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R E A C T O R  P H Y S I C S  Q U A R T E R L Y  R E P O R T  

A P R I L ,  M A Y  JUNE 1 9 7 0  

FOREWORD 

The ob jec t ive  of t h e  Reactor Physics Quarter ly  Report i s  

t o  inform the  s c i e n t i f i c  community i n  a  t imely manner of the  

t echn ica l  progress made on t h e  many phases of r e a c t o r  physics 

work wi th in  the  labora tory .  The repor t  contains  b r i e f  tech-  

n i c a l  d iscuss ions  of accomplishments i n  a l l  a reas  where s i g n i -  

f i c a n t  progress  has been made during t h e  q u a r t e r .  The r e s u l t s  

presented he re in  should be considered prel iminary,  and do no t  

c o n s t i t u t e  f i n a l  pub l i ca t ion  of the  work. A l i s t  of publ ica-  

t i o n s  and papers i ssued  during the  l a s t  q u a r t e r  i s  included i n  

the r e p o r t .  Anyone d e s i r i n g  a d d i t i o n a l  information concerning 

the work repor ted  he re in  is  encouraged t o  contac t  the  author  

d i r e c t l y .  
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R E A C T O R  P H Y S I C S  Q U A R T E R L Y  R E P O R T  

A p r i l ,  M a y ,  June 1 9 7 0  

1.0 SUMMARY 

T H E R M A L  R E A C T O R S  

A d e t a i l e d  t h e o r e t i c a l  a n a l y s i s  i s  be ing  made of t h e  PRCF 

c r i t i c a l  experiments conducted i n  t h e  coope ra t i ve  USAEC-CNEN 

program. T h e o r e t i c a l  methods and c a l c u l a t i o n a l  t echn iques  a r e  

being eva lua t ed  by comparing c a l c u l a t e d  and measured r e a c t i v i t i e s  

and power d i s t r i b u t i o n s .  In  g e n e r a l ,  va lues  of keff  p r e d i c t e d  

v i a  c a l c u l a t i o n  a r e  l a r g e r  t han  measured v a l u e s .  Sys temat ic  

d i f f e r e n c e s  a r e  noted between c a l c u l a t e d  and measured power 

d i s t r i b u t i o n s .  A s imple  mod i f i ca t i on  i n  c a l c u l a t i o n a l  t e c h -  

n ique s i g n i f i c a n t l y  improves t h e  power d i s t r i b u t i o n  c o r r e l a t i o n  

f o r  t h e  twelve c o n f i g u r a t i o n s  ana lyzed .  

A new v e r s i o n  of t h e  non l inea r  l e a s t - s q u a r e s  f i t t i n g  

program LEARN, c a l l e d  LEARN-I-C, has been w r i t t e n .  The new 

v e r s i o n  i n c r e a s e s  bo th  r e l i a b i l i t y  and speed i n  t he  s o l u t i o n  

of d i f f i c u l t  problems. 

C r i t i c a l  experiments were completed i n  t h e  PRCF i n  an 

H20 moderated l a t t i c e  (1.06 i n .  square  p i t c h )  of U02-4 w t %  

Pu02 f u e l  rods .  

The radiochemical  and mass s p e c t r o m e t r i c  a n a l y s i s  of  f u e l  

samples taken from the  PRTR Batch Core has  been completed. 

Gulf General  Atomic, I n c . ,  has  completed t h e  r e a n a l y s i s  of 

t h e  plutonium l a t t i c e  space dependent s p e c t r a l  measurements. A 

r e p o r t  (GA-10116) on t h e  r e s u l t s  of t h i s  r e s e a r c h  i s  be ing  

i s s u e d .  

S u b c r i t i c a l  measurements of c r i t i c a l  numbers of rods  f o r  

A1-Pu-H20 and U02-Pu02-H20 systems made i n  t he  CAF a r e  

completed. 



. 
I n t e r p r e t a t i o n  o f  e x p e r i m e n t a l  d a t a  h a s  been  comple ted  

f o r  t h e  d e t e r m i n a t i o n  o f  km f o r  a  un i fo rm l a t t i c e  o f  0 . 5 - i n .  

d i a m e t e r  U02-2.0 w t %  Pu02 r o d s  a t  1 . 0 - i n .  s q u a r e  p i t c h  i n  l i g h t  - 
w a t e r .  The d i s c r e p a n c y  between t h e o r e t i c a l  p r e d i c t i o n  and t h e  

v a l u e  f o r  km i n f e r r e d  from PCTR measurements ,  a p p a r e n t  i n  t h e  

p r e l i m i n a r y  a n a l y s i s ,  h a s  been  r e s o l v e d  by a  d e t a i l e d  

r e - e v a l u a t i o n  of  t h e  e x p e r i m e n t a l  d a t a .  The p r e v i o u s  d i s c r e p -  

ancy r e s u l t e d  from an accumula t ion  of  s e v e r a l  s m a l l  s y s t e m a t i c  

e r r o r s  which had  been  e i t h e r  n e g l e c t e d  o r  i m p r o p e r l y  e v a l u a t e d .  

The f o l l o w i n g  computer  codes  have been  documented and 

r e l e a s e d  t o  t h e  Argonne Code C e n t e r .  

BRT-I: Battelle-Revised-THERMOS-I 

BMC-I: The B a t t e l l e  Monte C a r l o  Code 

HRG 3: A code f o r  C a l c u l a t i n g  t h e  Slowing-Down Spect rum 

i n  t h e  P1 o r  B 1  Approximat ion  

DBUFIT-I : A L e a s t  Squares  A n a l y s i s  Code f o r  Nuc lea r  

Burnup D a t a .  

An a b s t r a c t  of  e a c h  o f  t h e s e  codes  can  be found i n  S e c t i o n  2 . 0 .  

Va lues  o f  km(T)  f o r  a  T ~ o ~ - ~ ~ ' u c ~ - c  HTGR l a t t i c e  have been  

o b t a i n e d  from e x p e r i m e n t s  i n  HTLTR a t  t e m p e r a t u r e s  up t o  

1000 " C .  The r e s u l t s  a r e  compared w i t h  v a l u e s  of  km(T)  f o r  t h e  

same l a t t i c e  o b t a i n e d  from c a l c u l a t i o n .  The measured change i n  

km between 20 "C and 1000 "C i s  s l i g h t l y  l a r g e r  t h a n  t h e  

c a l c u l a t e d  change ,  b u t  t h e  agreement  i s  g e n e r a l l y  good.  

Va lues  of  t h e  o v e r a l l  t e m p e r a t u r e  c o e f f i c i e n t  o f  r e a c t i v i t y  

f o r  HTLTR a s  a  f u n c t i o n  o f  t e m p e r a t u r e ,  measured d u r i n g  t h e  

second  HTGR e x p e r i m e n t  ( ~ h 0 ~ - ~ ~ ~ ~ 0 ~ - 0 )  , were s i g n i f i c a n t l y  d i f  - 
f e r e n t  f rom t h e  v a l u e s  c a l c u l a t e d  u s i n g  t h e  2DB model o f  HTLTR. 

The l a r g e  d i s c r e p a n c i e s  p r e c l u d e  t h e  u s e  of  t h e  p r e s e n t  model 

f o r  p r e d i c t i n g  t h e  change i n  HTLTR e x c e s s  r e a c t i v i t y  t h r o u g h o u t  

an e x p e r i m e n t  t o  1000 "C and l o a d i n g s  w i l l  have  t o  be  

e s t a b l i s h e d  i n  an  e m p i r i c a l  way u n t i l  t h e  c a u s e s  o f  t h e  d i s -  

c r e p a n c i e s  can  be i d e n t i f i e d  and removed. 



A h i g h l y  s t a b l e  c o n t r o l  system has been developed f o r  con- 

t r o l l i n g  t he  p r e s s u r e  of t h e  n i t r o g e n  atmosphere i n s i d e  HTLTR. 

A fu sed  q u a r t z  p r e s s u r e  gage has been i n t e r f a c e d  wi th  t h e  

PDP-7 Process  Cont ro l  Computer and r s p e c i a l  so f tware  programs 

have been developed which, i n  combination,  c o n t r o l  t h e  r e a c t o r  

atmosphere p r e s s u r e  t o  w i t h i n  20.01 Tor r  of a  p r e s e l e c t e d  s e t  

p o i n t  a u t o m a t i c a l l y .  This p r e c i s e  c o n t r o l  of t h e  n i t r o g e n  

p r e s s u r e  reduces o r  e l i m i n a t e s  t h e  need f o r  c o r r e c t i o n s  t o  

r e a c t i v i t y  d a t a  due t o  v a r i a t i o n s  i n  p r e s s u r e  between o r  

dur ing  measurements. 

A computer program has been developed t o  c a l c u l a t e  t h e  

temperature  d i s t r i b u t i o n  i n  t h e  p l a t e s  of  an HTLTR v e r t i c a l  

s a f e t y  rod a s  a  f u n c t i o n  of time a f t e r  i n s e r t i o n  from a  20 "C 

environment i n t o  a  1000 "C environment. The program has  been 

used ,  t o g e t h e r  w i th  subsequent  s t r e s s  a n a l y s e s ,  t o  confirm t h e  

cause of t h e  r e c e n t  VSR f a i l u r e  and t o  e v a l u a t e  p o t e n t i a l  new 

VSR des igns .  

F A S T  R E A C T O R S  

A smal l  UA1  f a s t  co re  was i n s t a l l e d  i n  t h e  c e n t e r  of t h e  

PCTR f a s t  neu t ron  c a v i t y .  Measured r e a c t i v i t y  worths of t he  

c e n t r a l  c e l l  and a  s t anda rd  absorber  were analyzed t o  d e t e r -  

mine k; f o r  t h e  f a s t  c o r e .  Agreement between experiment and 

c a l c u l a t i o n s  b u i l d s  conf idence i n  t h e  method. Very a c c u r a t e  

measurements can be made of k; f o r  f a s t  r e a c t o r  co re s  having 

low l eakage .  



2 . 0  THERMAL REACTORS 

CALCULATIONS OF POWER DISTRIBUTIONS AND REACTIVIT IES 

V .  0 .  U o t i n e n ,  G .  L .  G e l h a u s ,  U .  P. J e n q u i n  a n d  C .  R .  Go rdon  

In t roduc t ion  

A d e t a i l e d  a n a l y s i s  i s  i n  p rog re s s  of t h e  c r i t i c a l  

experiments conducted i n  t h e  PRCF under a  coope ra t i ve  

program between t h e  USAEC and t h e  I t a l i a n  C N E N .  The purpose 

of t h i s  a n a l y s i s  i s  t o  e v a l u a t e  c a l c u l a t i o n a l  methods and 

models by comparing c a l c u l a t e d  power d i s t r i b u t i o n s  and r e a c -  

t i v i t i e s  w i t h  t hose  measured i n  t h e  USAEC-CNEN program. The 

exper imental  program comprised a  l a r g e  number of l a t t i c e  con- 

f i g u r a t i o n s  u s ing  2.35 w t %  enr iched  U02 rods  and Pu02-U02 rods 

of s e v e r a l  enr ichments .  The c o n f i g u r a t i o n s  ranged from s imple  

uniform l a t t i c e  a r r a y s  t o  a r r a y s  which s imu la t ed  b o i l i n g  wate r  

r e a c t o r  f u e l  bundles w i th  rods  of lower enrichments on t h e  

edges and co rne r s  t o  reduce power peaking.  

The a n a l y s i s  thus  f a r  has  been a p p l i e d  t o  a r r a y s  i n  which 

a  s i n g l e  type  of f u e l  rod was used.  This  s t udy  comprises a  

t o t a l  of  1 2  l o a d i n g s ,  s i x  c o n f i g u r a t i o n s  f o r  each of two f u e l  

t ypes ,  2.35- w t %  enr iched  U02 and 2 w t %  Pu02-U02 (8% 2 4 0 ~ u )  

rods .  The s i x  c o n f i g u r a t i o n s  were (1) a  r e g u l a r  uniform 

load ing  of r o d s ;  (2 )  t h e  same load ing  b u t  w i th  a  wate r  ho l e  

i n  the  c e n t e r  ( i .  e . ,  t h e  c e n t r a l  f u e l  rod was removed) ; 

(3)  water  s l a b  ( a  row of f u e l  rods  removed) ; (4 )  wate r  c r o s s ;  

(5)  a  7 x 7 rod a r r a y  surrounded by wate r  s l o t s ;  ( 6 )  a  simil3r 

9 x 9 rod a r r a y .  

I n  t h e s e  twelve exper iments ,  s p a t i a l  power d i s t r i b u t i o n s  

were measured by gamma-scanning s e l e c t e d  f u e l  rods .  The kef f  
f o r  an i n f i n i t e l y - r e f l e c t e d  a r r a y  was a l s o  determined f o r  each 

ca se .  The main i n t e r e s t  i n  t h e  power d i s t r i b u t i o n  measurements 

was i n  t h e  rod - to - rod  d i s t r i b u t i o n ,  e x p e c i a l l y  t h e  e f f e c t s  of 

wate r  s l o t s  on t h e  power peaking.  



The s e r i e s  of e x p e r i m e n t s ,  r a n g i n g  from t h e  s i m p l e s t  

( r e g u l a r )  a r r a y  t o  one s i m u l a t i n g  a  7 x 7 o r  9 x 9 b u n d l e ,  

p r o v i d e s  a  s y s t e m a t i c  t e s t  f o r  t h e  e v a l u a t i o n  of  c a l c u l a t i o n a l  - 

methods . 
C a l c u l a t i o n s  

I n  t h e  a n a l y s i s  of  H20-moderated and r e f l e c t e d  e x p e r i m e n t s  

( e s p e c i a l l y  c l e a n  c r i t i c a l  e x p e r i m e n t s )  one g e n e r a l l y  assumes 

t h e  r e a c t o r  i s  composed o f  two r e g i o n s :  c o r e  and r e f l e c t o r .  

Few-group c r o s s  s e c t i o n s  a r e  c a l c u l a t e d ,  assuming t h a t  an  

i n f i n i t e  medium spec t rum a p p l i e s  i n  e a c h  r e g i o n .  The few-group 

c r o s s  s e c t i o n s  a r e  t h e n  used  i n  a  d i f f u s i o n  t h e o r y  c a l c u l a t i o n  

I n  an e a r l i e r  s t u d y  ( 2 )  i t  was p o i n t e d  o u t  t h a t  such  a  two- 

r e g i o n ,  i n f i n i t e  medium model g e n e r a l l y  does  n o t  p r e d i c t  t h e  

power d i s t r i b u t i o n  w e l l ,  a l t h o u g h  it  may y i e l d  a  s a t i s f a c t o r y  

v a l u e  f o r  k e f f .  I n  g e n e r a l ,  t h i s  method shows a  pronounced 

t r e n d ,  such  t h a t  i f  t h e  power d i s t r i b u t i o n  i s  n o r m a l i z e d  a t  t h e  

c e n t e r  o f  t h e  c o r e ,  t h e  power n e a r  t h e  c o r e - r e f l e c t o r  i n t e r f a c e  

i s  c o n s i s t e n t l y  u n d e r - e s t i m a t e d .  A s i m p l e  m o d i f i c a t i o n ,  which 

r e s u l t e d  i n  c o n s i d e r a b l y  improved c o r r e l a t i o n s ,  was r e p o r t e d  

i n  R e f e r e n c e  2 .  T h i s  s i m p l e  m o d i f i c a t i o n  c o n s i s t e d  i n  i n t r o -  

duc ing  an e x t r a  r e f l e c t o r  r e g i o n  (one l a t t i c e  u n i t  t h i c k ,  

a d j a c e n t  t o  t h e  c o r e )  which i s  r e p r e s e n t e d  by c r o s s  s e c t i o n s  

ave raged  o v e r  a  spec t rum c h a r a c t e r i s t i c  o f  t h e  c o r e .  

The m u l t i g r o u p  t r a n s p o r t  t h e o r y  codes  HRG and B a t t e l l e -  

Revised  -THERMOS were used  t o  g e n e r a t e  f o u r - g r o u p  c r o s s  

s e c t i o n s  f o r  c o r e  and r e f l e c t o r  r e g i o n s .  These  c r o s s  s e c t i o n s  

were used  i n  t h e  two-d imens iona l  d i f f u s i o n  t h e o r y  code 2 D B  i n  

an x - y  c a l c u l a t i o n  o f  power d i s t r i b u t i o n s  and k  e f f .  

Four mesh p o i n t s  p e r  c e l l  were  used  i n  t h e  2DB c a l c u l a -  

t i o n s .  T h i s  mesh d e s c r i p t i o n  was c a r r i e d  o u t  two l a t t i c e  u n i t s  



i n t o  t h e  r e f l e c t o r ;  t hen  t h e  mesh p o i n t s  were more widely  

spaced.  An a x i a l  buck l ing  of 8 . 9  m - 2  was used c o n s i s t e n t l y .  

I n  our c u r r e n t  a n a l y s i s  we have compared t h r e e  v a r i a t i o n s  

of our  c a l c u l a t i o n a l  model: 

Model 1. The u s u a l  two-region,  inf in i te-medium model 

(descr ibed  i n  p rev ious  s e c t i o n ) ;  

Model 2 .  A s imple  mod i f i ca t i on  c o n s i s t i n g  of an a d d i t i o n a l  

r e f l e c t o r  r eg ion  whose c r o s s  s e c t i o n s  a r e  ob t a ined  from c e l l  

c a l c u l a t i o n s  performed f o r  t h e  core  (desc r ibed  i n  t h e  p rev ious  

s e c t i o n ) .  I n  t h i s  model a l l  wa te r  gaps a l s o  con ta ined  t h e s e  

modif ied  r e f l e c t o r  c r o s s  s e c t i o n s .  

Model 3.  A more d e t a i l e d  r e p r e s e n t a t i o n  of t h e  d i f f e r -  

ences i n  spectrum i n  succes s ive  rows of f u e l  and wa te r .  Th is  

was accomplished wi th  THERMOS c a l c u l a t i o n s  i n  s l a b  geometry, 

w i t h  a p p r o p r i a t e  homogenized r eg ions  of c o r e ,  r e f l e c t o r  and 

gaps;  e d i t i n g  was done over  t h e  p roper  s p a t i a l  p o i n t s  t o  

o b t a i n  average c r o s s  s e c t i o n s  f o r  each "row" of f u e l  and wa te r .  

For a n a l y s i s  of t h e  U02 load ings ,  f i v e  s e t s  of  co re  c r o s s  s e c -  

t i o n s  were used t o  r e p r e s e n t  f u e l  rods  i n  v a r i o u s  l o c a t i o n s ,  

and f o u r  s e t s  of c r o s s . s e c t i o n s  were used t o  r e p r e s e n t  wa te r .  

For a n a l y s i s  of t h e  U02-Pu02 l o a d i n g s , t h r e e  s e t s  of  c o r e  c r o s s  

s e c t i o n s  and t h r e e  s e t s  of wate r  c r o s s  s e c t i o n s  were used.  

Resu l t s  

Power D i s t r i b u t i o n s  

Power d i s t r i b u t i o n s  c a l c u l a t e d  u s ing  t h e  t h r e e  models 

de sc r ibed  above were compared wi th  measured d i s t r i b u t i o n s .  

The t r e n d  t h a t  i s  s o  ev iden t  i n  t h e  r e g u l a r  l a t t i c e s  when 

us ing  Model 1 ( i . e . ,  c a l c u l a t e d  power c o n s i s t e n t l y  under-  

e s t ima ted  nea r  c o r e - r e f l e c t o r  boundary) was s i g n i f i c a n t l y  

reduced when t h e  modified models were used.  The s imple  



modi f i ca t i on  used i n  Model 2 g ives  a  b e t t e r  c o r r e l a t i o n  t han  
u 

t h e  more r e f i n e d  mod i f i ca t i on  used i n  Model 3 .  This  i s  ev iden t  

e s p e c i a l l y  i n  t h e  ca se  of t h e  mixed oxide l oad ing .  - e 

The l a t t i c e  p o s i t i o n  t h a t  one chooses f o r  a  no rma l i za t i on  

p o i n t  i s  r a t h e r  a r b i t r a r y ,  y e t  t h i s  cho ice  can a f f e c t  t h e  

t r e n d s  t h a t  one s ee s  as  wel l  as  t h e  o v e r a l l  goodness o r  badness 

of t h e  c o r r e l a t i o n .  The c e n t e r  of t h e  c o r e  i s  one l i k e l y  

no rma l i za t i on  p o i n t .  However, i f  t h i s  p o i n t  i s  chosen,  t hen  

one i s  bas ing  h i s  whole c o r r e l a t i o n  on t h e  accuracy of t h a t  one 

measurement ( s i n c e  t h e r e  i s  only  one rod i n  t h e  c e n t e r ) .  A 

b e t t e r  cho ice  might be a  l o c a t i o n  away from t h e  c e n t e r  and a l s o  

away from wate r  boundar ies ,  a  l o c a t i o n  which would permi t  f o u r  

o r  e i g h t  symmetrical  rods  t o  be measured, t h e  average of t h e s e  

measurements then  prov id ing  a  more r e l i a b l e  no rma l i za t i on  p o i n t .  

However, m u l t i p l e  symmetrical  rods  were n o t  measured i n  every 

c a s e .  Furthermore,  no ma t t e r  what p o i n t  one chooses ,  t h e r e  a r e  

always nonun i fo rmi t i e s  i n  t h e  f u e l  r o d s ,  i n  t h e  l a t t i c e  p l a t e s ,  

and bowing of f u e l  r o d s ,  e t c . ,  which i n t roduce  unknown e r r o r s  

i n t o  t h e  no rma l i za t i on .  

To e l i m i n a t e  t h i s  a r b i t r a r i n e s s ,  and t o  p rov ide  a  meaning- 

f u l  and c o n s i s t e n t  c r i t e r i o n  f o r  comparison of methods, we 

chose t o  r e p r e s e n t  t h e  goodness of each c o r r e l a t i o n  by a  s t a n -  - 

dard d e v i a t i o n ,  o ,  de f ined  by (1 1 

where N i s  t h e  number of rods measured, 

N 
and i = 1 a i / N .  

i 



The d e f i n i t i o n  of o impl ies  an " e f f e c t i v e "  no rma l i za t i on  such 

t h a t  t h e  average f r a c t i o n a l  d e v i a t i o n ,  6 ,  i s  zero .  This  d e f i -  

n i t i o n  thus  makes o independent of  t h e  p a r t i c u l a r  cho ice  of 

no rma l i za t i on ,  and prov ides  us  a  meaningful ,  c o n s i s t e n t  measure 

f o r  purposes of comparing methods. 

The o ' s  f o r  t h e  va r ious  ca se s  a r e  g iven i n  Table  2 . 1 .  We 

can make t h e  fo l lowing  genera l  o b s e r v a t i o n s :  

I n  every ca se  o was s i g n i f i c a n t l y  reduced when modi f ica -  

t i o n s  were made t o  t h e  s imple  two-region,  i n f i n i t e  

medium model (Model 1 ) .  

I n  most c a s e s ,  Model 2 g ives  t h e  b e s t  c o r r e l a t i o n .  

The s i g n i f i c a n t  improvement, and t h e  goodness of t h e  c o r r e l a -  

t i o n s  ob t a ined  wi th  t h e  s imple  mod i f i ca t i on  (Model 2 ) ,  a s  we l l  

a s  i t s  s i m p l i c i t y ,  make t h i s  model a t t r a c t i v e  f o r  c a l c u l a t i n g  

power d i s t r i b u t i o n s  i n  H20 c o r e s .  

C a l c u l a t i o n  of k n f f  
* 

The mod i f i ca t i ons  t h a t  were in t roduced  t o  t h e  two- reg ion ,  

in f in i te -medium model t o  improve power d i s t r i b u t i o n  c o r r e l a -  

t i o n s  r e s u l t e d  i n  i n c r e a s e s  i n  c a l c u l a t e d  v a l u e s  of k e f f .  Th is  

i s  c o n s i s t e n t  wi th  comparisons between t r a n s p o r t  and d i f f u s i o n  

t h e o r y  r e s u l t s  (3) which i n d i c a t e  t h a t  t r a n s p o r t  t heo ry  g ives  

h ighe r  va lues  of k e f f .  That  i s ,  when one r e p r e s e n t s  t h e  co re -  

r e f l e c t o r  boundary w i th  a  b e t t e r  model (be i t  t r a n s p o r t  theory  

o r  a  mod i f i ca t i on  t o  d i f f u s i o n  theory)  t h i s  r e s u l t s  i n  h i g h e r  

va lues  of k e f f .  The c a l c u l a t e d  va lues  of keff  a r e  l i s t e d  i n  

Table  2 . 2 .  

For t h e  U02 load ings ,  t h e  keff  c a l c u l a t e d  u s ing  Model 1 

were c o n s i s t e n t l y  low, wi th  d i s c r e p a n c i e s  rang ing  from 0 . 2 4  

t o  1 . 7 % .  Best  agreement between measured and c a l c u l a t e d  keff  

va lues  was ob t a ined  u s i n g  Model 2 ,  w i t h  d i s c r e p a n c i e s  ranging 

from +0.34% t o  - 0 . 1 7 % .  Model 3  gave c o n s i s t e n t l y  h igh  va lues  

k e f f  (by 1 . 0 %  t o  1 . 7 % ) .  



TABLE 2.1. Standard Deviation ( % )  in Power Distributions 

U" 2 Pu02-uo2 
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

Regular 2.09 1.18 1.05 3.37 1.86 2.17 

H20-hole 1.48 0.98 1.14 2.48 1.78 - 

H20 S lab  1.95 1.48 1.56 1.60 1.38 1.13 

H20 Cross 1.57 1.37 1.21 2.13 1.40 - 
7 x 7  1.96 1.72 2.16 2.26 1.69 1.78 

9 x 9  2.91 2.67 3.12 2.29 1.90 - 

TABLE 2.2. Values of keff 

Model Model Mode 1 Model Model Model 
Exp. 1 2 3 Exp. 1 2 3 

Regular 1.0032 1.0008 1.0051 1.0164 1.0006 0.9960 1.0080 1.0009 

H20 Hole 1.0025 1.0000 1.0046 1.0161 1.0020 0.9973 1.0096 - 
H20 Slab 1.0018 0.9957 1.0044 1.0162 1.0068 0.9982 1.0182 1.0063 

* 



For t h e  Pu02-U02 load ings ,  t h e  keff  c a l c u l a t e d  us ing  

Model 1 were c o n s i s t e n t l y  low, w i th  t h e  d i s c r e p a n c i e s  ranging 

from 0 .5  t o  1 . 7 % .  The kef f  c a l c u l a t e d  us ing  Model 2 were con- 

s i s t e n t l y  h i g h ,  w i th  d i s c r e p a n c i e s  ranging from 0.7 t o  1 . 8 % ;  

Model 3 gave t h e  c l o s e s t  agreement w i t h  measured keff  v a l u e s .  

Conclusions 

The s imple  mod i f i ca t i on  i nco rpo ra t ed  i n  Model 2 of our  

a n a l y s i s  s i g n i f i c a n t l y  improved power d i s t r i b u t i o n  c o r r e l a t i o n s  

f o r  t h e  twelve c o n f i g u r a t i o n s  t h a t  were analyzed.  

This  improvement, t o g e t h e r  w i t h  t h e  s i m p l i c i t y  of t h i s  

method, makes t h i s  method a t t r a c t i v e  f o r  c a l c u l a t i n g  power d i s -  

t r i b u t i o n s  i n  H20 c o r e s .  The s i m p l i c i t y  of  t h e  model comes 

about  because c r o s s  s e c t i o n s  f o r  t h e  modif ied  wate r  r eg ions  

(water  gaps and t h e  r e f l e c t o r  ad j acen t  t o  t h e  core )  a r e  

ob t a ined  d i r e c t l y  from c e l l  c a l c u l a t i o n s  f o r  t h e  c o r e .  No 

a d d i t i o n a l  c a l c u l a t i o n s  a r e  necessary .  

The method w i l l  n ex t  be used t o  c a l c u l a t e  power d i s t r i b u -  

t i o n s  i n  more complex load ings  which c o n t a i n  f u e l  rods  of 

s e v e r a l  enr ichments .  
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N O N L I N E A R  L E A S T - S Q U A R E S  D A T A  A N A L Y S E S  

D .  A .  K o t t w i t z  

A new v e r s i o n  of  t h e  n o n l i n e a r  l e a s t - s q u a r e s  f i t t i n g  p r o -  

gram LEARN, c a l l e d  LEARN-I-C, has  been  w r i t t e n  and i s  r eady  

f o r  g e n e r a l  u s e .  T h i s  program s u p e r c e d e s  v e r s i o n s  LEARN-I-A (2)  

and LEARN-I-B. (3)  T h i s  v e r s i o n  i n c l u d e s  m o d i f i c a t i o n s  which 

i n c r e a s e  b o t h  r e l i a b i l i t y  and s p e e d  f o r  d i f f i c u l t  problems.  

I n  a d d i t i o n ,  t h r e e  new o p t i o n s  c o n c e r n i n g  t h e  p l o t t i n g  o f  

g r a p h i c a l  o u t p u t  on t h e  CALCOMP p l o t t e r  a r e  a v a i l a b l e  t o  t h e  

u s e r  a t  e x e c u t i o n  t i m e :  

1 )  O p t i o n a l  number of t i m e s  t h e  g raph  i s  t r a c e d ,  

2) O p t i o n a l  d i s t a n c e  between t h e  i n i t i a l  pen 

p o s i t i o n  and t h e  edge o f  t h e  p a p e r ,  

3) O p t i o n a l  s p a c i n g  between s u c c e s s i v e  o r i g i n s  i n  c a s e  

of  m u l t i p l e  p l o t s  d u r i n g  a  s i n g l e  r u n .  
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C R I T I C A L  E X P E R I M E N T S  I N  U 0 2 - 4  w t %  P u 0 2  F U E L E D - H 2 0  M O D E R A T E D  

A S S E M B L I E S  

W .  P .  S t i n s o n  

C r i t i c a l  exper imen t s  were conduc ted  i n  t h e  Plu tonium Recycle  

C r i t i c a l  F a c i l i t y  (PRCF) t o  o b t a i n  d a t a  f o r  v e r i f y i n g  t h e  a c c u -  

r a c y  of n e u t r o n i c  d e s i g n  methods. The f u e l  rods  c o n t a i n e d  

U02-4 w t %  Pu02 w i t h  1 8 %  2 4 0 ~ u ( 1 )  and t h e  modera tor  was H20. 



The c o r e  c o n s i s t e d  o f  t h e  f u e l  (1 /2  i n .  d i a m e t e r  r o d s )  i n  a  

1 .06  i n .  s q u a r e  l a t t i c e  p i t c h  loaded  t o  form a  c y l i n d e r  w i t h  

a  36 i n .  h e i g h t  and a  r a d i u s  e q u i v a l e n t  t o  126 f u e l  rods  when 

c r i t i c a l .  The measurements conduc ted  on t h i s  c o r e  were :  . C r i t i c a l  s i z e  

K i n e t i c  p a r a m e t e r s  ( 6 1 ~ )  

F lux  d i s t r i b u t i o n s  

Void c o e f f i c i e n t  

A p p r o a c h - t o - c r i t i c a l .  

A p p r o a c h - t o - c r i t i c a l  d a t a  were t a k e n  a s  a  check on t h e  

t e c h n i q u e s  u s e d  i n  s i m i l a r  t y p e  measurements made i n  t h e  

C r i t i c a l  Approach F a c i l i t y  (CAF). The c r i t i c a l  l o a d i n g  i n f e r r e d  

from t h e  s u b c r i t i c a l  approach  was 126.70 + 0 . 0 4  r o d s  which 

a g r e e s  w e l l  w i t h  t h e  a c t u a l  c r i t i c a l  l o a d i n g  o f  126.44  

i 0.07 r o d s .  

The k i n e t i c s  measurements were  made by r e c o r d i n g  and 

a n a l y z i n g  t h e  r e a c t o r  n o i s e .  The p r e l i m i n a r y  v a l u e  o f  6 / E  

o b t a i n e d  i s  93 i 2 s e c - l .  The f l u x  d i s t r i b u t i o n  was measured 

by s c a n n i n g  t h e  f u e l  r o d s  f o r  f i s s i o n  p r o d u c t  decay  gamma 

r a y s .  Empty t h i n - w a l l  aluminum t u b e s  were p l a c e d  i n  i n t e r -  

s t i t i a l  p o s i t i o n s  i n  t h e  c e n t r a l  p a r t  o f  t h e  c o r e  t o  o b t a i n  

d a t a  from which t h e  v o i d  c o e f f i c i e n t  can  be  d e t e r m i n e d .  

A n a l y s i s  o f  t h e  d a t a  i s  c o n t i n u i n g  t o  o b t a i n  f i n a l  v a l u e s .  

Refe rence  

BURNUP DATA FROM THE PRTR BATCH CORE EXPERIMENT 

D.  E .  C h r i s t e ~ s e n  a n d  R. P.  M a t s e n  

F o u r t e e n  r o d s  o f  t h e  PRTR Batch Core Experiment  ('1 were 

s e l e c t e d  f o r  d e s t r u c t i v e  a n a l y s i s .  T h i r t y  f i v e  samples  were  



c u t  from t h e s e  f o u r t e e n  r o d s .  A g r o s s  gamma s c a n  was made o f  

e a c h  r o d  t o  measure t h e  f i s s i o n  p r o f i l e  of  t h e  r o d  i n  o r d e r  t o  
1 

s e l e c t  a p p r o p r i a t e  samples .  Gamma r a y  s p e c t r a  were  t h e n  t a k e n  

a t  t h e  p o s i t i o n s  of t h e  i n d i v i d u a l  samples .  The l o c a t i o n  and 

i r r a d i a t i o n  h i s t o r y  of  t h e  samples  a r e  g i v e n  i n  T a b l e  2 . 3 .  

The i n i t i a l  c o m p o s i t i o n  of  t h e  v a r i o u s  p lu ton ium f u e l  l o t s  a r e  

shown i n  T a b l e  2 . 4 .  Wi th in  an e l e m e n t ,  p o s i t i o n s  j ,  n ,  and r 

a r e  from t h e  1 2 - r o d  o r  e x t e r i o r  r i n g ,  p o s i t i o n s  c  and f  a r e  

from t h e  6 - r o d  o r  middle  r i n g ,  and p o s i t i o n  a  i s  t h e  c e n t e r  

rod  o f  t h e  n i n e t e e n  rod  c l u s t e r .  The l o c a t i o n  of  each  sample 

w i t h  r e s p e c t  t o  t h e  t o p  o f  t h e  f u e l  ( i n c l u d i n g  t h e  U02 p e l l e t )  

i s  a l s o  i n d i c a t e d  i n  T a b l e  2 . 3 .  

The d e s t r u c t i v e  a n a l y s i s  d a t a  have  been  p r o c e s s e d  t h r o u g h  

t h e  d a t a  a n a l y s i s  code ,  ISODIL. P r e l i m i n a r y  r e s u l t s  i n d i c a t e s  

t h e  maximum e x p o s u r e  i s  9630 MWd/MTM f o r  t h e  sample from t h e  

e x t e r i o r  rod  i n  Element 6063 which was l o c a t e d  i n  t h e  f i r s t  

r i n g  of t h e  c o r e .  

A d d i t i o n a l  a n a l y s i s  of  t h e  d a t a  w i l l  b e  made t o  d e r i v e  

r a t i o s  of  e f f e c t i v e  c r o s s  s e c t i o n s .  The i s o t o p i c  d a t a  w i l l  be 

used  i n  c o n j u n c t i o n  w i t h  t h e  gamma r a y  s p e c t r a l  d a t a  i n  s t u d i e s  

which s e e k  t o  d e t e r m i n e  f u e l  burnup n o n d e s t r u c t i v e l y .  A l l  t h e  

d a t a  w i l l  be  u s e d  a s  a  b a s i s  f o r  v e r i f y i n g  t h e  a c c u r a c y  of  

n e u t r o n  d e s i g n  methods i n  p r e d i c t i n g  r e a c t o r  burnup.  

Refe rence  

1 .  J .  R. Worden, W. L. Puree22 and L. C. ~ c h m i d .  Physics 
~xperiment-High Power Density Core of the PRTR, BNWL-221, 
~attelle-Northwest. 1966. 

G U L F  G E N E R A L  A T O M I C  S P E C T R A L  D A T A  

The r e a n a l y s i s  of  t h e  p lu ton ium l a t t i c e  s p a c e  dependen t  

s p e c t r a l  measurements conduc ted  by Gulf Genera l  Atomic,  I n c .  



TABLE 2 . 3 .  Batch  Core Samples 

P o s i t i o n  P o s i t i o n  I r r a d i a t i o n  
F u e l  i n  R e a c t o r  i n  Pu F u e l  T e r m i n a t e d  Removal  

E l e m e n t  No. ( R i n g )  Rod No. E l e m e n t  L o t  o n  D u r i n g  

6 0 6 5  3  FS12 r 6 2 - 2 3  9 - 1 0 - 6 7  I n t e r i m  
T e s t  1 

3  FS16 r 6 2 - 2 3  1 - 2 8 - 6 8  I n t e r i m  
T e s t  2  

P o s i t i o n *  
i n  Rod,  

S a m p l e  i n .  

1 6 . 5  

2A 1 0 . 4  

3A 2 9 . 4  

4  4 1 . 3  

5  4 7 . 5  

A p p r o x i m a t e  
D a t e  t h a t  
S a m p l e s  E x p o s u r e ,  
A n a l y s e d  MWd/MTM 

9 - 1 0 - 6 8  1 5 4 0  

9 - 1 0 - 6 8  1 7 7 0  

9 - 1 0 - 6 8  2  9  0  0  

9 - 1 0 - 6 8  2  4  9  0  

9 - 1 0 - 6 8  2140  

* L e n g t h  o f  F u e l  = 5 8 . 6 7 5  + 0 . 1 2 5  i n .  w h i c h  i n c l u d e s  5 7 . 8 3 7  + 0 . 1 2 5  i n .  o f  U 0 2 - P u 0 2  a n d  a  U 0 2  p e l l e t  o n  e a c h  e n d .  



TABLE 2.3 (contd) 

Approximate 
Date that 
Samples Exposure, 

Analyzed MTd/MTM 

6-15-69 8920 

Position 
Fuel in Reactor 

Element No. (Ring) Rod No. 

6 0 6 3 1 FSOl 

Position 
on 

Element 

Irradiation 
Terminated 

on 

6-1-68 

Position 
in Rod, 

in. 

28.9 

Pu Fuel 
Lot 

62- 2 3  

Removal 
During Sample 

Interim 3  
Test 3 

Interim 
Test 4 1 
(Reactor 
Sh tdown) . 3 

2 

3 

1 

2 

1 

2 



TABLE 2.4. Initial Composition of Plutonium Fuel Lots 

Fuel Lot 2 3 8 ~ u  2 3 9 ~ u  

62-10 Unknown 91.045 8.086 0.817 0.052 

has  been completed. A f i n a l  r e p o r t  e n t i t l e d  Reana lys i s  of 

Plutonium L a t t i c e  S p e c t r a l  Data ,  GA-10116, has  been w r i t t e n  

and i s  being i s s u e d .  The I n t r o d u c t i o n  and Conclusions s e c t i o n s  

of t h i s  r e p o r t  a r e  r epea t ed  h e r e .  

I n t r o d u c t i o n  

"This r e p o r t  d e s c r i b e s  t h e  r e s e a r c h  performed f o r  P a c i f i c  

Northwest Laboratory  (PNL) through USAEC Cont rac t  AT(45-1)-1830 

dur ing  t h e  p e r i o d  November 1, 1969 through A p r i l  30, 1970. 

The r e s e a r c h  covers  t h e  r e a n a l y s i s  and documentation of t h e  

d a t a  measured a t  Gulf General Atomic f o r  t h e  U.S. Atomic 

Energy Commission under Cont rac t  AT(04-3)-167, P r o j e c t  Agree- 

ment No. 32. These d a t a  were t i m e - o f - f l i g h t  thermal neu t ron  

s p e c t r a  measured a t  v a r i o u s  p o s i t i o n s  and a t  d i f f e r e n t  tempera- 

t u r e s  i n  H20-moderated l a t t i c e s  of Pu-A1 f u e l .  I n  t h i s  

program s i g n i f i c a n t  d i s t o r t i o n s  were found i n  t h e  s p e c t r a l  d a t a  

t h a t  were be l i eved  t o  be due t o  complex neu t ron  emiss ion t ime 

e f f e c t s  which could n o t  be t r e a t e d  a t  t h e  time w i t h  e x i s t i n g  

codes.  I n  t h e  program conducted f o r  P N L ,  t h e s e  e f f e c t s  have 

been c o r r e c t e d  f o r  a s  f a r  a s  p o s s i b l e  and t h e  r e v i s e d  measured 

and c a l c u l a t e d  d a t a  have been l i s t e d  f o r  r e f e r e n c e  u s e .  

"The experiments performed a r e  desc r ibed  i n  d e t a i l  i n  

Reference 1 ;  however, f o r  t h e  sake of  completeness ,  a  b r i e f  



d e s c r i p t i o n  i s  given i n  Sec t ion  2 of t h i s  r e p o r t .  Sec t ion  3 L 

d e s c r i b e s  t h e  problems encountered i n  t h e  exper imenta l  d a t a  

and t h e  t r ea tmen t  t h a t  has  been g iven  t o  them. We d i s c u s s  t h e  ' A  

t r e n d s  i n  t h e  r e v i s e d  exper imental  d a t a  and t h e i r  comparison t o  

theory  i n  Sec t ion  4 .  The measured and c a l c u l a t e d  va lues  a r e  

l i s t e d  i n  t h e  appendices ."  

Conclusions 

"From t h e  p r e s e n t  a n a l y s i s  of t h e  thermal  neu t ron  s p e c t r a  

i n  Pu-A1 l a t t i c e s ,  s e v e r a l  conc lus ions  can be drawn: 

1. A f a i r l y  good agreement (w i th in  10%)  e x i s t s  between 

t h e  c a l c u l a t e d  and t h e  measured power d i s t r i b u t i o n  i n  

t h e  c e l l .  

2 .  R e l a t i v e  temperature  e f f e c t s  a r e  w e l l  t aken  c a r e  of by 

t h e  Haywood-I1 s c a t t e r i n g  k e r n e l  f o r  H Z O .  

3 .  Slowing down and t h e r m a l i z a t i o n  p roces se s  a r e  r ea son -  

ab ly  w e l l  unders tood and i n  t h e  framework of t h e  p r e s e n t  

a n a l y s i s ,  no s i g n i f i c a n t  neu t ron  emiss ion time problems 

remain ." 
"However, t h i s  work leaves  unanswered two q u e s t i o n s :  

1. The mechanism f o r  t h e  d i s t i n c t  s h i f t  of t h e  0 .3  eV 

resonance f l u x  d i p  towards l o w  e n e r g i e s .  

2 .  The lower e f f e c t i v e  temperature  of t h e  measured 

s p e c t r a  w i t h  r e s p e c t  t o  c a l c u l a t i o n s .  

On t h e  b a s i s  of  t h e  p r e s e n t  in format ion ,  i t  can be s a i d  t h a t  

t h e  second q u e s t i o n  c a s t s  some doubts about t h e  a b i l i t y  of  t h e  

Haywood k e r n e l  t o  d e s c r i b e  a c c u r a t e l y  t h e  energy exchanges 

t a k i n g  p l a c e  i n  s t r o n g l y  a n i s o t r o p i c  s i t u a t i o n s .  I t  i s  d i f -  

f i c u l t  t o  be d e f i n i t e  on t h i s  p o i n t  s i n c e  i t  should  be r e c a l l e d  

t h a t  t h e  c a l c u l a t i o n s  depend on va r ious  approximations con- 

ce rn ing  t h e  d e s c r i p t i o n  of t h e  c e l l  geometry and t h e  neu t ron  

sou rce  and t h e  angula r  r e p r e s e n t a t i o n  of t h e  neu t ron  f l u x .  



F i n a l l y ,  l e t  us  p o i n t  o u t  t h a t  a spec t s  of t h e  experiments which 

a r e  n o t  f u l l y  unders tood preven t  e v a l u a t i o n  of t h e  q u a l i t y  of 

c e r t a i n  c r o s s  s e c t i o n s  used i n  t h e  computation,  p a r t i c u l a r l y  

t hose  of  23gPu I t  

P u - H 2 0  L A T T I C E  S U B C R I T I C A L  E X P E R I M E N T S  - 
J. H .  L a u b y  

Experiments were conducted i n  t h e  C r i t i c a l  Approach 

F a c i l i t y  (CAF) t o  measure t h e  c r i t i c a l  mass of some plutonium- 

f u e l e d ,  H20-moderated l a t t i c e s .  These l a t t i c e s  were r e p e a t s  

of  some of those  i n  which measurements of t h e  c r i t i c a l  numbers 

of  rods were made f o r  A1-Pu-H20 and U02-Pu02-H20 systems.  (1)  

The U02-Pu02 f u e l e d  l a t t i c e s  were "remeasured" t o  determine 

t h e  e f f e c t  of 2 4 1 ~ ~  decay on t h e  number of rods  f o r  c r i t i c a l .  (2 

The A1-Pu f u e l e d  l a t t i c e s  were remeasured t o  determine t h e  

combined c r i t i c a l  mass e f f e c t  of removing Luc i t e  tubes  which 

surrounded each f u e l  rod and 2 4 1 ~ u  decay.  The r educ t ion  of 

t h e  d a t a  c o l l e c t e d  i n  t h e s e  experiments a r e  completed, and t h e  

r e s u l t s  a r e  summarized i n  Table  2 . 5  w i th  r e s u l t s  ob ta ined  from 

t h e  e a r l i e r  measurements. A d e s t r u c t i v e  a n a l y s i s  of one of 

each of t h e s e  f u e l  rods  i s  a l s o  being made t o  determine i s o t o p i c  

composi t ions .  

The new r e s u l t s  f o r  t h e  A1-1.82 w t %  f u e l e d  l a t t i c e s  show 

a decrease  i n  t h e  c r i t i c a l  mass f o r  t h e  0 . 7 5  and 0.85 l a t t i c e s  

which a r e  undermoderated and an i n c r e a s e  i n  t h e  c r i t i c a l  mass 

f o r  t h e  0 .93 i n .  l a t t i c e  which i s  over-moderated.  Decay of 

2 4 1 ~ ~  would i n c r e a s e  t h e  c r i t i c a l  number of  rods f o r  a l l  

l a t t i c e s .  Since  t h e  2 4 1 ~ u  concen t r a t i on  o r i g i n a l l y  i n  t h e s e  

rods  was q u i t e  smal l  t h e  major p e r t u r b a t i o n  i s  t h e  removal 

of  Luc i t e  s l e e v e s .  I f  i t  i s  assumed t h a t  Luc i t e  and H20 a r e  

i d e n t i c a l  from a  r e a c t o r  phys ics  s t a n d p o i n t ,  then  t h e  observed 

e f f e c t s  could  be exp la ined  by assuming voids  e x i s t e d  between 

t h e  s l e e v e s  and t h e  f u e l  r o d s .  The new r e s u l t s  f o r  t h e  



TRBLE 2.5. Comparison of Measured Critical Masses 

C r i t i c a l  Number o f  Rods 
Hexagonal P r e v i o u s  

Fue l  L a t t i c e '  Spac ing ,  i n .  New Values  D a t e ,  mo/yr (a)  V a l u e s  D a t e ,  mo/yr(a) 

trr 
Z 

f a )  Month and year  i n  which exper imen t  was c o n d u c t e d .  3 
( b )  V a l u e  i n t e r p o l a t e d  from c u r v e  o f  C r i t i c a l  Number o f  Rods V e r s u s  H/Pu Atom R a t i o  

CO 
w 

I 
N 



A1-2 w t %  Pu f u e l e d  l a t t i c e s  show t h a t  t h e  c r i t i c a l  number o f  

r o d s  i n c r e a s e d  f o r  a l l  l a t t i c e s .  T h e r e f o r e  i t  a p p e a r s  t h a t  t h e  

2 4 1 ~ u  decay  i s  t h e  major  e f f e c t  s i n c e  i t  i s  e x p e c t e d  t h a t  

removing t h e  L u c i t e  s l e e v e s  would d e c r e a s e  t h e  c r i t i c a l  mass 

f o r  t h e  0 .75  and 0 .85  i n .  l a t t i c e s .  

The new v a l u e s  f o r  t h e  U02-Pu02 sys t ems  i l l u s t r a t e  t h e  

e f f e c t  o f  2 4 1 ~ ~  decay .  A f o u r  and o n e - h a l f  y e a r  decay p e r i o d  

l e a d s  t o  a  6 . 9 %  i n c r e a s e  ( i . e .  2 0  r o d s )  i n  t h e  c r i t i c a l  number 

o f  r o d s  f o r  t h e  U02-2 w t %  Pu02 l a t t i c e s .  

The r e s u l t s  o f  t h i s  s t u d y  show t h a t  2 4 1 ~ ~  decay  has  a  non- 

n e g l i g i b l e  e f f e c t  on c r i t i c a l i t y .  Repea t ing  t h e s e  measurements 

a  c o u p l e  o f  y e a r s  hence  would p r o v i d e  a d d i t i o n a l  v a l u a b l e  d a t a  

on t h e  t ime  dependent  r e a c t i v i t y  e f f e c t  o f  2 4 1 ~ ~  decay t o  

4 1 ~ m .  
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I N T E R P R E T A T I O N  O F  k- FOR WATER MODERATED UO - P u 0 2  L A T T I C E S  2- 
D. F .  N e w m a n  a n d  C. R. G o r d o n  

I n t r o d u c t i o n  

The development  o f  a w a t e r  t a n k  i n  t h e  P h y s i c a l  C o n s t a n t s  

T e s t i n g  R e a c t o r  (PCTR) d u r i n g  FY 1968 e n a b l e d  t h e  p e r -  

formance o f  l i g h t  w a t e r  moderated l a t t i c e  expe r imen t s  i n  t h e  

PCTR. Measurements o f  km and o t h e r  n e u t r o n i c  p a r a m e t e r s  were 

o b t a i n e d  f o r  a  un i fo rm l a t t i c e  o f  0 . 5 - i n .  d i a m e t e r  U0,-2.0 w t %  
L 

Pu02 (7.74 w t %  2 4 0 ~ u )  r o d s  a t  1 . 0 - i n .  s q u a r e  p i t c h  i n  l i g h t  
/ - \  

w a t e r .  lo) P r e l i m i n a r y  a n a l y s i s  o f  t h e  e x p e r i m e n t a l  d a t a  i n d i -  

c a t e d  a  6 %  d i s c r e p a n c y  between t h e o r e t i c a l  p r e d i c t i o n s  and t h e  



v a l u e  f o r  km i n f e r r e d  from PCTR measurements.  ( 3 )  An e x t e n s i v e  
B 

s tudy  of  t h e  t h e o r e t i c a l  models ,  a n a l y t i c a l  t e c h n i q u e s ,  and 

exper imenta l  measurements used i n  t h e  c o r r e l a t i o n  was under taken .  ' ,  

The appa ren t  d i s c r epancy  has  been r e s o l v e d  by a  d e t a i l e d  

r e e v a l u a t i o n  o f  t h e  exper imenta l  d a t a .  

A c t i v a t i o n  F o i l  P e r t u r b a t i o n  C o r r e c t i o n s  

F o i l  a c t i v a t i o n  t e chn iques  a r e  used i n  t h e  d e t e r m i n a t i o n  

of  t h e  r e l a t i v e  r e a c t i o n  r a t e s  i n  a l l  c e n t r a l  c e l l  c o n s t i t u e n t s  

and t h e  s t a n d a r d  abso rbe r  ( u s u a l l y  copper)  i n s e r t e d  i n  t h e  

c e n t e r  of  t h e  PCTR.  The p resence  of  f o i l  m a t e r i a l s  i n  t h e  

l a t t i c e  p e r t u r b s  t h e  neu t ron  f l u x  i n  t h e  v i c i n i t y  of  each f o i l ,  

such t h a t  t h e  induced a c t i v i t y  i s  n o t  t r u l y  r e p r e s e n t a t i v e  of  

t h e  f l u x  i n  t h e  su r round ing  unper tu rbed  media. 

Two-dimensional t r a n s p o r t  t heo ry  c a l c u l a t i o n s  i n  two 

energy groups were performed u s i n g  DOTSN, ( 4 )  e x p l i c i t l y  i n c l u d -  

i ng  f o i l s  i n  t h e  l a t t i c e  c e l l  geometry used t o  measure a c t i v a -  

t i o n  r a t e s .  Thermal group c o n s t a n t s  were c a l c u l a t e d  u s i n g  

BATTELLE-REVISED-THERMOS Code ; ep i t he rma l  group c o n s t a n t s  

were c a l c u l a t e d  u s i n g  t h e  HRG ( 6 )  Code. C a l c u l a t e d  two-gyoup 

neu t ron  f l u x  p e r t u r b a t i o n s  i n  t h e  f o i l  r e g i o n s  o f  t h e  R - Z  

geometry l a t t i c e  c e l l  were used t o  c o r r e c t  t h e  measured sub-  

cadmium and ep i t he rma l  a c t i v a t i o n  r a t e s  t o  r e p r e s e n t  t h e  two 

group a c t i v a t i o n  r a t e s  i n  t h e  unper tu rbed  media. 

Axia l  pos i t i on -dependen t  f l u x e s  c a l c u l a t e d  f o r  t h e  f u e l  

r e g i o n  r e l a t i v e  t o  t h e  unper tu rbed  f l u x  i n  t h e  f u e l  a r e  shown 

i n  F igu re  2 . 1 ,  w i t h  ba r e  f o i l s  i n s e r t e d  i n  t h e  f u e l  rod .  

S i m i l a r  c a l c u l a t e d  r e s u l t s ,  w i t h  cadmium covered f o i l s  i n s e r t e d  

i n  t h e  f u e l ,  a r e  shown i n  F igu re  2 . 2 .  Add i t i ona l  c a l c u l a t i o n s ,  

w i t h  a  b a r e  0 . 0 0 5 - i n .  t h i c k  copper  s e c t o r  f o i l  i n  t h e  w a t e r ,  

show a  0 .6% thermal  f l u x  d i p  and a  0 . 2 %  ep i t he rma l  f l u x  d i p  

i n  t h e  f o i l  when compared w i th  unper tu rbed  f l u x e s .  These 
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f o i l  p e r t u r b a t i o n  c o r r e c t i o n  f a c t o r s  were a p p l i e d  t o  t h e  measured 

b a r e  and cadmium covered  f o i l  a c t i v a t i o n  r a t e s  t o  d e t e r m i n e  t h e  

r e a c t i o n  r a t e s  i n  t h e  u n p e r t u r b e d  c e n t r a l  c e l l  c o n s t i t u e n t s .  

PCTR Water Tank C a l c u l a t i o n a l  Model 

A s  a  means o f  (1) p r e d i c t i n g  n e u t r o n  spec t rum e q u i l i b r a t i o n  

and c e n t r a l  c e l l  end e f f e c t s ,  ( 2 ) i d e n t i f y i n g  p o s s i b l e  e x p e r i -  

men ta l  problem a r e a s ,  and (3)  c o r r e l a t i n g  e x p e r i m e n t a l  r e s u l t s ,  

a  PCTR c a l c u l a t i o n a l  model can  be  a  u s e f u l  a n a l y t i c a l  t o o l .  A 

two d imens iona l  (R-Z) d i f f u s i o n  t h e o r y  model o f  t h e  PCTR, w i t h  

t h e  w a t e r  t a n k  i n s t a l l e d  i n  t h e  c e n t r a l  t e s t  r e g i o n ,  was 

o b t a i n e d  by r a d i a l  c y l i n d r i f i c a t i o n  o f  e q u i v a l e n t  volumes f o r  

a l l  PCTR zones .  Using t h e  2 DB Code, ( 7 )  c a l c u l a t i o n s  were p e r -  

formed f o r  t h e  PCTR w a t e r  t a n k  exper imen t  w i t h  U02-2.0 w t %  

Pu02 r o d s .  ( 2 , 3 )  The n e u t r o n  spec t rum i n  t h e  v i c i n i t y  of  t h e  

c e n t r a l  c e l l  was matched t o  t h e  fundamenta l  mode v a l u e ,  a s  

shown i n  F i g u r e  2 . 3 ;  t h e  c a l c u l a t e d  r a d i a l  s p e c t r a l  v a r i a t i o n  

was i n  agreement  w i t h  g o l d  cadmium r a t i o  measurements i n  t h e  

w a t e r  t a n k .  Comparison o f  t h e  c a l c u l a t e d  a x i a l  v a r i a t i o n  o f  

t h e  t h e r m a l  f l u x  on t h e  o u t e r  s u r f a c e  of  t h e  c e n t r a l  c e l l  f u e l  

c l a d  w i t h  measured subcadmium a c t i v a t i o n  r a t e s  o f  0 . 0 2 0 - i n .  

d i a m e t e r  g o l d  p i n s  on t h e  c l a d  s u r f a c e ,  i s  shown i n  F i g u r e  2 . 4 .  

The good agreement  i n  t h e  t h e r m a l  f l u x  peak ing  i n  t h e  ends of 

t h e  l u c i t e  and p o l y e t h y l e n e  c e n t r a l  c e l l  c o n t a i n e r s  b u i l d s  

c o n f i d e n c e  i n  t h e  model.  Thermal f l u x  peak ing  i n  t h e  ends of  

t h e  c e n t r a l  c e l l  f u e l  rods  was c a l c u l a t e d  t o  i n c r e a s e  t h e  

a x i a l l y  ave raged  t h e r m a l  f l u x  i n  t h e  f u e l  1 . 9 %  o v e r  t h e  v a l u e  

c a l c u l a t e d  a t  t h e  r e a c t o r  c e n t e r l i n e .  Rep lac ing  t h e  p l a s t i c  

c o n t a i n e r  ends w i t h  aluminum removed most o f  t h e  modera t ing  

e f f e c t  from t h e  end cap  p l a n e s ,  and r educed  t h e  a x i a l l y  

ave raged  t h e r m a l  f l u x  i n  t h e  f u e l  t o  a  f a c t o r  1 .006  t i m e s  t h e  

v a l u e  c a l c u l a t e d  a t  t h e  r e a c t o r  c e n t e r l i n e .  
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A s  a  r e s u l t  of  t h e s e  s t u d i e s ,  c o n t a i n e r s  wi th  aluminum . 
ends have been f a b r i c a t e d  f o r  use  wi th  t h i s  wate r  t ank  l a t t i c e .  

The n u l l  r e a c t i v i t y  t echn ique ,  u s ing  b o r i c  a c i d  i n  t h e  wa te r  . 
a t  a  c o n c e n t r a t i o n  a d j u s t e d  t o  g ive  km of u n i t y ,  w i l l  be used 

f o r  t h e  nex t  s e t  of experiments i n  t h i s  l a t t i c e  i n  t h e  PCTR. 

Eva lua t ion  of k  

The va lue  f o r  km was determined from t h e  exper imenta l  

r e a c t i v i t y  worth d a t a  and r e l a t i v e  r e a c t i o n  r a t e s  i n  t h e  

unpoisoned l a t t i c e  u s ing  t h e  two group exp re s s ion :  ( 8  

The km de f ined  i n  t h i s  express ion  i s  c o n s i s t e n t  w i t h  t h e  two 

group fundamental mode c a l c u l a t i o n :  

t  t .  
T o t a l  Neutron Produc t ion  vlz lm;  + v 2 ~ 2 m 2  - - - 

K- - T o t a l  Neutron Absorption a  . a  . 
C l @ l  + 1 7 4 7  

where and m ;  a r e  equ i l i b r ium f l u x e s .  

A l l  measured and c a l c u l a t e d  q u a n t i t i e s  used i n  t h e  eva lua -  

t i o n  of  km a r e  l i s t e d  i n  Table 2.6.  Using t h e s e  v a l u e s ,  t h e  

i n f e r r e d  va lue  of km i s :  

k  00 = 1 + (0.306 + 0.011) - (0.006 + 0.001) + (0.071 + 0.016) 

= 1.371 + 0,019 



TABLE 2.6. Quantities Used in the Evaluation of km 

Measured Ouantities 

L 

thermal = 1585 t 40 

. , 
Calculated Ouantities 

- " =0.7115 2DB PCTR Model 

@; 

r = 30.74 cm 2 HRG 

P =0.8326 HRG 

nlfl = 0.6739 HRG 

L' = 2 . 0 9 0 c m  2 THERMOS 

n2f2 = 1.507 THERMOS 

B' = 0.01157 c i 2  HFN(~)] 
Fundamental Mode 

5 (Just Critical Bare Sphere) - = 2.748 HFN 
$5 
$1 - = 2.734 2 DB PCTR Model 
$2 



Conclus i on  

The p rev ious ly  r e p o r t e d  va lue  f o r  kw - 1, determined by 

t h e  unpoisoned t echn ique ,  was 0.452 + 0 . 0 1 5 .  The r e e v a l u a t e d  

k  - 1 va lue  of 0.371 2 0.019 r e s u l t s  from an accumulat ion of  
w 

s e v e r a l  smal l  n e g a t i v e  s y s t e m a t i c  e r r o r s  which p r e v i o u s l y  had 

been e i t h e r  neg l ec t ed  o r  improperly eva lua t ed .  Cor r ec t i ons  f o r  

c e n t r a l  c e l l  end cap e f f e c t s ,  thermal  f l u x  peaking i n  t h e  ends 

of t h e  p l a s t i c  c o n t a i n e r s ,  a c t i v a t i o n  f o i l  p e r t u r b a t i o n s ,  and 

t h e  a n a l y t i c a l  model used t o  i n f e r  k  00 r e s u l t e d  i n  r educ t ions  

of 7 % ,  2 % ,  6 % ,  and 2 % ,  r e s p e c t i v e l y ,  of t h e  p rev ious ly  r e p o r t e d  

va lue  f o r  km - 1. The c a l c u l a t e d  va lues  f o r  kw = 1.3646 from 

THERMOS-HRG-HFN") and kw = 1.3645 from THERMOS-EGGNIT ( l o )  -HFN 

a r e  i n  e x c e l l e n t  agreement w i th  t h e  va lue  i n f e r r e d  from t h e  

experiment.  

A cons ide rab l e  improvement i n  t h e  p r e c i s i o n  of t h e  kw 

measurement i s  p r e d i c t e d  i f  t h e  n u l l  r e a c t i v i t y  t echnique  i s  

used ,  s i n c e  t h e  r e l a t i v e l y  l a r g e  ep i thermal  l eakage  c o r r e c t i o n  

term i n  t h e  unpoisoned kw a n a l y t i c a l  model i s  e l i m i n a t e d .  The 

u n c e r t a i n t y  i n  kw f o r  t h e  U02-2.0 w t %  Pu02 wa te r  l a t t i c e  poisoned 

t o  n u l l  r e a c t i v i t y  i s  e s t ima ted  a t  t0 .003 i n  kw.  An experiment 

t o  t e s t  t h i s  p r e d i c t i o n  of improved p r e c i s i o n  i s  planned f o r  

t h e  nea r  f u t u r e .  
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BRT-I: B A T T E L L E - R E V I S E D - T H E R M O S - I  
C. L. B e n n e t t  a n d  W. L. P u r c e l l  

1. - Name: BRT-I (Battelle-Revised-THERMOS) 

2 .  Computer: B R T - I  i s  d e s i g n e d  t o  o p e r a t e  on t h e  UNIVAC 1108 

computer  sys tem.  

3 .  Problem Solved:  The code computes t h e  s p a c e  dependent  

t h e r m a l  n e u t r o n  d e n s i t y ,  f l u x  and c u r r e n t  s p e c t r a  o v e r  t h e  

' e n e r g y  r a n g e  0  t o  0.683 eV i n  e i t h e r  s l a b  o r  c y l i n d r i c a l  

geometry.  

4 .  Method o f  S o l u t i o n :  The n e u t r o n  d e n s i t y  i s  computed from 

t h e  c o l l i s i o n  p r o b a b i l i t y  form o f  t h e  i n t e g r a l  t r a n s p o r t -  

t h e o r y  m a t r i x  e q u a t i o n  u s i n g  e i t h e r  a  combina t ion  o f  power 

i t e r a t i o n ,  o v e r r e l a x a t i o n  and e x t r a p o l a t i o n  o r  s t r a i g h t  

power i t e r a t i o n .  The n e u t r o n  c u r r e n t s  a r e  computed froni 

e i t h e r  t h e  g r a d i e n t  o f  t h e  s c a l e r  f l u x  o r  t h e  u n c o l l i d e d  

f l u x  m a t r i x .  The f l u x  and c u r r e n t  s p e c t r a  i s  u s e d  t o  

w e i g h t  p o i n t  the rmal  c r o s s  s e c t i o n s  o v e r  an a r b i t r a r y  

t h e r m a l  energy r a n g e  f o r  u s e  i n  m u l t i g r o u p  t r a n s p o r t  o r  

d i f f u s i o n  t h e o r y  codes .  

5 .  R e s t r i c t i o n s  on t h e  Complexi ty o f  t h e  Problem: Number of  

s p a c e  p o i n t s  (30, number o f  i s o t o p e s  5 3 0 ,  number o f  s p e e d  

p o i n t s  (30, number o f  m a t e r i a l  m i x t u r e s  5 8 ,  s l a b  o r  

c y l i n d r i c a l  geometry.  

6.  T y p i c a l  Running Time: With t h e  random a c c e s s  l i b r a r y :  

1 min w i t h  a  r e f l e c t i n g  boundary c o n d i t i o n  and 30 s e c  

w i t h  a  w h i t e  boundary c o n d i t i o n .  Succeeding c a s e s  u s i n g  

t h e  same c r o s s  s e c t i o n s  t a k e  abou t  1 5  s e c  each .  

7 .  Unusual F e a t u r e s  o f  t h e  Code: White a l b e d o  boundary con- 

d i t i o n ,  c u r r e n t  c a l c u l a t i o n ,  t r a n s v e r s e  b u c k l i n g ,  l i n e a r  

a n i s o t r o p i c  s c a t t e r i n g  c o r r e c t i o n ,  and smeared c e l l  punched 

c a r d  o u t p u t  which can  b e  used  a s  r e g i o n  i n p u t  f o r  a  



succeed ing  c a s e ,  a r e  s e v e r a l  o f  t h e  o p t i o n s  a v a i l a b l e  t o  

t h e  u s e r .  A random a c c e s s  l i b r a r y  d a t a  element can be  

s t o r e d  on drum o r  d i s k  memory, i f  a v a i l a b l e ,  r e s u l t i n g  

i n  a  c o n s i d e r a b l e  d e c r e a s e  i n  runn ing  t ime.  

8. Re l a t ed  and A u x i l i a r y  Programs: R L I T H E ,  upda tes  and/or  

p r i n t s  t h e  BRT d a t a  t a p e  o r  random acce s s  d a t a  element.  

9. S t a t u s :  BRT-I i s  i n  p roduc t i on  u s e  on t h e  UNIVAC-1108 

computer a t  P a c i f i c  Northwest Labora to ry ,  R ich land ,  

Washington. 

10. References :  

C .  L .  Bennet t  and W .  L .  P u r c e l l ,  BRT-I: B a t t e l l e -  

Revised-THERMOS, BNWL-1434, B a t t e l l e - N o r t h w e s t ,  1970. 

H. C .  Honeck. THERMOS, A The rma l i za t i on  T ranspo r t  

Theory Code f o r  Reac to r  L a t t i c e  C a l c u l a t i o n s ,  

BNL-5826. Brookhaven Na t i ona l  Labora to ry ,  Upton, 

New York, September 1961. 

D. R. Skeen and L .  J .  Page. THERMOS/BATTELLE: 

The B a t t e l l e  Vers ion  o f  t h e  Thermos Code, BNWL-516, 

Ba t t e l l e -Nor thwes t .  June  1967. 

a J. E.  Su i ch  and H.  C .  Honeck. The HAMMER System, 

DP-1064, Savannah River  Labora to ry ,  Aiken, 

South  C a r o l i n a ,  January  1967. 

B. J .  Toppel and I .  Baksys. The Argonne-Revised 

THERMOS Code, ANL-7023, Argonne Na t i ona l  

Labora to ry ,  Lemont, I l l i n o i s ,  March 1965. 

11. Machine Requirements:  64K memory, normal i n p u t ,  o u t p u t ,  

program, and punch u n i t s ,  1 u n i t  f o r  l i b r a r y ,  3 s c r a t c h  

u n i t s  o r  t h e i r  e q u i v a l e n t  on drum. 

1 2 .  Programming Language Used: FORTRAN-IV. 

13. Opera t ing  System: UNIVAC-1108 computer w i t h  FORTRAN-V 

compi ler  and CSCX o p e r a t i n g  system. 



1 4 .  User Informat ion:  The code and r e p o r t  may be ob t a ined  

e i t h e r  through t h e  Argonne Code Center  a t  Argonne Na t iona l  

Laboratory  o r  from P a c i f i c  Northwest Laboratory  i n  

Richland,  Washington. 

15.  M a t e r i a l  Ava i l ab l e :  Magnetic Tape t r a n s m i t t a l .  

B R T - 1  Source deck (approximately  3000 ca rds )  

RLITHE Source deck ( l e s s  t han  1000 ca rds )  

L ib ra ry  deck (8000 ca rds )  

Sample problem (19 c a r d s ) .  

16. Acknowledgment: Th is  work i s  based on work performed under 

U.  S. Atomic Energy Commission Cont rac t  AT(45-1)-1830. 
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Ba t t e l l e -Nor thwes t  
P .  0 .  Box 999 
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BMC-I: THE B A T T E L L E  M O N T E  CARL0 C O D E  

D. H .  Thomsen 

1. m e :  BMC-I ( B a t t e l l e  Monte C a r l o  Code) 

2 .  Computer: The BMC Code i s  d e s i g n e d  t o  o p e r a t e  on t h e  

UNIVAC 1108 computer sys tem.  Approximate ly  65K words 

o f  c o r e  a r e  r e q u i r e d .  

Problem So lved :  The BMC code i s  a  g e n e r a l  pu rpose  

n e u t r o n i c  Monte C a r l o  Code. The code was developed 

p r i m a r i l y  f o r  u s e  i n  s o l v i n g  some o f  t h e  more complex 

problems e n c o u n t e r e d  i n  p r e d i c t i n g  t h e  n e u t r o n i c  c h a r a c -  

t e r i s t i c s  o f  t h e r m a l  r e a c t o r s .  Some o f  t h e  problems 

which t h e  BMC code has  been  used  t o  s o l v e  a r e :  l a t t i c e  

c e l l  p a r a m e t e r s  such  a s  r e sonance  e s c a p e ,  the rmal  u t i l i z a -  

t i o n ,  and c r o s s  s e c t i o n  a v e r a g i n g ,  c r i t i c a l i t y  problems,  

power d i s t r i b u t i o n s ,  s h i e l d i n g  problems,  and f i r s t  f l i g h t  

c o l l i s i o n  p r o b a b i l i t i e s .  

The BMC code i s  f l e x i b l e  a s  t o  t h e  s i z e  and t y p e  o f  

problem s o l v e d  and i n  t h e  c r o s s  s e c t i o n  and geometry 

d e t a i l  which may b e  used .  The n e u t r o n  f l u x e s  and 

r e a c t i o n  r a t e s  i n  t h e  energy range  from 0  t o  10 MeV a r e  

c a l c u l a t e d  i n  one ,  two, o r  t h r e e  s p a c e  d imensions .  

S t a t i s t i c a l  c o n f i d e n c e  l i m i t s  a r e  a s s i g n e d  t o  t h e  r e s u l t s .  

The c r o s s  s e c t i o n s  u t i l i z e d  i n  t h e  BMC code a r e  p r o c e s s e d  

from d a t a  i n  t h e  ENDF/B f o r m a t .  

4 .  Method o f  S o l u t i o n :  Analog Monte C a r l o  t e c h n i q u e s  a r e  

used  t o  d e t e r m i n e  n e u t r o n  h i s t o r i e s .  The n e u t r o n  f l u x e s ,  

r e a c t i o n  r a t e s ,  and l e a k a g e  a r e  o b t a i n e d  from t h e  h i s -  

t o r i e s  by u s i n g  an  e x p o n e n t i a l  t r a c k  l e n g t h  e s t i m a t o r .  

V a r i a n c e  r e d u c t i o n  t e c h n i q u e s  such  as a b s o r p t i o n  we igh t  

r a t i o i n g ,  impor tance  w e i g h t i n g ,  and Russ ian  R o u l e t t e  a r e  

a l s o  a v a i l a b l e .  



The r e a c t i o ~ i s  which a r e  t r e a t e d  a r e  f i s s i o n ,  c a p t u r e ,  

a n i s o t r o p i c ,  i s o t r o p i c ,  and t h e r m a l  e l a s t i c  s c a t t e r i n g ,  

and i n e l a s t i c  n  - n' and n  - 2n r e a c t i o n s .  Thermal 

s c a t t e r i n g  makes u s e  o f  t h e  i d e a l  g a s  model w i t h  a  c o r r e c -  

t i v e  t e c h n i q u e  t o  accoun t  f o r  t h e r m a l  b i n d i n g  e f f e c t s .  

The c r o s s  s e c t i o n s  a r e  d e f i n e d  u s i n g  mic ro -g roup  ave raged  

c r o s s  s e c t i o n s .  The r e s o n a n c e  c r o s s  s e c t i o n s  can  a l s o  b e  

t r e a t e d  a t  each  energy u s i n g  t h e  Doppler  broadened B r e i t -  

Wigner r e sonance  fo rmulae .  

The geometry i s  d e f i n e d  u s i n g  r e g i o n s  e n c l o s e d  by p l a n e s ,  

c y l i n d e r s ,  s p h e r e s ,  o r  b o u n d a r i e s  o f  t h e  form A(X - Xo) 2 

+ B(Y - yo) '  + C(Z - z O ) '  - K = 0. P r o v i s i o n s  a r e  made f o r  

v o i d s  and f o r  r e f l e c t i n g  symmetry b o u n d a r i e s .  A g e n e r a l  

s o u r c e  r o u t i n e  i s  a v a i l a b l e  f o r  s t a r t i n g  t h e  n e u t r o n s .  

For  e i g e n  v a l u e  problems t h e  f i s s i o n  n e u t r o n s  a r e  used  a s  

t h e  s o u r c e .  S t a t i s t i c s  a r e  o b t a i n e d  on a l l  c a l c u l a t e d  

q u a n t i t i e s  by p r o c e s s i n g  b a t c h e s  and t a k i n g  a  s t a n d a r d  

d e v i a t i o n  o f  t h e  r e s u l t s  from each  b a t c h .  A s p e c i a l  geom- 

e t r y  r o u t i n e  i s  i n c l u d e d  f o r  a  s q u a r e  a r r a y  o f  c l a d  f u e l  

r o d s .  The f u e l  i n  each  r o d  may be  d i f f e r e n t .  

The BMC code c o n t a i n s  r e s t a r t  c a p a b i l i t y  s o  t h a t  t h e  r e s u l t s  

can  b e  examined a t  a  number o f  s t e p s  i n  t h e  c a l c u l a t i o n .  

5. R e s t r i c t i o n s  on t h e  C o m ~ l e x i t v  o f  t h e  Problem: The BMC 

code was d e s i g n e d  t o  make i t  e a s y  t o  change t h e  d imens ions  

and hence  make i t  a v a i l a b l e  f o r  a  l a r g e  r a n g e  o f  problem 

t y p e s .  A t y p i c a l  problem migh t  have 5 m a t e r i a l s ,  30 geom- 

e t r y  r e g i o n s ,  10 t a l l y  r e g i o n s  and 190 ene rgy  groups  w i t h  

60 energy g roups  below 1 . 0  eV. However, problems have been  

r u n  w i t h  2 m a t e r i a l s ,  132 geometry and 132 t a l l y  r e g i o n s  

and 96 energy groups  and w i t h  10 m a t e r i a l s ,  60 r e g i o n s ,  

40 t a l l y  r e g i o n s ,  and 190 energy g roups .  



One r e s t r i c t i o n  i s  imposed by t h e  approximate model used 

f o r  t h e  thermal s c a t t e r i n g .  I t  has been developed f o r  

l i g h t  and heavy wate r  a t  293 O K .  To use  it a t  o t h e r  tem- 

p e r a t u r e s  o r  f o r  o t h e r  moderators r e q u i r e s  a  f u r t h e r  

s p e c i a l  c r o s s  s e c t i o n  p r e p a r a t i o n .  

6. Typica l  Running Time: The running time f o r  t h e  BMC code 

a s  w i t h  a l l  Monte Car lo  Codes i s  very  dependent on t h e  

complexity of t h e  problem. The t ime v a r i e s  from 2 t o  

1 0  min f o r  t h e  s i m p l e s t  problems up t o  s e v e r a l  hours f o r  

t h e  more complex problems. Typica l  t imes  f o r  s i n g l e  rod 

l a t t i c e  c e l l s  would be i n  t h e  range of  2 t o  2 0  min whi le  

t h a t  f o r  a  power d i s t r i b u t i o n  i n  a  f u e l  bundle would be 

i n  t h e  range of 1 / 2  t o  1 1 / 2  h r .  

7 .  2: The BMC code uses  d a t a  

i n  t he  ENDF/B format so  use  can be made of t h e  ENDF/B 

d a t a  f i l e s .  Also t h e  BMC code does a  complete energy 

c a l c u l a t i o n  from f a s t  t o  thermal .  

8. Re la ted  and Aux i l i a rv  Programs: The BMC code is  an 

update  of  t h e  RBU Monte Car lo  code which was coded i n  

machine language f o r  t h e  IBM-7090-7094 computer system. 

The BMC code package c o n s i s t  of  t h r e e  codes: BMC, BMCLIB, 

and LIBR. BMC i s  t h e  Monte Car lo  code. The BMCLIB code 

i s  used t o  p rocess  c r o s s  s e c t i o n s  from t h e  ENDF/B format  

and p repa re  a  c r o s s  s e c t i o n  l i b r a r y  f o r  t h e  BMC code. 

The LIBR code can be used t o  make c o r r e c t i o n s  t o  o r  

l i s t i n g s  of  t h e  BMC c r o s s  s e c t i o n  tape .  The LIBR code 

makes u se  of  t h e  g e n e r a l i z e d  i n p u t  r o u t i n e ,  NAMELIST. 

9 .  S t a t u s :  The BMC code i s  i n  p roduc t ion  use  of  t h e  

UNIVAC-1108 computer a t  P a c i f i c  Northwest Laboratory ,  

Richland,  Washington. 

1 0 .  References:  

D.  H .  Thomsen and T .  M.  T raver ,  BMC-I. The B a t t e l l e  

Monte Car lo  Code, To be pub l i shed ,  Ba t te l l e -Nor thwes t .  



J. R. T r i p l e t t ,  E .  T .  M e r r i l l  and J .  R.  Burr .  The - 
BRU Reactor  Burnup Code: Formulation and Operat ing 

Procedures ,  HW-70049, J u l y  1961. 

11. Machine Requirements: Approximately 65K words o f  d i r e c t l y  

add re s sab l e  co re  s t o r a g e  a r e  r e q u i r e d  by t h e  program. 

Approximately 1,000,000 decimal words of s c r a t c h  drum 

space  a r e  needed. Three t a p e s  a r e  needed i n  a d d i t i o n  t o  

t h e  c a r d  r eade r  and p r i n t e r .  A Calcomp p l o t t e r  i s  r e q u i r e d  

t o  e x e r c i s e  t h e  p l o t t i n g  op t ions  of t h e  code. 

1 2 .  Programming Language Used: The program i s  coded p r i m a r i l y  

i n  For t ran-V (95%) and SLEUTH ( 5 % ) .  

13.  Operat ing System: UNIVAC 1108 computer w i t h  For t ran-V 

compiler  and CSCX o p e r a t i n g  system. The Calcomp p l o t t e r  

model 763 used f o r  t h e  p l o t t i n g  o p t i o n s .  

1 4 .  Program Informat ion:  The BMC code and t h e  BMCLIB code 

each c o n s i s t  of  approximately  50 s u b r o u t i n e s .  They make 

use  o f  ove r l ay  l i n k s  t o  conserve on memory requ i rements .  

The LIBR code i s  a  s m a l l e r  code of approximately  1 2  sub- 

r o u t i n e s .  The e n t i r e  code package i s  con ta ined  on about  

14,000 ca rds .  

15. User In format ion :  The BMC code and r e p o r t  may be  ob t a ined  

e i t h e r  from t h e  Argonne Code Center  a t  Argonne Na t iona l  

Laboratory  o r  from P a c i f i c  Northwest .Laboratory  i n  

Richland,  Washington. 

16.  Acknowledgment: This  work i s  based on work performed 

under U.  S. Atomic Energy Commission Cont rac t  AT(45-1)-1830. 
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Ba t te l l e -Nor thwes  t 
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J .  L .  C a r t e r  

Name : - HRG - 3  

2 .  Computer: The HRG-3 Code i s  d e s i g n e d  t o  o p e r a t e  on t h e  

UNIVAC 1108 computer sys tem.  

3. Problem So lved :  The code computes t h e  slowing-down 

spect rum o v e r  t h e  energy range  10 MeV t o  0.414 eV i n  

e i t h e r  t h e  B - 1  o r  P -1  approx imat ion ,  u s i n g  68 groups  o f  

n e u t r o n s  w i t h  a  c o n s t a n t  group w i d t h  o f  d e l t a  u  = 0.25. 

The c a l c u l a t e d  f l u x  and c u r r e n t  s p e c t r a  a r e  used  t o  r educe  

t h e  o r i g i n a l  68-group c r o s s  s e c t i o n  d a t a  t o  a v e r a g e  v a l u e s  

o v e r  a s  many a s  3 2  broad  groups .  

4 .  Method o f  S o l u t i o n :  The 68 f i n e  group f l u x e s  and c u r r e n t s  

a r e  c a l c u l a t e d  by one sweep th rough  t h e  group s t r u c t u r e ,  

s t a r t i n g  from a  s p e c i f i e d  s o u r c e  d i s t r i b u t i o n .  The s o u r c e  

may b e  s e l e c t e d  from among t h e  8  a v a i l a b l e  on t h e  d a t a  t a p e  

o r  may be  r e a d  i n .  The m u l t i g r o u p  model u s e s  a  f u l l  down- 

s c a t t e r i n g  m a t r i x ,  w i t h  i n e l a s t i c , n Z n ,  and PO and P1 com- 

ponen t s  o f  e l a s t i c  s c a t t e r i n g  e x p l i c i t l y  i n c l u d e d .  Macro- 

s c o p i c  f i n e  group p a r a m e t e r s  a r e  c o n s t r u c t e d  from i n p u t  

n u c l i d e  c o n c e n t r a t i o n s  and m i c r o s c o p i c  p a r a m e t e r s ,  a v a i l -  

a b l e  on t h e  d a t a  t a p e  f o r  more t h a n  200 i n d i v i d u a l  n u c l i d e s .  

There  i s  no r e s t r i c t i o n ,  o t h e r  t h a n  a v a i l a b i l i t y ,  on t h e  

number o f  n u c l i d e s  u s a b l e  i n  a  c a s e .  A s p e c i a l  c a l c u l a t i o n  

i s  made i n  t h e  r e sonance  r a n g e  f o r  c e r t a i n  n u c l i d e s ,  u s i n g  

an  a d a p t a t i o n  o f  t h e  A d l e r ,  Hinman, and Nordheim method t o  

an  i n t e r m e d i a t e  r e sonance  approx imat ion  f o r  b o t h  t h e  a b s o r b e r  

n u c l i d e  and an admixed modera to r .  The re sonance  c o n t r i b u t i o n  

i s  a l l o c a t e d  t o  t h e  f i n e  groups  i n  a  c o n s i s t e n t  manner 

p r o v i d i n g  s e l f - s h i e l d i n g  i n  b o t h  s p a c e  and energy.  Addi- 

t i o n a l  s e l f - s h i e l d i n g  f a c t o r s  may be  r e a d  i n  f o r  any 

n u c l i d e ,  i f  d e s i r e d .  The f i n e  group f l u x e s  and c u r r e n t s  



a r e  used a s  we igh t ing  f u n c t i o n s  i n  averag ing  macroscopic  

and mic roscop ic  pa ramete r s  over  t h e  s p e c i f i e d  broad group 

s t r u c t u r e .  Output  i s  p r i n t e d  and may a l s o  be  punched i n  

fo rmats  f o r  i n p u t  t o  any of  s e v e r a l  s p a t i a l  mu l t i g roup  

codes .  A s  an  o p t i o n ,  t h e  n e u t r o n  age  i n  an  i n f i n i t e  

medium may be  c a l c u l a t e d  by t h e  moments method. 

5. R e s t r i c t i o n s  on t h e  Complexity o f  t h e  Problem: Number o f  

broad groups $32. Broad group boundar ies  a d j u s t e d  t o  

c o i n c i d e  w i t h  one o f  t h e  68 f i n e  group bounda r i e s .  

6. Typ i ca l  Running Time: For 1 0  n u c l i d e s ,  i n c l u d i n g  4  w i t h  

resonance  c a l c u l a t i o n  and no punched o u t p u t ,  40 s e c  f o r  

f i r s t  c a s e  i n  a  r un ,  2 0  s e c  f o r  each succeed ing  c a s e .  

7 .  Unusual F e a t u r e s  o f  t h e  Program: The code s t r i k e s  a  b a l a n c e  

between accuracy  and speed a t  a  l e v e l  h i g h l y  s u i t a b l e  f o r  

bo th  su rvey  and normal r e a c t o r  d e s i g n  and a n a l y s i s  

a p p l i c a t i o n s .  

8. Re l a t ed  and A u x i l i a r y  Programs: NUTAPE-11, upda tes  and /or  

p r i n t s  t h e  HRG d a t a  t a p e .  

9 .  S t a t u s :  HRGS i s  i n  p roduc t i on  u se  on t h e  UNIVAC-1108 com- 

p u t e r  a t  P a c i f i c  Northwest Labora to ry ,  R ich land ,  Washington. 

1 0 .  Refe rences :  

J .  L .  C a r t e r ,  HRG3: A Code f o r  C a l c u l a t i n g  t h e  

Slowing Down Spectrum i n  t h e  P 1  o r  B 1  Approximat ions ,  

BNWL-1432, Ba t t e lPe -Nor thwes t ,  1970. 

G .  D .  Joanou and J .  S. Dudek. GAM-I: A C o n s i s t e n t  

PI Mul t ig roup  Code f o r  t h e  C a l c u l a t i o n  o f  F a s t  - 
Neutron S p e c t r a  and Mul t igroup Cons t an t s ,  GA-1850. 

Genera l  Atomics, San Diego, C a l i f o r n i a ,  June  28, 1961. 

F. T .  Ad l e r ,  G .  W .  Hinman, and L .  W .  Nordheim. "The 

Q u a n t i t a t i v e  Eva lua t i on  of  Resonance I n t e g r a l s , "  



paper No. P/1988, Proceedings of the Second United 

Nations International Conference on the Peaceful Uses 

of Atomic Energy, vol. 155-171, United Nations, 

Geneva, 1958. 

11. Machine Requirements: 64K memory, normal input, output, 

program, and punch units, 1 unit for library, 1 to 4 
scratch units or their equivalent on drum. 

12. Programming Language Used: FORTRAN-IV. 

13. Operating System: UNIVAC-1108 computer with FORTRAN-IV , 
compiler and CSCX operating system. 

14. User Information: The code and report may be obtained 

either through the Argonne Code Center at Argonne 

National Laboratory or from Pacific Northwest Laboratory 

in Richland, Washington. 

15. Material Available: Magnetic tape transmittal 

HRG3 Source deck (approximately 3000 cards) 

NUTAPE-I1 Source deck (approximately 1000 cards) 

Sample problem (20 cards) 

Library Data Tape. 

16. Acknowledgment: This work is based on work performed under 

U. S. Atomic Energy Commission Contract AT(45-1)-1830. 

J. L. Carter 
Reactor Physics Department 
Battelle-Northwest 
P. 0. Box 999 
Richland, Washington 99352 



D B U F I T - I :  A  L E A S T  S Q U A R E S  A N A L Y S I S  CODE FOR N U C L E A R  B U R N U P  D A T A  

R. P. M a t s e n  

1. Name: DBUFIT-I 

2 .  Comvuter: UNIVAC-1108 

3. Problems Solved:  DBUFIT-I i s  des igned t o  e x t r a c t  i n t e g r a l  

c r o s s  s e c t i o n  in format ion  from i s o t o p i c  burnup d a t a .  Th is  

in format ion  i s  ob t a ined  by f i t t i n g  burnup equa t ions  t o  t h e  

i s o t o p i c  d a t a  us ing  l e a s t  squa re s  f i t t i n g  techniques .  

Burnup equa t ions  f o r  t h e  fo l lowing  t r ansmuta t i on  cha ins  

have been encoded: 

Transmutat ion Chain T v ~ e  of Fuel  Subrout ine  Name - - - - 

2 3 9 p ~ + 2 4 0 p u - t 2 4 1 p ~ + 2 4 2 P ~  Pu THEORY /PUAL 

238 U-t 239pu,240pu-t241pu,242Pu U + Pu THEORY/URAN 

U + Pu AMCM 

235u-236 U- 238 U- Z37Np-~36pu-~~8pu  U + PU UCHAIN 

4.  Method of S o l u t i o n :  An i t e r a t i v e  t echnique  i s  used t o  

f i n d  t h e  b e s t  l e a s t  squa re s  f i t  of t h e  t r ansmuta t i on  

equa t ions  t o  t h e  measured burnup d a t a .  The va lues  of t h e  

a d j u s t a b l e  l e a s t  squares  parameters  a t  t h i s  b e s t  l e a s t  

f i t  c o n t a i n  t h e  d e s i r e d  i n t e g r a l  c r o s s  s e c t i o n  i n fo rma t ion .  

5. R e s t r i c t i o n s  on t h e  Complexity of t h e  Problem: The d a t a  

from a s  many a s  150 samples may be analyzed a t  one t ime.  

6. Typica l  Machine Time: Computational t ime depends upon 

t h e  number of  i t e r a t i o n s  r e q u i r e d  t o  o b t a i n  l e a s t  squa re s  

convergence and t h e  number o f  d a t a  p o i n t s  being f i t t e d .  

On t h e  UNIVAC-1108, a  t e s t  c a s e  w i t h  n ine  d a t a  p o i n t s  

r e q u i r e s  approximately f o u r  seconds p e r  i t e r a t i o n .  I n i t i a l  

gues s t ima te s  f o r  t h e  f i t t i n g  parameters  a r e  u s u a l l y  good 

enough t h a t  most problems converge i n  25 t o  50 i t e r a t i o n s .  



Doubling t h e  number o f  d a t a  p o i n t s  doub les  t h e  runn ing  t ime  

p e r  i t e r a t i o n .  The o n l y  o t h e r  s i g n i f i c a n t  u s e  o f  machine 

t ime  o c c u r s  d u r i n g  t h e  g e n e r a t i o n  o f  p l o t t i n g  i n f o r m a t i o n  

which may r e q u i r e  up t o  t h i r t y  seconds  f o r  each  p l o t .  

Timing i n f o r m a t i o n  h a s  been  i n c o r p o r a t e d  i n  t h e  p r i n t e d  

o u t p u t  s o  t h a t  t h e  a n a l y s t  can  make good t iming  e s t i m a t e s  

f o r  subsequen t  c a s e s .  

7. Unusual F e a t u r e s  of  t h e  Program: The DBUFIT-I code p r o v i d e s  

f o r  a  s i m u l t a n e o u s  l e a s t  s q u a r e s  f i t  o f  a l l  t r a n s m u t a t i o n  

e q u a t i o n s  i n  a  g i v e n  c h a i n  t o  t h e  a s s o c i a t e d  burnup d a t a .  

One s t a n d a r d  d e v i a t i o n  u n c e r t a i n t i e s  f o r  a l l  o f  t h e  measured 

i s o t o p e s  can  b e  accommodated by t h e  code.  

8. R e l a t e d  and A u x i l l i a r y  Programs: DBUFIT-I s u p e r c e d e s  t h e  

DUBLIK code.  I n p u t  i s  r e a d  i n  v i a  t h e  NAMELIST f o r m a t .  I f  

need b e ,  a  comparable g e n e r a l i z e d  i n p u t  r o u t i n e  c a n  b e  

s u b s t i t u t e d  f o r  NAMELIST. 

9 .  S t a t u s :  DBUFIT-I i s  i n  p r o d u c t i o n  u s e  a t  P a c i f i c  Northwest  

L a b o r a t o r i e s  on t h e  UNIVAC-1108 computer a t  R ich land ,  

Washington. 

1 0 .  R e f e r e n c e s :  

R. P. Matsen, "DBUFIT-I, A L e a s t  Squares  A n a l y s i s  Code 

f o r  Nuc lea r  Burnup Data", USAEC Repor t  BNWL-1396, 

P a c i f i c  Northwest  L a b o r a t o r y ,  May 1 9 7 0 .  

B. H. Duane, "Maximum L i k e l i h o o d  Nonl inea r  C o r r e l a t e d  

F i e l d s  (BNW Program LIKELY)", USAEC Repor t  BNWL-390, 

P a c i f i c  Northwest  L a b o r a t o r y ,  September 1967. 

11. Machine Requirements :  Core memory r e q u i r e m e n t s  a r e  

40,000 o c t a l  l o c a t i o n s  f o r  i n s t r u c t i o n s  and a l m o s t  

50,000 o c t a l  l o c a t i o n s  f o r  d a t a  s t o r a g e .  The DBUFIT-I 

code c o n s i s t s  o f  approx imate ly  3500 c a r d  images and t h e r e -  

f o r e  i s  u s u a l l y  s t o r e d  on e i t h e r  magne t i c  t a p e  o r  drum. A 

c a r d  r e a d e r ,  p r i n t e r  and a  c a r d  punch a r e  a l s o  r e q u i r e d .  A 

CALCOMP p l o t t e r  i s  n e c e s s a r y  i f  p l o t t e d  r e s u l t s  a r e  d e s i r e d .  



1 2 .  Programming Language Used: The program i s  w r i t t e n  i n  

UNIVAC FORTRAN-V. 

13. Operat ing System: UNIVAC-1108 wi th  FORTRAN-V compiler .  

The equipment and p roces s ing  i s  under t h e  c o n t r o l  of  

Computer Sc iences  Conversa t iona l  Execut ive  (CSCX). 

1 4 .  Other Prpgramming Informat ion :  Computations a r e  performed 

i n  double p r e c i s i o n  i n  o r d e r  t o  avoid  i n s t a b i l i t i e s  due 

t o  round o f f  e r r o r  by t a k i n g  advantage of t h e  e f f i c i e n t  

UNIVAC-1108 double p r e c i s i o n  hardware. With some dec rease  

i n  e f f i c i e n c y  and r e l i a b i l i t y ,  most ca se s  can a l s o  be 

run i n  t h e  s i n g l e  p r e c i s i o n  mode, the reby  sav ing  con- 

s i d e r a b l e  d a t a  s t o r a g e  space  i n  t h e  c o r e  memory. 

15. User In format ion :  The DBUFIT-I code and r e p o r t  may be 

ob t a ined  from e i t h e r  t h e  Argonne Code Center  a t  Argonne 

Nat iona l  Laboratory  o r  from P a c i f i c  Northwest Laboratory  

i n  Richland,  Washington. 

1 6 .  Acknowledgment: This  code i s  based on work performed 

under U.  S. Atomic Energy Commission Cont rac t  AT(45-1)-1830. 



CODE D E V E L O P M E N T  

G .  D .  S e y b o l d  

A computer code ,  GSSLRN-11, has  been  w r i t t e n  which i s  

an e x t e n s i o n  of t h e  Code GSSLRN-I. Two p r imary  d i f f e r e n c e s  

a r e  a p p a r e n t .  The f i r s t  i s  t h a t  t h e  u s e r  may now u t i l i z e  t h e  

code f o r  a  g e n e r a l  c l a s s  of  problems i n s t e a d  of b e i n g  l i m i t e d  

t o  one p a r t i c u l a r  t h e o r y  t o  d e s c r i b e  h i s  a n a l y t i c  peak s h a p e .  

T h i s  g e n e r a l i z a t i o n  h a s  a l r e a d y  been proven by i t s  a p p l i c a t i o n  

t o  ~ o s s b a u e r  s p e c t r a  where t h e  a n a l y t i c  peak shapes  a r e  

d e s c r i b e d  by a  Bre i t -Wigner  f u n c t i o n .  Second ly ,  t h e  g e n e r a l i z a -  

t i o n  h a s  p rov ided  many new o p t i o n s  which e n a b l e  t h e  u s e r  t o  

m a n i p u l a t e  i n p u t  d a t a  and /o r  o u t p u t  r e s u l t s .  

The code h a s  been  used  r o u t i n e l y  on b o t h  f i s s i o n  p r o d u c t  

s p e c t r a  and ~ o s s b a u e r  s p e c t r a  and h a s  y i e l d e d  r e s u l t s  which 

have demons t ra t ed  t h a t  peak f i t t i n g  of  complex m u l t i p l e t s  can 

be done on a  r o u t i n e  b a s i s  w i t h  a  h i g h  d e g r e e  o f  s u c c e s s .  

The code ,  GSSLRN-11, i s  s t i l l  under  development  b u t  i s  

a v a i l a b l e  f o r  u s e  i n  p r e l i m i n a r y  s t a t u s  i f  r e q u e s t e d .  

B U R N U P  C A L C U L A T I O N S  F O R  BNW 1 F U E L  P I N S  

U .  P .  J e n q u i n  

I n t r o d u c t i o n  

I r r a d i a t i o n  exper imen t s  on s t a i n l e s s  s t e e l  c l a d  mixed 

ox ide  (U02-PuO ) f u e l s  of  v a r i o u s  oxygen- to -meta l  r a t i o s  a r e  2 
b e i n g  conducted  i n  the rmal  r e a c t o r s  t o  s t u d y  t h e  sys tem com- 

p a t a b i l i t y  and s w e l l i n g  of t h e  f u e l .  Power and t e m p e r a t u r e  

d i s t r i b u t i o n s  a s  a  f u n c t i o n  o f  burnup a r e  n e c e s s a r y  t o  a n a l y z e  

t h e  i r r a d i a t i o n  r e s u l t s .  P h y s i c s  c a l c u l a t i o n s  have been done 

t o  d e t e r m i n e  t h e  power d i s t r i b u t i o n  i n  t h e  BNW 1 f u e l  ( I )  a t  

v a r i o u s  e x p o s u r e s .  I s o t o p i c  c o n c e n t r a t i o n s  have a l s o  been 

de te rmined  a s  a  f u n c t i o n  of burnup.  The c a l c u l a t i o n a l  r e s u l t s  

a r e  normal i zed  t o  o p e r a t i n g  d a t a .  



D e s c r i p t i o n  of  Experiment 

The f u e l  c o n s i s t s  o f  U02-25 w t %  Pu02 c l a d  i n  304 SS. The 

uranium is  of  n a t u r a l  enr ichment  w h i l e  t h e  p lu tonium i s o t o p i c  

composi t ion  i s  85.84/11.53/2.44/0.19 a t . %  Pu-239/240/241/242, 

r e s p e c t i v e l y .  The f u e l  rod  i s  i n s e r t e d  i n t o  a  c a p s u l e  which i s  
then  i n s e r t e d  i n t o  one of t h e  i r r a d i a t i o n  h o l e s  i n  t h e  aluminum 

b locks  i n  t h e  MTR r e f l e c t o r ,  The capsu l e  c o n s i s t s  of a n n u l i  o f  

NaK, 304 SS, and aluminum. A d e s c r i p t i o n  of  t h e  f u e l  r od  and 

capsu l e  i s  summarized i n  Table  2 .7 ,  

TABLE 2.7.  Descr ip t ion  of Fuel  Rod and Capsule 

Composition 

Fue 1 

304 SS 

NaK 

304 SS 

NaK 

A 1  

NaK 

304 SS 

Outs ide  Diameter ,  i n ,  

0.218 

0.250 

0.507 

0.568 

0.692 

0.902 

1.026 

1.124 

Temperature ,  O C  

2300 

486 

360 

232 

179 

146 

124 

87 

D e s c r i p t i o n  of  C a l c u l a t i o n  

The d e s i r e d  i n fo rma t ion  from t h e  phys i c s  a n a l y s i s  i s :  1 )  

i s o t o p i c  c o n c e n t r a t i o n s  o f  t h e  f u e l  a s  a  f u n c t i o n  of  burnup,  

and 2) power d i s t r i b u t i o n  a c r o s s  t h e  f u e l  a t  v a r i o u s  exposures .  

S ince  t h e  i r r a d i a t i o n s  took p l a c e  i n  t h e  MTR r e f l e c t o r ,  n e a r l y  

a l l  o f  t h e  power i s  due t o  the rmal  neu t ron  induced f i s s i o n s .  

T h e r e f o r e ,  t h e  burnup of  t h e  f u e l  can be approx imate ly  d e t e r -  

mined from power d i s t r i b u t i o n s  and mic roscop ic  c r o s s  s e c t i o n s  

ob t a ined  from THERMOS/BATTELLE, a  mul t ig roup  t r a n s p o r t  code.  

The THERMOS code i s  des igned  t o  perform a  space-energy  c a l c u l a -  

t i o n  of thermal  neu t rons  i n  a  p a r t i c u l a r  r e a c t o r  c e l l  geometry,  

b u t  i t  w i l l  n o t  perform i s o t o p i c  t r a n s m u t a t i o n  c a l c u l a t i o n s .  

Hence, t h e  burnup code ZODIAC G (3)  was i n c o r p o r a t e d  i n t o  t h e  



c a l c u l a t i o n .  The ZODIAC G code h a s  THERMOS a s  one o f  i t s  

modules ,  b u t  t h i s  v e r s i o n  of  THERMOS does n o t  a l l o w  s u f f i c i e n t  

g e o m e t r i c  d e t a i l  t o  o b t a i n  a  s u f f i c i e n t l y  d e t a i l e d  power d i s t r i -  

b u t i o n  f o r  t h i s  work. Hence, t h e  f o l l o w i n g  c a l c u l a t i o n a l  

scheme was used  t o  de te rmine  t h e  p h y s i c s  p a r a m e t e r s  a s  a  f u n c -  

t i o n  o f  e x p o s u r e :  

1. A ZODIAC G burnup c a l c u l a t i o n  was per formed w i t h  a  

c e l l  geometry of  o n l y  one f u e l  r e g i o n .  T h i s  c a l c u l a -  

t i o n  p r o v i d e d  i s o t o p i c  f u e l  c o n c e n t r a t i o n s  a s  a  

f u n c t i o n  e x p o s u r e .  

2 .  The ZODIAC G i s o t o p i c  c o n c e n t r a t i o n s  were t h e n  used  a s  

i n p u t  t o  a  THERMOS c a l c u l a t i o n  which had a  c e l l  

geometry c o n t a i n i n g  f i v e  f u e l  r e g i o n s .  T h i s  c a l c u l a -  

t i o n  p r o v i d e d  t h e  power d i s t r i b u t i o n  a c r o s s  t h e  f u e l .  

T h i s  scheme i s  d i s c u s s e d  i n  more d e t a i l  below. 

THERMOS C e l l  D e s c r i ~ t i o n  

The s p a c e - e n e r g y  d i s t r i b u t i o n  of t h e r m a l  n e u t r o n s  i n  t h e  

f u e l  was c a l c u l a t e d  w i t h  THERMOS. The " u n i t  c e l l "  u s e d  i n  

t h e  THERMOS c a l c u l a t i o n  c o n s i s t s  o f  e i g h t  r e g i o n s .  Region 8 

(1 .4  cm t h i c k )  c o n t a i n s  e q u a l  volumes of  aluminum and H20. 

The w a t e r  a d j a c e n t  t o  t h e  aluminum b l o c k  i n f l u e n c e s  t h e  

n e u t r o n  spec t rum i n  t h e  f u e l .  Region 7 c o n t a i n s  t h e  c a p s u l e  

and f u e l  c l a d  which a r e  homogenized i n t o  one r e g i o n .  The 

a v e r a g e  NaK t e m p e r a t u r e  was assumed t o  be  250  "C. The 

r emain ing  s i x  r e g i o n s  d e s c r i b e  t h e  f u e l  and a  c e n t r a l  v o i d ,  

a s  d i s c u s s e d  below. 

S h o r t l y  a f t e r  i r r a d i a t i o n  i s  begun,  t h e  f u e l  forms a  

c e n t r a l  v o i d  w i t h  t h e  d e n s i t y  o f  t h e  f u e l  n e a r  t h i s  v o i d  

i n c r e a s i n g .  From pho tomic rographs ,  t h e  t y p i c a l  v o i d  d i a m e t e r  

was e s t i m a t e d  t o  be  60  m i l s .  To d e t e r m i n e  t h e  n u c l e a r  

c h a r a c t e r i s t i c s  i n  d e t a i l ,  i t  i s  n e c e s s a r y  t o  d i v i d e  t h e  f u e l  

i n t o  a  number of  r e g i o n s .  F i v e  f u e l  r e g i o n s  (2-6)  were 

s e l e c t e d  because  of a  l i m i t a t i o n  o f  e i g h t  m i x t u r e s  i n  a  THERMOS 



c a l c u l a t i o n .  The f u e l  r e g i o n  dimensions and d e n s i t i e s  a r e  

summarized i n  Table  2 . 8 .  Region 1 is t h e  v o i d .  

TABLE 2.8. D e s c r i p t i o n  o f  F u e l  Regions 

% of F u e l  Outside Thickness, Fuel Density 
Region Radius Radius, c m  cm % of TD g I cm3  

1 (VOID) 2 7 . 5  0 . 0 7 6 2 0  0 . 0 7 6 2 0  

2  50  0  . I 3 8 4 3  0 . 0 6 2 2 3  9  8  1 0 . 8 6 8  

3  7  0  0 . 1 9 3 8 0  0 . 0 5 5 3 7  9  8  1 0 . 8 6 8  
4  8  5  0 . 2 3 5 3 3  0 . 0 4 1 5 3  9 5  1 0 . 5 3 6  

5  9  3  0 . 2 5 7 4 8  0 . 0 2 2 1 5  92 1 0 . 2 0 3  

6  1 0 0  0 . 2 7 6 8 6  0 . 0 1 9 3 8  92  1 0 . 2 0 3  

Z O D I A C  G C a l c u l a t i o n  

I s o t o p i c  c o n c e n t r a t i o n s  a s  a  f u n c t i o n  of  exposure  were 

c a l c u l a t e d  w i t h  t h e  burnup code ZODIAC G .  I n  t h e  ZODIAC G 

c a l c u l a t i o n ,  t h e  f u e l  i s  n o t  d i v i d e d  i n t o  r e g i o n s ,  s o  t h e  burnup 

i s  an average  ove r  t h e  f u e l .  R a t i o s  of  c r o s s  s e c t i o n s  do n o t  

v a r y  s i g n i f i c a n t l y  a c r o s s  t h e  f u e l ,  s o  t h e  burnup p a t h  a t  any 

one p o s i t i o n  shou ld  be  n e a r l y  t h e  same a s  t h e  average  burnup 

p a t h .  I s o t o p i c  c o n c e n t r a t i o n s  a s  a  f u n c t i o n  of  exposure  were 

o b t a i n e d  f o r  f u e l  o f  9 2 %  TD and f o r  f u e l  o f  9 8 %  T D .  The burnup 

s t e p s  a r e  i n  inc rements  o f  about  2 5 , 0 0 0  MWd/MTM. The i s o t o p i c  

c o n c e n t r a t i o n s  were p l o t t e d  a s  a  f u n c t i o n  of  expsoure  f o r  bo th  

f u e l  d e n s i t i e s  s o  t h a t  t h e  i s o t o p i c  c o n c e n t r a t i o n s  a t  any 

d e s i r e d  expsoure  cou ld  be determined q u i t e  r e a d i l y .  I s o t o p i c  

c o n c e n t r a t i o n s  f o r  f u e l  a t  95% TD were determined by i n t e r p o l a t -  

i n g  between t h e  curves  f o r  9 8 %  and 9 2 %  TD f u e l .  

Power D i s t r i b u t i o n  C a l c u l a t i o n  

To de te rmine  t h e  power d i s t r i b u t i o n  and burnup a c r o s s  t h e  

f u e l  r o d ,  a  THERMOS c a l c u l a t i o n  was done w i t h  t h e  f u e l  d i v i d e d  

i n t o  t h e  f i v e  r e g i o n s  l i s t e d  i n  Table  2 . 8 .  I n  o r d e r  t o  perform 

t h i s  c a l c u l a t i o n  i t  i s  n e c e s s a r y  t o  de te rmine  t h e  exposure  o f  

each  f u e l  r e g i o n  a t  each burnup s t e p .  With t h i s  i n f o r m a t i o n ,  



t h e  i s o t o p i c  c o n c e n t r a t i o n s  needed f o r  e a c h  f u e l  r e g i o n  i n  

THERMOS were o b t a i n e d  from t h e  ZODIAC G c u r v e s  d e s c r i b e d  

above.  The i n c r e m e n t a l  exposure  o f  each  f u e l  r e g i o n  was d e t e r -  

mined a s  t h e  p r o d u c t  o f  t h e  r e l a t i v e  power d e n s i t y  o f  e a c h  

f u e l  r e g i o n  t i m e s  t h e  i n c r e m e n t a l  a v e r a g e  e x p o s u r e .  

Power d e n s i t y  i s  p r o p o r t i o n a l  t o  t h e  p r o d u c t  o f  macroscop ic  

f i s s i o n  c r o s s  s e c t i o n  and n e u t r o n  f l u x .  The r e l a t i v e  power 

d e n s i t y  i n  e a c h  f u e l  r e g i o n  i s :  

where 
- 
4r = r e g i o n  a v e r a g e  t h e r m a l  f l u x  d i v i d e d  by  t h e  c e l l  

a v e r a g e  t h e r m a l  f l u x  
- f  
C r  = r e g i o n  ave rage  macroscop ic  f i s s i o n  c r o s s  s e c t i o n  

VFr = volume f r a c t i o n  of  r e g i o n  r r e l a t i v e  t o  c e l l  volume 

= t h e  summation o v e r  a l l  f u e l  r e g i o n s .  
r=2 

The denominator  i s  j u s t  t h e  c e l l  ave rage  macroscop ic  f i s s i o n  

c r o s s  s e c t i o n ,  - f  
' c e l l '  c a l c u l a t e d  by THERMOS. I n  t h i s  nomen- 

c l a t u r e ,  t h e  volume we igh ted  ave raged  power d e n s i t y  i n  t h e  

f u e l  i s  1 . 0 .  

The power d i s t r i b u t i o n  was assumed t o  be c o n s t a n t  

th rough  e a c h  burnup s t e p .  Hence, t h e  a v e r a g e  exposure  t h a t  

e a c h  r e g i o n  r e c e i v e s  d u r i n g  each  burnup s t e p  i s  j u s t  t h e  

r e g i o n  a v e r a g e  r e l a t i v e  power d e n s i t y ,  P r ,  t i m e s  t h e  i n c r e -  

m e n t a l  c e l l  a v e r a g e  exposure  which was chosen  a s  25,000 MWd/MTM. 

The r e g i o n  a v e r a g e  i s o t o p i c  c o n c e n t r a t i o n s  d e t e r m i n e d  a t  t h e  

end of t h e  one burnup s t e p  were t h e n  u s e d  i n  t h e  f i v e  f u e l  

r e g i o n  THERMOS c a l c u l a t i o n  t o  d e t e r m i n e  t h e  r e g i o n  a v e r a g e  

r e l a t i v e  power d e n s i t i e s  t o  u s e  i n  t h e  n e x t  burnup s t e p .  The 

p r o c e d u r e  was r e p e a t e d  u n t i l  a  c e l l  ave rage  exposure  o f  

150,000 MWd/MTM was r e a c h e d .  The a c c u r a c y  o f  t h e  r e s u l t s  



would improve i f  a  s m a l l e r  i nc r emen ta l  c e l l  average  exposure  

i s  used because  t h e  power d i s t r i b u t i o n  changes w i t h  burnup.  

A l l  of t h e  c a l c u l a t i o n s  i nc luded  1 3 5 ~ e ,  14'sm, and a  pseudo 

f i s s i o n  p roduc t .  

C a l c u l a t i o n a l  R e s u l t s  

The power d i s t r i b u t i o n  f o r  each burnup s t e p  i s  shown i n  

F igu re  2 .5 .  The power d i s t r i b u t i o n  t ends  t o  become f l a t t e r  

w i t h  burnup because  t h e  c o n c e n t r a t i o n  of  f i s s i l e  i s o t o p e s  i s  

d e p l e t e d  f a s t e r  n e a r  t h e  edge of t h e  f u e l  where t h e  thermal  

f l u x  i s  much l e s s  t han  1 . 0 .  D iv id ing  t h e  f u e l  i n t o  more r e g i o n s  

would improve t h e  r e s u l t s  because  t h e  power d e n s i t y  i s  n o t  con- 

s t a n t  w i t h i n  a  r e g i o n  a s  i n d i c a t e d  i n  F igure  2 .5 .  

The exposure  d i s t r i b u t i o n  f o r  each burnup s t e p  i s  shown 

i n  F igu re  2 . 6 .  The exposure  a t  t h e  edge of t h e  f u e l  i s  

s i g n i f i c a n t l y  h i g h e r  than  a t  t h e  c e n t e r  of t h e  f u e l .  I f  t h e  

burnup would be c a r r i e d  o u t  t o  exposures  w e l l  beyond 

150,000 MWd/MTM, t h e  curves  would become f l a t t e r  because  t h e  

r e l a t i v e  power d e n s i t y  would become h i g h e s t  i n  t h e  c e n t e r  of  

t h e  f u e l  and t h e  inc rementa l  exposure  would be l a r g e s t .  

I n  o r d e r  t o  c a l c u l a t e  power d i s t r i b u t i o n s  i n  THERMOS, t h e  

p lu tonium i s o t o p i c  c o n c e n t r a t i o n s  had t o  be determined f o r  

each  r e g i o n  a s  a  f u n c t i o n  of  exposure .  The t o t a l  p lu tonium 

c o n c e n t r a t i o n  f o r  each r e g i o n  was c a l c u l a t e d  from t h e  sum of  

t h e  i s o t o p i c  c o n c e n t r a t i o n s  and p l o t t e d  as  a  f u n c t i o n  of  r a d i u s .  

The r e s u l t s  a r e  shown i n  F igure  2 . 7  f o r  each burnup s t e p .  A t  

low exposures  t h e  curves  a r e  n o t  con t inuous  because  of  t h e  

d i f f e r e n t  f u e l  d e n s i t i e s  used i n  t h e  r e g i o n s .  A t  h i gh  exposures  

t h i s  e f f e c t  i s  washed o u t .  These curves  can be compared t o  

measursd p lu tonium d i s t r i b u t i o n s  t o  a s s e s s  t h e  adequacy of  t h e  

c a l c u l a t i o n s .  The average  p lu tonium i s o t o p i c  c o n c e n t r a t i o n  a t  

75,000 MWd/MTM was c a l c u l a t e d  by volume weigh t ing  t h e  i s o t o p i c  
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FIGURE 2 . 7 .  P l u t o n i u m  D i s t r i b u t i o n  i n  BNW 1 F u e l  P i n s  



c o n c e n t r a t i o n s  f o r  each  r e g i o n .  The i s o t o p i c  pe r cen t ages  a r e  

66 .6 /26 .1 /6 .1 /1 .2% Pu-239/240/241/242, r e s p e c t i v e l y .  A com- 

p a r i s o n  w i t h  measured v a l u e s  w i l l  a s s e s s  t h e  accuracy o f  t h e  

ZODIAC G c a l c u l a t i o n .  

C a l c u l a t i o n a l  R e s u l t s  Normalized t o  BNW 1-6  Fue l  P i n  

The i r r a d i a t i o n s  took p l a c e  i n  t h e  MTR r e f l e c t o r  where t h e  

thermal  f l u x  i s  c o n t a n t  w i t h  t ime .  I f  t h e  thermal  f l u x  o u t s i d e  

of  t h e  f u e l  p i n  i s  c o n s t a n t ,  t h e  power produced by t h e  p i n  

d e c r e a s e s  w i t h  i n c r e a s i n g  exposure .  The c a l c u l a t e d  r e s u l t s  

were normal ized u s i n g  measured d a t a  from BNW 1 -6  which was 

i r r a d i a t e d  t o  an average  exposure  o f  75,000 MWd/MTM. S ince  

exposure  e q u a l s  t h e  p roduc t  of  power d e n s i t y  and t ime ,  and t h e  

average  exposure  increments  a r e  a l l  25,000 MWd/MTM, t h e  i r r a d i a -  

t i o n  t ime f o r  each burnup increment  i s  i n v e r s e l y  p r o p o r t i o n a l  

t o  average  power d e n s i t y .  Thus, t h e  i r r a d i a t i o n  t ime ,  AT, f o r  

- f  where i8 i s  each  burnup increment  i s  p r o p o r t i o n a l  t o  m8/lcell 

t h e  average  thermal  f l u x  i n  Region 8  and 

- f  =C - - f  

' c e l l  Or 'r VFr 

i s  t h e  c e l l  average  macroscopic f i s s i o n  c r o s s  s e c t i o n .  Using 

t he  measured q u a n t i t i e s  of 75,000 MWd/MTM average  exposure  i n  

284.1 f u l l  power days f o r  BNW 1 - 6 ,  t h e  t ime i n t e r v a l s  were 

c a l c u l a t e d  by:  
3  

where i r e f e r s  t o  t h e  burnup i n t e r v a l  number. The q u a n t i t y  
- f  

i 8 ( i )  z c e l l  ( i )  was assumed t o  be c o n s t a n t  over  t h e  ith burnup 
i n t e r v a l .  The t ime i n t e r v a l s  a r e  c a l c u l a t e d  t o  be 89 .6 ,  93 .9 ,  

and 100.6 days f o r  burnup S t eps  1, 2 ,  and 3 ,  r e s p e c t i v e l y .  

Knowing t h e  t ime i n t e r v a l s  t o  accumulate i nc r emen ta l  average  

exposures  of 25,000 MWd/MTM, t h e  average  power d e n s i t y  was 

c a l c u l a t e d  by:  



P.D. = a v e r a g e  exposure  t imes  ave rage  f u e l  d e n s i t y / t i m e  

i n t e r v a l  
3 P.D. = 25,000 MWd/MTM 9.3301 g/cm / A T .  

Once t h e  ave rage  power d e n s i t y  was d e t e r m i n e d ,  i t  was a  

s i m p l e  m a t t e r  t o  c a l c u l a t e  t h e  r e g i o n  a v e r a g e  power d e n s i t y ,  

by m u l t i p l y i n g  t h e  ave rage  power d e n s i t y  by t h e  p r e v i o u s l y  

c a l c u l a t e d  r e l a t i v e  power d e n s i t y  f o r  e a c h  r e g i o n ;  
- -  

P.D., = P.D. Pr .  

The n o r m a l i z e d ,  o r  a b s o l u t e  power d i s t r i b u t i o n  i s  p l o t t e d  

f o r  t h e  v a r i o u s  burnup s t e p s  i n  F i g u r e  2 .8 .  The power d e n s i t y  

i n  t h e  c e n t e r  of  t h e  f u e l  i n c r e a s e s  o n l y  s l i g h t l y  w i t h  expo-  

s u r e  w h i l e  a t  t h e  edge of  t h e  f u e l  t h e  power d e n s i t y  d e c r e a s e s  

q u i t e  r a p i d l y .  The c u r v e s  have t h e  same shape  a s  i n  F i g u r e  2 .5 ,  

b u t  a r e  r e n o r m a l i z e d  t o  c o n s t a n t  f l u x  i n  t h e  modera to r  r a t h e r  

t h a n  c o n s t a n t  power i n  t h e  f u e l .  Average power d e n s i t i e s  f o r  

t h e  c e l l  and t h e  edge r e g i o n s  a r e  p l o t t e d  a s  a  f u n c t i o n  o f  

t ime  i n  F i g u r e  2 .9 .  The change i n  power d e n s i t y  w i t h  i r r a d i a -  

t i o n  t ime o r  exposure  i s  a p p a r e n t .  The c e l l  a v e r a g e  power 

d e n s i t y  d e c r e a s e s  g r a d u a l l y  w i t h  t i m e .  On t h i s  g raph  t h e  

power d e n s i t i e s  a r e  p l o t t e d  a t  t h e  m i d p o i n t  of  t h e  t ime 

i n t e r v a l s  because  t h e y  a r e  an a v e r a g e  o v e r  t h e  t ime  i n t e r v a l .  

Using t h e  i n f o r m a t i o n  t o  c a l c u l a t e  a b s o l u t e  power 

d e n s i t i e s ,  t h e  a b s o l u t e  the rma l  f l u x  i n  Region 8  was c a l c u l a t e d  

t o  be  0.86 x 1014 n /cm2-sec  which i s  i n  e x c e l l e n t  agreement  
2 w i t h  t h e  measured MTR v a l u e  of 0 .9  x 1014 n/cm - s e c .  

Conc lus ions  

The c a l c u l a t i o n a l  model d e v i s e d  f o r  t h e  burnup of  BNW 1 

c a p s u l e s  seems t o  g i v e  r e a s o n a b l y  good r e s u l t s .  Very few 

checks have  been  made t o  a s s e s s  t h e  a c c u r a c y  o f  t h e  model.  No 

d e t a i l e d  compar isons  were made w i t h  e x p e r i m e n t a l  d a t a .  To 

e l i m i n a t e  most of  t h e  a s sumpt ions  i n  t h e  a n a l y s i s  would 

r e q u i r e  a  v e r y  s o p h i s t i c a t e d  c a l c u l a t i o n a l  model.  A few s i m p l e  
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c a l c u l a t i o n s  were done t o  check some of t he  assumptions .  The 

r a t i o  of microscopic  c r o s s  s e c t i o n s  a s  a  f u n c t i o n  of r a d i u s ,  

f u e l  d e n s i t y ,  and exposure was i n v e s t i g a t e d .  The r e l a t i v e  

power d e n s i t y  and exposure was c a l c u l a t e d  f o r  v a r i o u s  p o s i t i o n s  

and compared t o  va lues  a t  those  p o s i t i o n s  ob t a ined  by drawing 

curves  through t h e  r eg ion  average v a l u e s .  The adequacy of t h e  

space-energy f l u x  d i s t r i b u t i o n  c a l c u l a t e d  wi th  THERMOS was a l s o  

i n v e s t i g a t e d .  These i n v e s t i g a t i o n s  i n d i c a t e d  t h a t  no s e r i o u s  

e r r o r s  were made i n  t h e  a s s o c i a t e d  assumptions.  

Areas which have n o t  been i n v e s t i g a t e d  t h a t  could  a f f e c t  

t h e  r e s u l t s  a r e :  

Assumptions a s s o c i a t e d  w i th  t h e  r a t i o  of non thermal - to -  

thermal  f l u x ,  

S i z e  of t h e  burnup increments ,  

Number of r eg ions  t h e  f u e l  i s  d iv ided  i n t o ,  

Nonhomogeneity e f f e c t s  of t h e  f u e l .  
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k  MEASUREMENT FOR A  T ~ o ~ - * ~ ~ u c ~ - c  HTGR L A T T I C E  AS A  FUNCTION 
4 

OF TEMPERATURE 

T .  J .  O a k e s  a n d  C .  R .  R i c h e y  

Values  f o r  t h e  i n f i n i t e  n e u t r o n  m u l t i p l i c a t i o n  f a c t o r  a s  

a  f u n c t i o n  of t e m p e r a t u r e ,  k w ( T ) ,  f o r  a  T ~ o ~ - ~ ~ ~ u c ~ - c  HTGR 

l a t t i c e  have been  o b t a i n e d  b o t h  by HTLTR measurement and by 

c a l c u l a t i o n .  T h i s  l a t t i c e  h a s  been  p r e v i o u s l y  d e s c r i b e d  i n  

an e a r l i e r  q u a r t e r l y  r e p o r t .  (1)  

The obse rved  r e a c t i v i t y  wor ths  o f  t h e  HTGR c e l l  and a 

s t a n d a r d  a b s o r b e r  (Cu) , a s  measured i n  t h e  H T L T R ,  t o g e t h e r  

w i t h  f o i l  a c t i v a t i o n  d a t a ,  have been  used  t o  deduce kw v i a  t h e  

unpoisoned t e c h n i q u e .  ( 2 )  The e x p r e s s i o n  used  f o r  t h i s  e v a l u a -  

t i o n  i s :  

c e l l  ( I  Vm2)Cu 
k  a = 1 - (i.cu ) a2  c e l l  

( za ,v$2)  

where t h e  f i r s t  t e r m ,  k * ,  i s  t h e  r e s u l t  n o r m a l l y  d e r i v e d  from 
2 2 2 an HTLTR-PCTR t y p e  e x p e r i m e n t ,  f l ( L  B ) and f 2 ( r B  ) a r e  te rms 

which c o r r e c t  f o r  t h e  f i n i t e  l e a k a g e  p r e s e n t  i n  t h e  unpoisoned 
+ 

l a t t i c e ,  and g ( $ , $  ) i s  a  c o r r e c t i o n  which a r i s e s  because  t h e  

d i r e c t  f l u x  and t h e  a d j o i n t  f l u x  s p e c t r a  i n  t h e  t e s t  a r r a y  a r e  

n o t  n e c e s s a r i l y  i d e n t i c a l  w i t h  t h e  s p e c t r a  p r e s e n t  i n  a  j u s t  



c r i t i c a l  HTGR medium. I f  t h e r e  i s  no mismatch between t h e  

f l u x e s  i n  t h e  void  and t h e  equ i l i b r ium f l u x e s  c h a r a c t e r i s t i c  of 

t h e  medium, t he  terms 
+ 

A $  = and A $ +  = (2) - (?) 
vo id  medium 

go t o  ze ro .  S i m i l a r l y ,  a s  t h e  buck l ing ,  B', of t h e  unpoisoned 
2 2 2 l a t t i c e s  approaches zero (k-1) , t h e  f l (L  B ) and f 2  (TB ) 

c o r r e c t i o n  terms approach ze ro .  

A summary of t h e  va lues  of k;(T) a s  de r ived  from t h e  

exper iments  i n  HTLTR i s  p r e sen t ed  i n  Table 2 .9 .  I t  must be 

remembered t h a t  of t h e  measured q u a n t i t i e s  i n  t h e  exp re s s ion  f o r  

k* a' only t he  ~p c e l l / ~ p C u  r a t i o  could  be measured a t  e l e v a t e d  

t empera tu re s .  The abso rp t ion  r a t e s  i n  c e l l  components, f l u x  

mismatches and leakage c o r r e c t i o n s  a t  e l e v a t e d  tempera tures  

were ob t a ined  from c a l c u l a t i o n s  which had been normalized t o  

o b t a i n  agreement w i th  t he  exper imenta l  d a t a  a t  room tempera ture .  

The r e s u l t s  l i s t e d  i n  Table 2 .9 ,  a l s o  i nc lude  t h e  i n f i n i t e  

neu t ron  m u l t i p l i c a t i o n  f a c t o r s  f o r  t h e  HTGR a r r a y  a s  c a l c u l a t e d  

by two group t h e o r y ,  i . e . ,  

TABLE 2.9. k: (T) for a La t t i ce  

T ,  O C  d k', Measured k', d Calcu l a t ed  

20 1.111 1.0929 



The I: and I f  i n  t h e  above e x p r e s s i o n  a r e  t h e  ith group c e l l -  

ave raged  a b s o r p t i o n  and f i s s i o n  macroscopic  c r o s s  s e c t i o n s ,  

r e s p e c t i v e l y ,  w i t h  $; and (i b e i n g  t h e  f a s t  and t h e r m a l  f l u x e s ,  

r e s p e c t i v e l y ,  from a  fundam.enta1 mode c a l c u l a t i o n .  A two 

group d i f f u s i o n  t h e o r y  (3) c a l c u l a t i o n  was u t i l i z e d  f o r  t h e  
a  f  fundamenta l  mode problem. The f a s t  group c o n s t a n t s ,  r l  and r l ,  

were computed by t h e  EGGNIT s lowing down code (4) u s i n g  t h e  B1 

c a l c u l a . t i o n .  Resonance s e l f  s h i e l d i n g  was t r e a t e d  by t h e  

Northeim i n t e g r a t i o n  scheme i n  g r a n u l a r  HTGR geometry .  ( 5 , 6 )  

Thermal group c o n s t a n t s ,  r i  and sf were o b t a i n e d  from a  

modi f i ed  v e r s i o n  ( 7 9 8 )  of t h e   THERMOS(^) code f o r  t r e a t i n g  t h e  

HTGR g r a n u l a r  f u e l  e l e m e n t s .  

The measured change i n  km between 2 0  " C  and 1000 O C  i s  

s l i g h t l y  l a r g e r  t h a n  t h e  co r respond ing  c a l c u l a t e d  change b u t  

t h e  agreement  i s  g e n e r a l l y  good. 
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HTLTR TEMPERATURE COEFFICIENT 

E. P. L i p p i n c o t t  

In  planning f o r  the  second HTGR experiment i n  the  HTLTR 

(High Temperature L a t t i c e  Tes t  Reactor)  i t  was neces sa ry  t o  

e s t i m a t e  t h e  temperature  c o e f f i c i e n t  of t he  r e a c t o r  i n  o rde r  

t o  a d j u s t  t h e  excess  r e a c t i v i t y  t o  enab le  t h e  r e a c t o r  t o  be 

t aken  c r i t i c a l  a t  a l l  t empera tures .  Methods of a d j u s t i n g  t he  

temperature  c o e f f i c i e n t  inc lude  vary ing  t h e  p o s i t i o n s  of t h e  

r e a c t o r  load ing  and t h e  a d d i t i o n  of Gd203 poison shim rods  

which have a  p o s i t i v e  c o e f f i c e n t .  

I n  t h e  i n i t i a l  experiments i n  HTLTR i t  was observed t h a t  

a t  t empera tures  s l i g h t l y  above room tempera ture ,  t h e  r e a c t o r  

had a  p o s i t i v e  temperature  c o e f f i c i e n t .  A s  t h e  temperature  

was i n c r e a s e d ,  t h e  c o e f f i c i e n t  passed through zero and became 

i n c r e a s i n g l y  n e g a t i v e .  This l a t t e r  e f f e c t  was only  p a r t i a l l y  

compensated by Gd203 shims. Accordingly i t  was neces sa ry  t o  

add r e a c t i v i t y  t o  ope ra t e  a t  t he  h ighe r  temperatures  and the  

f u e l - p o i s o n  columns (FPC) were c o n s t r u c t e d  f o r  t h i s  purpose .  ( 1  1 

To e s t i m a t e  t he  temperature  c o e f f i c i e n t  and r e a c t i v i t y  l o s s  

t o  1000 O C ,  t he  2-DB code was used,  wi th  a  2-group,  2-dimension 

c a l c u l a t i o n a l  model of t he  HTLTR which had been a d j u s t e d  

t o  g ive  t h e  c o r r e c t  temperature  c o e f f i c i e n t  f o r  t h e  f i r s t  HTGR 



l a t t i c e .  C a l c u l a t i o n s  w i t h  t h i s  model were a l s o  per formed 

t o  e s t i m a t e  t h e  adequacy of  t h e  f l u x  match a c r o s s  t h e  HTGR t e s t  

l a t t i c e .  S e v e r a l  s e t s  of  c a l c u l a t i o n s  were  per formed w i t h  

d i f f e r e n t  f u e l  and gado l in ium shim l o a d i n g s .  The c a l c u l a t i o n s  

f o r  l o a d i n g s  s i m i l a r  t o  t h e  p r e v i o u s  l a t t i c e  gave a  s i m i l a r  

r e a c t i v i t y  d rop  from room t e m p e r a t u r e  t o  1000 O C  ( a b o u t  2 . 6 0 $ ) .  

However, t h e  c a l c u l a t i o n s  d i d  n o t  r ep roduce  t h e  i n i t i a l  

r e a c t i v i t y  i n c r e a s e .  

F u r t h e r  c a l c u l a t i o n s  were done w i t h  t h e  gado l in ium shims 

moved r a d i a l l y  outward and d r i v e r  f u e l  moved inward .  These 

a d j u s t m e n t s  improved t h e  p r e d i c t e d  f l u x  match and r e s u l t e d  i n  

a  c a l c u l a t e d  r e a c t i v i t y  l o s s  o f  4 .85$ .  E i g h t  a d d i t i o n a l  

gado l in ium shims were added t o  t h e  model b u t  t h i s  r e s u l t e d  i n  

a  c a l c u l a t e d  d e c r e a s e  of  4.45$ a t  1000 O C .  S i n c e  t h e  c a l c u l a -  

t i o n  was s u s p e c t ,  t h i s  l a s t  l o a d i n g  was t r i e d  i n  t h e  HTLTR.  

I t  was found e x p e r i m e n t a l l y  t h a t  t h e  r e a c t i v i t y  i n c r e a s e d  

r a p i d l y  w i t h  t h e  i n c r e a s i n g  t e m p e r a t u r e  and i t  became n e c e s s a r y  

t o  remove some d r i v e r  f u e l  from t h e  r e a c t o r  i n  o r d e r  t o  o p e r a t e .  

The v a r i a t i o n  o f  t h e  e x c e s s  r e a c t i v i t y  o f  t h e  HTLTR a s  a  

f u n c t i o n  of  t e m p e r a t u r e  a f t e r  t h i s  f u e l  removal i s  shown i n  

F i g u r e  2.10.  The p o i n t  a t  25' i s  an e s t i m a t e  b a s e d  on t h e  amount 

of f u e l  removed. A t  t e m p e r a t u r e s  of  750 O C  and above ,  r e a c t i v i t y  

was added v i a  t h e  f u e l  p o i s o n  columns t o  o b t a i n  an  e x c e s s  r e a c -  

t i v i t y  a d e q u a t e  t o  p e r m i t  measurements .  

I n s p e c t i o n  of  F i g u r e  2.10 shows t h a t  a  good l o a d i n g  h a s  

been  e s t a b l i s h e d  f o r  o p e r a t i o n  o v e r  t h e  f u l l  r ange  from room 

t e m p e r a t u r e  t o  1000 O C .  The t o t a l  l o s s  i n  r e a c t i v i t y  from 

20 t o  1000 O C  i s  o n l y  abou t  40$. The maximum change i n  

r e a c t i v i t y  i s  from 400 t o  1000 O C  and h a s  been  h e l d  t o  1 . 4 5 $ .  
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FIGURE 2.10 .  HTLTR E x c e s s  R e a c t i v i t y  



The t e m p e r a t u r e  c o e f f i c i e n t  may be de te rmined  a t  each  

o p e r a t i n g  t e m p e r a t u r e  from t h e  s l o p e  of  t h e  c u r v e  i n  

F i g u r e  2.10.  S i n c e  t h e s e  c o e f f i c i e n t s  were n e c e s s a r y  f o r  d a t a  

c o r r e c t i o n ,  t h e y  were a l s o  de te rmined  a t  e a c h  t empera tu re  l e v e l  

by changing t h e  r e a c t o r  t e m p e r a t u r e  by abou t  10 O C  and measur-  

i n g  t h e  r e a c t i v i t y  change .  The measurements by t h e  two methods 

a r e  compared i n  Table  2.10.  Good agreement  i s  o b t a i n e d  a t  

500 and 750 O C  where t h e  s l o p e  measurements a r e  most a c c u r a t e .  

Reasonable  agreement  i s  o b t a i n e d  a t  t h e  o t h e r  t e m p e r a t u r e s .  

TABLE 2 .10 .  HTLTR T e m p e r a t u r e  C o e f f i c i e n t  

Temperature C o e f f i c i e n t  
Measured Temperature from Slope  

Tempera ture ,  O C  C o e f f i c i e n t ,  Q / O C  i n  F i g u r e  2 .10 ,  Q / O C  

2 0  + O  .81 + O .  88  

I n  f u t u r e  HTLTR e x p e r i m e n t s ,  i t  w i l l  be  d e s i r a b l e  t o  u s e  

l o a d i n g s  w i t h  t e m p e r a t u r e  b e h a v i o r s  s i m i l a r  t o  t h e  l a s t  

exper imen t .  I t  h a s  been  shown t h a t  t h e  t e m p e r a t u r e  c o e f f i c i e n t  

can be a d j u s t e d  by adding more gadol in ium and moving i t  outward 

i n  t h e  r e a c t o r .  The HTLTR c a l c u l a t i o n a l  model ,  w h i l e  s a t i s -  

f a c t o r y  f o r  p r e d i c t i n g  f l u x  matches i n  t h e  t e s t  c o r e ,  i s  

u n s a t i s f a c t o r y  f o r  e s t i m a t i n g  o v e r a l l  r e a c t o r  t e m p e r a t u r e  

c o e f f i c i e n t s .  Thus,  f u t u r e  l o a d i n g s  w i l l  have t o  be  d e s i g n e d  

based  on e m p i r i c a l  e s t i m a t i o n s  u n t i l  a  more s o p h i s t i c a t e d  

model i s  deve loped .  
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HTLTR REACTOR PRESSURE CONTROL 

W .  C .  R o b e r t s  

A fu sed  q u a r t z  p r e c i s i o n  gage wi th  a  r e s o l u t i o n  t o  t h e  

n e a r e s t  0.005 T o r r ,  has  been i n t e r f a c e d  wi th  t he  program mea- 

surement and c o n t r o l  system (PMACS) a t  t h e  High Temperature 

L a t t i c e  T e s t  Reactor  (HTLTR). This  ins t rument  i s  used f o r  h igh  

p r e c i s i o n  r ead  o u t  by t h e  computer and a  c l o s e d  loop  p r e s s u r e  

c o n t r o l  f o r  t h e  r e a c t o r . "  

A computer program has  been w r i t t e n  and t e s t e d  which has  

t he  c a p a b i l i t y  of main ta in ing  p r e s s u r e  a u t o m a t i c a l l y  t o  w i t h i n  

l e s s  than  k0.01 Tor r .  This f i n i t e  p r e s s u r e  c o n t r o l  was made 

p o s s i b l e  through t h e  v e r s a t i l i t y  of  computer c o n t r o l  where each 

c o n t r o l l e r  (program) can be des igned f o r  t h e  c h a r a c t e r i s t i c  of 

a  g iven system. The method of p r e s s u r e  c o n t r o l  was l a r g e l y  

de r ived  from prev ious  ope ra t i ng  exper iences  whi le  c o n t r o l l i n g  

by manual manipu la t ion  of t h e  c o n t r o l  v a l v e s .  Manual o p e r a t i o n  

was neces sa ry  p rev ious ly  s i n c e  a  convent iona l  c o n t r o l  program 

was unab le  t o  p rov ide  the  needed p r e s s u r e  s t a b i l i t y  neces sa ry  

f o r  n u c l e a r  exper imenta t ion .  During t he se  p e r i o d s  of o p e r a t i o n  

t h e  two most impor tan t  v a r i a b l e s  were t h e  respons iveness  of 

t h e  v a l v e  t o  a  g iven minute change and deadband caused by t h e  

mechanical  c o n t r o l  l i nkage  on a  g iven  va lve .  

The p o s i t i o n  range of t h e  c o n t r o l  va lves  a r e  0 t o  100% 

open i n  u n i t s  of 0  .l% as  determined by an e l ec t ropneuma t i c  

va lve  p o s i t i o n e r  which r e c e i v e s  a  d i g i t a l  s i g n a l  from PMACS. 

I t  was determined through prev ious  o p e r a t i n g  exper ience  t h a t  

* Gas vo lume  f o r  t h e  r e a c t o r  s y s t e m  i s  1000 s c f .  



t h e  v a l v e  c o u l d  n o t  be  a d j u s t e d  i n  0  .l% s t e p s  . A 1  though t h e  

d i g i t a l  p o s i t i o n e r  would r e g u l a t e  t h e  pneumat ic  c o n t r o l  a i r  t o  

t h e  v a l v e ,  i t  would n o t  r e spond  u n t i l  combined s t e p s  of  up t o  

0 .5  t o  1% were r e c e i v e d .  Consequen t ly ,  p r e s s u r e  c o n t r o l  would 

ove r  r e a c t  t o  t h e  c a l c u l a t e d  change.  T h i s  problem was o v e r -  

come by f i r s t  moving t h e  v a l v e  i n  t h e  r e v e r s e  d i r e c t i o n  t o  a  

p o s i t i o n  i n  which t h e  v a l v e  would a c t u a l l y  move abou t  0 .5% 

( t h i s  i s  de te rmined  by t h e  deadband p l u s  0 . 5 % )  and t h e n  a f t e r  

a  s e t  t i m e  d e l a y  i t  i s  r e p o s i t i o n e d  t o  t h e  c a l c u l a t e d  p o s i t i o n  

c a l l e d  f o r  by t h e  c o n t r o l  program. Fol lowing t h i s  sequence  i t  

t h e n  becomes p o s s i b l e  t o  p o s i t i o n  t h e  v a l v e  i n  0 . 1 %  s t e p s  and 

p r e s s u r e  c o n t r o l  becomes more r e s p o n s i v e  t o  minu te  changes .  

The c o n t r o l  program w i l l  a lways add t h e  v a l v e  deadband t o  t h e  

c o n t r o l  p o s i t i o n  whenever t h e  v a l v e  i s  s e t  i n  t h e  d i r e c t i o n  

o p p o s i t e  from i t s  l a s t  movement. T h i s  method o f  c o n t r o l  

e l i m i n a t e s  t h e  i n h e r e n t  problem o f  mechanc ia l  deadband w i t h i n  

a  g i v e n  v a l v e .  

I t  was de te rmined  t h a t  t h e  sys t em p r e s s u r e  r e s p o n s e  t o  a  

g i v e n  v a l v e  change was between 4 and 5  s e c  t o  s e e  a  change and 

9 t o  10 s e c  t o  come t o  e q u i l i b r i u m .  For  t h i s  r e a s o n ,  t h e  p r o -  

gram sampl ing  i n t e r v a l  was s e t  t o  9 s e c .  A s h o r t e r  sampl ing  

i n t e r v a l  caused  t h e  c o n t r o l  program t o  o v e r - c o r r e c t  and a  

l o n g e r  i n t e r v a l  a l lowed  t h e  p r e s s u r e  t o  d r i f t  from t h e  s e t  

p o i n t .  

Two v a l v e s  a r e  c u r r e n t l y  programmed t o  c o n t r o l  r e a c t o r  

sys t em p r e s s u r e .  The o p e r a t o r  can  s e t  t h e  sys t em purge  t o  a  

f i x e d  amount by s e t t i n g  f low v a l v e  (2FCV12) t o  a  s e t  p o s i t i o n ,  

and p r e s s u r e  w i l l  be  c o n t r o l l e d  u s i n g  t h e  makeup v a l v e  (2PCV12) 

o r  t h e  makeup v a l v e  can  be  s e t  and t h e  program w i l l  c o n t r o l  

p r e s s u r e  by a d j u s t i n g  t h e  purge  v a l v e .  

The i n t e r f a c i n g  of t h e  p r e c i s i o n  p r e s s u r e  gage w i t h  

t h e  PDP-7 p r o c e s s  computer ,  and t h e  development  of  t h e  s p e c i a l  

s o f t w a r e  programs p e r m i t  c o n t r o l  o f  t h e  r e a c t o r  a tmosphere  



p r e s s u r e  t o  w i t h i n  k0.01 Torr  of a  p r e s e l e c t e d  s e t  p o i n t  

a u t o m a t i c a l l y .  This p r e c i s e  c o n t r o l  of t h e  n i t r o g e n  p r e s s u r e  

reduces o r  e l i m i n a t e s  t h e  need f o r  c o r r e c t i o n s  t o  r e a c t i v i t y  

d a t a  due t o  v a r i a t i o n s  i n  p r e s s u r e  between o r  dur ing  

measurements. 

C A L C U L A T I O N S  O F  H T L T R  S A F E T Y  ROD T E M P E R A T U R E  D I S T R I B U T I O N S  

E .  P.  L i p p i n c o t t  

I n t r o d u c t i o n  

The second s e r i e s  of r e a c t i v i t y  measurements t o  1 0 0 0  O C  

i n  t he  HTLTR was r e c e n t l y  completed. I n  t h i s  run ,  a modif ied  

des ign  of t h e  V e r t i c a l  S a f e t y  Rod (VSR) was used i n  an a t t emp t  

t o  c o r r e c t  h e a t  expansion problems exper ienced i n  t h e  f i r s t  

s e r i e s .  These rods  a r e  composed of 1 / 1 6 - i n .  t h i c k  p l a t e s  of 

n i c k e l  impregnated w i th  Gd203 and Eu203 which a r e  h e l d  i n  p l a c e  

by a  frame of TD n i c k e l  rods ( s e e  Figure  2 .11 ) .  These p l a t e s  

were found t o  have buckled due t o  expansion,  the reby  causing 

reduced c l ea rance  i n  t h e  s l o t  i n  which they were i n s e r t e d .  

The buckl ing  of t h e  p l a t e s  i s  appa ren t ly  caused by s t r e s s  due 

t o  i n t e r n a l  temperature  g r a d i e n t s  i n  t he  p l a t e  s i n c e  s u f f i c i e n t  

c l ea rance  i n  t h e  s l o t s  was allowed f o r  expansion.  I n  o r d e r  t o  

c a l c u l a t e  t h e  g r a d i e n t s  i n  t he  p l a t e ,  a  computer program, TEMP, 

was w r i t t e n .  This program can be used t o  c a l c u l a t e  t he  tem- 

p e r a t u r e  d i s t r i b u t i o n  i n  t h e  p r e s e n t  VSR and t o  c a l c u l a t e  t h e  

e f f e c t  of proposed m o d i f i c a t i o n s .  

D e s c r i ~ t i o n  of C a l c u l a t i o n  

The h e a t  flow equa t ion  

i s  so lved  us ing  TEMP. The T i s  t h e  abso lu t e  t empera ture ,  k  i s  

t h e  h e a t  c o n d u c t i v i t y  of t h e  m a t e r i a l ,  C i s  t h e  s p e c i f i c  h e a t ,  

p i s  t he  d e n s i t y ,  a i s  t h e  Stefan-Boltzman c o n s t a n t  f o r  r a d i a n t  

h e a t  t r a n s f e r ,  To  i s  t h e  h o t  r e a c t o r  t empera ture ,  and E i s  t h e  
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2 e f f e c t i v e  e m i s s i v i t y .  I n  t h i s  equa t ion ,  t h e  k  v T term r e p r e -  
4 s e n t s  t h e  h e a t  t r a n s f e r r e d  by conduction and t h e  o r  (T: - T ) 

term i s  t h e  h e a t  t r a n s f e r r e d  i n  by r a d i a t i o n .  To s o l v e  t h i s  

e q u a t i o n ,  t h e  p l a t e  and rods  a r e  compressed t o  two dimensions 

and d i v i d e d  i n t o  a  r e c t a n g u l a r  a r r a y  of mesh p o i n t s ,  and a  

d i f f e r e n c e  technique i s  used.  Each mesh p o i n t  i s  i d e n t i f i e d  

a s  belonging t o  a  r eg ion  ( i n  t h e  s imple  case  t h e r e  a r e  t h r e e  

r e g i o n s - - p l a t e ,  s i d e  rod ,  and c ros s  r o d ) ,  and each r e g i o n  i s  

s u p p l i e d  w i t h  parameters :  d e n s i t y ,  t h i c k n e s s ,  h e a t  c o n d u c t i v i t y  

t o  mesh p o i n t s  i n  t h e  same r eg ion  and t o  p o i n t s  i n  cont inuous  

r e g i o n s ,  and e m i s s i v i t y .  I t  was assumed t h a t  each m a t e r i a l  

had t he  same s p e c i f i c  h e a t ,  which was taken  from a  t a b l e  i n  

100 O C  increments .  

With the  above assumptions ,  t h e  equa t ion  f o r  t h e  temperature  

a t  a  p o i n t  on t he  p l a t e  a t  time t + AT i s  g iven  i n  terms of t h e  

t empera ture  a t  t ime t by t h e  r e l a t i o n :  

A t  4 4 T ( t  + At) = T ( t )  + A(To - T ) +I K i  (Ti - T) .  

i=l 

The D i s  t h e  d e n s i t y  t imes t h e  t h i c k n e s s ,  C i s  t h e  s p e c i f i c  

h e a t  of t h e  m a t e r i a l ,  A i s  2 o  t imes E and Ki i s  t h e  t h i c k n e s s  

t imes  t h e  h e a t  conduct ion c o e f f i c i e n t  t o  each of t h e  f o u r  

ne ighbor ing  p o i n t s  inc luded  i n  t h e  sum. The g e n e r a l  paramete rs  

used a r e  g iven  i n  Table 2 . 1 1 .  

Resu l t s  f o r  Reference Case 

The c a l c u l a t i o n  of t h e  p r e s e n t  des ign  of VSR a t  2 0  O C  

i n s e r t e d  i n t o  a  1000 O C  c a v i t y  i s  c a l l e d  t h e  r e f e r e n c e  c a s e .  

For t h i s  c a l c u l a t i o n ,  t h e  p l a t e  was assumed t o  be i n  good 

c o n t a c t  w i t h  t h e  c r o s s  rods  and s i d e  rods  ( i . e .  t h e  h e a t  con- 

duc t ion  from the  p l a t e s  t o  t h e  rod was assumed equa l  t o  t h e  con- 

duc t ion  from p o i n t  t o  p o i n t  i n  t h e  p l a t e . )  S ince  t h e  rods  h e a t  

up more s lowly t han  t h e  p l a t e ,  t h e  rods  a c t  as  a  h e a t  s i n k ,  

coo l ing  t h e  edges of t h e  p l a t e .  This case  should  be regarded  



a s  e x a g g e r a t i n g  t h e  t e m p e r a t u r e  g r a d i e n t  s i n c e  i n  t h e  r e a l  c a s e  

t h e  c o n t a c t  between t h e  p l a t e s  and r o d s  i s  l e s s  t h a n  p e r f e c t .  

I n  a d d i t i o n ,  t h e  i n i t i a l  t e m p e r a t u r e  was assumed t o  be  20 O C  

which i s  v e r y  c o n s e r v a t i v e .  The p a r a m e t e r s  used  f o r  t h e  

r e f e r e n c e  c a s e  a r e  shown i n  Tab le  2 . 1 2 .  

TABLE 2.11. General Parameters Used 
in Temperature Calculations 

S p e c i f i c  Heat  
o f  N i c k e l  (C) 

Tempera tu re ,  O C  c a l / g  O C  

0  t o  1 0 0  0.105 

E m i s s i v i t y  o f  Nicke l  
( E 1 0 .65  
S te fan -Rol t zman  

1 .355 x 10 - 1 2  
c o n s t a n t  ( 0 )  c a l / c m 2 - s e c - O K  

Thermal c o n d u c t i v i t y  
of N i c k e l  (k) 0 .158 cal/sec-cm-OK - 

D e n s i t y  of  N i c k e l  ( p )  8.9 g/cm5 



TABLE 2.12. Parameters Used i n  Reference Case 

P l a t e  

E f f e c t i v e  
Thickness ,  cm 0.159 

Densi ty  
x t h i c k n e s s  (D) , 
g/cm2 1 . 4 1  
Conduc t iv i ty  
x t h i c k n e s s  
(K) , c a l / s e c -  O K  0.025 

Rad ia t i on  
Parameter  (A) 1.762 x 1 0  -12 

Conduc t iv i ty  
from p l a t e  t o  s i d e  
rod and c r o s s  rod 

Conduc t iv i ty  
from s i d e  rod 
t o  c r o s s  rod 

Time S t ep  

Mesh spac ing  

I n i t i a l  
VSR Temperature 

Reactor  
Temperature 

Side  Rod Cross Rod 

1.078 0.737 

0.116 cal/sec-OK 

0 . 1  s e c  

0.635 cm 

The r e s u l t s  of TEMP were compared wi th  an independent  

c a l c u l a t i o n ( ' )  which used s i m i l a r  assumptions i n  a  3-dimensional  

model w i t h  t h e  computer program H E A T I N G .  The d e t a i l e d  com- 

p a r i s o n  of r e s u l t s  i n d i c a t e d  t h a t  t h e  two c a l c u l a t i o n s  agreed  

w i t h i n  25 O F .  S ince  t h e  m a t e r i a l  p r o p e r t i e s  and r a d i a t i o n  h e a t  

t r a n s f e r  parameters  were chosen independent ly ,  t h i s  agreement 

confirms t h e  v a l i d i t y  of t h e  2-dimensional  model of  t h e  TEMP 

c a l c u l a t i o n s .  

The temperature  of one q u a r t e r  of t h e  p l a t e  a t  t he  time of 

l a r g e s t  temperature  g r a d i e n t  i s  shown i n  a  3-dimensional  p l o t  

i n  F igure  2 . 1 2 .  I n  t h i s  p l o t ,  t h e  c e n t e r  of t h e  p l a t e  i s  i n  

t h e  upper r i g h t  hand co rne r .  As i n d i c a t e d  i n  t h e  f i g u r e ,  t h e  
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FIGURE 2.12. Three-Dimensional P l o t  of Temperature 
of P l a t e  a t  Time of Maximum Gradien t  



temperature  i s  r e l a t i v e l y  c o n s t a n t  nea r  t h e  c e n t e r  of  t h e  p l a t e  3 

and f a l l s  o f f  s h a r p l y  toward t he  edges .  A p l o t  ve r sus  time of 

t h e  temperature  of t h e  c e n t e r  of  t h e  p l a t e  and t h e  t empera ture  • 

d i f f e r e n c e  between t h e  c e n t e r  and edge of t h e , p l a t e  i s  shown 

i n  F igure  2.13. 

Var ious  ca se s  were run w i t h  p e r t u r b a t i o n s  on t h e  i n p u t  

parameters  . I t  was observed t h a t  changing t h e  emiss i v i t y  

uniformly had very  l i t t l e  e f f e c t  excep t  t o  change t h e  time 

s c a l e .  However, t h e  maximum g r a d i e n t  can be l e s sened  by 

dec reas ing  t h e  e m i s s i v i t y  of t h e  p l a t e  r e l a t i v e  t o  t h e  r o d s ,  

by i n c r e a s i n g  t h e  p l a t e  t h i c k n e s s ,  o r  by lowering t h e  con- 

d u c t i v i t y  from t h e  p l a t e  t o  t h e  rods .  

The temperature  p r o f i l e  a s  shown i n  Figure  2 . 1 2  formed a  

b a s i s  f o r  a  s t r e s s  c a l c u l a t i o n .  (3)  I n d i c a t e d  s t r e s s e s  w e l l  

beyond t h o s e  neces sa ry  t o  buckle  t h e  p l a t e  were computed. The 

r e f e r e n c e  c a l c u l a t i o n  t h e r e f o r e  can be used a s  a  b a s i s  f o r  

e v a l u a t i n g  p o s s i b l e  s o l u t i o n s  t o  t h e  problem. Two c a t e g o r i e s  

of p o s s i b l e  s o l u t i o n s  may be cons idered :  (1)  r e l i e v i n g  t h e  

s t r e s s e s  and (2)  minimizing t h e  temperature  g r a d i e n t s .  F u r t h e r  

temperature  c a l c u l a t i o n s  were made t o  look a t  s o l u t i o n s  of  

t h e  second ca tegory  by adding t h e  TD n i c k e l  s k i n ,  used i n  t h e  

o r i g i n a l  VSR d e s i g n ,  a s  a  s h i e l d  f o r  t he  p l a t e s .  

TEMP C a l c u l a t i o n s  Assuming Skin S h i e l d  

A s e r i e s  of  c a l c u l a t i o n s  was made t o  i n v e s t i g a t e  t he  e f f e c t  

of v a r i o u s  t h i cknes se s  of s k i n  on one o r  both  s i d e s  of t h e  

p l a t e .  The s k i n  a c t s  a s  a  r a d i a t i o n  s h i e l d  dur ing  t h e  time it 

t akes  f o r  t h e  s k i n  t o  h e a t  up and thus  t h e  c e n t e r  of t h e  p l a t e  

remains coo l  r e l a t i v e  t o  t h e  edges .  

~ a l c u l a t i o n s  w i th  TEMP u t i l i z i n g  a  s k i n  were made by 

adding a  second p l a t e  as  a  s k i n  and t ak ing  i n t o  account  tem- 

p e r a t u r e  changes i n  t h e  s k i n  by a  fo rmula t ion  s i m i l a r  t o  t h a t  

used f o r  t h e  p l a t e .  The s k i n  r e c e i v e s  r a d i a t i o n  on one s i d e  
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from TEMP C a l c u l a t i o n s  



on ly  from t h e  c a v i t y  and r a d i a t i v e  t r a n s f e r  between t h e  s k i n  

and p l a t e  t a k e s  p l a c e  on t h e  o t h e r  s i d e .  Conduction t o  t h e  

p l a t e  a l s o  can be i nc luded ,  b u t  t h i s  was e s t i m a t e d  t o  be  a  

sma l l  e f f e c t .  

C a l c u l a t i o n s  were done w i t h  a  s i n g l e  s k i n  w i t h  r a d i a t i o n  

d i r e c t l y  t o  t h e  p l a t e  on one s i d e .  This  lowered t h e  maximum 

c e n t e r  t o  s i d e  t empera tu re  d i f f e r e n c e  t o  about  85 O C  ( a s  com- 

pared  t o  256 O C  f o r  t h e  unsh i e lded  p l a t e )  and k e p t  t h e  i n i t i a l  

o p p o s i t e  t empera tu re  d i f f e r e n c e  s m a l l  ( i . e . ,  t h e  s i d e  rods  

i n i t i a l l y  h e a t  up f a s t e r  wh i l e  h e a t  i s  b u i l t  up i n  t h e  s k i n ) .  

However, unknown tempera tu re  g r a d i e n t s  might be c r e a t e d  by t h e  

asymmetry o f  a  s k i n  on ly  on one s i d e  s o  f u r t h e r  i n v e s t i g a t i o n s  

were l i m i t e d  t o  t h e  double  s k i n  d e s i g n .  

I n  t h e  double  s k i n  c a s e ,  t h e  wor s t  t empera tu re  g r a d i e n t  

occurs  when t h e  s i d e  h e a t s  up i n i t i a l l y  much f a s t e r  t h a n  t h e  

c e n t e r .  The magnitude of t h i s  g r a d i e n t  depends on t h e  

assumpt ions  made, b u t  c o n s e r v a t i v e  assumptions about  conduc t ion  

from t h e  s k i n  t o  p l a t e  i n d i c a t e  t h a t  t h i s  can cause  l a r g e  

s t r e s s e s .  Th i s  g r a d i e n t  can be  l e s s e n e d  by u s i n g  a  t h i n n e r  

s k i n .  I n  t h e  model used ,  which assumed some conduc t ion  th rough  
a r i v e t  t o  t h e  c e n t e r  p o i n t ,  b u t  no o t h e r  conduc t ion  o r  convec- 

t i o n  from t h e  s k i n  t o  t h e  p l a t e ,  and h a l f  t h e  conduc t ion  from 

t h e  p l a t e  t o  rods  used i n  t h e  r e f e r e n c e  c a s e ,  t h e  maximum 

t empe ra tu r e  d i f f e r e n c e  a long  t h e  x - a x i s  was 109 O C  f o r  a  

0 .030- in .  s k i n ,  82 O C  f o r  a  0 . 020 - in .  s k i n ,  and 65 O C  f o r  a  

0.015 i n .  t h i c k  s k i n .  Making l e s s  c o n s e r v a t i v e  assumpt ions  

would, o f  c o u r s e ,  reduce  t h i s  d i f f e r e n c e .  

I n  a d d i t i o n  t o  t h e  above g r a d i e n t ,  i t  was found t h a t  w i t h  

t h e  s k i n s ,  t h e  c r o s s  r ods  h e a t  up s lower  t h a n  t h e  s i d e  rods  and 

t h e  c e n t e r  r a p i d l y  g e t s  h o t t e r  t h a n  t h i s  edge.  Th i s  g r a d i e n t  

has  t h e  same s i g n  a s  t h a t  i n  t h e  r e f e r e n c e  c a s e ,  and g e t s  worse 

a s  a t h i n n e r  s k i n  i s  used.  However, a  s t r e s s  c a l c u l a t i o n  n e a r  



t h e  maximum f o r  t h i s  g r a d i e n t  i n  t h e  0.015 i n .  s k i n  c a s e  

showed s t r e s s e s  t h a t  were w i t h i n  t o l e r a b l e  l i m i t s .  

Conc lus ions  

A TEMP program h a s  been  w r i t t e n  which c a n  p r e d i c t  tem- 

p e r a t u r e  g r a d i e n t s  c r e a t e d  when a  v e r t i c a l  s a f e t y  r o d  i s  

dropped from room t e m p e r a t u r e  i n t o  a  h o t  r e a c t o r .  The r e s u l t s  

from t h i s  program, when used  i n  a  s t r e s s s  a n a l y s i s  c a l c u l a t i o n ,  

i n d i c a t e d  s t r e s s e s  which accoun ted  f o r  t h e  obse rved  b u c k l i n g  

of t h e  p r e s e n t  VSR d e s i g n .  I n  a d d i t i o n ,  t h e s e  r e s u l t s  c a n  

be  used  i n  c a l c u l a t i o n s  t o  d e t e r m i n e  ways o f  r e l i e v i n g  t h e  

s t r e s s e s .  F u r t h e r  c a l c u l a t i o n s  were c a r r i e d  o u t  which can  

b e  used  t o  p r e d i c t  t h e  adequacy o f  d e s i g n  changes p roposed  

t o  e l i m i n a t e  t h e  p l a t e  b u c k l i n g .  The a c c u r a c y  of  t h e  c a l c u l a -  

t i o n  i s  l i m i t e d ,  however ,  by a s sumpt ions  which must be  made 

f o r  t h e  p a r a m e t e r s  which have n o t  been  measured .  
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3 . 0  FAST REACTORS 

PCTR MEASUREMENT OF k' - FOR A  UA1 FAST CORE 

D. F .  Newman 

I n t r o d u c t i o n  

The development  of  a  l a r g e  f a s t  n e u t r o n  c a v i t y  (FNC) i n  

t h e  P h y s i c a l  C o n s t a n t s  T e s t i n g  R e a c t o r  (PCTR) h a s  p e r -  

m i t t e d  t h e  a p p l i c a t i o n  of  PCTR methods t o  f a s t  r e a c t o r  media.  

C a l c u l a t i o n a l  s t u d i e s  of  n e u t r o n  spec t rum b u f f e r i n g  r e q u i r e -  

ments f o r  s m a l l  f a s t  r e a c t o r  zones i n  t h e  FNC have i d e n t i f i e d  

a  b r o a d  r ange  of  e x p e r i m e n t s  c o n s i d e r e d  f e a s i b l e  i n  t h e  

PCTR/FNC. A s m a l l  U A 1  f a s t  c o r e ,  c o n t a i n i n g  1 3 . 3  kg 2 3SU 

was i n s t a l l e d  i n  t h e  c e n t e r  o f  t h e  FNC. R e a c t i v i t y  w o r t h s  

of  t h e  c e n t r a l  c e l l  and a  s t a n d a r d  a b s o r b e r  measured i n  t h e  

PCTR were a n a l y z e d  t o  d e t e r m i n e  k: f o r  t h e  f a s t  c o r e .  

A n a l y t i c a l  Model f o r  t h e  D e t e r m i n a t i o n  o f  k' 

The a n a l y t i c a l  model f o r  t h e  d e t e r m i n a t i o n  of  k: makes 

u s e  o f  t h e  m u l t i g r o u p  form f o r  t h e  g e n e r a l  p e r t u r b a t i o n  

e x p r e s s i o n s  d e r i v e d  by Heineman (3)  

where 

and S i s  t h e  s u r f a c e  e n c l o s i n g  t h e  t e s t  s ample ,  Vo i s  t h e  

r e a c t o r  volume e x t e r i o r  t o  t h e  t e s t  sample ,  and J' i s  t h e  o u t -  

ward n e t  c u r r e n t  a t  t h e  s u r f a c e  o f  t h e  t e s t  sample .  

The m u l t i g r o u p  p e r t u r b a t i o n  e q u a t i o n  f o r  t h e  r e a c t i v i t y  

c o e f f i c i e n t  of  t h e  t e s t  sample ,  



c e l l l ~  c e l l  
X A P  

c e l l  = V 
i f  - i . $ t  1 a i l 1  

and f o r  a  smal l  copper sample i n s e r t e d  i n  t h e  t e s t  v o i d ,  

was ob t a ined  from Equation ( 1 ) .  

The i n f i n i t e  medium neut ron  m u l t i p l i c a t i o n  f a c t o r ,  k:, 

c a l c u l a t e d  by v a r i o u s  t h e o r e t i c a l  models i s  de f ined  a s  (4 )  

El imina t ing  x from Equations ( 3 )  and (4)  t h e  r a t i o  of 

normal ized r e a c t i v i t y  c o e f f i c i e n t s  can be compared wi th  m u l t i -  

group c a l c u l a t i o n s :  
c e l l  

[I 
(.I* - za)i$i$;] 

A P  
c e l l  V c e l l  

- - -- - 

C .ifi$; 
k; = 

T o t a l  neu t ron  produc t ion  - - i 
o t a l  neu t ron  a b s o r p t i o n  C ' a , $ l  

vCu [ F  iai+i$i-cu 
- 

where 4; r e f e r s  t o  t h e  mul t igroup equ i l i b r ium neu t ron  f l u x e s  

i n  t he  fundamental  mode. The observed neu t ron  m u l t i p l i c a t i o n  

. 

f a c t o r  f o r  t he  nonequi l ibr ium s p e c t r a l  environment i n  t h e  

c e n t e r  c e l l  i s  g iven  by: 

c e l l  Yv~f .  mi 
c e l l  Jkf - i a ) i + i  

k c e l l  - - i = I +  i 
OD c e l l  

C i a i o i  C i a i ' i  c e l l  
i i 

f o r  t h e  smal l  f a s t  co re  i n s t a l l e d  i n  t h e  PCTR/FNC. The va lue  

of kcel '  OD can be i n f e r r e d  from t h e  normalized r e a c t i v i t y  

c o e f f i c i e n t s  by use of  Equation ( S ) ,  



cell . 
kce" CD = 1 + (- :;cu ) 

A calculated correcti 

environment was applied to 

- 

- 

k' = 1 + (k cell 
03 OL1 - 1) 

cell 

on for the nonequilibrium spectral 

(kzel' - 1) in the determination 

ivzf - z a i i  I - $ *  

- 
cell 1 'a i mi 

i 

X i  ai 0; 

i 

Combining Equations (8) and (9) we obtain the analytical 

model for the determination of k; from normalized reactivity 

coefficients 



E v a l u a t i o n  o f  k'  f o r  a  U A 1  F a s t  Core 

The s m a l l  f a s t  c o r e  zone i n  t h e  PCTR/FNC shown i n  

F igu re  3 . 1  was composed of aluminum-30 w t %  uranium a l l o y  (93% 

2 3 5 ~ ) ,  23.6 cm d iamete r  by 30.5 cm long .  A 0.23 l i t e r  U A 1  

c e n t r a l  c e l l  c o n t a i n i n g  0.231 kg 2 3 5 ~ ,  and a  0.639 kg copper 

s t a n d a r d  abso rbe r  were used f o r  r e a c t i v i t y  measurements i n  t h e  

c e n t e r  of  t h e  f a s t  co r e .  The measured r e a c t i v i t y  wor ths  

c e l l  
- A p  - - 1 * 2 9 1 c  0 * 0 3 8 4  = 4.387 + 0.486 

0.294 + 0.0314 

were o b t a i n e d  u s i n g  s t a n d a r d  PCTR methods. (5)  

A 26 group t r a n s p o r t  t heo ry  c a l c u l a t i o n  i n  s p h e r i c a l  

geometry u s i n g  t h e  PCTR/FNC c a l c u l a t o n a l  model was made f o r  

comparison w i t h  exper iment ,  u s i n g  Equa t ion  (5)  

- A P  
c e l l  V c e l l  

T = vCu 
A P  

E f f e c t i v e  n u c l e a r  c r o s s  s e c t i o n s  were gene ra t ed  from Russ ian  

d a t a  (6 )  u s i n g  t h e  1 DX ( 7 )  code. D i r e c t  and a d j o i n t  f l u x e s  i n  

t h e  PCTR/FNC were c a l c u l a t e d  w i t h  t h e  DTF-IV (81 t r a n s p o r t  

t heo ry  code.  



Neg 703343-1  

FIGURE 3.1. ~luminurn-30 w t %  Uranium (93% 2 3 5 ~ )  F a s t  Core 
I n s t a l l e d  i n  t h e  Cen t e r  o f  t h e  FNC (Shown 
w i t h  t h e  FNC F r o n t  Bu f f e r  Removed) 



S i m i l a r  c a l c u l a t i o n s  w i th  1 DX and DTF-IV were made f o r  

t h e  U A 1  f a s t  core  fundamental mode ( j u s t  c r i t i c a l  b a r e  sphere )  

t o  c o r r e c t  f o r  t h e  nonequi l ibr ium s p e c t r a l  environment i n  t h e  

PCTR/FNC c e n t e r  c e l l .  Eva lua t ion  of k; f o r  t h e  U A 1  f a s t  co re  

was made us ing  Equation (10) 

Ca lcu l a t ed  va lues  f o r  k; f o r  t h e  UA1 f a s t  co re  were 1 . 9 8 2  

us ing  1 DX and DTF-IV wi th  26-group Russian c ros s  s e c t i o n  d a t a ,  

and 1.848 us ing  t h e  68-group E G G N I T ( ~ ) C O ~ ~ .  Comparison of 

neu t ron  s p e c t r a  c a l c u l a t e d  by DTF-IV and EGGNIT, shown i n  

F igure  3.2 i n d i c a t e s  t h a t  t h e  e f f e c t  of  l a r g e  s c a t t e r i n g  

resonances  i n  aluminum a t  35, 90, and 160 keV, shown i n  t he  

EGGNIT c a l c u l a t i o n ,  i s  n o t  e v i d e n t  i n  t h e  Russian c r o s s  s e c t i o n  

d a t a .  The d i f f e r e n c e  i n  k; between t h e  two c a l c u l a t i o n s  appears  

t o  be due t o  t h e  d i f f e r e n c e s  i n  t h e  c r o s s  s e c t i o n  d a t a ,  shown 

f o r  comparison i n  F igure  3.3. The abso rp t ion  c r o s s  s e c t i o n  

c a l c u l a t e d  by EGGNIT i s  l a r g e r  than  t h e  Russian d a t a  c a l c u l a t e d  

by 1 DX a t  neu t ron  e n e r g i e s  of i n t e r e s t ,  a s  shown i n  F igure  3.4. 

Conclusions 

Experiments conducted i n  t h e  PCTR/FNC wi th  t h e  U A 1  f a s t  

core  have shown t h a t  a  broad range of f a s t  r e a c t o r  zoned 

exper iments  can be performed i n  t h e  PCTR. A 10% u n c e r t a i n t y  

i n  t h e  r e a c t i v i t y  worth of t h e  0.639 kg copper absorber  was 

t h e  r e s u l t  of u s ing  t o o  smal l  a  sample. R e a c t i v i t y  worths of 

bo th  t h e  c e n t r a l  c e l l  and s t a n d a r d  absorber  should  be l a r g e r  

t han  4 4  t o  o b t a i n  r e a c t i v i t y  worth d a t a  w i t h i n  a  p r e c i s i o n  of 

+ I % ,  one s t anda rd  d e v i a t i o n .  The c a l c u l a t e d  c o r r e c t i o n  f o r  

t h e  nonequi l ib r ium s p e c t r a l  environment i n  t h e  c e n t e r  of t h e  

13 l i t e r  U A 1  core  was 1 1 . 5 %  of kL-1. This c o r r e c t i o n  could be 

reduced t o  1 o r  2 %  by i n c r e a s i n g  t h e  f a s t  core  volume t o  

100 l i t e r s .  The experiment d i s cus sed  he re  i s  a  h igh  leakage  
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S e c t i o n s  f o r  t h e  UAL F a s t  Core 



t e s t  m a t e r i a l ,  and t h u s ,  r e p r e s e n t s  a  severe  t e s t  of  t h e  8 

method. Very a c c u r a t e  measurements can be made of k; f o r  f a s t  

r e a c t o r  m a t e r i a l s  having very  low leakage ( l o )  ( i . e .  k W = l . 0 ) ,  . 
s i n c e  t h e  PCTR technique measures kw-1 .  F a s t  r e a c t o r  l a t t i c e  

media t y p i c a l  of  l a r g e  d i l u t e  f a s t  b r eede r s  a r e  low leakage  

systems which a r e  expensive t o  mockup i n  f u l l  s i z e  c r i t i c a l  

exper iments .  These l a t t i c e s  can be s t u d i e d  i n  t h e  PCTR/FNC 

a t  s u b s t a n t i a l  c o s t  sav ings  f o r  exper imenta l  f u e l .  
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