and stockpile projections provided
a basis for assessing a subset of the total system requirements. The analyses also provide
metrics in the mission dimension which could be used for concept development and sys-
tem trade studies. The data permits designers and decision makers to identify the most
cost effective solution to this design problem.

THIS PAGE INTENTIONALLY LEFT BLANK.

.4

Table of Contents

Executive Summary e 5
Abstract L il 5
Introduction. i 6
Systems Engineering Analysis. 6
Projections / Scenario Development 7
Weapon System Optimization 7
Stochastic Covariance Transformations 7
Concept Development 7
Analytical Scope 8
Taguchi Analyses.ccooiieiiviiai... 8
Sensitivity Analysis . . e
Confirmatory Calculation 8
Scenario / Projection Development. 9
Projections. 9
Scenarios. s .9
Weapon System Inventories 9
Projected Missions 9
Analytical Architecture / Technologies. 9
Fuzzy Logic (Targeting). 10
Fuzzification. 10
De-Fuzzification 10
Fuzzy Targeting 11
Hedges. / 12

Genetic Optimization (Weapon System Allocation). 13
Multi-criteria Decision Analysis (Fitness Functions). 14

Mission Fitness Correlation 15
Objective Probability of Damage. 15
Minimum Yield. 15
HOB objectives. 15
Strategic Time Line. - 16

Validation 16

Allocation Sensitivity Assessment. 17

Evolutionary Strategies (Weapon System Opt.). . . 18
Weapon System Capability Optimization. 18
Mission Analysis Results. 18
Sensitivity Space.19

Current / START II (Series A) 19

START III Environments (Series B) 20

SRF Force Sensitivity 20

Confirmatory Analyses and Results. 20

Current / START II (Series A) 20

START HI Environments (Series B) 22
SRF Force Confirmatory 23

Exploratory Analysis. 24
DecisionIssues. 24
Follow-on Activitiesn.. 25
Recommendations for further Development. 25

Trend Analysisof Missions. 25

Targeting Rule Base Issues.25

C4ISR Projections25
References. o 26
APPENDIX A ..ot 27
Transformation between category codes
and descriptive parameters. - 27
APPENDIX B ...ttt 29
Experimental configurations for validation
calculations. L. 29
APPENDIX C oo 30
Inventories Used in current, START II,
and START Il scenarios. 30
APPENDIX Doooioiieieeeieeeeeeee e 31
Experiment A, current and START II
ENVIFONMENtS.ttt 31
APPENDIXEcocoveoiiiiiccieieceeecctreeeeeene 32
Experiment B, START Il environments. 32
APPENDIX Fccuuiiiiieicciiiceecccceneenecne 33
SRF experimental setup. 33
APPENDIX G Cereuresossrnsaassraensnnansrsnes 34
Sample input dataset. 34
APPENDIX Hcouvvvviiiiiniiiiniiiiincnneeeeieenens 35
Table of contents for code listings. 35
APPENDIX T ..ottt 40
Code listing for weapon system allocation models. 40
APPENDIX J ..ot 60
Code listing for weapon system optimization
algorithms. i 60
APPENDIX K ..o 151
Code listing for fuzzy logic algorithms. 151
DISTRIBUTION:, 199

1

List of Figures

Mission analysis SUD-PIOCESS.t v ittt ittt et e e e e 6
Generic application of robust design. 8
Basic algorithm SITUCLUTE. 10
Graphic representation of rule processing. ool 11
Membership functions for Mission, Function, and Counter_Lethality. 11
Target timing as a function of category code. 13
Target timing as a function of target Counter_Lethality. 13
Target ranking by category Code. o e 13
Target ranking by function. 13
Response surface characteristic of a weapon system allocation problem. 14
Objective probability of damage fitness function. 15
Fitness function for minimum yield constraints. an... 15
Fitness function for height of burst (HOB) preferences. 16
Delivery time characteristics for IC’s, SL’s and air delivered weapon systems

using sigmoid funCtionsS. 16
Target distribution for base mission. e 16
Allocations of weapons to target class 871 with different response times. 16
Allocation differences for asecond targetclass. 17
Timing allocation information for base prompt mission. 17
Mission fitness SENSIIVILY. oottt et e e e et e e e 17.
Mission Pd sensitivity results. e 18
Sensitivity for experiment Series A. 19
Sensitivity for experiment series B. 20
Sensitivity results for the SRF series of experiments. 20
Weapon radius range of targets assigned to weapon SYSIemS.o..uuoenn... 21
Performance range of system against targets allocated. 21
Deployed stockpile allocation for mission scenario A.oviiiiiiiiianeennn.. 21
Required effective CEPs and associated distributions. S 22
Convergence information for experiment series A. i i 22
Weapon radius range of targets assigned to weapon SyStems.ieno.... 22
Performance range of system against targets allocated. 22
Deployed stockpile allocation for mission scenarioB. 23
Required effective CEPs and associated distributions. 23
Convergence information for experiment series B. P 23
SRF effective CEP requirements and associated distribution. 23
Stockpile optimization SensSitivity asseSSMENT.ttt 24
Yield distribution for an optimized stockpile. L. L L 24

Effective CEP requirements for each system in the optimized inventory. 24

g

Weapon Systems Requirements Analysis Employing a
Hybrid of Analytic Technologies

Michael Senglaub, Ph.D.
Sandia National Laboratories
PO Box 5800 MS0455
Albuquerque, NM 87185
mesengl @sandia.gov

Executive Summary

The Mk4/W76 is rapidly approaching it’s original design
service life. The result is an effort to bring the system in line
with current technologies and define system requirements
based on information that is not 20-30 years out of date.
System requirements include, safety, cost, reliabilty, certifi-
ability, dismantlemnt, as well as performance. The design
problem is multi-criteria in nature, is not single issue, and
requires information that can be used by decision makers to
make the best concept selection for inclusion in the nation’s
strategic inventory.

The effort discribed in this document explores the subset of
requirements, specifically the performance of the stockpile
and the requirements of the Mk4/W76 component of the
deployed stockpile. The effort required the development of
an analytic capability to explore multiple stragetic configure-
ations based on missions, targeting heuristics, operational
scenarios, inventories, and system concepts. The capability
developed is based on artificial life (A-life) concepts which
proved to possess well matched capabilities. These analytic
technologies included, fuzzy logic, evolutionary strategies,
and an approximation to simulated annealing.

These analytic technologies had to be integrated to a number
of classical techniques including, Taguchi analysis, multi-
criteria decision making, scenario development, and target
vulnerability calculations. Target vulnerabilties reflected
overpressure, dynamic pressure, cratering and g-type target-
ing. The algoritms were based on Brode-Speicher correla-
tions and on correlations found in PDCALC.

The requirements development focused on three basic sub-
missions, START II projections(Series A in Table 1&4),
START I scenarios(Series B in Table 1&4), and a number
of strategic reserve force (SRF) missions. Within each of
these three sub-missions variations in the independant vari-

__ables were considered to capture uncertainties in projections.

The independant variables included, operational status, mis-
sion, deployed inventories and mix, strategic reserve size,
reliabiliites, mission success criteria, and new system con-
figurations. Taguchi analysis techniques were used to iden-

tify the most stressing conditions for use in three
confirmatory calculations used as the basis of the require-
ments assessments. The table which follows defines the
results of the three confirmatory calculations. The informa-
tion includes percentage of the mission assigned to the
replacement SL system, the “normalized effective CEP” and
the fraction of the mission employing a particular evolved
fuze option.

Table 1: Confirmatory analysis results.

Series A Series B SRF
58% 39% 100%
10 11% 1.0 6% 10 4%
18 4% 1.03 3% 25 96%
2.13 2% 1.79 4%
223 1% | 218 | 2%
25 | 40% | 25 | 24%

Abstract. A rigorous effort was made to apply professional
systems engineering standards to the design of a replacement
fuze. This required that, as systems engineers, we assess the
system requirements from a force structure context in which
the system is a single component of a strategic capability.
This high level requirements analysis objective required the
development of analytical capabilities that had previously
not existed in a form suitable for design development efforts.
The analysis that was conducted necessitated the develop-
ment of a series of mission projections as well as a limited
number of scenarios for which a strategic response might be
required. These missions and stockpile projections provided
a basis for assessing a subset of the total system require-
ments. The analyses also provide metrics in the mission
dimension which could be used for concept development and
system trade studies. The data permits designers and deci-
ston makers to identify the most cost effeciive solution to
this design problem.

The analytical hybrid developed employed a number of arti-

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 5

Mission Distributions

Force Structure Aliccation

Scenario Development
Treaties
Inventories
Policy
Mission
Intelligence
Threat
Patrol Areas

information & Requirements Generation

Range Distributions .

V-y Map Coverage

Target Lethalities

N

Optimal Burst Covariances

s,

Mission Objectives

Covariance
Transformation

Pre-reentry Covariances |

Figure 1. Mission analysis sub-process.

ficial life technologies as well as a convolution with fuzzy
logic and multi-criteria decision making constructs. The
problem associated with force structure analyses 1s the multi-
dimensional character of the problem, as well as qualitative
constraints which may be a product of the politics of strate-
gic development. The mechanics of force structure analyses
is a constrained multi-criteria optimization problem in which
we are maximizing system performance on a strategic mis-
sion. The tools provide an ability to perform massive
searches of concepts across a broad spectrum of missions in
order to identify the most robust, effective solution to the
constrained strategic force design problem.

The study explored a number of projections and explored
scenarios associated with strategic reserve forces in the effort
to identify a robust set of capabilities and avoid over specifi-
cation which can result from system assessments in the
absence of force structure considerations. The analyses were
performed within a Taguchi framework in order to improve
the efficiency of the calculations and provide insights into
system sensitivities. Taguchi analysis is a design of experi-
ment technique that has found favor in the commercial sec-
tors. Precursor sensitivity calculations were performed to
identify the most stressing conditions to be imposed on the
replacement SI. weapon system. These conditions were then
used in sets of confirmatory calculations to identify the sys-
tem requirements in terms of weapon system circular error
probable (CEP) and associated weightings or the importance
of an option requirement given mission parameters.

Introduction.

The suggested and actual service life of nuclear weapons
ranges from 20 to 50 years depending on the system. The
Mk4/W76 is reaching the end of design service life and as a
result requires the attention and re-evaluation by the DoD
and DOE design communities. The principle areas of
emphasis are life extension issues and an increased nuclear
safety margins comparable to the newer systems within the
deployed stockpile. The measures of effectiveness (MOE’s)
for the system include cost, safety, mission, rehability, certi-
fication, retirement objectives, and the other “ilities” such as
availability, maintainability, producibility, vulnerability, test-
ability, etc. Mission effectiveness requirements pose a
unique problem because of the necessity of identifying mis-
sions 30-50 years in the future, which represents the poten-
tial service life of the system. Projections of strategic
systems missions, and operational environments have typi-
cally been less than 10 years. Design based on these projec-
tions could result in a system design that is obsolete at the
time of system deployment. Uncertainties associated with
future missions must be addressed by either, (1) flexibility of
design, which can result in significant cost impacts to the
customer or (2) as systems analysts we work to mitigate
uncertainty of future missions.

Systems Engineering Analysis.

The analysis effort to support the development effort
explores the transformation of mission needs to hardware
concepts. Mission needs can be defined as distributions of

Weapon Systems Requiremnents Analysis Employing a Hybrid of Analytic Technologies2/12/99 6

It

targets in which the dimensions of the distribution include,
geographic, clusterings, hardness or damage potential, areal
extent, terrain features, and position uncertainty. Hardware
concepts represent algorithms implemented in suites of sen-
sors and processors which transform reentry uncertainties
into pre-burst covariances which will result in suitable kills
of mission targets. A simplified graphic of the development
sub-process is depicted in figure 1. The force structure anal-
ysis provides the foundations for identification of range
weighting distributions, target allocation distributions and
associated target vulnerabilities. The range weightings allow
us to identify sets of pre-reentry covariances to be used in
developing optimal system transformations. These covari-
ances represent the initial conditions for fuzing sub-system
design. The target distributions, associated with a particular
weapon systems mission, provide the final conditions. The
system concept is the black box that transforms the initial
conditions to the final pre-burst conditions.

Projections / Scenario Development. Projections and sce-
nario development represent the initial activities needed to
begin the systems analysis effort. Projections and scenarios
generate information concerning strategic missions, inven-
tories, and operational states for use in the development
efforts. Projections, while accurate, lack the ability to antici-
pate discontinuous effects. These might be advances in tech-
nology, major political shifts, or common mode system
failures. Projections can be characterized as extrapolations
of trends observed in historical data. They can be extremely
accurate for short term predictions. Scenarios, provide capa-
bilities necessary for mission analysis efforts associated with
systems requiring service lives on the oder of decades. Sce-
narios explore predictions from fundamental dynamic con-
text. Predictions based on this approach might address
global states from which problem specific questions are
answered. For example, given a multi-polar high technology
future what might a strategic mission against a central amer-
ican adversary look like?

‘Weapon System Optimization. The mission profiles and
weapon system inventories which result for the projections
and scenario development effort are used as the basis for the
weapon system optimization analyses. The objective is to
identify one or more system configurations which when inte-
grated into the existing deployed stockpile will compliment
the inventories and not duplicate the other systems. Comple-
menting and not duplicating capability has positive and neg-
ative connotations, a cost effective stockpile is one that
mitigates duplication, while a reliable stockpile is one that
may possess limited amounts of redundancy to mitigate
effects resulting from common mode failures or delivery sys-
tem survivability issues. The weapon to target allocation
algorithms provide the basic fitness functions for use in the
optimization efforts. Massive searches can be conducted in

“Stochastic Covariance Transformations. The

which system concepts are assessed within a force structure
context to identify the most suitable solution to the design
problem. The solution which best compliments the force
structure during this phase of the studies leads to robust sets
of system requirements.

analysis
effort identifies sets of pre-reentry conditions and covari-
ances that characterize the initial conditions a weapon sys-
tem must operate from. We also see that the final conditions
are also represented by sets of conditions / covariances. The
system design effort involves finding the transformation
which can optimally transform the initial condition set into
the final condition set. The constraints that are imposed in
seeking this optimal transformation are based on the flexibil-
ity of the weapon system(sensor suites, aero-ballistic capa-
bility, etc.), and on the operational constraints (including
information, preset accuracies, word lengths, delivery sys-
tem accuracy, etc.) of the weapon and delivery system.

The search for this transformation is based on conventional
design paradigms. A tool that could prove highly useful for
this activity is the genetic programming approach being
developed and used in a number of design arenas. This tech-
nology is founded in the evolutionary analytical sciences and
is being used to design circuits, bridge trusses, and orbital
control systems. The effort did not possess the resources or
time to develop the unique operators for this type of genetic
programming problem.

Concept Development. A basic conventional approach to
design is being employed in the concept development activi-
ties. The optimization tools provide sets of effective CEPs
which must be generated by the system hardware. The rela-
tionship between an effective CEP and probability of target
kill is represented in the next equations.

(¢85

CEP

Pk =10-05

V _ Wr

o = ———————

7 n(1.0-Pk)
In(0.5) -

Concept development is achieved through a process of con-

cept specification and transformation functionality. Compar-

isons between capability and objective identify suitable

choices of concept architecture. Monti-Carlo techniques are

employed to convolve burst covariances with target damage

contours to identify system level probabilities of kill. This

result is then compared to the system requirement (effective

CEP) through the translations defined in equations 1 and 2.
The process while not elegant has proven suitable for many

Eqgn. 1

CEP Eqgn. 2

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 7

generations of strategic system development.

Analytical Scope. A broad set of mission projections were
proposed as well as scenario excursions developed in an
effort to capture the mission requirements for this system.
The system capabilities were assessed based on a system-of-
systems context in which the Mk4 was considered to be part
of a larger deployed nuclear stockpile. The delineation of
the mission projections and the scenario projections pro-
vided a foundation from which weapon system optimizations
could be conducted to identify the most suitable Mk4/W76
weapon system configuration. This approach differed from
efforts in the past because it required analytical capabilities
that have not existed within the DOE community. While the
DoD community posses tools approaching the needed capa-
bilities, the DoD algorithms are designed to provide detailed
lay-downs and are ill suited for the studies needed to identify
system requirements. The effort, therefore, required the
development of tools which could be used to search for opti-
mal configurations of the Mk4/W76 system under a broad
spectrum of conditions. The tools needed to operate within a
Taguchi framework, capture targeting heuristics, and facili-
tate multi-criteria decision problems. A brief description of
these tools and the analytical framework follows in the next
sections.

Taguchi Analyses.

Taguchi design techniques are employed in environments
associated with non-linear complex systems and where engi-
neers are concerned with achieving robust designs. The
objective of robust design is to set design control parameters
to target values that minimize response variability. Classical
system response can be defined by the following relation.

y=fM, x,2) Eqn. 3
M is the signal factor and defines external control of the sys-
tem by an operator in order to attain some intended response
values. x captures the noise characteristic of the system and
environment which cannot be controlled by the system
designer. Finally, z represents the control factors, the param-
eters that are under control of the designer to satisfy system
requirements.

Taguchi techniques recognize that parameter design and tol-
erance design are two distinct approaches to robust design
and there can be significant cost advantages associated with
parameter design in non-linear systems. Robust or Taguchi
design is founded on the premise that any deviation from a
target value has a cost associated with it. The classic design
margin approach assumes that all solutions within the design
margins are equally acceptable. The next figure attempts to
characterize this principle. When system cost is a function
of response variability, a designer can work to reduce the

uncertainties associated with the control factor, ie. tolerance
design, or find a control factor target value that corresponds
to a “flat” part of the response curve(shift of control from 75
to 175 in Figure 2).

Response Eiploiting Nonlinearities

' f
0.2 5 !
10
// \ j Control

100 150 200 250

Figure 2. Generic application of robust design.

The technigues associated with these methodologies become
highly useful for system analysis problems. The design
problem being explored possesses a number of factors that
must be addressed from a multi-criteria perspective in order
to define system requirements. The sensitivity studies that
are basic to the technique allow us to identify combinations
of conditions that lead to the best design solution.

Sensitivity Analysis

A principle of Taguchi analysis is the identification of impor-
tant design or analysis factors, usually in noisy environ-
ments. The analysis or experimentation that is typical of
Taguchi methodologies provides information that can be
used to optimize “level of effort” in design or analysis
efforts. The process involves a parameter study to identify
factors associated with the design problem and a noise analy-
sis to define the characteristics of the operational environ-
ment. The control factor levels are set based on engineering
judgement and constraints being imposed on the design
problem. Once the parameter analysis is complete the tech-
nique requires a selection of an orthogonal matrix, the
assignment of variables or parameters to the columns of the
othogonal matrix, and the execution of analytical experi-
ments. Subsequent to the experiments a statistical analysis is
conducted to determine sensitivities, non-linearities, con-
founding effects etc. The experimental layout for a number
of the analyses are included in the appendices.

Confirmatory Calculation. The preliminary sensitivity
analyses used in these studies aided in the identification of
the most stressing conditions being imposed on a replace-
ment SL. weapon system. For the purposes of the weapon
system optimizations, we are attempting to identify the most
system stressing conditions, and options that can provide
the best performance under these conditions. The confirma-

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 8

L]

.4

-

tory calculation selects these conditions for use in a final cal-
culation to determine the force configuration and system
characteristics that best meets the needs of the customer.

Scenario / Projection Development.

There are two basic concepts for attempting to define envi-
ronments a system may experience, the operational condi-
tions that may be imposed and the functionality that may be
assigned to a system in the future. The first, more basic
approach is that defined as “projections”. Projections are
based on trend analyses. The second approach is “scenario
development”. In this case attempts are made to define a
future environment and the system is then designed for func-
tionality requirements in this postulated future.

Projections.

As indicated projections are based on trend analyses in
which historical information is used to define conditions
which will exist in the near future. Projections can possess
high degrees of fidelity for these near term conditions but
lack the ability to anticipate the unknown. Unknowns might
be major political shifts and alliances, or major develop-
ments in technology.

A number of mission spectrums and stockpile inventories
were identified and assessed in order to identify the effective
CEP requirements for a replacement SL. weapon system
intended to compliment the deployed stockpile. The series
A set of calculations, current and START II environments,
involved pure projections based on treaty developments,
operational trends, and target vulnerability trends.

Scenarios.

The series B set of calculations, START III, and the SRF
missions were based on a limited scenario development
approach. Environments were defined to capture inventories
and target sets that might be evident in a future in which
START III treaties were verified. The target sets used were
based on projections of START II type mission spectrums.
A more comprehensive scenario development effort would
have included effort to define the composition of future tar-
get characteristics.

A great deal of consideration should be expended in an effort
to capture future scenarios into which the replacement SL
weapon system might be placed. The effort expended in this
area will ultimately save the nation money since the system

will possess the flexibility and robustness to deal with a
broad spectrum of missions. Some of the considerations that
may affect future missions include:

* Hardness trends

+ Defensive weapon trends

» C4l projections

* Geo-political trend analysis-

+ New delivery platforms. Fast bomber fleet may impact
requirements.

Weapon System Inventories. The inventories of weapon
systems for the three analysis subsets are listed in tabie 4 of
Appendix C. The inventories vary due to projections by dif-
ferent organizations and reflect the differing assumptions
concerning possible treaty limits. The SRF inventories were
assumed to consist solely of W76 weapons with varying
quantities. This assumption was made to generate the most
significant system performance demands.

Projected Missions. The current and START II experi-
ments, Series A, explored three mission profiles. These are
Scenarios A, B, and C in the experimental layout defined in
the classified addendum. Scenarios D through G were esti-
miates of possible mission profiles in a START III, or Series
B, type environment. The target sets were generated statisti-
cally from extensive databases. The intent was to capture
system needs and not to define or speculate on potential a
adversaries and missions. Each experiment consisted of
1000 targets generated from statistical mission profiles. The
the weapon system inventories were scaled from full target
sets to the 1000 number to reflect or capture the implications
of target rich and weapon rich environments.

The last four scenarios were used in the strategic reserve
force (SRF) analyses and were designed to capture reguire-
ments which may arise due to third party belligerents. Again
conditions were sought to develop requirements rather than
plan an SRF mission. These cases were run against 500 tar-
gets per SRF scenario.

Analytical Architecture / Technologies.
The optimization algorithms are based on three major analyt-

ical elements, the system optimization routines; the target
allocation routines, and a set of fuzzy logic routines.

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 ' 9

Algorithm Structure

Weapon System
Qptimization

Weapon to Target [a—
Allocation : 3
]
Fitness 3

Fuzzy Targeting P —— ;: Targeting Heuristics

Figure 3. Basic algorithm structure.

The two major sub-blocks can be executed independent of
the weapon optimization functions in stand-alone mode.
This provides us with a higher degree of modularity and re-
use as well as enhancing the validation and debug of the var-
ious algorithms. The targeting heuristics modeled in the
fuzzy logic sub-component represents our best attempt to
mimic the perceived targeting philosophy at strategic head-
quarters in an unclassified setting. The resultant rules could
be significantly improved by obtaining a current allocation
and using genetic programming principles to find an optimal
set of rules reflecting current targeting philosophies.

Fuzzy Logic (Targeting).

Fuzzy set theory is an extension of classic set theory. In
classic set theory component membership is defined by a
Dirac Delta function, either 1 or 0. Fuzzy set theory allows
set members to possess membership values which range
continuously over the domain between 0.0 and 1.0. These
membership functions provide us with an ability to charac-
terize the degree to which an element might belong to a spec-
ified set. For example, given a set of “accurate weapons”, a
system possessing a CEP of “X” feet might possess a mem-
bership value of 0.5, while a system with a “10X” foot CEP
has a membership value in the set of “accurate weapons” of
1.0e-9, reflecting a fact that in some scenarios even a “10X”
CEP might be considered accurate. Unlike statistical con-
cepts which consider the uncertainties associated with

assessing an observable, fuzzy deals with the uncertainty
associated with the underlying physics or functionality.

Fuzzy logic extends this unique set theory by defining the
calculus that can be used to capture behavior in this problem

“space. This treatment of fundamental functional uncertain-

ties provides us with another tool for modeling complex
dynamics, and non-linear systems. Implementation of the
calculus of fuzzy logic provides us with the ability to per-
form approximate reasoning. The dynamics of the system is
captured by semantic rule sets operating on semantic vari-
ables. The multi-faceted nature of targeting, both determin-
istic and heuristic, requires a hybrid approach for which
fuzzy logic is a good match.

Fuzzy provides us with the ability to model / approximate
the highly complex problem of weapon system allocation in
which many of the phenomena cannot be modeled determin-
istically. The politics, and psychology of strategic targeting
can be easily modeled in linguistic rules but is impossible in
closed form analytic form. Fuzzy also permits us to consider
conflicting guidance in the allocation process. As directives
evolve, allocation strategies may emerge which are in inter-
nal conflict. Unlike expert rule based systems which typi-
cally fail under these conditions, fuzzy logic can operate
under these conditions flawlessly.

Fuzzification. Fuzzy modeling requires transformations
between crisp and fuzzy domains in order to capture the
dynamics of a system. The objectives of fuzzy models is to
develop rule sets which operate on linguistic variables which
in turn capture the dynamics of the process or system. Fuzz-
ification is a process in which the concepts of numbers are
re-represented in terms of fuzzy linguistic entities. Once the
model representations are captured in this fuzzy linguistic
space the operations or transformations defined by the rule
set can be performed. The result of the fuzzy transforma-
tions is another set of linguistic fuzzy variables which must
be transformed back into the real domain for evaluation.
This process is de-fuzzification.

De-Fuzzification. After a rule set has been processed the
resulting consequent set must be quantified. This process is
called “de-fuzzification™ in the literature (Cox, 1994). There
are three methods that have been considered in these devel-
opment efforts. They include: the centroid method, the aver-
age maximum method and the maximum method. The next

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 10

L3

*

figures provide a simple graphic of rule processing.
Counter_Lethality

a
AN
i
s
=/]
o/ i \; !
D) dLevel) . l Priority
| H
Lyt /—»
-/
! 8
Mission I i)) Level“
~ I
. \]
=)_ I
H \\

Figure 4. Graphic representation of rule process-
ing.

Figure 4 graphically demonstrates the processing of a simple
set of rules as defined below.

« if COUNTER_LETHALITY is MODERATE then PRI-
ORITY is HIGH

« if MISSION is STRATEGIC_OFFENSE then PRIOR-
ITY is LOW

Assuming the value for COUNTER_LETHALITY was 57
and MISSION was 16.4. The lines between the charts reflect
the degree of truth of the antecedents and the resulting
impact on the consequent parameter, PRIORITY. The mem-
bership distribution for PRIORITY is represented by the two
clipped sigmoid distributions. The average maximum de-
fuzzification method would produce a priority result in the
neighborhood of 0.9. The centroid method would produce a
priority in the range of 0.6 to 0.8. The maximum method
would result in either 0.8 or 1.0 depending on the version of
the de-fuzzification method.

Fuzzy Targeting. In order to develop rules associated with
weapon system targeting we were forced to redefine a coding
system for the targets based on a three parameter model.
The category code structure associated with strategic target
sets represent a book keeping scheme, as opposed to a char-
acteristic scale similar to a member of a fuzzy set. The raw
category codes do not allow us to take advantage of the

inherent strengths of fuzzy logic.

Counter_Lethality

1.0

\\\ s

<] Low High
a
£ o
n <
[
L
-g - go Le wd i\

2 = Mo, rate

8° 100 =High Moderate

o

S

= S

S

[s] 20 40 100
‘Level
Mission .
<
©
<
k=
L
2=
2 | o=s
Ew 28 = fna g'al 8¥fense
2< 0= S ate efense
= 100 actl efen
oy
<
<
S
o 100
Level
Function
<
e I
\ |
o
=3
k=
<«
S
H
o 10 = Eabrication
E=] E3zdgneot
27| Zzsores
110 = Attadk
o
<
=) /
=1
[e] 20 40 &0 a0 100 120 140

Figure 5. Membership functions for Mission, Func-
tion, and Counter_Lethality.

The independent variables selected include the following
three parameters: Mission, Function, and Counter_Lethality.
Associated with each variable is a set of levels. Levels act as
units associated with the variable similar to the numbers
which belong to the positive integer set. The levels associ-
ated with Mission include: strategic offense and defense, tac-
tical offense and defense, and multi-missions.
Counter_Lethality is comprised of low, moderate and high.
Counter_Lethality in this context is the damage a surviving
target could inflict on us. Finally, function consists of: fabri-
cation, support, command & control, combat, storage, attack,
and “weapons of mass destruction” (WMD) storage. The
next figure depicts the variables and the membership func-
tions for each level used in the studies.

The objective of the fuzzy targeting within this analytical
architecture involves the assessment of target weighting, rec-

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 -~ 11

ommended detonation altitudes and strategic time line con-
siderations associated with delivery system response times
and survivability. The consequent fuzzy variables include:
priority, timing and height of burst (HOB). The levels
defined for priority include: High, moderate, and low. The
levels of timing include: days, hours, and minutes. Finally,
the levels of HOB include: high, moderate, low, and contact.

Hedges. Hedges represent mathematical adjectives in the
arena of fuzzy logic. They are used as modifiers to semantic
variables and act to change the distribution associated with
the membership function. The membership function for
“high” of the semantic variable counter_lethality can be
modified by the hedge “very”. The effect of that operation is
a change in the membership function by squaring each point
on the membership function. This results in a sharpening of
the distribution function for “high”.

The first cut at sets of fuzzy targeting rules are provided in

Table 2: Sample rule set used in the first strategic
targeting studies.

Table 2: Sample rule set used in the first strategic
targeting studies.

T\l‘ﬂe Rule
T bl5 | <Iif FUNCTION is ATTACK then PRIORITY 15 VERY
HIGH >
b6 | <if FUNCTION is WMD_STORAGE then PRIORITY 15
HIGH >
c1 | <if COUNTER LETHALITY is HIGH then TIMING is
MINUTES >

c2 [«<if COUNTER_LETHALITY is MODERATE then TIM-
ING is HOURS >

c3 < if COUNTER_LETHALITY is LOW then TIMING is

DAYS >
c6 < if MISSION is STRAT_OFF then TIMING is MIN-
UTES >
c7 < if MISSION is STRAT_DEF then TIMING is FEW
MINUTES >

c8 < if MISSION is TAC_OFF then TIMING is HOURS >

9 < 1if FUNCTION is FABRICATION then TIMING is
DAYS >

Rule

No. Rule

c10 |<if FUNCTION is SUPPORT then TIMING is HOURS >

cll < if FUNCTION is CCC then TIMING is MINUTES >

al | <if FUNCTION 1s FABRICATION then HOB is HIGH >

cl2 | <if FUNCTION is COMBAT then TIMING is HOURS >

a2 | <if COUNTER_LETHALITY is HIGH and MISSION is
STRAT_OFF then HOB is CONTACT >

c13 | < it FUNCTION is STORAGE then TIMING is DAYS >

cl4 | <if FUNCTION is ATTACK then TIMING is MINUTES
' >

cl5 < if FUNCTION is WMD_STORAGE then TIMING is
HOURS >

a3 < if FUNCTION is SUPPORT then HOB is HIGH >

a4 < if FUNCTION is CCC then HOB is LOW >

as < then HOB is MODERATE >

bl < if MISSION is STRAT_OFF then PRIORITY is VERY
HIGH >

b2 |<if MISSION is STRAT_DEF then PRIORITY is HIGH >

b3 <if MISSION is TAC_OFF then PRIORITY is SOME-

WHAT HIGH>
b4 | <if MISSION is TAC_DEF then PRIORITY is MODER-
ATE >
b5 < if MISSION is MULTI_MIS then PRIORITY is VERY
MODERATE >

b6 < if MISSION is TAC_DEF and FUNCTION is FABRI-
CATION then PRIORITY is VERY LOW >

b7 < if MISSION is TAC_DEF and FUNCTION is STOR-
AGE then PRIORITY is LOW >

b8 [<if MISSION is TAC_OFF and FUNCTION is SUPPORT
then PRIORITY is MODERATE >

b9 <if COUNTER_LETHALITY is VERY HIGH then PRI-
ORITY is VERY HIGH >

bl0 | < if FUNCTION is SUPPORT then PRIORITY is LOW >

bll |<if FUNCTION is CCC then PRIORITY is MODERATE
>

bl2 < if FUNCTION is FABRICATION then PRIORITY is
LOW >

the table 2.

Appendix A contains tables defining the transformation
between category codes, and the metrics used in the weapon
system allocation code. As mentioned earlier, category
codes are unsuitable for use in the fuzzy targeting models
and had to be transformed into semantic variables that could
be used by the rule set defined. The approach was to select
roughly 80 plus category codes, transform them into the
semantic space discussed and execute the rule base on these
80 plus target types to generate values for the HOB, priority,
and timing variables which were used in the weapon system
allocation portion of the analytic models.

The de-fuzzification method used to generate the table is the
“centroid” de-fuzzification method. The average maximum
and the maximum methods were explored, however, the cen-
troid method appears to produce the best results for this
application. The next couple of displays provide results of
the rule set defined in table 2. Figure 6 provides a subset of -
mformation useful for assessing the suitability of the target-
ing rule base. The axes represent target accounting codes

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 12

vesus the time urgency parameter.

L]
.
.
L4 s
) .
-
= u
o -
< .
53] .
-
-
* L]
=
»
.
.
@ * .
] .
o -
£ .o
= . .
.
- L]
-
- .
o »
5 H -
= E—r——xa
A »
T T T T =
20000 40000 60000 £0000 10000
Catagory Code

Figure 6. Target timing as a function of category
code.

Figure 7 provides information which correlates target
Counter_Lethality with the time urgency fuzzy variable.
The trend identified is consistant with expectations, i.c.
lethal targets should be attacked early in an a strategic opera-
ton.

v
-
»
»
.
o o o
= .
é-
gl « " -
[.
.
-
.
.
-
.
.
.
2= -5}
.
o -

— = . .
2 .
3 , "
= .

»
H
.
.
- .
3 » *
E .
S — .
& - :
T T T T
F-1 40 /0 80

Counter_Lethality

Figure 7. Target timing as a function of target
Counter_Lethality.

Figures 8 and 9 provide information concerning the prioriti- ~

zation of targets. This dimension of the problem becomes
important in target rich environments. In target rich environ-
ments the process involves an allocation of weapons to the
targets starting with the highest priority (rank 1 in the charts)
to the lowest priority. The “b” series of rules, the rules asso-
ciated with priority, in table 1 were used to generate the fol-

lowing plots. The series of plots were used as part of a
validation process. The objective was to capture, within the
time frame of the analyses, a set of targeting heuristics that
reflected actual targeting mechanics. Additional effort
would be needed to add fidelity to the rule base as well as
provide a foundation from which policy issues associated
with strategic targeting could be explored.

Priority
L . L L :
5] ¢ =
“ 14
3 +
1& [
1 ° —
10 e [:3
s E =3 !
7 o e
s . % m—
2 + ° o
' t
2::- A &0 A 11‘30 iéo 140

Figure 8. Target ranking by category code.

Priority
- . a - L : .
1 H=H
1 |
12 4
0 [F
s E- E———
s . o
T F... _____ D
: Jmm— .
2 ° = -
1 I
coo <00 . a0 100000
Gaode

Figure 9. Target ranking by function.

Genetic Optimization (Weapon System Allocation).

The objective of the allocation algorithms is to select the best
weapon for use against a target consistent with a set of crite-
ria or objectives. A characteristic of this optimization prob-
lem is the multiple combinations of acceptable solutions. A
graphical depiction of the problem is the generic representa-
tion of the optimization complexity provided in Figure 10
below. The axises are indicative of combinations of alloca-

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 13

tions and the resulting fitness of the mission. The point to be
drawn from the figure is the complex response surface asso-
ciated with weapon system allocation optimizations. The
initial effort to find a solution algorithm was to use genetic
algorithms with cyclic permutation operators. What became
evident, and it should have been obvious on my part, was the
inordinate amounts of computational effort required to find a
solution. Genetic algorithm can be characterized as directed
random searches for an optimal solution. The random
aspects of the search on a complex response surface 1s mech-
anistically inefficient. The complexity associated with the
optimization is in part due to the numerous combinations of
optimal solutions and to fitness functions that are at a mis-
sion level. The importance of unit allocation changes using
these fitness functions is averaged over the number of targets
in the strategic mission. The result is minimal impact to mis-
sion fitness due to small changes in the allocation scheme.

WW

z 26 2

0 06 % V6 2

|

)

Figure 10. Response surface characteristic of a
weapon system allocation problem.

The allocation solution methodology which proved to be the
most efficient was based on a relaxation principle. The
mechanics of this optimization technique involves a pre-
screen for sub-optimal weapon allocations in which suitabil-
ity is defined by the user. Each sub-optimal solution is com-
pared randomly to other sub-optimal solutions in this
distribution, if mission fitness is improved by exchanging
weapon allocations, the exchange proceeds otherwise the
exchange of allocation does not occur. The pseudo code for

the optimization is presented in the following table.

Table 3: Optimization Pseudo code.

Loop on all allocations
{
Compare allocation fitness to user defined acceptance
If (fitness < acceptance)
Add to “unacceptable allocation distribution (UAD)”
1
Loop on UAD distribution
{
randomly select another allocation from UAD
exchange weapon allocations for the two targets
if(fitness new > fitness old) ’
make exchange permanent

}

The fitness of an allocation is defined by sets of criteria to be
discussed in the next section.

Multi-criteria Decision Analysis (Fitness Functions).

Strategic targeting represents a multi-dimensional optimiza-
tion problem in which many of the criteria may possess qual-
itative foundations. Target priority is a clear example of a
qualitative criteria. Policy directives, military objectives,
and geo-political opinions all contribute to the dynamic of
target prioritization. The following set of criteria was used
in the force structure analysis documented in this note. The
criteria consisted of the following 7 factors.

* Minimum Yield
* Objective probability of damage (Pd)
« Stockpile constraints
* Target importance
Strategic time lines
« HOB objectives
« Control sub-system Reliability

The factors listed can be grouped into two basic types, those
exhibiting threshold type behavior and those more appropri-
ately characterized as goal functions. Threshold criteria
drive the suitability of a weapon to target allocation to zero if
the fitness threshold of the criteria is not reached. This is
used to capture stockpile limits, if there are insufficient num-
bers of systems to cover targets, the fitness contribution for
an uncovered target must be zero. With goal type criteria,
such as objective Pd, credit is given for an allocation which
produces a probability of target kill different from the mis-
sion goals. This characterization, while rather simple, cap-
tures the functionality of interest. Second order effects
might drive certain targets to transition into threshold type
criteria. Allocations failing to inflict a minimum level of
damage, would be equivalent to an allocation which inflicts
no target damage. The mission fitness correlation is defined

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 ~ 14

in the next section and characterizations of a number of the
fitness criteria are discussed in subsequent sections.

Mission Fitness Correlation. The functional form of the
mission fitness function is presented in equation 4. The
functionality captures threshold type criteria as well as goal
type criteria.

F l=Fstk'Fwt'FZm'Fre

tota

g
3
A

In this expression F, is the fitness associated with strategic
timing issues, F,. addresses system reliability, Fpy captures
objective Pd issues, Fy, covers to height of burst consider-
ations, and F,, represents minimum yield considerations. Fgy

captures the stockpile fitness and is either 0 or 1 depending
on the ability to allocate a weapon system to agiven target.
F, captures target weighting concerns. When there are suf-

ficient numbers of weapons in the inventory the term takes
on the priority of the target, the problem becomes one of
maximizing the sub-fitness’ for high priority targets in order
to maximize mission fitness. The weighting parameters also
act as a threshold in target rich environments. Under these
conditions, a lower priority cutoff is established that corre-
sponds to the number of higher priority targets that can be
attacked.

The maximum mission fitness that is attainable is 3.0 and the
minimum fitness is 0.0. Each sub-criteria of the mission fit-
ness function can range in value from O to 1 with the
summed terms in parentheses driving the maximum value.

Objective Probability of Damage. Figure 11 defines
the functional form of the probability of damage fitness cor-
relation, The peak of the curve occurs at a value defined as
the objective Pd. The degradation in fitness for probabilities
of damage below and above that value is founded on the
logic that too much capability is as bad as too little damage
capability. This effect shows up in the requirements for the
weapon system. Fitness correlations that indicate “bigger is
better” will drive the system requirements up and potentially

impact cost.

Mission Suitability
1 /,\
/
0.8 /
/ \
0.6
g
"o.al
6.2
0.2 0.2 0.6 0.8 1

Pd

Figure 11. Objective probability of damage fithess
function.

Minimum Yield. The functional form of this fitness cri-
teria, Figure 12, had to capture the targeting objective of
imposing the minimum yield available on the target while
still satisfying the other criteria. This criteria has founda-
tions in the desire to mitigate collateral damage in particular,
and to preserve our most capable systems for allocations for
more stressing problems.

Minimum Yield

Fitness
[=3
o

<
[y

200 400 600 800 1000
Yield

Figure 12. Fitness function for minimum yield con-
straints.

HOB objectives. The criteria associated with heights of
burst (HOB) captures issues associated with optimal or rec-
ommended HOBs. Physics of weapons, targets, terrain, or
trajectory can impose constraints on targeting HOB. This

fithess 'Flwnptinn, Figure 1'2, Capfnrec the-effect-of this prob-

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 15

lem mathematically.

HOB Objectives

1

0.8 [
L0.6
0.4

0.2 |

HOB

Figure 13. Fitness function for height of burst
(HOB) preferences.

Strategic Time Line. Strategic time line is a decision
metric associated with target attack urgency, system delivery
times, and indirectly delivery system survivability. Target
time urgency takes target counter_lethality into consider-
ation when allocating weapon systems to the target. For
example, strategic offense targets are a class of target that
would be targeted early in a mission while strategic storage
facilities, under most scenarios, could be targeted late in a
mission. Survivability of the delivery system becomes a tim-
ing issue if there 1s some question of first strike survivability.
These systems might be best suited for allocation to time
urgent targets. The forms assumed for weapon system tim-
ing considerations are presented in Figure 14. These figures
represent ICBMs, SLBMs, and air delivered systems. In
conjunction with the fuzzy targeting model, which defines
timing urgency, these generic delivery time curves provide a
decision metric for proper assignment of system to target.

IC Sigmoid Timing Distributions
X /

0.8 /

0.6 _ SL —

0.4

Air Delivered
0.2
/
Time

Figure 14. Delivery time characteristics for IC’s,
SL's and air delivered weapon systems using sig-
moid functions.

Validation. Validation of the allocation model was con-
ducted on a best guess of current targeting conditions and
associated allocation rules.

Base MissionTarget Distribution

Frequency
0 4o 810 (2]

a2mn
"

{{)

20003 40030 0000 80000 100000
Target Coding

Figure 15. Target distribution for base mission.

Two sets of base mission allocations were performed. The '
first used response times for the air delivered assets such that
50% of the weapons could be delivered in 750 minutes. The
second-set of allocations set the mean delivery time to 1200
minutes. Figures 16 and 17 provides comparisons of a cou-
ple of target classes for the two response times.

Catcode 871

Frequency

O B) 10D {5 200 250

=
SaNEn

System

Frequeicy
0 40 &0 20 402

[}

System

Figure 16. Allocations of weapons to target class
871 with different response times.

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 16

Catcode 878
8
Zg
g
8o
£e
° -
s} 2 4 13 k= 10
System
2
=8
H
%8
o

10

=]

System

Figure 17. Allocation differences for a second tar-
get class.

Figure 18 provides information related to the timing aspects
of the strategic timing problem. For reasons of survivability
and delivery delays, we expect the allocation algorithms to
preferentially select IC systems to attack time urgent targets
and air delivered assets to be used against targets that are not
time critical. From the figure we see that for a prompt
response scenario, these allocation patterns are evident.

Base Miss ion {Promps)

1 1} 1 L

10 1.2 ->8L +

g | 35>IC $oo o

o 610> AR o iyt o
st

414

R

2 i °

i © a a IS o

° wo 1000 1500
Timing

Figure 18. Timing allocation information for base
prompt mission.

Other aspects of the targeting validation considerations were

———————— — —demonstrated in the fuzzy logic section presented earlier

(Figures 4-7). We found that the generic characteristics of

the targeting allocation algorithms demonstrated trends that
were expected for the missions assessed.

Allocation Sensitivity Assessment. A sensitivity set of
calculations were performed to assess the significance of
model and system parameters in the allocation process. The
exercise considered operational scenarios, mission suitabil-
ity, system reliabilities, code convergence parameters, de-
fuzzification methods, and the category code transformation
matrix. The sensitivities were based on the L;g orthogonal
matrix in which the 8 columns were fully assigned to analy-
sis parameters. The table of experiments and settings are
listed in the table of appendix B. A detailed description of
the Taguchi analysis methodology follows in later sections.

The result of these 18 calculations are shown in the next
figure.

System Performance

20

15
»
—
.
M Y
RS
o2t

Performance

14

e
5-2

nog

12
@
£
§

BB RN+
WO
fE0
<eg

g
FRED.
Rl

i

Factor

Figure 19. Mission fitness sensitivity.

The metric displayed in the Figure 19 is the fitness function
defined by Equation 4. The expression provides numerical
foundations for making comparisons for the different alloca-
tions of weapons to targets. The next figure demonstrates the
sensitivity of mission Pd to the same set of parameters.

The vertical extent of a parameter in these plots indicates
sensitivity to a design or analysis parameter. We also need to
remember that each data bar represents the effect of that
parameter averaged over all the remaining parameters. What
we observe in these displays is a dominant system perfor-
mance sensitivity to the operational scenario. The probabil-
ity of damage (Pd) sensitivity plots really do not add a great
deal of extra information but simply reinforce the sensitivity

‘Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 17

observations from Figure 20.

System Performance

=1
- i=
2 = Chipd
:3=2§avms
4= o
@ 5= IOHeggbi'
b 6 = SL Relbilty
7 = DeFuzity
8 = Cathep
o
g 3
5 e 2 T
<
b=
oo~
-
©
o
10
o
2 4 5 &

Factor

Figure 20. Mission Pd sensitivity resuits.

The fitness sensitivity plots indicate, that along with opera-
tional scenario, objective Pd or mission suitability is signifi-
cant. The plot also indicates that submarine launched (SL)
reliability and the de-fuzzification method needs to be exam-
ined closely when performing allocation studies. The impli-
cation of these results are a sensitivity of the design to
perceptions of mission success and operational scenario.

Analysis recommendations include the use of the “centroid”
de-fuzzification and a high user defined convergence accep-
tance level. The acceptance level acts as a threshold for
improvement considerations in the allocation process.

Evolutionary Strategies (Weapon System Opt.).

The system optimization methodology is based on evolution-
ary strategies (ES). Basically, ES is a genetic algorithm
which operates in a real solution space as opposed to a
binary representation of the solution space employed in
genetic algorithm optimizations. The problem is to solve
equation 5 which is a representation of a vector function in x.
The response surface defined by f may be of any order or
complexity. The objective of the ES search algorithms is to
identify an optimal solution to equation 4. It must be recog-
nized that for any complex surface, the probability of finding
the optimum is less than 1.0. What has been shown is that
optimization techniques founded in the biological sciences
do a better job of finding the optimal solution than classic
linear programming methodologies.

y = f(X) Egn. 5
The “ES-chromosome” represents the vector solution to the
equation and is represented in equation 6. The two vector

components of the solution ¢; are the nominal value associ-
ated with the solution vector and a search strategy parameter.
Evolutionary strategies possess a characteristic that permits
searches to be conducted in preferential directions of an n-
dimensional space. These directions evolve during the
course of the optimization iterations.
¢; = (op,sp) Egn. 6
The following equations define the operators which are char-
acteristic of an evolutionary strategies optimization method-
ology. Parametric or nominal value mutation is defined as:

OPmus = 0p +No(sp) Eqn. 7

In this expression N, represents a normal distribution about

op with a standard deviation of sp. The mutation process
involves updating the nominal solution with random draws
from the normal distribution defined by N,

Strategy mutation is defined by:

SPmut = § e A Eqgn. 8
o E<05
A, = (Eqgn. 9
1/a E>05

E is a random number: £ € (0, 1). s is the vector of stan-
dard deviations used with N, and has been recommended
to be set to 1.3.

The equations delineated represent the optimization algo-
rithm that was implemented for the weapon system optimi-
zation section of the analysis algorithms.

Weapon System Capability Optimization. The objectives
of the weapon system optimization analysis is the identifica-
tion of weapon system characteristics that best represent the
solution to system needs which compliment the deployed
stockpile. The algorithms also possess a capability to
explore the broader question of stockpile composition based
on delivery system characteristics, treaties and future mis-
sion scenarios. The algorithm, based on evolutionary strate-
gies, has the ability to identify yields, inventories and option
performance requirements to satisfy a mission.

Mission Analysis Results.

The analysis was executed on subsets of the scenarios and
projections defined for this upgrade design effort. The basic
subsets of missions consisted of START I scenarios, START
III scenarios and sets of strategic reserve force (SRF) mis-

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 18

sions. The objectives were to identify potential mission sets
for a strategic force in the near future as well as develop sce-
narios for system utilizations beyond a ten year time frame.
Most projections of mission requirements do not explore
conditions beyond this short time horizon. The scenarios
that were developed were biased toward START III type pro-
jections. These scenarios defined inventories and targets that
possessed characteristics similar to START II projections but
at levels consistent with trends emerging in strategic treaties.
The SRF missions did the best job of developing scenarios
and provided some of the more stressing system require-
ments.

The first set of calculations performed for each of the three
strategic environments consisted of sets of sensitivity calcu-
lations designed to identify the stressing conditions for mis-
sion performance of a replacement SL. weapon system. The
metric chosen to represent system suitability is defined in
equation 9. The metric is defined as the standard deviation
of the weapon radii assigned to the Mk4 divided by the stan-
dard deviation of the mission probability of damage.

GWr
Opg4

S =

Eqn. 10

This equation can be interpreted as characterizing a system
which is robust, in terms of target coverage, and flexible, in
terms of an ability to achieve a Pd close to the mission suc-
cess parameter. The greater the value of S the better the sys-
tem solution. The search for swressing conditions are
parameter settings that drive the metric S to minimal values.

The first part of the effort is to identify combinations of
parameters in each of the three subsets of mission which
minimize the metric S. These parameters and options
become the basis for defining system requirements of the
modified system through confirmatory sets of calculations.

Sensitivity Space.
The independent variables identified consisted of

* Operational scenario (Prompt / Delayed).
A prompt scenario reflects “launch on warning” scenar-
ios, while the delayed operational scenario reflects the
situation in which we succumb to a first strike before
launching a retaliatory strike.

¢ Inventory.
Inventory consists of the mix and numbers of ICBMs,
SLBMs and air delivered assets in the deployed stock-
pile. -

= Strategic reserve force size.

» Mission.
Mission defines the target sets, the inventories, the pol-

icy, and the operational scenario.

* Objective probability of damage (Pd)
This parameter is a reflection of the targeteers criteria
for defining mission success.

* IC reliability.

» SL reliability.

* Number of replacement SL weapon system options.

Current / START II (Series A). The series A mission cap-
tures variations in the START II projections database. The
target inventories are the largest in these projections and the
weapon systemn inventories exhibit the broadest spectrum of
capabilities. As a result we expect these scenarios to be the
least stressing of the three subsets of strategic missions. The
sensitivity calculations are structured to provide information
indicating the most stressing set of conditions for this mis-
sion series. The results of these calculations provide the
conditions which will be used in the confirmatory calcula-
tions which follow in later sections.

System Performance

12500
HOOE R
=
g
3

1230
[CRNT P2 FNCR R

11800

Performance

$10m0
——
et

1080
A

10000
.

oy
-
@
@

Factor

Figure 21. Sensitivity for experiment series A.

The performance metric employed in the assessment is the
metric defined by equation 9. Figure 20 is the results of the
series A set of analytical experiments. In these figures the
vertical extent of each factor represents the sensitivity of that
factor on the average of over all the other factors. The condi-
tions which stress the system include: delayed response,
inventory 2, mission C(definitions of inventories and mis-
sions are discussed in the classified addendum), a 2 boat
SRF, “objective probability of damage” of 0.6, IC reliabili-
ties of 0.85 and SL reliabilites of 0.9. The last three parame-
ters including the number of new options are somewhat
counter intuitive but may be attributed to confounding
effects of other parameters in the analysis. This is also indi-
cated by the change in slope of the parameters. The response
surface indicates a degree of non-linearity in the perfor-

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 19

mance metric. Each factor in the analysis was monotoni-
cally changed and if the dependence of the performance
metric were linear we would expect monotonic changes in
the metric. Of significance is the fact that all of the parame-
ters exhibit consistently large sensitivities.

START III Environments (Series B). The series B mis-
sion set consisted of scenarios and projections that explore
conditions associated with START III environments. The
retirement of weapon systems and reduction of inventories
would tend to drive the requirements for a replacement SL
weapon system up. The series B sensitivity analysis utilized
an L4, orthogonal matrix which allowed for 10 parameters to

be studied.

The results of these experiments, Figure 21, indicate that
there exists factors which dominate the problem. Mission
and objective Pd are the dominant stressing conditions while
the number of options provides a significant capability for
countering these effects. As with the series A analysis the
stressing conditions were identified based on this set of cal-
culations and used in the confirmatory calculations.

System Performance

£
L2 ey [
3 = SAF
g 4 = Mission
1 5 = Objectve Pd
- 5 = Relabiiy
7 = SLRelsbiliy
8= 7
E
3
£ | T
g |
o
g.

2 “+ -1 k=
Factor

Figure 22. Sensitivity for experiment series B.

SRF Force Sensitivity. The SRF sensitivity analysis
explored a subset of factors explored in the series A and B
sets of conditions. The analysis was limited to four scenar-
ios and situations in which the surviving SRF consisted
solely of Mk4/W76 systems. This scenario was selected
based on delivery system survivability considerations and on
considerations for identifying the most robust set of system
design requirements. Assuming a solely Mk4/W76 SRF

- -force approximates a more stressing design environment.

The four SRF missions consisted of two former Soviet
Union satellite states, a North Korean mission and a Chinese
mission. The sensitivity was limited to mission, objective Pd

and the number of new options. This set of analytical exper-
iments was based on a modified Lg orthogonal matrix. The
modification consisted of combining the first two factors in
order to create a four level factor to capture the mission vari-
ability.

System Performance

14000

ion .
76 Options

LENSI RS
wannu
=3
855

£
%.
2

13000
S—

f1e0 4200
g
—

—t
ot

Performance

o
é K
1 2 3 4 5
Factor

Figure 23. Sensitivity resulits for the SRF series of
experiments.

The results, Figure 22, indicate that performance of the sys-
tem is almost solely dependent on the SRF mission.

Confirmatory Analyses and Results.

The final phase of a Taguchi analysis is the confirmatory cal-
culations which bases factor settings on the results of the
sensitivity studies. The object of the analysis is to define the
system level requirements of a replacement SL weapon sys-
tem within the context of a strategic force. The sensitivity
studies were structured to identify conditions which would
lead to the most constrained set of system requirements for
the three mission subsets. Again these mission sub-sets con-
sisted of near term projections, moderate range scenarios /
projections, and the SRF mission subset.

Current / START II (Series A). The conditions of the con-
firmatory analysis were delineated in the series A sensitivity
section of this note. What follows is a series of plots provid-
ing detailed allocation information, stockpile allocation
information, convergence data, and the distributions associ-
ated with the effective CEP requirements developed for the
system. The decision metric is defined by equation 9.

Figures 23 and 24 are representations of the raw data cap-
tured in equation 9. The first figure shows the coverage of
each weapon system in the inventory in terms of target
weapon radius. Information contained in these plots
includes the mean, the dot inside the boxes. The inter-quar-

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 20

tile range is defined by the box, while the whiskers define the
limits of the standard span, i.e. 1.5*% inter-quartile range.
Points delineated béyond the whiskers are the outliers.
These figures provide regimes of weapon system responsi-
bility given specific system characteristics. The indices on
the vertical axis correlate to the weapon system within the
strategic inventory. Systems 1 and 2 are the SLs, 3,4 and 5
would represent the ICs and the remaining the air delivered
assets. Systems 3 and 4 are unaliocated in the cases depicted
in the figures.

Confirmatory {(EXP A)
! L : : L L ! :
gl |
7 ® Fe{s 1 s oo

Figure 24. Weapon radius range of targets
assigned to weapon systems.

Figure 23 delineates the assigned area of responsibility, the
next figure characterizes the capability of the system on the
assigned area of responsibility. A infinitely capable system
would result in a simple vertical line at a level equivalent to
the objective Pd value. As we can see from the figure none
of the systems (those with statistically significant alloca-

tions) exhibit this characteristic.

Confirmatory (EXP A)
9 1 1 I 1 i - l+
8 H=H
7 ° t
g6 S R
s 3
21 e ° os o +
f "1 1
0!0 012 O.ld '076 0.18 170
Pd

Figure 25. Performance range of system against
targets allocated.

Figure 25 captures the allocation statistics for all systems
within the strategic inventory, including the newly optimized
Mk4/W76 system. From the figure we see that for the series
A mission subset 65-70 percent of the mission is being cov-
ered by the SL branch of the triad.

Stockpile Allocation (Exp. A)

Femertof Totl

Yield

Figure 26. Deployed stockpile allocation for mis-
sion scenario A.

The mission series A is a weapon rich scenario. Given the
optimized capabilities of the replacement SL weapon sys-
tem, this system is an extremely import component in a stra-
tegic weapons mix. The effective CEPs for the system are
defined in the lower left panel of Figure 26. Five options

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99) 21

B ,

evolved which had targets assigned to them.

Migsion Allocation Requirements{Exp. A)
10 1.6 20 25

L It

System 9 100
&0
= a0
M a0
a0

Percent of Total

System 5/m System 61

T T T T T T T

T
10 15 20 2§ 10 1.6 20 28
Normalized Effective CEP

Figure 27. Required effective CEPs and associated
distributions.

Based on the two previous figures we see that nearly 50% of
the mission could be successfully attacked by a Mk4 system
capability of 2.5. Similarly, less than 14% would require a
Mk4 system with a 1.0 normalized capability.

A concern when using biologically inspired optimization
algorithms is the probability of convergence to a maximum
in the response space. Figure 27 shows that we indeed found
an optimum early in the calculational series. We can also see
that for this series in the mission subsets, we approached a
relatively high mission fitness, greater than 1.9 of a theoreti-
cal maximum of 3.0.)

GConvergence Rate(Exp A)

T

Fitness
1,210 tai5 =)

1ans

1,800

o 100 200 300 400 500

Iterations —

Figure 28. Convergence information for experi-
ment series A.

START III Environments (Series B). The series B mis-
sion subset is a target rich scenario. In this case some targets
will survive uncovered by a one-to-one targeting philosophy.
The figures which follow provide identical information to
the information generated for the sertes A mission subset.
The first point to notice with these calculations are the
diminished responsibility assigned to the replacement SL
weapon system. This is potentially due to a number of fac-
tors including the uncovering of soft targets because of prior-
ity considerations in a target rich environment, and a
different weapons mix resulting from treaty considerations.
A significant number of second order factors come into play
some of which are captured in the allocation and optimiza-
tion algorithms.

Confirmatory (EXP B)

3 ‘ o ui oL I N ;_{:I}., I ooo'
7 b
6 2 S—
51 [. |
4 o e R
3 o N T o —
o ™ a a o aH H e 2aa o
4 Hﬂ_\ @00 o as o
o+
Wr

Figure 29. Weapon radius range of targets
assigned to weapon systems.

Confirmatory (EXP B)

1 Il 1 [}] 1

8 ° t
7 =3
& ¢
5 o p—r_1
4 '
3 . a = 4
o a R t
1 i T
ot
T T T T T T
0.0 0.2 0.4 0.6 08 1.0
Pd

Figure 30. Performance range of system against
targets allocated.

The figures which capture the essence of the roles and
requirements are shown in Figures 30 and 31. We see that

Weapon Systems Reguirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 22

VY

given the strategic inventories associated with this mission
subset, we still see over half the mission being covered by
the SL branch of the triad. There is however a diminished
role of the Mk4/W76 in the allocations, less than 40%.

Stockpile Allocation (Exp. B}

1 1 1 L

Parcent of Towl

Yield

Figure 31. Deployed stockpile allocation for mis-
sion scenario B.

As in the case of the series A mission subset, the recom-
mended set of effective CEPs range from 1.0 to 2.5 normal-
ized feet, the limits explored by the optimization algorithms.
We find in this case however that only 25% of the mission
requires the largest effective CEP and approximately only
8% requires the tightest effective CEP.

Mission Allocation Requirements(Exp. B)
o 1 2 3

System 9

100
- 80
60
- 40
- 20

System 5 System 6

Pexcent of Total

Normalized Effective CEP

Figure 32. Required effective CEPs and associated
distributions.

As with series A, the convergence to a solution occurred
early in the calculational series. The solution converged to a

Iterations

level lower than that of the first series in large part to the
uncovered targets which are considered to contribute a value
of zero(a penalty) to the fitness functions.

Convergence Rate{Exp B)

w
2
s B |
£ 1
&

w

o 200 400 500
Iterations

Figure 33. Convergence information for experi-
ment series B.

SRF Force Confirmatory. The SRF mission subset con-
sisted of 4 missions generated from target databases on
regional missions. SRF missions are assumed to exist under
conditions of limited weapon system inventories, in this case
only M4/W76 weapon systems, and limited target sets. The
sensitivity analysis conducted was used to identify the most
stressing environment for the Mk4 system, the conditions
identified were used in the SRF confirmatory calculations.
The results of these calculations are defined in the next plot.

Stockpile Requirements {SRF)

I 1 1 1

Percent of Total
5
1

T T T 7

1.0 18 20 25
Normalized Effective CEP

Figure 34. SRF effective CEP requirements and
associated distribution.

We find under these conditions that a system exhibiting max-

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 ~ 23

imum capabilities will be employed 95% of the time while
the lowest capability would be used only 5% of the time.
The implications are that the SRF mission, based on the 4
case subset, will not be a system requirements driver in this
design effort.

Exploratory Analysis.

The tool possesses the capability to optimize on yields,
inventories as well as accuracy constraints. With this capa-
bility we also have the ability to explore the optimal configu-
ration of the strategic stockpiles. An exploratory set of
calculations were performed to find the optimal stockpile
given a mission with a distribution of targets comparable to a
current mission, “Scenario A” of our mission set. The sensi-
tivity study explored the effects of objective Pd, SRF force
size, reliabilities of the delivery systems, as well as the
effects of the number of potential yields and number of
options(effective CEPs) of the new systems. The results of
those analyses are provided in figure 34.

System Performance

g_ 4 = Objective Pd
2 = Air Relabiliy

| iR ome

g | 5= KPReibiy

g1 SIikeR”
s &1 i
£ LY 5 7 !
£
£

2|

]

o 2 4 13

Factor

Figure 35. Stockpile optimization sensitivity
assessment.

The number of options per system is the most important
design parameter with yields and SRF force size being the
next most important design and operational parameters. The

confirmatory calculation produced the following results.

Stockpile Requirements

L 1

20 H o

Percent of Total

Figure 36. Yield distribution for an optimized
stockpile.

The yield distribution requirements are presented in Figure
35. The optimal stockpile would contain five basic systems
with yields ranging from 25 to 500 Kt. The corresponding
option requirements are provided in Figure 36. The systems
are numbered from lower left to upper right, 1-6. The two 25
kt systems correspond to 2 and 6 in the figure. Of the
remaining systems, system 1 is a 431 kt system, system 3 is
167 kt, system 4 is at 500 kt and system 5 is at 302kt.

Performance Requirements
100 200 300 400

l_] 45 H
4 - 80
4 L &
Lo
El
S 20
B - - - o
g 801 -
=%
60 L
40 ! I L
[=

100 200 300 400

T T T

100 200 300 400
Normalized Effective CEP

Figure 37. Effective CEP requirements for each
system in the optimized inventory.

Decision Issues.

The following table summerizes the system level require-
ments and the percent of target coverage associated with the

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 24

option for the three mission subsets. The percentages in the
headers is the percent of targets assigned to the Mk4 weapon
system.

Table 4: Confirmatory analysis results,

Series A Series B SRF
58% 39% 100%
1.0 11% 1.0 6% 1.0 4%
1.8 4% 1.03 3% 2.5 96%
2.13 2% 1.79 4%
2.23 1% 2.18 2%
2.5 40% 2.5 24%

At the smallest normalized effective CEPs, series A and B,
the option is used on approximately 10% of the targets,
while for the largest effective CEP, the system is used on 24
to 40% of the series A or B targets.

Follow-on Activities

The results delineated in earlier sections provide information
for use in the system development effort. The remainder of
the section provides the context in which the data is used.
One of the responsibilities of the systems engineer is to pro-
vide transformations between system level requirements and
the sub-system level metrics used to assess the performance
of the sub-system. In the case of this effort the sub-system
design engineers are using Monte-Carlo techniques to deter-
mine the probability of kill (Py) of a concept against a target

set. The transformation between effective CEP requirements

and concept Pk is defined by equation 2.

A re-statement of the development activity and the informa-
tion generated follows: Scenario development provides
mission details including weapon system inventories, target
distributions, range distributions, and mixes of delivery plat-
forms. Range distributions provide weightings of pre-reen-
try covariances. Target distributions and locations provide
target clustering distributions which enable the analyst to
assess foot printing capabilities as functions of warhead
weight and yield. Weapon system optimization provides
information delineating the subset of mission targets allo-
cated to the new / modified weapon system concept. This
effort also generates the effective CEP requirements for the
system and fuzing options.

Recommendations for further Development.

The next couple of points capture considerations for further
work or efforts that should be considered in future develop-
ment efforts. The two basic issues concern the mission

developments, and the technology for completing the
requirements development process in a manner that is 1)
technically feasible, and 2) more attuned to classic systems
engineering development approaches.

Trend Analysis of Missions.

The scenario development considered a static target database
for use in defining future missions. This approach is a rea-
sonable first order approach to mission analysis. The prob-
lem with this approach is it lacks consideration of trends in
asset protection. We have seen from historical evidence that
targets are not static but under go design modifications that
in some cases result in diminished vulnerabilities, and / or
greater location uncertainties. Targets are deployed in
deeper bunkers, the bunkers are better engineered, or take
better advantage of the natural terrain and geology. Taking
these types of dynamics into consideration might bave
resulted in modified target distributions from which the mis-
sions were developed.

Targeting Rule Base Issues.

Some effort should be expended to explore the use of genetic
programming techniques to find the rule set which most
closely approximates the current targeting philosophy of
strategic targeteers. The rule set used in this study is based
on a best guess, based on generic targeting considerations.
The fuzzy approach was employed to provide a degree of
flexibility for the exploration of policy issues associated with
strategic targeting. In order to explore these excursions, a
rule set needs to be identified that exhibits a high degree of
fidelity with current policy.

There are two basic methodologies useful for developing tar-
get allocation rules. The first is to follow an evolutionary
approach similar to the process that resulted in the current
targeting heuristics. Tt is suggested that this evolutionary
approach be pursued in order to make the process of captur-
ing complex non-linear dependencies tractable. The second
more sophisticated approach is to write a wrapper for the
allocation algorithms in which a genetic algorithm (GA)
employing cyclic permutations searches for combinations of
fuzzy operators and terminals to identify an optimal target
rule set. This approach requires a known solution to act as
the fundamental training set.

CA4ISR Projections

A replacement SL. weapon system will remain in the
deployed stockpile for 30 plus years. Command and control
development efforts are likely to result in capabilities that
could permit re-targeting of a strategic weapon system in
real time. This requires that target recognition assets have
evolved capabilities sufficient to assess the status of a silo or
the location of re-locatable assets and could securely com-

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 25

municate this information to the missile / bus system. With
stockpile size trends resulting from treaties, the value of the
assets conftinues to increase.

The technology which may make real time targeting possible
revolves around the concept of cyber-agents. The possibility
exists for the agents to orchestrate the identification, location
and projected location of strategic targets at times consistent
with the speed of a SRT and the time from release to impact
and provide that information to targeting agents which could
correct preset conditions within the constraints of the bus
energy. What might the implications to system performance
be under these conditions. We no longer would have to
shoot at potentially hard empty holes, but could engage tar-
gets with a high degree of location uncertainty.

References.

Cox, E., The Fuzzy Systems Handbook, AP Professional,
Cambridge MA, 1994, ISBN 0-12-194270-8 .

Dr. Christian Jacob; “Evolutionary Algorithms with
Mathematica”, Tutorial at Genetic Programming Conf.

1997, Stanford U.

Defense Intelligence Agency, “Physical Vulnerability
Handbook for Nuclear Weapons”,0GA-2800-23-92

Klir, G.J., Folger, T.A., Fuzzy Sets, Uncertainty &
Information, Prentice Hall, 1988, ISBN 0-13-345984-5

R.R. Yager; “Multiple objective decision-making using
fuzzy sets”, Jona College, Int J Man-Machine Studies,
1977 9,375-382.

M.E. Senglaub, “Information Adendum To Weapon System
. Requirements Analysis”, to be published.

This work was supported by the United States Department of
Energy under Contract

DE-AC04-94AL85000.

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 ~ 26

APPENDIX A Transformation between category codes and descriptive parameters.

Table 5: Category code and variable transformation with basic rule set. (Descriptions can be found in the classified

addendum)

CatCode Description Counter_lethality Mission | Function HOB Timing Weight
21100 20 50 85 0 1774.77 0.496094
21300 10 50 8&s 0 1785.28 0.496094

: 21500 10 50 8 10 178528 | 0.496094
41100 85 {0 45 162906 {64.9121 0.59863
41400 80 10 45 164.151 123.194 0.59863
42100 10 50 90 0 17853 0.496094
42200 10 50 90 0 1785.3 0.496094
42600 10 50 90 0 17853 0.496094
42700 10 50 90 0 17853 0.496094
45100 20 50 90 0 1776.07 |0.496094
45300 . 20 50 90 0 1776.07 }0.496094
45500 10 40 85 0 168743 [0.566804
45900 30 40 3s 1979.33 [1388.18 |} 0.339355
60300 80 5 135 0.0310793 | 350.962 0.851451
60400 85 5 130 0.0260747 1358.633 | 0.850451
60500 80 5 35 1926.85 |349.161 0.543991
61100 20 15 10 2056.13 1748.24 0.344194
63200 P 15 15 1995 1746.3% 0.403487
63400 10 15 15 1995 1747.89 0.403487
63500 10 15 15 1995 1747.89 0.403487
64400 10 5 15 1995 174789 |0.403487
66100 75 30 135 0 365.458 0.818808
66200 75 35 - 130 0 364.996 0.807953
66500 75 30 135 0 365.458 10.818808
66600 — 75 35 130 0 364.996 | 0.807953
67200 90 15 30 2034.09 359.038 0.451828
68000 30 50 10 2056.13 1684.75 0.354194
68100 7 20 45 10 2056.13 1774.25 0.333109
68200 . 20 45 10 2056.13 }177425 | 0.333109
68300 15 45 10 2056.13 177425 10333109
68400 20 45 10 2056.13 177425 10.333109
68500 15 50 I5 1995 1783.65 0.39039
68600 20 50 15 1995 1774.77 0.39039
68700 15 50 15 1995 1783.65]0.39039
74100 90 50 50 142745 [44.7661 0.580098

- 76000 50 50 50 142.745 44.7661 0.580098
80000 95 IS 110 0.059728 }126.551 0.881386

» 80050 90 30 110 0 359217 {0.818808
80100 70 40 65 0 363.039 0.566804
81100 90 10 55 160.759 |44.7661 0.602328
81200 8s 10 55 160.759 64.9121 0.593928

‘Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99

Table 5: Category code and variable transformation with basic rule set. (Descriptions can be found in the classified

addendum)

CatCode Description Counter_lethality Mission | Function HOB Timing Weight
81300 80 25 55 164.699 }356.11 0.588974
81400 60 25 S5 164699 1360.824] 0.588974
82200 85 70 110 0 64.9121 0.851482
82400 85 70 110 0 64.9121 0.851482
82600 85 70 110 0 64.9121 0.851482
83200 85 5 50 142745 | 64.9121 0.584779
84100 8s 10 55 160.759 | 64.9121 0.593928
84500 90 70 45 168.072 | 44.7661 0.624703
85100 90 70 110 0 44.7661 0.851482
85300 95 70 110 0 416943 | 0.851482
86100 70 45 90 0 1661.97 | 0.516997
86200 70 55 90 0 1661.97 |0.516997
86900 70 55 90 0 1661.97 10.516997
87100 95 5 110 0.022495 [41.6943 |0.88307
87200 90 70 110 0 44.7661 0.851482
87400 90 5 50 142,654 | 44.7661 0.584779
87600 80 10 35 1926.85 1349576 }0.522452
87800 95 5 50 142,407 141.6943 |0.585192
87900 70 45 80 0 331.556 |0.516997
88100 95 ‘5 110 0.022495 |41.6943]0.88307 ‘
89100 95 50 50 142745 | 444562 |0.584356
89200 90 50 50 142.745 | 44.7661 0.580098
89500 85 50 50 142745 | 64.9121 0.566483
89700) 80 50 55 164.699 127.29 0.548832
91000 55 30 55 164.699]365.186 |0.627476
92000 50 55 90 0 1457.79 0.496992

_ 95100 50 50 15 0 387.007 |0.496094
95200 90 20 Ho 0.204469 |293.47 0.858072
96100 50 30 55 164.699 1365.186 | 0.627476
96200 40 30 55 164699 {867.286 |0.627476
96300 o 30 30 35 164.699 125439 10.627476
97200 40 30 85 0 133021 10.818808

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99

APPENDIX B Experimental configurations for validation calculations.

The prompt operational scenario reflects a launch on warn- ophy of suffering a first strike and then retaliating with the
ing philosophy, while the delayed response reflects a philos- remaining

Table 6: Sensitivity analysis setups.

. El\fg Plan ogjf ¢ lter. | Accept R:I:ia. Rzlli-a. Defuzz c?::'te
1 Prompt 0.6 100 1.0 0.7 0.8 centroid brad
2 Prompt 0.6 175 1.5 0.35 0.9 ave max mike
3 Prompt 0.6 250 2.0 1.0 1.0 max brad
4 Prompt 0.75 100 1.0 0.85 0.9 max brad
5 Prompt 0.75 175 1.5 1.0 1.0 centroid brad
6 Prompt 0.75 250 2.0 0.7 08 ave max mike
7 Prompt 0.9 100 1.5 0.7 1.0 ave max brad
8 Prompt 0.9 175 2.0 0.85 0.8 max brad
9 Prompt 09 250 1.0 1.0 0.9 centroid mike
10 Delay 0.6 100 2.0 1.0 0.9 ave max brad
11 Delay 0.6 175 1.0 0.7 1.0 max mike
12 Delay 0.6 250 1.5 0.85 0.8 centroid brad

13 Delay 0.75 100 1.5 1.0 0.8 max mike
i4 Delay 0.75 175 2.0 0.7 0.9 centroid brad
15 Delay 0.75 250 1.0 0.85 1.0 ave max brad
16 Delay 0.9 100 2.0 0.85 1.0 centroid mike
17 Delay 0.9 175 1.0 1.0 0.8 ave max brad
18 Delay 0.9 250 1.5 0.7 0.9 max brad

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 29

APPENDIX C Inventories Used in current, START II, and START III scenarios.

See Classified Addendum for table of weapon system inven- ments Analysis”, to be published.
tories. “Information Adendum To Weapon System Require-

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99

30

APPENDIX D Experiment A, current and START II environments.

Table 7: Taguchi setup for Current and Start Il scenarios, L;g matrix.

) i’;” Ops | Inventory (BSOF;':S) Mission | ObjPd Re"f‘g""y Re"gf"“y ';;;(gf“’s"
1 Prompt I I A 0.6 0.7 0.8 2
2 Prompt 1 2 B 0.75 0.85 0.9 4
3 Prompt 1 3 C 0.9 1.0 1.0 6
4 Prompt 2 1 A 0.75 0.85 1.0 6
5 Prompt 2 2 B 0.9 1.0 0.8 2
6 Prompt 2 3 C 0.6 0.7 0.9 4
7 Prompt 3 1 B 0.6 1.0 0.9 6
8 Prompt 3 2 C 0.75 0.7 1.0 2
9 Prompt 3 3 A 0.9 0.85 0.8 4
10 | Delayed 1 1 C 0.9 0.85 09 2
11 Delayed 1 2 A 0.6 1.0 1.0 4
12 | Delayed 1 3 B 0.75 0.7 0.8 6
13 Delayed 2 1 B 0.9 0.7 1.0 4
14 Delayed 2 2 C 0.6 0.85 0.8 6
15 | Delayed 2 3 A 0.75 1.0 09 2
16 | Delayed 3 1 C 0.75 1.0 0.8 4
17 | Delayed 3 2 A 0.9 0.7 0.9 6
18 Delayed 3 3 B 0.6 0.85 1.0 2

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 31

APPENDIX E

Experiment B, START III environments.
Table 8: Taguchi setup for START Ill scenarios, L3, matrix.

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99

Exp 1 2 3 .4. 5. .6.. .7.. 8 °
No. Ops Inven- SRF Mission Obj Reliability Reliability No. !\lew Acc.ofIC
tory (boats) Pd IC SL Options | (Un-Modeled)
1 Prompt 11 0 D 0.6 0.7 0.7 2 0.7
2 Prompt 11 1 E 0.7 0.8 0.8 4 0.8
3 Prompt 11 0 F 0.8 0.9 0.9 6 0.9
4 Prompt 11 1 G 0.9 1.0 1.0 8 1.0
5 Prompt 12 0 D 0.7 0.8 0.9 6 1.0
6 Prompt 12 1 E 0.6 0.7 1.0 8 0.9
7 Prompt 12 0 F 0.9 1.0 0.7 2 0.8
8 Prompt 12 1 G 08 0.9 0.8 4 0.7
9 Prompt 13 0 E 0.8 1.0 0.7 4 0.9
10 Prompt 13 I D 0.9 0.9 0.8 2 1.0
11 Prompt 13 0 G 0.6 0.8 0.9 8 0.7
12 Prompt 13 1 E 0.7 0.7 1.0 "6 0.8
13 Prompt 14 0 E 0.9 0.9 0.9 8 0.8
14 Prompt 14 1 D’ 0.8 1.0 1.0 6 0.7
15 Prompt 14 0 G 0.7 0.7 0.7 4 1.0
16 Prompt 14 1 F 0.6 0.8 0.8 2 0.9
17 Delayed 11 0 G 0.6 1.0 0.8 6 0.8
18 Delayed 11 1 F 0.7 0.9 0.7 8 0.7
19 Delayed 11 0 E 0.8 0.8 1.0 2 1.0
20 Delayed i1 1 D 0.9 0.7 0.9 4 0.9
21 Delayed 12 0 G 0.7 0.9 1.0 2 0.9
22 Delayed 12 1 F 0.6 1.0 0.9 4 1.0
23 Delayed 12 0 E 0.9 0.7 0.8 6 0.7
24 Delayed 12 1 D 0.8 0.8 0.7 8 0.8
25 Delayed 13 0 F 0.8 0.7 0.8 8 1.0
26 Delayed 13 1 G 0.9 0.8 0.7 6 0.9
27 Delayed 13 0 D 0.6 0.9 1.0 4 0.8
28 Delayed 13 1 E 0.7 1.0 0.9 2 0.7
29 Delayed 14 0 F 0.9 0.8 1.0 4 0.7
30 Delayed 14 1 G 0.8 0.7 0.9 2 0.8
31 Delayed 14 0 D 0.7 1.0 0.8 8 0.9
32 Delayed 14 1 E 0.6 0.9 0.7 6 1.0
“77 7 Inventory Scaling + G-03064
+ D-0345
« E-0.388
+ F-0364

32

APPENDIX F SRF experimental setup.

~ Table 9: Taguchi setup for optimized stockpile scenario, L{g matrix.

. Exp 01bi 2 3 4 5 6 7 8 9 10 11 12 13 | 14 15
No. Pd Air SRF No. IC_ SL: No.
Relia CEPs Relia Relia Yields

’ 1 0.7 0.7 0 3 0.7 0.7 3
2 0.7 0.7 0 6 0.9 0.9 6
3 0.7 0.7 0 3 0.7 0.9 6
4 0.7 0.7 0 6 0.9 0.7 3
5 0.7 0.9 15% 3 0.9 0.7 6
6 0.7 0.9 15% 6 0.7 0.9 3
7 0.7 0.9 15% 3 0.9 0.9 3
8 0.7 0.9 15% 6 0.7 0.7 6
9 0.9 0.7 15% 3 0.7 0.7 6
10 0.9 0.7 15% 6 0.9 0.9 3
11 0.9 0.7 15% 3 0.7 0.9 3
12 0.9 0.7 15% 6 0.9 0.7 6
13 0.9 0.9 0 3 0.9 0.7 3
14 0.9 0.9 0 6 0.7 0.9 6
15 0.9 0.9 0 3 0.9 0.9 6
16 0.9 0.9 0 6 0.7 0.7 3

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99 33

APPENDIX G Sample input data set.

Sk_Confirm
ScaledInv 0.357

Weapons 0 6
Options 0 6
SysRelia 0.9

Response 120 10 2400

€0l

Name of the file

Scaling of inventories to
match the ratio of targets to
weapons

0Old and new weapons

Old and new options

Svstem reliabili

Delivery system
characteristic timing

Options 0 6 SysRelia 0.8 Response 45 -3 60 eoi
Options 0 6 SysRelia 0.7 Response 1200 75 3000 eoi

Options 0 6 SysRelia 0.9 Response 120 10 2400 eoi
Options 0 6 SysRelia 0.8 Response 45 -3 60 eoi
Options 0 6 SysRelia 0.7 Response 1200 75 3000 eoi

Population 25
Convergence 400
Mutation 0.125
ObjectivePD 0.75
Conv_PPM 10000
Debug

Constraint 48

0.5

25500
250 1275
100 500
100 500
100 500
100 500
100 500
100 500

25500

0 425
200 500
200 500
200 500
200 500
200 500
200 500

ES population size
Conyvergence interations
Mutation probability

Mission success paramter
Convergence criteria in PPM

Generates extra output data
Total number of parameters

being optimized: (6 svstems
with 6 vields, 6 inventories,
and 6 options. 6*(1+1+6)
Scale factor for evolutionary

strategy search parameter
Range for vield search

Range of inventory levels

Range of option capabilities

25 500
100 850
50 500
50500
50500
50 500
50500
50500

25 500
250 1275
100 500
100 500
100 500
100 500
100 500
100 500

25 500

0 425
200 500
200 500
200 500
200 500
200 500
200 500

25 500
100 850
50500
50 500
50 500
50 500
50 500
50500

Scenarios 1

6123456

Scenario.A

eol

Number of scenarios
in_the optimization
Number and which
warheads are in each
scenario

File name of the target
database used in

optimization

Weapon Systems Requirements Analysis Employing a Hybrid of Analytic Technologies2/12/99

34

APPENDIX H Table of contents for code listings.

+++++ Main Weapon System Allocation 4444+ - - -------c- - mmmm e 40
int main(int argc, char *argv[]) L 40
+++++ Weapon System Optimization (WeaponOpt) 4444+ --=---c--ccmoooooooo- 41
class WeaponOpt L e 44
WeaponOpt::WeaponOpt() e 45
ostreamé& operator<<(ostreamé& out, WeaponOpt& A) oL L. 46
void WeaponOpt::Dump_WeaponOpt(ostream& Dump_out) 47
void WeaponOpt::Load Data(istream&in) L. 48
void WeaponOpt::Set_Allocation(float* Means) 52
float WeaponOpt::WS_Fitness(int iter, int popu, ostream& Dump_out) 52
float WeaponOpt::WS_Fitness_Validate(intiter) 53
void WeaponOpt::WS_Opt() e 54
void WeaponOpt::File_Adj(fstream& FL_b, streampos f_strt, streamposf end) 58
+++++ Main Weapon System Optimization +++++ -~ --- == -=-------oooo oo 60
int main{ int argc, char *argv([]) L 60
+++++ Weapon System Allocation (Targeting) ++++4+ -----------c-ommmoooon 61
class TArgeting o o e e e e e e 64
Targeting::Targeting() e e 65
istream& operator>>(istream& in, Targeting& adum) L. 66
ostream& operator<<(ostreamé& out, Targeting& A) 68
float Targeting::Dist_Gamma(float alp, float bet, floatx) 68
float Targeting::Dist_Sigmoid(float alp, float bet, float gam, floatx) 68
void Targeting::Dump_suitability() L 69
void Targeting::Dump_Targeting(ostream& out). 70
void Targeting::IC_Alloc() e 71
float Targeting::Fitness(int targ_indx, int sys_indx, float *cep, 73
floatyld,intfz opts). e e 73
float Targeting::Next_Iteration() L e 74
float Targeting::Obj_HOB(int targ_indx, int sys_indx, intopt_indx) 76
float Targeting::Obj_Pk(int targ_indx, floatcep,floatyld) 77
float Targeting::Obj_Time(int targ_indx, intsys_indx)} 77
float Targeting::Obj_Yield(floatyld) o oL, 79
void Targeting::Perf_Results() L oo 79
float Targeting::Pssk(int targ_indx, floatcep, floatyld) 82
void Targeting::Storage_Setup() L 82
void Targeting::Suitability_Setup() L. . .83
float Targeting::Targeting Opt() 84
+++++ Genetic Algorythm Optimization (GA_AlloC) +4++++ - ----------occ-mo-on 88
class GA_ANOC e, 88
GA_Alloc::GA_Alloc() S 89
istream& operator>>(istream& in, GA_Alloc& adum) 89
ostream& operator<<(ostream& out, GA_Alloc& A), 90
float GA_Alloc::GA_Alloc_Fitness(float *data) 90
int GA_Alloc::GA_Xchange(int jj, int *suit_set, intindx) 92
int GA_Alloc::GA_Mutate(intjj) 92

35

int GA_Alloc::GA_Reproduce(intjj)« 93

void GA_Alloc::Init GA_Alloc() o o 93
float GA_Alloc::Next_Gen_GA_Alloc(float **suit, float acceptance). 94
void GA_Alloc::Setup_GA_Alloc(longseed_val) 95
++++ Evolutionary Strategy Opt (ES_Chromosome) ++++ -------------c--ooo-- 96
class ES Chromosome I R 96
ES_Chromosome::ES_Chromosome() 97
istream& operator>>(istream& in, ES_Chromosome& adum) 97
ostream& operator<<(ostream& out, ES_Chromosome& A) 98
void ES_Chromosome::Setup_ES_Chromo(float** ml, float**sl) 99
float ES_Chromosome::ES_Chromo_Fitness(float *data) 100
float ES_Chromosome::Next_Gen_ES_Chromo() 102
float ES_Chromosome:Mutate{) e 103
float ES_Chromosome::Xover() e 104
class Allocation e 106
Allocation::Allocatton() L e 107
istream& operator>>(istream& in, Allocation& adum) L. 108
ostream& operator<<(ostream& out, Allocation& A) L. 109
float Allocation::Allocation_Opt(). e 110
float Allocation::Allo_Fitness(int *ga_soln, int *cep_index, float *suit) 111
float Allocation::Fitness_PD(int targ_indx, float *cep, float yld, intfz_opts) 113
float Allocation::Fitness_Stk_Lmt(intinv.num) 113
float Allocation::Fitness_Time(inttarg_indx) 114
float Allocation::Fitness_Wt(inttarg indx). 114
float Allocation::Fitness_Yield(floatyld) 114
void Allocation::Genetic_Setup() 115
void Allocation::IC_Alloc(). e 115
void Allocation::Perf_Results(intsoln_index) 117
float Allocation::Pssk(int targ_indx, floatcep,floatyld) 118
float Allocation::Obj_Pk(int targ_indx, floatcep, floatyld) 119
void Allocation::Gen_Dump(ostream&out)o L., 119
void Allocation::Gen_Restart(istream&in) 120
+++++ Mission Definition (Mission_) +++++ - - -~ -~ - = = - = - s s m- o oo 122
class MiSSION_ e e e e e e 122
Mission_::MISSION_(() e e e e e e e 125
istream& operator>>(istream& in, Mission_& t)o oL oL 125
ostream& operator<<(ostream& out, Mission_&t) L. 126
int Mission_::Adj_vn(intt_vn,intt kK, floatyld) 127
float Mission_::Brode_84(float xt, floatyt) 127
float Mission_::Brode_DP(float xt, floatyt) 129
void Mission_::CatCode_Trans() e 129
float Mission_::CR_calc(intt_vn,intt_k,floatyld) 130
float Mission_::DP_calc(intt_vn,intt_k,floatyld) 130
void Mission_::Dump_Mission_(ostream& out) 131
float Mission_::Gr_coupling(float hob, floatyld) 131
float Mission_::Relative_dist{(mnti,intj) 132

36

float Mission_::OP_calc(int t_vn,intt_k,floatyld) 132

void Mission_::OP_contour(floatyld) 0L, 133
void Mission_::Vul_Setup(int targ_indx, floatyld) e 134
float Mission_::WR_cr(float yld, float sig, float HOB) 136
float Mission_::WR_dp(float yld, float sig, float HOB) 136
float Mission_::WR_gvn(int targ_indx, float yld, float HOB) 138
float Mission_::WR_op(float yid, float sig, float HOB) 139
+++++ Random Number operations (randint) 4444+ - ---~-----------coooooo - 141
classrandint e e e e e 141
void getx()o 141
randint(long s =1000) L e 141
voidseed(longs) e 141
long get_seed() L 141
mtdraw() e e e e e 141
float fdraw() e e 142
mtexp_dist() e 142
voildexp_dist_ Rep(inttmp) 142
void Setup_exp_dist(int* hist, intsiz) Lo 142
void CleanUp_dist() o o e e e 143
void Swap(float* a, float*b) L 143
void Sort(float* A, Int sz) e 143
float gauss()« . . 143
class WEAPON _ 145
WEAPON_WEAPON_() e e e e e e 145
istream& operator>>(istream& in, WEAPON_&t) 146
ostream& operator<<(ostream& out, WEAPON_&t) 146
void WEAPON_WEAPON_Load(istreamé&in) o v v v .. 147
void WEAPON_::WEAPON_Setup(intnum_opts) oot 149
WEAPON_& WEAPON_::operator=(WEAPON_& aWeapon) 149
+++++ Main Fuzzy Analysis +4+++ ---~--------moom oo 151
int main(int argc, char *argv[]) L L 151
+++++ Fuzzy Decision Algorythms (FzDecision) +4+4+ - --------- oo oonoooo o 152
class FzDecision e e e 152
FzDecision::FzDecision()o 155
void FzDecision::Assess_Issues(float* info_in, float* info_out) 156
void FzDecision::DeFuzzify(intyjk) oo o Lo 158
void FzDecision::Dump_Model(char*O_file) 159
void FzDecision::Dump_Results(char* O_file) 160
FzVariable* FzDecision::Find_FzVariable(char* v_.nam) 160
void FzDecision::Issue_ID() e e e e 161
void FzDecision::Load_Model(char* I _file) e 162
void FzDecision::Parse_Rule() 163
void FzDecision::Reset_Var() 165
void FzDecision::Rule_Aggregation(FzVariable* A, intaggr op). 166
void FzDecision::Run_Model(char*O_file) 167
void FzDecision::Store_Results(int case_num, ostream& out) 170

void FzDecision::Z_AND()
void FzDecision::Z_OR()
int FzDecision::Z_Truth()

+++++ Fuzzy Hedge Algorythms (Hedge_) +++++ - ---------ommmomomomam o 173
classHedge_ e 173
Hedge ::Hedge (Hedge_*p) 174
void Hedge_::Tran(FzSet&bs) L 174
istream& operator>>(istream& in, Hedge_&t) L. 174
ostream& operator<<(ostream& out, Hedge_&t) 174
+++++ Fuzzy Issue Control (Issue_) +++++ - === - - -mmmmmmmm oo oo oo - 175
class ISSUE_ o o o e e e e e 175
struct RO . . o e e 175
Issue_::Issue (Issue_*p) e 176
void Issue_::Load_issue(istream& in) oo 176
void Issue_::Dump_issue(ostream& out) 176
+++++ Fuzzy Rule Operations (Rules_) +++4++ -------------ooommmmmm oo 177
classRules e e e e e 177
StruCt RA . . o e e e e 177
Rules_::Rules_(Rules_*p) 178
void Rules_::Load_rule(istream& in) e 178
void Rules_::Dump_rule(ostream& out)o 179-
+++++ Fuzzy Sets Operations (FzSet) +++++ ----------------------oon 180
class FzSet e e e e e e 180
FzSet::FzSet(FzSet *p)« o e 182
void FzSet::Help() o . o e 182
istream& operator>>(istream& in, FzSet& adum)o o000 L L 182
ostream& operator<<(ostream& out, FzSet& adum) 184
void FzSet::Alfacut_Above(doublecut_val) 184
double FzSet::Centroid() e 184
double FzSet::Ave Max{) e e e e e e 185
double FzSet::Max_Edge() e 186
double FzSet::Degree_of_Truth(doublescaler). 186
void FzSet::Fz_Initialize() o o 187

double FzSet::Get_Max() o i e e e e e 187

void FzSet::Normalize_FZS()o 187
void FzSet::Reset_Wrk() L 188
void FzSet::Setup_Beta() 188
void FzSet::Setup_Custom()188
void FzSet::Setup_Gauss(). 188
void FzSet::Setup_Linear() L 189
void FzSet::Setup_Pi() e e e e 189
void FzSet::Setup_Sigmoid() 190
void FzSet::Setup_Tri() o e 191
void FzSet::Setup_Uniform() 191
+++++ Fuzzy Variable Operations (FzVariable) ++4+++ - --------c-cmoooooooo o 193
class FzVariable 193

38

FzVariable::FzVariable(FzVariable *p) 195

Hedge_* FzVariable::Find_FzHedge(char* v.pam) 195
FzSet* FzVariable::Find_FzSet(char* v_nam) 196
void FzVariable::Help() 196
- void FzVariable::Reset_FS() e 196
void FzVariable::Variable_Output(ostream&out) 196
. void FzVariable::Variable_Setup(istream& in) 197

39

APPENDIX 1 Code listing for weapon system allocation models.

/! +++++ Main Weapon System Allocation +++++

#include "/home/mesengl/Data_codes/Fuzzy_Targeting/header.h”

#include "/home/mesengl/Data_codes/Fuzzy_Targeting/FzSet.h"
#include "/home/mesengl/Data_codes/Fuzzy_Targeting/FzHedge.h"
#include "/home/mesengl/Data_codes/Fuzzy_Targeting/FzVariable.h"
#include "/home/mesengi/Data_codes/Fuzzy_Targeting/FzRule.h"
#include ""home/mesengl/Data_codes/Fuzzy_Targeting/Fzlssue.h"
#include "/home/mesengl/Data_codes/Fuzzy_Targeting/FzDecision.h"

#include "MES_random.h"
#include "MES_ES_opt.h"
#include "MES_Weapon.h*
#include "MES_Mission.h"
#include "MES_Targeting.h"
#include "MES_WS_Opt.h"

s e B B B L o o SIS

int main(int argc, char *argv[])

{

cout << "+++++++++ Begin Assessment +++++++++\n"<<flush;
cout << "\n";

ifstream allo_in(argv[1]);
_ cout << “Input data file : “ << argv[1] << “\n" << flush ;-
ofstream d_out("Validate1.dat");

Targeting tst_allo; -
allo_in >> tst_allo;

tst_allo.Targeting_Opt();

d_out <<“\n \n”;

tst_allo.Dump_suitability(d_out);

cout << "\n"; - .
cout << "+++++++++ End of Assessment +++++++++\n";

}; // Block: 1

/I +++++ Weapon System Optimization (WeaponOpt) +++++

/!
1/

1/

i/
I
1/
/i
1
i
1
/i
"
/
i
1
1/
/i
1/
/4
/!
1/
/!
/i
/
/
1/
1/
1/
1/
/i
I/
f
/i
/
1
I
1
1
1
/!
1
7
/i

I I L e 2 2 0 0 o o o o o o o o
Weapon System Optimization
e L T B o o o o L o o o o

Weapon system optimization involves the search for system
configurations, including accuracies, yields, inventories, and the
number of fuzing options per configuration which best meets the
needs of a strategic mission scenario or sets of scenarios. The
weapon system optimization algorithm can be split into three(3)
seperate computational packages. They include the weapon
system optimization code, a weapon system allocation algorithm
and a fuzzy logic modeling environment.

These entities can be operate independent of each other provided
a driver routine is writen to load relevant data, execute the algorithm,
and provide for output/post processing control.

Tools being brought to bear include, evolutionary strategies, fuzzy
logic, and an “annealing” type of allocation optimization technique.
The genetic algorithm proved to be unsuitable for optimizing weapon
to target allocation.

References:

Dr. Christian Jacob; “Evolutionary Algorithms with Mathematica”,
Tutorial at Genetic Programming Conf. 1997, Stanford U.
(www.cpsc.ucalgary.ca/~jacob/ or www2. mformatlk
uni-erlangen.de/~jacob/)
Defense Intelligence Agency, “Physical Vulnerability Handbook for
NuclearWeapons”,0GA-2800-23-92
Cox,E., The Fuzzy Systems Handbook, AP Professional
(a div of Harcourt Brace & Co.), 1994, ISBN 0-12-194270-8
Klir, G.J., Folger, T.A., Fuzzy Sets, Uncertainty & Informtion,
Prentice Hall, 1988, ISBN 0-13-345984-5
R.R. Yager; “Multiple objective decision-making using fuzzy sets”,
lona Colledge, Int J Man-Machine Studies, 1977 9,375-382.
JSTPS TR 91-1, “PDCALC A Computer Program For The
Probability Of Damage Calculations”, 1991.
H. Brode, S. Speicher, “Air Blast From Nuclear Bursts-analytic
Approximations”, Pacific-Sierra Research Corp.,
PSR Report 1419-1.

<Page 41 of 59 >

f
1/
I
1/
/
/
f
1
/

S. Speicher, H. Brode, “Extremely High Overpressure Analytic
Expression For Burst Height, Range And Time - Over An Ideal
Surface”, Pacific-Sierra Research Corp., PSR Note 611

Capt. G.Martelle, “3DPD HANDBOOK, Formulas and Algorithms for
Computing The Probability of Damage of New Generation
Nuclear Weapons”,AF Operational Test & Evaluation Center.

Code Structure :

l WeaponOpt

Load_Data
Dump_WeaponOpt

File_Adj

Set_allocation

WS_Fitness

WS_Fitiness_Validate
wS_Opt
] i |]

WEAPON_ ~t [Targeting ES Chromosome | [randint
WEAPON_Load Dump_suitability Setup_ES_Chroms getx
WEAPON_Setup Dump_Targeting ES_Chroma_Fitness seed

Peg_izlalsults Nexi_Gen_ES_chromo get_seed
operator) = iC_Alioe Tanarmtar draw
top 0 Storage_Setup Egz:gg;) :: fdraw

Suitability_Setup exp_dist_Re
Setup_exp_di

Fitness_PD CleanUp_dis

Fitness_Stk gauss

Fitness_Time

Fitness_Wt

Fitness_Yield 1

Obi_PK randint
Pssk
Targeting_Opt gelx
Next_iteration seed
get_seed
draw
- faraw
exp_dist_Rep
Setup_exp_dist
CleanUp_dist
gauss
|]
‘ Mission r randint] | WEAPON_
Dump_Mission_ getx WEAPON_Load
Vul_Setup seed WEAPON_Setup
i get_seed
Adi_vn draw (operator) =
Brode_84 ftraw
CR_calc exp_dist_Rep
DP_calc Setup_exp_dist
Gr_coupling CleanUp_dist
OP_calc gauss
OP_contour
Relative_Dist
WR_cr
WR_dp
WR op
I l

TARGET_ ' | Lp

1/
/!

{operator) >>

(operator) <<
Reset_Targ

(operator) <<
{operator} >>

ProgramConstruction:

< Page 42 of 59 >

i

I/ The driver for the optimization algorithms is simply a main program

i in which an object is declared, data is loaded, and the optimization

1 is performed. An example of a driver for the optimization follows:

/i

/ ifstream weap_in(argv[1]);

/i ofstream d_out("Validate1.dat");

/ WeaponOpt NuSys;

i NuSys.Load_Data(weap_in) ;

i d_out << NuSys << flush ;

/" NuSys.WS_Opt();

/i

/7 The first 2 statements define the input and output files. The third

1/ line defines the WeaponOpt class object, NuSys.Load_Data loads

/ the data which is imediately dumped. NuSys.WS_Opt begins the

/! sytem optimization.

/1

/ Input Format: (typical dataset)

/"

/! NuMk4

/! Weapons 2 0

1/ Yield 333 Inventory 75 Options 0 2 Response 1.0 eoi

i Yield 111 Inventory 225 Options 4 0 CEPs 450 400 750 350

/ Response 1.0 eoi

/ Constraint 2

I/ 0.5

i 175 250

/" 200 300

i Population 20

/i Convergence 33

1 ObijectivePD 0.75

/ Mutation 0.05

/ Seed 555

/] Dump

/4 Scenarios 1

/ 212

1/ target.db

/ eoi

/)
, /! target.db is the data base of mission targets. We use a seperate
' /" file for this input as it provides greater flexibility when decoupling the

1/ various system codes. The data in this file looks like:

/7 -

1/ scenariol

1/ Dump

I/ Convergence 50

< Page 43 of 59 >

I
/!
I
/
1/
7
1/
1/
/!
/!
/l
1
1/
//
/!
/!
/
/
I
/l
/1
/!
1/l
/!
/!
7/
1
1/
/1
/!
1/
i
/!
/

{

1/
1/
/f

int exists;

int DEBUG, DUMP ;

int PERF_OUT, freq_out;
char* obj_name;

Acceptance 1.0

Targets Targets 250

608 41L.8 0.7317663603 61.93145 44.1054146 46.25955643
465 37M6 0.5177064626 58.98407 101.7777439 179.97161811
500 37M6 0.4310704167 51.18029 157.6116195 229.35555875

eoi
Input Keywords include:
Weapons, Yield, Inventory, Options , CEPs, Response, Constraint,

Population, Convergence, ObjectivePD, Mutation, Seed, Dump,
Debug, Scenarios, & eoi for termination.

The Targeting class is the subset of algorithms which perform the
weapon to target allocation. Targeting and WeaponOpt must load
weapon system characteristics, When we are performing the opti
mization function, WeaponOpt loads weapon characteristics and
passes this information to the Targeting object. When the alloca
tion function is being exercised weapon characteristics are loaded
from Targeting.

WeaponOpt Member Functions:

Setup, input and output of information:

Dump_WeaponOpt, Load_Data, Set_Allocation, File_Adj

This last function is used to capture and store the last two iterations
of the run.

Optimization and fitness evaluations are performed in:
WS_Fitness, WS_Fitness_Validate, WS_Opt

e T ot o O B S B B e o o ST SR
e B e B e I S T

class WeaponOpt

Define addiitonal model parameters:

< Page 44 of 59 >

/i

/i L An Enumeration Will Be Used To Facilitate Info Transfer To
i Processors In The MP Implementations
/!

enum{ es_pop, max_scenarios, es_iter, total_WH , total_optimize,
mut_pr, fr, pd, XO_pr, lvec_sz };

int* lvec;

float mutation_pr, Xover_pr;

WEAPON_ *sys;

int** sys2scene;

float** constraint ;

float*™ constraint_tmp ;
float fraction, pd_obijective ;
float Scale_inv ;

randint random;

long seed_val;
ES_Chromosome soln;
Targeting® scenario;

WeaponOpt(); // Constructor
/"
i overload the input and output operators
i ‘

friend ostreamé& operator<<(ostreamé& out, WeaponOpit&);
i
1 Define addiitonal member functions:
/i

void Dump_WeaponOpt(ostream& Dump_out);

void Load_Data(istream& in);

void Set_Allocation(float*);

float WS_Fitness(int, int, ostream&);

float WS_Fitness_Validate(int);

void WS_Opt();

void File_Adj(fstream&, streampos, streampos) ;

}s /7 Block: 2

/ e B B B B At
I/ NOTE: The integers in the constructor must be adjusted to reflect
1/ the number of variables and arguments in the model

WeaponOpt::WeaponOpt()
{

obj_name = new char[10};

<Page 45 of 59 >

Define default conditions

exists=FALSE;

strcpy(obj_name,"None");
DEBUG=FALSE;
DUMP=FALSE;
PERF_OUT=FALSE;
freq_out=25;

Scale_Inv=1.0;
Ivec = new int[10];
Ilvec| Ivec_sz 1=10;
lvec| es_iter 1=75;
Ivec[es_pop 1=75;

/I
// Com 1 Default Is To Search For Fuzing Options
/7

Ivec| total_WH 1=0;

Ivec| total_optimize =0 ;

lvec[max_scenarios =0 ;

mutation_pr=0.01 ;

Xover_pr=0.25 ;

pd_objective= 0.75 ;

fraction= 0.25;

Ivec[mut_pr] = int(1000*mutation_pr);
Ivec[XO_pr] = int(1000*Xover_pr);
Ivec] fr] = int(1000*fraction);

lvec[pd] = int(1000*pd_objective);
constraint = new float*[2];
constraint_tmp = new float*[2];

/"

/" The Next Set Operations Ensure That Each Processor Will
/" Begin With A Different Random Nuber Seed Value.

i

seed_val=111111;
random.seed(seed_val);
}s // Block: 3 ,
/I e B L 1 o o 1 1 o 2 s s LS ST 0 T S A AR MR B SR 0 S8

ostream& operator<<(ostream& out, WeaponOpt& A)

(
/i
/4 provide coding to represent the ouput desired for this object

< Page 46 of 59 >

/
out << A.obj_name << “\n”;
out << “Convergence “ <<A.lvec[A.es_iter]<< “\n”;
out << “Population “ <<A.lvec[A.es_pop] << “\n”;
out << “\nWeapon Systems \n”;
for(int kO=0; kO<=A.lvec| A.total_WH]; kO++)

{

out << “ Master Warhead number: “ << kO << “\n”;
out << A.sys[kO];

}

out << “\nObjectivePD “ << A.pd_objective << “\n”;
out << “Mutation “ << A.mutation_pr << “\n”;
out << “\nConstraints: Strategy fraction =” << A.fraction <<“\n”;
for(int k=0; k< A.lvec[A.total_optimize]; k++)
out << A.constraintf 0 [k] << “ “<< A.constraint] 1][k] << “ \n;
out << “\nScenarios “ << A.lvec[A.max_scenarios] << “\n”;
for(int k1=0; k1<A.lvec[A.max_scenarios]; k1++)
{
out << “ Scenario number: “ << k1 << “\n”;
for(int k2=0; k2<=A.scenario[k1].total WH ; k2++)
{
out << “ Warhead number: “ << k2 << “\n”;
out << A.scenariofk1].sys[k2];

}

out << “\n” << flush;
return out;
}; // Block: 4
/I e I T B L o B R I o o e R IE S

void WeaponOpt::Dump_WeaponOpt(ostream& Dump_out)

{
"
/ Routine To Dump Information Associated With Weaponopt For
i Debug And Restart(?).
I
Dump_out << "---- :: WeaponOpt Dump (bgn) :: ---- " << obj_name << "\n"; -
Dump_out << “--- :: WeaponOpt Dump (---) = ----"
<< “Storage Parameters : (lvec[10]) \n“;
Dump_out << “---- :: WeaponOpt Dump (---) = -—--";
for(int k=0; k<lvec[lvec_sz]; k++)
Dump_out << lvec[k] << “it*;

Dump_out << “An---- :: WeaponOpt Dump (---) 1 ----"
<< “Random Seed : (seed_val) \n“;
Dump_out << “---- :1 WeaponOpt Dump (---) :: ----" << seed_val << “\n;

<Page 47 of 59 >

Dump_out << “--- :: WeaponOpt Dump (---) : ----"
<< “Control Parameters : (DEBUG, DUMP, PERF_OUT, freq_out) \n“;
Dump_out << “--- 1 WeaponOpt Dump (---) :: " << DEBUG << “\t*
<< DUMP << “At“ << PERF_OUT << “\t* << freq_out << “\n”;

Dump_out << “---- ;1 WeaponOpt Dump (---) 1 -~
<< “Convergence Control ;: (mutation_pr, fraction, pd_objective) \n“;
Dump_out << “---- :: WeaponOpt Dump (---) :: ----” << mutation_pr << “\t*

<< fraction << “\t“ << pd_objective << “\n” ;

Dump_out << “---- :i WeaponOpt Dump (---) 1 ----"
<< “Weapon Parameters : \n”;
for(k=0; k<= lvec[total_WH]; k++)
Dump_out << sys[k] ;
Dump_out << “--- :: WeaponOpt Dump (---) 1 ----"
<< “Weapon association to scenario : \n“;
for(k=0; k<lvec[max_scenarios]; k++)
{
Dump_out << “--- :: WeaponOpt Dump (---) :: ----7;
for(int kk=0; kk<=sys2scene[K][0]; kk++)
Dump_out << sys2scenelk][kk] << “it“;
Dump_out << “\n” ;

}

if(DUMP)
{
Dump_out << “---- ;1 WeaponOpt Dump (---) 1 ----
<< “Chromosome Information : \n” ;
Dump_out << soln << “\n”;
Dump_out << “---- :: WeaponOpt Dump (---) :: ----
<< "Target Information : \n" ;
for(k=0; k<lvec|max_scenarios]; k++)
scenariolk].Dump_Targeting(Dump_out) ;.

}
Dump_out << "---- :: WeaponOpt Dump (end) :: ----\n";
return ;
}s M Block: 5
/o e o L o B o B o S

void WeaponOpt::Load_Data(istream& in)
{

char tmp_in[15];
char tmp_file[30];

< Page 48 of 59 >

int Fix_WH, Nu_WH;
exists=TRUE;

float tmp_del, tmp_av;
in >> obj_name;

in >> tmp_in;

while(strcmp(tmp_in,"eoi") 1=0)

{
/
/ Output The Keywords As They Are Being Loaded
/

cout << “---- WeaponOpt Keyword : “ << tmp_in << “\n” << flush;
if(stremp(tmp_in,"Weapons") == 0)

{
/"
I Note: for input optimization, sensitivity studies we are allowing
/ for a scaleing of the inventories. Thsi can be done is Scaledinv
/ is loaded prior to the weapons.
/!
in >> Fix_WH >> Nu_WH ;
Ivec| total_WH] =Fix_WH + Nu_WH ;
sys = new WEAPON_] Ivec| total WH] +1];
for(int k=1; k<= Ivec[total_WH]; k++)
{
sys[k .WEAPON_Load(in) ;
sys| k J.inventory = int(float(sys| k].inventory) *Scale_Inv) ;
}
}

else if(stremp(tmp_in,"Scaledinv") == 0)
in >> Scale_Inv ;

else if(stremp(tmp_in,"Population") == 0)
in >> Ivec[es_pop J;
else if(stremp(tmp_in,"Convergence") ==0)
in >> lvec| es_iter J; ‘
else if(stremp(tmp_in,"ObjectivePD") ==0)
{
in >> pd_objective ;
Ivec| pd }= int(1000*pd_objective);

‘ else if(stremp(tmp_in,"Seed") ==0)
{
in >> seed_val ;
random.seed(seed_val);

}

else if(stremp(tmp_in,"Mutation") == 0)

< Page 49 of 59 > ~

{

in >> mutation_pr ;
Ivec] mut_pr]= int{ 1000*mutation_pr);
}
else if(stremp(tmp_in,"Crossover") ==0)
{
in >> Xover_pr;
Ivec[XO_pr }= int(1000*Xover_pr);
}
else if(stremp(tmp_in,"Constraint") ==0)
{
in >> lvec| total_optimize];
constraint[0] = new float[lvec| total_optimize] J;
constraint[1] = new float| Ivec| total_optimize] };
constraint_tmp[0] = new float[lvec| total_optimize]];
constraint_tmp[1] = new float[lvec] total_optimize] J;
in >> fraction;
Ivec[fr]= int(1000*fraction);
for(int kk=0; kk<lvec] total_optimize]; kk++)
{
in >> constraint[0] [kk] >> constraint[1] [kk];
tmp_del = constraint[1] [kk] - constraint[0] [kk];
tmp_av = (constraint[1] [kk] + constraint[0] [kk])/2.0 ;
constraint_tmp[0] [kk] = 1.0e-4*tmp_del ;
constraint_tmp[1] [kk] = fraction*tmp_del ;
}
}
else if(stremp(tmp_in,"Scenarios") ==0)
{ .
in >> lvec[max_scenarios |;
scenario = new Targeting[lvec[max_scenarios]];
sys2scene = new int*[lvec[max_scenarios] |;
if(lvec| total WH]<=0)
cerr << “ERROR : Weapons must be declared prior to Optimize; “
<< “ Abort and modify input data set \n” << flush;

for(int k11=0; k11< lvec[max_scenarios]; k11++)

sys2scenelk11] = new inf[Ivec| total_WH] +1] ;

Load In The System To Scenario Correlation Matrix
Note: location “0” is the number of WH, remainder is
the number of the masterlist WH assigned to the scenario

int k_cor;
for(int kO=0; kO< Ivec[max_scenarios]; kO++)

< Page 50 of 59 >

{
scenario[k0].APPEND_rslts=FALSE ;

in >> sys2scenelk0][0] ;
for(int k1=1; k1<= sys2scene[kO][0]; k1++)

. in >> sys2scene[k0]k1] ;
}
/]
1/ Need To Load New Concepts Into Selection Matrices
/4
in >> tmp_file;
cout << Fememe Begin Senario Load from file : “ << tmp_file << “\n” << flush ;

ifstream tmp_bs(tmp_file);
for(int ijk=0; ijk<lvec[max_scenarios]; ijk++)
{
scenariofijk].total_WH=sys2scene]ijk][0];
scenario[ijk].sys= new WEAPON_][scenario[ijk].total WH+1];
for(int k12=1; k12<=scenariofijk].total_WH; k12++)
{
k_cor= sys2scenelik][k12] ;
scenariofijk].sys[k12].ceps= new float] sys[k_cor].total_fz_opt J;
scenariofijk].sys[k12].hobs= new float[sys[k_cor].total_fz_opt];
scenariofijk].sys[k12].relia= new float[sys[k_cor].total_fz_opt I;
scenariofijk].sys[k12].opt_inv= new intf-sys[k_cor].total_fz_opt];
scenariofijk].sys[k12])= sys[k_cor] ;
}
tmp_bs >> scenario] ijk };
b
}
else if(strcmp(tmp_in,"Debug") ==0)
DEBUG = TRUE ;
) else if(stremp(tmp_in,"Dump”) ==0)
DUMP = TRUE ;
else
{ _
cerr << "Error: (WeaponOpt Input) unaceptable input option : " << tmp_in
<< "\n" << flush;
}s // Block: 6
in >> tmp_in;
}s // Block: 7

int index;

float pr2;

soln.es_pop = Ivec[es_pop | ;
soln.max_factors = lvec| total_optimize] ;
soln.mutation_pr = mutation_pr ;
soln.Xover_pr = Xover_pr ;

< Page 51 of 59 >

cout << “----- WeaponOpt :: Input Complete\n” << flush;
return;
Ys /f Block: 8
/ e B o o e 2 o U S T o e o

void WeaponOpt::Set_Allocation(float* Means)

{
/
I This routine provides the assessment of solution fitness; ie. how
1/ well does the new concept and targeting options perform agamst
/ a mission spectrum of targets.
1
int k_opt=0;
for(int k1=1; k1<=lvec[total_WH }; k1++)
{
if(sys[k1].Yield_opt == TRUE)
{
sys[k1].yield = Means[k_opt];
k_opt++;
}
if (sys[k1].Inv_opt == TRUE)
{
sys[k1].inventory = int(Means[k_opt]);
k_opt++;
}
if (syslk1].new_fz_opt>0)
{
for(int k2=sys[k1].base_fz_opt; k2<sys[k1].total_fz_opt; k2++)
{
sys[k1].ceps[k2] = Means[k_opt ;
k_opt++;
}
}
}
return;
b // Block: 9
/! e o e B T e

float WeaponOpt::WS_Fitness(int iter, int popu, ostream&
Dump_out)

1/

< Page 52 of 59 > ~

/ This routine provides the assessment of solution fithess; ie. how

/ well does the new concept and targeting options perform against
1/ a mission spectrum of targets.
/!

float sum_fit=0.0;

float *fit;

int k_cor;

fit = new float[lvec[max_scenarios] J;
for(int k=0; k< lvec[max_scenarios] ; k++)

{
/
/l Need To Load New Concepts Into Selection Matrices
/l
scenario[k].total_WH = sys2scene[K][0];
for(int k1=1; k1<=sys2scenelk][O]; k1++)
{ .
k_cor= sys2scenelk][k11;
scenario[k].sys[k1]= sys[k_cor] ;
}
if(DUMP)
{
Dump_out << “Dump lteration : “ << iter << “\tScenario :
<< “\tPopulation : “ << popu << “\n”;
Dump_WeaponOpt(Dump_out) ;

}
1/
/! Begin Optimization
/

13

<<k

seed_val= random.draw();
scenario[k].RN_seed= seed_val ;
fit[k] =scenario[k].Targeting_Opt();
sum_fit +="fitf k];

}
1/ :
/ Cleanup Storage
1/
delete fit;
return(sum_fit);
}s /f Block: 10

/1 +Ht++

float WeaponOpt::WS_Fitness_Validate(int iter)

1/

< Page 53 of 59 >

This routine provides the assessment of solution fithess; ie. how
well does the new concept and targeting options perform against
a mission spectrum of targets.

float sum_fit=0.0;

float *fit;

int k_cor,

fit = new float] lvec[max_scenarios] J;

for(int k=0; k< Ivec[max_scenarios]; k++)

{

Need To Load New Concepts Into Selection Matrices

for(int k1=1; k1<=sys2scenelKk][0]; k1++)
{
k_cor= sys2scenelk][k11];
scenario[k].sys[k1]= sys[k_cor] ;

}
1/
1/ Begin Optimization
i
seed_val= random.draw(); —
scenario[k].RN_seed= seed_val ;
fit[k] =scenario[k]. Targeting_Opt();
scenario[k].Perf_Results();
sum_fit +=fitf k] ;
}
/
/! Cleanup Storage
/4
delete fit ;
return(sum_fit);
¥ // Block: 11
/" B s T A e o T T T o e

void WeaponOpt::WS_Opt()

(
1!

// Com 2 This Routine Provides Control For The Optimization Of Weapon
/! System Designs. Optimization Defined Within A Context Of

i Force Structure.

/

I/ Note: Scenarios Must Be Set Up And Loaded From This Class.
/ Inventories, Targeting Options, And Missions Are Defined In

< Page 54 of 59 >

i The Allocation Class.
1/
cout << ----- WeaponOpt :: (WS_Opt) Begin system optimization\n”<< flush ;
streampos f_strt, f_end, f_zero ;
fstream Dump_out("WSO_Dump*, ios::inlios::out) ;
f_zero=0;

float *fit, *raw_fit ;

float *fit_TmSr;

fit = new float[Ivec| es_pop] J;
raw_fit = new float[Ivec[es_pop]];
fit_TmSr = new float[Ivec[es_iter] J;

int term_crit=FALSE ;
float run_ave=0.0 ;
if(DEBUG)
G_debug_out << “\n” <<
“+++++ Weapon System Fitness Debug +++++++++++++++++++++++++ \n
<< flush;
soln.Setup_ES_Chromo(constraint, constraint_tmp);
1/
// Com 3 Begin Iteration To Find Optimal Weapon System Solution.
I
for(int iter=0; iter<lvec| es_iter]; iter++)

{
/i
/i Force Storage Of One Generation Of Weapon To Target Suitability
1/
/7 Dump File Position Location Identification
f_strt = Dump_out.tellp();

”

if(iter == (lvec| es_iter }-1))
PERF_OUT=TRUE;
else
PERF_OUT=FALSE;
i
// Com 4 Build The Weapon System Attack Options Matrix
1/ :
for(int k=0; k<lvec[es_pop }; k++)
{
G_debug_out << \n\n” << “+++++ Weapon System lteration: ”
<< iter << “ Population: “ << k << flush;

i .
i Setup And Calculate The Fitness For The Chromo Population
/!

< Page 55 of 59 >

if(k==0)

{

G_debug_cntl = TRUE ;

cout << \n” << “+++++ Weapon System Iteration: ”
<< jter << “ Population: “ << k ;

}

Set_Allocation(soln.es_mean[k]) ;
fitf k] = WS_Fitness(iter,k, Dump_out);
raw_fitf k] =fitf(k] ;

}
/
/! Identiy max and min fitness in order to perform a relative fitness
1/ scaling as opposed to an absolute fitness.
/
float mn_{it=9999 ;
float mx_fit=0 ;
for(int kO=0; kO< lvec[es_pop]; kO++)
{
if(raw_{fit[k0] <= mn_fit) mn_fit=raw_{fit[k0] ;
if(raw_fit[k0] >= mx_fit) mx_fit=raw_fit[kO] ;
}
/
/! Setup storage for fithess time series analysis.
/! (convergence criteria ?7?)
/4

float conv_fac=10000.0 ;
fit_TmSr iter] = mx_fit ;
if(abs(run_ave-mx_fit)*conv_fac <= 1.0)
if((mx_fit-mn_fit)*conv_fac <= 1.0)
{
term_crit= TRUE ;
PERF_OUT=TRUE;
}
if(run_ave > 0.0000001)
run_ave =(run_ave + mx_{it)/2.0 ;
else
run_ave = mx_fit ;

G_debug_out << “\n+++++ Weapon System Fitness : \t*;
for(k0=0; kO< Ivec[es_pop]; kO++)
{
fit[kO] =(fit[kO] - mn_fit)* conv_fac ;
G_debug_out << “ (“<<raw_fitf k0] << “-“<<fit{ kO] << “)";

< Page 56 of 59 >

}

ifl DEBUG)
{
> for(k=0; k<lvec[es_pop]; k++)
{
G_debug_out << “\nResults, all Chromosomes: (lter “ << iter << “ Pop “
<< k <<*)\t;
G_debug_out << \t” << raw_fit[k | ;
for(int kck=0; kck<lvec]total_optimize]; kck++)
G_debug_out << "t" << soln.es_mean[k][kck] ;

}
}
/
// Com 5 Transfer Fitness To ES Algorithms
I
float bs_ TMP;
bs_TMP= soin.ES_Chromo_Fitness(fit);
/
/! Setup A Convergence Monitor Function
/"
if(l DEBUG)
{
G_debug_out << “\n” << raw_fit[soln.opt_soln] <<* <--> %
for(k=0; k<lvec]| total_optimize J; k++)
G_debug_out << soln.es_mean[soln.opt_soIn][k] << " ";
G_debug_out << flush;
} ,
I
// Com 6 Create The Next Generation
/
soln.Next_Gen_ES_Chromo();
/7
1/ Note: The Validation Is Performed On Population Member O
/i Because Of The Greedy Optimization Algorithm.
1/ (Stored Best Soln In Pop Zero)
1/
if(PERF_OUT)
{ ‘
. Set_Allocation(soln.es_mean[0]) ;
iy fitf 0] = WS_Fitness_Validate(iter);
cout << “\nFitness Time Series : “;
for(int ki1=0; ki1<iter; ki1++)
cout << “ “<<fit_TmSr[ki1];
}
/!

< Page 57 of 59 >

I If The lterations Have Gone Beyond 0 Then Begin Shifting
/ DUMP Data

/i
f_end = Dump_out.tellp();
ifl DUMP && iter > 0)
{
File_Adj(Dump_out, f_strt, f_end);
}
/
/! Termination criteria associated with time series on fithess reached
I
if(term_crit) break ;
}
if(DEBUG)
G_debug_out << “\n” <<
“+++++ Weapon System Fitness Debug End ++++++++++++++++++++ \n”
<< flush;
/
/ Cleanup Storage
/
delete fit;
delete raw_fit;
delete fit_TmSr;
Dump_out.close();
return;
}s // Block: 12
/ ++++
1/ This routine moves information from the end of the dump file to
1 the begining of the dump file. The purpose is to store only the
i last two iterations worth of dump infomration.
/i
i tellp() or tellg() gets the position of the file pointer; while
/1 seekp(0 and seekg sets the file position pointer to a value.
/

void WeaponOpt::File_Adj(fstream& FL_b, streampos f_strt,
streampos f_end)

{

char ch;

streampos f_1,f _2;
f1=0; -

f 2 =f_strt;
FL_b.seekg(f_2);

while(FL_b.tellg() <f_end)

< Page 58 of 59 >

{
FL_b.get(ch) ;
f 2 = FL_b.tellp();

, FL_b.seekg(f_1);
FL_ b <<ch;
f_1 = FL_b.tellp();
FL_b.seekg(f_2);
}
FL_b.seekg(f_strt);
FL_b << “\n\n”;
return ;
ts // Block: 13

< Page 59 of 59 >

APPENDIXJ Code listing for weapon system optimization algorithms.

/i ++-:|-+ Main Weapon System Optimization +++++

#include "/home/mesengl/Data_codes/Fuzzy_Targeting/header.h"
/
f Global debug
/

ofstream G_debug_out("Z_Global_debug");

int G_debug_cntl = FALSE;

#include "/home/mesengl/Data_codes/Fuzzy_Targeting/FzSet.h"
#include "/home/mesengl/Data_codes/Fuzzy_Targeting/FzHedge.h" -
#include "/home/mesengl/Data_codes/Fuzzy_Targeting/FzVariable.h"
#include "/home/mesengl/Data_codes/Fuzzy_Targeting/FzRule.h"
#include "/home/mesengl/Data_codes/Fuzzy_Targeting/Fzlssue.h"
#include "/home/mesengl/Data_codes/Fuzzy_Targeting/FzDecision.h"

#inciude "MES_random.h”
#include "MES_ES_opt.h"
#include "MES_Weapon.h"
#include "MES_Mission.h"
#include "MES_Targeting.h"
#include "MES_WS_Opt.h"
/I o B T o o e o

int main(int argc, char *argv]])

{

cout << "+++++++++ Begin Assessment +++++++++\n"<<flush;
ifstream weap_in(argv{2]);
cout << “Input data file : “ << argv[2] << “\n” << flush ;
WeaponOpt NuSys;
NuSys.Load_Data(weap_in) ;
I
/ Set a new output file based on info in argv(1]
1 B}
strepy(NuSys.scenario[0].Results_file, argv[1]) ;
NuSys.WS_Opt();

for(int k=0; k<NuSys.Ivec[NuSys.total_optimize]; k++)
cout << "\n" << NuSys.soln.es_mean[0]k] ;

cout << "\n";

cout << "+++++++++ End of Assessment +++++++++\n";

}; // Block: 14

/

I
I
/
/i
1/
/i
/
/!
i
i
/i
i/
/i
i
I/
/i
/
/!
1/
1
/
1/
/i
1/
1/
/i
/!
/i
i
/!
I
/!
1!
/
/"
1/
/!

+++++ Weapon System Allocation (Targeting) +++++

S R S S
Weapon System Allocation

This class defines the allocation activities associated with weapon
system optimization or for simple weapon to target allocation
activities. This constitutes one of the three major calculational
activities which comprise weapon system optimization but also a
stand-alone sub function.

The algorithm must be able to treat multiple scenarios in support of
the system optimization activities. For simple allocations this capa
bility is not required.

References:

Defense Intelligence Agency, “Physical Vulnerability Handbook for
NuclearWeapons”,OGA-2800-23-92

Cox,E., The Fuzzy Systems Handbook, AP Professional
(a div of Harcourt Brace & Co.), 1994, ISBN 0-12-194270-8

Klir, G.J., Folger, T.A., Fuzzy Sets, Uncertainty & Informtion,
Prentice Hall, 1988, ISBN 0-13-345984-5

R.R. Yager; “Multiple objective decision-making using fuzzy sets”,
lona Colledge, Int J Man-Machine Studies, 1977 9,375-382.

JSTPS TR 91-1, “PDCALC A Computer Program For The
Probability Of Damage Calculations”, 1991.

H. Brode, S. Speicher, “Air Blast From Nuclear Bursts-analytic
Approximations”, Pacific-Sierra Research Corp.,

PSR Report 1419-1,

S. Speicher, H. Brode, “Extremely High Overpressure Analytic
Expression For Burst Height, Range And Time - Over An Ideal
Surface”, Pacific-Sierra Research Corp., PSR Note 611

Capt. G.Martelle, “3DPD HANDBOOK, Formulas and Algorithms for
Computing The Probability of Damage of New Generation
Nuclear Weapons”,AF Operational Test & Evaluation Center.

Code Structure :

< Page 61 of 87 > ~

/s
//
/f
/
1
i
I/
i
/4
i
/
1/
i
/i
i

Targeting

Dump_suitability
Dump_Targeting
Perf_Resuits B
IC_Alloc
Storage_Setup
Suitability_Setup —_—
Fitness_PD
Fitness_Stk
Fitness_Time
Fitness_Wt
Fitness_Yield
Obj_Pk
Pssk
Targeting, Opt
Next_iteration
| |
Mission_ - randint] WEAPON_
Dump_Mission_ getx WEAPON_Load
Vul_Setup seed WEAPON_Setup
_ get_seed
Adj_vn draw (operator) =
Brode_84 fdraw
CR_caic exp_dist_Rep
DP_calc Setup_exp_dist
Gr_coupling CleanUp_dist
OP_galc gauss
OP_contour
Relative_Dist
WR_cr
WR_dp
WR op
| 1
TARGET_ LP

(operator} >>

I {operator) << l
Reset_Targ

(operator) <<
(aperator) >>

ProgramConstruction:

The driver for the allocation algorithms is simply a main program
in which an object is declared, data is loaded, and the optimization
is performed. When this algorithm is used in conjunction with the
weapon system optimization, control is treated in the WeaponOpt -
class. IN stand-alone mode an example of a driver for the

- optimization follows:

ifstream allo_in(argv([1]);

ofstream d_out("Validate1.dat"); ‘
Targeting tst_allo;

allo_in >> tst_allo;

tst_allo.IC_Alloc();

< Page 62 of 87 >

I
fl
i/
i
1/
//
/i
I/
i
I/
i
/i
/W
i
/i
I
i
f
fl
/s
f
i
f
i
1/
/
i
1/
/
1/
/

.

1/
/A
1/
/i
/
1
i
I
/i
1/
i
I
/i
1

tst_allo.Dump_suitability(d_out);
tst_allo.Targeting_Opt();

The first 2 statements define the input and output files. The third
line defines the Targeting class object, we then load the data via
the overloaded operator >>. The function call tst_allo.IC_Alloc()
is the call which presets and defines information for use in the
allocation effort.. Finally, pre-processed information is dumped to
file and the optimization algorithm is fired.

Input Format: (typical dataset)

scenariol

Weapons 2 0

Yield 333 Inventory 75 Options 0 2 Response 1.0 eoi

Yield 111 Inventory 225 Options 4 0 CEPs 450 400 750 350
Response 1.0 eoi

Dump

Convergence 50

Acceptance 1.0

Targets Targets 250

608 4118 0.7317663603 61.93145 44.1054146 46.25955643 -
465 37M6 0.5177064626 58.98407 101.7777439 179.97161811
500 37M6 0.4310704167 51.18029 157.6116195 229.35555875

eoi
Input Keywords include:
Weapons, Yield, Inventory, Options , CEPs, Response,

Convergence, ObjectivePD, Mutation, Seed, Dump, Debug,
& eoi for termination.

Targeting Member Functions:

Setup, input and output of information:
IC_Alloc, Storage_Setup, Suitability_Setup
Dump_suitability, Dump_Targeting,

Fitness and Performance evaluations are performed in:
Fitness, Obj_Time, Obj_Yield, Obj_Pk, Perf_Results, Pssk

Optimization evaluations :
Next_Iteration, Targeting_Opt

e B B B o

< Page 63 of 87 >

1/ T T T S B i o B O e

class Targeting
{
public:
//
I Define addiitonal model parameters:
/
int exists;

char* obj_name;
char* Results_file ;

long RN_seed;

int DEBUG, DUMP, FUZZY_TACTIC ;

int APPEND_rslts;

float acceptance, Mission_acceptance, Mission_fitness;

int max_targets ;

int base_line_WH, new_WH, total WH ;
int total_inventory, no_option;

int Restart_iter, iterations ;

float pd_objective, F1_form_factor, beta[4];
float Scale_Inv ;

WEAPON_ *sys;
Mission_ startX;
randint random;
int **opt_index;
int *allo_vec;
float **suitability;
FzDecision tactic;

Targeting(); // Constructor
/
1/ overload the input and output operators
/

friend istream& operator>>(istream& in, Targeting&);
friend ostream& operator<<(ostreamé& out, Targeting&);
/!
1/ Define addiitonal member functions:
/
float Dist_Gamma(float, float, float) ;
float Dist_Sigmoid(float, float, float, float) ;
void Dump_suitability();
void Dump_Targeting(ostream& out);

< Page 64 of 87 >

void IC_Alloc();

float Fitness(int, int, float*, float, int);// Goal Fitness Function
float Next_lteration();

float Obj_HOB(int, int, int);

. float Obj_Pk(int, float, float);
float Obj_Time(int, int); // Time Urgency Fitness Function
float Obj_Yield(float); // Minimum Yield Fitness Function
void Perf_Results();
float Pssk(int, float, float); /! Determine the probability of “single shot” kill

void Storage_Setup();
void Suitability_Setup();
float Targeting_Opt(); // Opt. The Targeting Of Weapons To Targets

}y // Block: 15

Targeting::Targeting()
{

obj_name = new char{10];
Results_file = new char[25];

/i

1/ Define default conditions

" -
exists=FALSE;
strcpy(obj_name,"None");
strepy(Results_file,"Zresults");
RN_seed=1111111111;
DEBUG=FALSE;
DUMP=FALSE;
FUZZY_TACTIC= FALSE ;
APPEND_rslts=TRUE;
acceptance=1.25;

Restart_iter=0;
iterations=100;

max_targets=1;

base_line_WH=1;

new_WH=0 ;

total_WH= base_line_WH+new_WH ;
v no_option=0;

pd_objective=0.75;
F1_form_factor=0.025;
Scale_Inv=1.0;

/

< Page 65 of 87>

/
/]

Com 7 Beta Is The Decision Model Weighting Coeficients.

for(int i=0; i<4; i++)
betali]=1.0;

}: // Block: 16

1/

A B B S o L B e o 2

istream& operator>>(istream& in, Targeting& adum)

{

char tmp_in[15];
char tmp_file[15];
adum.exists=TRUE;

int tmp;
in >> adum.obj_name;
in >> tmp_in;
while(stremp(tmp_in,"eoi") 1=0)
{
i
/1 Output Of The Keywords Read For Targeting
/
cout << “eaum- Targeting Keyword : “ << tmp_in << “\n” << flush;
if(stremp(tmp_in,"Targets") ==0) _
{
in >> adum.startX;
adum.max_targets = adum.startX.max_targets ;
else if(strcmp(tmp_in,"Weapons") ==0)
{
/
/4 First load baselines and other Targeting parameters
1 Next load the CEP values and associated stockpile assignments
I/
1/ Note: for input optimization, sensitivity studies we are allowing
1/ for a'scaleing of the inventories. Thsi can be done is Scaledinv
/i is loaded prior to the weapons.
/

in >> adum.base_line_ WH >> adum.new_WH;
adum.total_ WH = adum.base_line_WH + adum.new_WH,;
adum.sys= new WEAPON_[adum.total WH+1 J;
for(int k=1; k<= adum.total_WH; k++)

{

adum.sys| k]WEAPON_Load(in);

adum.sys]| k l.inventory = int(float(adum.sys[k].inventory) *

adum.Scale_Inv) ;

}

< Page 66 of 87 >

}

else if(stremp(tmp_in,"Scaledinv') ==0)
{
in >> adum.Scale_Inv ;
}
else if(stremp(tmp_in,"Convergence") == 0)
in >> adum.iterations;
else if(stremp(tmp_in,"FuzzyTactics") == 0)

in >> tmp_in;
adum.tactic.LL.oad_Model(tmp_in);
adum.FUZZY_TACTIC= TRUE ;
}

else if(stremp(tmp_in,"Acceptance”) ==0)
in >> adum.acceptance;

else if(stremp(tmp_in,"Debug”) ==0)
adum.DEBUG = TRUE ;

else if(stremp(tmp_in,"Dump") ==0)
adum.DUMP = TRUE ;

else if(stremp(tmp_in,"ObjectivePD") ==0)

i

/! Objective Mission Performance

/

in >> adum.pd_objective;
else if(stremp(tmp_in,"PD_fitness") == 0)

/

/ Factor Defining The Degree Of Acceptance Of The Objective Pd
/

in >> adum.F1_form_factor;
else

cerr << "Error: (Targeting Input) unaceptable input option : * << tmp_in
<< "\n" << flush; \
}s // Block: 17

in >> tmp_in;
Y3 // Block: 18
i
i Need To Initialize storage
/
cout << “----- Targeting :: Input Complete: Storage_Setup next\n” << flush;
adum.Storage_Setup();
cout << “eamm- Targeting :: Storage_Setup Complete\n” << flush;
return in;
}s // Block: 19
/ e B o o e e 2 2 20 B S T o T

< Page 67 of 87 >

ostream& operator<<(ostream& out, Targeting& A)

{
/
/ provide coding to represent the ouput desired for this object .
/
out << “\n\n” << A.obj_name << “\n”;

out << "Objective Pd " << A.pd_objective << “\n”;
out << "Targets " << A.max_targets << “\n”;
out << "Weapons " << A.total_WH << “\n”;
for(int k=1; k<= A.total_WH; k++)
out << A.sys[K] <<* “<< “\n”;
out << "Convergence " << A.iterations << “\n”;

return out;
}: /1 Block: 20
/! e e o o o e

float Targeting::Dist_Gamma(float alp, float bet, float x)

{
/i

f This Routine returns values associated with a gamma distribution
/

float rsit ;

float F5, Fnorm, mode_val ;

float gam_alf= 1.0;
1
/l Evaluate for the probabiity given a timing objective.
/1 .

for(int alf=alp-1; alf>0; alf--)

gam_alf *= alf;
F5= pow(bet, -alp) * pow(x, (alp-1)) * exp(-x/bet) / gam_alf ;

1/ :

/7 Need To Normalize The Timing Fitness To Mitigate Gamma
/i Distribution Effects. '

/i

mode_val= bet*(alp-1) ;
Fnorm= pow(bet, -alp) * pow(mode_val, (alp-1)) *
exp(-mode_val/bet)/ gam_alf ;
rsit = F5/Fnorm;
return (rslt);
}s / Block: 21 .
1/ e e T O B L o o o T o o o

float Targeting::Dist_Sigmoid(float alp, float bet, float gam,

< Page 68 of 87 >

float x)

{
//
1/ This Routine returns values associated with a sigmoid distribution.
1/ We will assume that a decreasing sigmoid (IC type response)
/ will utilize a standard form. An increasing sigmoid begins with a
1/ value of zero progresses through the inflection point to a value
i of one. (questionable assumption, a Pl function might be better).
/i

float rslt ;
I/
/I Is It An Increasing Or Decreasing Sigmoid ?
i
I beta < 0 => Decreasing !!
i beta >0 => Increasing !!
174

rsit =1.0/(1.0 + exp(-(x-alp)/bet)) ;

1/
i Provide for a cutoff
/i

if(x >= gam)

rslt=0.005 ;

return (rslt);
}s / Block: 22
/ o S B B R o o o O B L T

void Targeting::Dump_suitability()

{
I
/I This Routine Dumps Information Associated With The Allocation
1/ Of Weapons To Targets..
/
G_debug_out <<"\n Suitability Pre-Calculations \n"<< " ----- total warheads : *

<< total_WH << "\n";
for(int k=0; k<max_targets; k++)

{

G_debug_out << startX.targs[k].vntk << * “ << startX.targs[k].catcode << “: %

for(int sys_index=0; sys_index<=total_WH; sys_index++) :
G_debug_out <<“ (“<<opt_index[k][sys_index}<< “ “
<<suitability[k][sys_index}<< “) *

G_debug_out << “\n”;

}

G_debug_out <<"\nGoal Acceptance (Unconstrained stockpiles) : ”

< Page 69 of 87>

<<Mission_acceptance<<* (Acceptance level = “<<acceptance<< “)\n”;
G_debug_out <<“Goal Fitness (Unconstrained stockpiles) : ”
<<Mission_fithess<<“\n”;
return ;
¥ // Block: 23
i +t++++b
void Targeting::Dump_Targeting(ostream& out)
{
1/
/ This Routine Dumps Information Associated With The Targeting
I Obiject Setup. \
/
out << "---- :: Targeting Dump (bgn) :: ---- " << obj_name << "\n";
if(DUMP)
{
out << "---- 1 Targeting Dump (---) 1 ----"
<< “Storage Parameters : (max_targets, xxx_WH(3), total_inventory) \n" ;
out << “--- 11 Targeting Dump (---) :: ----" << max_targets <<" "
<< base_line_WH << "\t" << new_WH << "\t" << total_WH << "\"
<< total_inventory << "\n";
out << “---- 11 Targeting Dump (---) :: ---- Control Parameters : ”
<< “(DEBUG, APPEND_rslts, Restart_iter, iterations, RN_seed) \n*
<< “--- 11 Targeting Dump (---) :: ---- “ << DEBUG << "\t"
<< APPEND_rslts << "\t" << Restart_iter << "\t" << iterations << "\"
<< RN_seed << “\n”;
out << “---- :: Targeting Dump (---) :: ---- Convergence Parameters :”
<< “(acceptance, Mission_acceptance, Mission_fitness,pd_objective)\n” ;
out << “---- :: Targeting Dump (---) & ----“
<< acceptance<< "\t" << Mission_acceptance << "t" << Mission_fitness
<< "\t" << pd_objective << "\n" ; ,
out << “---- :: Targeting Dump (---) :: ---- Convergence Parameters :”
<< “(F1_form_factor, beta[3]) \n”;
out << “--- 1 Targeting Dump (---) 1 ---“ << F1_form_factor << "\t"
<< beta]0] << "" << beta[1] << "I" << betal2] << "H" << \n”;
out << “---- :: Targeting Dump (---) :: ---- Weapon Parameters : \n”;
for(int k=0; k<= total_ WH; k++) ’
out << sysfk] ;

______ } ;
out << “--- 11 Targeting Dump (---) :: ---- Mission Parameters : \n”;
startX.Dump_Mission_{ out),

< Page 70 of 87 >

out << "---- :: Targeting Dump (end) :: ----\n";
return ;
}s // Block: 24
/i e e B L T o N

void Targeting::IC_Alloc() -

{
1/
1/ This Routine Provides Setups For The Targeting Problem.
/
int k_option;
I/
i The First Step Of The Process Is To Use The Fuzzy “Tactical” Model
" To Establish Target Priorities And Strategic Time Line Criteria.
1/
I Model tracking information is stored in file “Z_tactics”
i The objective is to loop through each target in the scenario and
/ estimate the “weight” parameter and the “time urgency” parameter
/ associated with each target. Run_model() must accept the
1 parameters and transfer the results for restorage in the appropriate
/4 target information.
/
if(FUZZY_TACTIC)
{
float in[10};
float out[10];
for(int fz=0; fz<max_targets; fz++)
{
in[0]= startX.targs(fz].lethality;
in[1]= startX.targs[fz].mission;
in[2]= startX.targs{fz].function;
tactic.Assess_lssues(in,out);
startX.targs[fz]. Wt = out[0];
startX.targs{fz].Tm_obj = out{1];
startX.targs[fz]. HOB_obj = out[2];
}
. }
H
. 1/ Setup An Experimental Distribution To Identify What The “Weight”
/ Cutoff Will Be. (Target Rich Environments)
/
o /
< Page 71 of 87>

/ Identify Total Warhead Inventories
/i -
int total_stockpile=0 ;
for(int k2=1; k2<=total_WH; k2++)
total_stockpile += sys[k2].inventory ;
total_inventory= total_stockpile;)

/i
/1 Note: space allocation for tmp_wt should be the max of either
1/ max_targets or total_inventory not the sum. The sum is easier to
1/ execute and will not degrade performance.
/
float *tmp_wt;

tmp_wt= new float[max_targets+total_inventory I;
for(int fz=0; fz<max_targets; fz++)
tmp_wilfz]= startX.targs[fz].Wt ;
random.Sort(tmp_wt, max_targets);
float ratio, wt_cutoff ;
ratio = float(total_inventory)/float(max_targets) ;
if(ratio >=1.0)
ratio=1.0;
wt_cutoff= tmp_wt[total_inventory | ;
/
/ Create An Experimental Distribution For Defining Initial Targetings
/
int *tmp_hist;
tmp_hist= new int[total_inventory];
int indx=0;
for(int m=1; m<=total_WH; m++)
for(int n=0; n<sys[m l.inventory; n++)

Emp_hist[indx]:m;
indx ++;
ranciom.Setup_exp_dist(tmp_hist, total_inventory);
Z Set The Initial Targetings
! for(int k=0; k<max_targets; k++) '
i{f({startX.targs[k].Wt > wt_cutoff)

k_option= int(random.exp_dist()) ;
allo_vecik] = k_option;
}

else

allo_veclk] = no_option;

< Page 72 of 87 >

/]
! Next Calculat The Suitabilities Of Potential Soutions
//
Suitability_Setup();
1/
1/ Cleanup storage

I/
delete tmp_hist;
return ;
}s /] Block: 25
/ B L i o o o o o o

float Targeting::Fitness(int targ_indx, int sys_indx, float *cep,

float ylid, int fz_opts)

i This routine provides the fitness based on goal or mission targets
" damage expectancy. Too little or too much is not a good solution.

float Pk, FO,F1,F2,F3,F4, Fsum ;
int indx=0;
float max_pk=0.0; -
float min_pk=99999.0;
int indx_cep=0;
float max_cep=0.0;
for(int k0=0; kO< fz_opts; kO++)
if(cep[k0] >= max_cep)
{

max_cep= cep[kO0];

indx_cep=k0;
}
i
Vj Assess System response time Suitability
/i
F1= beta[1]*Obj_Time(targ_indx, sys_indx);
1/
1/ Assess Yield Suitability
i
F2= beta[2]*Obj_Yield(yld };
/]
i Assess Probability Of Kill Suitability
i

for(int k=0; k< fz_opts; k++)

< Page 73 of 87> ~

{
FO = beta[0]*Obj_Pk(targ_indx, ceplk], yld);

F3 = beta[3]*Obj_HOB(targ_indx, sys_indx, k);
F4 = sys[sys_indx].relia[k] ;

/

I Note: Discovered that some fitnesses are true trades, Pk vs yield
I/ while others are critical. Trades allow summation while the critical
1/ conditions should be a product type total fitness.

i

Fsum= F1*F4*(FO+F2+F3) ;

if(Fsum <min_pk)
min_pk= Fsum;
if(Fsum > max_pk)
{
max_pk=Fsum;
indx= Kk;
}
if((max_pk-min_pk) <= 0.0001)
indx= indx_cep;
|3
opt_index[targ_indx][sys_indx] = indx;
return(max_pk); ‘
}s // Block: 26
1/ e e

float Targeting::Next_Iteration()

{
1/
/ This Routine Performs Series Of lterations In An Effort To Relax
1/ The Problem To A Near Optimal Solution.
/!

int *draw_from;
draw_from= new int[max_targets];

int indx= 0;

intm ;

for(int df=0; df<max_targets; df++)
{

m= allo_vec[df];
if(suitability[df][m] <= acceptance)

draw_from[indx] = df;
indx++;
}

}

< Page 74 of 87 >

i
I
/i

i
/i
i
/i
f
1

i
/1
i
/

Perform Statistical Modifications To The Allocation Vector

int loc1, loc2, loc3, tmp, k_option ;
float sOr, sNr, sO, sN, pr2 ;
for(int k=0; k< indx; k++)

{

loct=draw_from[k];
pr2 = random.fdraw();
loc2 = int(pr2*indx);
loc3= draw_from][loc2 };
k_option= 0;

Check To See If Exchange or Replacement Is A Gain

NOTE: Using average suitabilities insures that an exchange is
better overall.

sO= (suitability[loc1][allo_vec[loc1]] +
suitability[loc3][allo_vec[loc3]])/2.0;
if(random.e_siz > 1)
{
k_option= int(random.exp_dist()) ; —
sN= (suitability[loc1][k_option] +
suitability[loc3][allo_vec| loc3 1])/2.0;

else

{

k_option= 0;
sN= 0.0;

}

. SNr= (suitability] loc1][allo_vec[loc3]] +

suitability[loc3][allo_vec] loc1]] //2.0;

Is There An Improvement ?? Then Which Is The Best Exchange
Or Replacement

if(sO <sNrllsO<sN)
{
if(sSNr>=sN)
{
tmp= allo_vec] loc1];
allo_vec] loc1]= allo_vec[loc3];
allo_vec[loc3]=tmp ;

}

else

< Page 75 of 87 >

{

tmp= allo_vecf[loc1];
allo_vec[loc1] = k_option;
random.exp_dist_Rep(tmp);
k_option=0;

}

}
if(k_option 1= 0)
random.exp_dist_Rep(k_option);
}
float mission_fit =0;
indx= 0;
for(df=0; df<max_targets; df++)
{
m= allo_vec|[df];
if(suitability[df][m] >= acceptance)

indx-++;
}
mission_fit = float(indx)/ float(max_targets) ;
i
I Cleanup Storage
/i

delete draw_from;
return mission_fit ;
}s /f Block: 27 -
/! o o O e 2 e 2 e 2 B o S B S S e

float Targeting::Obj_HOB(int targ_indx, int sys_indx, int
opt_indx)

{
!
I Simple Evaluation Of System Performance For A Weapon Concept
i Against a Target (targ_indx): HOB constraints are evaluated.
/"

float FzHt, TgHt, F1 ;
float F2_form_factor ;
FzHt=sys[sys_indx].hobs[opt_indx] ;
TgHt= startX.targs| targ_indx].HOB_obj ;
F2_form_factor= 0.5*FzHt ;
if(FzHt > 99998.0 && FzHt <100000.0)
F1=1.0;
else
F1 = exp(-(FzHt -TgHt)*(FzHt -TgHt)/F2_form_factor) ;
return(F1);
}s /] Block: 28

< Page 76 of 87 > ~

/" e I e s e e 2 B e T T 3

float Targeting::Obj_Pk(int targ_indx, float cep, float yid)

{
/i
/" Simple Evaluation Of System Performance For A Weapon Concept
i Against a Target (targ_indx): Pssk constraints evaluated.
/i
float Pk, F1 ;

Pk = Pssk(targ_indx, cep, yid);
F1 = exp(-(Pk-pd_objective)*(Pk-pd_objective)/F1_form_factor);
return(F1);
¥ // Block: 29
/4 e i 2 O B B e T I S o e o

float Targeting:':Obj__T ime(int targ_indx, int sys_indx)

{
1!
/] This routine captures fitness for a time urgency metric; ie.
/ reconstitution targets, time urgent targets, and those of uniform
/ importance as functions of time.
/
1/ We are assuming that the system response can be captured
1/ by a representative “gamma” distribution. This distribution can
I/ and has been used in queing problems and will be suitability for
i this application. Gamma distributions require two parameters,
// o and B They should be reasonably easy to define since:
/
/i Mean=af
Vi Variance = o 2
/" ' Mode = B (a—1) if o >= 1 zero (0) otherwise
/i :
1 Knowing any two of the three characteristics can define the
/! distribution form. The function assesses the probability of
i launching a system based on the targeting requirements
1/ (time-urgency).
/! NOTE: correlation assumes « is an integer.

< Page 77 of 87 >

/1

Gamma DistHa=1,2,3,4L

0.5
0.4}
0.3
0.2}
0.1
Time
5 10 15 20 25
1/
Gamma DistHb=1,2,3,4L
0.5
0.
0.
0.
0.
. Time
5 10 15 20 25
/ _
/ The routine has been expanded, 5/11/98, to consider sigmoid
I/ functions as well as the gamma function. This routine will call
/] either the Dist_Gamma or the Dist_Sigmoid function.
/! _
float F5;
float alp,bet,gam, response_tm;
alp = sys[sys_indx }.alpha ;
bet = sys| sys_indx].beta ;
gam = sys[sys_indx].gamma ;
response_tms= startX.targs[targ_indx].Tm_obj ;
i)
/j Evaluate for the probabiity given a timing objective.
/
if(gam < 0.0)
F5 = Dist_Gamma(alp, bet, response_tm) ;
else

< Page 78 of 87 >

F5 = Dist_Sigmoid(alp, bet, gam, response_tm) ;
return(F5); ,
}y /1 Block: 30
/i B T T I T

float Targeting::Obj_Yield(float yid)

i
I This routine provides a rule to minimize yield applied to a target.
1/ Note: This Routine Is Valid If The Yield Options
/] Are Not Less Than 100
/"

float min_yield=25.0 ;

float F2;

F2 = pow((min_yield/yld),0.3333) ;

if(F2>1.0)

F2=1.0;

return(F2);
}s // Block: 31
/I’ I B L R o o o T o o

void Targeting::Perf_Results()
{

ofstream Monitor_out(Results_file,ios::app);

int sys_index, indx1, avn, ak, wr_out ;
char att;

float Pk, yid, tmp_fl ;

float mission_PD=0.0 ;

float cep, hob ;
Monitor_out.precision(6);

/!
/ Create A Database Of Mission Performance And Targeting
/!)

Monitor_out << “\nPerformance results: \n” << “ :vntk 1 “;

if(DEBUG)

Monitor_out << “ catcode :: r95 :: T depth :: Leth :: Mis :: Func-::”;
Monitor_out << “ Wt :: Timing :: HOB Pref :: wr:: index :: yield :: cep 1 %
Monitor_out << “ hob :: Pk ::\\n”;
] for(int k=0; k<max_targets; k++)
T {
sys_index = allo_vec[k];
avn= startX.targs| k].vn;

< Page 79 of 87>

att= startX.targs| k].tc;

ak= startX.targs[k 1.k;

if(sys_index > 0)
{
indx1 = opt_index[k][sys_index] ;
cep= sys| sys_index].ceps| indx1 J;
hob= sys| sys_index].hobs[indx1];
yld= sys[sys_index].yield:;
Pk =Pssk(k, cep, yld);
wr_out= startX.wrQ;

}
else
{
Pk=0.0;
cep=1e10;
wr_out=0.0;
}
mission_PD += Pk ;
if(att =="G’)

Monitor_out << startX.targs[k].gvn1 << att << startX.targs[k].dsig1
<< startX.targs] k J.tg1 << "\t”;
else .
Monitor_out << avn << att << ak << “\t “;

if(DEBUG)
{
Monitor_out << startX.targs| k].catcode << “ “ << startX.targs| k].ro5
<< “\t* << startX.targs| k].targ_depth << “\t*;
Monitor_out << startX.targs| k].lethality << “ ¢
<< startX.targs[k].mission << “ “ << startX.targs[k].function << “\t*:
}
Monitor_out << startX targs[k] Wt << “\t“ << startX.targs[k . Tm_obj
<< “\t* << startX.targs[k . HOB_obj << “\t*;

Monitor_out << wr_out << “t“ << sys_index <<“ “<<yld<<“
<< cep <<“ “<<hob << << Pk <<“\n”;
}
1/
/! Create A Series Of Allocaation Databases
/i
for(int ka=1; ka<=total_WH; ka++)
{

Monitor_out << “\nWeapon Targetings : (inv no. “ << ka << “ \n”;
for(int kb=0; kb<max_targets; kb++)
{

sys_index = allo_vecl[kb];
indx1 = opt_index[kb][sys_index] ;

< Page 80 of 87 >

if(sys_index ==ka)
{
cep= sys| sys_index]J.ceps[indx1];
hob= sys|[sys_index].hobs[indx1];
yld= sys[sys_index].yield;
avn= startX.targs[kb].vn;
att= startX.targs| kb].tc;
ak= startX.targs[kb 1.k;
Pk =Pssk(kb, cep, yld);
wr_out= startX.wr0;

if(att =="G’)
{
Monitor_out << startX.targs[kb].gvn1 << att << startX.targs[kb].dsig1
<< startX.targs[kb].tg1 << "\t*;
Monitor_out << startX.targs| kb].gvn2 << att
<< startX.targs[kb].dsig2 << startX.targs[kb].tg2 << “\t“;
}
else
Monitor_out << avn << att << ak << “t*;

if(DEBUG)
{
Monitor_out << startX.targs| kb].catcode << “ “ << startX.targs[kb].ro5
<< “At* << startX.targs| kb].targ_depth << “\t*;
Monitor_out << startX.targs[kb].lethality << “ “
<< startX.targs[kb].mission << “ “ << startX.targs[kb].function << “\t%;
}
Monitor_out << startX.targs[kb].Wt << “\t“ << startX.targs[kb]. Tm_obj
<< “t* << startX.targs| kb].HOB_obj << “\t*;
Monitor_out <<wr_out <<“\t “<<sys_index <<“ “<<yld<<*
<<cep<<“ “<<hob<<“\t“<<Pk<<n”

}
}

}
/!
Vi Print Out Allocated Inventories
/!
float mission_fit =0;
intm ;
int indx= O;
for(int df=0; df<max_targets; df++)
{ -
m= allo_vec|[df];
mission_fit += suitability[df][m] ;
if(suitability[df][m] >= acceptance)

“®

< Page 81 of 87>

indx++;
} ,
mission_PD /= float(max_targets) ;
Monitor_out << “\nMission PD : “ << mission_PD << “\n” ;
mission_fit = mission_fit /float(max_targets) ;

Monitor_out << “Acceptance Criteria : “ << acceptance << “ Mission Fitness :

<< mission_fit << “\n” ;
Monitor_out << “\n Weapon Systems \n”;
for(k=0; k<= total_WH; k++)

Monitor_out << “Weapon System : “<< k << “\n" << sys[k] << “\n”;

/"
i Cleanup Storage
i
return ;
}s // Block: 32
i s w8 o

float Targeting::Pssk(int targ_indx, float cep, float yid)

{
float Pk =1.0 ;
float a, eff_cep, R95 ;
char atc;
/
/ Define The Weapon Radius For The Target
/"
startX.Vul_Setup(targ_indx, yid) ;
/4
I Use A Simple WR/Cep Correlation For Kill Probability
/1
/! The effective CEP is used to capture the r95 characteristics of a
// target. This formula was pulled from PDCALC.
/!

R95 = startX.targs[targ_indx].r95 ;
eff_cep = pow((cep*cep + 0.231* R95*R95), 0.5);
a = (startX.wrQ/eff_cep)*(startX.wr0/eff_cep);
Pk =1.0 - pow(0.5,a);
return(Pk);
}s /f Block: 33
i a2 T L o S

void Targeting::Storage_Setup()

{
/!

// Com 8 Pass Parameters Read Into The Targeting Class To Initialize

< Page 82 of 87 >

“

/! The Genetic algorithms.
/! =
allo_vec=new int[max_targets J;
opt_index=new int*[max_targets];
suitability = new float*[max_targets] ;
for(int su=0; su<max_targets; su++)
{
opt_index[su] = new int[total_WH+1];
suitability[su] = new float[total_ WH+1] ;

}
/
/i Identify Total Warhead Inventories
1
int total_stockpile=0 ;
random.seed(RN_seed);
for(int k=1; k<=total_WH; k++)
total_stockpile += sys[k].inventory ;
total_inventory= total_stockpile;

return ;
}; // Block: 34
/! e e e L o o o L T o o o o o o e s

void Targeting::Suitability_Setup()

{
1/
1/ This Routine Performs Suitability Setups For The
1/ Allocation Algorithm.
/!

int sys_index, i2, indx ;
float total_fitness, yid ;
float *cep ;
for(int k=0; k<max_targets; k++) _
for(sys_index=0; sys_index<=total_WH; sys_index++)
{
if(sys_index != no_option)
{
cep= sys| sys_index].ceps ;
yld= sys[sys_index].yield ;
i2= sys| sys_index].total_fz_opt ;
1
/l Find Optimum Performance For Each System Against Target K
1/
total_fitness = Fitness(k, sys_index, cep,yld, i2);

}

< Page 83 of 87 >

else

{

total_fitness=0.0;
opt_index k][sys_index] = O;

suitability[k][sys_index]=total_fitness ;

}
1/
/ Examine Allocation If Unconstrained
/I
int tmp_indx;
indx= 0;

Mission_fitness=0.0;
for(k=0; k< max_targets; k++)
{
tmp_indx=0;
for(int jj=1; jj<= total_WH; jj++)

{
if(suitability[K][jj 1 > suitability[K][tmp_indx])
tmp_indx=jj ;
}
if(suitability[k][tmp_indx] >= acceptance)
indx++;
Mission_fitness +=suitability[k][tmp_indx] / float(max_targets) ;

}

I
i Optimum Fitness Acheivable With Unlimited Inventories
I
Mission_acceptance = float(indx)/ float(max_targets) ;
/i
I Cleanup Storage
/
return ;
}s // Block: 35
/i e s B S e o
float Targeting::Targeting_Opt()
{

float mission_fitness;
float mission_fit ;
float fit; B
float debug_fitness;

IC_Alloc();

< Page 84 of 87 >

if(DEBUG) Dump_suitability();

float *fit_TmSr;

fit_TmSr = new float] iterations };
float run_ave=Mission_fithess ;
int term_crit=FALSE ;

for(iiAnt iter=Restart_iter; iter<iterations; iter++)

{
/ :
/" Determin the total Targeting of weapons for a chromosome
/"
for(int k=0; k<= total_WH; k++)
{
sys| k].allocated =0;
for(int kop=0; kop < sys][k].total_fz_opt ; kop++)
sys| k J.opt_inv[kop] =0 ;

}
H
// Com 9 Note: allo_vec Provides The Mapping Between Targets And WH’s
/

int jj, indx0 ;
for(k=0; k< max_targets; k++)
{ .

jj=allo_vec[k];

sys| jj].allocated +=1;

indx0 = opt_index[k](jj] ;

if(jj '=0) sys[jj].opt_inv[indx0] +=1 ;
}

/
// Com 10 Create The Next lteration
I

mission_fitness= Next_lteration();

mission_fit =0;

for(int df=0; df<max_targets; df++)

mission_fit += suitability[df][allo_vec[df]] ;

mission_fit /= float(max_targets) ;
/
/] Evaluate convergence criteria (deviation from running average)
/ .
float conv_fac=10000.0 ;
fit_TmSr] iter] = mission_fit ;
if(abs(run_ave-mission_fit)*conv_fac <= 1.0)

term_crit= TRUE ;

if(run_ave > 0.0000001)

< Page 85 of 87 >

1/
/4
1/l

/i
/
i
/

run_ave =(run_ave + mission_fit)/2.0 ;
else _
run_ave = mission_fit ;

Setup For A Debug Calculation And Output

if(DEBUG)
{
G_debug_out << “lter : “<<iter<< “ Mission Acceptance = “
<< mission_fitness << “ Mission Fitness = “<< mission_fit
<<“\nTargeting Vector \n” ;
int indx1,indx2 ;
for(int kb=0; kb<max_targets; kb++)
{
indx2= allo_vec[kb] ;
indx1= opt_index[kb][indx2] ;
G_debug_out << “ (%
G_debug_out << ““<<indx2 << “ %
G_debug_out <<indx1<< “ “<< suitability[kb][indx2] << “) %
}
G_debug_out << An”;
G_debug_out << “nWeapon System Inventories \n”;
for(int kd=0; kd<= total_WH; kd++)
G_debug_out << kd << “\t “ << sys[kd] << “\n”;
}

Provide tracking information for normal and post analysis

Tracking output controlled by WS_Opt object
if(G_debug_cntl)
{
for(int kd=1; kd<= total_WH; kd++)
{ ,
cout << “\nWarHead ” << kd << “ “ << mission_fit << "\t *;
for(int kd2=0; kd2< sys[kd].total_fz_opt; kd2++)

®

cout <<* “<< sys[kd].ceps[kd2] <<* :: “<< sys[kd J.opt_inv[kd2]<< " *;

cout << “\n” << flush ;

}
G_debug_cntl=FALSE ;
} |
if(term_crit |l iter>=iterations-1)

{

G_debug_out << "\n+++++ +++++ Target Opt lter ; "<<iter ;
G_debug_out << " (Population fitness : " << mission_fit <<")\t";
for(int kd=0; kd<= total_WH; kd++)

< Page 86 of 87 >

{
G_debug_out << \n” << kd << "\t " ;

for(int kd2=0; kd2< sys[kd].total_fz_opt; kd2++)
G_debug_out <<“ “<< sys[kd].ceps[kd2] <<“ :: “<< sys[kd].opt_inv[kd2]

. <<" "
G_debug_out << “\n”;
}
break;
}
}
/
1/ Output The Results Of The Targeting
/

if(APPEND_rslts == TRUE)
Perf_Results();

/
/ Cleanup Storage
!
random.CleanUp_dist();
return(mission_fit) ;
}s // Block: 36

< Page 87 of 87 >

/i +++++ Genetic Algorythm Optimization (GA_AlloC) +++++
1 N U S SN A A S S S WS S SN
// Com 11 The GA Allocation Object Provides Optimizations Based On
/! Selections From A Set Of Predefined Capabilities; Eg. Allocation
/! Of Weapons To Targets, Vehicles To Routes Etc.
/7
/! Operators include: Mutation, X-over, (Splice, inversion 777?)
/ I o o L o B B e ma an S T B
/! B B o o
class GA_Alloc

{

‘public:
"
/" Define addiitonal model parameters:
1/ selections - maximum options to choose to allocat to a gene
i max_gene - maximum genes on a chromosome. (eg. max targets)
/i ga_pop - Number of chromosomes in the optimization population.
/

int exists;

/i
i
1

/4
1
/

char* obj_name;

int selections, max_gene, ga_pop;
int **ga_chromo;

int **ga_chromo_QO;

float *repro_pr;

randint random;

int opt_soln;

float mutation_pr, xchange_pr;

GA_Alioc(); {// constructor

overload the input and output operators

friend istream& operator>>(istream& in, GA_Alloc&);
friend ostream& operator<<(ostreamé& out, GA_Alloc&);

Define addiitonal member functions:

float GA_Alloc_Fitness(float*);

int GA_Xchange(int, int*, int);

int GA_Mutate(int);

int GA_Reproduce(int); .

void Init_GA_Alloc(); // define storage chromo

< Page 88 of 95> ~

float Next_Gen_GA_Alloc(float**, float);
void Setup_GA_Alloc(long); // Initialize an evolutionary strategy chromo

}; /f Block: 37

GA_Alloc::GA_Alloc()

{
obj_name = new char{10];
/
Y/ Define default conditions
/i

exists=FALSE;
strepy(obj_name,"None");

ga_pop = 1;
max_gene = 1;
selections = 1;
mutation_pr=0.01;
1 /1 Block: 38
/i B B

istream& operator>>(istream& in, GA_Alloc& adum)

char tmp_in[15];
adum.exists=TRUE; -
in >> adum.obj_name;

in >> tmp_in;
while(stremp(tmp_in,"eoi") 1=0)
{
cout << “-um- GA_Alloc Keyword : “ << tmp_in << “\n” << flush;
if(stremp(tmp_in,"Selections") ==0)
in >> adum.selections;
}
else if(stremp(tmp_in,"GA_setups") ==0)
{

in >> adum.ga_pop;
in >> adum.max_gene;
adum.lnit_GA_Alloc();
b
else if(stremp(tmp_in,"Probability") == 0)

in >> tmp_in;

< Page 89 of 95>

if(stremp(tmp_in,"Mutation") ==0)
in >> adum.mutation_pr;
else if(stremp(tmp_in,"X-over") ==0)
in >> adum.xchange_pr;
else
cerr << "Error: (GA_Alloc:Probability Input) unaceptable input option

<< tmp_in << "\n" << flush;
}
else
cerr << "Error: (GA_AIlloc Input) unaceptable input option : "
<< tmp_in << "\n" << flush;
in >> tmp_in;
}; /] Block: 39
return in;
Vs 1/ Block: 40
i R I T B L R e

ostream& operator<<(ostream& out, GA_Alloc& A)

1
/! provide coding to represent the ouput-desired for this object
/

out << “\n\n” << A.obj_name;

out << "\nSelections " << A.selections;

out << "\nGA_setups " << A.ga_pop << “ “<< A.max_gene;

out << "\nProbability Mutation " << A.mutation_pr;

out << "\nProbability X-over " << A.xchange_pr;

6 &«

return out;
}s // Block: 41
/- ++++++H+Ht e

float GA_Alloc::GA_Alloc_Fitness(float *data)

{
Vi

// Com 12 Need To Perform Whatever Normalization Is Required For Next Step
1/
float average=0.0;
float variance=0.0;
float min_val, max_val;
float a,b, delta,f_prime;
float scale_factor=2.0;
/
// Com 13 Capture Statistics Of The Fitness Values

< Page 90 of 95 >

1/
min_val=data[0];
max_val=data[0];
for(int i=0; i<ga_pop; i++)
- {
average += datali];
if(data[i] <= min_val)
min_val = data(i];
if(data[i] >= max_val)
max_val = datali};
}
average = average/ga_pop;
for(i=0; i<ga_pop; i++)
variance += (data][i]-average)*(datafi]-average) ;
variance = variance / (ga_pop-1) ;

/i :

// Com 14 Perform Fitness Scaling And Shifts As Defined In
/ DE Goldbergs, Genetic Algorithms pgs 76-79.

1/

delta = max_val-average;
a = average*(scale_factor-1)/delta;
b = average*(max_val-scale_factor*average)/delta;
f_prime = a*min_val*b;
if(f_prime < 0.0)
{
delta=average-min_val;
a=average/delta;
b=-average*min_val/delta;

}
Y/
// Com 15 Scale Results Of Fitness Evaluations
1/
float sum_fit=0;
for(int j=0; j<ga_pop; j++)
{
dataf j] = a*data[j] + b;
sum_fit += dataj];
}
repro_pr{0] = 0.0;
for(j=0; j<ga_pop; j++)
{
data[j] = data[j] / sum_fit ;
. , repro_prfj+11 = repro_pr[jj+datalj;
}

/
// Com 16 Find The Optimal Solution

< Page 91 of 95>

I

max_val=data[0};

opt_soln=0;

for(i=0; i<ga_pop; i++)
{

if(data[i] >= max_val)

max_val=data{i];
opt_soln=i;
} }
return(max_val);
}s /f Block: 42
/ B o o o T L B L o = T S Y B SR S A S

int GA_Alloc::GA_Xchange(int jj, int *suit_set, int indx)

{

float pr_bs;

float pri,pr2 ; :
int tmp_ga, loc1, loc2, loc3 ;

pr_bs=xchange_pr ;
for(int k=0; k< indx; k++)
{
loc1=suit_set[k];
pr2 = random.fdraw();
loc2 = int(pr2*indx); -
loc3= suit_set| loc2 J;
tmp_ga= ga_chromo[jj][loc1 ;
ga_chromo[jj][loc1]= ga_chromo] jj][loc3 J;
ga_chromo| jj][loc3]=tmp_ga ;
}
return(loc3);
+s // Block: 43
1l L e 1 L I L B

int GA_Alloc::GA_Mutate(int jj)

{
int mut_loc=0;
int inc, cycle;
float pr1, pr3;

for(int IG=0; IG<max_gene; IG++)

{

< Page 92 of 95 >

pr1 = random.fdraw();
if(pr1 < mutation_pr)

{

pr3 = random.fdraw();

1/

1/ Note: we are performing a cyclic permutation here to insure
/ selection of a viable solution. This reflects mutation in an

/ integer space, as opposed to binary space.

/7

inc= int(pr3*selections) + ga_chromo[jj][I1G J;
cycle= inc - (inc/selections)*selections;
ga_chromo[jj][IG]= cycle;
mut_loc++;
}

}

return{ mut_loc);
}s // Block: 44
1/ s T B T B T S

int GA_Alloc::GA_Reproduce(int jj)
{

float pr_val;
int nu_chain=0;

pr_val= random.fdraw(),
for(int k=0; k<ga_pop; k++)
if(pr_val >= repro_pr{k] && pr_val < repro_prlk+1])
{
nu_chain=k;
for(int j=1; j<max_gene; j++)
ga_chromo[jj][j 1= ga_chromo_O[k][j};

}

return(nu_chain);

}s // Block: 45

fl B R e e 2 T L B o

void GA_Alloc::Init_ GA_Alloc()

{
/1

// Com 17 Allocate Space For The Ga Variables.
/
ga_chromo = new int*[ga_pop+1];
ga_chromo_O = new int*[ga_pop+1];
repro_pr = new float[ga_pop+1];

< Page 93 of 95 >

for(int i=0; i<=ga_pop; i++)
{ ,
ga_chromo_QJ i] = new intfmax_gene};
ga_chromo] i] = new intffmax_gene];
}
return;
}:s // Block: 46
N4 L L B B B s BN S

float GA_Alloc::Next_Gen_GA_Alloc(float **suit, float
acceptance)

{
float pr_val=0.0;
/"
// Com 18 Randomly Select A Member Of The Old Pop. For Inclusion In The Next
/i Note: a “greedy” optimizer is used, ie best from last will be included.
/"
for(int i=0; i<ga_pop; i++)
for(int j=0; j<max_gene; j++)
ga_chromo_O[i][j]=ga_chromo[i][j];
1
// Com 19 Begin The Selection Process
/"
for(int j=0; j<max_gene; j++)
ga_chromo[0][j] = ga_chromo_O[opt_soIn [j J;

1
/ Create A Database Of Mutation, Xchange And Reproduction Info
/I
/! ofstream GA_OUT ("test.dat" ios::app);
/ GA_OUT <<“\n%
i
int ri,r2,m1,m2,x0,x1 ;
int kk=0;

int *draw_from;
draw_from= new int[max_gene J;

while(kk<ga_pop)

{
/
// Com 20 Create A Vector Of Poor Targeting Suitabilities
/
int indx= 0;
for(int df=0; df<max_gene; df++)
if(suit[kk][df] <= acceptance)

< Page 94 of 95 >

draw_from([indx] = df;

indx++;
}
r1=GA_Reproduce(kk);
/!
// Com 21 Perform Cross-over operations
/
x0=GA_Xchange(kk, draw_from, indx };
1!
// Com 22 Perform mutation operations
/i
I/ m1=GA_Mutate(kk);
kk+=1;
i
1/ GA_OUT << r11<<® “<c<r2<<® “<<x0<<” “<<mi<<” “<<m2<<“\n*
/i
2
return(pr_val);
}s // Block: 47
1/ B B i o o o L L e

void GA_Alloc::Setup_GA_Alloc(long seed_val)
{

float pr_between;
/"
/ Com 23 Define A Random Starting Chromosome Population.
/! Note: Defining Random Starting Values Between 1 And Selections.
/i
int k_option;
random.seed(seed_val);
for(int i=0; i<ga_pop; i++)
{
for(int k=0; k<max_gene; k++)
{
pr_between= random.fdraw();
k_option= int(pr_between*selections);
ga_chromolil[k] = k_option;
}
}

return;
}s // Block: 48

< Page 95 of 95 >

V/j ++++ Evolutionary Strategy Opt (ES_Chromosome) ++++

1/ s B L B a2 S T
I

i/ Define an evolutionary strategy object

/

i Operators include: Mutation

1

1 +++HH+Ht

class ES_Chromosome

{
public:
Y/
/f Define Addiitonal Model Parameters:
/i
int exists;

char* obj_name;

int max_factors, es_pop;

float** mean_limits; // limits of the mean factor “i” i=1,max_factors
float* strat_limits; /f limits of the strategy “I” i=1,max_factors
float **es_mean;

float **es_strat;

float **es_mean_O;

float **es_strat_O;

float *repro_pr;

randint random;
int opt_soln;
float mutation_pr, Xover_pr;
1
/i Define addiitonal member functions: _Fitness
1
ES_Chromosome();
void Setup_ES_Chromo(float**, float**) ;
float ES_Chromo_Fitness(float *data);
float Next_Gen_ES_Chromo();
float Mutate();
float Xover();
/
/ Overload The Input And Output Operators
1 -
friend istreamé& operator>>(istream& in,. ES_Chromosome&);
friend ostream& operator<<(ostream& out, ES_Chromosome&);
¥s // Block: 49

< Page 96 of 105 >

1/ bbb bbb bbb b
1/ NOTE: The integers in the constructor must be adjusted to reflect
/ the number of variables and arguments in the model

ES_Chromosome::ES_Chromosome()

i
1
obj_name = new char[10};
/!
/! Define default conditions
exists=FALSE;

strepy(obj_name,"None");

max_factors = 1;

es_pop = 1;
mutation_pr=0.01;
mean_limits = new float*[2];
strat_limits = new float*[2];

}s /7 Block: 50

/ s e B o B

istream& operator>>(istream& in, ES_Chromosome& adum)

char tmp_in[15];
adum.exists=TRUE;
in >> adum.obj_name;

in >> tmp_in;
while(stremp(tmp_in,"eoi") 1=0)
{
cout << “emmen ES_Chromosome Keyword : “ << tmp_in << “\n” << flush;

if(stremp(tmp_in,"Factors”) == 0)

in >> adum.max_factors;

adum.mean_limits[0] = new floatjfadum.max_factors];
adum.mean_limits[1] = new floatfadum.max_factors];
adum.strat_limits[0] = new float[adum.max_factors];
adum.strat_limits[1] = new floatfadum.max_factors];

else if(stremp(tmp_in,"Population") ==0)
in >> adum.es_pop;
else if(stremp(tmp_in,"Means") ==0)

{

< Page 97 of 105>

for(int i=0; i<adum.max_factors; i ++)
_in >> adum.mean_limits[O][i] >> adum.mean_limits[1][i];
}

else if(stremp(tmp_in,"Strategies") == 0)
{
for(int i=0; i<adum.max_factors; i ++)
in >> adum.strat_limits[O][i] >> adum.strat_limits[1][i];
}

else if(stremp(tmp_in,"Probability") == 0)
{

in >> tmp_in;

if(stremp(tmp_in,"Mutation") == 0)
in >> adum.mutation_pr;

else
cerr << "Error: (ES_chromo:Prob Input) unaceptable input option : *

<< tmp_in << "\n" << flush;

}

else
cerr << "Error: (ES_chromosome Input) unaceptable input option : "
<< tmp_in << "\n" << flush;
in >> tmp_in;
}: // Block: 51
return in;
¥y // Block: 52

/1 ++++ -+

ostream& operator<<(ostream& out, ES_Chromosome& A)

{
/"
| 1/ provide coding to represent the ouput desired for this object
; 1/
out << An\t---- :: ES_Chromosome Dump (bgn) : ----” << A.obj_name;
 out << “\n\t---- :: ES_Chromosome Dump (---) :: ---- Factors “
<< A.max_factors << “\n”;
out << "\t---- :: ES_Chromosome Dump (---) :: ---- Population "
<< A.es_pop << “\n”;
out << "\t---- :: ES_Chromosome Dump (---) :: ---- Means " << “\n”;
for(int i=0; i<A.max_factors; i ++)
out << "\t---- :: ES_Chromosome Dump (---) i ---- " << A.mean_limits[O][i]
<< At << A.mean_limits[1][i] << “\n”;
out << "\t---- 1 ES_Chromosome Dump (---) :: ---- Strategies " << “\n”;
for(i=0; i<A.max_factors; i ++)
out << "\t---- 1 ES_Chromosome Dump (---) :: ---- " << A.strat_limits[O][i]

<< \t* << A.strat_limits[1][i] << “\n”;

< Page 98 of 105 >

out << "\t---- :: ES_Chromosome Dump (---) :: ---- Probability Mutation "
<< A.mutation_pr << “\n”;

for(int kk=0; kk< A.es_pop; kk++)

{ :
out << "\t---- 1 ES_Chromosome Dump (---) :: ---- Population " << kk << “\n™;
for(int k2=0; k2<A.max_factors; k2++)
out << "\t---- ;1 ES_Chromosome Dump (---) 1 ----" << A.es_mean[kk][k2]
<< “\t* << A.es_strat[kk][k2] << “\n”;
}
out << “At---- :: ES_Chromosome Dump (end) :: ---- \n” << flush;
return out;

}; /7 Block: 533

I

e S B L

void ES_Chromosome::Setup_ES_Chromo(float** mi, float** sl)

{

/i
/"
i

float pr_between;
Seup An Equivalence Between The Opt Routine And The Es Arrays.

mean_limits = ml; .
mean_limits[0]= mi[0];
mean_fimits[1]= mI[1];
strat_limits = sl;
strat_limits[0] = sl[0];
strat_limits[1] = sl[1];

es_mean = new float*[es_pop];
es_strat = new float*[es_pop];
es_mean_O = new float*[es_pop];
es_strat_O = new float*[es_pop];
repro_pr = new float[es_pop+1];

define a random starting chromosome population.
Note: defining random starting values between upper
and lower limits(constraints) for both nominal and
strategies of search.

for(int i=0; i<es_pop; i++)

{

es_mean_QJ[i] = new floatjmax_factors];
es_strat_O[i] = new floatjmax_factors];

< Page 99 of 105>] ~

es_mean| i | = new floatfmax_factors];

es_strat] i] = new float[max_factors];

for(int k=0; k<max_factors; k++)
{
pr_between= random.fdraw();
pr_between= mean_limits[O][k] + pr_between*(mean_limits[1][K]
) -mean_limits[0][K]); o
es_mean[i][k] = pr_between;

pr_between= random.fdraw();
pr_between= strat_limits[O][k] + pr_between*(strat_limits[1][k]
-strat_limits[O][K]);
es_strat{i][k] = pr_between;
}
}

return;
Vs / Block: 54

/ e e B

float ES_Chromosome::ES_Chromo_Fitness(float *data)

{
/

/ need to perform whatever normalization is required for next step
/
float average=0.0;
float variance=0.0;
float min_val, max_val;
float a,b, delta,f_prime;
float scale_factor=2.0;
/!
// Com 24 Capture Statistics Of The Fitness Values
/
min_val=data[0];
max_val=data[0];
for(int i=0; i<es_pop; i++)
{
average += datali];
if(data[i] <= min_val)
min_val = data[i];
if(data[i] >= max_val)
max_val = datafi};
}
average = average/es_pop;
for(i=0; i<es_pop; i++)

< Page 100 of 105 >

variance += (data[i]-average)*(datalil-average) ;
variance = variance / (es_pop-1) ;

I

/f Com 25 Perform Fitness Scaling And Shifts As Defined In
/i DE Goldbergs, Genetic Algorithms pgs 76-79.

/

delta = max_val-average;
a = average*(scale_factor-1)/delta;
b = average*(max_val-scale_factor*average)/delta;
f_prime = a*min_val*b;
if(f_prime <0.0)
{
delta=average-min_val;
a=average/delta;
b=-average*min_val/delta;

}
1/
// Scale Results Of Fitness Evaluations
/l
float sum_{fit=0;
for(int j=0; j<es_pop; j++)
{
data[j] = a*data[j] + b; -
sum_fit += datalj];

}
repro_pr[0] = 0.0;
for(j=0; j<es_pop; j++)

{
data[j] = data[j]/ sum_fit ;
repro_pr[j+1] = repro_pt{jl+data[j];
}
/.
I Find The Optimal Solution
1/ —
max_val=data[0];
opt_soln=0;,
for(i=0; i<es_pop; i++)
{
if(data[i] >= max_val)
{
max_val=data]i];
opt_soln=i;
}
h
return(max_val);
}s // Block: 55

< Page 101 of 105 >

V/j o B L B e

float ES_Chromosome::Next_Gen_ES_Chromo()

{
float pr_val=0.0;
/"
i/ Randomly Select A Member Of The Old Pop. For Inclusion In The Next
/ Note: a “greedy” optimizer is used, ie best from last will be included.
i

for(int i=0; i<es_pop; i++)
for(int j=0; j<max_factors; j++)

es_mean_O[i][jl=es_mean[i]j];
es_strat_O[i][jl=es_strat[i][j];

}
I/
/i Begin The Selection Process
/"
for(int j=0; j<max_factors; j++)
{

es_mean[0][j]=es_mean_Of opt_soin][j];
es_strat{ 0][j] = es_strat_O[opt_soin][j ;
}

for(int jj=1; jj<es_p6p; ji++)

pr_val= random.fdraw();
for(int k=0; k<es_pop; k++)
if(pr_val >= repro_pr{k] && pr_val < repro_prk+1])
for(j=1; j<max_factors; j++)

es_mean[jj][j]=es_mean_O[k][jI;
es_strat[jjl[j]=es_strat_ O[k][j];

}
}

/"
I/ Next Perform The Mutation Operations Required Of An Es Optimizer
/"

Mutate();
/4
/" Next Perform The Cross-over Operations Required Of An Es Optimizer
1

Xover();

< Page 102 of 105 >

return(pr_val);
}y // Block: 56
I s T L e R

float ES_Chromosome::Mutate()

{

float pr_val=0.0;
float Ai, alpha=1.3;
int mut_loc, int_loc;

1/

1/ Note alpha set to 1.3 is reccommended by Rechenberg. is used in
/ setting thestrategy parameter in ES mutation.

"

// Com 26 First Perform A Mutation On The Mean Values In The Chromosome
/H
for(int i=1; i<es_pop; i++)
{
pr_val= random.fdraw();
if(pr_val <= mutation_pr)
{
int_loc= int(random.fdraw() *max_factors);
if(int_loc<0)
int_loc=0;
if(int_loc>=max_factors)
int_loc=max_factors;

es_mean[i][int_loc] = es_mean[i][int_loc J+random.gauss()*
es_strat[i][int_loc];
if(es_mean[i][int_loc] < mean_limits[O][int_loc])
es_mean[i][int_loc] = mean_limits[0][int_loc];
if(es_mean[i][int_loc] > mean_limits[1][int_loc])
es_mean[i][int_loc] = mean_limits[1][int_loc];

}

}
1
// Com 27 Next Perfrom Mutation On Strategy Parameter; Use Same Pr Of
1/ Mutation In Parallel With Mean Mutation
/

for(i=1; ixes_pop; i++)

{

pr_val= random.fdraw();

if(pr_val <= mutation_pr)

{
int_loc= int(random.fdraw() *max_factors);
if(int_loc<0)

< Page 103 of 105 >

int_loc=0;
if(int_loc>=max_factors)
int_foc=max_factors;

pr_val= random.fdraw();
if(pr_val < 0.5)
Ai = alpha;
else
Ai = 1.0/alpha;
es_strat[i][int_loc] = es_strat[i][int_loc J*Ai;
}
}

return(pr_val);
}s [Block: 57
I ++++++HHH

float ES_Chromosome::Xover()

{
float pr_val=0.0 ;
int pr_pop1, pr_pop2 ;
float tmp ;
/i
/! Can only cross over similar locations between populations. The
/ probability is that each location represents a different independant
1/ variable thus can not be dislocated.
/! -
for(int i=0; i<max_factors; i++)
{
for(int k=1; k<es_pop; k++)
{
pr_val= random.fdraw();
if(pr_val <= Xover_pr/2.0)
{
pr_pop1 = 1+ int(random.fdraw() *(es_pop-1));
if(pr_pop1<1)
pr_popi=1;
if(pr_pop1>=es_pop)
pr_pop1=es_pop;

pr_pop2 = 1+ int(random.fdraw() *(es_pop-1));
if(pr_pop2<1)

pr_pop2=1,
if(pr_pop2>=es_pop)

pr_pop2=es_pop;

< Page 104 of 105 >

tmp = es_mean[pr_pop1 1[i];
es_mean|[pr_pop1]J[i]=es_mean[pr_pop2][i };
es_mean[pr_pop2 J[il=tmp ;
}
}
for(k=1; k<es_pop; k++)
{
pr_val= random.fdraw();
if(pr_val <= Xover_pr/2.0)
R
pr_pop1 = int(random.fdraw() *es_pop);
if(pr_pop1<0)
pr_pop1=0;
if(pr_pop1>=es_pop)
pr_pop1=es_pop;

pr_pop2 = int(random.fdraw() *es_pop);
if(pr_pop2<0)

pr_pop2=0;
if(pr_pop2>=es_pop)

pr_pop2=es_pop;

tmp = es_strat] pr_pop1 J[i];
es_strat] pr_pop1][i]=es_strat[pr_pop2][i];
es_strat[pr_pop2 J[i]=tmp;
}
}
}

return(pr_val);
}; // Block: 58

< Page 105 of 105 >

/7

[S
-4 4

I
T
lllllllllllll I S I T O T N 3
T

// II::::::::I:1TIIIII IlIllIllIlllllTTlTT

//Com28 Controlling Object For The Allocatlon Function Of Strategic Weapon
" Systems Against Scenario Specific targetss

/i

/ Note: must be able to handle multiple scenarios

" T B B B e LR R et i o

I Ft

class Allocation

{
public:
1/
i Define addiitonal model parameters:
I/
int exists;
char* obj_name;

long RN_seed;
int DEBUG, fit_func;
float fuzzy_level;

int max_targets ;

int base_line_WH, new_WH, total_WH ;
int total_inventory, no_option;

int Restart_iter, ga_iter, ga_pop;

float pd_objective, F1_form_factor, beta[5};
float mutation_pr, xchange_pr;

WEAPON_ *sys;
Mission_ startX;
GA_Alloc soln;
int **opt_index;

Allocation(); // Constructor
I
1/ overload the input and output operators
/

friend istream& operator>>(istream& in, Allocation&);
friend ostream& operator<<(ostream& out, Allocation&);

1/
/ Define addiitonal member functions:
/
float Allocation_Opt(); // Opt. The Allocation Of Weapons To Targets

float Allo_Fitness(int*, int*, float*);// Controller For Total Fitness Assessment

< Page 106 of 121 >

float Fithess_PD(int, float*, float, int);// Goal Pd Fitness Function

float Fitness_Stk_Lmt(int);
float Fitness_Time(int);
float Fitness_Wt(int);

float Fitness_Yield(float);
void Genetic_Setup();

void IC_Alloc();

void Perf_Results(int);
float Pssk(int, float, float);

float Obj_Pk(int, float, float);

1

/! Stockpile Limit Fitness Function
// Time Urgency Fitness Function
// Target Weighting Fitness Function
// Minimum Yield Fitness Function

// Determine the probability of “single shot” kill

i Define a dump and restart capability

/

void Gen_Dump(ostream&);
void Gen_Restart(istream&);
}: // Block: 59

Allocation::Allocation()

{
obj_name = new char{10];
i

/i Define default conditions

/i

exists=FALSE;

strepy(obj_name,"None");
RN_seed=1111111111;
DEBUG=FALSE;
fit_func=1;
fuzzy_level=1.25;

Restart_iter=0;
ga_iter=75;
ga_pop=75;

max_targets=1;
base_line_WH=1;
new_WH=0 ;

total_WH= base_line_WH+new_WH ;

no_option=0;

pd_objective=0.75;
F1_form_factor=0.025;
mutation_pr=0.05;
xchange_pr=0.45;

1/

< Page 107 of 121 >

// Com 29 Beta Is The Decision Model Weighting Coeficients.
/"
for(int i=0; i<5; i++)
beta[i]=1.0;
s /7 Block: 60
/ e a2 B o o a2 L T

istream& operator>>(istream& in, Allocation& adum)

{
char tmp_in[15];
char tmp_file[15];
adum.exists=TRUE;
int tmp;
in >> adum.obj_name;
in >> tmp_in;
while(stremp(tmp_in,"eoi") 1=0)
{
if(stremp(tmp_in,"Restart") ==0)
{
in >> tmp_file ;
ifstream Restart_file(tmp_file) ;
Restart_file >> adum.Restart_iter >> adum.RN_seed;
adum.Gen_Restart(Restart_file) ;

else if(stremp(tmp_in,"Targets") == 0)
{
in >> adum.startX;
adum.max_targets = adum.startX.max_targets ;

}
else if(stremp(tmp_in,"Weapons")==0)
{
i
/! First load baselines and other allocation parameters
/! Next load the CEP values and associated stockpile assignments
1/

in >> adum.base_line_WH >> adum.new_WH,;
adum.total_WH = adum.base_line_WH + adum.new_WH,;
adum.sys= new WEAPON_[adum.total WH+1 I;
for(int k=1; k<= adum.total WH; k++)
in >> adum.sys[k];
}
else if(stremp(tmp_in,"Population") ==0)
in >> adum.ga_pop;
else if(strcmp(tmp_in,"Convergence") ==0)
in >> adum.ga_iter;

< Page 108 of 121 >

else if(stremp(tmp_in,"Mutation") ==0)
in >> adum.mutation_pr;
else if(stremp(tmp_in,"Xchange") ==0)
in >> adum.xchange_pr;
else if(stremp(tmp_in,"Debug") == 0)
{
_in >> adum.fit_func;
adum.DEBUG = TRUE ;

}
else if(stremp(tmp_in,"ObjectivePD") ==0)

/"
1/ Objective Mission Performance
/
in >> adum.pd_objective;
else if(stremp(tmp_in,"PD_fitness") ==0)
/i
1/ Factor Defining The Degree Of Acceptance Of The Objective Pd
1/
in >> adum.F1_form_factor;
else
{

cerr << "Error: (Allocation Input) unaceptable input option : " << tmp_in
<< "\n" << flush;
}: // Block: 61
in >> tmp_in;
}s // Block: 62
1/
/4 Need To Initialize The Genetic Chromosome
1 '
adum.Genetic_Setup();
return in;
}s // Block: 63
/! a2 o S

ostream& operator<<(ostreamé& out, Allocation& A)

i
/ provide coding to represent the ouput desired for this object
1 _

out << “\n\n” << A.obj_name << “\n”;

out << "Obijective Pd " << A.pd_objective << “\n”;
out << "Targets " << A.max_targets << “\n”;

out << "Weapons " << A.total_WH << “\n”;

for(int k=1; k<= A.total_ WH; k++)

< Page 109 of 121 >

out << A.sys[Kk] << “<< “\n”;
out << "Population " << A.ga_pop << “\n”;
out << "Convergence " << A.ga_iter << “\n”;
out << "Mutation Pr " << A.mutation_pr << \n”;
out << "Xover Pr " << A.xchange_pr << “\n”;

return out;
}s // Block: 64
/! +++++++++++H A

float Allocation::Allocation_Opi()

{
float *fit;
float *raw_fit;
fit = new float[ga_pop J;
raw_{fit = new float[ga_pop I;
float debug_fitness;
ofstream debug_out("ZALLO_debug.dat",ios::app);

if(DEBUG)
debug_out << “\n” <<
“++++++++++ Allocation Fitness Debug ++++++++++++++++++++++ \n7;

IC_Alloc();

float **suitability; ,

suitability = new float*[ga_pop] ;

for(int su=0; su<ga_pop; su++)
suitability[su] = new float[max_targets | ;

for(int iter=Restart_iter; iter<ga_iter; iter++)

{
/
// Com 30 Setup And Calculate The Fitness For Each Member Of The
/ Chromosome Population '
/i

for(int k=0; k<soln.ga_pop; k++)

fitf k] = Allo_Fitness(soln.ga_chromo[k], opt_index[k], suitability[k]);

i
I/ Dump Info For Restart Or Debug
1/

ofstream dump_out("ZALLO_dump.dat");
RN_seed = soln.random.get_seed();
dump_out << iter << ““ << RN_seed << “\n”;
Gen_Dump(dump_out);

if DEBUG)

< Page 110 of 121 >

B

{

debug_out << “Fitness Results, all Chromosomes: (iter “<<iter<<“)\n”;
for(int ka=0; ka<soin.ga_pop; ka++) :
debug_out<<fitf ka] << “ %

}
i
//Com31 Transfer Fitness To GA Algorithms
I
soln.GA_Alloc_Fitness(fit);
/i
/ Setup For A Debug Calculation And Output
i/ v
if(DEBUG)
{
debug_fithess= Allo_Fitness (soln.ga_chromo[soln.opt_soln],
opt_index[soln.opt_soln], suitability[soln.opt_soIn]);
debug_out << “lter : “<<iter<<” Fitness = “<<debug_fitness
<<* (func no. “<<fit_func<<“) \nAllocation Vector \n” ;
for(int kb=0; kb<max_targets; kb++)
debug_out << soln.ga_chromo[soin.opt_soln][kb] << ““
<< opt_index[soin.opt_soln]lkb] << “
debug_out << ‘4n”;
}
1/
// Com 32 Create The Next Generation
7
soln.Next_Gen_GA_Alloc(suitability, fuzzy_level);
}
if(DEBUG)
debug_out << “\n” <<
“++++++++++ Allocation Fitness Debug End ++++++++++++++++++++++ \n7;
/
/! Output The Results Of The Allocation
I
int k_soln=0;

Perf_Results(k_soln);

return(fit[soin.opt_soln]) ;
1 // Block: 65
i e mas i L

float Allocation::Allo_Fitness(int *ga_soln, int *cep_index,
float *suit)

/i

< Page 111 of 121 > ~

Vi This routine provides the decision model, currently trivial, for

i assessing the various goals and objectives of an allocation
I algorithm.
/

int jj, sys_index, sys_inv;

float yld;

float *cep; o
/
/ Determin the total allocation of weapons for a chromosome
1/

for(int k=0; k<= total_WH; k++)
sys| k].allocated =0;

/
// Com 33 Note: ga_soln Provides The Mapping Between Targets And Options
1/ assign Provides The Mapping Between Options And Inventories
/
for(k=0; k< max_targets; k++)
{
ji=ga_soin[k];
sys] jj].allocated +=1;
}
/i
1/ Assess Fitness For Each Decision Vriable, ie. F1-F5
/ Assume equal importance for this version: 11/20/97
1/
int indx, i2 ;

float total_fitness;
for(k=0; k<max_targets; k++)

{

sys_index = ga_soln[K];

/
1/ Note: Fitness Deined As Weighted Sum Of Obj Function;
/ Product For All Targets PI((1+sum(fi));)
/
total_fitness=0.0;
if(sys_index != no_option)
{
cep= sys| sys_index].ceps ;
yld= sys[sys_index l.yield ;
i2= sys[sys_index].total_fz_opt ;
indx = Fitness_PD(k, cep,yld, i2);
cep_index[k] = indx; ‘
total_fitness += beta[0]*Obj_Pk(k, cep[indx],yid) ;
total_fitness += beta[1]*Fitness_Yield(yid);
1/ total_fitness += beta[2]*Fitness_Stk_Lmt(k);
1/ total_fitness += beta[3]*Fitness_Wt(k);

< Page 112 of 121 >

1/ total_fitness += beta[4]*Fitness_Time(k);

}
suitfk]=total_fitness ;
}
. /i
/ Fitness For The Alocation Is The Percent Of Acceptable
R i Individual Targetings
i

total_fithess=0.0;
for(k=0; k<max_targets; k++)
if(suit[k] >= fuzzy_level)
total_fitness +=1.0;
total_fitness /= float(max_targets);

return(total_fitness);
}; / Block: 66
1/ s T e T L o 0 T T

float Allocation::Fitness_PD(int targ_indx, float *cep, float yid,
int fz_opts)

{
i -
1/ This routine provides the fitness based on goal or mission targets
1/ damage expectancy. Too little or too much is not a good solution.
/
float Pk, F1 ;
int indx=0;
float max_pk=0.0;
for(int k=0; k< fz_opts; k++)
{
- Pk = Pssk(targ_indx, cep[kK], yid);
F1 = exp(-(Pk-pd_objective)*(Pk-pd_objective)/F1_form_factor);
if(F1 > max_pk)
{
max_pk=F1;
indx=k;
}
|3
return(indx);
s/ Block: 67
/! B I I 1 2 o B B T B I i 2 2 o

float Allocation::Fitnéss_Stk_Lmt(intinv_num))

<Page 113 of 121 >

This routine is a fitness representations for stockpile constraints;
not a good idea to allocate weapons you do not have.

float F3=1;
int num_avail, num_alloc ;
num_avail= sys[inv_num l.inventory;
num_alloc= sys[inv_num l.allocated;
F3 = 1.0/(1.0+exp(num_alloc-num_avail));
return(F3);
}s // Block: 68
/i e e B B o

float Allocation::Fitness_Time(int targ_indx)

{
/"
1 This routine captures fitness for a time urgency metric; ie.
/i reconstitution targets, time urgent targets, and those of uniform
1/ importance as functions of time.
i/
float F5=1.0;

return(F5);
}s /1 Block: 69
i I B B B B s

float Allocation::Fitness_Wt(int targ_indx)

{
/"
/! This routine is the fithess correlation based on target
/ importance factors.
I/
float F4=1;

F4 = startX.targs[targ_indx].Wt ;
return(F4);
}s /f Block: 70

I L e o 2o 2 B o o
float Allocation::Fitness_Yield(float yid)
{
/!
/ This routine provides a rule to minimize yield applied to a target.
1/ Note: This Routine Is Valid If The Yield Options
/ Are Not Less Than 100

< Page 114 of 121 > ~

/"
float min_yield=100.0 ;
float F2=1;
F2 = pow((min_yield/yld),0.3333);
return(F2);
}s // Bleck: 71
/" e s T o B B o s S B T S

void Allocation::Genetic_Setup()

{
/! }
// Com 34 Pass Parameters Read Into The Allocation Class To Initialize
/ The Genetic algorithms.
/

soln.selections = total_WH ;
soln.max_gene = max_targets;
soln.ga_pop = ga_pop;

opt_index=new int*[ga_pop];
for(int i=0; i<ga_pop; i++)
opt_index{i}= new int[max_targets |;

soln.mutation_pr = mutation_pr;

soln.xchange_pr = xchange_pr;
i :
// Com 35 Initialize Space For Chromosomes In The Ga
/ B

soln.Init_GA_Alloc();
1/
1/ Identify Total Warhead Inventories
1/

int total_stockpile=0 ;

soln.random.seed(RN_seed);

for(int k=1; k<=total_WH; k++)

total_stockpile += sys[k].inventory ;
total_inventory= total_stockpile;

return ;

¥ // Block: 72
/ ++++t+HH bbb

void Allocation::IC_Alloc()

1/

< Page 115 0of 121 >

/ This Routine Provides GA Setups For The Allocation Problem.
/ Normal GA Setup Is Handled By The Genetic Setup
/i Routine: Init_GA_Alloc().
1/
int k_option;

float pr_alloc, pr_tmp;
pr_alloc = float(total_inventory/max_targets) ;
if(pr_alloc >=1.0)

pr_alloc=1.0;

float *tmp_hist;
tmp_hist= new float[total_inventory |;
for(int i=0; i<soln.ga_pop; i++)
{
i

i Create An Experimental Distribution For Defining Initial Allocations

//
int indx=0;
for(int m=1; m<=total_WH; m++)
for(int n=0; n<sys[m l.inventory; n++)
{
tmp_hist[indx]=m; —
indx ++;
}
soln.random.Setup_exp_dist(tmp_hist, total_inventory);
i ,
// Set The Initial Allocations
1/ .
for(int k=0; k<soln.max_gene; k++)
{
pr_tmp= soln.random.fdraw();
if(pr_tmp <= pr_alloc)
{ u
“k_option= int(soln.random.exp_dist()) ;
soln.ga_chromoli][k] = k_option;

!
else
soln.ga_chromoli][k] = no_option;
}
} _
return ;
+ // Block: 73
Y/ B A e e

< Page 116 of 121 >

void Allocation::Perf_Results(int soln_index)

{

1/
i
/!

1/
/
/

ofstream Monitor_out("Zresults.dat" ios::app);
int sys_index, indx1, avn, ak ;

char att;

float Pk, yid, tmp_fl ;

float cep ;

Monitor_out.precision(6);

float *tmp_suit ;

tmp_suit= new float[max_targets] ;

Create A Database Of Mission Performance And Allocation

tmp_fl = Allo_Fitness(soln.ga_chromo[soln_index],
opt_index[soln_index], tmp_suit);

Monitor_out << “\nPerformance results: \n”
<<® zwvn outn ook nindex:: nyield o icep o Pk:i\n’
for(int k=0; k<max_targets; k++)

{

sys_index = soln.ga_chromo[soln_index][k];

avn= startX.targs[k].vn;

att= startX.targs| k).tc;

ak= startX.targs[k].k;

if(sys_index > 0)

indx1 = opt_index{ soln_index JKk];

cep= sys[sys_index].ceps| indx1];

yld= sys[sys_index].yield;

Pk =Pssk(k, cep, yid);

}
else

{

Pk=0.0;

cep=1e10;

}
Monitor_out << avn << “\t “ << att << “\t “ << ak << “\t “ << sys_index
<<“Mt“<<yld << “\t* << cep << “\t “ << Pk << “\n";

}

Create A Series Of Allocaation Databases
for(int ka=1; ka<=total_WH; ka++)
{

Monitor_out << “\nTarget Allocations : (inv no. “ << ka << “)\n”;

< Page 117 of 121 >

for(int kb=0; kb<max_targets; kb++)
{
sys_index = soln.ga_chromo[soln_index][kb};
indx1 = opt_index[soln_index]J[kb];
if(sys_index == ka)
{
cep= sys| sys_index].ceps[indx1];
yld= sys[sys_index].yield,;
avn= startX.targs| kb].vn;
ak= startX.targs[kb 1.k;
Monitor_out << avn << “\t “ << ak << “\t “ << sys_index << “\t “ << yld
<< “\t“ << cep << “\n”;
}
}

}
/
1/ Print Out Allocated Inventories
/1
Monitor_out << ““nWeapon System Inventories \n”;
for(k=0; k<= total_WH; k++)
Monitor_out << k << “\t “ << sys[k J.inventory << “\t “ << sys][k].allocated
<< “\n”;
return ;
}s /N Block: 74 ,
/ e B e L B e S S I o o o

float Allocation::Pssk(int targ_indx, float cep, float yld)

{
float Pk =1.0;

float a;

int avn,at,ak;

char atc;
1 :
1/ Define The Weapon Radius For The Target
/i

avn= startX.targs| targ_indx].vn;

atc = startX.targs[targ_indx].tc;

ak = startX.targs[targ_indx].k;

startX.Vul_Setup(avn,atc,ak, yid) ;
I
1/ Use A Simple WR/Cep Correlation For Kill Probability
/

a = (startX.wrO/cep)*(startX.wr0/cep);

Pk =1.0 - pow(0.5,a);

< Page 118 of 121 >

return(Pk);
}s //_Block: 75
/7 B B L a0 L o e

float Allocation::Obj_Pk(int targ_indx, float cep, float yid)

{
float Pk =1.0 ;

float a, F1;

int avn,at,ak;

char atc;
"
/ Define The Weapon Radius For The Target
/

avn= startX.targs[targ_indx].vn;

atc = startX.targs] targ_indx].tc;

ak = startX.targs[targ_indx].k;

startX.Vul_Setup(avn,atc,ak, yid) ;
i
/ Use A Simple WR/Cep Correlation For Kill Probability
i

a = (startX.wrQ/cep)*(startX.wrQ/cep);

Pk=1.0-pow(0.5,a);

F1 = exp(-(Pk-pd_objective)*(Pk-pd_objective)/F1_form_factor);
return(F1);
}s // Block: 76
/" a2 o o e

void Allocation::Gen_Dump(ostream& out)

/
/l Dump All Information Related To Allocation To A File For Restart
I
int k;
out << exists << “\n”;
out << DEBUG << “ “ << fit_func << “\n”;
out << max_targets << “\n” ;
out << base_line_WH << “ “ << new_WH << ““ << total_WH << “\n” ;
out << ga_iter << ““ << ga_pop << “\n”;
out << pd_objective << “ “ << F1_form_factor << “ “ << beta[0] <<
<< beta[1] << “ “ << beta[2] << “ “ << beta[3] << “ “ << beta[4] << “\n” ;
out << mutation_pr << “ “ << xchange_pr <<“\n” ;
for (k=0; k<= total_WH; k++)

[{4

< Page 119 of 121 >

out << sys[k] << “\n”;
out <<“\n”;
out << startX.max_targets << “\n” ;
for(k=0; k<startX.max_targets; k++)
out << startX.targs[k];
out << “\n” ;
out << soln.selections <<

({1} 6« % &

<< soln.ga_pop <<
<< soln.opt_soln << “\n“;

<< soln.max_gene <<
<< soln.mutation_pr << ““ << soln.xchange_pr <<
for(k=0; k<soln.ga_pop; k++)
{
for(int kk=0; kk<soln.max_gene;kk++)
out << soln.ga_chromo[k][kk] << “ “<< opt_index[k][kk] << “ “;
out << “\n”;
}
out << “\n”;
return;
}s / Block: 77
1/ a2 B o B o g2 o o

% & Il {

void Allocation::Gen_Restart(istream& in)

/
i Read All Information Related To Allocation To A File For Restart
i
in >> exists ;
in >> DEBUG >> fit_func ;
in >> max_targets ;
in >> base_line_WH >> new_WH >> total_WH ;
sys= new WEAPON_] total_WH+1];
for(int k=0; k<= total_WH; k++)
in >> sys[k] ;
in >> ga_iter >> ga_pop ;
in >> pd_objective >> F1_form_factor >> beta[0] >> beta[1] >> beta[2] >>
beta[3] >> beta[4] ;
in >> mutation_pr >> xchange_pr ;
in >> startX.max_targets;
startX.targs= new TARGET_|[startX.max_targets] ;
for(k=0; k<startX.max_targets; k++)
startX.targs[k].Reset_Targ(in) ;
in >> soln.selections >> soln.max_gene >> soln.ga_pop >> soln.mutation_pr .
>> soln.xchange_pr >> soln.opt_soln ;
soln.Init_GA_Alloc(); .
for(k=0; k<soln.ga_pop; k++) ,‘
for(int kk=0; kk<soln.max_gene;kk++)
in >> soln.ga_chromo[k]{kk] >> opt_index[k][kk] ;

< Page 120 of 121 >

}

return;
; // Block: 78

< Page 121 of 121 >

+++++ Mission Definition (Mission_) +++++

e e L B o e ot 0 T o o
This class define target characteristics and vulnerabilities

I e e e a2 B S
T e e e S L o o

class Mission_

{

public:
/i
/ Define addiitonal model parameters:
/"

int exists;

char* obj_name;

int DUMP ;

struct TARGET_ {
float lat, lon, r95, elevation, targ_depth ;
int catcode, vn, k, lethality, mission, function ;
int gvn1, dsig1, gslop1, gvn2, dsig2, gslop2 ;
char tc, tg1,tg2;
char vntk[6], gvn[6];
float Wt, Tm_obj, HOB_obj;
TARGET_()
{ lat=0.0; lon=0.0; r95=0.001; elevation=0.0; targ_depth=0.0;
Wi=1.0; Tm_obj=30.0; lethality=0; mission=0; function=0; }
friend istream& operator>>(istreamé& in, TARGET_& t)

{
char tmp[6]; '
in >>t.catcode >> t.lat >> t.lon >> t.r95 >> t.elevation >> t.targ_depth ;
/" in >>t.lethality >>t.mission >>t.function ;
in >>t.vntk;
t.te=t.vntk[2];
if(tic="G")
{
tmp[0]=t.vntk{O];
tmp[1]=t.vntk[1];
tmp[2]="\0";
t.gvn1 = atof(tmp);
tmp[0]=t.vntk[3];
tmp[1]="\0’;
t.dsig1 = atof(tmp);

< Page 122 of 140 >

t.tg1=t.vntk[4];

in >>t.gvn;
tmp[O]=t.gvn[0];
tmp[1]=t.gvn[1];
tmp[2]="\0’;

t.gvn2 = atof(tmp);
tmp[0O]=t.gvn[3];
tmp{1}="\0’;

t.dsig2 = atof(tmp);
t.tg2=t.gvn[4];

}

else
{
tmp[O]=t.vntk[O];
tmp[1]=t.vnik[1];
tmp[2]= "\0’;
t.vn = atof(tmp);
tmp[O]=t.vntk[3];
tmp[1]=\0%;
t.k = atof(tmp);

return in;

}
friend ostream& operator<<(ostream& out, TARGET_& t)

{ N
out << t.catcode << " " << tlat<<" " << tlon << " " << 1.r95 <<
<< t.elevation << " " << t.targ_depth << " " << tWt << " " << 1. Tm_obj
<< "" << t.HOB_obj << "" << t.lethality << " " << t.mission << " "
<< t.function << " " ;
if(tic =="G’)

out << t.gvn1 << t.tc << t.dsigl <<tigl << " "<<t.gvn2 << t.tc

<< tdsig2 <<tig2<<"";

else

out <<tvn<<tic<<tk<<"";

/ out << "\n";

return out;

}
j
struct LP_
float lat;
float lon;
LP_()
{ lat= 0.0; lon=0.0; }
friend istream& operator>>(istream& in, LP_& t)

{

in >> t.lat >> t.lon;

< Page 123 of 140 > ~

return in;

}

friend ostream& operator<<(ostream& out, LP_& 1)
{
out << "Launch Pt(lat: "<< t.lat<< " long: "<< t.lon<< ") " << "\n*;
return out;
) -
|
int max_targets;
TARGET_* targs;
int catcodes ;
int **trans_tbl;
int max_lps;
LP_* Ips;
int pts_curve;
int DC_req;
float overpressure, dynamicpressure, g_shock, wrGQ;
float* rr;
float* hh;
/
/] Define addiitonal member functions:
/
Mission_(); // constructor
int Adj_vn(int, int, float);
float Brode_84(float, float);
float Brode_DP(float, float);
void CatCode_Trans();
float CR_calc(int, int, float);
float DP_calc(int, int, float);
void Dump_Mission_(ostream& out);
float Gr_coupling(float, float);
float OP_calc(int, int, float);
void OP_contour(float);
float Relative_dist(int, int);
void Vul_Setup(int, float);
float WR_cr(float, float, float);
float WR_dp(float, float, float);
float WR_gvn(int, float, float);
float WR_op(float, float, float);
/ ‘
1/ overload the input and output operators
1/
friend istreamé& operator>>(istream& in, Mission_&);
friend ostream& operator<<(ostreamé& out, Mission_&);
}s i/ Block: 79

< Page 124 of 140 >

I/ I I 1o s e a2 o o B B B T S o
i NOTE: The integers in the constructor must be adjusted to reflect
1/ the number of variables and arguments in the model

Mission_::Mission_()

{
obj_name = new char{10];
Vi
/I Define default conditions

"
exists=FALSE;
strepy(obj_name,"None");
DUMP=FALSE;
max_targets=1;
pts_curve=50;
DC_req=FALSE;

char tmp2[4];
}s // Block: 80

1 ++ -+

istream& operator>>(istream& in, Mission_& t)

{
char tmp_in[15];
t.exists=TRUE;

in >> tmp_in;
while(stremp(tmp_in,"eoi") 1=0)
{
/
I/ Output The Mission_ Keywords As They Are Loaded
1 ‘
cout << “----- Mission_ Keyword : " << tmp_in << "\n" << flush;

if(stremp(tmp_in,"Targets") ==0)

in >> t.max_targets;
t.targs = new TARGET_[t.max_targets];
for(int k=0; k< t.max_targets; k++)

{ _

in >> t.targslk];

}

else if(stremp(tmp_in,"Launch_Pts") ==0)

< Page 125 of 140 >

in >> t.max_Ips;

t.lps = new LP_[t.max_Ips];

for(int kk=0; kk< t.max_lps; kk++)
in >> t.Ips[kk];

} .
else if(stremp(tmp_in,"Dump") ==0)
t.DUMP=TRUE ;
else if(strcemp(tmp_in,"Translation”) == 0) -
{
in >> tmp_in;

ifstream tbl_in(tmp_in);
tbl_in >> t.catcodes ;
t.trans_tbl = new int*[t.catcodes];
for(int tb=0; tb< t.catcodes; th++)
{
t.trans_tbl tb] = new int[4];
for(int th2=0; th2 < 4; th2++)
tbl_in >> t.trans_tbi[tb][tb2];

}
}
else if(stremp(tmp_in,"Contour_pts") ==0)
{
in >> t.pts_curve;
t.rr = new float] t.pts_curve J;
t.hh = new float] t.pts_curve |;

}

else

{

cerr << "Error: (Mission_ Input) unaceptable input option : * << tmp_in
<< "\n" << flush;
}s /7 Block: 81

in >> tmp_in;

13 // Block: 82
I
i Provide Mapping From Catcodes To Fuzzy Variables
/"

t.CatCode_Trans();

cout << "----- Mission_ :: Input Complete\n" << flush;

return in;

}s /1 Block: 83
I T A 2 e e e e A T O T I o S

ostream& operator<<(ostream& out, Mission_& t)

< Page 126 of 140 >] N

1/
f provide coding to represent the ouput desired for this object
i
out << t.obj_name;
return out;
}s 1/ Block: 84
l+++++++++++++H+HH bbbt

int Mission_::Adj_vn(int t_vn, int t_k, float yld)

float avn;

float a,b,c,d,e;
a=t_k/10-1.0;

b = pow((20.0/yld),0.3333);
¢ = 0.5"pow((t_k*b/10),2) - a;
d=sqrt(c*c-a*a);

e = c+d;

avn = 5.485%log(e)+t_vn;

return(avn);
}; // Block: 85)
[+++++++++H++

float Mission_::Brode_84(float xt, float yt)
{

float a,b,c,d,e,f;

float g,h,p,q,r;

float x,y,z;

float deltap,dp1,dp2,dp3,dp4,dp5;

deltap = 0.0;

x = xt/1000.0;

y = yt/1000.0;

r=sqrt(X*x + y*y);

if(x < 0.00005) x = 0.00005;
z=y/x;

if(fabs(z) <= 100.0)
{
a=1.22-(3.908"z*z) / (1.0+810.2*pow(2,5.0));
b=2.321+ (pow(2z18.0)/(1.0+1.1130*pow(z,18.0)))*6.195
- 0.03831*pow(z,17.0)/(1.0+0.02415*pow(z,17.0))
+0.6692 /(1.0 + 4164.0*pow(2,8.0));
c=4.153 - (1.149*pow(2,18.0)) / (1.0+1.641*pow(z,18.0))

< Page 127 of 140 >

-1.1/(1.0+2.771*pow(2,2.5));

d=-4.166 + (25.76*pow(2,1.75)) / (1.0+1.382*pow(z,18.0))
+8.257*z / (1.0+3.219*z);

e =1.0 - 0.004642"pow(2z,18.0) / (1.0+0.003886"pow(z,18.0));

f = 0.6096 + 2.879*pow(2,9.25) / (1.0 +2.359*pow(z,14.5))
-17.15*2*2/ (1.0+71.66*z*z*z);

g=1.83+5.361"2"z/(1.0+0.3139*pow(z,6.0));

h =-(64.67*pow(2,5.0) +0.2905) / (1.0+441.5*pow(z,5.0))

-1.389*z/ (1.0+49.03*pow(z,5.0)) + (8.808*pow(z,1.5))

/ (1.0+154.5*pow(2,3.5)) + (0.0014*r*r / (1.0-0.158*r +
0.0486*pow(r,1.5) + 0.00128%r*r)) * (1.0/(1.0+2.0%y));

p = 0.000629 - 2.67*y*y / (1.0+10000000.0*pow(y,4.3));

q =5.18 + 74000.0*pow(v,3.5 } / (1.0+264000.0*pow(y,4.0));

dp1 = 10.47/pow(r,a);
dp2 = b/pow(r,c);
dp3 = d*e/(1.0+*pow(r,g));
dp4 = h;
dp5 = p/pow(rq);
deltap = dp1+dp2+dp3+dp4+dp5;
}
else
{ _
a=1.22-(3.908*z*z) / (1.0+810.2"pow(2,5.0));
b=2.321 +(6.195/1.113) - (0.03831/0.02415);
c=4.153 - (1.149/1.641) - 1.1/(1.0+2.771*pow(z,2.5));
d=-4.166 + 8.257*z/ (1.0+3.219*z);
e = 1.0 - 0.004642/0.003886;
f=0.6096 - 17.15*z*z / (1.0+71.66*z*z*z);
g=1.83+5.361"z*z/ (1.0+0.3139*pow(2,6.0));
- h = -(64.67*pow(2,5.0 }+0.2905) / (1.0+441.5*pow(2,5.0))
- 1.389*z/ (1.0+49.03*pow(2,5.0)) + 8.808*pow(z,1.5) /
(1.0+154.5"pow(2,3.5)) + (0.0014"r*r/ (1.0-0.158"*r+
0.0486%pow(r,1.5)+0.00128*r*r)) * (1.0/(1.0+2.0%y));
p = 0.000629 - 2.67*y*y / (1.0+10000000.0*pow(y,4.3));
q = 5.18 + 74000.0"pow(¥,3.5) / (1.0+264000.0*pow(y,4.0));
deltap = 10.47/pow(r,a) + b/pow(r,c) + d*e/(1.0+f*pow(r,g))
+ h + p/pow(r,q);
if(deltap < 0.0) deltap = 0.0;
}

return deltap;
}; /7 Block: 86
e T L T 1 2 B B o S

< Page 128 of 140 >

o

float Mission_::Brode_DP(float xt, float yt)

{
/"
/i Define the dynamic pressure at xt,yt
/ Note: This curve is based on a correlation from Brode & Speicher.
N /i Ref. Air Blast from Nuclear Bursts-analytic approximations;
/ PSR Report 1419-1; H. Brode, S. Speicher
f

float scaled_hob, dpprs ;
float a,b,c,d, psi, xi, scaled_gr;

psi = yt + 0.09;

xi = 0.914*pow(psi,2.5) + 170.0*psi / (1+337.0*pow(psi,0.25)} ;
a=228+ 12.5% yt*yt/ (1+1.292*yt) ;

b=3.0+(0.86+2.47*yt) / (1.0+114.0*pow(yt,3.0)) ;

¢ = (0.21+2.2*yt)/(1.0+200.0*pow(yt,3.0)) ;

d = (0.008+0.24*yt) / (1.0+260.0*pow(yt,3.0)) ;

dpprs= a / (pow(xt,b) + 0.025*pow(xt,4.5)) + ¢/ (xt + d*pow(xt,4.0)) ;

return dpprs;
}s I/ Bleck: 87
e T e e L O S S e

void Mission_::CatCode_Trans()

{
int cc,cc1,cvl,evip, indx ;
for(int k=0; k< max_targets; k++)
{
cc = targs[k].catcode;
for(int tb=0; tb<catcodes-1; tb++)
{ .
if(cc >= trans_tbl[tb J[0] && cc < trans_tbl[tb+1][0])
{
cvl = cc - trans_tbl[tb J[0] ;
cvlp = trans_tbl[tb+1]J[0] - cc ;
if(cvi= cvip)
indx=tb;
: else
indx=tb+1;
break;
}

}
targslk].lethality= trans_tbi[indx][1];

< Page 129 of 140 >

targs[k].mission= trans_tbl[indx][2];
targs[k].function= trans_tbl[indx][3];
}
return ;
}s /[Block: 88
[4++++++++++H++H

float Mission_::CR_calc(int t_vn, int t_k, float yid)

{
float R=2.0 ;

float a, vn1, p1, Rn,dlta ;
/
/" Determine Ground Shock For Cratering Targets
i
a= float(t_k)/float(10);
dita=999.0;
while(dita>0.001)
{
Rn = 1.0- a+ a*pow(R,0.5)*pow((20.0/yld), 0.333);
dita=abs(Rn-R);
R= Rn;
}
vni= 5.485 * log(R) +float(t_vn);
pl1=1.1216 * pow(1.2,vn1);
return(p1) ;
}s /f Block: 89
e T B T T o T T I T

float Mission_::DP_calc(int t_vn, int t_k, float yid)

{
float R=2.0;

float a, vn1, p1, Rn,dita ;
1/
1/ Determine the Overpressure
/!
a= float(t_k)/float(10);
dita=999.0;
while(dita>0.001)
{
Rn = 1.0- a+ a*pow(R,0.3333)*pow((20.0/yid), 0.333);
dita=abs(Rn-R);
R=Rn;
}
vni=2.742 * log(R) +float(t_vn);

< Page 130 of 140 >

p1=0.02893 * pow(1.44,vn1);
return(p1);
s/ Block: 90
e e 2 B B o

void Mission_::Dump_Mission_(ostream& out)

H
1

/i
i This Routine Provides Information Related To Mission And A
/ Dump Capability To Be Used In Debug, And Potentially Restart
1/ Function.
1
out << "---- :: Mission_ Dump (bgn) :: ----" << obj_name << "\n";
out << "---- 1 Mission_ Dump (---) -—-"
<< "Storage Para : (max_targets, max_lps, pts_curve)\n";
out << "---- 11 Mission_ Dump (---) 1 ---- " << max_targets << "t" << max_Ips
<< "t" << pts_curve << "\n";
out << "---- 11 Mission_ Dump (---) o ----"
<< "Convergence Parameters : (overpressure, dynamicpressure, g_shock, wr0
Nn*;

out << "---- :: Mission_ Dump (---) i1 ---- " << overpressure << "\t"
<< dynamicpressure << "\t" << g_shock << "\t" << wr0 << "\n";

ifl DUMP)
{
out << "---- 11 Mission_ Dump (---) :: ---- Target Information : \n" ;
for(int k=0; k<max_targets; k++)
out << "---- i Mission_ Dump (---) i1 ----" << targs[k] << "\n";
}
out << "---- 1 Mission_ Dump (end) :: ----\n";
return ;

}s // Block: 91
o T A o B B A A A e i B

float Mission_::Gr_coupling(float hob, float yld)

,
1
float H_scale,HOB_coupling=1.0;

1/

1/ The Following Is The DNA Equation For A Cool Spectrum
/! (Scaled Meters/mt)

1/

H_scale= pow((yld/1000.0),0.333)*hob/ft2meters;
HOB_coupling= 1.75/pow((H_scale+1),1.3)+4.5*pow(H_scale,2.77)/

< Page 131 of 140>

pow((H_scale+1.8),3.6);

/

i The New Dna Correlation (5/92) Is For A Hot Spectrum

/ (Scaled Meters/kt)

/ .

H_scale= hob*ft2meters / pow(yid,0.33333 };
HOB_coupling= 0.75 * pow(H_scale,-0.106);

return(HOB_coupling);
}s // Block: 92
l++++++++++tttttt bbb

float Mission_::Relative_dist(inti, int j)

{
n
/! Calculate Relative Distance Between Dia’s And Targets For Use
/ In Target-dia Assignment
/i

float r_earth=3958.76;
float angle, cos_angle;
float distance;
/
i Insert Algorythm For Estimating Distance Between Targets
1/
cos_angle= sin(IpsJi].lat"deg2rad)*sin(targs[j].lat*deg2rad)*
cos((Ipsfi].lon-targsfj}.lon)*deg2rad) +
cos(Ips[i].lat*deg2rad)*cos(targs|j].lat*deg2rad);
angle= acos(fabs(cos_angle));
distance= r_earth*angle;
return(distance);
}s // Block: 93
R A e A 2 B B o o T e = 3

float Mission_::OP_calc(int t_vn, int t_k, float yid)

{
float R=2.0 ;

float a, vn1, p1, Rn,dlta ;
/i
/! Determine the Overpressure
1

a= float(t_k)/float(10);

dita=999.0;

while(dita>0.001)

{

< Page 132 of 140 >

Rn = 1.0- a+ a*pow(R,0.5)*pow((20.0/yld), 0.333);
dita=abs(Rn-R);
R=Rn;
1
vni=5.485 * log(R) + float(t_vn);
p1=1.1216 * pow(1.2,vn1);
return(p1);
}s // Block: 94
o T L B T I a2 S O T

void Mission_::OP_contour(float yid)

{
/i
1/ Define the overpressure damage contour
i Note: This curve corresponds to a Weapon Radius (WR)
/ if sigma(d) is zero WR = R50
/"
int ij;

float cube_root;

float rmin =4050.0;

float rmax = 50.0;

float eps = 0.001;

float pr{3],r_pr{3], x,z,angle,angle_rad,delta;

cube_root= pow(yld, 0.33333);
delta = 90.0 / (pts_curve-1);

for(angle=0.0,j=0; j<pts_curve; angle+=delta,j++)
{
r_pr[2] = rmin;
r_pr[1] = (rmin + rmax) / 2.0;
r_pr[0] = rmax;
pr[2] = Brode_84(rmin,0.0);
pr{0] = Brode_84(0.0,rmax);
angle_rad = angle*deg2rad;
while((pr{0]-pr{2]) > eps* (overpressure))
{

for(i=0; i<3; i++)
{
x =r_pr|i] * cos(angle_rad);
z =r_pr[i] * sin(angle_rad);
pr{i] = Brode_84(x,z);
} .

if((overpressure) > pr[1])
r_pr2] = r_pr[1];

< Page 133 of 140>

else
r_pr{0] = r_pr{1];

r_pr1}=(r_pr[0] + r_pr{2]) / 2.0;
}

rrfj] = cube_root * r_pr[1] * cos(angle_rad);
hh[j] = cube_root * r_pr[1] * sin(angle_rad);
I rrfj] = r_pr[1] * cos(angle_rad);
/ hh[j] = r_pr[1] * sin(angle_rad);
}
return;
}s // Block: 95
A+ +++++++++++++

void Mission_::Vul_Setup(int targ_indx, float yid)

{
/i
/ This Routine Sets The Sigma Values And Defines The Weapon
/i Radius For Targets Based On The VNTK System.
/i

float t_sigma[15]={ 0.1,0.3,0.4,0.5,0.2, 0.3,0.1,0.2,0.4,0.5, 0.5,0.4,0.2,0.1,0.3 };
float sigma, adj_vn ;
float HOB=0.0;
1/
/i Note: Adding 1 To Indx For Each Offset From L, Q, & V For
/ P, Q & Z Type Targets. The Vector t_sigma Contains The Sigma
1 Values For Each T Of The VNTK Classification System.
/
int avn,at,ak;
char atc;
avn= targs[targ_indx].vn;
atc = targs|[targ_indx].tc;
ak = targs[targ_indx 1.k;

int indx=0;
switch(atc)
{
case 'G’:
wr0= WR_gvn(targ_indx, yid, HOB) ; ‘
break;
case 'P’: _
indx = indx+1;
case 'O’ :
indx = indx+1;

< Page 134 of 140 >

case 'N’:
indx = indx+1;

case 'M’:
indx = indx+1;

case’l’:
sigma=t_sigma[indx];
overpressure= OP_calc(avn,ak,yld) ;
wrO= WR_op(yid, sigma, HOB) ;
break;

case 'U’:
indx = indx+1;

case 'T :
indx = indx+1;

case 'S’ :
indx = indx+1;

case 'R’:
indXx = indx+1;

case’'Q’:
indx = indx+5;
sigma= t_sigma[indx J;
dynamicpressure= DP_calc(avn,ak,yld) ;
wrO= WR_dp(yld, sigma, HOB) ;
break;

case ’Z :
indx = indx+1; -

case 'Y’ :
indx = indx+1;

case X' :
indx = indx+1;

case 'W’:
indx = indx+1;

case'’V’':
indx = indx+10;
sigma=t_sigma][indx J;
g_shock= CR_calc(avn,ak,yld) ;
wrO= WR_cr(yld, sigma, HOB) ;
break;

default:
cout << “An ERROR in vntk coding tc = “ << atc << “\n” << flush;

}

> return ;
1 // Block: 96
l+++++++++++HH

< Page 135 of 140 > -

float Mission_::WR_cr(float yld, float sig, float HOB)

{
/"
/ Define the overpressure damage contour
1/ Note: This curve corresponds to a Weapon Radius (WR)
/. if sigma(d) is zero WR = R50 B
1

float wr_appx, r50 ;
float rmin =4050.0;
float rmax = 50.0;
float eps = 0.001;
float pr[3],r_pr[3], X,z ;

r_pr[2] = rmin;
r_pr{1] = (rmin + rmax) / 2.0;
r_pr[0] = rmax;
pr[2] = Brode_84(rmin,0.0);
pr[0] = Brode_84(0.0,rmax);
while((pr[0]-pr[2]) > eps™ (g_shock))
{
for(int i=0; i<3; i++)
{
x=r_pri] ;
z=HOB ;
pr[i] = Brode_84(x,z);
}
if((g_shock) > pr[1])
r_pr2] = r_pr{1];
else
r_pr{0] = r_pr{1];

r_pr[1] = (r_pr[0] + r_pr{2]) / 2.0;
r50 = pow(yid, 0.33333) *r_pr[1];

I
f Correlation between r50 and WR
/
wr_appx= r50/(1.0 - sig*sig);
return(wr_appx);
}s // Block: 97 ‘ . .
[+ +++++++HH e

float Mission_::WR_dp(float yld, float sig, float HOB)

< Page 136 of 140 >

I

/ Define the dynamic pressure weapon radius

i Note: This curve is based on a correlation from Brode & Speicher.
/i Ref. Air Blast from Nuclear Bursts-analytic approximations;

/i PSR Report 1419-1; H. Brode, S. Speicher

/

float r50,wr_appx, scaled_hob ;

float a,b,c,d, psi, xmin, xi, xip1 ;

scaled_hob = (HOB/1000.0)/pow(yId,0.333) ;

psi = scaled_hob + 0.09;

xmin = 0.914*pow(psi,2.5) + 170.0*psi / (1+337.0*pow(psi,0.25)) ;
I/

/ Perform An lteration To Define The Ground Range For Specific
i Dynamic Pressure
I/

float rmin =150.0;
float rmax = xmin;
float eps = 0.001;
float pr[3],r_pt{3], x,z ;

r_pr[2] = rmin;

r_pr{1]=(rmin + rmax)/ 2.0;

r_pr[0] = rmax; —
pr{2] = Brode_DP(rmin,scaled_hob);

pr[0] = Brode_DP(rmax,scaled_hob);

while((pr{0]-pr[2]) > eps* (dynamicpressure))

{ -
for(int i=0; i<3; i++)
{
X =r_pti];
pt[i] = Brode_DP(x,scaled_hob) ;
}
if((dynamicpressure) > pr{1])
_r_pr2] = r_pr{1];
else

r_pr{0] = r_pr{1];

r_pr[1] = (r_pr[0] + r_pr{2]) / 2.0;
r50 = 1000.0 * r_pr{1] * pow(yld, 0.33333) ;

}
1/
/ Correlation between r50 and WR
/
wr_appx= r50/(1.0 - sig*sig);
return(wr_appx);
}s // Block: 98

< Page 137 of 140 >

B B B B B S o = S TS

float Mission_::WR_gvn(int targ_indx, float yid, float HOB)

{
i
/ Define the weapon radius for GVN type targets
/
char baseC="A’;
float slope[22]={ 0.1, 0.2, 0.25, 0.3, 0.325, 0.35, 0.375, 0.4, 0.425, 0.45, 0.475,
0.5, 0.525, 0.550, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 1.0 };

int gvn1, gslop1, gvn2, gslop2, sl_indx1, sl_indx2 ;
float sig ;
gvni=targs| targ_indx].gvn1;
gvn2= targs| targ_indx].gvn2;
sl_indx1= targs[targ_indx).tg1 - baseC ;
sl_indx2= targs[targ_indx].tg2 - baseC ;
/
/] Next Begin The Depth-to-Effect (DTE) Calculations.
/1
float dte1,dte2,dte, Yover, eff_yid ;
if(HOB >=0.5)
{
eff_yld = yld * Gr_coupling(HOB, yid) ;
}
else
eff_yld= yld;

Yover = 20.0*pow(1.07,((gvn2-gvn1)/(slope[sl_indx2]-slope[s!_indx1]))) ;
dte1 = (pow(eff_yld/20.0, slope[si_indx1]))*(4000.0/pow(1.07,gvn1)) ;
dte2 = (pow(eff_yld/20.0, slope[sl_indx2]))*(4000.0/pow(1.07,gvn2)) ;
/1 ’
/ Now Choose Based On The Effective Yield Relative To The
/ Cross Over Yield.
I
if(eff_yld <= Yover)

{

sig= float(targs| targ_indx].dsig1)/ 10.0;

dte = dte1 ;

}

else

{

sig= float(targs| targ_indx].dsig2)/ 10.0;
dte = dte2 ;

}

< Page 138 of 140> ~

/ ~
/ The Next Calculation Estimates A Vertical Weapon Readius Which

/i Is Used To Approximate The Horizontal Wr.
/]

float wr_appx, vert_wr;
vert_wr = dte / (1- sig*sig) ;

I/
/ Also if the depth to target is greter than the depth to effect we need
/i to force conditons which will yield a Pk of 0.0

/
if(abs(targs| targ_indx].targ_depth) >= vert_wr)
vert_wr = 0.0001;

I

1/ (Appears That The Assumption Is That The Damage Contour Or
i DTE Is Spherical And A root(2) Approximation Is Used.)

/)

wr_appx = 1.414213562 * vert_wr ;
return(wr_appx);
¥y // Block: 99
[[+++++H++Ht

float Mission_::WR_op(float yld, float sig, float HOB)

{
/N
/ Define the overpressure damage contour
i Note: This curve corresponds to a Weapon Radius (WR)
Vi if sigma(d) is zero WR = R50 B

1
float wr_appx, r50 ;
float rmin =4050.0;
float rmax = 50.0;
float eps = 0.001;
float pr{3],r_pr3}, x,z ;

r_pr[2] = rmin;

r_pr{1] = (rmin + rmax) / 2.0;

r_pr[0] = rmax;

pr[2] = Brode_84(rmin,0.0);

pr[0] = Brode_84(0.0,rmax);

while((pr[0]-pr[2]) > eps™ (overpressure))

{

for(int i=0; i<3; i++)
{
x=r_pri];
z=HOB ;.

< Page 139 of 140 >

pr{i] = Brode_84(x,z);

if((overpressure) > pr[1])

r_pr[2] = r_pr{1];
else

r_pr[0] = r_pr[1];

r_pr[1] = (r_pr{0] + r_pr[2]) / 2.0;
r50 = pow(yid, 0.33333) * r_pr[1] ;

/4
i Correlation between r50 and WR
/
wr_appx= r50/(1.0 - sig”sig);
return(wr_appx);
}s I/ Block: 100

< Page 140 of 140 >

/1 +++++ Random Number operations (randint) +++++

#include <limits.h>

class randint

{
/
/! Object for generating random numbers
/ gauss is used to draw from a normal distribution
1/
long randx;
void getx()

{ randx = randx * 1103515245 + 12345; }
public:

int e_siz;
int **e_dist;

randint(long s = 1000)

{
randx = s;
e_siz=0;
/ e_dist= new int*[2];
/ e_dist[0l=newint[s];
/i e_dist[1]=new ini[s];
}

void seed(long s)
{randx=s;}

long get_seed()
{ return randx ; }

int draw()

I {
getx();
return randx & LONG_MAX;

}

< Page 141 of 144 >

i
"
i/

float fdraw()

{
getx();
return (randx & LONG_MAX) / (float) LONG_MAX;

}
int exp_dist()

{

int valu=0.0 ;

int indx2;

indx2= int(fdraw()*e_siz) ;
valu=e_dist[1][indx2];

Draw Without Replacement

for(int k=indx2; k<e_siz-1; k++)
e_distf1][kl=e_distf{ 1][k+1];
e_siz -=1;

return (valu) ;

}
void exp_dist_Rep(inttmp)

{

e_dist[1][e_siz]=tmp; -
e_siz +=1;

return ;

}

void Setup_exp_dist(int* hist, int siz)

{

float valu=0.0 ;

e_siz= siz;

e_dist=new int*[2];
e_dist] O]= new int[e_siz];
e_dist[1}=newint] e_siz];

for(int k=0; k< siz; k++)
{
e_dist{ 0][kl =k ;
e_dist[1][k] = hist[K] ;
}

< Page 142 of 144 >

return ;

. void CleanUp_dist()
{

e_siz=0;

delete e_dist;
return;
}s // Block: 101

void Swap(float* a, float* b)
{

float temp;

temp= *a;

*a="b;

*b=temp;

return;

}s // Block: 102

void Sort(float* A, int sz)

{

int top, search;
for(top=0; top<sz-1; top++)
for(search=top+1; search<sz; search++)
if(A[search] > Altop])
Swap(&A[search], &A[top]);
return;
}s3 // Block: 103

float gauss()

{
static int iset=0;
static float gset;
float fac,r,v1,v2;
if(iset==0)
{
do
b { - v
v1 = 2.0* randint::fdraw() - 1.0;
v2 = 2.0" randint::fdraw() - 1.0;
r=vi*vl + v2*v2;

< Page 143 of 144 >

} while(r>=1.0);

fac = sqrt(-2.0*log(r)/r);
gset = vi*fac;

iset = 1;

return v2*fac;

}

else

{
iset=0;
return gset;

}
}: /f Block: 104

}s // Block: 145

< Page 144 of 144 >

i T IIFHI VIR SRS

i B o e o S s e e o S O S o
1 Controlling Object For The WEAPON_ Function
/! I I 2 s o e o o o
/ e B e B B L a2
class WEAPON_
{
public:
1
1/ Define addiitonal model parameters:
/
int exists;

char* obj_name;

float yield, fallout_free ;
int inventory, allocated ;
int base_fz_opt, new_fz_opt, total_fz_opt ;

/

/! NOTE: System Response Characteristics Are Being Defined By
/i A Gamma Distribution.

/i

float alpha, beta, gamma ;
float *ceps, *hobs, *relia ;
int *opt_inv ;

int Yield_opt, Inv_opt ;

WEAPON_(); 7 // Constructor
/!
/ overload the input and output operators
1/
friend istream& operator>>(istream& in, WEAPON_&);
friend ostream& operator<<(ostreamé& out, WEAPON_&);
/!
/] Define addiitonal member functions:
/
WEAPON_& operator=(WEAPON_&);
void WEAPON_Load(istream&);
void WEAPON_Setup(int) ;
}s // Block: 106

WEAPON_::WEAPON_()
{

obj_name = new char[10];

< Page 145 of 150 >

exists=FALSE;
strcpy(obj_name,"None");

Yield_opt= TRUE ;
Inv_opt= TRUE ;
yield=10.0;
inventory=0;
base_fz_opt=0;
new_fz_opt=0;
total_fz_opt=base_fz_opt+new_fz_opt;
alpha=2.0;
beta=1.0;
gamma=-1.0;
allocated=0;
}s [/ Block: 167

istream& operator>>(istream& in, WEAPON_& t)

{
char tmp_in[15};
char tmp_file[15];
t.exists=TRUE;
in >> tyield >> t.inventory >> t.base_fz_opt >> t.new_fz_opt ;
t.total_fz_opt=t.base_fz_opt + t.new_fz_opt;
t.ceps= new float] t.total_fz_opt];
t.hobs= new float] t.total_fz_opt];
t.relia= new float] t.total_fz_opt ;
t.opt_inv= new int[t.total_fz_opt+1];
for(int k=0; k< t.total_fz_opt; k++)
in >> t.ceps[k] >> t.hobs[k] >> t.relialk] ;
in >> t.alpha >> t.beta >> t.gamma ;
/!
/ Note: Define The Fallout Free HOB To Be The Following
/1
t.fallout_free = 180.0*pow(t.yield,0.3333) ;
return in;
}s /1 Block: 108 ‘
1/ e e B B e o o

ostream& operator<<(ostream& out, WEAPON_& t)

1/
/ provide coding to represent the ouput desired for this object
//

< Page 146 of 150 >

out << "\t---- :: Weapon_ Dump (bgn) :: - " << t.obj_name << "\n";
out << “At---- :: Weapon_ Dump (---) :: ----Yield : “ << t.yield
<< “it Inventory : “ << t.inventory << “\t Allocated : “ << t.allocated << “\n“;

out << “\t---- :: Weapon_ Dump (---) :: ---- Total Fuze Options : “
<< t.total_fz_opt << “\n“; N
out << "\t---- :1 Weapon_ Dump (---) & ----";
for(int k=0; k< t.total_fz_opt; k++)
out <<"\t“<< t.ceps[k] <<\t“<< t.hobs[k] <<“\t“<< t.relia[k] <<*\t<< t.opt_inv[k] ;

out << “\n\t---- :: Weapon_ Dump (---) :: ---- Delivery Time : \t*
<< t.alpha << “it” << t.beta << “t” << t.gamma << “\n‘;

out << "t---- :: Weapon_ Dump (end) :: -—-\n";

return out;

¥y // Block: 109

void WEAPON_::WEAPON_Load(istream& in)

{

char tmp_in[15];

char tmp_file[15];

exists=TRUE;

int tmp;

in >> tmp_in;

while(strcmp(tmp_in,"eoi") 1=0)

{

fl
I
1/

i
I
i

Output The Weapon_ Class Keywords As They Are Loaded

cout << “----- WEAPON_ Keyword : “ << tmp_in << “\n” << flush;
if(stremp(tmp_in,"Yield") == 0)

i{n >> yield;
Yield_opt=FALSE;
Note: Define The Fallout Free HOB To Be The Following
fallout__free = 180.0"pow(yield,0.3333) ;
eI?e if(stremp(tmp_in,"Inventory") == 0).

in >> inventory;
Inv_opt=FALSE;
}

< Page 147 of 150 >

7
/
1/
i
1

else if(stremp(tmp_in,"Options") == 0)

in >> base_fz_opt >> new_{z_opt;
total_fz_opt=base_fz_opt+new_fz_opt;
ceps= new float[total_fz_opt J;

hobs= new floaf] total_fz_opt];

relia= new float] total_fz_opt J;
opt_inv= new inf| total_fz_opt+1 |;

Default Hobs: Imply Variable Hob Settings

Default relia: 1.0

for(int k1=0; k1<total_fz_opt; k1++)

{
hobs[k1] = 99999.0 ;

relialk1]=1.0;
opt_invk1]=0;
}

}

else if(stremp(tmp_in,"CEPs") == 0)
{
for(int k=0; k< base_fz_opt; k++)
in >> cepsfk] ;
} .
else if(stremp(tmp_in,"HOBs") == 0)
{
for(int k=0; k< base_fz_opt; k++)
in >> hobs[k] ;
}
else if(stremp(tmp_in,"SysRelia") == 0)
{
float tmp_relia ;
in >> tmp_relia ;
for(int k=0; k< base_fz_opt; k++)
relialk] = tmp_relia ;

else if(strcemp(tmp_in,"Reliability") == 0)
{
for(int k=0; k< base_fz_opt; k++)
in >> relialk] ;

}

else if(stremp(tmp_in,"Response”) == 0)

{

in >> alpha >> beta >> gamma ;

}

< Page 148 of 150 >

else
cerr << "Error: (WEAPON_ Input) unaceptable input option : * << tmp_in
<< "\n" << flush; :

in >> tmp_in;
}s // Block: 110

return;
s // Block: 111

void WEAPON_::WEAPON_Setup(int num_opts)

{
1/

1/ Set Space For Fuzing Options Of A Weapon System
I

ceps= new float[num_opts];

hobs= new float[num_opts];

relia= new float] num_opts |;

opt_inv= new int[num_opis+1];

return;

}s // Block: 112

WEAPON_& WEAPON_::operator=(WEAPON_& aWeapon)

/7
1/ Equating One Weapon To Another "A=B"
/4
yield= aWeapon.yield ;
inventory= aWeapon.inventory ;
base_fz_opt= aWeapon.base_fz_opt ;
new_fz_opt= aWeapon.new_fz_opt ;
total_fz_opt= aWeapon.total_fz_opt ;
for(int i=0; i<aWeapon.total_fz_opt; i++)
{
cepsli] = aWeapon.cepslil;
hobs[i] = aWeapon.hobsfi];
relia[i] = aWeapon.relia[i];
opt_invi] = aWeapon.opt_inv{i];

alpha = aWeapon.alpha ;
beta = aWeapon.beta ;
gamma = aWeapon.gamma ;

Yield_opt= aWeapon.Yield_opt;

< Page 149 of 150 > . ~

Inv_opt= aWeapon.Inv_opt;
allocated= aWeapon.allocated;

return *this;
Yy / Block: 113

< Page 150 of 150 >

APPENDIX K Code listing for fuzzy logic algorithms.

// +++++ Main Fuzzy Analysis +++++

#include "header.h"

#tinclude "FzSet.h"
#include "FzHedge.h"
#tinclude "FzVariable.h"
#include "FzRule.h"
#tinclude "Fzissue.h"
#include "FzDecision.h"

int main(int argc, char *argv[])

{

cout << "+++++++++ Begin Assessment +++++++++\n";

FzDecision bs1;
bs1.Load_Model(argv[1]);
bs1.Dump_Model("z_info");
bs1.Run_Model("z_tracking"); -
bs1.Dump_Results("z_result");

cout << "+++++++++ End Assessment +++++++++\0";
}; // Block: 114

/1 +++++ Fuzzy Decision Algorythms (FzDecision) +++++

/7
/1
/!
i
/1
I
/
1/
/4
/]
{ff
/!
/1
/

1/

class FzDecision

L B o o o B L

This class represents the highest (or lowest) block of atributes and
functions needed to perform fuzzy modeling. All other classes are
supporting members of the FzDecision class.

References:

Cox,E., The Fuzzy Systems Handbook, AP Professional

(a div of Harcourt Brace & Co.), 1994, ISBN 0-12-194270-8
Klir, G.J., Folger, T.A., Fuzzy Sets, Uncertainty & Informtion,
Prentice Hall, 1988, ISBN 0-13-345984-5

Code structure :

FzDecision

Load _Model
___Parse_Rule
tssue_ID
Dump_Model
Dump_Results
Store_Resulis

Run_Model
Rule_aAggregation
Find_FzVvariable

Variable_Setup
Variable_Output

Reset _FS
Find_FzSet
Find_FzHedge

l FzSet Hedge_
10
Fz_initialize Tran
Setup_Customize 10
Setup_Gauss

Setup_Linear
Setup_Sigmoid
Setup_Tri
Setup_Uniform

Centroid
Ave_Max
Max_Edge

Degree_of_Truth
Get_Max
Alfacut_Ahave
Normalize_FZS

< Page 152 of 172 >

DeFuzzify
Z_AND/Z_OR
FzVariable] " Rules_ Issue_
Load_Rule Load_lssue
Dump_Rule Dump_lssue

/4
I/
I/
I/
i/
i
)
/i
n
/4
n
/
i
/i
i
i
i
i
I/
/i
fl
/i
i
i
"
/4

Program construction:

Main program requires a FzDecision variable declaration, a call to
Load_Model, a call to Run_Model, and Dump_Results to
constitute a fuzzy program. An example follows:

FzDecision bs1;
bs1.Load_Model(argv(1]);
bs1.Dump_Model("z_info");
bs1.Run_Model(“z_tracking");
bs1.Dump_Results("z_result");

File names are passed as arguments for defining; input, tracking,
and output.

Member Functions include:

Setup and output related functions:

Load_Model, Dump_Model, Dump_Results, Issue_ID,
Manipulation & transformation related functions:
Store_Results, Find_FzVariable, Parse_Rule, Reset_Var,
Rule_Aggregation,

Execution related functions:

Run_Model, DeFuzzify, Z AND, Z_OR();

The following depicts the processing of a fuzzy rule(s):

Taraget Hardness

Defensive

H ! Target Importance -
Soft Moderate Moderate, Hard ' :
Soft Hard] H :
] : M
: :
Taraet Offensiveness H
« .
e TTOLTY PTTEPEETERS SRR 0.25
beeomncponmmmencafanaaans 0.05
_________________); :.GBS Low Moderate Exiteme
---------------------- °0.05

constitution : Offensive

if Tarqet Hardness is Hard and Tarqet Offensiveness is Offensive then Target Importance is Extreme
if Tarqet Hardness is Moderate Hard and Tarqet Offensiveness is Defensive then Tarqet importance is Moderate

< Page 153 of 172 >

/
1l
/
1/
i
/
/i
i
f
f
/
f
/1
1/
/
/!
I
1
1
/1

/i
1/
/l
1/
i/
1/

The degree of truth of each preposition is acertained and then a
Zadah type AND_ function is activated to determin the level to
associate with the then part of the proposition. As a result of the
2 rules the heavy surface is defined from which defuzification will
produce a quantitative assessment of the targeting importance.

The Issue_ construct of these algorithms permits a structured
approach for answering multiple issues as well as coupling a
number of variables into a global model.

Input Format:

Load_Model() controls input of all elments of the fuzzy model, it
may transfer control to another function but the call is initiated in
FzDecision member functions.

Input Keywords include:
rule, variables, issues, defuzzify, runs, & eoi for termination.

e e e B e L I o o o 22
public:

int De_Fuz;

int max_runs;
FzVariable* var;
FzVariable* last_var;

Rules_* first_rule;
Rules_* last_rule;
Rules_* current_rule;

Issue_* first_issue;
Issue_* last_issue;
Issue_* current_issue;

struct Parsed_
Note: more space has been allocated(4)than allowed(3) for
rule atoms to mitigate a problem that surfaced during initial »
development. The problem surface in the function which parses

the rules. no idea 10/30/94

char ID[5];
int n_pred,;

< Page 154 of 172 >

FzVariable* Vr[4];

Hedge_* Hd[4];

FzSet* St[4];

int Opij[4];

int Aggregation_Op ;

Parsed_ *next;

Parsed_(Parsed_*p)

{ next=p; n_pred=3; }

}: // Block: 115

Parsed_* pi_r;
Parsed_* pi_first;

double final[VECMAX];

double wrk[VECMAX];
/"
/] Define Addiitonal Member Functions:
/4

FzDecision();

void Assess_lIssues(float*, float*);

void DeFuzzify(int);

void Dump_Model(char*);

void Dump_Results(char*);

FzVariable* Find_FzVariable(char*);

void Issue_ID();

void Load_Model(char*);

void - Parse_Rule();

void Reset_Var();

void Rule_Aggregation(FzVariable*, int);

void Run_Model(char*);

void Store_Results(int, ostream& out);

void Z_AND();

void Z_OR();

int Z_Truth();

3 // Block: 116
/i S o B B B S s
/] NOTE: The integers in the constructor must be adjusted to reflect
i the number of variables and arguments in the model

FzDecision::FzDecision()

{

Vi Define default conditions
De_Fuz=CENTROID;

first_rule=0;

<Page 155 0f 172 >

last_rule=0;

first_issue=0;
last_issue=0;

last_var=0;
pi_first=0;

max_runs=1;
}s // Block: 117
/" +H+t+
1/ Function That Runs The Fuzzy Logic Algorythms for an issue
/4 assuming that the algorithm is buried in a code that can set
/! case scler values on the fly.

void FzDecision::Assess_lIssues(float* info_in, float* info_out)

{

FzVariable* V[3];
Hedge_* H[3];

FzSet* S[3];

double tr_V;

double final_truth;

int i,j,i_if,i_then, aggr_op;
Issue_::RO_* loc_ro;

int issue_index=0;

/

/" Set Outer Outer Loop To Handie Multiple Issues In

i The Decision Space.

/

1/ Issues correlate to finding consequent fuzzy sets, e.g. A problem is
/ searching for priorities of a process as well as trying to determine
1/ overall risk, in this case we are dealing with two basic issues.

n

for(current_issue= first_issue; current_issue != 0; current_issue= current_issue-
>next) ‘

{
int j=0;
{
for(i=0; i<kVECMAX; i++)
final[i]=0;
i
i Each Issue Is Comprised Of A Number Of Rules, 1-Many.
I

for(loc_ro= current_issue->rl1; loc_ro != 0; loc_ro= loc_ro->next)

{

< Page 156 of 172 >

/
f
/i

/i
i
/i

//
1l
/
I

/
i
1/
I
i
1

pi_r= (Parsed_*)loc_ro->add_;
Reset_Var();

Identify All Variables In The Rule, All Hedges And All Fuzzy Sets

for(i=0; i<pi_r->n_pred; i++)
{
V[il= (pi_r->Vii});
H[il= (pi_r->Hd][i]);
S[il= (pi_r->Sti]);
}

Perform All Hedge Operations

for(i=0; i<pi_r->n_pred; i++)
if(H[i]!'=0)
H[i]->Tran(*S[i]);

This Identifies The Proposition Predicate Portion Of The Rule And
The Consequent Portion Of The Rule Under Evaluation.

i_if=i_then=0;
for(i=0; i<pi_r->n_pred; i++)
{
if(pi_r->Opijfi] == IF_) i_if=i;
if(pi_r->Opij[i] == THEN_) i_then=i;
}

Assess The Degree Of Truth For The If Predicates. Each
proposition predicate exhibits a degree of truth based on the value
of the scalers used in the current run. These values are used to
condition the consequent.

final_truth=1.0;

{
Vli]->scaler]j] = info_in[i];
switch (pi_r->Opij[i])
{
case IF_:
case AND_:
tr_V= S[i}->Degree_of_Truth(V[i]->scaler[j]);
if(tr_V < final_truth)
final_truth=tr_V;
break;
case OR_:

<Page 157 of 172>

tr_V= S[i]->Degree_of_Truth(V[i}->scaler{j]);
if(tr_V > final_truth)
final_truth=1r_V,

break;
default :
break;
}
}
/
/! Work The Then Side Of The Predicates;assumes A Zadah Type And
I
for(int k=0; kK<VECMAX; k++)
if(final_truth < S[i_then]->mu_wrklk])
wrk[k]= final_truth;
else
wrk[k]}= S[i_then]->mu_wrk[k];
/
1/ Final rule(s) combinatorics
/
if(i_then<=0)
aggr_op=MIN_MIN;
else
aggr_op=pi_r->Aggregation_Op ;
Rule_Aggregation(V[i_then], aggr_op);
}
i
// Com 36 De-fuzzification Must Now Be Performed
//
DeFuzzify(j);
}
/
V[i_then]->result_var = FALSE;
info_out[issue_index] = V[i_then]->scaler]j] ;
issue_index +=1;
i
}
return;
}s // Block: 118 :
// T e e 2 T T 1 2 a2 S S

//Fuction which de fuzzifies the solution variable after a model run
void FzDecision::DeFuzzify(int ijk)
(
double result=0;
FzSet* fs_tmp;

< Page 158 of 172 >

Reset_Var();

var=last_var;
while(var!=0)
{ _
if(var->result_var == TRUE)
{
fs_tmp = var->fs_result;
if(var->num_scaler <=0)
{
var->num_scaler= max_runs;
var->scaler= new double[max_runs];
var->D_o_T = new double] max_runs J;

}
switch (De_Fuz)

{
case CENTROID :
result= fs_tmp->Centroid();
break;
case AVGMAXIMUM :
result= fs_tmp->Ave_Max();
break;
case MAXIMUM :
result= fs_tmp->Max_Edge();
break;
default :
result=1.0e9;
break;
}
var->scalerijk]= result;
var->D_o_Tlijk]= fs_tmp->Degree_of_Truth(result);
}

var=var->next;

}
return;

s // Block: 119
1/ e e a2 B e o T e

void FzDecision::Dump_Model(char* O_file)

{

ofstream out(O_file);

for(current_rule= first_rule; current_rule '=0; current_rule= current_rule->next)

< Page 159 of 172 >

{

out << "\nRule: " << (*current_rule).ID << "\n";
current_rule->Dump_rule(out);
}

for(var= last_var; var !=0; var= var->next)
var->Variable_Qutput(out);

return;

}s /] Block: 120

/1 +H++Ht b

void FzDecision::Dump_Results(char* O_file)

§
1
ofstream out(O_file);

int i;
var=last_var;
while(var'=0)
{
if(var->result_ == TRUE)
{
out << "\n Fuzzy Variable:" << var->Fz_Var_ID << "\n";
for(i=0; i<var->num_scaler; i++)
out<<""<<var>Fz_Var_ ID<<"["<<i+1 <<"]"
<< var->scalerfi] << " DoT "<< var->D_o_T][i] << "\n";
// :
/i Print Out Again For Use With Plotting Programs

i
out << "\n\n Fuzzy Variable:" << var->Fz_Var_ID << "(Scaler Values)\n";
for(i=0; i<var->num_scaler; i++)
out << " " << var->scaler{i];
out << "\n\n Fuzzy Variable:" << var->Fz_Var_ID << "(Deg of Truth)\n*;
for(i=0; i<var->num_scaler; i++)
out << " " << var->D_o_TIi];
}

var=var->next;

}

1/

" for(var= last_var; var =0; var= var->next)
i var->Variable_Output(out);
return; ,
}: // Block: 121
/! L e B e o T ke 1 Sais i aa o ST SR

FzVariable* FzDecision::Find_FzVariable(char* v_nam)

< Page 160 of 172 >

FzVariable* rtn_v;
rin_v=0;
var=last_var;
while(var!=0)
{
if(stremp(var->Fz_Var_ID, v_nam) ==0)
rin_v=var;
var=var->next;

}

return(rin_v);
1 /7 Block: 122
/ I L L o
// a then logic function

void FzDecision::Issue_ID()

{

Issue_::RO_* loc_ro;

for(current_issue= first_issue; current_issue != 0; current_issue= current_issue-
>next)

{
loc_ro=(current_issue->ri1);
while (1)
{
/i
/! Now compare the rule with a parsed rule for a series of matches
1
pi_r= pi_first;
while(pi_r!=0)
{
if(stremp(loc_ro->r_ID, pi_r->ID) ==0)
loc_ro->add_ = pi_r;
pi_r= pi_r->next;
}
if(loc_ro == (current_issue->rin))
break;
loc_ro= loc_ro->next;
}
}
return;
}s /1 Block: 123
Y/ ++++++++++ e

< Page 161 of 172 > , N

void FzDecision::Load _Model(char* |_file)

{
ifstream in(I_file);
char tmp_in[15];
in >> tmp_in;
while(strcemp(tmp_in,"eoi") 1=0)
{ .
cout << “----- FzDecision Keyword : “ << tmp_in << “\n” << flush;
if(stremp(tmp_in,"rule") ==0)
{
current_rule = new Rules_(last_rule);
last_rule= current_rule;
current_rule->Load_rule(in);
in >> tmp_in;
}
else if(stremp(tmp_in,"variables") ==0)
{
var = new FzVariable(last_var);
last_var= var;
var->Variable_Setup(in);
in >> tmp_in;
}
else if(stremp(tmp_in,"issues") ==0)
{
current_issue = new Issue_(last_issue);
last_issue= current_issue;
current_issue->Load_issue(in);
in >> tmp_in;
}
else if(stremp(tmp_in,"defuzzify") ==0)
{ .
in >> tmp_in;
if(stremp(tmp_in, "CENTROID") ==0)
De_Fuz=CENTROID;
else if(stremp(tmp_in, "AVGMAXIMUM") ==0)
De_Fuz=AVGMAXIMUM,;
else if(stremp(tmp_in, "MAXIMUM") ==0)
De_Fuz=MAXIMUM;

else
cout << "\nERROR: Not a developed defuzzification routine” << flush; y
in >> tmp_in;
}
else if(stremp(tmp_in,"runs") ==0)
{

in >> max_runs;

< Page 162 of 172 >

in >> tmp_in;
}

else

{

cerr << "Error: (FzDecision Input) unaceptable input option : " << tmp_in
<< "\n" << flush;

}

2
/i
/i Identify the first rule in the decision space
/"
for(current_rule= last_rule; current_rule->prev 1= 0;
current_rule= current_rule->prev)

{
(current_rule->prev)->next= current_rule;
}
first_rule= current_rule;
/
// Com 37 Execute The Function Which Parses The Rules;
/i Rules And Variables Must Be Loaded
/i
Parse_Rule();
/ —
// Com 38 Identify The First Issue In The Decision Space
1/}

for(current_issue= last_issue; current_issue->prev I= 0; current_issue=
current_issue->prev)

{

(current_issue->prev)->next= current_issue;
ﬁrit_issue: current_issue;
Z Com 39 Identify & Associate The Address Of The Parsed Rule With An Issue
! Issue_ID(); B

return;
}s /7 Block: 124
1/ e e o B o O i e o 10 0 O T o O

void FzDecision::Parse_Rule()

{
FzSet* tmp_St;
Hedge_* tmp_Hd;
FzVariable* tmp_Vr;

< Page 163 of 172 >

int cnt;
/)
// Com 40 Parse The Rules In Order To Prepare For Execution
/
for(current_rule= last_rule; current_rule != 0; current_rule= current_rule->prev)

{

pi_r = new Parsed_{(pi_first);

pi_first= pi_r;
1
/i Zero Out Elements In The Parsed Structure
/"
for(int i=0; i<pi_r->n_pred; i++)
{
pi_r->Vrfil=0;
pi_r->Hd[i]=0;
pi_r->St[i}=0;
pi_r->Opij[i]=999;
}
strepy(pi_r->ID, current_rule->ID);
pi_r->Aggregation_Op=current_rule->Aggregation_Op;
current_rule->at=current_rule->at1;
cnt=0;
while(current_rule->at !=0)
{ .
/!
1/ Check On Next Atom Being A Variable
1
tmp_Vr = Find_FzVariable((current_rule->at)->atom);
if(tmp_Vr!=0)
{
pi_r->Vrcnt]= tmp_Vr;
current_rule->at= (current_rule->at)->np1;
/"
Vi If We Found A Variable, Chect On Likelihood Of A Hedge
/
tmp_Hd= tmp_Vr->Find_FzHedge((current_rule->at)->atom);
if(tmp_Hd 1=0)
{
pi_r->Hd[cnt]= tmp_Hd;
current_rule->at= (current_rule->at)->np1;
}
i
1/ if we found a variable, chect on likelihood of a fuzzy set
/

tmp_St= tmp_Vr->Find_FzSet({current_rule->at)->atom };

< Page 164 of 172 >) -

if(tmp_St1=0)

{
pi_r->St[cnt]= tmp_St;
current_rule->at= (current_rule->at)->np1;

}
else
pi_r->St[cni]= tmp_Vr->fs_result;
cnt++;
}
else
/i
1 chect on likelihood of a operator
/
{
if(stremp((current_rule->at)->atom, "AND") == 0 ||
stremp((current_rule->at)->atom, "and") == 0)
pi_r->Opij[cnt]= AND_; '
else if(stremp((current_rule->at)->atom, "OR") == 0 ||
stremp((current_rule->at)->atom, "or") == 0)
pi_r->Opij[ent]l= OR_;
else if(stremp((current_rule->at)->atom, "THEN") == 0 ||
stremp((current_rule->at)->atom, "then") == 0)
pi_r->Opij[ent]l= THEN_;
else if(stremp((current_rule->at)->atom, "IF*).== 0 ||
stremp((current_rule->at)->atom, "if*) == 0)
pi_r->Opijient]= IF_;
else _
cerr << "ERROR: could not find an operator for RULE ID *
<< current_rule->ID << flush;
current_rule->at= (current_rule->at)->np1;
}
}
}
return;
}s /7 Block: 125
I/ s B A a2 B B T B B
void FzDecision::Reset_Var()
{
var=last_var;
while(var 1=0)

{
var->Reset_FS();

var= var->nexit;

}

<Page 165 of 172 >

for(int i=0; i<VECMAX; i++)

{

wrk[i]=0;

}

return;
s /f Block: 126

/ o 28 e o o T T S S
I
/" A “Then” Logic Function. This function provides the mechanism for
/ combining sets of rule consequents. Given a set of rules in which
/I RISK is a consequent variable, the results must be convolved to
I/ generate the final consequent fuzzy set.
I

void FzDecision::Rule_Aggregation(FzVariable* A, int
aggr_op)

(
FzSet* s_tmp;
int j;
/I
i If the “solution fuzzy set” (sfs) is zero everywhere, then use a
i ' MIN_MAX operator to define a default concequent fuzzy set.
/ (used in conjunction with unconditional propositions)

/
if(Z_Truth() == FALSE)
aggr_op = MIN_MAX;

switch(aggr_op)
{

case MIN_MAX :
/i
1/ This is te rule combinatorics associated with precedents and
/I) consequents using the Zadah intersection operaor. (Z_AND)
/] (Cox, page 226, The Fuzzy Systems Handbook)
/
for(j=0; j<VECMAX; j++)
if(wrk[j] > final[j])
final[j]= wrk[j];
break;
case MIN_MIN :)
/
/i Used for unconditional consequents. E.g. then RISK is HIGH
/ This is basically the Zadah Union operator (Z_OR)
1/ (Cox, page 239, The Fuzzy Systems Handbook)
/1

< Page 166 of 172 >

for(j=0; <VECMAX; j++)

if(wrk[j] < final[j])
final[j)= wrk[jl;
break;
case ADDITIVE :

/
/! This rule aggregation mechanism is best used for situations
/ building evidence. (See Cox, The Fuzzy Systems Handbook,
f page 227)
/"

for(j=0; j<VECMAX; j++)
{
final[jl+= wrk[j];
if(finallj] > 1.0)
final[j]=1.0;
}
break;
default:
for(j=0; j<VECMAX; j++)
finalj]=0.0;
}

s_tmp = A->fs_result;

if(A->result_var != TRUE)
{
A->result_var=TRUE;
A->result_ =TRUE;
s_tmp->domain[0}= (A->last_fs)->domain[0];
s_tmp->domain[1]}= (A->last_fs)->domain[1];
}

for(j=0; j<VECMAX; j++)

s_tmp->mulj}= finalj];

return;

}s // Block: 127
Y/ +++++++++++++++ et
// Com 41 Function That Runs The Fuzzy Logic Algorythms

void FzDecision::Run_Model(char* O_file)

{

ofstream tr_out(O_file };
FzVariable* V[3];
Hedge_* H[3];

FzSet* S[3];

< Page 167 of 172 >

double tr_V;

double final_truth;

int i,j,i_if,i_then, aggr_op;
Issue_::RO_* loc_ro;

ofstream out_store("z_store");

/
/i Set Outer Outer Loop To Handle Multiple Issues In
i The Decision Space.
1
1/ Issues correlate to finding consequent fuzzy sets, e.g. A problem is
I searching for priorities of a process as well as trying to determine
i overall risk, in this case we are dealing with two basic issues.
I \
for(current_issue= first_issue; current_issue != 0; current_issue= current_issue-
>next)
{
tr_out << "\n1---> Processing " << current_issue->ID << " issues...." << flush;
1/
1/ Set Outer Loop To Handle Multiple Variable Value Runs;
/ basically what value do the consequent fuzzy variables become
1/ given a set of MODEL variable settings.
I
for(j=0; j<max_runs; j++)
{ .
tr_out << "\n2-----> Processing case " << j << "" << flush;
i
for(i=0; i<VECMAX; i++)
final[i]=0;
/"
/7 Each Issue Is Comprised Of A Number Of Rules, 1-Many.
/!
for(loc_ro= current_issue->ri1; loc_ro != 0; loc_ro= loc_ro->next)
{ ‘
tr_out << "\n3------- > Processing rule " << loc_ro->r_ID << "" << flush;
pi_r= (Parsed_*)loc_ro->add_;
Reset_Var();
1/
/1 Identify All Variables In The Rule, All Hedges And All Fuzzy Sets
/i
for(i=0; i<pi_r->n_pred; i++)
{
V[i]= (pi_r->Vri});
HIil= (pi_r->Hd[i]);
Slil= (pi_r->St[i]);
}
/i

< Page 168 of 172 >

/ Perform Ali Hedge Operations

1/ ~
for(i=0; i<pi_r->n_pred; i++)
if(H[i]!=0)
. HI[i]->Tran(*S][i]);
/
/! This Identifies The Proposition Predicate Portion Of The Ruie And
h I The Consequent Portion Of The Rule Under Evaluation.
/
i_if=i_then=0;
for(i=0; i<pi_r->n_pred; i++)
{
if(pi_r->Opijli] == IF_) i_if=i;
if(pi_r->Opij[i] == THEN_) i_then=i;
}
/!
/! Assess The Degree Of Truth For The If Predicates. Each
/ proposition predicate exhibits a degree of truth based on the value
/] of the scalers used in the current run. These values are used to
1/ condition the consequent.
/
final_truth=1.0;
for(i=i_if; i<i_then; i++)
{
switch (pi_r->Opij[i])
{
case IF_:
case AND_:
tr_V= SJ[i]->Degree_of_Truth(V[i]->scaler[j]);
if(tr_V < final_truth)
final_truth=tr_V;
break;
case OR_:
tr_V= §][i]->Degree_of_Truth(V[i]->scaler]j]);
if(tr_V > final_truth)
final_truth=tr_V,
break; .
default :
break;
» }
' }
/"
« /! Work The Then Side Of The Predicates;assumes A Zadah Type And
1

for(int k=0; k<VECMAX; k++)
if(final_truth < S[i_then]->mu_wrk{k])

< Page 169 of 172 >

wrk[Kk]= final_truth;
else
wrklk]= S[i_then]->mu_wrkk];

/"
1 Final rule(s) combinatorics
/
if(i_then <=0)
aggr_op=MIN_MIN;
else
aggr_op=pi_r->Aggregation_Op ;
Rule_Aggregation(V[i_then], aggr_op);
}
/!
// Com 42 De-fuzzification Must Now Be Performed
I
DeFuzzify(j);
Store_Results(j, out_store);
}
I
V[i_then]->result_var = FALSE;
1
}
return;
}s // Block: 128
1/ L o o e o B S L r

void FzDecision::Store_Resulis(int case_num, ostream& out)

{
FzSet* fs_tmp;
int i;
var=last_var;
while(var!=0)
{
if(var->result_var == TRUE)
{
| fs_tmp = var->Find_FzSet("RESULT_");
| out << "\n Case Number:" << case_num+1 << "";
out << " Fuzzy Variable:" << var->Fz_Var_ID << "\n";
out << *fs_tmp;
}
1/ -
1/ Print Out Again For Use With Plotting Programs
7 o

out << "\n\n Fuzzy Variable:" << var->Fz_Var_ID << "(Scaler Values)\n";

<Page 170 of 172 >

A

for(i=0; i<var->num_scaler; i++)
out << " " << var->scalerfil;
out << "\n\n Fuzzy Variable:" << var->Fz_Var_ID << "(Deg of Truth)\n";
for(i=0; i<var->num_scaler; i++)
out << "" << var->D_o_TIiJ;
var=var->next;

o

/i
1 for(var= last_var; var 1=0; var= var->next)
i var->Variable_Output(out);
return;
¥s // Block: 129
I/ -ttt

Vi
1/ Zadah and function
/!

void FzDecision::Z_AND()

{
for(int j=0; j<VECMAX; j++)
if{ wrkj] < finalfj])
final[jl= wrk[j];

return;

}s // Block: 130
/! B T a2 2 e 5
1/
1/ Zadah or function
1/

void FzDecision::Z_OR()

{
for(int j=0; j<VECMAX; j++)
if(wrk[j] > final[j])
final[jl= wrk[jl;
return;

Y/ Block: 131 ,
/i L m B B B B e L e
/! Need a function to check the degree of truth of the “final” vector
1 ~ for use with the setting of default consequent fuzzy sets.

/ ‘

int FzDecision::Z_Truth()

{ -
int z_truth=FALSE;

<Page 171 0f 172 >

for(int j=0; j<VECMAX; j++)
if(finalfj] > 0.001)
{
Z_truth= TRUE ;
return z_truth ;
}
return z_truth ;
}s // Block: 132

<Page 172 of 172 >

/i +++++ Fuzzy Hedge Algorythms (Hedge_) +++++

class Hedge_

{
i

B o o e e e o 2 S S

/i
//Com43 Class Defines Thecharacteristics Of Hedges.
i Hedge_ are modifiers to members of a fuzzy variable’s set. They
1/ are elements of the FzVariable class. They are stored as linked
1/ lists.
/i
/ Hedges can be adders, factors or employ a power law.
1/
/ Member functions include:
/
1/ Overloaded input and output operators; operator>> & operator<<
1 and a transformation function; Tran which is used to perform the
/7 fuzzy level modification.
/
/i Input format is as foliows:
/!
/ hedge
/! SIGNIFICANTLY power 2.0
/i
// Keyword is “hedge “ (keyed on in Variable_Setup of FzVariable)
/ The semantic modifier “SIGNIFICANTLY” uses a power law with
I the exponent set to 2.0.
/7
/A B e o L B T
public:
/4
I Assume all hedges are public...
/i
char *ID;
double adder, factor, expon;
Hedge_ *next;
Hedge_(Hedge_ *p);
void Tran(FzSet&); ~
friend istream& operator>>(istream& in, Hedge_& t);

friend ostream& operator<<(ostream& out, Hedge_& t);
}; /7 Block: 133

/

I B S o o o L SN R

< Page 173 of 174> ~

Hedge_::Hedge_(Hedge_*p)
{ next=p; adder=0; factor=1; expon= 1; ID= new char[15]; }

/i B o o o

void Hedge_::Tran(FzSet& bs) —

{
for(int i=0; i<kVECMAX; i++)
{
bs.mu_wrk][il= (adder+bs.muli])*factor;
if(bs.mu_wrk[i] > 1.0) bs.mu_wrk]i]=1.0;
bs.mu_wrk]i]= pow(bs.mu_wrk[i],expon);

1
}y // Block: 134

/ T o T o B o S

istream& operator>>(istream& in, Hedge_& t)

char tmp[15];

in>>t.ID;

in >> tmp;

if(strcemp(tmp,"add") ==0)
in >> t.adder;

else if(stremp(tmp,"multiply") == 0)
in >> t.factor;

else if(stremp(tmp,"power") ==0)

in >> t.expon;
else
cerr << "Error: (Hedge_ Input) not an input option : " << tmp << "\n" << flush;
return in;
}; / Block: 135
/ ++++++++++++ 4+ A

ostream& operator<<(ostreamé& out, Hedge_& t)

{

out << " " << t.ID << " Add: " << t.adder<< " Prod: "<< t.factor << " Exp: "
<< t.expon << "\n";)

return out;

}: // Block: 136

< Page 174 of 174 >

/j +++++ Fuzzy Issue Control (Issue_) +++++

class Issue_

{

/I e o T L L N g 2 o a2 T S S S S
/

// Com 44 Defines Characteristics And Function Of Fuzzy Issues.

1/

i Issue_ consist of blocks of rules associated with an issue.
// Issues are part of the “FzDecision class” variable list and are
/! elements of a linked list.
/7
/ Member functions for rules define into and output of a issues.
/ i.e. Load_issue & Dump_issue
/
/! Issue format is as follows:
I
I issues risk a1 a2 a3 a4 a5 eoi
/
1/ Keyword is “issues “ (keyed on in Load_Model of FzDecision)
/ The variable following the keyword is an ID term descriptive of the
/ issue at hand. The five(5) al...a5 are the ID’s associated with a
" rule.
1/
/ RO_ is the structure inernal to ISSUE_ which contains the set
/ - of rules comprising an issue. Detail usage is discussed in
/! FzDecision.
1/ e o T B o S s o o T o e o
public: :
char ID[40};
Issue_ *next;
Issue_ *prev;
struct RO_
{
char* r_ID;
void* add_;
RO_ *prev; _
RO_ *next;
RO_(RO_*p)

{prev=p; next=0; r_ID= new char|5]; }
}s /1 Block: 137

RO_ *rin;

<Page 175 of 176 >

RO_ *rl1;
Issue_(Issue_*p);

void Load_issue(istream& in);
void Dump_issue(ostream& out);
}s // Block: 138 }
/" e o B X

Issue_::lssue_(Issue_*p)

{ prev=p; next=0; rl1=0; rin=0; }

/" e L B S a0 B S

void Issue_::Load_issue(istream& in)

{
char tmp[15];
RO_ *1l;

in >> ID;
in >> tmp;
while(stremp(tmp,“eoi") I=0)
{
rl= new RO_(rin);
rin=ri;
strcpy(rl->r_ID, tmp);
in >> tmp;

|

for(rl =rin; ri->prev 1=0; r =rl->prev)
(rl->prev)->next =ri;

rf1=rl;

return;

s I/ Block: 139

/ L o o T I S

void Issue_::Dump_issue(ostream& out)

{
RO_ *rl;
for(rl=rl1; rl 1=0; rl=rl->next)
out <<
return;
+s // Block: 140

<<rl>r ID<<"";

< Page 176 of 176 >

"

+++++ Fuzzy Rule Operations (Rules_) +++++

class Rules_
/! I I e e o o o o o T o o o o o
Vi

/i

Com 45 Class defines the structure of a rule.

" Rules__ consist of “rule atoms” RA_ie the parts of a rule
/ Rules which are part of the “FzDecision class” variable list are
I elements of a linked list. The rule atoms makeing up a rule are
1 also structured as linked lists.
/
I Member functions for rules define into and output of a rule sets.
/ i.e. Load_rule & Dump_rule
i
i Rule format is as follows:
/i
/ rule ¢1 < if SERVCIE_LIFE is LONG then MATERIALS is EXOTIC >
/" .
i Keyword input is “rule “ (keyed on in Load_Model of FzDecision)
1/ follwed by the rule enclosed in angle brackets “< >”
/ if, is, then, and : are the logic elements of the rule
/! E
i A A A e e
public:
char ID[5]; -
int Aggregation_Op ;
Rules_ *next;
Rules_ *prev;
struct RA_
{
char *atom;
RA_ *nm1;
RA_ *np1;
RA_(RA_™p)

{nm1=p; np1=0; atom= new char[15];}
friend istream& operator>>(istream& in, RA_& t)

{

in >> t.atom;
return in;

}

friend ostreamé& operator<<(ostream& out, RA_& t)

{

< Page 177 of 179>

out<<"&"<<tatom<<"&";
return out;

}
}s // Block: 141

RA_ *att;

RA_ *atn;

RA_ *at; o
Rules_(Rules_*p);

void Load_rule(istream& in);

void Dump_rule(ostream& out);

Yy // Block: 142

/i e T L e
Rules_::Rules_(Rules_*p)
{prev=p; next=0; at1=0; atn=0; Aggregation_Op=MIN_MAX; }
i e T B o S

void Rules_::Load_rule(istream& in)

J—

{

char tmp[15];

in >> ID;

in >> tmp;

while(strcmp(tmp,">")1=0)

{
if(stremp(tmp,"Op") ==0)
. {
in >> tmp;
if(stremp(tmp,"MIN_MAX”))
Aggregation_Op=MIN_MAX; _
else if(stremp(tmp,”MIN_MIN”))
Aggregation_Op =MIN_MIN;
else if(strcemp(tmp,”ADDITIVE”))
Aggregation_Op =ADDITIVE;
else
Aggregation_Op=MIN_MAX;

in >> tmp;

}
else if(stremp(tmp,"<") ==0)
in >> tmp;
else if(stremp(tmp,"is") == 0 || strcmp(tmp,"1S") ==0)

< Page 178 of 179 >

in >> tmp;
else

at=new RA_(atn };

N atn= at;
strepy(at->atom, tmp);
r in >> tmp;
) }
I

I/

/i Next go through and define next atom np1

/ ‘

for(at =atn; at->nm1 !=0; at =at->nm1)
(at->nm1)->np1 =at;

ati= at;

return;

}s // Block: 143

I o o B B T o

void Rules_::Dump_rule(ostream& out)

{
for(at=at1; at !=0; at=at->np1)

out << " " << at->atom << " ";
return;

}y // Block: 144

< Page 179 of 179 >

/i +++++ Fuzzy Sets Operations (FzSet) +++++

class FzSet

{
/i 2 T L S o
/
// Com 46 Define The Characteristics Of Fuzzy Sets
I
i Fuzzy sets capture the levels associated with a semantic variable.
1/ They are stored as linked lists. Fuzzy sets capture aspects of a
/" semantic or qualitative problem by defining levels to be associated
/ with a variable. Fuzzy sets are members of the FzVariable class.
/
i Member functions include:
I
/! A significant number of functions such as; Setup_Beta(),
I Setup_Custom(), Setup_Gauss(), Setup_Linear(), Setup_Pi(),
1/ Setup_Sigmoid(), Setup_Tri() ,Setup_Uniform() are used to
/ define the shape of the membership function. Note: not all are
/ defined at this point in time(2/27/98).
// ,
i The second block of functions define defuzzification methods;
/] Centroid(), Ave_Max() & Max_Edge() -
1/
/ The remaining functions address the following functions:
/! =
/ Alfacut_Above sets values associated with an element to zero
1/ beyond a specified level.
/ Degree_of_Truth
/! Fz_Initialize simply sets values to the membership function over
/ : the range specified in domain.
N Get_Max
/ Normalize_FZS
/ Reset_Wrk resets the working vector of membership levels back to
/! the original level.
I
1/ Input and output is acheived through the overloaded redirection
1/ operators.
/
/ Input format is as follows:
1/
/ fuzzy_set
/ HIGH domain 0 50 func_form sigmoid 5 25 45 increase
/I eoi

< Page 180 of 192 >

i
1/ Keyword is “fuzzy_set” (keyed on in Variable_Setup of FzVariable)
// The ID for member of the set follows the keyword, “HIGH” in this
1/ case. “domain” defines the range of the variable for the set element,
/ while “func_form” triggers input of the shape of the member
/ element. In this case the shape is an increasing sigmoid function
Vi with low, mid, and high points defined to be 5, 25, & 45.
1/ The levels associated with the shape function are stored in
1/ the variable parms
/i
1/ +H++HH b
public:
int exists;
i
/! Fuzzy Set Descriptor Block (FSDB)
/
char* ID; /l FZS id or name
char* C_typ; / FZS curve type
int conv_trend; /I Converted trend for linear & sigmoid func
int set_stat; // FZS status,set or not set
int fz_order; // FZS order ?
double domain[2]; // FZS min and max domain values
double parms|[4];
double alfacut; // FZS alfacut
double mu[VECMAX]; /{ FZS membership array
double mu_wrk[VECMAX]; // FZS membership working array
FzSet* next; // Linked list, last fuzzy set was...

1/ ' ,
/! overload the input and output operators
/i
friend istream& operator>>(istream& in,FzSet&);
friend ostream& operator<<(ostream& out, FzSet&);
i

/ Define additional member functions:
/
FzSet(FzSet*);
void Help(); :
void Alfacut_Above(double);
double Centroid();
double Ave_Max();
double Max_Edge();
double Degree_of_Truth(double);
void Fz_lInitialize(); o
double Get_Max();
void Normalize_FZS();

< Page 181 of 192 >

void Reset_Wrk();

void Setup_Beta();
void Setup_Custom();
void Setup_Gauss();
void Setup_Linear();
void Setup_Pi();
void Setup_Sigmoid();
void Setup_Tri();
void Setup_Uniform();
}: /1 Block: 145
H L I o S i
1/ NOTE:The integers in the constructor must be adjusted to reflect
1 the number of variables and arguments in the model

FzSet::FzSet(FzSet *p)

{
exists=FALSE;

ID = new char[15];
C_typ = new char|15];
set_stat=FALSE;
next= p;
}: // Block: 146

/i e I e o B B e S
// Note:Provide output to the terminal to assist in defining the object
/! model and the information required

void FzSet::Help()
{

return;
}s // Block: 147

/" L a2 L S B R A s

istream& operator>>(istream& in, FzSet& adum)

{
char tmp_in[15];
char trend[15];

R adum.exists=TRUE;
in >> adum.|ID;
in >> tmp_in;
while(stremp(tmp_in,"eoi") 1=0)

< Page 182 of 192 >

{
if(stremp(tmp_in,"domain”) ==0)
in >> adum.domain[0] >> adum.domain[1];

else if(stremp(tmp_in,"alfa_cut") ==0)
. in >> adum.alfacut;
else if(stremp(tmp_in,"func_form") ==0) N
{

in >> adum.C_typ;
if(stremp(adum.C_typ,"gauss”) ==0)
in >> adum.parms[0] >> adum.parms[1];
else if(stremp(adum.C_typ,"linear")==0)
{
in >> adum.parms[0] >> adum.parms[1];
in >> trend;
}
else if(stremp(adum.C_typ,"sigmoid")}==0)
{
in >> adum.parms[0] >> adum.parms[1] >> adum.parms[2];
in >> trend;
}
else if(stremp(adum.C_typ,"triangular")==0)
in >> adum.parms{0] >> adum.parms[1] >> adum.parms{2];
else if(stremp(adum.C_typ,"uniform”)==0)
in >> adum.parms[0] >> adum.parms][1];
else
cerr << "Error: (FzSet Input) unaceptable form option : " << tmp_in
<< "\n" << flush; :

}

else

{

cerr << "Error: (FzSet Input) unaceptable input option : " << tmp_in
<< "\n" << flush;

}

in >> tmp_in;

}
" :
1/ Initialize The Fuzzy Set
1/
if(stremp(adum.C_typ,"linear")== 0 I stremp(adum.C_typ,"sigmoid")==0)

v if(stremp(trend, "increase")==0) .
adum.conv_trend= INCREASE;
¢ else if(stremp(trend, "decrease")==0)
adum.conv_trend= DECREASE;
else
- cerr << "Error: (FzSet Input) not a trend option : " << trend << "\n" << flush;

< Page 183 of 192 >

}

adum.Fz_Initialize();
return in;
}s; // Block: 148

1/ T B B R R

ostream& operator<<(ostream& out, FzSet& adum)

/"
i Provide Coding To Represent The Ouput Desired For This Object
/I
out << adum.ID << "\n";
double domain_width;
double member_value;
int i;
domain_width= adum.domain[1}-adum.domain[0];
for(i=0; i<VECMAX; i++)

{

member_value = adum.domain[0] + (float)i * domain_width / VECMAX;

out << " " << member_value << " " << adum.mu[i] << " "

<< adum.mu_wrk]i]

<< "\n";

}

return out;
}s // Block: 149

/ L e T B o o
1/ Note:Modify fuzzy set with an alfa cut
/! -

void FzSet::Alfacut_Above(double cut_val)

{
inti;
for(i=0; i<VECMAX; i++)
if(mu[i] < cut_val) mu[i] = 0.0;

return;

s // Block: 150
1 e B S o e S
/. Note:determine the maximum membership value
1/

double FzSet::Centroid()
{

inti;

< Page 184 of 192 >

double domain_width;
double member_value;
double s1=0.0;
double s2=0.0;
domain_width= domain[1]-domain[0];
for(i=0; i<VECMAX; i++)
{
member_value = domain[0] + (float)i * domain_width / VECMAX;
s1+= mu_wrk[i];
s2+= mu_wrk[i]*member_value;
}
if(s1 ==0) s1 =999999.9;
return(s2/s1);
}s // Bleck: 151
1/ e B B B o I T T L T I I o o o
I Note:determine the maximum membership value
1/

double FzSet::Ave_Max()
{

inti;
double mx_mem;
mx_mem= Get_Max();
double domain_width;
double member_value;
double s1=0.0;
double s2=0.0;
domain_width= domain[1]-domain[0];
for(i=0; i<VECMAX; i++)
{
member_value = domain[0] + (float)i * domain_width / VECMAX;
if(mu_wrk[i] >= mx_mem)
{
s1+= mu_wrk]i};
s2+= mu_wrk[i]*'member_value;
}
}
if(s1 ==0) s1=999999.9;
return(s2/s1);
i // Block: 152

/ a0 B o S S
1/ Note:determine The Maximum Membership Value
1/

< Page 185 0f 192 > x

double FzSet::Max_Edge()
{

int i;

double mx_mem;

mx_mem= Get_Max();

double domain_width;

double member_value;

domain_width= domain[1]-domain[0];

i=0;

member_value = domain[0];

while(mu_wrk[i] < mx_mem)
{
member_value = domain[0] + (float)i * domain_width / VECMAX;
i++;
}

return(member_value);

}s // Block: 153

I/ s L L o L B B B B o o o s
1/ Note:assess The Degree Of Truth Given A Scaler Value
1/

double FzSet::Degree_of Truth(double scaler)

{

double domain_width;
double member_value;
double truth_val;
int i;
truth_val= 0.0;
domain_width= domain[1]-domain[0];
for(i=0; i<VECMAX; i++)
{
member_value = domain[0] + (float)i * domain_width / VECMAX;
if(member_value > scaler)
return(truth_val);
truth_val= mu_wrk(i};
}
return(truth_val);
}s /1 Block: 154

! I B L B o o B o o o
/ Note: Determine The Maximum Membership Value
/

< Page 186 of 192 >

void FzSet::Fz_Initialize()

{

if(stremp(C_typ,“gauss") ==0)
Setup_Gauss();

else if(stremp(C_typ,"linear") ==0)
Setup_Linear();

else if(stremp(C_typ,"sigmoid") ==0)
Setup_Sigmoid();

else if(stremp(C_typ,"triangular") == 0)
Setup_Tri();

else if(stremp(C_typ,"uniform”) ==0)
Setup_Uniform();

else
cerr << "Error: (FzSet Input) unaceptable form option : " << C_typ <<"\n"
<< flush;

return;

s/ Block: 155
/! e a2 L L T T o o T 2 0 2 o R 2 2 e
/ Note:determine the maximum membership value
1!

double FzSet::Get_Max() —
{

int i;
double max_mem=0.0;
for(i=0; i<VECMAX; i++)
if(mu_wrk[i] > max_mem) max_mem = mu_wrk][i];
return(max_mem);
}s /] Block: 156

I/ e L B T
/i Note:renormalize the fuzzy set
/"

void FzSet::Normalize_FZS()
{

int i;
double norm_val;
norm_val = FzSet::Get_Max(); -
for(i=0; i<VECMAX; i++)
mu_wrk[i] = mu[i)/norm_val;
return;
}s /7 Block: 157
/! B B e e o I ot o o o o o o o

< Page 187 of 192 >

/ Note:renormalize the fuzzy set
/!

void FzSet::Reset_Wrk()

{
int i;
for(i=0; i<VECMAX; i++)
mu_wrk[i] = mufi];

return;

}s // Block: 158
/" e e s e 2 B e
/" Note:intiialize membership function to a beta function

/
void FzSet::Setup_Beta()

{

return;

¥}y // Bloek: 159
1/ e
/ Note:intiialize membership function to a customized input function
/

void FzSet::Setup_Custom()

{

return;

}s // Block: 160
/ L B L B e g L S
/ Note:intiialize membership function to a gauss function
1

void FzSet::Setup_Gauss()
:

double domain_width;
double thiscaler,gausspt;
double center, sigma, tmp;
int i;
center= parms|[0];
sigma = parms[1];
tmp = sigma*pow(2*PI,0.5);
domain_width= domain[1]-domain[0];
for(i=0; i<VECMAX; i++)
{
thiscaler= domain[0] + (float)i * domain_width / (VECMAX-1);

< Page 188 of 192 > N

gausspt= -pow(((center-thiscaler)/sigma),2);
mulil= exp(gausspt/2);

}
return;
| }; // Block: 161
1/ s e o o B T o B o o
/ Note:intiialize membership function to a linear function;also provides
? /i for the capability of puting sholders on the linear functions.

void FzSet::Setup_Linear()

{

double slope_width;

double domain_width;

double member_value;

double lo, hi;

int i;

lo= parms[0};

hi= parms[1];

slope_width = hi-lo;

domain_width= domain[1]-domain[0];

for(i=0; i<VECMAX; i++) -
{ A
member_value = domain[0] + (float)i * domain_width / VECMAX;

if(member_value > hi)
muli]= 1.0;
else if(member_value > lo && member_value <= hi)
mufi]= (member_value - lo) / slope_width;
else
mu[il= 0.0;
}
if(conv_trend == DECREASE)
for(i=0; i<kVECMAX; i++)
mufil= 1.0 - mul[i];

return,
}s /f Block: 162
/ e o B B S B B B
/ Note:intiialize membership function to a pi function
/

void FzSet::Setup_Pi()

< Page 189 of 192 >

/i

return;

}: // Block: 163

void FzSet::Setup_Sigmoid()

{
double slope_width;

double domain_width;

double member_value;

double tmp1, left, flexpoint, right;
inti;

left= parms[0];

flexpoint= parms[1];

right= parms|[2];

slope_width = right-left;
domain_width= domain[1]-domain[0];

for(i=0; i<VECMAX; i++)
{
member_value = domain[0] + (double)i * domain_width / VECMAX;
if(member_value >= right)
muli}=1.0;
else if(member_value > flexpoint && member_value < right)
{ :
tmp1 = (member_value-right)/slope_width;
mu[il= 1-(2*(pow(tmp1,2)));
}
else if(member_value >= left && member_value <= flexpoint)
r -
tmp1 = (member_value-left)/slope_width;
muli]= (2*(pow(tmp1,2)));
}

else
mu[i]}=0.0;
} —
if(conv_trend == DECREASE)

for(i=0; i<VECMAX; i++)
mulil= 1.0 - mu[i;

< Page 190 of 192 >

e T o L L e B
1/ Note:intiialize membership function to a sigmoid function
/i

return;
}: /] Block: 164

1/ I o o o o o A 2 2 2 22
i Note:intiialize membership function to a triangular function
/1

void FzSet::Setup_Tri()
{

double domain_width;

double member_value;

double tmp1,tmp2, left, flexpoint, right;
inti;

left= parms{O0];
flexpoint= parms[1];
right= parmsj[2];
tmp1 = right-flexpoint;
tmp2 = flexpoint-left;
domain_width= domain[1]-domain[0];
for(i=0; i<kVECMAX; i++)
{
member_value = domain[0] + (float)i * domain_width / VECMAX;
if(member_value > left&& member_value <= flexpoint)
mu[il= (member_value - left) / tmp2;
else if(member_value > flexpoint&& member_value < right)
mufil= 1.0 - (member_value - flexpoint) / tmp1;
else
mufil= 0.0;
}
return;
}s // Block: 165
i L e B B S
1/ Note:intiialize membership function to a uniform distribution function
/

void FzSet::Setup_Uniform()
{

double domain_width;

double member_value;

double lo, hi;

inti;

lo= parms][0};

hi= parms|[1];

domain_width= domain[1]}-domain[0];

<Page 191 of 192 >

for(i=0; i<VECMAX; i++)

{

member_value = domain[0] + (float)i * domain_width / VECMAX;
mu[il= 0.0;
if(member_value <= hi && member_value >= o)

}

mufil= 1.0;

return;

s

/1 Block: 166

< Page 192 of 192 >

/I +++++ Fuzzy Variable Operations (FzVariable) +++++

class FzVariable

{
/i

/!
// Com 47
Y/
/4
1/
/
/I
/i
/
// Com 48
/!
/!
/
/!
/J
1/
/!
/I
/!
l
/
1
1/
/l
/
1/
Y/
// Com 49
/4
1/
/!
/]
/I
1
/
/i
/i
/i
/i

e A o o S B o o L O I o
Defines The Characteristics of Fuzzy Variables

Fuzzy variables, FzVariable, are the descriptors for the model
being developed. They may represent time, temperature, or
service life. Fuzzy variables are typicallly used in the “FzDecisiion
class’ and are defined as a linked list. Fuzzy variables are
associated with fuzzy sets described by the “FxSet class”.

Member functions include:

Find_FzHedge, Find_FzSet which are used to locate
characteristics for hedges and fuzzy sets used in the rule model.
Reset_FS

Variable_Output, & Variable_Setup, which provide functions
for loading and printing fuzzy variables.

Fuzzy variables represent a characteristic of the problem. We
normally recognize that the real set of numbers are members of
the set temperature we do not think in terms os sets. In the case
of fuzzy variables we also must define the space and membership
associated with a variable. For this reason we define the
levels/descritization of the variable through fuzzy sets, identifying
a range of applicability, modifiers or hedges, and in this specific
implementation, the values used in the exercise of the system
model.

Loading of data is controlled or orchastrated by this class.

Input format is as follows:

variables

MISSION_PROFILE

scaler6 1030507090 70

fuzzy_set

COMPLEX domain 0 100 func_form linear 0 100 increase
eoi

fuzzy set

ROUTINE domain 0 100 func_form linear 0 100 decrease
eoi -

hedge

< Page 193 of 198 >

/f
1/
I
// Com 50
/!
/
/
/
/
// Com 51
/!
/!
1/
/
// Com 52
/
1/
1/
/
/
/!
public:
/
//
/

VERY power 2.0
€oi

Keyword is “variables” (keyed on in Load_Model of FzDecision)

In this case “MISSION_PROFILE” is the variable name. “scaler”

is a local input keyword indicating that 6 test runs will be conducted
and the quantitative values to be assigned to MISSION_PROFILE
will be, 10 30 50 70 90 70.

The next local keyword, “fuzzy_set” triggers input of set information
and is described in FxSet class headers. Suffice to say COMPLEX
and ROUTINE represent linguistic levels associated with the
variable “MISSION_PROFILE".

The last local keyword is “hedge” which triggers input of hedge
type information. Hedges act as modifiers in the semantic fuzzy
model being developed. In this case the modifier allows us to
examine linguistic rules associated with

VERY COMPLEX MISSION_PROFILE s.

A B T S 2

Define model parameters:

int result_var;

int result_;

char* Fz_Var_ID;
int num_scaler;
double* scaler;
double* D_o_T;

FzVariable* next;

FzSet* fs;

FzSet* last_{s;
FzSet* fs_result;

Hedge_*hedge;
Hedge_*last_hedge;

ff
1/
1/

Hedge_*

FzSet*
void

Define addiitonal member functions:

FzVariable(FzVariable*);
Find_FzHedge(char*);
Find_FzSet(char*);
Help();

< Page 194 of 198 >

void Reset_FS();

void Variable_Output(ostream& out);
void Variable_Setup(istream& in);

}s // Block: 167

/ e a2 20 L S8 A S S R
1/ NOTE:The integers in the constructor must be adjusted to reflect
1/ the number of variables and arguments in the model

/!
FzVariable::FzVariable(FzVariable *p)

/4 Define default conditions
i
result_var=FALSE;
result_ =FALSE;
Fz_Var_ID = new char{25];
last_fs=0;
last_hedge= 0;
next= p;
scaler= 0;
D_o T=0;
/i
1/ Setup A Result Fuzzy Set For Use In The De-fuzzification Process
1/ '
fs = new FzSet(last_fs);
last_fs=fs;
fs_result= fs;
strepy(fs->ID, "RESULT_");

}s /7 Block: 168
/I ++++t+t

Hedge_* FzVariable::Find_FzHedge(char* v_nam)

{
Hedge_* rtn_v;
rtn_v=0;
hedge=last_hedge;
while(hedge!=0)
|
if(strcmp(hedge->ID, v_nam)} == 0)
rtn_v=hedge;
hedge=hedge->next;
}

< Page 195 of 198 >

return(rtn_v);
}s /7 Block: 169
1/ B T o B L e i T i o S NSRS NS SRS

FzSet* FzVariable::Find_FzSet(char* v_nam)

{
FzSet* rtn_v;
rtn_v=0;
fs=last_fs;
while(fs!=0)
{
if(stremp(fs->ID, v_nam) == 0)
rin_v=fs;
fs=fs->next;
}
return{ rtn_v);
}s // Block: 170

/ Ftttttt
/ Note:Provide output to the terminal to assist in defining the object
1/ model and the information required

void FzVariable::Help()
{

return;
}s // Block: 171
/! o

void FzVariable::Reset_FS()
{

fs=last_fs;

while(fs!=0)
{
fs->Reset_Wrk();
fs=fs->next;
}

return;
}: /i Block: 172
/i e R e B R O S e e s P o T S S O T

void FzVariable::Variable_Output(ostream& out)
{

out << "\n Fuzzy Variable:" << Fz__Var_lD;“ |
for(fs=last_fs; fs |= 0; fs=fs->next)

< Page 196 of 198 >

{

out << "\nFuzzy set: *;
out << *fs;

}

out << "\n Fuzzy Variable:" << Fz_Var_ID << "\n";
7 for(int i=0; i<num_scaler; i++)
‘ - out<<""<<Fz_Var_ID << "[" << i+1 << "] " << scalerfi] << "\n";

out << "\n Fuzzy Variable:" << Fz_Var_ID;

for(hedge=last_hedge; hedge != 0; hedge=hedge->next)
{
out << "\n Fuzzy Hedges: *;
out << *hedge;
}

return;

¥ /1 Block: 173

// e S B o B o o L o NS ER S A B S BR AT

void FzVariable::Variable_Setup(istream& in)

{
char tmp_in[15];
in >> Fz_Var_ID;
in >> tmp_in;
while(stremp(tmp_in,"eoi") 1=0)
{
if(stremp(tmp_in,"scaler") ==0)
{
in >> num_scaler;
scaler = new double[num_scaler];
D_o_T= new double[num_scaler];
int icas=0;
in >> tmp_in;
while(stremp(tmp_in,"eoi") 1=0)

scalerficas]= double(atof(tmp_in)) ;
icas++;
in >> tmp_in;
if(icas > num_scaler)
cerr << "Error: (Scaler Input) too many values : " << icas << "\n" << flush;

}

else if(stremp(tmp_in,"fuzzy_set") ==0)

{

fs = new FzSet(last_fs);

< Page 197 of 198 >

in >> *fs;
last_fs=fs;

else if(stremp(tmp_in,"hedge") ==0)
{
hedge = new Hedge_{(last_hedge);
in >> *hedge;
last_hedge= hedge;
}
else
{
cerr << "Error: (FzVariable Input) unaceptable input option : " << tmp_in
<< "\n" << flush;
}
in >> tmp_in;
}
return;
}; // Block: 174

< Page 198 of 198 >

DISTRIBUTION: 1 MS1221 J.S. Rottler, 5400

1 Michael Maglich, SP282 1 MSi1221 A.B. Cox, 5405
Strategic Systems Programs 1 MS0417 WH. Ling, 5413
1931 Jefferson Davis Hwy. Attn: D.M. Fordham. 5413
; Arlington, Va 22241-5362 : o ’
{
- 1 Mike Wagner
ITTS 10 MS0455 M.E. Senglaub, 6232
v 1500 Garden of the Gods Rd. 1 MS9018 Central Technical Files, 8940-2
PO Box 7463 i)
Colorado Springs, CO 80933 2 MS0899 Technical Library, 4916
1 Dwayne Curtiss 1 MS0619 Review & Approval Desk, 15102
ITTS For Doe/OSTI
1111 Jefferson Davis Hwy.
Suite 700

Arlington, VA 22202

1 Rick Verbanec
Lockheed-Martin Missiles & Space
PO Box 3504
89-20/157
Sunnyvale, CA 94089-3504

1 Alex Loewenthal
Dept. 2514, Bldg. 611
Plant 10
Lockheed Martin Skunkworks
1011 Lockheed Way
Palmdale, CA 93599-2514

1 Wallace Louie
NSWC DL
Code K-44 .
17320 Dahlgren Rd.
Dahlgren, VA 22448

1 DougP. Anson
- LANL
TSA-5 MS F602
Los Alamos, NM 87545

1 Dr. C. Christopher Reed
The Aerospace Corporation
PO Box 92957- M4/943
Los Angeles, CA 90009-2957

MS0457 W.J. Tedeschi, 2001
MS0429 J.H. Stichman, 2100
MS0475 R.C. Hartwig, 2105
MS0475 J.B. Godfrey, 2105
MS0481 T.F. Hendrickson, 2167
MS9005 J.B. Wright, 2200

MS0501 M.K. Lau, 2338
Attn: T.E. Owen, 2338

-/

[N I R S R e

199

THIS PAGE INTENTIONALLY LEFT BLANK.

200

