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Abstract

An axisymmetric plasma screw pinch is an axisymmetric column of ionized
gaseous plasma radially confined by forces from axial and azimuthal currents driven in
the plasm_a and ‘its surroundings. This dissertation is a contribution to detailed, high
resolution computer simulation of dynamic plasma screw pinches in 2-d rz-coordinates.
'The simulation algorithm combines electron fluid and particle-in-cell (PIC) ion
models to represent the plasma in a hybrid fashion. The plasma is assumed to be
quasineutral; along with the Darwin approximation to the Maxwell equations, this
implies application of Ampere's law without displacem’enf current. Electron inertia is
assumed negligible sb that advective terms in the electron momentum equation are
ignored. Electrons and ions have seperate scalar temperatures, and a scalar plasma
"c;,fécuical resistivity is assuméd. Alternating-direction-implicit (ADI) methods are used
to advance the electron fluid drift velocity and the magnetic fields in the simulation.
The ADI methods allowy time steps larger than allowed by explicit methods. Spatial
regions whére vacuum field equations have validity are determined by a cutoff density

that invokes the quasineutral vacuum Maxwell equations (Darwin approximation).
In this dissertation, the algorithm was first checked against ideal MHD stability
theory, and agreement was nicely demonstrated. However, such agreement is not a new

contribution to the research field. Contributions to the research field include new
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treatments of the fields in vacuum regions of the pinch simulation. The new field
treztments fit within the framework of ADI and predict a level of
magnetohydrodynamic turbulence near the bulk plasma surface that is higher than
predicted by other methods, perhaps leading to more accurate calculation of turbulence.
New treatments were motivated by inaccuracy of previous vacuum field mathematical
models.
For higher resolution, pinch simulations can be implemented on larger parallel
" computers. Therefore', steps were ‘taken toward parallel. imﬁlementation of the
- simulation. . First, a parallel ADI method was developed for solution of the steady-state
diffusion equation; good parallel scalability was demonstrated. The parallel ADI can be
used for g_variety‘of physical simulations, including those of screw pinches. Finally, a

parallel pinch simulation algorithm was outlined.

Thesis adviser: Garry H. Rodrigue
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Preface

In this dissertation, the words "pinch simulation" usually refer to thé algorithm
and associated FORTRAN computer code written and developed for the research in this
dissertation. - Although the pinch simulatior; is based. on earlier work by Hewett [1980],
itis uniqug: in several respects.

The dissertation is organized so as to present the moét physical aspects of the
pinch simulation first. In the first two chapters, the mathematical models of the
simulation are presented, including new contributions by thjs dissertation. Then the
details of the ADI method underlying the simulation, including an extension to parallel
computation, are covered in the last two chapters. In this way, the dissertation
progresses from the viewpoint of an applied mathematical physicist to that of a
computer programmer of high-performance numerical methods.

Two unit systems are used for the formulas in this dissertation, SI units and
Gaussian units. All of Chapter 1 expresses the mathematical models of the pinch
simulation algorithm in Gaussian units. In Chapter 2, SI units are used in development
of ideal MHD stability theory, but when actual simulation parameters are tabled there,
they are expressed in Gaussian units. An exception to the use of SI and Gaussian units
involves thermal particle energies &7 in eV (k is suppressed in formulas).

None of the appendices are recommended reading for a first sitting. They are
support material for statements and comments made in the chapter bodies, and as such
they are filled with derivations that are more detailed than necessary to understand the
mesage of the dissertation. Mainly, that message is: "Here is a hybrid simulation
method to which some significant improvements have been nﬁdc. 'The simulation uses |
a stable ADI method that is general and simple to imﬁlement on most computational

platforms, including parallel computers."
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Chapter 1 =~
Mathematical Models of the Screw Pinch
Simulation

1.1 Background on screw pinch simulation

An axisymmetric plasma screw pinch is an axisymmetric ‘column of ionized
gaseous plasma that is radia]iy cdnﬁned by forces from axial and azimuthal currents that
are driven in the plasma and its éunoundiﬁgs; Pinches with just axial currents, now
called zeta-pinches (Z-;iinches), havé an eaﬂy history associated with researchers R.-W.
Wood, R.A. Millikan, and W.H. Beﬁnett. Wood repofted properties of a high-current
"vacuum si)ark Z-pinch and possible uses of it [Wood 1897]. RA Millikan used the
vacuum sp’arks for spectroscopic studies of light eiements after World War I [Millikan
1918, 1924]. Later, in a landmark paper, Bennett derived general relations describing
equilibria of ]high-elec'trical current streams‘ in plasrﬁa in order to understand cathode
cratering in vacuum tubes [Beﬁnett 1934]; he derived an equilibrium Z-pinch radial
density profile and critical current that is often cited in the literature. All of these plasma
pinches consisted ot: a piasma column along which electrical current was flowing
longitudinally so as to confine the plasma in directions perpendicular to the column.

Early higﬁ temperature plasma pinch experimenfs were performed in the 1950s
[Kurchatov 1956; Andrianov et al. '1958; Curran et al. 1958; Tuck 1958]. In these
experiments, high currents weré intentionally driven tflrough a plasma column in an
attempt to compress’ and heat it; there was much enthuéiasm surrounding possible

thermonuclear applications. Unfortunately, photographs taken in a few éxperiments




indicated that pinch performance was likely to be limited by plasma surface instabilities
[Kurchatov 1956; Curzon et al. 1960]. ’
For the most part, analysis of the mstab1ht1es began in the 1950s, [Lundquist
1951; Chandresekhar 1952, 1953; Kruskal and Schwa.rzschild 1954; Rosenbluth and
Longmire 1957; Tayler 1957]. A general magnetohydrodynamic (MHD) stability
analysis assuming an ideal Ohm's law was put forth late in the decade [Hain and Liist
1960]; in Ohm's law, inf'mite conductivity was assumed, the Hall effect was neglected
and effects of electron pressure vx;ere 1gnored Ham and Lust reduced the stability
analysis to the solutlon of an elgenmode equat10n Energy formulations of stability
analys1s became widely known in the m1d 1960s, with names such as V.D. Shafranov,
l3 .B. Kadomtsev, and W.A. Newcomb permeating the related litet'ature Stability studies
nave become 1ncreas1ngly detatled since then Effects of finite conduct1v1ty, the Hall
effect nonlinearities, vacuum field reglons and rad1at10n effects have now been
cons1dered Analyucally, most of the effects have been cons1dered separately, or in small
groups and have been restrlcted to lower spattal dimensions. Fortunately, by the mid
- 1970s it became a simple maiter to numenca]ly solve the elgenmode equation of Hain
_ and Liist, including versions that consider resistivity [Frei'db‘erg and Henvett 1980]. As
computational power has increased, simulations approaching stability from the standpomt
of an initial value ptoblem have modeled more of the effects sirnultaneously
Plasma simulations wh1ch attempt to attam as much reahsm as pos51ble, whithout
narrowly focussmg on linear stab111ty or other ideal 81tuat10ns began in about 1960 [Hain
» 1960] Since then, such s1mulat10ns have proceeded to htgher levels of complexity in
many d1fferent ways. Calculatlons have proceeded from one spatial dimension to three.
Transport coefficients such as re51st1v1ty and thermal conducuv1ty have been generahzed

from scalars to tensors. At ﬁrst, effects of rad1at10n on energy balance and charge state

e e



were neglected, but detailed radiation transport has now been included in some
simulations. In most instances, compressible plasmas are assumed, while a few earlier
investigations invoked incompressibility. MHD simulations often neglected the Hall
term and electron pressure term (electron diamagnetic drift) in Ohm's law, 7but these terms
have now been included in simulations of strongly driven compressional pinches. It was
often convenient to assume \a fully ionized plasma, but it has become important to
consider more general cases of mixed arbitrarily charged species. Because the
collisionality of pinches can be small over much of the pinch lifetime, it has become
necessary to extend the treatment of ions from a fluid treatment to a particle (Vlasov)
treatment. In some instances a need has arisen for anisotropic temperatures, although
most studies use scalar temperatures. The list of improvements/advances in pinch
~ simulation will no doubt grow as computer power increases and as experiments add to
our knowledge.

In his 1971 dissertation, Lindemuth reported one. of the first uses of the
alternating-direction-implicit (ADI) method for the time evolution of two-dimensional,
two-fluid MHD model. equations describing screw pinches [Lindemuth 1971]. He
reportéd good numeric stability for time steps larger than allowed by earlier explicit
schemes. He used a tensor electrical resistivity and thermal conductivity, but assumed
scalar temperatures for each fluid. The Hall term and diamagnetic drift term in Ohm's
law were neglected. In the late 1970s, Lindemutﬁ addressed issues of plasma separation
from pinch chamber walls with a general "background plasma" boundary condition that
more realistically convected magnetic flux across low density plasma regions [Lindemuth
1977]. This was one of the early fixes for problems with vacuum regions in simulations.

Previously, low density regions in MHD fluid calculations often developed unrealistic




currents near chamber walls that shielded the bulk of the plasma from applied magnetic
fields. |

Early in the 1970s, a few of the first hybrid plasma simulations were reported.
Such hybrid simulations modeled the plasmas with a combination of fluid electron
equations and particle (Vlasov) ions subject to the Lorentz force. Forslund and Freidberg
[1971], and Chodura [1975] used one-dimensional (1-d) hybrid simulations to model
plasma shocks. A 1-d zero-€lectron-inertia hybrid model including all field ’components
and a tensor resistivity was used to simulate the ZT-1 eiperiment at Los AiZJnos [Sgro
and Nielson 1974]. Hamasaki and coworkers used 1-d hybrid codes with self-consistent
turbulence effects to model theta pinches [Hamasaki and Krall 1977; Hamasaki et al.
- 1977]. In 1979, benchmark results of a 2-d zero-electron-inertia hybrid method with all
field components were obtained [Hewett 1980]; this utilized ADI methods, incorporated
the Hall and diamagnetic drift terms in a generalized Ohm's law? and used a simple and
robust density cutoff technique to address vacuum.regions of the simulation éontaining
few particles. The Hall terms and the robust treatment of vacuum regions became
recognized as key to fast and accurate simulation of compression in dynamic plasma -
pinches. More analytic understanding of Hall term effects on stability came with a one-
dimensional study aimed specifically af inclusion of the term in Ohm's law [Coppins etal.
11984].

All of the hybrid simulations made it clear that a single-fluid treatment of ions
fails to properly model strongly driven compressional pinches; because of low
collisionality, ions reflected off of 'thé,"magetic piston" into the quiescent "internal”
plasma give the ion distribution two significant peaks in velocity space. A single fluid
ion theory is not meant to model two comparable peaks. It also became apparent that

hybrid simulations were necessary to model the effects of large ion gyroradii or finite



Larmor radius (FLR) on plasma stability. One early experiment that attempted to directly
measure FLR stabilization was a gas-puff Z-pinch experiment [Struve 1980]; the
experiment was difficult to interpret, but scaling of instabilities was found to be
consistent with theoretical scaling of FLR effects. B

Numerical simulation of radiation transport in 1-d screw pinches became practical
in the late 1970s during attempts to explain localized sources of X-rays and neutrons
observed in plasma focus experiments [Shearer 1976; Vikhrev 1977, 1978]. It was not
long before the early LASNEX code at Lawrence Livermore National Lab (LLNL) was
used to investigate 1-d radiative collapse of Z-pinches that might explain the localized X-
rays [Nielsen 1981]; this was based on earlier understanding that bremstrahlung and
electron synchrotron radiation should cause radial collapse of an optically thin high-
current Z-pinch to very small dimensions if the current exceeded what became known as
the Pease-Braginskii current [Pease 1957; Braginskii- 1958; Lawson 1959]. From the
simulations and experiments it became clear that radiation has a major effect in time-
dynamic pinches.’ By 1982, Lindemuth had -added bremstrahlung radiation, shock
physics, and deuteron-deuteron collisions to his two-fluid algorithms in order to simulate
a dense plasma focus in one spatial dimension [Lindemuth and Freeman 1932].

Liﬁdemuth continues to play a major role in development of pinch simulations.
With the advent of solid deuterium fiber Z-pinches, two-fluid MHD calculations
incorporating atomic data bases and equations of state, but not radiative effects, were
quickly performed [Lindemuth et al. 1989]. By 1990, the solid deuterium fiber
- simulations progressed to two dimensions, and included radiation effects and neutron
production [Lindemuth 1990]. By 1992, with influence from Lindemuth, solid fiber Z-
pinch simulations in 2-d were compared in detail with Los Alamos HDZP-I and HDZP-II

experiments [Sheehey et. al. 1992]; simulation and experiment both suggested rapid




development of sausage instabilities after full ionization of the ﬁber.’ Curiously, the 1992
simulation did not include Hall and diamagnetic drift terms in Ohm's law, which >,make
the quantitive results questionable.

Three dimensional studies have been confined mainly to MHD equi]ibrium or
quasistatic studies. Nonlinear resistive 3-d MHD calculations were made in the early
1980s [Mirin and Killeen 1983]. Because of the large problem sizes in 3-d MHD,\
parallel computaﬁonal methods have been developed [Anderson 198 9]. One of the few
3-d electrodynamic plasma simulation codes was reported in 1993 [Larson.1993], but it is
better suited to high-frequency plasma-radiation interactions.

The field simulation-algorithm presented in this dissertation is a modified version

- of the algorithm of Hewett [1980]. The algorithm combines an electron fluid and
particle-in-cell (PIC) ions to represent the plasma in a hybrid fashion. The plé.sma is
assumed to be quasineutral and displacement current is ignored in Ampere's law. A zero-
electron-inertia assumption is used in the electron momentum equaﬁon, which yields a
generalized Ohm's law ‘that retains the Hall term and diamagnetic drift ten:n. Scalar
temperatures are assumed for the electrons and ions, as well as a scalar electron fluid
resistivity. The algorithm is implemented in two spatial dimensions, namely
axisymmetric cylindrical coordinates. Alternating-direction-implicit (ADI) me';ho‘ds are
used to advance the electron fluid drift velocity and the magnetic fields in the simulation.

'Low density regions of the plasma, where there are essentially no PIC ions, are
determined by a cutoff density that invokes solution of the vacuum field equations.

Treatments of vacuum fields and the plasma-vacuﬁm interface differ significantly
from the method used by Hewett [1980], and these are the most significant contributions
of this dissertation, beside parallelization of ADI. The following vacuum field and

plasma-vacuum interface treatments were newly implemented:



1) In extrained vacﬁum regions (connected to the maiimum radius), the
azimuthal magnetic field B, is directly determined by the current, I,, driven
~ through the enclosed plasma. That field is simply given by By =2L/cr. The
equation (V2B), =0 is not used in extrained regions as by Hewett [19.80] because
it requires more computational wo;k for relaxation; it also erroneously en'forces‘ a

curl-free current density at the plasma-vacuum interface.

2) Update of By in entrained vacuum regions (isolated from the maximum radius
by plasma) is based on the integral form of Faraday's Law. This explicit update
also avoids erroneous enforcement of a curl-free current density at the plasma-

vacuum interfaces.

* 3) The electric field E is explicitly calculated in the vacuum regions by
neglecting the resistive term in the generalized Ohm's law for the dense plasma.
This permits calculation of E without the relaxation on V?E=0 used by Hewett

[1980].

4) Finite-difference grid effects that generate noise in E are ameliorated by an
interpolated resistivity in low density plasma regions. This is in contrast to spatial

. density smoothing by Hewett [1980] and has a more physical basis.

Relaxation on the equations (V2B), =0 and V2E=0 would be detrimental to parallel

scalability of simulations as well. The new alternatives for evaluation of B, and E will

execute more efficiently on large massively parallel computers. -




1.2 Governing equations

The spatial region of a plasma pinch naturally divides into regidns of low and
high density. Physically, low deﬂsity regions can be nonnéut‘ral and can exhibit long
mean free paths and Ex B charged particle drift, as long as the den31ty of neutral species
is suffic1ent1y low. In contrast h1gh densny regions of the pinch are generally
quasmeutral, collisional for charged particles, and dominated by Ohmic drift. Between
the low and high densit& regions might be nonneutral transition regions in which drift of
charged particles has significant amounts of both Ohmic and Ex B contributions.
Modelmg in detail a space contammg both low and high den31ty regions can be a
daunting task. If all spatial sca]es need resolvmg, mcludmg spaual variation in transition
regions, the resolution would have to be on the order of a Debye length in the high-
density region. Such spatial scales would be so small that numerical grids for the
governing partial differential equations (PDEs) would have too many unknowns to fit in
the memory of any computer.. It is for this Ieason that resolution of the trahsition region
is not presently practical for a pinch simulation. \

Instead, so as to mimic physical reality, regions of the pinch simulation are
classified as plasma or vacuum depending 01‘1 whether the ion number density is above or
below a cutoff density, p,,.;. The interface between the quasineutral plasma and lower
density vacuum is treated so-as to retain the important physics in the plasma. The model
of the plasma can be relatively detailed, the model for the vacuum can be relatively gross,
and details of the transition region can be ignored almost completely. This is the spirit of
the screw pinch simulation ‘developed in this dissertation.

- Besides reduction of the simulation region to plasma and vacuum regions, two
other assumptions greatly simplify the pinch simulation. The assumptions are that both

the solenoidal and irrotational parts of the displacement current are negligible in



,Ampere's law. Neglect of the solenoidal part of the displacement current implies a
Darwin approximation to the Maxwell equations. Negiect of the irrotational part is
equivalent to an assumption of quasineutrélity. In this dissertation, Amperé's iaw
" excludes displacemer;t current unless explicitly stated otherwise.

Because ions have a larger mass than electréns, plasrria inertia 1s dominated by
ionic contributions. The practical eft:ect is that the ion ciynamics are calculated by
explicit methods. For hybrid pinch simulation the i(;né are treated as pafticles with
motion determined by the Lorentz force law. Standard explicit particle-in-cell (PIC)
techniques are used for the *particle representation. For a fluid ion simulation, the ion
quantites are updated explicitly through standard fluid ion mass, momentum and energy
equations. Regardless of the representation of the ions, the ions are subject to electric and

’ _rhagnetic: fields that are seperatefy determined by electron fluid dynamics and
quasineutral Darwin Maxwell equations. Therefore a time step in the plasma simulation
consists of one update of ion quantities followed by updates of electron fluid quantities
and electric and magnetic fields.

The update of the electron fluid and the electric and magnetic fields are the main
subject of this chapter and the general subject of this dissertation. For the electron fluid
and field updates, the updated ion density and ion drift velocity are assumed to be known,

and the electrons are assumed to be inertialess.

-1.2.1 Governing equations specific to plasma regions

Plasm:a regions are groups of points on the f'mite-difference grid for which the
electron nu;nbe; density p from advancement of ion quantities is greater than a cutoff
density p,.;. The cutoff density is always less than a few 10" per cubic centimeter;

which for 10eV electrons makes the mean electron-ion collision time 7, at the plasma-
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vacuum mterfaces on the order of a few hundred nanoseconds the time scale of a
complete p1nch sunulauon Such a cutoff density conﬁnes the dommant phys1ca1 effects
to declared plasma regions that support s1gmﬁcant electncal currents due to colhs1onahty

In this section, the equanons govemmg the dynam1cs of the plasma regions are
1temlzed The electron ﬂu1d momentum equation in the plasma reglons, 1gnonng electron
inertia is (Appendlx 1. A1 Gaussmn umts)

po L) _mxB -5 Lo
ep-

o
=30
i

Equation 1.1 is sometimes called the generalized Ohm's law for the plasma. It can be
used to find the updated electric field E given an electron_nnmber density p, electron
temperature T, electron velocity i,, magnetic field. B, and cnrrent density J. The term
il xE/c,contains the Hall term, J x Bfcep. The term —V(pT,)/ep is often called the
diamagnetic drift term, or electron pressure term.

With the use of B=VxA and the Coulomb guage V-A=0, the electric ﬂeld can
be decomposed into irrotational and solenoidal parts (same as longitudinal and

transverse) as in Eq. 1.2. I S e
E=iVp- il =E, - Afc. V)

As long as coherent electromagnetic radiation effects are negligible, the fields in the
plasma obey to a good approximation the Darwin limit of Maxwell's equations. The
Darwin limit together with the assumption of quasineutrality leads to- a simplified
Ampere's law: VxB=VxV xA=4xJ/c. Equations 1.1 and 1.2 along with Ampere's‘

lav. tien yield Eq. 1.3 for the time rate of change of A (Gaussian units).
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(1.3)

Equations 1.1 and 1.2 along with Faraday's Law, =—cV x E, and Ampere's Law, give
Eq. 1.4 for the time-rate of change of B.

~<VpxV(pT,) , Ix(5.xB) - c*V x(f-V x B)
ep2 e .

B =
4z

14

In this dissertation, the most general resistivity considered has the form of a diagonal
- tensor, Eq. 1.5. This is useful for Z-pinches , for which 73, # 7, = 77, due to the presence

of alarge B= éBa. It is not accurate for general screw pinches.
7 = #fn, + 06n, + 320, (15)

For axisymmetric cylindrical coordinates, the angular component of the irrotational
electric field must be zero. In other words, E,, ,=-dp/df =0, since all d/df=0.
The angular component of Eq. 1.3 then gives Eq. 1.6. - -

o _[(fne 9 (13 P) LI Y
o = K 4z ar(r ar) Yror ) T\ 02 Ye 3 rAy. (L6)

Extracting the angular component of Eq. 1.4 gives Eq. 1.7.

n — [ 9 d d 9 d\ ad
BG [(475 ar( r or r) or uer) ¥ (475 aZ(nr aZ) az u&)] B9 (1 7)
d c (dpdT, JpdT, ) )
+ g eoBs) + ("“’B )+ p(ar % dzor)”

Given the density p, temperature T, re51st1v1ty 7, and ion drift veloc1ty it;, Eqs. 1.6 and

1.7 determine the advanced ﬁelds in the simulation. Note that Eqgs. 1.6 and 1.7 are
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coupled nonlinear equations. This is because the electron drift velocity is a function of
Ay and B,. Again, Aiﬁpere'é Law gives #, = #; —cVx §/47tep, which has components

expressed in Egs. 1.8.

¢ JdB,
= y. -8 1.8
u, = u, + dmep 3 (1.8a)
c (d(1d), 13
o 9193, 12° 1.8b
oo = Mo T 47zep(3r(r‘8r)+.razz)(m o) (1.8
c 14
= u, - ~—(rB = (1.8
e = Y 4mep r Or (r5o) (159

So, Equations 1.6 and 1.7 are actually quite complicated. In practice, the electron drift
velocity i, is fixed in Egs. 1.6 and 1.7, and can be updated through Eq. 1.8. Fixing #,. in

this way allows the field advancement to proceed by linear methods at each time step.

1.2.2 Governing equations specific to vacuum regions
Vacuum regions are.groups of points on the finite-difference grid for which the

ion number density p from advancement of ion quantities is less than a cutoff density

Peuogy- In these vacuum regions, electric and magnetic fields are computed according to
source-free quasineutral Darwin Maxwell e&uations. Current density 1s assumed to be
zero exactly, so that Ampere's law reduces to VxB=0.

Ignoring neutral species,‘ the charged particles in the vacuum region might be
assumed to be collisionless, executing simple E x B drift. Positive and negative charges
drift in the same dheéﬁon so that the elet:tricai current is zero, assuming quasineutrality.
Ampere's Law then gives VxVxA=0. In the Coillomﬁ guage the angular component
is conveniently reexpressed as (V2A), =0, an elliptic PDE obeyed by the angular

component of the magnetic vector potentiél:
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z d(19), 13
(v*3), = (-é-r-(;-a-r-)-y;a—zz)(rfag) = 0. (19)

Equation 1.9, subject to appropriate boundary conditions, is an accurate description of the
spatial behaviof of A,. But appropriate boundary conditions, especially‘ across plasma-
vacuum boundaries, are not immediately obvious. More will be written on this when the
update over the whole spatial region is described below.

The behavior of the angular magnetic field in the vacuum is straightforward

conceptually. The field must have a 1/r dependence in each vacuum region. This is a

simple result of Ampere's law without displacement current, which gives Eq. 1.10.

By(r,2) = 2"2%-2—) (1.10)

The quantity 1,(r,z) is the Z-current enclosed by the loop (r,6€[0,27),2) at (r,2). At
this point it is useful to disﬁngu%sh two types of vacuum regions, as in Figure 1.1. An
extrained vacuum region is a vacuum region in contact with the external boﬁndary at
maximum radius. If the plasma is completely seperated from the external boundary, then

there is only one extrained vacuum region. Since the vacuum electric current is

negligible, B, in an extrained vacuum region is determined by I, flowing in the whole
enclosed p}asma cross-section. When I, for the plasma is a driving» function for the
simulation Z,(r,z) is automatically known at every extrained vacuum grid point, wﬂich is

very convenient.

s e ey — ran = - - T e e s ————————— co—
f - “ T - P e - . .
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Figure 1.1. Tlustration of extrained and entrained vacuum regions in the pinch
simulation. There is 6nly one entrained vacuum region in contact with the boundary at

maximum radius.

First method for update“ of B, in entrained vacuum regions
Entrained vacuum régibns are isdia';ed from the extrained vacuum region by
\;;lasma. In entrained regions, IL(r,z) isnota 'direétly driven quantity, bﬁt is determined

by plasma dynamics. To effectively find I,(r,2) in entrained régioﬁs, the integral form

N

of Faraday's law can be used, Eq. 1.11 (5 in Figure 1.2).

_[drdzis,, = Zﬁ,jdrdzr-‘ - c§d?-E ‘ (L11)
S C 45 &3S
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This formula allows advancement of B, in the entrained vacuum regions after evaluation
of the line integrals along the plasma-vacuum boundary of each region.

Briefly, the entrained B, update can be implemented as described by Egs. 1.12.
Because the void might first appear at time level r, a quantity k" is defined which is the

average over the void of the 7B, product:
= Idrdz rBy / Jdrdz. (1.12a)
s ~' s

Then B, at time level n is replaced by By = k™[r. The B, at time level n+1 is given

by Bit' = k™*/r, where

=k + E"At, k" = df E / J-drdzr (1.12b,c)

All of the spatial integrals are discretized for the grid. Note that this method for entrained
B, is first-order accurate in time, at best. A quick method for evaluating line integrals
around an arbitrary number of voids of arbitrary shapes was necessary for this scheme,
and it was implemented for periodic boundary conditions. Note that Faraday's law gives

the B, rate equations in both the plasma and the entrained vacuum, with the integral form

in the vacuum.

Second method for update of B, in entrained vacuum regions
A method for advancing B, in the vacuum regions that avoids evaluation of line

integrals is based on the equation VxV x B=4sV xJ/c. For vacuum points that have
no plasma points as nearest neighbors, VxJ=0. Since V-B=0, B, should obey

(V2B), =0 at such points. An approximation can be made that V x J =0 even for
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-Figure 1.2. A vacuum void entrained inside plasma and isolated from external
boundaries. In axisymmetric cylindrical coordinates, it is reasonable to update By with
the aid of the integral form of Faraday's law, integrating around the curve on the void

boundary, as shown. N

vacuum points adjacent to plasma, such as the lettered points in Figure 1.3. Then the
points in the plasma can be taken as Dirichlet points for the solution of (V"E)e =() in the
vacuum [Hewett 1980]. This approach efficiently uses the ADI techniques elsewhere in
the algorithm, but it presents obvious questions of accuracy; it is supported in the
simulation algorithm, and was compared with the line integration technique to determine

the effects on the simulation behavior.
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Figure 1.3. Figure illustrating vacuum points at which Vx7#0 in general. Such

points are lettered a-j.

1.2.3 Advancement of the angular magnetic vector potential over the
whole spatial region .

If one were to proceed with Egs. 1.6 and 1.9 in order to advance Aq4 each electron

time step, a natural way to pose the problem would be as follows:

.

Given Robbins boundary conditions on A, along the outer closed
'boundary S=dR of spatial fegian R=R uRz,, where R, NR, =0 and
Athe- location of a second closed boundary S, =R, inside or on JR
seperating R, ar’ld R,, find the A, which satisfies Eq. 1.6 with initial

_condition A, = A, inregion R, and which satisfies Eq. 1.9 in region R,.
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Robbins boundary conditions along § specify the value of a linear combination of A,
and the normal derivative of A, at each point on S [Lapidus and Pinder 1982]. Using ¢

instead of A, for the unknown, the problem can briefly be posed as follows:

¢ = X0 + f and p(z=0)=¢@, in R,
X2¢ = O iﬂ Rz,
ap+bi-Vo=con S (Robbins boundary condition).

Here, X, and X, represent linear second order spatial differential operators, and ¢ is the
scalar unknown function of position. All of X;, X,, f;, @, b, and c are spatially
dependent, in general.

The situation is illustrated in Figtire 1.4. The parabolic equation is obeyed by
points j=1-7, which are subject to special linear constraints at points i=1-11
determined by the elliptic equation in region R, and boundary conditions at §. An
evolution method that proceeds along these lines is given in Appendix 1.AS5.
Unfortunately, such a technique of evolvmg 9 is 1mpracuea1 for fast numerical

computation, so that the approx:matc techmque of Hewett [1980] was adopted.

Approximate solution .
A computationally inexpensive method uses Eq. 1.6 with modified terms in the

vacuum [Hewett 1980]. This early method is based on the observatlon that the solution

to the e111pt1c PDE (VzA)e =0is the nme-asymptotlc solution of the parabolic PDE in
Eq. 1.13.

rhy = r(V2A), = ( ;C aar ) ; )( ). A1)
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Figure 1.4. Illustration of the initial/boundary value problem for advancement of Ay
over a general spatial grid with both plasma and vacuum regions. A, obeys a parabolic

rate equation in the plasma and an elliptic equation in the vacuum. Plasma and vacuum

- are coupled across internal surfaces such as S; = dR;. :

This is the case if both equations are subject to the same time-independent boundary
conditions. This latter PDE fits easily into the ADI scheme used to advance A, in the

plasma. In fact, this equation is the same as the equation used in the plasma region with
the term i, XV x A thrown out, and with ¢?*n,f4n=1.

This suggests that Eq. 1.6 can be used over the whole grid, as long as #, xVxA
is thrown out in the vacuum regions, and as long as 7], is chosen in the vacuum regions
so that A, is driven to steady state in a few electron time steps.. Toward this end,

Ny =4mn[c* is NOT the right value to use in the vacuum. Rather, 7, = 47fc*At would

be a better choice. After a time advancement like this, the vacuum equation might be
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violated to such a degree that it is necessary to solve »(VZA.)B =0 in the vacuum while
fixing A, in the plasma. This is essentially the same as the earlier approach of Hewett
[1980]. One ADI double-pass is used to advance A, in the plasma, simultaneously with

the vacuum, and then a few ADI double-passes are used to relax on (VZZ)B =0 in the

\

vacuum alone. The total number of double-passes for this is typically less than 10. In the

simultaneous plasma-vacuum ADI double pass for advancement of A, from ¢ to #+ At,
linear interpolatioﬁ in time can be used to set Dirichlet values of A, at time 4+ At/ 2.

This is not the most accurate treatment of the intermediate Dirichlet values of A,

[Fairweather and Mitchell 1967], but it is adequate.

1.2.4 Advancement of the angular magnetic flux density over the whole
spatial region |

. Advancement of B, naturally breaks into two steps. The first is the advancement
of B, in vacuum regions. The secox;d is the advancement of By in the plasma according
to Eq. 1.7 with the advanced vacuum By used as a set _of Dirichlet conditions. For
extrained-vacuum regions, the advanced B, is given by Eq. 1.10 with I, a given dﬁﬁng
function for the simulation. For entrained-vacuum region's I, can be found with the aid
of Faraday's Law, Eq. 1.11. Using ADI, ‘B, is then advanced in the plasma as the second
step. For an ADI double-pass to advance B, in the plasma from time ¢ to time £+ At,
linear interpolation in time can be used to set Dirichlet values of By at time #+Az/2.

This is not the most accurate treatment of the intermediate Dirichlet values of By

[Fairweather and Mitchell 1967], but it is adequate. The advancement outlined in this

paragraph is used for the new simulations presented in this dissertation.
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There is a previously developed method of advancing B, [Hewett 1980]. Aslong

as the same time-independent boundary conditions are used, the solution to (Vzﬁ)g =0

for the vacuum regions is the same as the time asymptotic solution to

= d(1d s
B, =.(V’B)y = | =| == |+== |B,- 1.14
6 (V°B), ,(Br(rarr) 322) e ( ' )
This equation is the same as Eq. 1.7, with terms containing Vx(ﬁekﬁ) and V(pT.)
' thrown out, and with ¢?1, /4 =1. Then, just as in the case for 4,, Eq 1.7 can be used
- over the wﬁole grid&b)} zeroing proiaer terms in the vacuum regions and choosing 7], in

the vacuum regions to drive By closér to the steady state of Eq. 1.14.

1.2.5 Advancement of the poloidal magnetic flux density

Advancing B, and B, in the simulation is a simple matter of using B=VxA
over the whole spatial fegion. As long as (the-: boundary conditions have been i)roperly
incorporated in the advancement of A,, no Boundary conditioﬁs need to be directly

appliedto B, or B,.

1.2.6 Advancement of the electfon fluid hdrit.'t velocity

Once A, and B, have been advanced over the whole grid, itis a trivial matter to

c

take derivatives to get all of the compongpt.; pf electron drift velocity. Second order

central differencing is used to calculate the derivativés from Egs. 1.15:

.,
4mep dz°

_ ¢ aBl_aB,) -
Upp = Uig + 47rep( 5 ) (1.15b)

(1.15a)

er — Uir
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=, = —<=19(3,). (1.15¢)

- 4mep ror i
If u = Iﬁel isa si’gniﬁcenv'f fraction of the speed of light for more than a few per
cent of the grid points, then the ﬁeld advance w111 be mvahd But if only one or two grid
points have relativistic electron velocities, the ﬁeld advance mlght be acceptable. In this
case the major effect of, the fast eleetron fluid is the decreased time step necessary to obey
the global electron fluid Courant condition. | | | |
When the electron fluid veloc1ty 1s relatlvllstlc at one er two pomts in the

smulatmn, it is useful to bound the velocny to av01d an exceedmgly small time step.

Special relativity provides a phy51ca1 basm for the bound. Note that the drift velocity in

the Lorentz term % X B is the ordinary veloc1ty, and not the proper velocity, so it
becomes reasonable to alter the calculahon of #, in the relativistic case. Recall the
relau;nstlc expression for the current dens1ty J e(p, -p.,). Since the ions are
‘massive relative to the electrons, u; EIE |<<cin the laboratory frame; and to a good
approximation p; j,;, = P; res- " On the other hand, the electrons m1ght flow w1th sufficient
velocity that p, ;,, >>p, .- The rest frame of the electrons is not the rest frame of the
ion species, in general, so the validity of quasineutrality suddenly comes under scrutiny in
regions of fast electron ﬂow | C | u

In reglons of fast electron flow it is reasonable to assume quasmeutrahty in the
rest frame of the electrons. Smce th\e electrons are hghter they tend to neutralize any ion
charge density that exists in the electron rest frame. The rieutralization is aided by the
diffusive effects of electron-ion collisions. At a given point in tl}e plasma, the ion density
in the rest frame of the electrons will be VePi> where p,: ish the ign density in the lab frame

and 7, =(-u?/c*)™. With the working hypothesis above, p, .= 7.P;
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Transforming back to the lab frame then gives p, 5 = Y.Pp rest = ¥2p;. In the lab frame
then, it might be reasonable to assume J =ep;(#; —¥24,) for a few points of the

simulation. The general equations for the updated electron drift velocity become:

¢ OB,
_ N 1.16
Yoy = Uy + pr—rs (1-162)
_ c (0B, 0B, -
Yty = Ug + P p( = c?z) (1.16b)
10
Vot = thy = = (Be) | (1.160)

Note that when u, <<c, these are the same as the previous equations. Given any #;, Ay,
and B,, these three equations can be used to compute & = vii,. With u? =c2(1-1/7?),
one gets a quadratic that determines y2: o =c*(y? - y?). If a simulation is to proceed
in obeyance of these equations, all of the comi)onents of #, should be updated whenever

any of them are updated.

1.2.7 Advancement of the electric field

"Once B and #, have been advanced in the plasma, Eq. 1.1 can be used in the
plasma to find the advanced E. Then, to advance the electric field in the vacuum
regions, it is tempting to find an expression for V2E that is an elliptic PDE governing E.
This equation can then be solved using the advanced E in the plasma and on the driving
electrodes as Dirichlet boundary conditions. The solution to the equation would be

smootﬁ and.would have extrema on the vacuum boundary. Toward thlS end, one can use
the identity V2E = V(V-E)~VxVxE to get Eq. 1.17.
1

V2E = 4xVp + 27,(4"7+E") (1.17)
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At first it is tempting to assume V. E =0 everywhere in space. But this is not generally
valid at the plasma-vacuum interface, so the assumption should be discarded.
Satisfactory use of Eq. 1:17 is therefore difficult at best. By definition, a quasineutral
model has no straightforward knowledge of any net charge density p or charge density
gradient Vp. If one assumed a surface charge representation, then one would have to
deal with calculation of that surface charge and mcorporate it as a jump condition on the
perpendicular electric field at the 1nterface Thxs latter approach might be nnposs1ble
Further difficulties reside in the first and second ume derivatives; 1mp1101t incorporation
of these terms would be computationally expensive and explicit incorporation might
degrade the stablhty of the algonthm This goes Wlthout mentlomng that the quasmeutral
model at hand leaves E, umsolated from E,

The s1mplest approach to calculatmg I? in vacuum regions fequires only a
variaﬁon of the electron ﬂuici momen;ﬁm equation, Eq.' 1.1, used m the plasma. Since the
vacuum region of the spatial domain should have very low electron-ion collisionality, the

resistive term should be negligible there. Throwing out the resistive term gives Eq. 1.18.

_Vlp1.) a,xB
ep G

E= (1.18)

Calculating the vacuum E in this way is computationally cheap, and it ignores all of the
interface questions arising with Eq. 1.17, keeping with the spirit of the algorithm. For
vacuum points without nearest neighbor plasma points, #; is numerically zeroed, and
ii, = #; within second-order discretization error, making the numerical E depend on the
first term. This E is not physically accurate near any actual nonneutral plasma-vacuum
interface, but it is perhaps sufficiently accurate for this quasineutral simulation.

Inaccuracies in E in the vacuum away from the interfaces are of little concern. Only
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those particles which escape into the vacuum 'regions would see an inaccurate E there;
as long as the number of escaped particles is relatively small, they will have a negligible
effect on the evolution of the plasma regions. For vacuum points with nearest neighbor

plasma points, merely enforcing VxB=0 gives Uy = Uip g The ion drift velocity is not

zeroed at such points, so that there can be a contribution from both terms in Eq. 1.18.

The only time Eq. 1.17 might have application in this quasineutfal simulation is
when the right-hand side is relatively small; something that must be considered on a
case-by-case basis. When the right-hand side is negligible, the component equations of

V2E =0 can be solved [Hewett 1980]:

2p) o (19 PE, _ | |

(V°E), = ar(r,ar(rEr)) =z =0 (1.192)
2F) = i(l_é. ) I’Ey _ \

(V E)g ~ or rar(rEB) + 92 =0 : . (1.19b)
2z _ 13 ( 0E), &E, _

5, - 12(%) 2 -0

Each one of these equations suggests a relaxation on a Laplace 9quation for each electron
time step, with the plasma and the driven boundaries Dirichlet poinfs in E,, Ey,and E,
For each solve, the initial guess for the ADI method is relatively good, and the number of
1terat10ns for an accurate result is small. Th1s approach essentlally loads a smooth
weighted average of E from mterfac1a1 plasma pomts into nearby interfacial vacuum

points. Since the relaxation requires more work, it was not used in the pinch simulations

presented in Chapter 2.
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1.3 Ion component of the simulation

~ The pinch algorithm of this dissertation has been developed with the intent of
simulating the ion kineﬁcs in strongly driven sc-reW pinches. Because the kinetics require
“a particle representation of the ions, the electron fluid/field algorithm interfaces with a
particle-in-cell (PIC) ion representation. The particle push of the PIC algorithm is
presented in Section 1.3.2. Unfortunately, when testing ther electron fluid/field algorithm
on plasmas initialized in MHD equilibrium, the PIC representation of the ions is too
crude for a reasonable number of PIC ions. The statistical noise in a few hundred
thousand PIC particles obscures linear MHD growth rates, of ihte;'est for benchmarking,
yet more particles will not fit in computer memory.

In order to benchmark the pinch:simulation against linear MHD stability theory, it
became necessary to use the electronlfluid algorithm with a fluid ion representation. The
fluid ion representation leaves out ion kinetics i unportant for strongly driven pinches, but
it is all that is necessary for checking the stab1hty of MHD equilibria. The fluid
representation is free of the statistical noise of the PIC algorithm, requires less computer

memory, and has a reasonably short execution time.

'13.1 Fluid ions
| The fluid ion répresentation is accura;te "\x;hen the ions at each point in space ére
well loé;alized in velocity spaée. Localization in velbcityr space allows the ion velocities
to be accuraiely described by a mean drift velocity #; and higher order velocity moments.
The equations governing each species of fluid ions are the typical mass, momentum, and

energy conservation relations (Gaussian units):

aPp

5+ V-(p%) = 0, (1.20)
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d - = - V(pT) qu(" i: _)

Z(pi . i) = — 4 L s 21
> u,)+y (p ;) m + m \E+ c;(B (1.21)
oT. — 1. = le = * 2m, |

i 4 VAT @) = =TV-i. + =V-xVT, + T,-T,; 1.22
ot ( i ux) 3 i (3 p K i miTe( ) ( )

In the pinch simulations, quasineutrality is assumed, so that the density p=p, =p; isnot
subscripted. The quantities m; g;, T;, k, and 7, are the ion species mass, charge,
temperature, thermal conduct1v1ty, and mean collision time with electrons. The speed of

light is ¢; E and B are the electric and magnetic fields; and T is the electron

temperature. For benchmarking the pinch simulation against linear MHD theory, it was
convenient to take k=0 and T,=T;. Here,A temperatures are expressed in energy units
(ergs). Equations 1.20-1.22 are ﬁrﬁte—differenced in space and time in order to irnpiement

an explicit scheme with donor cell stabilization and conservative boundary conditions.

1.3.2 Particle-In-Cell (PIC) ions

A standard Boris push was used to advance the velocities and positions of the PIC
jons [Boris 1970]. Given the jth particle velocity at time level -1/2, the particle velocity
at time level +1/2 is given by Eq 1.23. The jth particle position is then advanced from
the Oth time level to the 1th time level according to Eq. 1.24.

; —nil/2 , =n-1/2 '
Grliz _ gneli2 o _%_At_(;;; __M_"'_vn_.x B"f} (1.23)

J J mj 2c J

i}x+l - 5‘-;: + Aﬁ;}ﬁllz. ' (1.24)

el \1
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The 5c”-'+1 are then weighted to the grid and summed over particles to get the plasma
particle density at the +1 time level, pr*. The formula for the velocity advance can be

rewritten to facilite explicit calculation:

= Atr= = -
gz — B At)‘.v-}z—IIZ + %—(I + R}'(At))- E," (1.25)
m

‘Here, the tensor ﬁ;’ (At) is determined by the formula

- 1-@)1 - 28" <1 + 208"
R = ( (")) ~ ST with @"(Az)—

G2 Br (126)
1+(07) SRR

J
ij

The electric field E" and magnetlc field B" are 1nterpolated from the grid to the jth

parucle, and are at the mtermedlate time level n. This is just the Bons push, a second-

order accurate exphc1t leap-frog method [Boris 1970]

=n+l

To get ¥;™, the same velocity formula is used with half the time step and with the

electric and magnetic fields lagged three quarters of a time step (from the second-order
accurate Boris push formula): ‘
=n+l _ En(_ez 5n+l/2 + qut 7 +§n ‘QL) E" 1.27)
Vi = Ri(¥)-y; am, j () Ej.- - @
The ¥ ""'1 are then welghed to the grid and summed over particles to get the mean ion drift

velocity at the +1 time level, #**'. Note that #}*! is not used in the next particle velocity

advance.

The formulas for interbolating the fields from the grid to a particle and for
weighing a particle to the grid use standard linear shape functions with weights involviﬁg
only the four grid points nearest to the particle. Effects of the weighing scheme have
been extensively studied elsewhere [Langdon 1970; Okuda 1972; Birdsall 1985].
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Appendix 1.A1
Electron mass, momentum, and energy equation
derivations

The plasma kinetic equation for the electrons in Gaussian units is Equation 1.28.

Fe , 5.9.f. — E(E+15 —.’-_ - (2
Le 45921, me(E+cva)V,,fe—(at)c. (1.28)

Here f.(X,7,t) is the time-dependent phase-space distribution of electrons, and
/ df, e (= V%8B & | |
} (—‘ } = —-—<(\5E + ]-V;6N3> (1.29)
ot ). m, c :

is the rate of change of £, due to collisions in the plasma. The distrubution f, is a

smooth function obtained by averaging ﬁe Klimontovich density N.(X,7,t) over an

appropriate volume, and 6N, = N, - f,.

Mass conservation equation

We multiply the equation by dv and integrate term by term over all V-space:

% jévfe = L), (130)
j 7. V j Vs f7 = Vs j af, 7 = Vg-n(Z0)E.(%1), (131)
allv allv
jdvE Vsf, = E- j'a'vv-f, = E §¢sv fsf, = 0, (1.32)
allv " oallv y=oo

J'anE- sf, = —B- jdﬁvxvgf, = B J.di?V;xfj = B §ds,7ﬁxfev = 0. (133)
allv ' allv allv y=o0




30

The surface integrals are zero because the particle velocities are bounded. The following

vector identities are useful:

Vo-fy = -2 I, P _ 5.9,
Vx fev = 3x,- (fevz) = a fe a = l 3x,- =V foe’ (1'34)
xB.V ife =_8,'jijBkg‘v Bkek}, gfv = —E-ixV;fe, (1.35)
d eV e s e
V"xfev = xzeyk (f k) = xzeyk(%v +fe=— v ) = xieijk(%vk'*'fe?sij
»;j , J (1.36)
= Tifgk 35V = -7xV5f,.

J

The result is the electron density continuity equation:

a"eg’t) + V- ne(x,t)ue(x,t) = (an (x’t)) . (1.37) .

c

When the equation is multiplied by the electron mass, the equation expresses
conservation of electron mass. Unless there is collisional generation or capture of free

electrons, the rate of change of electron density due to collisions is essentially zero.

Momentum conservation equation ﬂ

7 By 'multiplying the trénsport eqﬁatibn by dv v and sub;équently integrating it
over velocity space, one will arrive at the electron flux equation. Then multiplication by -
the electron mass yieids the electron momentum equation. Terms in ihe integration are as

follows:

2 [#vi = LnEonE), (1.38)
allv

IdﬁW-V;fe =V, J‘:ﬁfew = Veen %), - (1.39)
v allv



31

jd‘vE vae j (¥5-(7.59) - 7. §a‘s‘- f.EV)A - jdﬁf,E: -nE, (1.40)
’ allF' ' y=co !

ja‘ﬁ va V,,f, dﬁ -fevav) feﬁxﬁ)

¥

allv D ‘ 141
- = §ds; f,vxEv)-ﬁ- jdvfevxfe: -ni,xB. (141
y=o0 allv

Again, the surface integrals are zero because the particle velocities are bounded. The

following less commonly known identities are useful:

- Bv _
Vi (fV9)= %o o (f,v, ) J(gfv Vi +fe¢9x Vi + fovis= = ) = w-Vif., (142)

Vi.(fjv) 3j— o (feEvJ) 2 [t?feEvJ +f,_, av vj + f.E ) = VE-V5f. + f.E, (1.43)

1Y
V ( fev x B v) = ( fee,]kaBkvl)
. (% ™ 3B, s _ (49
= x,e,-jk(sf-vakv, + fe5ijBkvl + fer —BV-TVI + fevakail) = VX B'Vﬁfe +f VX B.
1 t
The electron flux conservation equation becomes:
gt—(n,z'i,) + Vaon (o) + 22 (E+—uexB) [a ( ) . (1.45)
c

€ all¥
When the distribution function is nearly Maxwellian, it is useful to express the electron
velocity as ¥ =1, + v, where (6v)=0. Then (W)=, + (696v). Neglecting free
electron capture and geheration due to collisions, the first two terms of the electron flux

équation become Eq. 1.46.
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%(neﬁe) + Vion (9) = i’; + n,—% a;t" + Vs ne(z'iez'i,) + V;-ne(5i"8f)

=(a;f V.- )u,_.+ne(-‘%+ae-vfae)+Vf-ne(avav)f (1.46)

= ne(ag: ‘e'”iﬁej + % '52_( 6‘1(51’?)) .

The following identities are useful:

= . d a(on, . fou; ou,; \
Vi-ne(ueue) = Xj -a;f(neueiuej) = xj[xueiuej +ne( Em uej+ue,~ EEJ_)) (1 47)
] (4 (3 |- _ T _ . hd
= @i, -Ven, + n,ﬁj;-z?,_, + ni, Vi, = 8,9z -nd, + ni, Vi, ,
ad- . d (.- 2 ‘ :
Vs ne(6‘8‘) 3x ( (5v 8vj)) = x,-gi(neﬁ,-j(Svj )) (1.48)

No summation is implied by SVJ?. It is convenient to define a diagonal temperature

Y

tensor: T,; =m,; Sv?). If the temperature is isotropic, then T,=im (6N =T]T.
j e e e

For this isotropic case only:

BN (52 R (NS AT I
V- ne(8‘8‘)—xa—-( o )—-xm(xT+n )6,1- (neT) (1.49)

The electron velocity equation becomes

ai‘.e P "_<-— vf(ne ) ene 1 = "(%)
,n,_.( e, vxg,)+ ) (E+cuexs)’- [ Z). (L.50)

It is tedious to express the collision integral on the right in terms of the fnagnetic field,
density, electron drift velocity and electron temperature. When the product of electron-
cyclotron radian frequency, @,, =eBfm,c, and mean electron-ion collision time, 7,, is
much greater than unity, the collision integral is reasonably approximated by the sum of

two terms, a frictional force term and a thermal force term [Braginskii 1958, 1965].
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ja?v(af‘) =2 (Re,,+ReT) where
dlv ,

for Z=1,

R,= ene(nlljcol 1+ M Teors)s  Tea =en(@—8,), ML= 196m=

eve

bxVT, for Z=1.

Ry =—0.71n%,T. ~ 23:‘: :

The quantity R,, is the frictional force density, while the quantity Ry is the thermal

force density. The unit vector b is parallel to B. The subscripts Il and L refer to
directions parallel and perpendicular to B, respectively. |

Thermal conductivity of the electrons along'lines of magnetic flux tends to be

high, so that the first term in Eer can be relatively small. Thermal conductivity

perpendicular to magnetic field lines is not quite so high, but the assumption that

o,,7T, >>1 can make the second term in R small as well. Itis for these reasons that the

thérmal force is often neglected ‘The rémaining fnctlonal force can be expressed in

tensor notation as R, = eni-J,;. Multiplying Eq. 1.50 by m,/n.e and taking
p=n,=n; givesEq. 1.51.

_Ypr,)  mfn-V  a,xB
ep e c

1+ Teol- (1.51)

txn
+

Note that J,,; is not equal to the electrodynamic J = e(p;Z; —p,i,) in non-neutral or

relativistic situations. When the electron inertia is ignored, this equation reduces to Eq.

1.1 that is used in the pinch simulation:

_V(PTe) _ i, x B 7. (1.52)
c

t
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Energy conservation equations o

Multiplying the kinetic equation by di? v and subsequently integrating over all of
velocity space gives the second velocity moment equation, which when multiplied by half
of the electron mass is just the generalized electron energy tensor equation. The terms in

the equation integrate as follows:

gf | fﬁ 5of, = -gt-(n,(i,t)(ii)(i,t)),' - . (L53)
jdﬁi}‘W Vef, = Vs j'dv £, = V— ne(vyv),_ (1.54)
allv allv B

jdi"va V,,fe J‘di? V— feE"v) fe(E"+vE))

alv allv ) o (1.55)
= §ds; (£.Bv9 )4 - jq‘v‘fe (Ev+9E) = -n (B3, +1,E), ,

y=oo allv
N T .

Ja‘ﬁvv va) ,,fe Id‘ (V- (fevavv) fe((va)v+v(va))) » |
= §ds fe va) Vi — jd‘fe va)v+v(va)) (1.56)

y=0o

= allv
= —ne«v X B)v +v(v X B)) .
The following less commonly known vector. identities are usefgi;
Vz-(f ) = i — o (fev, vk) % “k(gi‘; v,-vjvk) = vv-Vzf., (]j.57)

oy o, A A a

V;-(f, vv) = Tk (feEvJvk) '
(o o, s

jxk(av‘ iV Vi + fom— av _]vk+ feE vk+feEivj5ik),= V. ’Vi; e + fe(EV-l'VE) s
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aa 0
XX x(f eeijkvj3kvlvm) :
1
e . ) 9By
ilfmé‘ijk 7, Byvivpy + feOijBrvivm + feVj ; ViV (1.59)
, +feViBOyVm + feViBiViOim
= WixB-Vyf,+ fe((va)v+v(va))

V5-(£.7 % Bo)

The generalized electron second velocity moment tensor equation is then

g?(ne(w))+ A -ne(i"i”i?)-*-e—':f-(l?ﬁe +i,E+— 1 ((vx B)9+9(7x B) ) j dv “(afe) (1.60)

e

Of course, one of the most useful consequences of this equation is extracted when it is

doubly contracted with the identity tensor i= %:X;0;.

()1 = (vz), Vs-n (o99)] = V5 -n(v?5), (Ez, +,E)T = 25,-E, (L6labc)

((Vxl?)v+ii(7x§)):7 ( £V BV + Vi€lmnVmBn )5,1- ( £V BV + Vi€imn va) = 0. (1.62)

The quantity -&men,<v2> is just the electron kinetic energy density. So, the double

contraction yields the more commonly used scalar electron energy equation:

Be 91, ()) + ZeVzn(75) + ends, E = j (L) (163)

Reexpression of the collision integral and further simplifying assumptions make the

energy equation usable for simulation [Braginskii 1958, 1965]:
(1.64)

221&(3;8 g 'VETC) = —neTev‘iie“‘ V‘ZI.e" %C:Vﬂe'*' Q5

T, E«}me<5v§),

nele bxi, for Z=1,

3e= ey +4cT> with g, = 0.71n,T ity +
ceTe
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~ 3.16n.7T,.7, 4.66n.T, - Sen T, » = :
=~V T, - ——EV T, - ——2-2px VT, for Z=1
4der m, e memgete Lie 2¢B e 10T ’
‘ | J-R 3m,n
Teij = I‘ﬁ vyife = n.T65, Qo= mif+ nyJt+ ——L - “Tele(T _T)),
dls érne m;Te

The subscripts Il.and L refer to directions parallel and perpendicular to B, respectively.
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Appendix 1.A2 ~ .
Magnetic vector potential and magnetic flux denSIty
rate equations in axisymmetric cyhndrlcal coordinates

The electron fluid momentum equation, assuming quasineutrality, ignoring
~ electron-plasma oscillations, and ignoring electron advection (see Appendix 1.A1) is Eq.

1.65.
VL) _ ExB ., 57 (1.65)
ep c

E=

This equation can be used to find the updated electric field, given an updated electron
velocity and an updated magnetic field. With the use of B=VxAand V-A = 0, one
also has for the electric field E = — Vo - Ale = E, - Al so that

o : 2z & ST
+cV(pT,) e = - cn-VxVxA. (1.66)

From this the various terms in 3-d become

_3(pT, T.) . a(pT, '
V(pT) = (gr ) + "r (59) +3 (gz ), (1.67)
B=Vxi= ;(ua_zég) . @(aAr__%) . s1[3(4e) o4, (1.68)
rde oz & ar rt or a8 )

5 e

Heo r39

. uer(ﬁ- .aﬁz_) l_AL aA,,
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Choosing 7] tobe diagonal, §j = ##n, + 681, + 227,, the last term becomes

FxTxA = 1, { 1.9 (a(”‘e) r?A) az(a_A;_%.)) |

30

rt de| or a0 dz or

[ 305-)- 28] o
cond 2{%-%)) - 5 %))

The rate equations for each component of A are then

>

+

ep or S or 20 oz

4 =g, v 2200 _u_,_,g(i(ié_)_'a_AL) _ ua(aA,_%)
(a(rAg)_BA,.] ) (24;_ %))
dz ’

1.71)

dz or

o= i A (100 o) () ok
o o ‘epr‘ a9 rae o r\.or 00

: 1.72
10 [3(1 94, BAg) a[ (a(rAg) aAr]D (1.72)
+ — = _—— ] e |- =L s
4z | dz\r 06 oz or\r\ or d6.

o ¢ 9(pT.) (aA, aAz) (1 A, A9
4 = i,z ep oz e “0\T 50 oz 1.73)

* —:;‘(a( (&%) f;@(iﬁ a?)]

Taking B = ~cV x E, we get

- o ’ : I ‘ 2 -_-.- -
_chxZ(pTe) N Vx(iiexl'i) ¢ Vx(n YxB).

B=
ep” 4z

1.74)

In3-d cylindricai coordinates, the terms on the right become ‘

_.\p dp oT.. apaT) (apar apar)
VoxV(pT.) (aeaz ) AL b o ==

+2£(¢9p T, dp T,
r\odr d8 96 or

(1.75)
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( 10 (uerBG — ueBBr) _ a(uezBr — uerBz)
U a6 dz
(9 (ueBBz — U, By ) a(uerBB - ueBBr)
\ p - = (1.76)
.( a(ru.B,—ru,,B,) _ 9(u.eB; — %.,Bg)

ar a9 ’

7.xB = Fﬂr(}' B __3_’_31) + éna(fﬁr._@z.) + gﬂrz.(.a(_rBQ_@i} A.77)

rde oz dz or or d0
eont) - 1332205 An(2-2) o
(7x(7-9x8)), = gg(n,(%%%-%&)) - %(%(3%3‘11-%}], (1.79)
P ETECEY BTN R

The rate equations for the components of B are then

r=

_c (ap aT, dp are) L1 HuerBg—UeoBr) d(u B, — UorB;)
pr\30 oz % 98) T a6 - 7

_ _C_Z_ 140 11; a(TBg)_aBr _ _a— (aBr_iB;z_) (1.81)
4x |ro9\ r\ or 08 2\ % o))
B = -.E.(ap aTC - ap aTe) + a(ueBBz_uezBG) _ a(uerBe-ueBBr)
07T Tep\dz or o & % = o
_ |2 (183 ._zB_e) 3 n,(3(rBe) B, (1.82)
© T x|\ ™ e T & al T\ ar o0 )l|
B = —._c_(ap aTe _ap aTe) + a(rudBr_merBZ) - a(uCBBz—uezBB)
2= Tepr\ar 90 96 ar ar 96 (1.83)

(2 (2&_2&) _ 2 (183 _ﬂ)
dar\or U\ % or 20\"7 90 & )))

3.
RaN
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Assuming axisymmetry for 2-D r-z problems, and lookmg at the equatmn for the E-field:

B, = .3¢p + alaqv .Btp

3r z az = Eirr,9= 0. (1 84)

Each of the terms in the equations for the magnetic vector potential and the magnetic flux

density simplify, giving
-_6‘7193 Pho)_, M vy 3
Ap = (ar(r ar( 9)) ) Yez oz r or 9) (1.85)
XL 2af 3 a3 :
BG B [(475 ar( r or TJ Er-u") ¥ (.4—73_52—(17'- Bz) 3 ez):l Bg (1.86)
a 9 oy, € apare_apar,_,) :
¥ 3z;(ueaB") * &(ueeB')_ ¥ ep( or oz dz or )’

Multiplying A, by r gives

i (€m0, 2 li)_ ), (e _, 2
'A""[( yp Br(rar ""ar}*(m 2 e || e , (1.87)
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Appendix 1.A3
Finite difference equatlons used for the electron fluid
and the electric and magnetic fields

Take p, to be the cut-off plasma density. Then p" = p' when the ion density is
greater than p,, while p'" =p_ when the ion density is less than p,. Points at which
p"* < p, are called vacuum points. All of the other points are called plas\ma points.
Typically, p, is less than a few 10" per cubic centimeter. We have, taking A =rA, and
B = B,, the set of equations Egs. 1.88a-t. When ADI is used to relax on the equations
(Vzﬁ)g =0 and (V2§)9 =0 at vacuum poihts, a relaxation parametef (At/ é)' is used
which has little to do with the physical time step of the simulation; it is chosen to relax

toward the solutions in a small number of physical time steps.

1 1 ¢ BOl BO 1 (1.88a)

R-pass on azimuthal magnetic vector potential:
AI/Z_AO _ czn r (AII(/)Z_AI/Z Allz—A_lllg] lAl/Z_Al/Z .

- 2
Plasma: At]2 2473 ﬁr ] T1/20 r.an 2Ar (1.88b.1)
cnAn—2A +45.1 _ 0A01 A8
dr AZ? Y

12 _ 40 U2 _ U2 412 _ 4102 0 _n A0, 40
Vaomm:  AoA - L (Alo A 4 A.mJ + Aot 2;2*”@1 (1.88b.2)

Ar/2) nn i
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Z- n azim i ntal: , )
A_al2 ) n r (AR2-a2 _ AV2_ 12 . Al2_ g2 .
. . r
Plasma: Atl2 4z AP* T2 12 2Ar (1)
c’n A =24+ Ay _ 0 Ay —Aos
4z AP 2 247
A U2 _ a2 4102 _ 4172 a A
Vacuum: A-A2 (A AT AT oA |, Ay 24+ €2)
(Ar12)y - AP i Az?
V. laxation of azimuth ic vector potential:
Al/2_ 40 y (AVZ_qV2  gV2_ g2 0 _404 40 ,
— = 3 10 — 10 + AOI > AOI | (d.l)
(Ar/2) A"\ .12 Az
A—AI/Z r ~Al/2 _‘Al/‘z AI/Z_A-I/Z oA _22_" I !
- = L { 40 A A |, Ao s Aoy d2)
(Ar/2) Ar ST i Az

. 1 (Ag-A A-A 140 -24+4,, |
=+ Cl;_ | Z0=A_ A |, 14m 2A01 ®
4mep” | Ar nn r.l(z r Az
Line integrations for entrained vacuum;:

Method 1: In case a void is newly formed at the Oth time level, find a mean rB

product over the area of each void: : . »
0 _ 0 _
¥ = [drdcrB / Jrez. / (g.1)

Reset B® = % in each void, and perform line integration of the electric field to

update the azimuthal magnetic flux density: S
: pl2 _ 7172 -1 _ £ 50 v
jsdrdzB =i jsdrdzr = §gz E°. | &2)

Use B' = B® + arkV?[r and B2 = (B + B') for points in the vacuum region.

o g e m s e s s oy
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Method 2: Perform line averaging of the azimuthal magnetic flux density around

each void:

0= §ager30/§a§e. | (1)

Reset B® = k%/r before proceeding with combined plasma-vac R-pass on B.

R- n azimuthal m i nsi

Donor cell differencing notation with angular braces ( ), is explained in Appendix 1.A4.

Method 1: Enforce Dirichlet conditions at all vacuum points, i.e. BY2 = x/2/r.
B2 -B° c2 nz%o(rlBll{,z -rBY2) 7,. o(rB”2 —-r4B 1/2)
Ar/2 - 47IAT2 nnr r.1/2

1/2 0 C - 0 0
02 71,0%301—(71,0%‘“*‘ Mro-y)B" +1,0.4 B0 _

Ar - AZ? Q.
u° ( B)O -u° ( B)O . A . A . A A A
203 V70} 204\ 0-4 | dorBros —tho1Broq | Bi0Brio —#10Br10

1/%1 12 12@2 12 241
c (Plo o ATS (Tgl"Tg-lJ Por” —Poi (T?O_T-OIO D

tr40(B)g0 ~¥r-40(B50

4ep'2| Ar Az Az Ar

Method 2: Perform combined plasma-vacuum R-pass on B:

Plasma: o
B2 g0 2 (my®mBle-rB?) n 0B =B
At/2 _’ 47zAr2 nn ) .12
1/ 2
tryo(Blyo ~tr0Blyg 2 n,ome (T,g1+ 7,0.4)B” + 1,1 By
Ar 3 2 TG
2 00 g ‘7:“ . Af .. 1.2)
204 \0f " 204\ 04 | drBroy —#ip1Bro1 | H0Bro—#10Brio |
1lAzz 1/2 113122 1/2 2
¢ _|Pio_—Pio 7'01-73-1 _ Por_~Po-i =T
4ep!/? Ar Az Az Ar
Vacuum:

B2_p 1 (n 12 _ g2 —rBllz —r. BY2 B, -2B° + BY, )
5 + 1.3)

(At/2)  Ar i T AZ?




zZ-componen ] n veloci
. , c 1(/)2_ r Buz | 0
4mep™” 2rAr-

. Z-pass on azimuthal magnetic flux density:

Method 1: Enforce Dirichlet conditions at all vacuum points, i.e. B' = k'/r.
Bl _Bllz CZ z-%o(rlBll(l)z - BI/Z) 7 _%O(TBII -r l 1/2) ]

Ar/2 - 47Ar? 2 .12
1/2

‘ (;2 7’,-0,12.3(1)1"(7’,0_%+71,-0.%),Bl7*'77r0.%3(1)-1 _

Ar . e , - AZ? k.1
ul (B)l —ut (B)l T A oA . a 1A
20517103 ™ "20-3\H0-4 | HoiBrog —do.1Bz04 + U0Bro—#10Br10

1/%2 12 12/9Z 112 24r
c_ | Pio —Pio {Tol 0-1 |_Poi_—Poi | T% -7%
"4epl’ - Ar L Az - “Az’ Ar -

":§O<B)ll ~uy, 50(3

Method 2: -Perform combined plasma-vacuum Z-pass on B:

Plasma: -
Bl _p\2 _ o2 "z%o(’lBll’z—rBllz)_ 172.%0(731/2- r_lB_lllg) )
At/2 47Ar? ‘N2 AT A
ul, (B2 _yl (B2 2 . 5l
ryolBlyo —trgo\Blyo n,o%Bol (M,04 +7yo.y) +7I,-o-.%301 _
Ar Tz . Az k.2)
ul (B)l _ul (B)l R A A A A o oA
20470}~ 7204\ 00- - Ui Byoy —itgaBroa | H10Brio —#a0Bri0 |
5 2% AT
¢ (ple®-pls (18 -1, _Pa -3 (=T )| -
4ep1/ Ar Az Az Ar
Vacuum: - S - : - : S
B-g2 _ 1 (nB*-r8? B2-r.B8)  B-28'+B, k3)
(Ar/2) AP\ np . Tan St AR .



Z- im i T
. AI_'AI/Z _ czn r All(l)z _Al/2 —Allz—A_lllg _ Al/2 Al/z .
Plasma: Atl2 4r Arz !1/2 ‘ r.in 2Ar
cin Ay —24'+ AL, ! Ad1— Ada
4z Az? T 2Az
U2 U2 412 4102
Vacuum Al Al/'2 . A -A A48, A(1,1—2A: +A4
(Ar/2) Ar T2 T2 Az
Vacuum relaxation on azimuthal magnetic vector potential:
Al/Z__AO _or A1/2 AI/Z Al/z AI/Z A(())l ZAO +A0-l
(At12) A np rin
Al Al2 oy All(l’z__ A2 A1/2 A1/2 A},l-z Al +AL
(At/2) AP np A

r- and z-components of magnetic flux

from curl of magnetic v

gl = _ A=Al B = A=A
r 2 £4
2rAz 2rAr
zim 1 n vel
o by € [ 1 [Ao-al Al-Aly) 145-24'+4),
Y dmep” (AP nipp T2 r Az?
1 1 .i relativi revent runaway electron veloci

Assume J = pe(z?,--yfiie). Then 724, = & - ——Vx

Then '

U,

47rf:p
o = Yeue = Ye ( ?/73') = 62(73—73

= Ye

Update the electric field:

1 pioTio—phoT} 1 : 1
El = - 1ﬂlo 10—P100010 ‘;(“1321"431) + ﬂrepl(u}r-(ﬁ) u’l')

Plasma:

ep - 24Ar
Bl o= _%(uggl-u,BI) + 7ep (" ‘(78) )

B

)-

= &. To get 72, use

45

(m.1)

(m.2)

@.1)

. @2

®.1,2)

@

(r.1)
x.2)

(s.1)

(s.2)
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1ol 1 ol o _
1 _ __1 poTor—po1To-1 _ 1( 151" 1p1 a1 2\ 1
E, = Cyvammn c(u,.B u B,) + nzepa uzz - (yf) U, (s.3)
1 ploThy-ploThe 1p1 ‘
Vacuum: E!l= - - —(u'Bl - B1 s.4
r epc - Z_AT’_‘ c( uz ) ( )
1091 1p1
E' = —=(ulB!-ulB : _ 5.5
t= -2(uE-wE) . i | )
: Pl 1Rl T Tt N : ‘
1 _ __1 poiTor—poaTor _ 1p1p1_1p1 . ~
El = - e c(u,B u'B}) (s.6)
Alternative vacuum for ic field: N 7

For i € {r,6}:

12 _ 50 V2 _pll2 g2 _ 0 pli2 )y
E"-E _ 1 InEyg-rE " rET-TaEe | Efi —2E) + B} (1.88t.1)
(a1/2); Ar? nn - -2 A2
1_ g2 V2 pli2 2 /2
E-E~ _ 1 |nkag—rE " 1B 1B Ejo; —2E} +Ejo_y (1.881.2)
(ay2), . A ne o -1/2 . AZ? : ‘ ‘

ERE 1 —2EX+E%. ,
fes = az(elEi - Ei’z)-f—uz(?z”"—Eiﬁo)) » Buz2B 4B (g83)

_(ap), et &’ :
E-E? 1 ruaEL2 E1/2 (B2 - E2 . Bou-2E +Ej, (1.88t.4)
@12) rarZ VB = Azt
z

Boundary considerations
When Equatlons 1. 88t.1-t.4 are used to find the electric fields in the extrained

vacuum region, boundary condmons are needed at the maxnnum rad1us, or wall radlus,

. For boundary conditions on E, and E,, it makes sense to use Neumann boundary
cenditions E. o= ryE of/r1 and Ego= 1 Eg;0/ri. These bouhdary conditions are
consistent with an inverse radial dependence of E, and E,. An idverse radial
dependence of E,- could mock up the case of a cylindrical line charge density.completely
within the radius r,,, whereas an inverse 'radial'depe{idedce of E, could mock up a
cylindrically symmetric time-varying axial magneﬁc ﬂux completely within the radius

r,. For a boundary condition on E,, it makes sense to use the Neumann boundary



47

condition E,, = E,, ;. Such a boundary condition would be consistent with a uniform

axial electric field.

For simulations that allow axial magnetic flux to leave the spatial region, an

external Neumann radial boundary condition on A, is useful. This Neumann condition
amounts to the assignment A,y =A_, in the above equations for advancement of A,.

Remember that 74, — A in the above finite-difference equations. It also makes sense to

assume Ay, = A_j, for purposes of calculating u,,.

SN
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Appendix 1.A4
Finite difference equations used for the ion fluid -

For each advected quantity g, donor cell differencing is specified by the notation

in Equations 1.89 and 1.90 [Hirt 1968].

1 3 :
5 ruyg) = (” 12845172, 0(4)1/2 0~ F-1724r1/2,089).1/2 o) - (1.89)
( ,4) = (“zO 112(‘1)0 172 ~ %20, l/2<Q>o 1/2) (1.90)

The quantities in angular brackets depend on the advection velocity components.

_ [@0, i Urizi2,020 .
(4)i+1/2,o = {q: w00 I u:::_l 120 <0 for i=-1,0. (1.91)

do,j» if U0, 44172 20 . :
(Q)o,j 2= {‘Io j+1, if uzzOJJ+1/2 <o forj=-10. (1.92)

Quantities with half-integral subscripts are linearly interpolated: for example, :

Urt12,0 —‘%(urﬂ 0 F4:00)> Upop172 = =4(u 20,41 F 420,0)-
Inside the plasma, away from boundaries, the ion fluid advance is performed with

Equations 1.93-1.98.

1
At —'(T llzur1/2,0(p)1/2,o—r-llzur-IIZ,O(p)_llz,o) + '
pr=p- Z T , (1.93)

21 1
E(uzo,IIZ (P)o,uz —Uz0,-1/2 (P)o,-llz)

1
TAr (’uzurl/z 0 {Frhuzo = urzttraizo {frkare °) ¥

frll2= fr-l/2 - Az I +
E(ur 0,1/2 (f r)0,1/2 = U0,-1/2 (f 7)0,-112) (1‘94)

A=l - (ProTi0—P1,0T-10) + g;n-(PEr +-(foB~f zBG)) ’
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1
" U E(f 12871/2,0 {fa), 72,0~ T-1/2%r-112,0 (7o), ,2,0) +
fo'“=fg'*— A ‘ -

1
X’z(“zo,uz (r 9)0,1 12~ Yz0,172 9)0,-1 ,2) (1.95)
o . gAt 1
At'f%lfg' + gm—(PEg '*';(szr -frpz)) s

. 1 X
AT (Tllzl‘rllz,o (f2)iy.0 = T1r28r102,0 {F2). 40 o) +

V2o ¢ U2 _ | TAT ' ' _

f°=r .

1
'A?("zo,uz (F2dore = 420172 {F2)o -1/"2) ) (1.96)
At gAt
2mAz(Pm 0,1 = Po-170, 1) + -;;-(PE += (frBe feBr))

- (
Tiou T —~T.1/oU,. T ) +
Al TAr 172 r1/2,0( )1/2,0 1/2 rl/2,0( )-1/2,0

V2 _ p_ AL +
21 1
’Zz'("zo,llz (Tho,1/2 = 20,172 (T)o,-uz) (1.97)
AT( 1 1.
T(‘;A—r (f 1/2%r1/2,0 T -;/2ur-1/2,o)+E(uzo,1/2 —lfzo,-llz)) >

i‘-l/2 - fl/Z/pIIZ . ‘ (1.98)

In Egs. 1.93-1.98, p is the ion fluid density, & is the ion fluid drift velocity, f = pi is
the ion fluid flux density, and T is the ion fluid energy per particle. The density advance
from the 0 to the 1/2 time level is first-order accurate in time. The flux advance from the
-1/2 to thé 1/2 time level is second-order accurate in time, disregarding lower order
accuracy of the density and velocity at the central O time level. Central differencing is
used for the pressure contribution, although smoother differencing might be used.

Once the density and flux are determined at'the 1/2 time level, the density is

advanced to the 1 time level to first-order accuracy in At:

1 172 1/2
. At rAr (l’l/z },{;22 0<p)112 o r-l/Zur-ll?. 0(P> 172 0)
g , (1.99)

2 p) 172
( :}_{)21/2(‘))0 172~ ;.{)2 1/2(P)o 1/2)
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With minor modifications, equations used to advance f from the -1/2 to the 1/2 time
level are used to advance f from the 1/2“to 1 time level ﬁm time step At/2. In the latter
case, quantities on the right-hand side are at the 1/2 time level, except for the electric and |
magnetic fields, which remain at the 0 time level. Fitialiy, it = F1/p', and the fluid
velocity #* and density p' are used in the electron-field advance. Both #' and p! are
first order in the time step, so that the new fields E' and .B' are first-order accurate in

time as well. Of course, the above equatlons are altered at the boundanes r=0 and

r=r,,, where r,, is the outer wall radius. At r =0 there can be no radial or azimuthal

flux by symmetry: f, = f, =0. The remaining flux-conservative equations used on axis

are: .
At 4url/2,0<p)1/2 0 Uz0,1/ 2(9)0,1 12~ U20,-1/2 (p)O,-l 2
pr=p- = + , (1.100)
2 Ar Az ’ .
PRI A,[4"r1/2’0 (F o Loz (Fedosrn —%:0-112 (fz)o,-IIZ}
z “Jz - -
ar & (1.101)
At At 1
T (Po,nTo,l -Po,-lTo,-l) + 'q-n'l'(PEz +;(f rBg—f BBr)) ,

' 41t,1/2.o(T) ' ‘ ' o
1 At 172,00 )1/2.0 1
2= - —2{ — F E(“zo,llz‘T)o,1/z‘uzO,-IIZ(T)o,-l/z) } +

A;T( 4o

(1.102)

Ar 27z (uzo,llz - uzO,-lIZ) ) .

At the rigid wall, r=r,, there is no net radial flux: f, =0. The remaining flux-

conservative equations are:

p1,2= _ ét_ "2T-1/2ur-1/2,o(l?).1/2.o + Uz 0,1/2(P)0,1,2—uz o,-uz(P)o,.l/z (1.103)
P 2 r_1/4Ar S Az ’ )
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—21.1/24r-1/2,0 (f 9).1/2,0

-+

fo2= fil2- At 1 Ty4Ar +
E(u20,1/2 (f 8)0,1/2 —Uz0,-1/2 (f 0)0,_1/2) (1.104)
ﬂ( Eg+L(f,B.— f.B ) |
m p 9+c(fz r ff Z) ’
~271728r112,0 {f2).112.0 .
le/2= fZ'IIZ___ At . r.y/4Ar _
E("zo,llz (fz)0,1/2 ~Us0.-1/2 <fz)0,-l/2) (1.105)
At Ar 1
e (pO,lTO,l —Po,-lTo,-l) + "%‘(PEZ +‘E(f +Bo—f BBr)) .
V2 _ o _é£ "2f-1/2ur-1/2,o(T).1/2,o 1 _
m=T-3 ( rarahr + Az(“zO.l/Z(T)o,uz “zO,-l/Z(T)o,-l/z) +
(1.106)

AIT( =21_1/2Ur1/2,0

1
+ = Uz, .
3 T4 2Az (“zo,llz 420,1/2) )

R A
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Appendix 1.A5 L
 Exact evolutidp of the angular magnetic vector potential
over the whole simulation region

i

As in Figure 1.4, label the points in R that lic along §; with index i & [1, M].
Label the points in R, that lie along S, with index j € [I, N]. Assume that line
segments connecting various. cell centers define the stairstep boundary ;. The angular
component of the magnetic vector potential, ¢, (notation is from subsection 1.2.3) is then
_sought at cell corner pointsin R= R, UR,. Any cell corner necessarily "lies along" S, if
'it terminates a cell edge that is cut by a boundary line segment of § . Othér points
should be kept distinct from these and need not beylabeled. 7
Let ¢;; be the value at point i =1 of the solutionto X,¢ =0 in R, with the given
boundary conditions along S and with the boundary conditions ¢;.; =1 and ¢ ;g =0 for
points in R, along S;. There will be MN such values. Let c;, be the value at point i=1
of the solution to X2¢ =0 in R, with the given boundary conditions along S and with the
boundary conditions ¢; =0 V j. There will be M of these latter values. '
It is expected that whatever the time advanced ¢ inregion R;, it is constrained to
obey M equations, Equations 1.107.
o =cp + ic,-jcpj V iell, M] (1.107)
j=1
If there are P points in R, discretization of ¢ = X,¢+ f, will yield P linear equations
in P+M unknowns, including the P unknowns in R, and the unknowns

¢; V ie[l, M]. However, the latter M unknowns can be quickly eliminated using Egs.



53

1.107. Solving the resultant P equations in P unknowns would complete the time
advance in region R,. Values in region R, would then be determined by a Dirichlet

problem in region R,, or by a linear combination of R, solutions from which the c; were

determined.

The amount of work necessarj for this "exact" advancement is considerable.
Unfortunately, the ¢; would require M (N +1) distinct elliptic solutions, translating to the
solution of M(N +1) linear systems all having the same coefficient matrix, but each with
a different right-hand side. This might make the method useful from a research
perspective, but not from a practical viewpoint -- there are too many arithmetic operations
associated with the M(N +1) right-hand sides, especially considering that the problem

needs solving over 1000 times in a reasonable simulation.
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Chapter 2
Field Simulation Results: Benchmarks
and Observatlons

The purpose of this chapter is to present results that can be used to guage the
accuracy and. performance of the screw pinch simulation algonthm The first section, 2.1,
introduces ideal linear MHD theory pertaining to two-dimensional (2-d) stability of one-
dimensional (1-d) radial screw pinch equilibria. The MHD theory is background material
for the equilibrium studies presented; in Section 2.2, in which screw pinch simulations
with fluid ions are shown to agree with the theory in a few important limits. The third
section, 2.3, presents simulations in which the plasma is far from equilibrium, driven
strongly by axial currents and azimuthal electric fields. These results are briefly
compared with similar simulations [Hewett 1980; Sgro and Nielson 1976], and are
representative of the most significant applications of the algorithm. The last section, 2.4,
compares new and old update methods for‘the angular magnetic field B, in entrained
vacuum voids;. differences between the updates are shown to significantly affect the
initial compression of a dynamic Z-pinch.

To the computational plasma pinch community, more comparisons between
computer simulations and other independent analyses are better. Mistakes are caught
earlier and better understanding of the plasmas is achieved. So, to avoid syntactical and
logical errors in the pinch simulation algorithm, simple comparisons with previous work
were sought. It was determined that the pinch simulation should reproduce results of

analytic stability theory in the proper limits. One early stability analysis was a candidate
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for comparison with the axisymmetric pinch simulation [Tayler 1957b]; it involves
compressible plasmas with distributed current profiles. In the analysis, the physical

variables of the plasma equilibrium have the values

p=poll=(r/nY™21,  p=pll=(r/r)™?),  By=By(r/r)™,
‘ 2

5, =+ DB By n+2

47r, 4z 2n+2

ro)n, (7'1 /ro)2n+2 - po.

The conducting plasma of maximum radius r, is surrounded by a medium of density

Py = Poll—(ry / 7)***?1, pressure p, = poll—(r, / 7)*"*?], and magnetic field
By = Byyry / r. Unfortunately, the current density J, is discontinuous at r,, and this

means that B, has a discontinuous derivative at r,. Such a discontinuity would be a
significant source of error in the finite-difference based simulation, making it more
difficult to compare the simulation with 'f‘aylér's theory. For this reason, Tayler's results
were not pfactical for cdmparison purposeé. '

Instead, plasma equilibria »with smooth physical variables were sought as a ‘basis
of comparison. The natural stabﬂity theory for such equilibria is the ideal MHD normal
mode analysis of a screw pinch, first presented by Hain and Liist [1958]. This
formulation, which is detailed in Section 2.1, leads to simple numeriéal analysis of any
screw pinch equilibriu;n, allbwing accurate study of diffuse equilibria such as Bennett
equﬂibria and reverse-ﬁeld pinch equiliﬁria. It can be used to study discontinuous
equilibria such at the Tayler equilibria, too, but discontinuities require many more finite-
difference points for adequate resolution. Once implemented numerically, the study of a
given equilibrium is a matter of specification of the proper input parameters; no tedious

algebraic manipulations are necessary.

o . - . P .= o



62

" The comparison- of simulations and ‘stability theory for Bennett equilibria
demonstrated that neglect of the Hall térm and diagmagnetic drift terms in the general
Ohm's law was appropriate for a few fastest-growing instability e-folding times. Thisisa
comforting result of Section 2.2. These terms are expected to be ignorable in most
stability analyses, even ﬂ;ough the magqitudeé of the terms can be consideral;le.

Other benchmarks‘ of the pinch simulation dgoﬂﬁﬁ, ;such as benchmarks for the
compressional stage of a Z-pinch are not as straightforward as the stability comparisons.
About the best that can be done is to compare independent simulation algéﬁthms or to
compare simulation algorithms to experiment. In Section 2.3, 1-d simulations‘with the
algorithm of this dissertation are compared with previous 1-d si;nuléﬁons of theta- and Z-
pinches. Agreement between the present and past aigbrithms increases confidence in the
simﬂaﬁon endeavor. Naturally, agreement*befween two independent simulations does

not guarantee that both are correct, even in a narrow range of expected validity.
2.1 Stability analysis of screw pinch MHD equilibria

2.1.1 Sci'éw pinch equilibrium equation

One-dimensional radial screw pin.chv equﬁibﬁa exhibit a force balance between a
pressure profile p(r)’ and a magnetic ﬂqx density »pleﬁlC E(f) =6 By(r)+2Z B,(r)
obeying Eq. 2.1. MKS units are used throughoﬁt Section 2.1. o

2 2 2
c 4f  BtB ) By . @.1)
‘ dar 2, Hor

All axial and azimuthal derivatives are zero. There are an infinite-number of 'sets of

screw pinch profiles, { p(r), By(r), and B,(r)}, satisfying Eq. 2.1; ‘some are ideal MHD
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stable and others are not. The simulated versus theoretical stability of a few sets of
profiles can be used to benchmark the screw pinch algorithm: Fortunately, the behavior
of each set of profiles can be predicted by numerical means from linear MHD theory,
whicﬁ is indepent of the screw pinch algorithm. The linear normal mode formulation of
ideal MHD theory, presented in Section 2.1.2, is the theory that can predict the behavior.
For comparing ideal linear MHD theory to the time-dependent pinch simulation
algorithm the equilibrium profiles chosen for this dissertation are all Bennett profiles
discussed in Section 21.2.1. In 1-d simulation checks the Bennett profiles are perturbed by
a radially dependent ion drift velocity: theoretically, the plasma exhibits stable oscillation
at a predictable frequency. For 2-d simulation checks in this dissertation, sausage
instabilities of 1-d Bennett equilibria are seeded with 2-d perturbations in ion drift
velocity. The sausage instabi]itiesl lead to 2-d r- and z- dependence of all of the field
quantities, and are idéally suited to test the full machinery of the algorithm in the linear
limit. When the 1- and 2-d simulations were executed, they showed good agreement with

ideal linear MHD theory.

2.1.2 Normal mode formulation

When a MHD equilibrium is unstable, certain small-amplitude spatial modes will
grow exponentially in time. Before the modes grow too large, the rate of growth is
predictable by linear MHD theory. When a MHD equilibrium is stable, all small-
amplitude spatial modes added to the equilibrium will oscillate in time at a predictable
frequency.

Quantitative theoretical prediction of instability growth rates and stable oscillation

frequencies requires numerical solution of the eigenvalue problem of the normal-mode
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formulation of linearized ideal MHD stability theory. In ideal MHD, the plasma

dynamics are dictated by the following single-fluid equations (MKS units):

dp|3k = pV-3, /ot = jpv 5, (@2ab)
p(ov/3), = TxB-V.p, p(]3), = -b-Fp, Q2,0
E+9xB =0, dB/dt = —VxE, (2.2e,0)
VxB = pJ, _‘ Vi B=0 @22gh)

The mass density is p, while ¥ is the fluid mass drift velocity, p is the fluid pressure, J
is the electric current density, E is the electric field, B is the magnetic flux density with
unit vector .5, v is the ratio of specific heats, and 1, is the permeability of free space.
The operator V, is the gradient operator in the plane perpendicular to B and-b. Because
p. =p; =p, while the electron mass is much smaller than the ion mass, the single-fluid
mass drift velocity ¥ is essentially the ion mass drift velocity ;. -

Equation 2.2a expresses mass conservation. Equation 2.2b is a simplified form of
energy conservation. Equations 2.2c, 2.2d, and 2.2e are reexpressions of the electron and
ion momentum conservation equations. Equations 2.2f and 2.2g are Faraday's law and
Ampere's law without displacement current, respectively. Equation 2.2h is implied by
Eq. 2.2f, but is explicitly included-so as not to be forgotten in equilibrium, when time
‘derivatives are zero. A

‘The type of plasma equilibria used to compare stability theory and simulation are
static ideal MHD equilibria. ' Equilibria are obtained from Eqgs. 2.2 by zeroing time
derivatives. Static equilibrium implies %, =0. Relations between equilibrium quantities
become J, X By = Vpy, poJo =V x By, and V- B, =0, where the subscripted 0 indicates

an equilibrium. The equations Jo % By = Vp, and p,J, =V x B, can be combined to

yield Eq. 2.1.



65

The stability theory begins with the assumption that all extrinsic quantities g(7,?)

of the plasma have a small harmonic variation in addition to the equilibrium values:
g(F.t) = go(F) + g (Fe™™™. 23)

The quantities g;(¥) are then phasors. The remainder of this section is a borrowed

presentation [Freidberg 1987] of the normal mode theory first laid out in the late 1950s
[Hain and Liist 1958]. In the formulation, the phasor drift velocity is set equal to the

derivative of a phasor displacement vector E(F): -

, : d /= =
= - Y - _ —iax
Ve = E” (§e ’ ) | zwée . 2.4
The problem is then reduced to an eigenvalue equation for the phasor displacement
vector, Eq. 2.8. To arrive at the éigenvalue equation, conservation of mass, conservation
of energy, and Faraday's Law -yield expressions for the phasor mass density p,, phasor

pressure p;, and phasor magnetic flux density Pl in terms of E 7):

Cop=-Vpd), | @.5)
p = _E'Vpo - WOV°E’ ' (2.6)
B = Vx(ExB,). @7

Then conservation of momentum gives the linear eigenvalue equation obeyed by E(F):

- —a’pe€ = F(&), eX)
F¢&) = ﬁ-—[(ffxﬁoxéo +(VxB)xB| + V& -Vp+mV-8).  9)
0 ' ; o : .
The quantity F (E) is a phasor force operator acting on E(F)_ The goal is to determine

the eigenvectors f and associated eigenvalues —@® of F. If o is purely imaginary,
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then the mode associated with & is exponentially unstable. If @ is purely fea], then the
mode associated with & is exponentially stable, i.e. oscillatory about the equilibrium
quantities g,(7) with radian frequency @. ’

As it stands, Eq. 2.8 can be difficult to solve bécause the phasor force operator
mixes up the components of E . In order to uncouple the compoﬁents of E in the general

screw pinch analysis, it is convenient to choose orthogonal basis vectors 7, 7], and b. so

that ’ .
E = P&+ g, +DE, : (2.10)
B = 7B, +7B,+bB, - @1
b = (6By, +32B,,)! By, ; : 2.12)
il = (6By, ~2Boo) ! By. | o eB

Obviously, 7 is the unit radius vector, b is the 'unit vector in the direction of the
equilibrium magnetic flux density, and 7 is a unit vector perpendicular to both 7 and b.
For the generafl screw pinch, equilibrium quantities are a function of radius only,

qo(F) = qo(r) , and it is convenient to assume that the phasors have harmonic dependence

in the @- and z-coordinates, 41(F) — ql(r)ei(m”+’“)

, with k real and m an integer. In
this case, the magnetic flux density and pressure phésors can be written in terms of the

components of the phasor displacement. This is achieved by substitutiﬁg Egs.2.10-2.13
into B, =V x(&xB,). S

= iFE,, » " (2.14)

B,
= \ By, dB,, rB,, 3 (B, '
B. = iF + 08 0z 770z ( 09) , 2.15
n = Foy 5’[ B, or By or\ r 215)

s B d &, 9 2B |
B , iGE, r‘ar(rér)+ Bo(llo ot | (2.16)



67

p = 4;% - ,po[ (rg) (G&,,+F§,,)].‘ 2.17)
F = kBy, + mBogfr, | B 2.18)
G = mB,,[r — kB,,. (2.19

The quantity 7 is the ratio of specific heats, and the constant i is the square root of -1.

Everything is determined once Eq. 2.20 for the phasor displacement is solved.

d

ar[ —-(r%, )] - Crg, = 0. (2.20)

Equation 2.20 is a homogeneous Sturm-Liouville equation. The coefficients are

Po(VZ+V2) (0~ 02) (@ — 0f)

A(r:o) = e oo 2.21)
2 2 2y72 2 _ 2
Comay = L@ =00 | HVaB, (0 - )
r Uor' (@ —cof)(a) - o)
| (2.22)
.2 Kl Bo,, 5, _ 2kG(V2 - VE)(0* - 0})
arlpr® |7 (@ -oie’-a?) ||

When the problem is couched in térms of the homoge;leous Sturm-Liouville eqpation, the
characteristic frequency @ enters as an adjustible parameter in a self-adjoint operator;
therefore Equation 2.20 is not itself a standard eigevalue problem. For each choice of @,
the coefficients A and C are determined by the equilibriuin profiles, so that numerical
solution of the }equati'on under the constraint of boundary conditions can proceed by
shooting techniques. The values of @ for which Eq. 2.20 is solvable are then the desired
eigenvalues of Eq. 2.8. The newly defined quantities in Egs. 2.21 and 2.22 are all simple
functions of the equilibrium profiles: |
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2 _ P 2 _ Vio? 2 _ Vil
wa - ’ wh 372 2 1/2 2’ ‘wg - 2 9. i
HoPo Ve+V, S ' _
2, 2 m? 2 2
2 _Vi+Val.2 25112 4V;0
5, = k +— 1£(1- o with o = 2 ,
S 2 ( )( ( ) ) Ny (k2+m2 r)(Vs2+V3)2

2

B
V2= polpy VE= .
0T HoPo

For wf- use the sum, and for wf use the difference in the éorresponding a)}’s formula.

In the co%s fonnula; o mus'i be in the range 0< @ <1. Once the radial displacement

phasor is found, the other components of the displacement phasor are given by

i F f 2kGBy,E,
W= pBr@-iXe-aD| " a,(’§r) A ] 2.23)
£, = - G(wz—wz)(’}’l{opq+Bg)-g;(r§,). 026

HopoByr(@” = 0p)@* = 07)| 4 2kBEByo(0® - 02)E,

2.1.3 Numerical solution of the normal mode eigenequation
The axial bounﬂary condition‘ fo‘r solution of Eq. 2.20 is &.(r=0)=0. For
purposes of benchmarking the screw pinch algorithm, the boundary condition & (r,,)=0
at the wall radius r,, is convéhiént. This corresponds to a perfectly reflecting immovable
wall and is simple to implemerit“ in the pinch simulation algorithm. | | _
| To soive the eigenmode Eq 220, a simple and fobust implicit matrix shooting
technique can be used. In shootmg techmques, the equat10n is first finite-differenced by

N+1 points r; = zAr 0< <i i< N+1, evenly d1str1buted over the interval 0<r< r,, SO

that Ar=r,/N. Three-point central d1fferenc1ng is used for evaluation of the second

derivative, i.e.
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_Q_[Aéi:l = Ai+l/2(qi+l —qi) _2 &-I/Z(Qi _qi-l) , ISiS N,‘ (2.25)
orl orj; Ar : . ,

where A, =2A;, and Ay = (4; +A;,)/2 for 2<i< N. Note that the derivative is left

unexpanded for purposes of finite differencing. The resultant difference formula in Eq.
é.ZS then has a conservative form that is important to use in the simulation [Lindemuth
1975]. The result is a uiﬂiagphd’ system of equations ;& +a€,;+bE .y = T
1<i<N. This set of equations needs two additional independent and consistent
constraints to have a solution, and the constraints must be consistent with 0.

‘Only when éoefﬁcienté A and C are of the same sign everywhere is the problem
an elliptic boundary value problem w1th a solutioxi meeting the boﬁﬁdary conditions for
arbitrary @. This does not give discrete eigenmodes amenable to benchmarking.
- Discrete eigenmodes only arise when A and C are of opposite sign over a sufficiently
large radial interval. In this case the problem is not elliptic, and a shooting technique is
necessary to find the eigenvalue @ that yields one of the desired boundary conditions,
£ (r,) =0, assuming the other, £,(r=0)=0. o

Dirichlet conditions on the first two radial points are independent constraints on
the tridiagonal system that are always consistent with a choice of @. These conditions,
€= 5,(; =0)=0 and &,=&.(r= Ar)= £,, reduce the problem to an initial value
faroblem amenable to‘shhooting. The following tw‘,v0 subsections discuss ways in which the

shooting technique can be implémented. |

Forward shooting techniques
There are many methods that can be used in an attempt to solve the eigenequation

by forward shooting. By forward shooting, it is meant that an unknown is determined by
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radial grid coefficients up to the point at which the unknown is bemg updated One

simple forward shooting techmque marches forward w1th the ass1gnment
$in= (i=a&i=c&s )b, i =2, ,N+l. . - - -(226)

Often, methods of hlgher order accuracy in gnd spacmg are used such as Runge-Kutta
methods. Unfortunately, the Runge-Kutta methods often fail to solve the problem
Regions where AC> 0 cause problems because the forward techmques p1ck up from

numencal error a growing solutlon that causes computatlonal overflow Probably any

commonly used forward solver based on successive solutlon of f (5,0, R ...,1,‘,,,,1)
for §,i+1 can fail by such cornputatlonal overﬂow. Note that the above scheme can be

AN

written
f(&0:6ts -osriv) = 1i =B —a6i—ci = 00 - . - (2.27)

Such schemes do not take full advantage of all information in the coefficients of the
sv = e .
tridiagonal system. They do not "look ahead" far enough.

“mplicit matrix shooting technique
As suggested by a previous eigenmode analysis tFreidberg and Hewett 1981], a
more "forward-looking" shooting technique was successfully attempted. The method

first gathers information from coefficients "ahead“ on the grid; this is namrally achieved

with a backward elimination :
ey =cy/ay, by = by/ay, ™ = Tylay, (2.28a,b,c)
. E N R S i s U Y L R (2.28d.e,0)
a; - bc;yy a;— b,y a; —bi;
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Up to this point, none of the unknowns are determined, but forward information has been
incorporated in the primed coefficients. With a simple forward elimination using the

primed coefficients, the solution is completed:

Ens = (n-E&)/b. (2.292)
& = ri—cliy by fori=2, .., N. (2.29b)

Solution by this technique gives a nor;triyial answer for any ®> with less overflow
problems. Furthermore, when shooting for £y,; =0 while adjusting’ ®* no special
choice for the value of &, is necessary; the soul effect of & is to scale the eigenfunction
without affecting the eigenvalué. When shooting for a fixed &y,; #0, the eigenvalue
should depend on &;: the eigenfunction scales as &, only if &y.,/&, is somehow fixed.
In this technique, there is not a single unknown that is determined without

incorporation of information from all of the coefficients and boundary constraints. Each

unknown &, is ultimately determined by an equation of the form

F&isenes Erists Erivzs oo Evr) = 0. (2.30)

The semicolon indicates a weak implicit dependence of the &,.,; on &2, .., Evn

through the primed coefficients from the backward elimination. This additional
dependence stabilizes the technique for Eq. 2.20.

2.2 Equilibrium stability test cases
Agreement between a pinch shnﬂaﬁon with zero resistivity 77 =0 and ideal linear
MHD theory might at first be unexpected. This is because the pinch simulation is based

on a nonideal MHD fluid theory for the electrons, governed by an Ohm's law that retains
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the Hall term, 7% Bjcep, and the electron pressure term or diamagnetic drift term,
V(pT.)/ep. Rewriting Eq.1.1, Ohm's law for the pinch simulation is

E+ G;xBle = 7T+ (Tx E/c;V(pTe))/ep (Gaussian units).
In pinch equilibra with #; =¥ =0, it is easy to imagine cases for which E#0. The
nonzero electric field is necessary to balance the ion pressure gradient force. Therefore,
the Hall term and electron pressure terms are quite significant. On the other hand, Ohm's
law for ideal MHD is E+#; X Bfc =0, which totally neglects the Hall and electron
pressure contributions! So how can i&eal MHD theory and ﬁe pinch simulatiqn agree?

Agreement can be attained between ideal MHD stability theory and an 7=0
simulation as long as (J X E/c;V(pT,))/ep e Vg for some scalar function g. When
Ohm's law is substituted into' Faraday's law, the Hall and diagmagnetic drift terms can
then be neglected because VxVg=0. This is indeed what happeris for T,_; =T; and
; = 0 [Freidberg 1987]: B T

JxB-Vp. = lV(_L_E) (MKS units).
ep 2¢ \y-1p

2.2.1. One-dimensional simulations initialized with perturbed stable
Bennett profiles -

The first simulations to be compared with ideal linear MHD theory were 1-d. The
simulations incorgorate all three component;%: of drift velocity (1d3v) and are used to
check the radiaﬂy dependent part of the pinch algorithm. In each simulation, a small
radially dependent velocity perturbatiorf ié added to an equilibrium Bennett profile. The
perturbation was determined from the normal mode eigenequation, Eq. 2.20.

Perturbations are proportional to a single stable eigenmode of the profile with infinite
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wavelength in the axial direction, (k =0). Forthe k=0 case, only stable radial modes
exist in the linear ideal MHD approximation. These simulations exhibit indisputable
agreement with linear MHD theory. The Bennett profiles are of the form of Egs. 2.31-
2.33. |

Moly 1 ’ |
B, = —— , 231
o 27 r2+r§ o @3D)
I 2 ;
=X _n__- 2.32
:T x4t 232)
bl e, : 2.33)

When a uniform Bz is added to the problem, these profiles of By, J,, and p maintain
equilil:;rium, but the characteristic frequencies of Eq. 2.8 are altered. From the profiles in
Egs. 2.31 - 2.33, four test cases were devised by variation of the ion and electron
temperature and the magnitude of a uniform B, .

For all four cases, the pressure profile is factored into a density profile and a
temperature profile, p = pkpT. Ignoring the constant pressure contribution p,, =p_.kzT,,
the density and temperature have the same spatial shape, as in Eq. 2.34. In all of the

simulations presented in this section p,, =0.

2 . 2
p= IioIo ( 1 ) + peoTO and T = TOrO ' (234)

872kpT, er +r2 T ' rr+ry’

~ The static Bennett equilibria initialized in the pinch simulations are not free of an

electric field unless the ion temperature is zero, T; =0. To see this, observe that the
initial electric field from Eq. 1.1 is E, = (-Vp,g+JyxBy)/ep,. The mass drift

velocity is initially zero, %, =0, so that J, = J,.
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'parameter’ value
Tw | 05cm
To w3
Iy 200kA
k . 0

radial grid pts. 121

Table 2.1. Equilibrium Bennett profile parameters used in

initialization of the one-dimensional simulations.

From the equilibrium eguation :70 x By = Vp;_, it foﬂoWs &at tﬁg initial electric field is
Zero 1f all of the plasmé pressu;e;is carried by the electron fluid so that VPeO =Vpo»
implying T, = O; The analysis leading to the e:igeﬁequaﬁbr}, Eq. 2.20, is not festricfed to
_ the electric field-free case, and is valid as long as the pressure p is the total pressure of
electrons and ions. Since quasineutral plasmas are considered ixere, this m_éans that the
temperature T used in the eigenmode analysis must be the' sum of fhe electron fluid
temperature 7, and ion fluid temperature T,-.‘ | o |

Simulation results of the four test cases are placed in Table 2.2. The oscillation
frequencies  in the simulations are read directly from the plots of ‘magnetic field energy
such as in Figures 2.3 and 2.4. That the magnetic field energy is the appropriate
diagnostic for the oscillation frequency is shown by Eq. 2.35 below. The distribution of
temperature among the ions and electrons does not effect the oscillation fréqﬁency in the
pinch simulations. This is precyiict&ed— by linear MHD theory (Compare the first two cases
in Table 2.2). For all four cases in Table 2.2 simulation and theory agree within 5%.
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proﬁlé (B,=0). Asa pérturbation, the fluid ions are given a small outward drift
vélocitf proportional to £,. The shape of &, is independent of temperature T, and the

distribution of T, between ions and electrons.
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temperatures Bzy (Tesla) 7 Qy, (rad/s) | D (rad/s)
To=2T0=2T;p=50eV | ¢ 6.59%7 6.3¢7
To = Typ = 50¢V, Tpp =0 0 6.59%7 6367
Tp = 2T, = 2T;o = 100eV 0 | 9327 9.0¢7
To=2Tp =2Tjp=50¢V | 100 890e7 9.0e7

Table 2.2. Perturbed Bennett profile oscillation frequencies: @y, from linear ideal

MHD theory and @,;,, from the one-dimensional screw pinch simulation.

In Figures 2.3 and 2.4 below,)the oscillation frequency of the electic field energy
is twice that of the magnetic field energy. This is not surprising after analysis of the field
energy contributions. Assuming small effects from nonlinearities, the magnetic field

energy should have the form in Eq. 2.35.

IjB = -i-jdzdr r(Bgo + Bg; Sm(mt))2

R (2.35)
= Hdzdr r(B3o +2BgoBay sin(ex) + By sin® (a1)) .
R

Since by constfuction the equilibrium magn:etic field is much larger than the phasor
perturbation, By;(r)>> Byi(r), the phasor component of the magnetic field energy
should have a dominant contribution at the eigenmode frequency @, which is thought to
be the case in Figures 2.3 and 2.4. -

On the other hand, the freqﬁency of ;ﬁe dominant contribpﬁon in the electric field
energy is difficult to discern because there are more tenﬂs through which the phasor

perturbations enter. To investigate this, the electric field can be expressed as the sum of

electrostatic and Hall contributions, E = Ea+Eéau, where. E,=-V(oT,)/ep and
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Eyy=-ii,xBfc. Then the electric field energy Uy can be written

UE = UE,es + UE,cross + UE,HaII’ where

= IdzdrrEi = Z!‘—gjdzdrrﬁzpe

T N 230
= ﬁ;o-jdzdr r(V Do + VDo - Vp, sin(wf) + V*p, sin (cot)) ,
R
UE, cross = -&Idzdr TEps - Eppay = %lafdzdr 1Vp, -ii,x B
= 5 Idzdr Vp, - (Fu, + zua)x 6B, T},;jdzdr rd,p By 2.37)
o T};Idzdr 19,(P.o + Per sin(@t)u 0 + 1z sm(cot))(Bgo + Bgy sin(at)) ,
Ug,Hall = jdzdr rE%iall
(2.38)

= -A-Rj dzdr r(ugrl sin? (@) + (U + Uy Sin(1))? )(Bgo + By sin(mt))z
R

In these electric field energy contributions, no account has been made of the phases of the
various contributions. Clearly, the electric field energy cbntains phasor contributions at
frequencies @, 2m, 3@, and 4. The relative magnitudes of the contributions are less
clear. But the 1-d simulations show that the contﬁbuﬁons at frequency 2@ can be

significant. | | |
What type of oscillation are the 1-d plasmas exhibiting? It appears to be
oscillation of a standing electromagnetic type consisting of extraordinary plasma waves

counterpropagating through the inhomogeneous plasma.

T TTT T T T 3 T TTEOTTT x - - -
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Figure 2.3, Electric field and magnetic field energy versus time for the perturbed
unmagnetized Bennett profile ( B, = 0). Initial peak ion and electron temperatures are
25eV (Ty = 2T 4 = 2T} = 50eV). Other equilibrium Bennett profile parameters are in

Table 2.1.
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Figure 2.4. Electric field and magnetic ficld energy versus time for the perturbed
magnetized Bennett profile ( B, =107). Initial peak ion and electron temperatures are

25eV (To =2T,q =2T;p = 50eV). The solenoidal electric field at r,, is zeroed

throughout the simulation. Other equilibrium Bennett profile parameters are in Table 2.1.
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2.2.2. Two-dimensional simulations initialized with Bennett profiles
that have sausage instabilities

In2-d rz-coordinateé, pinch simulations were tested against stability theory using
the same initial Bennett profiles as in the 1-d simulations. In each simulation, the ion
drift velocity was initially perturbed by a displacement phasor Eo of an unstable
eigenmode. Characteristic frequencies of the sausage modes (k>0, m=0) were
obtained by numerical solution of the full eigenmode equation Eq. 2.20, just as for the
k=0 modes. For the equlhbna, an on-axis temperature of T = lOOeV was chosen in
order to make the e—foldmg times and the oscillation periods less than a few thousand

simulation time steps. In the simulations, periodic boundary conditions were applied in

the axial direction. ‘
paraméter value
T - 05cm
o r./3
: I 200kA
FTar R
k- . 8raml. -
gridsize, N,x N, | 33x17

Table 2.3. Simulation parameters common to Bennett profile test cases 1-4.
Again, uniform axial magnetic fields of varying strength were applied, affecting

only the characteristic frequencies of the equilibria. To investigate a predicted transition

to stability, axial magnetic fields of 0T, 0.5T, ST, and 7T were each initialized with the
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Bennett profile. For axial fields of 0T and 0.5T, the longest axial mode of the simulation
grid has several different stable and unstable radial modes according to theory. At 5T,

only one radial mode is unstable, while at 7T there are no unstable radial modes. Some

characteristic frequencies for the longest axial mode of the simulation grid (4 =r,,/2) are

given in Table 2.4. The I-numbers are equal to the number of nodes in' &, between the

test case 1 2. 3 4
B, 0 0.5Tesla . | = 5.0Tesla 7.0 Tesla
Bei, max 115951 1.15e9 571 1.25¢9s°1 1.33e9s7]
Opgr 1=01 2216751 | 288e7s7! 3.55¢7 571 none
T1=1| 164751 | ‘2.31e7 51 none none
=2 1.31e7 s} 1.96e7 s-1 none none
Oposc 1=0| 296e7masls | 3.327radls none 3.70¢7 radls
3.5281adls | 3.52¢8rad/s | 3.8le8radls | 3.93e8radls
1=1] 1.23¢7rad/s 2.51e7 rad/s 2.92e7 rad/s 6.49¢7 rad/s
3.83e8radls | 3.84e8rad/s | 3.83e8radls | 4.02e8rad/s
Osim,gr 2.0e7 571 27e7 5! 3.5¢7 51 chaotic
Dsim,osc 3.6e8radls | 3.7e8 radls 3.8¢8 rad/s chaotic

Table 2.4. Comparison of instability growth rates and oscillation frequeﬁcies from a linear MHD
eigenmode analysis ( @, ., and @y, ,..) and from pinch simulations with fluid jons ( @, o and
). Quantities @, o, a0d Qg 4. are characteristic frequencies from the inner product

wsim,osc

(Eo , z'i,-,) defined in Eq. 2.41. Integer numbers [ are radial mode indices.

axis and the wall. For each equilibrium and each axial wavenumber k, there is_the
possibility of multiple stable and unstable radial modes with different mode number / and
characteristic frequency @. As shown by Table 2.4; there can be multiple stable modes

with the same number of nodes ‘betw‘een the axis and the wall, at least for /=0 and /=1.
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It is interesting to note that the Bennett equilibria have a mixture of stable and unstable
eigenmodes with comparable magnitudes of characteristic frequency. This leads one to
suspect that the stable and unstable modes have a significant effect on the evolution of
each other - after all, the governing equations are actually nonlinear, and the stable
modes are not orthogonal to the unstable modes.

To extract the characteristic frequencies @ from the simulation, the electric field
energy was initially used as a diagnostic. But after reaﬁzing ”that the electric field energy
might contain significant contributions that grow at the rates @, 2@, 3w, and 4, it was
detenhined that a better'_growth rate'diagnostic was necessary.” A better diagnostic came
from the ormonormahty relatiorr for the E -modes, which forgnorrnalized E,,, and E,, is

given by Eq. 2.4(),T ]

. Zﬂjdzdr rpOEm ) En = 5mn ? ’ (2.40)

Here, po is the equlhbnum mass densrty and 5 , 18 the Kronecker delta. Since the ion
drift veloc1ty #; can be wntten as a hnear combmatlon of the 5 -modes, the inner product

of E,and #; (induced by Eq. 2.40) should exhibit the gr_owth rate of the &;,-mode. This

inner product is defined to be:

(Boi) = 21| dedr rpofy -3, | @.41)

r v

In Table 2.4, @, ., and O;

sim,0sc AT€ growth rates and oscillation frequen01es observed in

the inner product of §0 and def'med in Eq 2. 41

In each smulatlon of Table 24, except for the 7T case, an attempt was made to
perturb the plasma with the exponenhal}y unstable =0 mode. In the 7T case the plasma
was perturbed rviﬂr the unstable /=0 mode frorn MHD theory for the 5T case. For the
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0T, 0.5T and 5;I‘ cases these perturbations have theoretical growth rates @, ., of 2.21¢7,

2.88¢7 and 3.55¢7 sec™1, respectively.

Theoretical growth rates and growth rates from the simulation agree within 10%.
This narrows the range of mistakes that could have been made in the computer code of
the pinch simulation. It also shows the worth of comparison to ideal MHD stability
theory, and it'computationally verifies that stability is indepéndent of the magnitude of
the Hall term and diamagnetic drift term in Ohm's law. _

Without a more careful analysis of the simulations, it seems é;ausible that the
simulated growth rates for the 0T, 0.5T, and 5T cases are 5—10% low because of mode
coupling. This is suggésted by the spatial behavior of the radial ion drift velocity u;.,in
the 0T and 05T cases, which quickly changes shape on time scales shorter than the
theoretical growth rates. In the 5T case, spatial plots of u, suggest that mainly the
seeded mode grows until the first peak in Figure 2.9, which occurs at roughly 130ns. For
B, (=TT, the profile was pefturbéd with an unstable mode of the 5T case. The plots for

B,,=TT suggest relative stability, because the instabilities that eventually grow are

temporally delayed, and have shorter spatial wavelengths than the seed.
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2.3 Strongly driven test cases

Pinch simulations are certainly not restricted to MHD equilibrium studies.
Indeed, simulations are largely motivated by zeta- and theta-pinch experiments involving
fast compression of plasmas. High compressions have been the goal for applications in
both nuclear fusion research and X-radiation sources. Plasmas in such experiments are

far from equilibrium.’

2.3.1 One-dimensional simulation of a zeta-pinch
In order to compare the simulation of a zeta-pmch W1th earlier computational
work, a simulation with parameters in Table 2.5 was nnplemented The simulation was

initialized with a uniform density of 100% ‘jonized deuteron plasma (ion mass

m;=3.346e-24 kg), and-at time t;O an axially directed -plasma current I,=250kA was
applied to produce a magnetic flux density B,=0.5T at the wall radius r,,=10cm. First,
the plasma separates from the wall, leaving a vacuum region between the wall and the
plasma, and thenthe plasma compresses. In this particle-in-cell (PIC) simulation,
particles reacting to the radial electric field at the plaéina—va,cuum interface are sent
streaming radlally inward at the implosion velocity. The p1nch simulation of this
dissertation and earlier simulations [Hewett 1980] are shown to yleld essentlally the same
_ results.

Just as described in Chhﬁf& 1, simulaton tegidﬁs with ion density below a cutoff
density pcmﬁ— are declared vacu@ regionsi Then for purposes of advancing the electron
fluid and fields, the density is assumed to be Peutof in the vacuum regions, thus avoiding

division by extremely small densities and the associated nﬁmerical instabilities.
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parameter value parameter ~value
Ty . 10cm Mvae - - le-12s
T,=Tp | - 1ev . My le-17s
I - 250kA m; 3.346e-24 g
Po | 3el4em N; 10,000
Pa | 3 el2em3 | radial giidpts. | - 41

Table 2.5. Parameters used in the one-dimensional zeta-pinch simulation.

"InTable 2.5 p, is the particlé density of the initially uniform plasma. The resistivity used

ih the dense plasma regions is Tpi, and the resistivity used for all vacuum points is Thac.

- The number of PIC ions used in the simulation is denoted N;.

There is a significant differéence between the present simulation and past
simulations in regard to resistivity and smoothing at plasma-vacuum interfaces. A past
hybrid simulation used 5-point spatial smoothing of density in the numerator of update

formulas at every ion time step [Hewett 1980]. The smoothing was used to diminish

effects of the discrete grid at plasma-vacuum interfaces. It was applied after the points on

the grid were determined to be inside or outside the plésma. Typically, the inverse
density (1/p);; was replaced by an inverse of an averaged delisity‘ over nearby grid

points:
- 8/ (4pi,j FPio1jtPin,j +pi,j-l+pi,j+l) - /p);;-

This inverse averaged density replaced the inverse density in the update formulas, such as

" Egs. 1.8, and tended to diminish the electron fluid current at low-density plasma points.

The result is a decrease in the the Hall and diamagnetic drift contributions (Eq. 1.1) that
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spatially smooths the interfacial electric field as the plasma advances across the grid.
Unfortunately, the smoothing is nonphysical. o :

The new simulatton’ does not use suehispatlial smeething_.‘ Instead, it uses an
interpolated resistivity that helps diminish grid effects m a more physical manner. The
prescription for dle;esiedvity 1s 811;p1e~ i:or pla;tna densitiee Abo§e 0. épo , the resistivity
is set to 7,;, and for regibns with densities below. b;u,aﬁ,-the 'res.iwsAdvity is set to 1,,.

Between pwwﬁ and 0. 2p0 ‘the res1st1v1ty is linear i 1n the mverse of the plasma density; a

reasonable approx1mat10n to the mcreased colhsmnaht}; in denser regions. The linear
patch is forced to be continuous. The spattally dependent re81st1v1ty effects the B, rate
equation in a way that forces more current through t_he‘ denser plasrna regions. The lower
electron fluid drift velocities at low-density plasma points allow the plasma to move more
smoothly across the finite-difference grid. | , ‘

_ The veloc1ty components as a function of radlus (Flgs 2.14 and 2. 18) from the
new simulation are in close agreement with earlier simulations w1th the same parameters
(Figs. 2.15 and 2.19). The main difference is the small "barb" that appears near the
inward edge of the inward streaming particles. This barb is a consequence of initial
plasma "blowoff" from the outer wall, and isnota surprising result, since treatment of the
plasma-wall interaction is tricky. No special effort was made to ensure that the
_ simulations give the same treatment of the plasma—wall mteractlon

Note the hlgh-frequency transients in the electric field energy of Figure 2 16
These are nonphysical transients resulting from advancement of the plasma-vacuum
interface across the discrete finite-difference grid, and the 'interpolated resistivity
mentioned above was an attempt to diminish the .transi_ent amplitude.v( Future efforl"t will
be spent on reduction of such transients becadse they yield a nonphysical velocity spread

that might have a serious effect on the peak particle density calculated on axis.
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Figure 2.14. Radial, azimuthal, and axial particle velocities versus radius for the Z-pinch

with parameters in Table 2.5.
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Figure 2.15. Radial, azimuthal, and axial particle velocities versus radius from earlier

simulations of a Z-pinch with parameters in Table 2.5. Courtesy of D.W. Hewett [1980].
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Figure 2.16. Maghetic and electric field energies versus time for the Z-pinch simulation

with parameters in Table 2.5.
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Figure 2.17. Density and radial electric field versus radius at time t=200ns for the Z-

V pinch simulation with parameters in Table 2.5.
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2.3.2 One-dimensional theta-pinch simulation
For comparison with past simulations, a theta-pinch simulation with parameters in

Table 2.6 was implemented. Again, the simulation was initialized with a uniform density
of 100% ionized deuteron plasma (ion mass m;=3.346e-24 kg). At time £=0 an

azimuthal electric field E,,, was applied at the wall to produce a vacuum axial magnetic
field B, of roughly 0.5T between the plasma and the wall at r,,=10cm. Again, the

plasma separates from the wall and particles reacting to the radial electric field at the

plasma-vacuum interface are sent streaming radially inward at the implbsion velocity.

parameter value parameter value
T 10cm - Thae le12s
T.=Ty 1€V Myt le-17s
Egw 2sVicm m; 3.346e-24 ¢
Po_ 3el4cm™ N 10,000
Peutof 3e2an® | radial grid pts. a1

Table 2.6. Parameters used in the one-dimensional theta-pinch simulation.

While the axial magnetic field in the vacuum was not fixed at 5kG throughout the
simulation, a value of “ Eq., was choseﬁ to keep the field within 10% of 0.5T throughout
most of the simulation. Then the results can be compared with earlier simulations
[Hewett 1980]. Other parameters in Table 2.6 are defined in Section 2.3.1.

The implosion velocity in Figure 2.18 is within 10% of that of the earlier
simulations shown in Figure 2.19 [Hewett 1980]. These also agree with results of Sgro

and Nielson [1976]. Note that the velocity spread in Figure 2.1é due to field transients is
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Figure 2.18. Radial, azimuthal, and axial particle velocities versus radius for the theta-

pinch simulation with parameters in Table 2.6.
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relatively greater than in the Z-pinch case. The "barb" on the inward-moving ion beam is
also more apparent. Also note in Figure 2.18 the outer annulus of particles that have

separated from the bulk plasma. Itis likely that the axial magnetic field diffused through

v, (107em/s)
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FiG. 1. The ion phase space that resuits after 200 ysec. The t=0 configuration consisted of a
homogeneous 1-¢V deuterium plasma with a density of 3 X 10' which is subjected to an external B,
implosion field of 5 kG. (a) Result obtained using the one-dimensional algorithm of Sgro and Nielson
(courtesy of A. G. Sgro). (b) Resuit obtained using the two-dimensional algorithm described in the text.

Figure 2.19. Radial, azimuthal, and axial particle velocities versus radius from earlier
simulations of a theta-pinch with parameters in Table 2.6. Courtesy of D.W. Hewett

[1980]. -
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these outer particles which became "trapped” on the field lines. This is more likely to
happen when the resistivity is interpolated in the plasma in order to smooth discrete
effects of the grid. In Figure 2.20, transients in the electric field energy are relatively

smaller than for the zeta-pinch case. This is primarily due to the presence of a substantial
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Figure 2.20. Magnetic and electric field energies versus time for the theta-pinch

simulation with parameters in Table 2.6.
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E, in the extrained vacuum region because u,, = ; is not enforced in the vacuum of this
simulation. Otherwise this would seem surprising since the transient velocity spread

indicates significant transient electric fields.
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Figure 2.21. Density and radial electric field versus radius at time t=20bns for the theta-

pinch with parameters in Table 2.6.
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2.4 Entrained vacuum void treatment of B,

One of the most significant contributions of this dissertation is a new azimuthal
magnetic field update method for entrained vacuum void regions. Previous hybrid

(algorithms' used an ADI\ method to relax toward the solution of (Vzl'?)‘9 =( in each

entrained vacuum void [Hewett 1980]. For details on this previous method, refer to
* Method 2 of the "B, finite difference equations in Appendii 1.A3. Such methods drove
the curl of the current density to Zero in the plasma suffounding the vacuum void, which
is nonphysical. In general VxJ # 0 except in vacuum reglons away from the plasma,
where J =0 to a good approximation (see Figure 1. 3 to visualize this).

The new update method, Method 1, is based on the integral form of Fafaday's law,
as described in Chapter 1. At each simulation time-step the line integral of the poloidal
electric field is calculated around the boundary of each and every entramed vacuum void

region (see Flgure 1.2 to visualize this). The line integrals yield good estimates of the

time derivative' of the angular magnetic field B, in the voids, and hence can be used to
update B, in each void. While the line integrals require more computation, the curl of

the current density is not driven to zero in the plasma surrounding the void, potentially
making the method more accurate. For details, refer to Method 1 of the B, finite
difference equations in Appendix 1.A3.

The purpose of this subsection is to compare simulations using different vacuum
void treatments for By, Method 1 and Method 2. Each method is used for simulation of a
dynamic Z-pinch with an initially uniform plasma density and without axial magnetic
fields. Early in the simulation, entrained ‘voids are not present, so that the simulations
evolve in exactly the same way. Later in the simulation voids appear near the plasma-
vacuum interface due to instabilities. These instabilities are a combination of equilibrium

sausage instabilities and magneto-Rayleigh-Taylor (MRT) instabilities from acceleration

2%
e
PIN
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of the plasma-vacuum interface. Because the plasma-behavior is nonlinear and turbﬁlent,
small differences in evolution of the voids leads to dynamic states ﬂlat are significantly
different later in tﬁe simulation; quaﬁtaﬁveiy, this 1s what is observed.

The pé.ragneters deﬁ‘ningrthe simuiatién are in"fablg 2.7. The number of particles
used m the simﬂaﬁon fits ip the 32Mbyte memory of a Pentium PC (32 bit single
precision coordinate_s aﬁd velocity components). Stpragé fqr ﬁeld _qugntities on the grid
is negligible compared to the storage used for the particle locations and velocities; typical
for hybrid shnulaﬁqps with particle;in:cell (PIC)‘, ions. Except for the \added axial
dimension, the simﬁlation parameters éredﬂle same as for the 1-d Z-pinch simulation of

Section 2.3.1 with PIC ions.

parameter | value | parameter value
space size, T,, X Lz’ , IQ x2.5 cm ﬂv@ 1e-12's
T, =Ty 1eV o1 le-16s

I, 250kA m; 3.346e-24 ¢
Po 3eldem™ N; 400,000
Peuoff . 3el2cm™> | gridsize, N.x N, . 65x17

Table 2.7. Parameters used in the two-dimensional Z-pinch simulations for comparing

entrained vacuum void treatments of By. .

The pinch was simulated for-an elapsed time of 200ns. Up to 140ns, the
field energies of two simulations track closely. By t=150ns, the evolution of the
- plasma from case to case begins to differ; entrained vacuum voids near the

plasma-vacuum interface lead to slightly different spatial density plots.
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Figure 2.22. Plots of number density at time t=160ns for the Z-pinch. B, is updated by

two different methods. Peak ion number densities (darkest) are roughly given.
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At t=150ns, Method 1 yields a sudden increase in field energies. The field energy is in
turbulent azimuthal magnetic and poloidal electric fields in the low density plasma of the
plasma-vacuum interface. . Current vortices associated with dilute plasma and entrained

vacuum regions "spin up", creating the large magnetic fiélds, as in Figure 2.23.

Figure 2.23. Plots of By at time t=160ns for the Z-pinch. By in entrained vacuum

voids is updated by two different methods. Maximum fields (darkest) are roughly given.
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The mixture of vacuum voids, dilute plasma, and rapidly swirling eléctron fluid then

B

genérates high poloidal electric fields, as exemplified by Figures 2.24 and 2.26. Density

plots at t=160ns suggest that the vortices cause the plasma to neck off earlier for Method

1. Provided thaf B, is largely augmented in the voids, this makes sense.

it

Figure 2.24. Plots of E, at time t=160ns for the Z-pinch. By in entrained vacuum voids

is updated by two different methods. Maximum fields (darkest) are roughly given.

foy
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Larger magnetic field pressures inside thg voids cguld drive the nearby bulk plasma
téward the axis with greéger fqrcé. At t=180ns, the furbulence dissipates for Méthod 1;
this lends credence tp numerical stablhty and is physically reasonable. A'I‘he/ plasma
appears to begin stagnating; fhere would then be less accgelereition to drive MRT -

F

instability, allowing dissii)ation due to resisﬁvity and other thermalization mechanisms.

integral forth of Faraday's law
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Figure 225. Magnetic field energy as a function of time for the two-dimensional Z-pinch.
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Comparison of Methods 1 and 2 demonstrates that turbulence must be carefully

treated for realistic calculation of pinch times and peak densities, and that the turbulence

works to degrade compression of the screw pinch. Furthermore, the magnitude of the

turbulent fields tends to decrease confidence in the general utility of phenomenological
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Figure 2.26. Electric field energy as a function of time for the two-dimensional Z-pinch.
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treatments of turbulence in 1-d simulations [Thornhill et al. 1994]. The amount of
turbulence suggested by Method 1 might also éccount for largé diécrepancies between Z-.
pinch experiments and recent 2-d simulations [Hammer et al. 1996]. -

In cdmparisons bf Methods 1 and 2, a few more cases should be investigated. It
would be most interesting to increase the spatial resolution and to decrease the grid
spacing and the cutoff density. In such a parameter regime for the simulation, the
methods should maintain agreement for longer simulation times. Then, raising the cutoff
density would immediately illustrate aﬁy undesirable effects that Method 1 or 2 might
have on simulation accuracy. Of course, these sort of algorithrhiq checks would fall into
the class of heroic computer runs, since the); would require large amounts of computer

memory and execution time.



113

Chapter 2 references

. Freidberg, J.P., Ideal Magnetohydrodynamics (Plenum Press, New York 1987)

. Freidberg, J.P. and Hewett, D.W., Eigenmode Analysis of Resistive MHD Stability by
Matrix Shooting, J. Plasma Physics 26, 177-192 (1981)

. Hain, K., and Liist, R., Zur Stabilitit zylindersymmetrischer Plasmakonfigurationen
mit Volumenstromen, Z. Namrfor.fch. 13a, 936-940 (1958)

. Hammer, J.H., Eddleman, J.L., Springer, P.T.,' Tabak, M., et al., Two-dimensional
radiation-magnetohydrodynamic simulations of SATURN impldding Z pinches,
Phys. Plasmas 3, 2063-2069 (1996) |

. | Hewett,’ D.W., A Global Method of Solving the Eléctron-Eield Equations in a Zero-
Iﬁertia-Electron—Hybrid Plasfna Simulgtion Code, J. Comput. Phys. 38, 378-395
(1980) | . |

. Kruskal, M. and, Schwarzschild, M., Some Instabilities of a Completely Ionized
Plasma, Proc. of the Royal Society A 223, 348-360 (1954) |

. Lindemuth, LR., Consefvation Form in Computational Magnetohydrodynamics, J.

' Comput. Phys. 18, 119-131 (1975)

. Sgro, A.G. and C.W. Nielsc‘m),‘ Hybrid Modgl Studies of Ton Dynamics and Magnetic
Field Diffusion During Pinch Implosidns, Phys. Fluids 19, 126-133 (1976)

. Tayler, R.J., Hydromagnetic' Instabilities of an Ideally Conducting Fluid, Proc. Phys.
. Soc. B 70,31 (1957)

10. Tayler, R.J., The Influence of an Axial Magnetic Field on the Stability of a
Constricted Gas Discharge, Proc. Phys. Soc. B 70, 1049 (1957)

11. Thomhiil, J.W., and Whitney, K.G., Phenomenological modeling of turbulence in
Z-pinch implbsions, Phys. Plasmas 1,:321-330 (1994)




114

Chapter 3
Details of the ADI Method in TWO Spatlal
Dlmensmns

This chapter outlines the altematmg-d1rect10n—nnphc1t (ADI) methods chosen to
advance the plasma simulation in time. ADI methods are among the best numerical
workhorses for enforcing the governing equatmns of the plasma smulatmn. Section 3.1
begins with the motivation for using ADI insteavd’ of Crank-Nicholson methods or direct
implicit methods. It then introduces the two,-d‘irh'ensional;Peaceman—Rachford (PR) ADI
method. Use of ﬁfeconditioning and (d);n'éxmic réiaiation pal‘ameter adjustmént for
acceleraiing PR ADI are mentioned, followed by a prbof of convergence of
precondltloned PR ADI for a fixed time step Section 3 2 is concluded with an outline of
the dynamlc ADI (DADI) method based on the Doss-Mlller prescnptlon for parameter
adjustment. In Section 3 3 methods of spatial domam decomposmon (SDD) and
interprocessor communication are dlscussed for 1mplementat10n of ADI on a parallel
computer. Finally, in Section 3.4, a parallel DADI algorithm is given in the form of a
flowchart, and a few results regarding parallel and algorithmic scaling performance are

shown.

3.1 Diffusive equations in the simulation
The algorithm underlying the screw pinch simulation is based on the evolution of

time-dependent diffisive equations obeyed by A, and By:

Ay = CNe @ _, 2 Mo . ( ) .
e [( im oF = 32.) * ( 4r rar Far) o )| 3-1)
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- cz dJ a J CZ J -nia ) a
; -[(Z-;-a_z(nr aZ) azua] * (475 ar(r o) "ot ) | P (32)

d d _c_(ap oT, dp 3Te)

¥ .3_z.(u‘9BZ) * 5(%93') * ep\dr dz Jz or

The nomenclature diffusive is used because Egs. 3.1 and 3.2 are not classic diffusion

equations er Eq. 3.3 below, yet they exhibit diffusive behavior when the resistivity 7 is

sufficiently large.
du = V.eVu - pu - p; &n>0 FeR BCson oR, (33)

In the classic case of Eq. 3.3, &(F) is the diffusivity, y(7) isa real positive function of
space, and p(F) is a source. Equations 3.1 and 3.2 are much more complicated than Eq.
3.3 because the quantities analogous to &, i, and p depend on the unknowns A, and
B,, in addition to spatial coordinates. This makes Eqgs. 3.1 and 3.2 coupled, nonlinear,

advective, and diffusive. However, when small time steps are taken for numerical

. evolution of A, and By, the coupling térms, nonlinear terms, and advective terms can be
eliminated or linearized by time-lagging appropriate factors. Furthermore, if the
-resistivity is sufficiently large then the time evolution of A, and B, is indeed dominated
by the diffusion. It is only when the resistivity is small that the rate equations are
dominated by advective and nonlinear terms. This is the case in Eqgs. 3.4 and 3.5 where

=0.

(a2 2
e (e Zn D) o0
Be = - iua"'iuer) By +"?_(ue9Bz) +i(u¢98") +
| 9z r z or (3.5)
i(ap T, _3p an) . '
ep\or dz dz or )~
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}
Equations 3.4 and 3.5 are nondlffuswe transport equations. Fortunately, this does not
adversely affect the ADI method when it'is used to advance the equatlons In addition to
Egs. 3.1 and 3.2, other equatxon needed to model the plasma pinches are Egs. 3.6 and 3.7.
- 13° d(1d ) = ‘

V2A) = |=—5+— Ag) = 0, V’E = 0. 3.6,3.7

(V*4), (, P ar(r = )(r o) = 0, (3:6,37)
Equation 3.7 was used by Hewett [1980] in vacuum regions, but in pinch simulations of
this dissertation, a new method of updating E in the vacuum is used. With u =u(7,?)
playing the role of rA,. E,, or E,, Equations 3.6 and 3.7. for these quantities can be

~ written in the form of Eq. 3.8.

Vi = %%(r%)+% = p, u=u(Ft). = (38)
Note that the solution to the elliptic equaﬁon, Eq. 3.8, is the same as the time asymptotic
(t—> =) solution to Eq. 3.3 for the special case #(F)=0 and &(F)=1, |

To understand why ADI methods are preferrable to other common methods for
evolution of Eq. 3.3 and solution of Eq. 3.8, one can write down the finite-difference
" form corresponding to each method and then analyze the stability and ‘accura;:y of the
method. For this discussion, all of the interesting finite-difference methods use second-
order accurate central differencing formulas t6 approximate the second derivatives. In
. axisymmetric cylindrical rz-coordinates, derivatives in the Laplacian are approximated

according to Egs. 3.9 and 3.10.

10( du) . nplne—u)—ri,M—u,)
r ar( ar) At 7 G2
Fu . gy —2u+uy y (3.10)

o AZ?
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These equations are based on the notation r; = iAr, Z; = JjAz, and u; ;= u(ri,zj), where
the indices are suppressed so that u;; —=>u, Uy j —>Usp05 and w4y Uy The
quantities Ar and Az are the uniform grid spacingé in the r- and z-directions. The
indices i and j take on integer and half-integer values. When time levels are introduced

in the equations, similar notation is used with a superscripted time index, e.g.

n
U j =

u(r,-,zj,t,,).

Reasonable methods for comparison to ADI in the evolution of Eq. 3.3 include the
classical explicit method and the Crank-Nicholson method. On the other hand, a
reasonable method to compare with AﬁI for solution of Eq. 3.8 is a plain direct solution
method. All four methods, including ;ADI, are second-order accurate in grid spacing,
since Egs. 3.9 and 3.10 are used for the Laplacian operator. While the classical explicit
method is easiest to implement for Eq. 3.3, it is only first-order accurate in time and is
cdnditionally stable--instability occurs for larger time steps. On the other hand, the
Crank-Nicholson method is second-order accurate in time and is unconditionally stable, a
considerable improvement over the explicit method-in this sense. However, the ADI
method for Eq. 3.3 is second-order accurate in time and unconditionally stable, but
requires muqh less work than the Crank-Nicholson method! A |
The fnﬁte-diffgrence forms in cylindrical coordinates, for the evolution of Eq. 3.3

and the solution of Eq. 3.8 are given here: g

Classical eiplicit advancement of du = Viu-p :

¥

1
u —u _ Qe —w)—rap@—uo) P 2utio;

At rir? AZ?
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Crank-Nicholson advancement of =V —p:

u' —u _ 1'(7'1/2.(”1‘0“u)"'-uz(u‘u-l,o) | u0:1‘2u+u0.-1)—
= + > +

At 2 rArt . Az

1 rpo =) —ripGl —ue) =20 +ug,) -
2 2 * 3 P

ADI advancement of du =Vu—p:

12 o212y V2 _ 12y A
w-u _ ("1/2("1.0 u )=y —ugg) i 2u'*"‘o,-lj ~ p\2
- ?

At]2 rArt . AZ?
w' -l = | (ull,/o2 —u')—ryp @ - "-11/.%)‘ + 4o _)_Zu.l +utg, 4 — pl2
At/2 - rAr? AZ )

Direct method for\sdipt‘ioﬁ of VZu =-p:

T —w) =1 (U—1u,4) + Uy —2utuy

= [ D]

rAr? v AZ? ) . 0

The explicit advance is not useful for the pinchv simulation because it has limitéd accuracy
and stability, it requires too much computer time to simulate ;reasonably long physical
tim: interval. For this reason, tﬁe Crank-Nicholson and direct methods become the focus
of further comparisons with ADI here.

When the Crank-Nicholson method for Eq. 3.3 and the direct method for Eq. 3.8
are written as a system of equations for unkhowns on a 6x6 spatial grid, ihe matrix
representation has the form in Figure 3.1 (nonzero coefficients are denoted by an x, but

are otherwise undistinguished). The system of Figﬁfe 3.1 would arise from a 6Xx6
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spatial grid, i,j €[0,5], around which Dirichlet conditions are applied at points i=0 or 5

and j=0 or5.. The coefficient matrix in Figure 3.1 has a standard S5-stripe structure.

(x x :x : : A (xw (x}
X X x : x : : x x
x x x} x : } x x
x x| x1 ] x x
______ el e wde e ———
x Ix x Ix ! x x
17 i 1
x Ixx x | x 1 x x
] [} ]
x } x x x: x : x x
x| x xt x| x X
______ i NS SFNPENPI JpEPE =
1x Ix x Ix x x
I I 1
: x :x x x : x x x
1 x ] x x x| x x x
1 ] [}
I x1 x x| x|ix x
______ e me—boe e a e ————-
1 tx Ix x x x
I 1 1
! 1 x Ix x X x x
i i 1
1 1 x i x x{l|lx x
| ] 1
\ ! ! x! x x)\x) \X)

Figure 3.1. A tridiagonal-block tridiagonal system of equations for a direct solution of
(V- &V - )u = p or a Crank-Nicholson advance of du=(V-&V—pu—p. A 6x6 grid
with Dirichlet boimdary conditions on the perimeter is assumed. Dashed lines merely

delineate blocks of coefficients.

It is a matrix that is blockwise tridiagonal, each block being either diagonal or
tridiagonal; this makes tridiago‘nal-'block tridiagor;al matrix areasonable term for it.

If the grid has size (M +2)x(N+2) and Dirichlet boundary conditions are
applied, the matrix like that in Figure 3.1 has either M rows of N x N blocks, o? N rows
of MxM blocks, with structuré depending on the ordering of the unknowns. It can be
shown that the number of arithmetic operations (AOs) necessary for direct solution of

such a linear system scales to leading order like MN? or M®N. See Appendix 3.Al.
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* While the MN?® scaling of AOs is much better than the $M3N? scaling
achievable with Gaussian elimination on a dense MN X MN matrix, it simply does not
compare to the more favorable MN scaling exhibited by ADI for advancement of Eq. 3.3
and solution of Eq. 3.8. This is the reason ADI is used instéad of the Crank-Nicholson
method and the direct method. Actually, when ADI is used for solution of Eq. 3.8, it
essentially finds the ¢ — o solution of Egq. 3.3, and this §ﬁqu1d be kept in mind during the
development of the ADI method below. The reason ADI solves Equations 3.3 and 3.8

faster is that it relies on straightforward solution of tridiagonal systems of equations.

3.2 Peaceman-Rachford ADI method

3.2.1. Implementation

In two dimensions, a very useful ADI method is that of Peacman and Rachford
(1955). The method has been studied extensively, and is detailed here in cartesian
coordinates. Suppose u in Eq. 3.3 is given at time #* &er the whole spatial domain.

Peaceman-Rachford ADI advances the iterate u;; = u(zAxl, JAx,,t" ) a time step A" to

time level "' = £ + Ar accordmg to Equatlons 3.11 and 3. 12

u;’,j —uzj (81+l] +8 ) ;'-i-l,j (-x+l]+28 +8-11) +(€ +£—1;) z-lJ |
APT2 2Ax?
+( EjnTEj ) U;, j+1 ( i,j+l+28i,j+8i,j—l)uz "‘(8 it & ; ) U j-1

2A%;

(3.11)

- E;’—j(”;'.j“‘"ffj) - pij -
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w =y (,+1,+8 );'+1,i (,+1,+2£ +8-11)" “‘(8 +8-11) i1,

AT 12 2Ax
( Ejs1tEj ) U"l~1 ( i:f+l+2§A:§81 J-l) n+1+(8 Al J-l) :;11 (3.12)

Here the grid indices have been retained. The intermediate iterate u is implicity
determined by Eq. 3.11 via a tridiagonal system solution. Once u is determined, it can
be substituted into Eq 3.12 through which ™ is determined by anot:her tridiagonal
system solution. The quantities &; ;, };;, and p;; are known functions of the grid." The
step At" reflects a physical time step‘if it is sufficiently small that the iterates follow the
evolution of the Eq. 3.3. In order to condense the notation of the method, it is convenient

to suppress the grid indices and define the following quantities in Egs. 3.13 and 3.14.

0" =2/ A", €420 =3 (Ex10+8)s €12 =E(Eo+E) @-13341)"3)
2 E1/2,0410 (81/2 oté&an o)u +E1p,01), 0
ou" = — (3.14a)
Ax} « .
€014 —(€0.1/2 F o172 " + Eo.1/2H0 -
" = 0,12%0,1 ( 0,172 T &, 1/;) 0,-1/2%0,-1 - (3.14b)
2 A

With this notation the Peaceman-Rachford prescription can be expressed in-the bompact

form of Eqgs 3.15.
(~o"+82-pi2j = -(0"+8~pi12)u" + p, (3.152)
(o +82—pi2ut = ~(0"+8t-p/2 +p. (3.15b)
Taking H = 62 — /2 and V = &7 — j1/2, the equations become

(co"+H) = ~(0"+V)" +p, | | (3.162)
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(~om+ Vet = =(0"+H) +p. " (3.16b)

On the boundary of the problem in Eq. 3.3, JR, either Robbins or periodic boundary
conditions are enforced. Robbins boundary conditions take the form au+bi-Vu = c.
The Robbins boundary condition includes Dirichlet (b =0) and Neumann (a=0)
. boundary conditions as special cases. Quantities a, b,and c can vary from one point to
the other on the boundaries. When the equations and boundary conditions are used to
solve Eq. 3.3, boundary conditions on the mtermediate unknown u _affect the accuracy

significantly. As pointed out by the hterature, one should use Eq. 3.17 for the case of
Dirichlet points u(F,t) = g(¥,) on.dR, [Fairweather and Mitchell 1967].

&= 3@ +Vg; + Ho"-Vygrt. ‘ 3.17)

Equaﬁon 3.17 is‘«not the "obvious" choice g; = &ii M2 for the boundary points.

Directly discretizing Eq. 3.3 in Cartesian coordinates yields du=H+Vu-p
using the second order central differencing of Egs. 3.11 and 3.12. To solve
(H+V)u=p, one could use a direct method or one could use ADI, stepping toward
infinite times. If a direct method yvere used, the coefficient matrix representing H+V in
the linear system of equations would have the formiin Figure 3.2, provided the unknowns
~ were in either the H -ordering or the- V--ordering (for a 4 x4 grid with the possibility of
doubly periodic boundary conditions). When the unknowns are in the then H -ordering,
it means that the grid values are numbered so as to increment the leftmost grid index i
first, and the righimost grid index j second. For the 4 x4 case, the column vector u in
the H-ordering, uy, is given by uy = (ul,l’u2,l’u3,1’u4,l’ul,2’u2,2’°"’ul,4’u2,4’u3,4’u4,4)t’

where the superscript ¢ indicates transposition from a row vector to a column vector, or

. o . 4
vice versa. In the V-ordering, u is uy =(‘ul,l,ul,z,u1,3,u1,4,u2,1,wz,z,...,u‘,,l,u4’2,u4,3,u4,4) .
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Figure 3.2. Matrix showing nonzero coefficients of the matrix operator

H+V=8%+6% -y inthe H-ordering, allowing periodic boundary conditions in the

directions of H and V. Elements that can be nonzero are marked with an x.

While the direct method with coefﬁcie;}t matrix in Figure 3.2 can be used to solve
(H + V)u = p, it is computationally cheaper to iteratively apply Eqgs. 3.11 and 3.12 of PR
ADL The coefficient matrices H and —@” + H have populations in the H -ordering that
are shown in Figure 3.3, while the coefficient matrices V and —@" +V have populations
in the H-ordering that are shown in Figure 3.4. Naturally, popy(H) = popy(V) and
popy(V) = popy(H). Matrices H and V depicted in Figures 3.3 and 3.4. are periodic
generalizations of tridiagonal matrices. The work to solve a system of equations with a

coefficient matrix of Figure 3.3 or 3.4, O(MN), is much less than the work to solve a
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system of equations with a coefficient matrix of Figure 3.2, O(M®N), where there are N

blocks of size M X M in the coefficient matrices,

x x x1 1 !
] I I \
1x x x ' } 1
] I ]
x x x! 1 1
N [ t
x x x! 1 !
- s e o B L R Sy I
Ix x x 1 !
{ I ]
Ix x x 1 !
{ ] 1
I x x xI !
i ] i
Ix x x! i
______ e e e e R
] Ix x x
t I 1
I Ix x x ]
: | 1
—_ I x x x!
popy(H) = ] ! n ,
1 . Ix x x|
R I, P N R [ PN
] | Ix x x
] 1 I
i 4 Ix x x
! ] ]
, 1 ] 1 X X x
] 1 1
\ ! ! lx  x x

Figure 3.3. Matrix showing nonzero coefficients of the matrix operator H = 512 -uf2

inthe H-ordering, allowing periodic boundary conditions in the direction of H .
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Figure 34. Matrix showing nonzero coefficients of the matrix operator V = 5% ~uf2

inthe H-ordering, allowing periodic boundary conditions in the direction of V.
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As long as the time step in the ADI method is greater that zero, the tridiagonal

coefficient matrices —~®"+H and -@"+V are diagonally dominant. Diagonal

dominance of an N X N matrix A = (a,.’ J-) means

"N
Yol < o] v iclLy]. (3.18)
j=1j#i
Diagonal dominance implies that the system with coefficient matrix A has a unique
solution that can be determined by standard Gaussian elimination without pivoting. This
allows quick solution of Egs. 3.16, because Gaussian elimination in a tridiagonal system

proceeds in a very simple manner.

3.2.2 Convergence prdperties

In this section, basic convergence properties of the 2-D Peaceman-Rachford (PR)
ADI for solution of (V -,eV —-u=p are inveﬁigated. Remember that such a solution is
the same as the time asymptotic solution to Eq. 3.3. The condensed finite-difference Egs.

3.16 are reproduced here:

(~o"+HW = —(e"+V)" +p V (3.192)
(~o"+ V)™ = —(0"+H) + p (3.19b)

When the intermediate unknown u is eliminated from Egs. 3.19, one obtains an

expression for #™*! in terms of 4" and the other given quantities:

w = (-w’f+V)"{(—w”-H)(—w"+H)"[(—a>"—v)u" + p] + p} (3.20)
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It is convenient to define the error vector e” = u"” — u, where u is the exact discrete
solution to (H +V)u=p, Eq. 3.3. Subtracting rearranged versions of the equation
(—o" + Hu=—(o" + V)u+ p from Egs. 3.19 yields the following:

co+HY = (~o-Vi"+p . (~0+V™ = (~o-H) +p
- [(~o+Hu = (~0-V)u + p],and — [(~o0+V)u = (—o-Hu + p]
(~o+H)e = (-0-V)e" (~o+V)e™! = (—ij)e'

Therefore, e"!' = (—o+ V')'1 (-0 - H)(~0+H) (-0 - V)e", just like Eq. 3.20 without
the source p. There is no mechanism by which p can affect the rate of convergence to-
the solution of (H + V)u = p; the sole effect of the source term pisto chaﬁge the initial
value of the error vector e°. »

In the past it was shown that the PR ADI method is convergent for (H+V)u=p
with any fixed time step. Furthermore, it was shown to remain convergent when
preconditioned by a symmetric matrix [Wachspress and Habetler 1960]. The
preconditioned ADI method is implemented by applicaﬁon 6f ADI to'the new system
(B+V)u=p, where H=B'H, V=BV, and p=B"p. The new system has the
same solution as (H+ V)u=p for well-behaved preconditioners Bl. -The idea is to
choose B so that fI and V have smaller spectral radii than H and v, respectively; -
then each relaxation step diminishes more compc;nents of the error. In this dissertation,
one of the version of the PR ADI that is used is diagonally scaled, for which
B! =diag ' (H+V). ‘

A proof of convergence in the symmetrically preconditioned case for a fixed time
step is reproduced below [Lambert ez al. 1996]. A longer, but more general proof of
convergence for a fixed time stel; was pﬁbﬁ'shed’ earlier [Wachspress and Habetler 1960].

Convergence has been proven for an arbitrary sequence of finite positive time steps only
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when H and V are symmetric, negative definite, and commutative [Varga 1962]; along
these lines, optimum sequences of time steps have been found for the model problem of
the Laplace equation on the unit square. It is not known by the author whether the
symmetrically preconditioned method must converge for an arbitrary sequence of finite
positive time steps. Empirical evidence in this dissertation suggests that convergence is
accelerated by varying the time step in many preconditioned and noncomimutative cases.

Indeed, the time step variation makes the method one of the fastest of all methods.

Theorem 3.1

The preconditioned Peaceman-Rachford ADI scheme of the form

B Hu = B+EVW" —%p, G2
(B=4-V"' = (B+4-Hu ~4-p, . (3.21b)

with H, V, and —B symmetric and negative definite, converges to the

solution of (H+V)u = p for any fixed finite positive time step A" = Az.

Proof
The method can be expressed as ™! = C(ADu" +[I—-C(Ar)]A™'p. To see this,

combine Egs. 3.25 to get #™" in terms of " and p:

w = (B-4V)[(B+4HB-4H)((B+4VW" —4p) - 4p)
(3.23)
= C(Aw" - 4(B-4 V)Y ((B+4H)B-4H) " +1)p.

The definition C(Af)= (B—eiV)"(B+%H)(B-QLH)"(B%LV) is used. Then
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CI-can = @-W a0 -a+ -t a+ )
- a-Pya-Ba-aa-n- ~U+B+V)
=—(I-V'I-BY'd+A+1-BA =—1-Vy ((I+H)(I Ay +I)

g B4V (BrEDB-¥BY A

where H = 4t B7'H, and similarly for V and A. The fact that 7+ I;V commutes with
(I - HY" has been used. Now, C(A?) is similar to Q(A?):

C(AY) = (B+4:V) ' Q(A)(B+4:V), where . (B2
QA1) = (B+4VY(B-4V) (B+4H)(B-4H)". (3:25)

For fixed time step, the error vector e" = u" —u advances according to
&= C" (At)e Then as long as the largest eigenvalue of C(Ar) has magnitude less
than 1, the method with fixed tlme-step will converge.
Since B is symmetric and positive definite, it has a Cholesky decomposition
of the form B=LL'. Then QA1) = LT+ V)I-¥)™ I+ H){I —H)'l L}, where
7=4L'VL* and H=4L'HL'. Note that H and V are symmetric and negative
Jefinite by congruence with H a;nd V. We t;ke fﬂe vector induced B l-norm of Q
defined by

10

1Az = sup i , where x| = xBlx.

The acronym sup is short for supremum, or the least upper bound. Note right away

that

s = L0 = L), ann,l - ¥OT'I0x = |0
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Then 01 = |+ V- 9)(+ B - B L), and

IO = sup2@EL0x , waL'Llqu _ |l w'L'L
- 'L L% = Ly i

= p(Q)>.

where g is the largest eigenvalue of Q with corresponding eigenvector u, and p(Q)
is the magnitude of g, or the spectral radius of Q. Obviously, with the definition
y= Llx,

|+ - vyta+ ma- iy

bl
= [+ -vyta+ -

"Quyl = sug

From the submultiplicative propterty of p-norms,

ot < -y -+ Ea -2y (3.26)

It is readily verified that»the matrices 04 +I?)(I —H)™ and I+ V)(I -7 are
symmetric, given that H and V are symmetnc and it is well-lcnown that the L2-

norm of a real symmetric matrix is just the largest elgenvalue of the matrix.

Tlierefore, '
Nl < p(a+a-n3Y pla+ ia-ay7y. 327)

Let 7 and D be the eigenvalues of least magmtude of H and V, respectively
Clearly, the spectral radii 1ntroduced above are less than unity since 7 and D are

negative:

[y
(1]

pla+ma-v7) = =

.—ll
A.
it

oy
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Therefore, p(C(At)) = p(Q(A1) < [Q(Af)z+ < 1. This is sufficient to prove that

C"(At) — 0 for any positive finite Az, so that the theorem is proved.

3.2.3 Dynamic altemating-'-direction-implicit (DADI) method -

Relaxation parameter adjustment for accelerated convergence to the t— oo
“ solution of Eq. 3.3 had been studied by many authors [Douéias 1963; Peaceman and
Rachford 1955; Varga 1962; Wachspress 1962]. Most of the early parameter adjustment
methods were based on arduous pre-runtime analyses of the prototypical model problem.
The model problem has a 31mp1e diffusivity and simple boundary condmons (e=1,
Dirichlet boundaries on a unit square). Because the early methods were derived for such
a simple case, they did not perform well for inhornogeneous € and complicated boundary
conditions. | | | o “

In 1979, an adaptive method was published that works well for general & and
general boundary conditions [Doss and Miller 1979]. This Doss-leler prescnptzon is
adaptrve because the parameter sequence is determmed atrun tlme, and is not determmed

by a tedious a priori analysxs of convergence The general prescnpuon is as follows:

1. With relaxation parameter " = 2/ At" perform the ADI double-pass of Eq.

T on+l

3.19 to advance form u” to #™*'. With the same parameter, perform another

ADI double-pass to advance from #™*! to u™*2.

2. "With a different relaxation parameter, a) w”/2 perform one ADI double-

pass to advance from u" to " 2

3. Compute the ratio r = "u"*z —u"*?

n+2 n
o]
2/‘ 2

"2 = c@" according to a table such as Table 3.1, knowing r.

4 Lot @
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unsmle& diagonally scaled

r 4 r ‘ c
0<r<0.05 02 0<r<0.01 025
0.05<r<015| - 05 = | 0.01<r<0.05 05
0.15<r<0.3 09 0.05<r<0.1 09

0.3<r<0.4 2 0.1<r<0.2 2

0.4<r<0.6 4, 0.2<7r<0.3 4,

0.6<r 16. (reject) 03<r " 16. (reject)

Table 3.1. Tables used for relaxation parameter adjustment for two-dimensional DADI and

DSDADI. The parenthesized reject implies that 4™ should be replaced by u".

When the prescription is used with nonpreconditiqned AD], the method is caﬂed dynamic
ADI (DADI) in this dissertation. When the prescription is used with diagonally scaled
ADI (see above), the method is called diagonally scaled dynamic ADI (DSDADI).
Analysis of the two-dimensional model problem determines that the optimum value of
the ratio 7 is betw;en 0.1 and 0.3 for unscaled DADI [Doss and Miller 1979]. In this
dissertation, all of the ruﬁtime results from the DADI and DSDADI methods are based on
Table 3.1.

It is a property of DADI and DSDADI that as iterations are performed the
magnitude of the relaxation parameter oscillates, helping to drive down the various
eigencompon;ents in the error vector e”. On top of the oscﬂlation is a gradual decrease in
parameter magnitude. During the reléxation, the iterates fail to accurately follow in an

absolute sense the evolution of the corresponding time-dependent diffusién equation. But

absolute accuracy is not necessarys; it is only necessary that "e”" =0.
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3.3 Spatial domain decomposition for parallel ADI
3.3.1 The decomposition o ‘ * »

Paljallelization of the ‘electroo-fi‘eld.ad\‘ra‘n’ce can be echieved by spatial domain
decomposition (SDD) in which the uniform two-dimensional orthogonal ﬁr;ite-difference
grid is sliced into regular subdomains by coordinate lines. ExémPIes of SDD are given in
Figures 3.5 and 3.6, in which the grid is sliced by lines of constant x and z.

The SDD shown in Flgure 35is the one chosen for parallel implementation of
ADI. Since the ADI electron-ﬁeld advance is based on the soluuon of tridiagonal
systems of equations with unknowns along coordinate lines, the unknowns of such
systems in Figure 3.5 become distributed over multiple processors. In this way,
distributed tridiagonal system solvers become the core of the parallel electron-field
algonthm for the pinch sxmulauon Whereas parallel solution of each distributed
tndlagonal system takes over twice the arithmetic operations (AOs) necessary for serial
solution when the unknowns are all on one processor, the SDD technique in Figure 3.5
has better scalability than the SDD technique in Figure 3.6 that uses the‘ standard serial
solution. | -

The parallel performance of the SDD m Figure 3.6' suffers because it requires too
much communication of grid data. If the spatial region is evenly divided between P
‘Yi)rocessors, with N unknowns per prooessor, then ;'ou.ghl'y (P-1)N/P equations have to
be communicated fro;n each processor to the N —1 other processors between ADI passes.
Each messages containing N/P equations can slow execution because of relauvely long
transmlssmn t1mes Also, the commumcatlon latency assoc1ated with the N —1 messages

further subtracts from performance.
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Figure 3.5. Typical parallel 2-d ADI spatial domain decomposition (SDD). This is a 4x4
processor spatial domain decomposition SDD of an 18x18 grid. Each of 16 subdomains is
associated with a pr@mr P1-P16. Each processor allocates memory for 16 érid points (4x4
grey regibn) in the interior of a subdomain, along with 20 more points immediately adjacent to the
16 across the designated "guard cell region”. External boundary .conditions are applied at points
connected by the solid line. A tridiagonal system of equations associated with the delineated line

of unknowns is distributed evenly over processors P1-P4.
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are transposed between passes so that tridiagonal systems can be solved with single-processor

code.
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¢

' On the other hand, the SDD of Figure 3.5 allows straightforward compile-time
load balancing and minimizes interprocessor communication. Even division of the
spatial region into subdomains is all that is needed for good load balancing. The
communication latency is minimized by bunching information for all of the tridiagonal
systems crossing coordinate lines before the information is sent to adjacent processors.
The number of bytes in interprocessor messages are proportional to the number of
unknowns adjacent to the coordinate lines; this makes the communication time per
unknown ﬁnear in the ratio of the subdomain perimeter to subdomain area for two-
dimensional grids. The message lengths are so small for square subdomains that the
message transmission time is relatively negligible. Each processor in the decompostion
has full information about one particular subdomain throughout the field advance.
Unknowﬁs have static memory indexing on each processor. Processors do not directly
share the values of grid unknowns in the subdomain interiors, but they have to

communicate in order to update the unknowns.

3.3.2 Tagged message passing on parallel computers

" The type of interprocessor communication used to implement parallel ADI is
called tagged message passing. Tagged message passing is implemented by paired
subroutine calls; a send subroutine call on one processor and a receive subroutine call on
another processor. Processor A sends a message to processor B when A executes a call to
a send subroutine. B receives the message by executiuon of a receive subroutine. Ata
conceptual minimum, arguments of the send subroutine determine which processor is to
receive the message, the message array to be sent, the length of the message to be sent

(usually the number of bytes), a message tag that identifies the content of the message,

TEGT ' I T T S g oI

i
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and other parameters that affect communication. In a Fortran implementation, the send

call might have the following syntax:
call send(procto,message,messagelength,tag,opﬁons);

Processor B receives the message from processor A and stores it in memory. At a
minimum, arguments of the receiving subroutine determine the processor that sent the
message, the array space to which the incoming message is to be written, the lgngth of the
message that was sent, and a message tag that identifies the content of the incoming
message. The following syntax would be typical for a Fortran implementation:

call receive(procfrom,message,messagelength,tag,options)'.

Although the syntax of message-passing libraries varies, they all implement the send and
receive subroutines in the same conceptual manner. |

A useful symbolism for illustration of interprocessor communication uses boxes
for the processors and arrows for the messages sent between the processors. The arrow
corresponding to each message has a tail at the sending processor and a head at the

receiving processor, as in Figure 3.7.

callsend(..)  call receive(..) .

_.ﬁ
sending receiving

Proces sor processor

Figure 3.7. Tlustration of a send-receive pair (SR pair).
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For lack of better terminology, two processors communicating as in Figure 3.7 will be
referred to as a send-receive pair (SR pair). On many parallel computefs, each processor
can receive only one message at a time, although it might be waiting for more than one.
When the receiving processor waits for a particular message before executing any other
machine instructions, then the receive is called a blockz'ng receive. In the ADI code
blocking receives are used to synchronize the processors, in which case each processor
waits for only one message at a time and ceases to perform uséful calculations until the
message is received. '

Usually, each processor on a parallel machine can be waiting to receive a message
simultaneously with all other processors; so for P processors, as ma'nylas P SR pairs can
be executing simultaneously A volley is a set of SR pairs executing simultaneously for
which no processor waits to receive a message from more than one processor. The
volleys used for solving the tridiagonal systems of ADI for the SDD in Figure 3.5 are
illustrated in Figure 3.8. |

When the residual is calculated after the Z-pass in the dynamic ADI (DADI)
method, it becomes necessary to communicate between processors the iterates at the x-
boundaries of the subdomains. This is because the residual at a point requires the values
from the surrounding four points. - This communication of the x-boundary information is
called a nearest-neighbor communication in the x-direction. It consists of SR pairs
between each procéséof to the neighboring processor in the +x direction followed by SR
pairs from each processor to the neighboring processor in the -x-direction. Such
communication volleys in the x- and z-diréctions are illustrated in Figure 3.9.

In the DADI method, global norms must be calcﬁlated in order to determine the
next time step/relaxation parameier for Eq. 3.8. An all-to-all broadcast is the most

efficient manner of communicating the necessary norm contributions. A way to
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implement an all-to-all broadcast with the least number of volleys was presented in an
earlier work [Mattor et al. 1995]. In the nth volley of the all-to-all broadcast between P
processors, n=1,...,int(log,(P—1))+1, the pth processor sends a message to the

(p+2"N)th processor, for all p e[1,P]. Whatever the nature of the information that

YA

IPx
p

O OO

PO O O CeO O |
OO0 O O Oeld O Cled -0
00 O O OO O O« -0
PO -0 DOOeO0DO  Od0 O-0
1st volley 2nd volley 3rd volley
X-pass

0Oooln o000 00
Sood goog Odoo
2228 Gooo ABAA
- oooo
st volley. 2nd volley 3rd volley
Z-pass

Figure 3.8. Volleys used for solving ADI tridiagonal systems by the two-way skip
decoupling method described in Chapter 4. This is based on the SDD of Figure 3.5. The

Px andhpz arethe processor indices in-the x- and z-directions.
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each processor has before the first volley, that information can be known by all

processors after completion of such a broadcast.

PO~ Oelle e

Ch-00-0 - Ol

[BL-0-0 ClelJele{ ]

P00 Ol ]
+x direction

-x direction

I Px
Pz

OO
el
. OO0
OO«
o, OpObO-0O
B OO0
- OO
CO--0

=3

+z direction direction

Figure 3.9. Tllustration of nearest-neighbor (NN) communication in the x-

direction (top)l and in the z-direction (bottom) for the 4 x 4 SDD of Figure 3.5.
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Figure 3.10. Ilustration of an efficient all-to-all broadcast between the 16 processors of
the SDD in Figure 3.5. This is a 16-processor all-to-all broadcast method used in earlier

parallel codes [Mattor et al. i995].

3.4 Parallel two-dimensional DADI

The first step toward writing a parallel computer program for the pinch simulation
is to write a program for the ADI method. Once a simple ADI method is made parallel,
the A, and B, updates become achievable with sdme more vlzork, including parallel
versions of line integration for entrained vacuum voids. Other aspects of the pinch
simulatioh, such as evaluation of the electron fluid velocity, the poloidal magnetic flux
density, and the electric field, require nearest-neighbor communication in addition to the

ADI communication. Indeed, parallelization of the whole pinch simulation is a task that
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is too large for this dissertation. For this reason, the simplest tractible ADI method was
parallelized for solution of V.eVu—puu = p. Convergence to the solution of
V-eVu—pu = p guarantees that the parallel ADI method is free of programming bugs,
making convergence a natural milestone in development of parallel ‘ADI for the whole

pinch simulation.

3.4.1 DADI algorithm 7

The parallel ADI algorithm is based on the spatial domain decomposition (SDD)
illustrated in Figure 3.5 of the previous section. The SDD technique is utilized because it
yields favorable scaling properties. As fa‘r'as~ paraﬂel scaling, it is desirable that the
execution time varies inversely with the numbér of processofs in the SDD for a fixed
number of grid unknowns. Furthermore, one wants the inverse variation to hold for small

or large numbers of grid unknowns. It is expected that the SDD of Figure 3.5 is nearly

optimal for such parallel scaling. Another reason for chosing an SDD-based parallel
implementation is the utility of SDD in parallelization of particle-in-cell (PIC) algorithms
that are necessary for modeling kinetics; ‘While it is plausible that the-SDD approach is
nealy optimal, such has not been proven since a lafge number -of comparisons of the
parallel implementations are not a practical goal for this dissertation.

The parallel DADI prégram based 0;1 SDD is written sc; thét thé dimensions of the
subdomains can be specified along with the/number of subdomains for each orthogonal
direction of the problem. These are compile-time specifications that evenly divide the
spatial domain. When a single domain is specified for the whole problem, the program
uses a one-processor serial algorithml. If domains span only one dimension of the whole
space, then a serial algorithm is used for the direction that is spanned. Parallel DADI is

written so that Robbing bo'unda.ry conditions can be applied at the external boundary and
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so that Dirichlet boundary conditions can be applied anywhere in the problem space.
Paraliel tridiagonal system solvers of both a direét'type and an approximate type are
. incorporated in-the program (see Chapter 4). Two different.criteria can be used to
determine convergence: :one based on a residual norm (RN) that is robust for all
boundary conditions and another based on an estimated maximum pointwise relative
error (EMPRE) that works only for nonuniform boundary conditions. The residpal norm
is given by Eq. 3.29, in which the residual (abbreviated res) is implicitly defined. The

operator in the residual is the discrete matrix operator V.eV-u=H+V.

2

RN = zres,-z’j E'-\/2[(7'£Vu—yu)‘_’j—pi,j] SR (3.29)

i:j 2 )j -

The EMPRE is defined in Eq. 3.30, where the quantity & is just the mean value of the

unknown # over the grid.

max[(V . ?V ~H;; )ui, i~ P, J]mEXAxlf

"EMPRE = 2 — - : - (3.30)
min| maxu; ; —#, ﬁ—mi.nu:,j]
- L i , . kY
Foran M X N grid, the mean value of the unknown is given by
7= V. (331)
MN & bt ’

"The EMPRE is a ratio of the worst pointwise error due to curvature and the minimum
absolute deviation of the unknown from its average. For solutions that are a constant
over the whole spatial grid, the denominator of Eq. 3.30 approaches zero, making the

EMPRE useless. The residual norm itself can then be used for a convergence criterion.
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In order to test the DADI and DSDADI methods on problems with

inhomogeneous diffusivity, a mosaic diffusivity &; ; = mosaic;; was generated, where

mosaic; ; = 1+999ran(int(i / 3),int(j /3)), 1<i<M,1<j<N,

ran(i,j) = (i,j)th random number, 0< ran(i,j)<1.

Similarly, a mosaic source p and mosaic g were programmed. The form of the

diffusivity, source, and u can be selected through the inpuf file.

Locus of external
boundary points

® & & & & o eoj e & & o ¢ o o o o o o
- T o IR,

...OOO.:.’.O:OO.QQOOQ
Figure 3.11. Illustration of a3x3 piecewise constant mosaic permittivity on an 18 x 18 grid.

An inhomogeneous permittivity of this form is used to test DADI and DSCG in an extreme case

with ¢; randomly chosen between 1 and 1000. -

A concise overview of the program is given by the flowchart of Figure 3.12.
Besides the DADI and DSDADI methods , the method of 'diagonally scaled conjugate

conjugate gradients (DSCG) was also programmed with the same SDD, diffusivity,
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boundary conditions, ¢onvergence criteria, and -so forth. The DSCG method has an
efficient parallel implementation and is good for comparison with the DADI method.
Conjugate gradient methods have been studied elsewhere [Golub and Van Loan 1989;
Greenbaum et al. 1989]. Except for the core of the iteration, thé flowchart for the DSCG
method is quite shnﬂ& to that fdr -the DADI method. For brevity, the actual source codes

‘of the parallel programs are not included in this dissertation.

3.4.2 Performance
Dirichlet boundary‘ conditions chosen for testing DADI are such that the discrete
solution for £=1, g =p =0 is the same as the exact continuous solution. With i and j

the grid indices, these boundary conditions are:

ul,j=1"'j2’ uM,j=M2—j2’v je[LN],

ui,1=i2—1, u,:’N=i2—N2, ie[l,M]. 4

The exact continupus solution to ihis problem (u(i,j) = i2 - jz) has no nonzero spatial
derivatives higher t'han sécond order. Because the metho'ds are based on second-order
central differences, ADI and DSCG should converge to the exact solution u; ; = i - j2
(integer i and j) over the whole grid regardless of grid spacing as long as it is uniform.
This convergence is easily verified. _ ‘ V
Figure 3.13 shows results of parallel solution of the Laplace equation VZu=0 on

the Meiko CS-2 (1994). The parallel DADI methods, unscaled and diagonally scaled, are
compared with a parallel method of diagonally scaled conjugate gradients (DSCé). For

. this fixed problem size and convergence criterion, the DADI methods are clearly superior

to the DSCG method as the number of processors is increased. The DADI methods
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Figure 3.12. Condensed two-dimensional DADI algorithmic flowchart. Depicted are the

most important general steps. Double lines in flowchart symbols indicate that

interprocessor communication is necessary.
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a;:hieve peak speedup with over 128 processors, whereas the DSCG method has a peak
speedup with 80 processors. The DSCG method requires significantly more
interprocessor communication to achieve convergence, so that parallei"efﬁciency is
greatly diminished for fnore than 50 processors. Here, the DADI method is capable of
executing 10 times faster than the DSCG method. Diagonally scaled DADI (DSDADYI)
takes a bit longer to execute because diagonal scéling adds to the number of floating point
divisions without enhancing convergeﬁcé; it merely divides diagonal coefﬁ;:ients of
H+Vbyadecimal 1. = -

Figure 3.14 éhows resultstof parallel solution of V-eVu=0 on the Meiko CS-2
(1994). In this case the diffusivity € has the mosaic form iﬁtrodﬁced above. Again,
DADI and DSbADI are (;ompared with DSCG. In this casé, the virtue of DSDADI is
apparent; it out;;erfonns DADI and DSCG by roughly a factor of 2 with 128 processors.
Of course, both DADI and DSDADI scale better than DSCG to greater numbers of
Processors, just asA for the Laplace equation. However, the mosaic permittivity diminishes
the performailce of the DADI methods more than the performar'lcé of the DSCG method.
This suggests that' DSCG migﬁt be the algorithm of choice for cases of extremely
discontinuous permittivity. |

Now, for solution of V.eVu- Ju = p, the scaling of the DADI methods with
increasing number of processors is the same as would be achieved with parallel ADI
methods for evolution of the parabolic equation du = V.eVu—pu—-p. Furthermore,
parallelization of DADI for V- &Vu —phu=p simultaneously achieves parallelization of
noniterative ADI for evolﬁtion of ou=V-eVu—pu-p. The same cannot be claimed

for DSCG or multigrid metﬁods; they do not evolve parabolic écjuatioﬁs as efficiently.
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0.4 |-—1024x1024, constant permittivity;-.g==
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Inverse run time (sec'l)
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Figure 3.13, Inverse run time versus number of processors P for the solution of the Laplace equation on a

1024 x 1024 grid by the DSDADI, DADI, and DSCG methods. Boundary conditions are u; ; =i — j% on

oR, grid spacings are Ax = Az =1, initial conditions are #; ;j =0 inside R, and the convergence criterion

is EMPRE < 0.00001.
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Figure 3.14. Inverse run time versus number of processors P for the solution of V - eVu = 0’ with mosaic
diffusivity on'a 1024 x 1024 grid-by the DSDADI, DADI, and DSCG methods. Boundary conditions are
U ;= i2 —“j2 on dR, grid spacings are Ax= Az =1, initial conditions are u; j =0 inside- R, and the

convergence criterion is EMPRE < 0.00001.
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Figure 3.15. Iterations versus grid size, N x N, for solution of V - eVu = 0 by the DSDADI and DSCG
methods. Boundary conditions are u; ; = i2- j2 on oJR, grid spacings are Ax = Az =1, initial conditions

are u; ; =0 inside R, and the convergence criterion is EMPRE < 0.00001.
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Figure 3.15 shows relative performance of the DSDADI method and the DSCG
method on the Meiko CS-2 when the problem size is increased. Although this figure is
not relatedxto paraliel scalability, it should be noted that such large problem sizes were
made possible by a parallel compﬁter, which had sufficient memory space for the
problem. Performance of the methods is measured in terms of the number of iterations
necessary for convergence. For the problems chosen, DSCG requires over ten times the
number of iterations (note the sepérate Scales). The relative rate of increase of iteration
counts with increasing N is also higher for DSCG. It is clear that DADI scales better to
larger problem sizes, especially for the Laplace equation.

The resulfé preséhted in this section indicate that ADI methods are practical for
parallel cor\nputatio‘ns. This is extremely impbrténf for the future of th-e ADI-based pinch
simulation algorithm. On parallel computers, pinch simulation is sure to achieve higher
resolution and faster computational speeds so that more detailed comparison of theory

and experiment will be possible.

3.5 Design of a parallel screw pinch simulation

Oumned in this section is a parallel algorithm for a complete screw pinch
simulation. The problem is laid out in termsvof crude but useful pseudocode. In the
outline, special attention is given to ADI double-pasées and various message-passing
schemes necessary for update of all of the field quantities. The ADI double-passes and
communication schemes have already been implemented in the parallel DADI algorithm
presented above. The work that remains to be done for a complete parallel pinch
simulation involves the evaluation of all of the coefficients for the ADI passes, as well as

the parallel evaluation of all of the auxiliary field quantities.
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1) Assume all ¢° quantities are known, as well as p', and u. are known over
whole subdomains (including guard points). The density p! and ion drift velocity

u;, are determined by a time advance of PIC ions or fluid ions.

2) Allow calculation of ul, = f(pl,u},,,Bg). - The first option is to use
1 _ 0,0 _ 0y/.1 1 1 ok . .
Uy = p uy —ul)p! + u, to get u, over whole subdomains, without

.. .. c
communication. The second option is to use u:, = u}, +—(B201 —Bgo_l),

87ep'Az
delaying nearest-neighbor communication of uy, in the Z-direction until a later

time. Calculation of u.. at this point follows the method of Hewetf_

3) Execute a combined plasma-vacuum R-pass on the A, rate equation to find

Al? This proceeds just as for a DADI R-pass.

4) Allow calculation of a temporary B, §z and #,, for later insertion in the
plasma-vacuum R-pass on B,. This requires communication of AY?.in the R-
direction between nearest neighbors. Calculatevthem over the interior of each

subdomain according to the equéﬁons ( @ subscripts dropped):

B -__1 12 _ 412 = 1 V2 A
o kg (A°1 - '1)’ B = 2rAr (Alo “A-lo),
fmulsC AP 24+ 4% 1 (A2 g2 g g

e — % 47zep1 rAZ? . Ar? Tia e .

Communicate B, and i, in the R-direction between nearest neighbors to update

R-guard points. Communicate Ez, #L,9, and ul, between nearest neighbors in the
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7Z-direction to update Z-guard points. Evaluation of B, B, and il at this time

might lead to more accurate rate equation cou;iling.

5) Execute a combined plasma-vacuum Z-pass on the A, rate equation. This

proceeds just as for a DADI Z-pass. Communicate .39 in the R-direction between

nearest neighbors to update R-guard points.

6) Allow 139 relaxation in the vacuum regions. This is coined the "vacuum
cleanup” by Hewett. Use ADI with a trivial parameter variation (not necessarily

Doss-Miller DADI).

7) Allow calculauon of a temporary B,, B and uee for altcmatlve use in the
plasma-vacuum R-pass on B,. Calculate them over the mtenor of each
subdomain according to the equations ( @ subscripts dropped):

Er——E(AOI Ao ) §z=—}"(“310'/1—10)’

A 1 R Ao] 2A + AO—] o 1 Klo - A A - 2—10
i, =u; > +—s - )
41rep rAz Ar°\ nn ran

Communicate #,, in the R'-directidn between nearest neighbors. Communicate

eg, and u., in the Z-dlrecuon between nearest neighbors to update Z-guard

points. Calculation of B,, Bz and #,, at this point fo]lows the ongmal method of

Hewett [1980].

8) Allow calculation of E, = f(pl,T:,B,z,ue,,uee,ua) g1v1ng E_in the R-

interior and Ez in the Z-interior. Zero the Ohmic contribution in vacuum regions.
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Communicate the result in the R-direction bertween nearest neighbors to update
- R-guard points. Communicate the: result in the Z-direction between nearest

neighbors to update Z-guard points:

9) Allow calculation of E.2 = -Q-(Ef +E, ,z) over whole subdomains.

~10) Allow multiprocessor vacuum void processing:
a) Intraprocessor void labeling

b) Intraprocessor integration -- null contribution along processor
boundaries, either for B, or for §3RE-dl7 :

¢) Interprocessor label association and transfer of line integral
contributions.

d) Répeated heérest—neighbor communication to transfer updated k",

i

11) Perform-an ADI R-pass on the B, equation, just as for a parallel DADI R-

pass.

12) Make it an option to calculate u}, = f(p™*',u},By?). These ul, values are
easily calulated at R-interior points of each subdomain, and there are the only u;
values needed for subsequent Z-passes on By and Ay. Delay communication of

ul, in the R-direction. Calculation of u, in this way follows the method of

Hewett [1980].

13) Perform a parallel ADI Z-pass on the B, equation, just as for a parallel DADI

Z-paés. Delay communication of B} in the R-direction.
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14). Make it an option to perform a parallel Z-pass on Ay, proceeding as for a
parallel DADI Z-pass. Communicate Ay, ul, and B} in the R-direction between

nearest neighbors.

15) Make it an option to relax on the Afl, in the vacuum regions. Use ADI with a

trivial parameter variation. Communicate the last A}, between nearest neighbors

in the R-direction.

16) Calculate B!, le and ul,. Thiese are easily calculated over the interior of
each subdomain according to the.equations ( 8 subscripts dropped):
1

= 1 _ 1
Be-o(Ah-ab) . 'B-—ZAr(A1o Aly),
ety [Au=24T+A0, 1 [Ag-A A -Ay]|
¢ dmep! rAZ A"Z 2z o Tan

Communicate u!, in the R-direction between nearest neighbors. Communicate
u.g and u., in the Z-direction between nearest neighbors.
17) Components of E! can be calculated over whole subdomains wrthout

add1t10na1 mterprocessor commumcatron

From the pseudocode, it is obvious that a parallel pinch simulatiorr requires
consrderably more work than parallel DADIL Implementmg para]lel DADI is like
playmg one instrument in an orchestra, whrle unplementmg the complete pinch

simulation is like conducting the whole orchestra.
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Appendix 3.A1
A serial (tridiagonal-block)n tridiagonal system solution

Perhaps the most important type of linear system arising from a finite-difference
approximation to a PDE is a (tridiagonal-block)" tridiagonal system for n+1 spatial
dimensions. These arise from 3-point second-order central differences for approximation
of second order spatial derivatives. In two dimensions the systems are tridiagonal-block
tridiagonal, whereas in three dimensions the systems are tridiagonal-block tridiagonal-

block tridiagonal or (tridiagonal-block)? tridiagonal.

(x x x 3
X X X X
X X X X
X X X
X X X x
X X X X X
X X X X X
X X X X . . .
x X x x al,llal,ZI 1
———e e ———
: T TEx * 23113221273,
A= x x x x x = |-l
x x x x 133,213,333 4
=== r--TT//aT—-—
: x i i x : 534’3534’4
X X X X
\ . b 4 X xj

Figure 3.16. Tridiagonal-block tridiagonal coefficient matrix. Vertical lines are visual

aides for discerning matrix structure. Generally nonzero matrix elements are denoted by

xs. Here, each a; ; is a block matrix.

e e = . rrp— Eee o qeeean
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The matrix operator A corresponding to the second order central-differencing of
V-eV-pu on an (M +2)x(N+2) uniform rectangular grid with Dirichle;t boundary
conditions around the outside is a u‘idiagonal-block‘tritiiagohal operator. 'fhe matrix
operator can be written as a matrix with M rows of tridiagonal blocks of size NXN.
Alternatively, with a reordering of unknowns, it can be written as a matrix with N rows
of tridiagonal blocks of size MxM. This is a matrix operator of interest for two
dimensional plasma simulations. The operator fora 6 X6 gnd would have the followmg
structure. The number of arithmetic operat;pns (AOs) necessary to solve the system
Au = b with the A of th.e.form in Figure 3.16‘is 0(MN3) or 0‘(M3N)T Ifthe A werea
general MN X MN matrix; then O(M°N?) AOs wou}& be he’ceésar? for solution. |

Solution of the tridiagonal-block‘ tridiagonal system for the M =N =4 problem

above could proceed as follows:

Reduce a;; to the identity

(1 x x x x
1 X X x x
1 X X x x
' 1ix x x x
x x x x
x x x x x
x x x x x
x x x x
1ia; | P ¥ % P
——f
a:a:a= x x x x x
——t—A——t-— = x X x x x
jajaja x x x x
RArF ST
x x x x
x X x x
\ x x X
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Eliminate a,;

(1 X x x x
1 X x x X
1 X x x x
lix x x x
X X X XX
x x x x x
X X X X X
T Lo x x X x x
1jia} | x x x x
-T--:--T-' \ x x x.x x
14,3, '
= o e of o= e o e = X X X X X
jalala ' ‘ x!  x x x
——fm == *
1 1alg x x x
o x x x x
x x x x
\ X X XJ
Reduce a,, o Finish forward
the identity elimination - Back-substutute
1ia; . 1ia} | 1, 1
NTErYE TR E B
,|1|a= lllal 111 1
it TR [T
ja;a;a 1 11|a 1 111
——f——g——t— ——f -—=t——r=
I lala t v 11 O S |

A'f the étart, each block matrix a is either diagonal or tridiagonal, but a diagonal
block a;; quickly fills as a;;_; is eliminated. To reduce the new filled a;; to a block
identity matrix requires a number of AOs that scales as the cube of the number of
equations' in the block -- it is just as expensive as a Gaussian elimination on a dense
matrix with the same number of equations. If there are M rows of NxN blocks, the

total number of arithmetic operations scales as O(MN?), as claimed above.
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Chapter 4

Parallel Solution of Distributed
Tridiagonal Systems of Equations From
Spatial Domain Decomposition

}

This chapter is devoted to aléorithms used in parallel solution of distributed
tridiagonal systems of equations for ADI. The first section discusses general tridiagonal
systems that can arise from the plasma simulation. The second section discusses a new
parallel direct method used to solve the general tridiagonal systems. The final section
discusses an approximate parallel tﬁdiagonal solver that finds a solution more quickly

than the parallel direct method.

4.1 General Tridiagonal Systems

In the simulation, tridiagonal systems arise from application of alternating-
direction:irnpﬁcit (ADI)’methods to equations of the form Jdu=(V-eV—-pulu—p. ADI
methods work well for time advance of fhe equation. For the time asymptotic sblution,
ADI avoids di:ect solution of the discrete (tridiagonal-block)® tridiagonal system of
equations via iterative solution of tridiagonal systems. The tridiagonal systems arise from
the second order derivatives in or;hogonal grid directions, and have ﬂle following form

for a line of N grid unknowns subject to general physical boundary conditions:

ajuy + .41,2"2 +ayuy =1 : : (4.1a)
Uiy F G+ Gty =1 Y i€[2; N-1] ' (4.1b)

ayy + Ay Ny T Ay iy = Ty 4.1c)

Y
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For an ADI pass on V?u =p in the r-direction in cylindrical coordinates, the coefficients

in Eq. 4.1b would come from Eq. 3.9,

1 d ( au) = I 2 (o — W) =Ty (—1y,) 39
ror\ or rAr? ) )
The coefficients for this case are:
a.., = i—liz_ L. o= -_.g_. and a;;., = Tiv/2 4.2)
3,i-1 r ATZ » Y Ar®’ ‘ i,i+] rArz : . - )

Physical boundary conditions lead to constraints affecﬁng Egs. 4.1a and 4.1c. Periodic
boundary conditions are equivalent to the assumption that uy=uy and uy, =u,
combined with the use of Eq. 4.2 for the coefficients in Eqs. 4.‘1a‘and 4.1c.
Robbins boundary conditions are slightiy different. When a ﬁnear combination of
a field quantity and its normal derivative is specified at a Boundafy point, the quantity is
said to be subject to a Robbins boundary condition’. For a ﬁe}d quantity u, such a
boundary condition is expressible by the mathematical statement au-l; bA-Vu = c. Here
A is the umt normal to the boundary Special cases of the Robbms boundary condltlon
are Dirichlet (b= O) and Neumann (az=0) condmons A Cauchy condition at a
boundary point of an open region is the same as independent Dirichlet and Neumann
boundary conditions at the same point, and hence islnctually two Robbins boundary
conditions at the same point. Non-Cauchy Robbins boundaiy conditions arising from

second-order central differencing around the 1stand Nth points of Egs. 4.1 lead to Egs.

4.1a and 4.1c in which g, y and ay, are zero.

~

Regardless of boundary conditions, the system of N linearly independent
equations in N unknowns has a unique solution. With periodic boundary conditions and

N =8 the equations would have the following general structure in matrix form:
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(x x Y ) (=)
x x x x x

x x x x x

x x x x| |=

x x x x| | =

x x x x x

x x x| x x

AX x x)\x/ \x/

Figure 4.1. General structure of a system of eight equations of the form of Egs. 4.1,
allowing for periodic boundary conditions. Nonzero matrix and vector elgments are

lettered nondistinctly.

When the boundary conditions are Robbins for the same grid, the first and last unknowns
are no longer coupled through the isolated coefficients in the lower left and upper right
corners of the matrix; see Figure 4.2. If Dirichlet conditions are applied to the first and
last points, the number of unknowns effectively decreases by two, and the off-diagonal

coefficients in the first and last equations become zero, as in Figure 4.3.

(x x ANNA
1x x x x x
X X x. x x
X X x x x

x x x | |=

x x x x x

x x x|x x|

\ ¥ af\x) \=)

Figure 4.2, Structure of a system of eight equaﬁoné of the form of Egs. 4.1 to which

genéral Robbins boundary coﬁdiiioxis are applied at the first and last points.

3, E - - .
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(1 Y x) (x)

x x x x| 1x

x x x x x

X x x x x

X x X = | =

x x X x x

. x x x| x x
'\ IN\x) \x/

Figure 4.3. Structure of a system of eight equations of the form of Egs. 4.1 to which

Dirichlet boundary conditions are applied at the first and last points.

If the system arises from periodic boundary conditions, the N-equation system
can be efficiently solved on most single-processor computers with 13N —14 arithmetic
.operations (AQOs). If the system arises from Robbins boundary conditions, the N-
equation system can be serially solved with 8N —7 AOs.

The .number of AOs necessary for an efficient and scalable parallel solution is
larger since the simplest serial solution techpique'is inherently recursive. In fact, parallel
direct tridiagonal solvers useful for spatial domain decomposition (SDD) over N
processors, where N>>2, require a bit more than twice the AOs of direct tridiagonal
solvers on a single procefssor. Su;:h parallel nidiagoﬁal solvers are the backbone of
parallel implementations of ADI using SDD apd message passing on a multipie-
instruction/multiple data (MI]\D) computer.

To help introduce. the parallel tridiagonal solvers for our SDD ADI method,
Figure 4.4 depicts a general (periodic) tridiagonal system of equations in 16 unknowns
evenly diétributed over four processors. Such an anahgémen)t of ;he equations naturally

arises from the spatial domain decompositions mentioned in Chapter 3.
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(x x ! ! ' x) (x) (x)

x x x i E x x|

P1 X x xl i i x x
X Xix i i x x

xlx x ! ! x x

'x x X E E x X

P2 X X xi i x x
x xix E x| _ |=x

xix x ! x - ;

P3 : ix x X § x x
i E X x x; X x

; x xix X x

i E x;x X x x

P4 ; E Ex x x x x
E E x x x||x x

\x i | i x xJ\x) \*)

t

Figure 4.4. System of 16 equations of a periodic tridiagonal system evenly distributed
over four processors. Horizontal solid lines seperate groups of 4 equations on each

processor. Vertical dashed lines are visual aides for alignment of coefficients.

In ggference to Figure 4.4, beforé the parallel SDD method proceeds, eaéh processor P1-
P4 has knowledge of four contiguous equatlons of the dlstnbuted system. Terminal
processors, namely P1 and P4, each have equations 1nvolv1ng 6 unknowns for the
periodic case, and 5 unknowns for the nonperiodic case. The interior Processors P2 and
. P3 each have equations involving 6 unknowns in either case Each of the susbsystemé of
four contiguous equations is coupled to neighboring subsystems. Generally, for a system
distributed over P procéssors, the terminal processors are the 1th and Pth prc;cessors, the

interior processors are the remaining processors, and each processor initially has
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knowledge of a subsystem of equations that is a contiguous subset of the original
tridiagonal set. ‘ .

Thére are v’arious parallel tridiagonal solvers in the literature that use such an
SDD (same as partitioning and/or divide-and-conquer (DAC) approach. Most of them

can be distilled into the three simple steps depicted in Figure 4.5.

Interprocessor
-| Intraprocessor Intraprocessor
o = o reduced e o Ak
Tow opexnuons system solution backsubstitation

Figure 4.5. Three steps in a typical parallel tridiagonal solver based on spatial domain
decomposition. ‘

The parailel tridiagonal solvers outlined in this thesis also incorporate these steps, which
are used to outline the description of the solvers. o r

The ﬁr’st\stép places the subsystem on each processor in a form that allows
subsystem decoupling with a minimum amount of rednndant work and interprocessor
communication. It involves simple row operations between equations on the same
processor, which is the origin of the term intraprocessor row operations. The operations
are performéd in a -mannéi: that is numerically stable; hémd prdneed with complete
parallelism as long as each processor has the same number of equations.

The second step achieves the interproééssor decoupling. 1t involves the solution
of a small muluprocessor group of the equatlons, sometimes called the reduced system,
from the ﬁrst step. The unknowns in the small group of equatlons are the only unknowns
that couple the ProCessors. Determination of the couphng unknowns for a glven

processor is all that is necessary for the processor to complete direct solution over the

associated subdomain. This reduced system solution requifes interprocessor
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communication. Hence, the term interprocessor reduced system solution is used to
- describe this step.

+  Of the three steps, the third is the most straightforward. Again, it is a completely
parallel step as long as the processors begin with the same number of equations. It can be
implemented as a nonrecursive backsubstitution of values from the reduced system
solution, requiring no interﬁroceSsor communication. This is the origin of the term

interprocessor backsubstitution ..

4.2 Intraprocessor row operations: placing tridiagonal
submatrices in N-form

4.2.1 Simple formulas for the operations

For efficierit pa;'allel solution of the distributed tridiagonal system of Figure 4.4, it
is necessary to kée;p the processors busy throughout the solution without performing too
much work beyonci thé standard seﬁal aléoriﬂim.' Contrary to this, thp standard algorithm
for tridia;gpnal system solution does nét yield scalable performance on a parallel
computer when SDD 1s used. Only one proéessor in the domain decomposition can
perform uséful work at a given time. This is because the stagdard algorithm is
completely recursive, and would proceed from one equaﬁon to the next through each
subsysteni, then to tﬁe next proceésor, when required, to the next subset of equations, and
SO on. | |

In order for multiple processors to work on the problem simultaneously and in a
manner that scales, the standard algorithm must be modified to diminish the effect of the
recursiveness. Recursiveness is reduced by using intraprocessor row operaﬁons which

isolate the coupling of the processors to just two equations on each processor. Processors
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perform these row operatiops simultaneously. The 60upling of the processors then
remains in a much smaller subset of the equations that requires recursive solution in
parallel. Such an approach is adopted even though it increases the total number of
arithmetic operations by a factor of two over the serial algorithm. The exact approach
tested in ADI manipulates the subsystems ﬁntil they are in N-form: The term N-form

comes from the image that the nonzero coefficients form when they are arranged in the

standard way of Figure 4.6.

(v x! I ; JF; /%) (%)
x xi E xl|xf x
P1 x xi l E x||x x
xix i i x||x x
xix xi . 1x ;
. ix x x! ' X x
P2 Ex x x x x
gx xix ; x| _ Ix
} XX x) x _1;
E ix x x! x x
P3 | ty' ' ox x x| x
X fx. . oxix x x
x : : X% x x|
4 X § % ix x x| X
P ) E i ix x  |txl x

\x i ' Lx

xX)\X*) \ X/

3

Figure 4.6. System of equations of Figure 4.4 after intraprocessor row operations have '
been used to place subgroups of equatigns in N-form. Horizontal soliq lines seperate
groups of 4 equations on each processor. Vertical dashed lines are visual aides for

alignment of coefficients.
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To derive the arithmetic of the N-form reduction, it-is convenient to start with a
representative subsystem of equations on one processor, and to evaluate the elements of
the subsystem as the equations are manipulated. The original subsystem for an interior

processor with six equations is as follows:

q —a b () (7’_1\
¢ ~a by | x r

¢3 ~az b Xt _ |73

¢y —ay by x| ry

cs —as b x rs

Ce —ag b5 \ y, \.7_'2

Here the coefficients have been distinguished in order to give details of the reduction

process. After a forward elimination in the subsystem, the coefficient matrix has the

foliowing form:
G 1 b (Y (n)
5 1 b x r 2
cs 1 b x| r3
Cy 1 b, | |r
cs 1 b x rs
Ce 1 b6 K) \r_6 J
The c; , b; and r; are given simply by:
G=-%, p=-b oL o1 (432.b,0)
a; a; a; .
' Cic;'—l U —bi T, i Cir ;'_1 .
ci=—t2 pm——t— =t tl =3 N 4.3d.e,
! a,- + cibi-l ! a" + Cibi—l ! a; + Cibi-l ( ﬂ
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No pivoting is necessary in this forward elimination step when the system is diagonally
dominant. After another elimination step similar to the forward elimination, but in the

backward direction, the subsystem is in N-form:

q 1 b, (Y (7))
c; 1 ) ) b; x r'z'
C3 1 ba i 7’;
Cs 1 b, x ry
' CS 1 bs X T. ;
Ce.. 1 b6 kE J \.ri

Note that this coefficient matrix "lboks er" the letter N. Elements are formulated as

follows:
¢ =¢, b =b, r,=r, i=N-1N; (4.4a,b,c)
G =G =bicy b ==bbiy, 7 =ri=bryy, i=N-2,..2;  (44def)
C; (] _ —blbz | r" = n —b17:'2 (4,4g,h,i)

T1-bg Y 1-be ' 1-bo

The diagonally dominant casé does not require pivoting for the backward elimination
either. This is beneficial, becausé pivoting would decrease the execution speed of the
algorithm. |

After the N-form reduction is complete, the solution to a subsystem is readily
found after the 1th and Nth unknowns have been determined (N equations per
processor). In this sense the N-form reduction is equivaleiit to solution of a Dirichlet
problem over the subdomain,-with the boundary values, namely the 1th and Nth
unknowns, yet to be determined. Indéed, if the original tridiagonal systém of equations is

from a one-dimensional discretization of Poisson's equation, then this reduction to N-
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~ form is equivalent to solution of an inhomogeneous Dirichlet problem over each
subdomain, with the/1th and Nth unknowns playing the role of the Dirichlet boundary
values. For this reason, it is natural to use the term processor boundary unknown to
describe the 1th and Nth ﬁnl;rlowns of each subdomain.)

For a terminal précessor, the forward elimlination of the N-form reduction can
proceed in the same manner. The subsystem begins with a coefficient matrix like the

following six-equation example:

T T T . )
bl g a b ‘ () o In
ol la-mt, ||

. E E i ¢; —a; by X1 _ |73

E i i ¢y —ay by x T4
e i 5 i ¢s —as bs | x rs
by ...t..t.. ] Ce —Gg \X/ \Ts)

T T g : /)
weledo gl b, () n
1 P ' '

eon :... : .es :C.z 1 b2 ' X r'2

.o E... E .. 56'3 1 b3 Xl _ |1

S R Ec:, 1 b, x Ty

JSUR DUV DUURR ) 1 b |=x r

S R s ° :
Be wwoboie  icg 1\x)  \r)

The ¢ » b; and r; are the same as before. For the nonperiodic case, by =by =0. On

backward elimination the reduction could be just like the interior case:
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Al il B () (7)
SN A EIE
EE Ec3 1 b's. x| _ r3
EE EC4 1 'b:,' x rf
e I ¢s -1 by |x rs
B oot ! cg 1\x) s

Then the ¢; , b; and r; would also be the same as for an interior processor, and the
processors would be coupled by éP boundary uﬁlénowni i3ut in the nonperiodic case this
would not take acivantage of the equation by = b}v =0, which can be used to reduce the
number of coupling unknowns froﬁ 2P to 2P-2. Instead, thé: following backward

elimination can be used to make the nonperiodic implementation more efficient:

(Y ()

Aot A ] g
S R R L
by ...t i C3 1 1=
b4§§ gc},: 1 x‘ rg
bsi ...1..1. ICs 1 x| rs
b; Ei ;c; Y1 \x) \r;)

The equation by = bN =0 would then obviate evaluation of any b; . These coefficients

are given by:
Gy =Ch» x=%;' Fy=ry: ) (4.52.b,)
G =i~ b b =B, T =, b'r;;l; i=N-1...2;  (45de)
" - " ~br, .
G = , b = b . 7 ———‘—1 (4.5g,h.i)

1- blc2 1-bc,’ 1-bc,
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- Reduction to N-form can be achieved with 13N arithmetic operations for interior
processors. The terminal processors perform about 13N arithmetic operations when
periodic external boundary conditions are applied, and about 11N operations when
Robbins external boundary conditions are applied.

Note that the 1th, 4th, 5th, 8th, 9th, 12th, 13th, and 16th equations depicted in
Figure 4.6 form a system of equations, depicted in Figure 4.7, that determine coupling

unknowns independently of the other equations:

/1 x: : : X\/x\  [/x
1ix | 1 x| x x
1 1 L
xil x! [ X x
{ 1 ]
Ix tix § x x
1 1 1 —
! xIil x1i x x
1 I 1]
1 Ix 11x x x
1 1 1
x : : x{l x X
\x ! ! Ix 1A\x/) \x/

Figure 4.7 The reduced matrix from the N-form reduction of Figure 4.6. Horizontal
solid lines seperate pairs of coupling equations on each processor. Vertical dashed lines

are visual aides for alignment of coefficients.

These equations form the reduced system corresponding to Figure 4.6. Details of the

solution of the reduced system are covered in Section 4.3.

4.2.2, Useful N-form matrix element relationships
The primary goal of this section is to derive an expression that determines

whether coefficients cy and b, are sufficiently small for solution of the distributed

tridiagonal system by an approximation technique that reduces interprocessor

communication. To see that small coefficients ¢y andb, can lead to a useful
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‘aproximation, observe the following equations that couple the Nth and (N +1)th

Processors: °

cyaX + Xy +by yaXnag = TN (4.6a)

Cns N N F Xy F Dy anon = Tha (4.6b)

Here, the numbering of unknowns is such that first equation on the Nth processor has the
central coefficient unknown that is numbered the first. Note the correspondencies: cy of

the Nth processor becomes c',;,,l; b, on the (N +1)th processor becomes b;/+1,21v- The

equations can be rewritten to solve for the central unknowns:

Xy = Ty —Cyi% — by ysi¥ne . 4.7a)

Xy = Tna1 —CNsLNXN — Byszn%on- (4.7b)

When the original tridiagonal system is diagonally dominant, the magnitudes of the

coefficients C;V,l and b;m,z w tend to approach zero with increasing N. On the other
hand, the magnitude of the coefficients by y,; and cy,, y approach unity with increasing
N. As long as the solution has values x, Xy, Xy, and x,y which are not widely

varying in magnitude, then smaller coefficients cy, and by,;,y make the following

approximations become more accurate:

Xy = Ty = by yaXyao ‘ (4.82)

XN+t = TN~ CN+LNXN- (4.8b)

Quite often the solution is relatively smooth so that these approximations are good for
- N>10 or so, which is small enough for practical problems. If these approximations are
used for parallel solution of the tridiagonal solution, then nearest neighbor processors

need to communicate only one message to each other in order to complete the solution.
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This is less communication than necessary when accounting for the coefficients 0'1;7,1 and
b;m,zzv-

A secondary goal of this section was to find alternative expressions of the N-form
reduction in an attempt to find a parallel algorithm requiring fewer FLOPs.
Unfortunately, fewer FLOPs were not achieved in this manner. All of the expressions
that were discovered are developed by constant allusion to a tridiagonal submatrix with
six rows. Also, the assumption of a symmetric &iagonally dominant tridiagonal systém is
made. The number of rows is just sufficient to find patterns in the formulas for solution.
In this section, only the interior processors are considered. There should be a

straightforward but tedious extension to terminal processors in the general periodic case.

Original subset for an interior processor:

aq 4 &
G —ay G
C3 —a; C4
¢y, —a, Cs )
C; —as Cg
Cs —as C7
Subset after forward elimination:
q 1 ¢
6 1 ¢
c3 1 ¢
Cs 1 s )
Cs 1 ¢

e e - - 7 = = < on - - Sy ——— - E—
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The ¢; and ¢; can be expressed as (see Appendix Ch4.A3):

g=-4, g=-2, n=-1, (4.92)
1 2 1
.G ] a

q
¢ = —[I¢; V iel2N], o (49b)

Ui j=2
¢ = -9 v e[ N+1), ~ 4.90)
- i_z B .
r= By ie[2,N]. (4.9d)

i-~1 : K g )

The quantities U; and R, are convieniently defined in the following way

U,=0,Uy=1, U =a,U,-EU, i=L.,N-1, (410
Ro = O, R‘ = ri_,_lU,-_l-i-Ci_,_lR,»_l, i=1, voey N‘—l, (4.11)

Here is the subset after reduction to "N-form":

d 1 d,
g 1 i
dy 1 d,
d, 1 dj
ds 1 d;
dg 1 4

The d,, d; and right-hand sidé can be eipressed as follows (seé Appendix 4.A3):

4 =~4Un-2 _—als : (4.12a)
v, v,

" V.. 4 Voo :

d = Zi2YTe, = 2] ]e. V ie[2,N-1], (4.12b)
Uy j=2 / Vs =z’

F:«':NM‘:&":" N et .| STEIRIRYAN e . gt o
- Ty . Lo, RERRa » P P ES &
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S " -1 X , -
dy = ¢y = U—II'[c,., d, = Vl ¢ @.12c,0)
N-l j=2 . 2 j=2
d = - L/ES H ¢ = --'—~31'[c V ie[3, N], (4.12¢)
N-—2 j=i 3 j=i
. —cnUnz _ —CyuV-
dyyy = Cyag = 1{;-1 N2 _ l}m 3 @4.12
N-1 N-1
r;" = Vi+2Ri~ll';Ci+1Si+2Ui-2 , i= N, vy 3 (4.138.)
: N-2
S W TR (4.13b)
Vis
The U, are as before, and the V;, R;, and S; obey the following:
. V2 =0, Vyu=1, V. =q_V,,~c?V,,, i=N,..,2, 4.14)
S = 0, § = gV +68, i=N, .., 2, ‘ - @15

Theformula for the V; is actually more like the formula for the U; than it looks If the ¢;

are labeled c,_,,z, the formulas prove to be "mirror image' relauons
U = a,Ui, - cx'2+l/2Ui-2’ Vi = a Vi - ciz-l/2Vi+2° : (4.16)

Note that Uy_, is equal to V;, and that this was used in the above equations for the d
and the d, .

Laplacian case |

Consider the case in which 4; = ¢;+¢;,; + u, + @, as would arise from an ADI
method on (V- eV - ,u)qb = p. For ADI, & =2/At> 0, and for the Laplacian, ¢; =1 and
;= 0. Then for ADI in the Laplacian case it is easy to show that the coefficients d, and
d;, are exponentially decreasing functions of the number of equations N in the subset.

Furthermore, with increasing @, d, and d;, decrease as inverse integral powers of @.
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To arrive at these conclusions, note that the transformation x =1+ /2 =1+1/At

makes the U, Chebyéhev Type I polynomials in x [Arfken 1985]:

U(0)=0, Uy()=1, Upy(®)=22Us()~Upy(), i=1, .,N=1.  (417)

The following formulas for these Chebyshev.U; are convenient:

sin((i + Darccosx) _ (x+ = —l)mz ~1
sin(arccos x) (x+\/;c2_-—1)i (x+ xz—l)z— ]

4.18)

U;(x) =

The trigonometric expression is most useful for |x|<1. Itimplies that the i roots of each
U, are real and within the interval |x]<1. Also, it implies U;(1) = i+1 and
U,-‘(—x) = (-1 U;(x). These points imply that for the interval x> 1 each polynomial U;
is domihatcd By (2x)"‘ by two orders inr x, and hence incrééseg, as such for fixed i and
increasing x. | | |

The other expression is most useful for x>1, and can be used to quantify
behavior of the ) U; with increasing i and fixed x. To discover the behavior, one only
needs -to .take a derivative with respect to i, assuming for the morﬁent that i is
continuous:
| _zq;=[(x+m)2-1]“%[(x+my”_(xw,?_—l)"‘]'

=[(x+ ;;2—1)2—1]—IM(;c+ xz-l)[(x"‘*/?_‘—l)m*(“ xz—l)—i].

4.19)
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For a constant x>1, d;U; is bounded below by an exponentially increasing function of
the index i. This implies that the U, are at least exponentially increasing functions of i
on that interval. -

When larger subdomains are used for tridiagonal system solution, Chebyshev

polynomials of increasing index are needed to evaluate and - dN In particular,

4.20)

rThen for the I:.aplaciaﬁ case, dN is an exbénentially ‘decaying function .of the number of
equations N in the sub&omain. By symmetry and uniqueness of the N-form reduction
process, the same observation can be maéé for d,. As explained above the smallness of
these coefficients can be used to implement a faster pa{aﬂel tridiqgonal solver to be

described in detail in the next section.
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4.3 Interprocessor reduced matrix solution:

Once the reduced system of Figure 4.7 is obtained, there are two general
approaches to solving it. One class of methods uses an all-to-all broadcast to assemble on
each processor a copy of the complete reduced system to.be solved by the standard
tridiagonal algorithm. For lack of better terminology, this first class of methods will be
referred to as all-to-all broadcast methods. In this first class are the methods of [Kowalik
and Kumar 1985] and [Mattor et al. 1995], summanzed in Appendices 4.A1 and 4.A2.
The second class of methods solves the same subset of equations without first
broadcastmg them. In this class is the direct two-way skip- decouplmg method tested in

paraliel DADI for later use in the pmch simulations.

43.1 Direct solutlon by two-way sklp decouphng " |

Parallel direct solution of the reduced system by the two-v;ay skip decouphng
method yields the full solution to machine precision. This part of the solution is the only
part that requires communication between the processors in the domain decomposition.

After reduction to N-form the processors are coupled by the following reduced system

(an example with P = 4) for the general periodic case:

(1

b
1 b,

¢ )

C

C3 1

Cy

by

1 b,

Cs

1

Cs

bs
1

\Bs

¢7

%)

® R B O®H RV R

\ X
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Note that if the system is nonperiodic, the coefficients ¢, ¢,, by, and by are zero, and the

reduced system can be simplified to:

(1 b, Y (x) ( rz\
g 1 b Xt g
cs 1 b x Ty

cs 1 bs x| rs

¢ 1 bsll=x Tg

- g 1 \x) )

Solution of the reduced system in the general case can begin with a forward elimination

that yields the following new system:

(1 B ¢, ) (*) ' (7))
) , al|*] |n

1 b c || x r

1 b, e |l x _ Ty

1 by cs || * - ;;

1 b cll=x re

c; 1 b ||x ;7-
(G N 1)\x)  \r)

The formulas for the coefficients and the right-hand side after such a forward elimination

on P processors are as follows:

c;. =c, b; =, r;. =r, i=12, ‘ (4.21a,bc)
' _CiC;’—l ' b; i ar ;'-1 .

CGG=———, b= —, n=——= i=3 ..,2P-2, (421de,
: 1 - cibi-l ! 1 - cibi-1 ) 1 - Cibi—l ' ( f)

y Byp.g y bypy — Czp-lc'zp-z y T2p1~ Czp-l"'zp-z .
Copy =T, byp; = g » T2p = - ,» (4.21ghi)

1-cp1brpa - 1-cpibp, 2 1 _‘CZP-leP-Z
: —CypCop_ . Top =Coplyp_ .
Cyp= Gp = CGpCpa —T2p ~CopTap) 4.215%)

' ’ 2P 0 -
1-cypbrp 1-cpdypy

2
N
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The system can be further reduced by a sequence of backward eliminations, placing it in

the following form:

( 1 b; AY4 x ) (r'l'\
c, 1 ' b ||x L
c3 1 N by ||x r3
Cq 1 b4 X _|Ta
Cs 1 bs || x rs
C6 1‘ b6 X Ts
¢ 1 B ||=x s

\C 1)j\x ) \rs)

The formulas for this general backward elimination are then:

¢ =¢, r=r, i=2P-12P, by, = bp, (4.22ab,c)
¢ =—bichps b =Gi=bbyg, 73 =Ti=Bifsy, i=2P=2,..2, (422deD’
w _ ¢ —bb, w  r=br , ‘
b = 112 = L2 4.22
! 1 - b162 . rl 1 - b162 ( g,h)

For the nonperiodic case, :the reduced system wouid be completely solved, because all of
the &} and ¢ would be zero. |

For the periodic case,Jthe 1th and 2Pth equations cén be used to determine the 1th
and 2Pth unknowns. Then a nonrecursive cycle of forward and backward elimination
finishes solution, leaving the identity matrix on the left-hand side (P =4):

(1 A (.

-~
7
=
7

[y
H R R X R R ® R
o

r
Land
-
-~
-
-~
o
.
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In this case the following formulas are used to obtain the solution:

wonoo ”" "

=""1'—bl7'2p L Tap = Coply :  (423ab
R A S S .
r, =r; —cr —brp Vie[22P-1].. : (4.23c)

The most significant differences between Vthe all-to-all broadcast methods and the
two-way skip decoupling method are in the interprocessor communication. Processors
must communicate with messages of different lengths, and they must communicte in
different orders. An all-to-all broadcast for the first class of methods requires at least
log, P communication volleys between the P processors over which the system is
distributed. Here a volley is defined as a group of send-receive pairs that can proceed
simultaneously between the processors with no more than one sent message per
processor, and without intervening calculations. A send-receive pair is the completion of
a message-sending subroutine on a sending processor and a message-receiving subroutine .
on the receiving processor. In any given volley, more than one pair of processors can be
executing a send-receive pair. Also, two isolated processors can be executing two
oppositely directed send-receive pairs. Interprocessor communication that achieves an
all-to-all broadcast_between P =8 processors, using the minimum number of volleys
(three), is depicted in Figure 4.9.

There is an alternative to the above all-to-all broadcast method. The reduced
matrix can be left distributed over P processors, and communication can proceed as
necessary to perform the eliminations of Eqs. 4.21 and 4.22. These equations would then
require 2P —2 communication volleys if the forward and backward eliminations are not
done simultaneously, but only P —1 volleys if they are done simultaneously in a folded

manner. Each of the P—1 volleys requires two SR pairs, one between one pair of
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processors, and one other between another pair of processors. -This two-way skip-
decoupling method for the nonperiodic case is the one studied in this paper. For the
peﬁodic; case, once the 1th and 2Pth unknowns are aetermined, Eqgs. 4.23c and 4.23d are
best implemented with an all-to-all broadcast. Interprocessor communication schemes

for the nonperiodic case are illustrated in Figures 4.8 and 4.9..
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volley 1. ' gHg T P=2

volley 1 G-107
volley 2 ﬂ 6—@ —)ﬂ

 volley 1 -7 @(—ﬁ
volley 2 @ G(—)@ @ P=4
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volley 2 @ ﬁ-—)@(—@ @
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volleyd JeTJ O O-0
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Figure 4.8. Interprocessor communication volleys nécessary to solve by the two-way
. folded skip-decoupling method a nonperiodic tridiagonal system of equations distributed
ovér P processors. Each arrow represents the SR pair of a transferred message. SR pairs
in a given vollgy can be executed simultaneously on most architectures. Values of P
from two to five are shown. Extensioﬁ to P> 5 follows the same pattern. For P

~ processors, P — 1 volleys are always necessary.

———— e — —_—
s o ¥ -
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4.3.2 Zeroth order approximate solution using only nearest-neighbor

communication

Solution 1
As a four-processor example, interprocessor row operations can be performed on

the reduced system until the following linear system appears (nonperiodic case):

( 1 bl \ 7 2) ( r'l\
1 b r'z
c; 1 by _|n
Cy 1 b‘; r:,
C5 1 rs
\ s 1)\x) s

These coefficients and right-hand side, for P processors, are given by the following

formulas: '

o =—_C2i-1 F = Q%1 vy je2.P-1 4242 b
.sz-l 1=b,; 165 > G 1-by; 46y l [ ’ ], ( )
by;_ ="—b2-—122— e By e ,P-2], 4.24c,d

i 1=by; 105 b 1-by; 104 l [ ] ( )

; i1 ~DiiPai N b Bl T L T : ;
rzi—l=ﬁﬁ2‘f—’ ryy =2 2L2l Y e[, P-1]. (4.24¢,f)

2 -
- 1-by; 105

If the b,; and c,; ; are small quantities from the N-form reductibn,vthen the b; and c; are

first order in these small quantities. A zeroth order accurate method is obtained by

neglecting these b;- and c;., and taking the r;- as the solution to the reduced system. For

this zeroth order method to be implemented with nearest neighbor communication, two

communication volleys of P—1 send-receive pairs each are necessary. Compare this
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with the P -1 volleys of two send-receive pairs each necessary for the two-way skip

decoupling method.

Solution 2
There is another zeroth order accurate method that requires no additional
communication over the zeroth order method just described. This method begins with

intraprocessor row operations that lead to the following linear system:

(1 b, A Y\ (F)
¢ 1 b, x r
& 1 B x| |5
C4 1 b; X r'4
Cs 1 b'5 X ‘7‘_5
\ ¢ 1)\x) \rg)

The coefficients and right-hand side are given by:

Cai ' —C2i41%2i . ,
Cy=—2H— g =—HE Vie[l,P-2], (4.25a,b)
71— byicaisy 2;+1, 1-byityin
_ b'.-_-i’l_ibﬂ_, b.. =;b_2ﬂ__ Vie[l,P-2], 4.25¢,d
#1- byi€yin - byiCrina : [ \ ) ( )
po=Tu Tl o _Tun"Cu e[ p-2]. - (4:25¢.9)

2i = » Tin =
A=bytri 1- _l’ziczi+1

Now interprocessor row operations on the system can yield the following:
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2nd volley ﬁ [I:.;I i"_LI I;,] tj Q tll l:‘-l §333c£

method

srdvolley [ ] ] ['_'I‘I [?li'] l;]tl [I'J

Figure 4.9, Interprocessor communication necessary for solution of an 8-processor reduced
matrix by zeroth order methods, the two-way skip-decoupling method, and an all-to-all broadcast

method [Mattor eral. 1995]. Each processor is represented by a square.
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These coefficients and right-hand side are given by:

6 =1—“%ic.—, oy = T%Z_ Vie[2,P-1], (4.26a,b)
2i-1%2i i-1%2i

”" b " b2 -

b,; = -—-——2'-——- b,;_ —22 _ VYiefl,P-2], 4.26¢,d

T P b [LP-2] (#2609

"__r21 cerZx—l S = 2:-1 b21-l i Vie IP 1 4.26e

2 1- be—lc2x Ea 1- be—ICZt fel I (4:26e.0

All of the b; and ¢, are again first order in the b,; and c,;_;. If the ; are taken as the
solution, then the ’solution is again zeroth order in. b,; and c,;_;.

It is the case that proper manipulation will yield higher order accuracy with an
increasing number of nearest-neighbor communication volleys. A first-order accurate
method would require at least four volleys of P—1 send-receive pairs each.  For brevity,
an example of this first-order method is not included here. For P =8 the interprocessor

communication necessary for the various methods is illustrated Figure 4.9.

4.4 Backsubstitution

Once the processor boundary values are determined from solution of the reduced
_system, the values can be substituted back into equations for the subdomain interior

unknowns.

4.4.1 Interior processor
After solution of the reduced system, a typical interior processor is left with the

following system of equations (N=6 example):
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1 ‘ (7))
c 1 bz x r;
C3 1 by X r3
Cs W B T,
cs 1 b x rs
~1 ' \%) \Zg :

To solve for the subdomain interior unknowns, the processor boundary unknowns must

be backsubstituted. If the processor boundary values are denoted 7; and 7y, then the
interior r, aregivenby r; = r; —¢;r, —b;ry Vie [2;N —1]. This backsubstitution is
trivial because the interior unknowns have already been solved in terms of the processor

-boundary unknowns. If the processor boundary values are accurate to machine

precision, these r, are the machine precision solution to the tridiagonal system. If the

processor boundary values are approximate, then these r; are an approximate solution.

4.4.2 Terminal processor
After reduced system solution a terminal processor is left with the following

system of equations in the periodic case:

T P (%)
:'l ll x
.:’..E. .E rl

bz .:..:. .:Cz 1 X r2

AR DU DU PO x| =|n

SRS DS D 1 e

bs EE Ecs 1 x| s
1 i 1
<t .1 l\JC) \Ts /
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To solve for the subdomain interior unknowns, the processor boundary unknowns ro and
r, must bé backs'ubstituted. For the periodic implementation outlined in this

dissertation, ry does not enter this backsubstitution. Instead, only the r, arising from

vvvvv

problem is not periodic, then the backsubstitution simplifies. For the ADI

implementation of this dissertation the terminal processor is left with the following set of

equations:
Tl -1 (7
ii Ecz 1 x r3
N R .le 1 x| _ |73
;; §c4 1 x r4
i e LG
ST - 1% 1 \x) \7)

x
in the :ofhér terminal processor proceeds in an entirely analogous manner in the opposite
directfon. |
: After solution of the reduced matrix, solution by back-substitution can be
achieved with 4N AOs for the intgrior processors. For terminal processors, 4N AOQs are
needed .in!the pqriodic case, but onily 2N are needed in the Robbins case. The total AOs,
not counting those nécessary for reduced matrii solution, are 17N for interior processors,

and either 17N or 13N for terminal procesﬁsors’. .

s
WA
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Appendix 4.A1 .-

The method of Wang and the method of Kowalik and
Kumar for parallel solution of a distributed trldlagonal
system

In 1981, H.H. Wang wrote of ‘a method for the parallel solution of a nonperiodic
tridiagonal system of equations. In 1985, Kowalik and Kumar wrote of a similar method.
These methods are briefly described and compared in this appendix. The original

distributed §ystem has ihe form depicted in Figure 4.10.

g
~
e
Y

—
>

fa}‘b%
c az bz
PL | 4 a b3'

6‘4 a4;b4

czfa2 b12
ic3 az bzz
¢ af b2

c% a§=b4
C?:af' b

3
Cz az bz

P2

i
N

o o e e ot o o e 0 o o e i e e e o

P3 3
s b
03 a4'b4
ot fat 5

4 4 14
’ Ecz aﬁ‘bi 4
| c3 a3 b
T

4 4
C4a4)

P4

R ORR OH X R OM M N N N R RN R NN
o

\ ) \r

~

Figure 4.10. Typical distributed nonperiodic tridiagonal system of equations arising
from a spatial domain decomposition. In this example, a contiguous groups of four -

equations is initially known by each of the four processors in the decomposition.
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Let P be the number of processors in the decomposition and N be the number of
equations in each contiguous group. Then in Figure 4.10, P=4 and N=4. After
intraprocessor row operations and one communication volley of P —1 simultaneous send-

receive (SR) pairs, one can arrive at the distributed system in Figure 4.11 [Wang;

Kowalik and Kumar].

(a &t | | Y (*) (1)

az 82 i i E x n

as b_y, E i E X T3

1] 1 1

as1 841 ! x T4

Cs 145 gs i x Ts

fei @ gsi i x Té

i ar; &7 i x r7

fa ag | gs | X — |78

: co 15 2o x Ty

fiol @0 ol x T1o

fui g x m

i Sz} ai2, g2 || * 2

i ' ci3lay3 813 |{*X 3

' ! /i 142 a4 g4 ||x T4

; i fist 5815 || * ns
L ; | fisl a16 ) \*) \T16 )

Figure 4.11. Alternative system of equations which can be produced from the original

distributed tridiagonal system of Figure 4.10 [Wang 1981; Kowalik and Kumar 1985].

Wang suggested eliminating successively cs, fs, f1, fs» Co» fio» Sirs - Ji6» With
interprocessor communication as necessary. This is a type of forward elimination of
subdiagonal elements. The communication would involve P—1 sequential volleys of

one send-receive pair (SR pair) each for a system distributed over P processors. Wang

then completes the solution by eliminating successively g, &4, ---» £, again with

interprocessor communication as necessary. This is a type of backward elimination of
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superdiagonal elements, and would involve P -1 sequential volleys of one SR pair each.
The undesirable feature of the exact method that Wang outlines isy the potentially large
number of AOs that must be performed between the last 2P.—2 communication volleys.
As these AOs are performed, the processors are not operating in parallel. |

To improve parallelism, Kowalik and Kumar begin with the above matrix and
identify a small subset of the equations to be solved quickly in order to decouple the
processors before completing the solution. In the example above, note that the 4th, 8th,
12th, and 16th equations comprise a tridiagonal system that determines the corresponding
unknowns. Determination of these 4th, Sth; 12th, and 16th unknowns would decouple the

processors, and hence these equations comprise the "small system" of interest:

a4 : 84 : x 2_
fsi @) & | _|Is
A Ju apl S ||x )
3 i St ae)\x) \ne

Figure 4.12. Reduced matrix for method of Kowalik and Kumar.

An all-to-all broadcast of the small system allows every processor to solve for the 4th,
8th, 12th, and 16th unknowns [Kumar]. After one more communication volley of 2P -2

SR pairs, these knowns allow intraprocessor baéksubstitution to proceed in parallel.
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“Appendix 4.A2
The method of Mattor, Williams, and Hewett for
parallel solution of a distributed tridiagonal system

i

In 1‘993,* Mattor, Williams énd Hewett discovered another méthod for solving the
tridiagonal syétem depiétcd in Figure 4.10. Without any interprocessor communication,
the distributed system is initially seperated into uncoupled subsystems each of which is
given three right-hand sides (except for terminal processors, which get two right-hand
sides), as m Figure 4.13. Each coupling coefficient, e.g. b}, in the original coefficient

matrix becomes the only nonzero element in one of the new right-hand sides.

v
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~

{1 .1

ap by

1 .1 41

¢ a3 b
1 1 1

P1 ¢ a3 b3
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ai bi
2 2 .2
P2 ¢ a3 b
: . 2 2.2
cs a3 b3
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&
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Wl b

|§‘u

ai bf
s a3 b3
cf af b3
Cﬁ ‘12 J\X)
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\ :
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o
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*
W
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Figure 4.13. Reformulation of the distributed tridiagonal system solution in a way that initially

decouples the processors [Mattor, Williams, and Hewett, 1995]. Zero elements are not shown.
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Each of the new subsystems is solved for each right-hand side using only

intraprocessor row operations:

1 ° !
1
1

------_
-
_
~
=
)
~
_t
_——
g
_

B
&
o
SRR

1l

Tg 159 4 1o
10 1510 1 t10
syt
LVRE VL)
N3 {513
T4 i 514
T1s 1515
\"16 {516 ! )

HHHNMHRHRNR KRR
AN

o 0 00 e o o e o o s
ok

—t
N\
~

a]
.

‘The solution of the original distributgd system is a linear combination of the
subsystem solutions. The coefficients of the linear combination are ‘determined by a
reducedsystcm with the structure shown in Figure 4.14. ‘A copy of the whole reduced
system is assembled on every pfocessor by an efficient all-to-all broadcast and a pivoting

serial tridiagonal solver is used to find the coefficients of the linear combinations.

- - PR

(t4 ;_1 : : \ (ctl\ (Ii\
1lss t54 ! Z s
isg il 1 ||&| |
boolis ) e Ty
i iSp hpi-l |l Na
\ i lisg)\s) sy

Figure 4.14. Reduced matrix corresponding to the example in

Figure 4.13 [Mattor, Williams and Hewett, 1995].
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Pivoting is required for certain instances of internal Dirichlet boundary conditions.

Finally, the linear combinations are summed for each unknown:

/
™~
HOH M K KM H H B X R B B R ®X
_/
Y

.

Ij'FC}H
ry+city
73414@

T4 +Ctlt4
rs+c2ss +clts
Ts +C?S6 +ct2t6
Ty '?.:-,0357 +ct
rg+ C?Sg + C,ztg
) +C389 +C?t9

rio+¢3510 + G ho

(1

r1 + €351 + Gty

2 +351 +Citig
T13+C§-913
T14+C.?514
rlS'*'c?slS

i S S T e
Y
cmmmsmmcnnnhencnccmcnetecrc e e e e ————————

4
1} \ Tie +Cs 516 y,

-~

Just as for the other parallel tridiagonal methods, it is easy to leave each processor with
knowledge of the values at subdomain guard points as well. The guard point values are
necessary for an ADI method because the derivatives in alternating directions use three-

point templates.
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Appendix 4.A3
Matrix element relations in reduction of a tridiagonal
subsystem to N-form

‘ Each processor is initially given a s;xbset of the equations of the whole tridiagonal
system. To prove that c‘ertaiﬂ approximations are useful, it is convenient to start with a
representative subset of the equations, and evaluate the elements of the subset as the
equationsﬁre reduc#d to "N-form".
4.A3.1 Interior proéessqr relations

When the tfidiagbnal system arises from a symmetric differential operator such as

d.(€9,), the original subset of equations has the following coefficient matrix for an

interior processor (elements distinguished):

-

b —q ¢
G —ay C3
. €3 —a3 C4
| c4 —a4 Cs
¢5 —as Cg
Cg —ag C7

After forward elimination, the subset of equations has the following new coefficient

matrix:
c'l' 1 c'z
c; 1 c'3
c; 1 c;
ca 1 cs
c5 1 ¢

c'6 1 ¢
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The following relationships are seen to exist between the original elements and the

elements after forward elimination:

" cl Ll cz [] rl
cl = ——, CZ = —-—— rl = ——,
a4 q aq
" C C. . c U,
cz —4 —_2_ 3 ——2’ c3 = -—-—3- _3_.2’
a, U, a, U,
vo_ —6‘30; —0302 _ —_CSCZ
G = - = T =
: —a; —C5C5 a,a, — C3 2
é = Cs =, _ —Cc Uy
YT e, - U’
a3 —C3Cy a,a;, —C5 2
C" _ —C4Cs _ —C4C3Cy _ —C,C5C,
= - = = s
4 —ay—cey,  aU,-clU, U,
cl - . 05 - _0502 - -chz
57 —ay-cc, aU,-ciU, U, ’
c!sl - —6504 — —CSC4C302 - —05640302
= 0 - 2 o ?
—@5— CsCs asU; —c;U, U,
c- - Cs _ —CGU3 _CGUS
¢ —gg-cc;  aU,—ciU, u, ’
C o= Gl TCeCCuCCy c Gy
it 0 - 9, - []
¢ —a5 —CeCs Us ! —0—CCs
Summarizing,
i
" C " -1 .
= -l ¢=3 ch V ie[2,N],
al i j=2
0 C. . C; U - :
c, = —-=%, ¢ = -+ V ie[3,N+1].
aq -2

The quantities U, are recursively defined in the following way:

U,=0,U =1, U = a,U,~-cl U, i=1 ..

, N-1.

After complete reduction to N-form after backward elimination the subset of équations

has the following coefficient matrix: -
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d 1 dy
d 1 ds
;1 d
A 1 ds
ds 1 dg
d 1_d;
The d, and d; are given by: ‘ _ !
n _ —CaCsCeCiCh e _ U,
CG_T’ 4—07—'7]7, i
. —C5C4CsC. s ) —cgU. .
Cs"'_‘sU:sz, d6=cs=_[i—3',
G —cd = —c,0,0,U, = c2e,e0,U, =v —040302(2150'3 -c3U 2)_"?54"302(]2
U,U, U0,
=CiCalolls _ —C4C3C, Vg T .
v, U
~od = —de, = o, -
4
Cs —‘b; £ = =56 U, (c,,csczV¢s _ =CGU, ’—cfc3c?V6U, y
: YU, U\ U, U,U,
—c3c2(a5 (a0, -cU,)- cszU,) —cic Vel —cey(aa, )
U,U, B U,
=C36, Vs :
u, °
—cd, = Gy = S,
4
C—id = — & _C (csczVsJ _ —¢U,—cie,Vs
. u U\ U, uu,
—C, (as (a4 (a3U1 -c ) -ciU, ) -c3 (a3U1 -c )) —c36;Vs
. T, -
—cz(as(a4as‘c42) - Cs?as) _ =GV,
U, 77
~Gd, = ~ddcd, = e,
. o 4 - :
—C,d, = _TCiCCsCs  _ TCaC3CsCsCs . —C2C3C4CsCs
1-cd, aU, +a,c,c,V, aV,-cv, LA ’
q -qU, __=aU,  _ -qU, _ —aV, _

1-cd, aU,+accV, aV,-cV, v, v,
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Look at the following quantities introduced above:

Vs = as, Vs = aa, ¢ = aa,—c; = aVs—c,
V, = as(a4a3'c4) cia, = as(aAas ) cias = a;Vs—ciVs.
V, = as(a4(a3az-cs) C4az) (asaz ‘—'3) = asU,-c5U, = U,
= az(as(aaa4 ) Csaa) =) (asa4"cs)
= az(a3(a4as"cs)_cfas)“c;(a4as—csz) = a,V,- Vs,
V, = aV,—c2V,.

These V; can be defined recursively as well:

Vi =0, Vpu=1, V; = g, Vi =V, i=N, .., 2.

The V; are "mirror images" of the U;!

- ~c V. . - i -V
d = GUns _ vas, d = Vi - z+z HC V ie[2,N-1],
v, V, Upo 52 i =2
-1 _ -1 Us T
dy, = —] |c. = —llc, d = -2 Us TTe, v ie[3,N].
Gl 4=l 4= g1l I,J
' - U, —Cp V-
do =c.. =—Sanua _ ZCu¥s
N+l N+l UN-l UN—]
Now, for the right-hand side:
a a Uy
r, = n=cr, _ _L+GR/U _ _73U|+03R1 __R
v a3 030 a; —¢5¢; /U aU,—¢c; U,
P oo fameh _ LUtk R
4T —a,—cyc aU,-cUu, U’
rl _ rs""c_r,r; — _ T5U3+CSR3 - __R_A r' - _55_
57 —ag—cic aU,-ciU, u,’ ¢ 7

Here, the R; are defined reéursively as follows:

Ro = 0, Ri = ri+lUi-l+cl+1Ri-l’ i=1, cony N—].-

Ry
A
2

|

t

e
2
-
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V ief2,N].
i-1 e

Then there is a backsubstitution:
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rg:rg:"{RTz" T;=T;=—£f—,
" v R, U, R, RU, +cU,R,

__ R{aU,-cU,)+cUy(rsUs +6Ry)  aR+cirl,

- U, ) - U,

_ _VeRterU, = VR +¢5U, )

S n u, |
oy e _R_cUaRterl, _ _RU +cU(asR+eil)
RS / A /A U, U,U,

Rz(as(a,,U2 - ch,—) - c§U2)+ U, (as (rsU, +c,R)+ csrsUz)
T " U,U, '
(aa,-c2)R +e(ar +er)U, VR, +c,(rVe+c5rsV,)U,

T u, o U, '

_ ViR, +¢,SU,

= - | |
. _R ¢ ViR, +¢,(asr, +css U, - _ RU, +c3(V5R1 +c,(asr, ’*'Cs"s)Ux)
2o v G U, oy,

_ R (—cfasU, +Vi(aU, - ¢ )) +6;(Vs(rU, +&;R,) + ¢, (asr, +575)U, )

T UU,

_ R,(03V5 -cfas)+cs(r3V5 +¢,(raas + 7 )

— 7 : :

_ ViR +c3(r AZSSAAL ;*'CsrsV7)) _ _nVi+taSU, _ S, 5

- U, B 7 A A
oo n=crn _ _nVi+eS _ _S, .

Vo 1-cd, aV,-clv, v,

Here, the S; are given by

S = 0, § = ryViu +68,, i=N, .., 2.

The R; and S; also obey recursion relations that are "mirror images".
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v ViR, + €11 82Uz i
b

" ' Si+l
T, —_——

=N, ..., 3, T
U)v..z ! Vi-r-l

i=1, 2.

1l
I

4.A3.2 Terminal processor relations for the nonperiodic case
The original subset of .equations arising from a symmetric operator has the

following coefficient matrix for a terminal processor (eiements distinguished):

G —q ¢
G —ay C3
C3 —as C4
C4 —a4 Cs
Cs —as Cg
Ce —dg

After forward elimination, the subset of equations has the following new coefficient

matrix:

The ¢; and c; are the same as for an interior prdcéésor, e:icept Ccys = O for the general
case of N equations in the subset. For practical purposes, it might be sufficient leave the
subset in this last form. Further reduction of a terminal subset of equations does not buy
any speedup in execuﬁon ti‘me.‘ I;Iowevei',‘ further reduction of the terminal subset is
included here for completeness of presentation. After full reduction of the terminal

subset is complete, it has the following coefficient matrix:




e'lj 1
€ 1
€3 1
€4 1
és 1
€ 1
For the case of N equations:-
. - . ) " c,
ey =Cyy, € =C—Coa€, Vi=N-1..,2, ¢ = e
1~2
Expanding these equations,
- » _ TCsCsC4CsCo
e, = C, = —=2=222
€ = —CsCaCsCy _ Cels CoCsCaCsCr _ _(Us'*'cszUa‘) CsC4CsCr _ _ CsCaC3Calls
U, U, Us ‘ - Uy U, Us
_ _ CsCiCs0 W
Us ’
o = GGG ol cicoWs Us +c2WU, ) G0,
7 /AN /2 U .) U
_ as(aU; — cU,)— c2U,; + 2WU, \c,c.c, _ _(asas—cg)c,,csc2
U, — |, U,
__CCi0 W,
7
o = =60, _ U, €Wy [ Us+ciW,U, e
P U U U; U,
_ as(as(a4Uz—chn)—":Uz)_cg(a«sUz-C§U1)+03W4Ux‘ €,
Us U,
_ _(a4W4_—c§W5)c3cz _ eV,
_ Us Us ’ .
e = __Csz, € = Ci. _ = —-aUs - _cnUs_
Us - 1-ce, . (aIUst§Wz) W,
Obviously,
" ClUS clwl " —W,' ! .
g = ——43 = —-_L and ¢ = ¢, V ie[2,N].
1 Wo Wo H Us ];2[ i [ [ ]
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Note that in the last equation, Us =W, was used. The U; are defined as before, and for

the case of N equations, the W; are given by:

Wya=0, Wy=1, n’i=ax‘+l“'i+l+clz+zuli+2’ i=N-1, ..., 0.

This is the same recursion relation as for the V;, but with a different starting point. One

can proceed for the right-hand side in a manner similar to that for an internal processor.

Doing so would continue to be s&ﬁgh&omud but tedious.
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Conclusion

Simulation results in Chapter 2 demonstrate agreement between ideal MHD
stability theory and magnetized and ‘unmagnetized Z-pinch simulations with fluid ions.
Characterisﬁc frequencies from ideal stability theory are cbmputationa]ly reproduced and
are shown to be independent of the Hall and diagmagnetic drift terms included in the
nonideal MHD equations of the pinch simulation. This has led to increased confidence in
the electron/field advance used in the simulation.

Compressional pinch simulations in Chapter 2 demonstrate agreement with earlier
simulations of comparable complexity, and show that ion transport requires more than a
sinéle—ﬂuid ion theory; a parﬁcle—in-ceﬁ treatment is befter for representing the multiply
peaked distribution of ions in velocity space during the early compressional stages of the
SCrew pin;:hes. ‘

An interpolated resistivity in the plasma at plésma—vacuum interfaces served to
diminish finite-grid effects on the simulation, leading to a smoother time evolution of the
interfacial electric field. Smoothing with interpolated resistivity was comparable to that
achieved with earlier methods invol\;ing nonphysical density averaging. Pinch

simulations also demonstrated the utility of explicit updating schemes used along with

ADI for calculating B, and E in vacuum regions of the simulation. The explicit
schemes reduced the computational work in thé calculation of By and E, yet they yielded
reasonably good simulation results.

Most importantly, the new explicit update of Bg in entrained vacuum region,
which is potenﬁa]ly more accurate than previous ADI methods, predicts a great amount of
plasma turbulence in low density plasma regions where entrained vacuum regions might
form. Results of the new update technique indicate that the amplitude of turbulence

significantly adds to plasma instability, beyond manifestations of the magneto-Rayleigh-
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Taylor instability seen in previous ADI simulations. Furthermore, the simulations
suggest that vortices in the turbulent regions are metastable, persisting for significant
fractions of the time. between electrical current initiation gnd the‘ﬁ;'é‘t comf;ressional
stagnation. After more carefully checking the validity of the simulated tﬁrbulence, it
could be quite interesting to study the vortex dw@ics around entrained vacuum void:s to
see how it might fmsuatg plasma thermalization before the pinche's complétely stagnate.
Atteméts to pafallelize the ADI method underlying computation of the é:lectron
fluid and elecu'omagnéﬁc ﬁe;lds were a great success. As use& in ]?ADI solution of the
steady-state diffusion eq}latiqn, Fhe parallel ADI method was demonstrated to have
scalability that will allow highgr resolution pin?h gknulafions in fhe future. For a fixed-
size finite difference grid, the power of about 256 procéssors on #parallel computer such
as the Cray-T3D or Meiko CS-2 can yield a speedup in exeéution timé in the range of
about 1_0-100, dependir;g on the exact problem. But disregarding para]1e1 chalgbility, the
_benefit of greatly expanded computer memory is provided by.the pérallel computers,
making possible computations with highgr resolu!;_ion or more detailed phy;ical models.
Parallelization of the current pinch algorithm is a natural next sfep, but it still
would not yield a ,realisticA pinch simulétion; this is because of the gross physical
processes- left out of the i)lasma mathémai;iéal mo.d/el. So ghe pinch sﬁnﬂaﬁon of this
dissertation is still in a developmental stage. As it stgpds, the algorithm incorporates a
1970s model of fluid electrons with a 1980s model of PIC .ions. The ADI techniques that
are the backbone of-the electron-field computation have origins in the 195_0s,‘ and yet the
implementation of ADI on a modern parallel computer is a recent development of the
1990s. The pinch simulation is converging from all of the best technology known by the
author, but it has not yet come together ig a mature sehse, becauée there aré SO many

physical processes that can take place in plasma screw pinches.
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One could start improving the simulation by using a nondiagonal tensor
resistivity, instead of a scalar resistivity, to model the effects of enhanced electrical
conductivity parallel to the magnetic field lines. Then, for the electron temperature to be
calculated accurately, the electron energy equation could be incorporated into the
simulation, with a thermal conductivity that is also enhanced along magnetic field lines.
These effects have been incorporated in previous simulations, and are necessary for
realistic pinch simulation. It might even be necessary to have an anisotropic electron
temperature for pinches that are strongly driven. Additions such as these to the pinch
simulation are achievable in the time span of a year or so.

Two other general effects that must be incorporated in realistic simulation of
compressional screw pinches are radiation effects and collision effects. In the electron
energy equation, brehmstrahlung and electron synchrotron radiation are reasonable
effects to add, along with effects of collisional atomic/ionic excitation and
photoionization. For the ions, photoionization is a large radiation effect, and this has to
be incorporated any time the radiation flux is high and the plasma is only partially
ionized. Any type of ion collision can directly effect the level of excitation of the ionic
species in the plasma. Although excitation or jonization does not have a direct effect on
the ion temperature, it can easily change the charge state of the ion, which affects the ion
dynamics in the electric and magnetic fields. The collisions that directly affect the ion
temperature are ion-ion collisions, both elastic and inelastic. During a radial collapse of
ions onto the axis the ions can become very collisional, generating considerable heat that
affects the maximally compressed state. Some heat in the ions can be dissipated through
inelastic ion-ion collisions that lead to radiation from excited bound ionic states. Thisis a
secondary ion-radiation effect that must be incorporated to properly model radiative

collapse of screw pinches. Often, when collision and radiation effects become important,
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single fluid theory for each species of ions can break down, so that a kinetic description
of each species is necessary. Basically, proper inclusion of collision and radiation effects
is a difficult task from the outset. It is not clear that all of these effects have been
incorporated in any single screw pinch algorithm, but it is clear that they are not easily
incorporated in any pinch simulation.

The level to which the pinch simulation is finally developed depends very much
on the need to understand in detail the physical phenomena inside screw pinches.
Hopefully, if detailed engineering knowledge in necessary, we can finally transcend
limitations of past computational methods. It is clear that many competing computer
algorithms exist for these computations, and since they involve such large efforts, the
political climate tends to have as much effect on development as any stubborn search for

truth.
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