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Tensor Methods for Large, Sparse Unconstrained Optimization *

Ali Bouarichal

Abstract. Tensor methods for unconstrained optimization were first introduced by Schn-
abel and Chow'J\.?’IAzW J. Optimization, 1 (1991),-pp. 293-313], who describe these methods
for small to moderate-size problems. The major contribution of this paper is the extension of
these methods to large, sparse unconstrained optimization problems. This extension requires
an entirely new way of solving the tensor model that makes the methods suitable for solving
large, sparse optimization problems efficiently. We present test results for sets of problems where
the Hessian at the minimizer is nonsingular and where it is singular. These results show that
tensor methods are significantly more efficient and more reliable than standard methods based
on Newton’s method.
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1. Introduction

In this paper we describe tensor methods for solving the unconstrained optimization problem
given f : R" — R, find z. € R™ such that f(z.) < f(z) forallz € D, (1.1)

where D is some open set containing z.. We assume that f is at least twice continuously
differentiable, and = is large.

Tensor methods for unconstrained optimization are general-purpose methods primarily in-
tended to improve upon the performance of standard methods, especially on problems where
V2 f(z.) has asmall rank deficiency. They are also intended to be at least as efficient as standard
methods on problems where V?f(z.) is nonsingular.

Tensor methods for unconstrained optimization base each iteration upon the fourth-order
model of the objective function f(z),
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where d € ", . is the current iterate, V f(z.) and V2 f(z,) are the first and second analytic
derivatives of f at z., or finite difference approximations to them, and the tensor terms at z.,
T, € =% and V, € RPXWX"X%are symmetric. (We use the notation V f(z.)-d for V f(z.)7d,
and V?f(z.)-d? for dTV2f(zc)d to be consistent with the tensor notation 7,-d°> and V,-d*. Also,
for simplicity, we abbreviate terms of the form dd, ddd, and dddd by d?, d3, and d*, respectively.)

Before proceeding, we define the tensor notation used above.
Definition 1.1. Let T € R*X"X%_ Then for u,v,w € X", T -uvw € R, T - vw € R, with

Mr(z.+d) = f(z:) + Vf(z.)-d + %sz(a:c)-dz + %Tc-d“" + =V.-d4, (1.2)

T uvw = Z Zn: i (1, j, k)u(z)v(i)w(k),

i=1 j=1k=1
- n n . )
(T -vw)(t) = Z }: T(i, 5, k)v(jw(k), i=1,..,n.
) =1 k=1 .
Definition 1.2. Let V € R****"*"_ Then for r,u,v,w € R,V - ruvw € R,V - uvw € R” with

n n n n
Verwow =YY" S S V(3L 5,k Dr()u(@)v(k)w(l),
i=1 j=1 k=1 i=1
T i n
(Vowow)(i) =35 S V(3L G,k Du(Go(k)w(l), i=1,..,n.
1=1 k=1 I=1
The tensor terms are selected so that the model interpolates a small number of function and
gradient values from previous iterations. This results in T, and V; being low-rank tensors, which
is crucial for the efficiency of the tensor method. The tensor method requires no more function
or derivative evaluations per iteration and hardly more storage or arithmetic operations than
does a standard method based on Newton’s method.
Standard methods for solving unconstrained optimization problems are widely described in
the literature; general references on this topic include Dennis and Schnabel [9], Fletcher [11],
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and Gill, Murray, and Wright [13]. In this paper, we propose extensions to standard methods
that use analytic or finite-difference gradients and Hessians.

The standard method for unconstrained optimization, Newton's method, bases each iteration
upon the quadratic model of f(z),

My(ze+d) = f(zo) + Vf(a:c)-d-i-%V?f(:cc)-dz. (1.3)

This method is defined when V2 f(z.) is nonsingular and cousists of setting the next iterate
to the minimizer of (1.3), namely,

Ty =2, — V2 f(z) 'V f(z.). _ (1.4)

A distinguishing feature of Newton’s method is that if V2f(z.) is nonsingular at a local
minimizer z,, then the sequence of iterates produced by (1.4) converges quadratically to z,.
However, Newton’s method is generally linearly convergent at best if V2f(z.) is singular [14].

Methods based on (1.2) have been shown to be more reliable and more efficient than standard
methods on small to moderate-size problems [18]. In the test results obtained for both nonsin-
gular and singular problems, the improvement by the tensor method over Newton’s method is
substantial, ranging from 30% to 50% in iterations and in function and derivative evaluations.
Furthermore, the tensor method solves several problems that Newton’s method fails to solve.

The tensor algorithms described in [18] are QR-based algorithms involving orthogonal trans-
formations of the variable space. These algorithms are very effective for minimizing the tensor
model when the Hessian is dense because they are very stable numerically, especially when the
Hessian is singular. They are not efficient for sparse problems, however, because they destroy the
sparsity of the Hessian due to the orthogonal transformation of the variable space. To preserve
the sparsity of the Hessian, we have developed an entirely new way of solving the tensor model
that employs a sparse variant of the Cholesky decomposition. ThIS makes our new algorithms
very well suited for sparse problems.

The remainder of this paper is organized as follows. In §2 we briefly review the techniques
introduced by Schnabel and Chow [18] to form the tensor model. In §3 we describe efficient
algorithms for minimizing the tensor model when the Hessian is sparse. In §§4 and 5 we dis-
cuss the globally convergent modifications for tensor methods for large, sparse unconstrained
optimization. These consist of line search backtracking and model trust region techniques. A
high-level implementation of the tensor method is given in §6. In §7 we describe comparative
testing for an implementation based on the tensor method versus an implementation based on
Newton's method. and we present summary statistics of the test results. Finally, in §8, we give
a summary of our work and a discussion of future research.

A

2. Forming the Tensor Model

In this section, we briefly review the techniques that were introduced in [18] for forming the
tensor model for uncounstrained optimization.

As was stated in the preceding section, the tensor method for unconstrained optimization
bases each iteration upon the fourth-order model of the noulinear function f(z) given by (1.2).




The choices of T, and V, in (1.2) cause the third-order term T, - d® and the fourth-order
term V. - d* to have simple and useful forms. These tensor terms are selected so that the tensor
model interpolates function and gradient information at a set of p not necessarily consecutive
past iterates r_q,...,Z_p.

In the remainder of this paper, we restrict our attention to p = 1. The reasons for this
choice are that the performance of the tensor version that allows p > 1 is similar overall to that
constraining p to be 1, and that the method is simpler and less expensive to implement in this
case. {The derivation of the third- and fourth-order tensor terms for p > 1 is explained in detail
in [18].)

The interpolation conditions at the past point z_; are given by

~
1_. . 1 1
flzy) = f(ze) + Vf(ze) s + §V2f(:cc)~s)‘+-éTc-33+;2—ZVc~s4 (2.1)
and 1 i
Vi(z-1) = Vf(z:) + Vif(z.)-s + ;2-Tc-s2 + gvc-sf‘, (2.2)
where

s = T_y— I,

Schnabel and Chow [18] choose T, and V. to satisfy (2.1) and (2.2). They first show that
the interpolation conditions (2.1) and (2.2) uniquely determine 7, - s* and V, - s*. Multiplying
(2.2) by s yields '

Vizo)-s = Vf(z)-s + Vif(z.)-s° + -.li 8+ é—Vc-s". (2.3)
Let a, 8 € R be defined by
a=T,.- s,
A=V, st

Then from (2.1) and (2.3) they obtain the following system of twb linear equations in the two
unknowns a and 3:

) :
ki 28 = ¢, 2.4
5@ + g8 = @ (2.4)
1 ]

- -3 = gq 2.5
¢ T 58 = @ (2.5)

where ¢, ¢2 € R are defined by
¢ = Vi(z_1)-s — Vf(ze)-s — Vif(zo)- %,

¢ = flzo1) = fze) = VSf(ze)-s — %v*"f(zc)-s‘z.

The system (2.4)—(2.5) is nonsingular; therefore the values of « and 3 are uniquely determined.
Hence, the interpolation conditions uniquely determine T, - s* and V. - s*. Since these are the
ouly interpolation conditions; the choice of T, and V, is vastly underdetermined.




Schnabel and Chow [18] choose T, and V. by first selecting the smallest symmetric V., in the
Frobenius norm, for which

Vc ’54 = )67
where [ is determined by (2.4)-(2.5). Then they substitute this value of V, into (2.2), obtaining
T, 5% =a, (2.6)
where .
a = 2(Vf(z_1) — Vf(z:) — Vif(ze) s — sve: s%). (2.7)

This is a set of'n linear equations in n® unknowns T,(4,j,k), 1 < 4,5,k < n. Finally, Schnabel
and Chow [18] choose the smallest symmetric T, and V., in the Frobenius norm, that satisfy the
equations (2.6)—(2.7). That is,

- A (2.8)
subject to V. -s* = B, and V, is symmetric,
and
min T e (29)
" subject to T, -8 = a, and T is symmetric.

The solution to (2.8) is

ek B
Ve = 7(s®0s®s®s), 7=@)7,
where the tensor V; = s 00 s 00 500 s € R***X"*? is called a fourth-order rank-one tensor for
which V,(z,7,k,1) = s(i)s(5)s(k)s(l), 1 < 1,7, k,1 < n. (We use the notation ® to be consistent
with [18].) - .

The solution to (2.9) is '

T. = bs®0s+s®0bns+s®s®b, (2.10)

where the notation T = u 0 v ® w, u,v,w € R*, T € R"***"_is called a third-order rank-one
tensor for which T'(7, j, k) = u(¢)v(j)w(k). Here b € R™ is the unique vector for which (2.10)
satisfies (2.6). It is given by

. 3a(sTs) — 2s(sTa)

b= 3(sTs)3

T. and V, determined by the minimum norm problems (2.9) and (2.8) have rank 2 and 1,
respectively. This is the key to form, store, and solve the tensor model efficiently. The whole
process of forming the tensor model requires only O(n?) arithmetic operations. The storage
needed for forming and storing the tensor model is only a total of 6n.

For further information we refer to [18].




3. Solving the Tensor Model When the Hessian Is Sparse

~ In this section we give algorithms for finding a minimizer of the tensor model (1.2) efficiently,
when the Hessian is sparse.
The substitution of the values of T, and V, into (1.2) results in the tensor model

Mr(ze+d) = f(zo) + Vf(zs)-d + %v? f(z)- & + %(de)(sTd)‘l + LTt (3.0)
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As we stated in §2, we only consider the case p = 1 where the tensor model interpolates
f(z)and V f(dzLat the previous iterate. The generalization for p > 1 is fairly straightforward.
This constraint is mainly motivated by our computational results. When we allow p > 1, our
test results showed almost no improvement over the case where p = 1. The tensor method is
therefore considerably simpler, as well as cheaper in terms of storage and cost per iteration.

3.1. Case 1: The Hessian Is Nonsingular

We show that the minimization of (3.1) can be reduced to the solution of a third-order polynomial
in one unknown, plus the solution of three systems of linear equations that all involve the same
coefficient matrix V2f(z.). For conciseness, we use the notation g = V f(z.) and H = V2f(z,).

A necessary condition for d to be a local minimizer of (3.1) is that the derivative of the
tensor model with respect to d must be zero. That is,

VMp(zc+d) = g + Hd + (b7d)(sTd)s + %(sTd)'lb + %(sTd)% = 0,

“which yields . |
d = —H™'(g + (Td)(s"d)s + 5(sTd)% + l(sTd)3s). (3.2)

If we first premultiply the equation (3.2) by sT on both sides, we obtain a cubic equation (in 3)
in the unknowns 8 = sTd and 8 = b7d,

TH g + 8 + sTH's08 + %sTH"b[fz + ITE = 0 (3.3)

If we then premultiply the equation (3.2) by 6T on both sides, we obtain another cubic equation
(in 3) in the unknowns 3 and 6,

bTH 'g + 6 + bTH-'s08 + ;bTH“bﬁ'z + 1s3% = 0. (3.4)

YT -
—66 H
Thus, we obtain a system of two cubic equations in the two unknowns 3 and 6 which can be
solved analytically.

We now show how to compute the solutions of this system of two cubic equations in two
unknowns by computing the solutions of a single cubic equation in the unknown 3. Let u =
sTH-1g, v = sTH™Yb, w = sTH™'s, y = bTH g, and z = bT H~'b. We first calculate the
value of # as a function of 3 using the equation (3.3):

(u + 3+ - vﬁz + w/33)
8 = . (3.5)

wﬂ




Note that the denominator of (3.5) is equal to zero if either 3 = 0 or w = 0. We assume that
B # 0; otherwise the tensor model would be reduced to the Newton model. Now, if w = 0, then
(3.3) would be quadratic in 3. Therefore

g o -l VT-7uw
= : .

Thus, real-valued minimizers of the tensor model (3.1) may’ exist only if 1 —2uv > 0. It is easy
to check that in order for 6 to have a defined value, 1 + v/ cannot be zero.
If3 # 0and w # 0, we substitute the expression for 8 into (3.4) and obtain

~

—u+ (yw— uv — 1)/3—:—3-1)/32+(;1-wz—-1w—- ‘—1-112),[33 =0, ' (3.6)
2 2 6 2
which is a third-order polynomial in the one unknown 3. The Toots of (3.6) are computed
. analytically. We substitute the values of 3 into (3.5) to calculate the values of §. Then we
simply substitute the values of 8 and # into (3.2) to obtain the values of d. The major cost in
this whole process is the calculation of H g, A5, and H!s.

After we compute the values of d, we determine which of them are potential minimizers.
Our criterion is to select those values of d that guarantee that there is a descent path from z.
to z, + d for the model M7(z. + d). Then among the selected steps, we choose the one that
is closest to the current iterate z. in the Euclidean norm sense. If the tensor model has no
minimizer, we use the standard Newton step as the step direction for. the current iteration.

3.2. Case 2: The Hessian Is Rank Deficient

If the Hessian matrix is rank deficient, we transform the tensor model given in (3.1) by the
following procedure. Let d = d + 6 for a fixed d, where § is the new unknown. Substituting this
expression for d into (3.1) yields the following tensor model, which is a function of é:

Mr(zc+d) = flz.) + Vf(z)-d + %vz f(z.)- d? +»%_(bTJ)(sTJ)2
+ (T + (Vi) + Vf(zd + (BTd)(sTd)s
1 750 T Tidey. j 3.
+ 5(8 d)b + 24(-~ d)’s)-6 + 2(V flze) _(3 7)_
F 0T+ 2esT) 8+ (THOTOTE) + ;;—(bTé)(.sTé)z

L (sT5)s.

T T v Tsy3
+ 6(.5 d)(s"8)° + 54

. .. . , s 1 - . . A
Ifwelet 3 =sTd, 8 =b7d, §=Vflze)+ V3f(zc)d+ 68s + 5/321) + %;’333, c=bTd + é, and
H = V2 f(z.) + cssT, then we obtain the modified tensor model
, _ , ; X 1o o | anTey T
Mr(z.+d) = Mp(z. +d) + §-6 + ;Z—H-eﬁ + B(b"6)(s"8) 38)
3.8
LarsvoTsy? 1 T3Ts? + L(sTs)e
+ 2(b 8)(s"8)° + 6[3(5 ) + 24(3 )2
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The advantage of this transformation is that the matrix # is likely to be nonsingular if the rank
of (V2f(z.)) is at least n — 1. A necessary and sufficient condition for A to be nonsingular is
given in the following lemma. Let g and H denote V f(z.) and V?f(z.), respectively.

Lemma 3.1. Let H € %", s € ®".

H + essT is nonsingular if and only if M = is nonsingular.

'~

(Note that the [ sT —r ] submatrix was premultiplied by the constant ¢ to symmetrize the
augmented matrix M.) )

Proof. We prove that there exists v € R, v # 0, for which (H + cssT)v = 0, if and only if there
exist 7 € R", w € R, for which

(8]
o

%

(M|
[se]
<
(o]

= , # . (3.9)

Suppose first that (H + ¢ss7)v = 0,v # 0. Then for 3 = v,w = sTv, (7,w) satisfies (3.9).
Conversely, if there exists (%, w) satisfying (3.9), then s7% = w, so (H + ¢ss7)% = 0, and % # 0;
otherwise, w = 0, which contradicts (3.9). Thus (H + cssT) is singular if and only if M is
singular.

Corollary 3.2. Let H € R**", s ¢ R".

If H+ cssT is nonsingular, then [ H cs ] has full row rank.

Proof. Follows from Lemma 3.1.
Lemma 3.3. Let H € R**", rank(H)=n—1, s € R™.

H + cssT is nonsingular if and only if [ H ¢s ] has full row rank.

Proof. The only if part follows from Corollary 3.2. Now assume [ H e¢s ] has full row rank.

Since H has rank n — 1, H = H HI, where Hy, H, € **(*=1 have full column rank. Since
[ H es } has full row rank,

(vTH = 0andvTs = 0) = v = 0. (3.10)

From A = HiH;T and the fact that H has full column rank, (3.10) is equivalent to

(vTH = 0andvTs = 0) = v = 0.




Thus the n X n matrix [ Hi cs ] is nonsingular. Analogously, the n X n matrix [ H, s ] is
nonsingular. Therefore

T
[H1 cs] [H%}=H1H2T+cssT=H+cssT

8

is nonsingular. O
For 6 to be a local minimizer of (3.8) the derivative of the tensor model (3.8) with respect

to 6 must be zero. That is,
N

VMr(z.+68) = ¢ + H6 + B(sT8)b + B(bTé)s + (sT6)(676)s
. (3.11)
+Gb + 1Bs)(sT8) + L(sTeps = o, :
12 2 6
which yields R X R
& = —HYG + B(sTOb + BOTHs + (sTH)(6T6)s
(3.12)

1 . .
+ (56 + %/33)(;'“5)2 + %(5T6)3s). |

Premultiplying (3.12) by sT on both sides results in a cubic equation (in 8) in the two unknowns
B = sT6and 8 = b76:

sTf]'lg + (1 + /§sTf1‘lb),H + [§3Tﬁ‘136 + sTf{’ls[}G
. o o N (3.13)
+ (ésTH“b + %ﬂSTH—lS)/}Z + %sTH'ls/ﬁ = 0.

The premultiplication of (3.12) by b7 on both sides yields another cubic equation (in 3) in the
two unknowns 3 and 8: :

BTA-YG + (1 + AOTAs)0 + BbTH-b8 + bTH-1sB0
1o s s s " (3.14)
+ (GTAT + %,SbTH"s)/iz + DA = 0.

Therefore, we obtain a system of two cubic equations in the two unknowns 3 and 6, which we
can solve analytically.

Since (3.13) is linear in 6, we can compute & as a function of 3 and then substitute its
expression into (3.14) to obtain an equation in the one unknown 3. Let u = sTH g, v =
STH Wb w=sTH 's,y= bTH-'g, and z = bT H-1b. Equation (3.13) yields




= ———(ywf — u — wf + (yw + z2wfB? - 208 — v¥*3% — wv - 1
o3 +/3)( (¥ B 8 )8
3 4+ v - 3 3 54 1 ¥ v?
2 3 — L 2 2,2 et _ 1 Y
+ (2zw/ 2w/j 211 2v B) + (22w i 3 )3°).

The denominator of (3.15) is equal to zero if either 3 + 8 = Oorw = 0. fw = 0,
then (3.13) would be quadratic in 3. Therefore

=L+ fv) + \/(1 + Bu)? — 2uw

v

(3.15)

N 8

Hence, real-valued minimizers of the tensor model (3.8) may exist only if (1+ /§v)2 > 2uv and -
v # 0. It is straightforward to verify from (3.14) that for 6 to be defined (8 + 8)v cannot equal
-1. Now, if B3 + 3 = 0, then (3.13) reduces to the following cubic equation in 3:

R 1 R
wt (1+ o) + (5o + %wﬂ)ﬂz + %wﬁ3 = 0. (3.16)
Once we calculated the expressions for 3 from (3.16), we substitute them into the following
" equation for # obtained from (3.14):

= —y — 288 — (L TodVg2 — Lous3
g = —y z33 (2z+ 21}[3)/3 6'0[3.

If neither 3+ 3 = 0 nor w = 0, we substitute the expression (3.15) into (3.14) and obtain

—(u + 28v + Puv + B2? + 1) + (yw + BPzw — fv — v — uwv)B
(3.17)

6

hich is a third-order polynomial in the one unknown /. The roots of (3.17) are then computed
analytically. After we determine the values of 3, we substitute them into (3.15) to calculate
the corresponding values of 8. Then, we simply substitute the values of 3 and 8 into (3.12) to
obtain the values of §. The dominant cost in this whole process is the computation of H™'§,
H='b,and H1s.

Similar to the nonsingular case, a minimizer é is selected such that there exists a descent
path from the current point z. to z. + 6, and that § is closest to z, in the Euclidean norm sense.

To obtain the tensor step d, we set d to d + 6. An appropriate choice of d is the step used
in the previous iteration simply because it has the right scale. 7

To solve linear systems of the form Hz = b, where H = H + cssT, H € R"™ " sparse
and s € R™ full, we use the augmented matrix M defined in Lemma 3.1. That is, we write
(H + cssT)z = b as

+ (/§zzw + %ﬂzw - ;;—v - g-/;w - %sz)/}z + (%zw - lw - ;21-1)2),(3'3 = 0,




The (n + 1) x (» + 1) matrix in (3.18) is sparse and can be factored efficiently as long as the
last row and column are not pivoted until the last few iterations. In fact, we can combine the
nonsingular and singular cases by factoring H, but we shift to a factorization of the augmented
matrix if H is discovered to be singular with rank n — 1. However, we use a Schur complement
method to obtain the solution of the augmented matrix by updating the solution from the system
Hz = b. This choice was motivated by the fact that the Schur complement method is simpler
and more convenient to use than the factorization of the augmented matrix M. We describe
this updating scheme in §6.

If the Schur complement method shows that M is rank deficient (a case that is very rare in
practice), or H-has rank less than n — 1, we use the standard Newton step as the step direction
for the current iteration.

4. Line Search Backtracking Techniques

The line search global strategy we use in conjunction with our tensor method for large, sparse
unconstrained optimization is similar to the one used for nonlinear equations [4, 6]. This strat-
egy has shown to be very successful for large, sparse systems of nonlinear equations. We also
found that it is superior to the approach used by Schnabel and Chow [18]. The main difference
between the two approaches is that ours always tries the full tensor step first. If this provides
enough decrease in the objective function, then we terminate; otherwise we find acceptable next
iterates in both the Newton and tensor directions and select the one with the lower function
value as the next iterate. Schnabel and Chow, on the other hand, always find acceptable next
iterates in both the Newton and tensor directions and choose the one with the lower function
value as the next iterate. In practice, our approach almost always requires fewer function eval-
uations while retaining the same efficiency in iteration numbers. The global framework for line
search methods for unconstrained minimization is given in Algorithm 4.1.

Algorithm 4.1. Global Framework for Line Search Methods for Unconstrained Minimization

Let z. be the current itefate,
d; the tensor step,
d, is the Newton step,

g =V flz.),
e = f(ze),
slope = ¢g7d;,

and a = 1074
tf = z.+d,
fp = f(sz-)
if (minimizer of the tensor model was found) then
if f, < f.+ a - slope then
oy =z
else
Find an acceptable z7} in the Newton direction d,
using Algorithm A6.3.1 9, p.325]
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Find an acceptable z! in the tensor direction d,
using Algorithm A6.3.1 [9, p.325]

if f(x}) < f(z%) then

r, = .’131
else
zy =8
endif
endif

else
Find*an acceptable z%} in the Newton direction d,
using Algorithm A6.3.1 [9, p.325]
Zy = :Ei

endif

5. Model Trust Region Techniques

The two computational methods—the locally constrained optimal (or “hook”) step and the

dogleg step—are generally used for approximately solving the trust region problem based on the
standard model,

minimize f(zc) + Vf(z.)-d + —;-V2f(rcc)~d2 (5.19)
subject to || d || < 4,

where 4. is the current trust region radius. When 6, is shorter than the Newton step, the
locally constrained optimal step [16] finds a . such that || d(g.) ||2 = 8., where d(u;) =
~(V2f(z.) + pl) 'V f(z.). Then it takes T, = z. + d(p.). The dogleg step is a modification
of the trust region algorithm introduced by Powell [17]. However, rather than finding a point
T4 = .+ d(p.) on the curve d(p.) such that || z4 — z. || = é., it approximates this curve by a
piecewise linear function in the subspace spanned by the Newton step and the steepest descent
direction ~V f(z.), and takes z as the point on this approximation for which || 4 — z. || = é..
(See, e.g., [9] for more details.)

Unfortunately these two methods are hard to extend to the tensor model, which is a fourth-
order model. Trust region algorithmns based on (5.19) are well defined because it is always
possible to find a unique point z; on the curve such that || z; — z. || = .. Additionally, the
value of f(z.)+ V f(z:)-d+1V?f(z.)-d? along the curve d(u.) is monotonically decreasing from
z. to z'y, where r’} = .+ d,, which inakes the process reasonable. These properties do not
extend to the tensor model, which is a fourth-order model that may not be convex. Furthermore,
the analogous curve to d(f.) is more expensive to compute. For these reasons, we consider a
different trust region approach for our tensor methods.

The trust region approach that is discussed in this section is a two-dimensional trust region
step over the subspace spanned by the steepest descent direction and the tensor (or standard)
step. The main reasons that lead us to adopt this approach are that it is easy to construct, closely
related to dogleg type algorithms over the same subspace. This step may be close to optimal
trust region step algorithms in practice. Byrd, Schnabel, and Shultz {7] have shown that for
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unconstrained optimization using a standard quadratic model, the analogous two-dimensional
minimization approach produces nearly as much decrease in the quadratic model as the optimal
trust region step in almost all cases.

The two-dimensional trust region approach for the tensor model computes an approximate
solution to :

minimize f(z.) + Vf(ze)-d + -;-v‘l flzo)-d* + %(de)(sTd)z + L(sTay
subject to || d || < 4.,

by performinga two-dimensional minimization,

minimize f(z.) + Vf(ze)-d + %v‘l fzo)-d* + %(de)(sTd)‘l + LTyt (s20)

subject to || d ||z < &, d € [ds.gs),

where d; and g, are the tensor step and the steepest descent direction, respectively, and 6. is the
trust region radius. This approach will always produce a step that reduces the quadratic model
by at least as much as a dogleg-type algorithm, which reduces d to a piecewise linear curve in
the same subspace. At each iteration of the tensor algorithm, the trust region method either
solves (5.20) or minimizes the standard linear model over the two-dimensional subspace spanned
by the standard Newton step and the steepest descent direction. The decision of whether to use

" the tensor or standard model is made using the following criterion:

if (no minimizer of the tensor model was found) or (Vf(zc)Tdy > —1074|| V£(zc) ||2l] de ||2)
then )
Ty = .+ ad, — fgs; a, 3 selected by trust region algorithm
else
T4 =z, + ady — By¢s; a, 3 selected_by trust region algorithm
endif

’

Before we define the two-dimensional trust region step for tensor methods, we show how to
convert the problem '

!
2
subject to || d || = 6., d€[dsgs ],

minimize f(z.) + Vf(z.)-d + év‘z flze)-d* + < (bTd)(sTd)? + %(sTd)‘* (5.21)

to an unconstrained minimization problem.
First, we make g, orthogonal to d; by performing the Householder transformation:

gld;
T,

gs = gs — d; (522)

then, we normalize both g, and d; to obtain




g = 9
A

Since d is in the subspace spanned by the tensor step d; and the steepest descent direction §s,
it can be written as

(5.24)

d = ady, + B§,, o,B€R. (5.25)

If we square the /5 norm of this expressmn for d and set it to §2, we obtain the following equation
for 3 as a function of «
B = V&t — al.

Substituting this expression for 3 into (5.25) and then the resulting d into (5.21) yields the global
minimization problem in the one variable a, glven by (5.26) below. Thus, problems (5.26) and
(5.21) are equxvalent Let gng = §1 Hgs, dha = dT Hd,, dpg = dT Hg,, b, = bTdy, s = sTd,,
b, = bT§,, and Sy = sTg,.

minimize f(z.) + §6fghg + Ezﬁcsg (1 + 6Zbgs;)\/6g - a?

+ (dng + 6663¢33)a\/¢52 — a? + (bsgse + b st + besesg

- bg.sg)a VoI = a? + (62bgsgs. + 82bisE + 62bgsisg)
ld 1 lb 2 762 62 4y,.2 | (526)
+ (5 hd — '.'z'ghg + j.): St sts - 12°¢ g)a

: Y 2
- (bgsgst_ + bes? + bgsysgla® + (ZS’ - Zs s + -Zzsg)a
+ (2 Tels, — %stsg)a%/ag — a2,
where -8, < a < é..

To transform the problem

: - 1_. T
minimize f(z.) + Vf(z.)-d + ;Z-sz(:z:c) -d* (5.27)
subject to || d ||z = 6., d€[dn, 9]

to an unconstrained minimization problem, we use the same procedure described above to show
that (5.27) is equivalent to the following global minimization problem in the one variable a:

i .
winimize f(xc)_-i— 820y + /62 — a? + dpgoy/62 — o + (3 dhd - :jghg)az, (5.28)
where —6, < a < é,.

Algorithm 5.1. Two-Dimensional Trust Region for Tensor Methods

Let d; be the tensor step,
d,, the standard step,
z. the current iterate,




fe = f(zo),

z4+ the next iterate,

fv = f(:E+),
gs = =V f(z.), the steepest descent direction,
gec = Vf(wc)9

H.= V2f(xc)7

and 4. the current trust region radius.

dy, §s are given by (5.23) and (5.24), respectively.

d,, is obtained in an analogous way to dy; by applying transformations (5.22) and (5.23) to it.

1. if tensor model selécted then
Solve problem (5.26) using the procedure described in Algorithm 3.4 [6]
else {standard Newton model selected}
Solve problem (5.28) using the procedure described in Algorithm 3.4 [6]
endif

2. 1if tensor model selected then

d=a.d;+ G/ — o
where a. is the global minimizer of (5.26)
else {standard Newton model selected}

d = a.d, + §: /62 — a2

where a, is the global minimizer of (5.28)

endif -
3. { Check new iterate and update trust region radius.}

Iy =r.+d

if fr =S > 10~* then
pred
the global step d is successful -

else >
decrease trust region i
go to step 1

endif

where

pred = (fe+ ge-d + 1H -d?+ %(de)(sTd)2 + ;214-(5Td)4 ) = fe, if tensor model selected,
pred = (fe+ g.-d + EHC - d?) — f., if standard Newton model selected.

The methods used for adjusting the trust radius during and between steps are given in Algorithm
' A6.4.5 [9, p.338]. The initial trust radius can be supplied by the user; if not, it is set to the
length of the initial Cauchy step.

6. A High-Level Algorithm for the Tensor Method

In this section, we present the overall algorithm for the tensor method for large, sparse uncon-
strained optimization. Algorithm 6.1 is a high-level description of an iteration of the tensor




method that was described in §§ 3—5. A summary of the test results for this implementation
is presented in §7.

Algorithm 6.1. An Iteration of the Tensor Method for Large, Sparse Unconstrained Opti-
mization

Let x. be the current iterate,
d; the tensor step,
and d, the Newton step.

1. Calculate V f(z.) and decide whether to stop. If not:
2. Calculate V2f(z.).
3. Calculate the terms T, and V. in the tensor model, so that the tensor model interpolates
f(z) and V f(z) at the past point.
4. Find a potential minimizer d; of the tensor model (3.1).
Find an acceptable next iterate z; using either a line search or a two-dimensional trust
region global strategy.
6. Lo =TIy,
flze) = f(z4),
go to step 1.

(3]
h

In step I, the gradient is either computed analytically or approximated by the algorithm
A5.6.3 given in Dennis and Schnabel [9]. In step 2, the Hessian matrix is either calculated
analytically or approximated by a graph coloring algorithm described in [8]. Note that it is
crucial to supply an analytic gradient if the finite difference Hessian matrix requires many
gradient evaluations. Otherwise, the methods described in this paper may not be practical, and
inexact type of methods may be preferable. The procedures for calculating 7. and V. in step
3 were discussed in §2. Step 4 calculates d; as described in §§3—4. The Newton step d,, is
also computed as a by-product of the minimization of the tensor model. The Newton step d,
is the modified Newton step (V2 f(z.) + ul)"'V f(z.), where p = 8 if V2 f(z.) is safely positive
definite, and g > 0 otherwise. To obtain the perturbation y, we use a modification of MA27 [10]
advocated by Gill, Murray, Ponceleon, and Saunders in {12]. In this method we first compute the
LDLT of the Hessian matrix using the MA27 package, then change the block diagonal matrix
D to D + E. The modified matrix is block diagonal positive definite. This guarantees that the
decomposition L(D + E)LT is positive definite as well. Note that the Hessian matrix is not
modified if it is already positive definite.

The tensor and Newton algorithms terminate if || V f(z.) |} < 1077 or || d [z < 107°.

Another implementation issue that deserves some attention is how to find a solution to the
augmented system (3.18) when the Hessian matrix is rank deficient. To do this, we use a Schur
complement method to update the solution z obtained from solving Hz = b. This requires
that A must have full rank. Thus, some modifications are necessary in order for this method
to work. We have modified the factorization phase of MA27 to be able to detect the row and
column indices of the first pivot that is less or equal than some given tolerance tol. Note that
if the rank of the Hessian matrix is less than n — 1, then we skip this whole updating scheme
and perturb the matrix as described in the preceding paragraph. We also modified the solve

16




phase of MA27 such that whenever there is a zero pivot, the corresponding solution component
is set to zero. This way the solution of Hz = b is the same as the solution of H.y = b (where
H., is the matrix H minus the row and column at which singularity occurred. Since y has n ~ 1
components, the remaining one, which is also the component corresponding to the zero pivot, is
set to 0). Afterwards, we obtain the solution of an augmented system using a Schur complement
method, where the coefficient matrix is the matrix H augmented by two rows and columns;
that is, the (n + 1)-st row and column are the ones at which singularity was detected, and the
(n 4 2)-nd row and column are csT and e¢s, respectively. The Schur complement method is
implemented by first invoking MA39AD [1] to form the Schur complement $ = D — CH~!B of
A in the extended matrix, where D is the 2 by 2 lower right submatrix, C is the lower left 2 by
n submatrix, ahd B is the upper right » by 2 submatrix, of the augmented matrix. The Schur
complement is then factored into its QR factors. Next, MA39BD [1] solves the extended system
(3.18) using the following well-known scheme:

1. Solve Hu = b, for u.
2. Solve Sy = b — Cu, for y.
3. Solve Hv = By, for v.

4, z = u — v.

7. Test Results

We tested our tensor and Newton algorithms on a variety of nonsingular-and singular test
problems. In the following we present and discuss summary statistics of the test results.

All our computations were performed on a Sun Sparc 10 Model 40 machine using double-
precision arithmetic.

First, we tested our program on the set of unconstrained optimization problems from the
CUTE [3] and the MINPACK-2 [2] collections. Most of these problems have nonsingular Hessians
at the solution. We also created singular test problems as proposed-in [4, 19] by modifying the
nonsingular test problems from the CUTE collection as follows. Let

m

f@)= Y f(@)

be the function to minimize, where f; : ®" — R and m is the number of element functions,
and

FT() = (fi(2); s forl)). _ (7.1)

In many cases, F(z) = 0 at the minimizer z., and F’(z.) is nonsingular. Then according to
[4, 19], we can create singular systems of nonlinear equations from (7.1) by forming

F(z) = F(z) = Fl(z)AATA) AT (z - z.), - (7.2)

where A € R7** has full column rank with 1 < k < n. Hence, F(z.) = 0 and £”(z.) has rank
n — k. For unconstrained optimization, we simply need to define the singular function
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flz) = %F(w)Tﬁ’(x)- (7.3)
From (7.3) and F(z.) = 0, we obtain V f(2.) = 0. From
Fl(z.) = F'(z)[I — A(ATA)"14T]

and
™m

Vif(z.) = F(e) F(z) + ) fiz)Vifi(e.) = F'(2)TF(z.),

=1

we know that V2 f(z.) has rank n — k.
By using (7.2) and (7.3), we created two sets of singular problems, with V2f(z,) having rank
n — 1 and n — 2, respectively, by using

Aert AT =(1,0,...,0),

and
1 00 o - - . 0

nx2 T _
Aeg? b3 A —[0 1 0 0 . . . 0 ?

respectively. The reason for choosing unit vectors as columns for the matrix A is mainly to
preserve the sparsity of the Hessian during the transformation (7.2).

For all our test problems we used a standard line search backtracking strategy. All the test
problems with the exception of rank # — 1 and rank » — 2 problems were run with analytic
gradients and Hessians provided by the CUTE and MINPACK-2 collections. For rank n — 1 and
n — 2 test problems, we have modified the analytic gradients provided by the CUTE collection
to take into account the modification (7.2). On the other hand, we used the graph coloring
algorithm [8] to evaluate the finite difference approximation of the Hessian matrix. -

A summary for the test problems whose Hessians at the solution have ranks n, n — 1, and
n — 2 is presented in Table 1. The descriptions of the test problems and the detailed results are
given in the Appendix. In Table 1 columns “better” and “worse” represent the number of times
the tensor method was better and worse, respectively, than Newton’s method by more than one
gradient evaluation. The “tie” column represents the number of times the tensor and standard
methods required within one gradient evaluation of each other. For each set of problems, we
summarize the comparative costs of the tensor and standard methods using average ratios of
three measures: gradient evaluations, function evaluations, and execution times. The average
gradient evaluation ratio (geval) is the total number of gradients evaluations required by the
tensor method, divided by the total number of gradients evaluations required by the standard
method on these problems. The same measure is used for the average function evaluation
(feval) and execution time (time) ratios. These average ratios include only problems that were
successfully solved by both methods. We have excluded all cases where the tensor and standard
methods converged to a different minimizer. However, the statistics for the “better,” “worse,”
and “tie” columns include the cases where only one of the two methods converges, and exclude
the cases where both methods do not converge. We also excluded problems requiring a number
of gradient evaluations less or equal than 3 by both methods. Finally, columns “t/s” and “s/t”

I8




show the number of problems solved by the tensor method but not by the standard method
and the number of problems solved by the standard method but not by the tensor method,
respectively.

The improvement by the tensor method over the standard method on problems with rank
n—1 is dramatic, averaging 48% in function evaluations, 52% in gradient evaluations, and 59% in
execution times. This is due in part to the rate of convergence of the tensor method being faster
than that of Newton’s method, which is known to be only linearly convergent with constant
-2,; On problems with rank n — 2, the improvement by the tensor method over the standard
method is also substantial, averaging 30% in function evaluations, 37% in gradient evaluations,
and 34% in execution times. In the test results obtained for the nonsingular problems, the tensor
method is 9% worse than the standard method in function evaluations, but 31% and 33% better
in gradient evaluations and in execution times, respectively. The main reason for the temsor
method requiring on the average more function evaluations than the standard method is because
on some problems, the full tensor step does not provide sufficient decrease in the objective
function, and therefore the tensor method has to perform a line search in both the Newton
and tensor directions, which causes the number of function evaluations required by the tensor
method to be inflated. As a result, we intend to investigate other possible global frameworks for
line search methods that could potentially reduce the number of functions evaluations for the
tensor method. '

To obtain an experimental indication of the local convergence behavior of the tensor and
Newton methods on problems where rank(V?2f(z.)) = n— 1, we examined the sequence of ratios

“Zk-.’l:* “ - (7.4)

Il Ze-1 — 2 ||

produced by the Newton and tensor methods on such problems. These ratios for a typical
problem are given in Table 2. In almost all cases the standard method exhibits local linear
convergence with constant near 3}, which is consistent with the theoretical analysis. The local
convergence rate of the tensor method is faster, with a typical final ratio of around 0.01. Whether
this is a superlinear convergence remains to be determined. We have done similar experiments for
problems with rank(V?f(z,)) = n — 2, and the tensor method did not show a faster-than-linear
convergence rate, because it did not have enough information since p = 1. ’

The tensor method solved a total of four nonsingular problems, five rank n — 1 problems, and
7 rank n — 2 problems that Newton’s method failed to solve. The reverse never occurred. These -
results clearly indicate that the tensor method is most likely to be more robust than Newton’s
method.

The overall results show that having some extra information about the function and gradient.
in the past step direction is quite useful in achieving the advantages of tensor methods.

8. Summary and Future Research

In this paper we presented new algorithms for solving large, sparse unconstrained optimization
using tensor methods. Implementations using these tensor methods have been shown to be
considerably more efficient especially on problems where the Hessian matrix has a small rank
deficiency at the solution. Typical gains over standard Newton methods range from 40% to
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Table 1: Summary of the CUTE and MINPACK-2 test problems using line search

Rank Tensor/Standard | Pbs Solved | Average Ratio-Tensor/Standard
V*f(z.) | better | tie | worse | t/s | s/t | feval | geval time
n 53 38 5 4 0 1.09 | 0.69 0.67
n—1 18 2 0 5 0 0.52 | 0.48 0.41
n-—2 18 1 1 7 0 0.70 | 0.63 0.66
e -

Table 2: Speed of convergence on the BRYBND problem with rank(V?f(z.)) = n—1, as modified
by (7.2), n = 5000, started from zo. The ratios in second and third columns are defined by

(7.4).
[teration (k) | Standard Method | Tensor Method

1 0.659 0.659
2 0.655 0.033
3 0.650 0.459
4 0.641 0.961
5 0.629 0.850
6 0.612 0.667 C
7 0.590 0.410 -
8 0.571 0.323%
9 0.600 0.126
10 0.760 0.012
11 0.940
12 0.988
13 : 0.970
14 0.969
15 0.956 .
16 0926 :
17 0.891
18 0.909
19 0.848
20 0.926
21 0.939
22 0.896
23 0.832
24 0.871
25 0.742

. 26 0.667
27 0.667
28 - 0.666
29 0.665
30 0.666




50% in function and gradient evaluations and in computer time. The size and consistency of
the efficiency gains indicate that the tensor method may be preferable to Newton’s method
for solving large, sparse unconstrained optimization problems where analytic gradients and/or
Hessians are available. To firmly establish such a conclusion, additional testing is required,
including test problems of very large size.

On sparse problems where the function or the gradient is expensive to evaluate, the finite
difference approximation of the Hessian matrix by the graph coloring algorithm [8] may be very
costly. Hence, quasi-Newton methods may be preferable to use in this case. These methods
involve low-rank corrections to a current approximate Hessian matrix. We are currently at-
tempting to extend our tensor methods to quasi-Newton methods for large, sparse unconstrained
minimization problems.

We also considered solving large, sparse, structured unconstrained optimization problems
using tensor methods. In this variant, we explored the possibility of using exact third- and
fourth-order derivative information. The calculation of these derivatives is simplified using the
concept of partial separability, a structure that has already proven to be useful when building
quadratic models for large-scale nonlinear problems [15]. The calculation of the minimizer of
this ezact tensor model is more problematic, however, because we need to solve a sparse system
of nonlinear equations. An obvious approach to solve these equations is to use a Newton-like
method. Such a method is characterized by the approximation of the Jacobian used in the
Newton process. A simple idea is to use a fixed Jacobian at each step. This has the advantage
that the Jacobian will have already been obtained in the current tensor iteration. However,
potential slow convergence of such a scheme may make the cost of a tensor iteration prohibitive.
We are currently investigating other possible approaches, such as a modified Newton’s method
in which the approximated Jacobian matrix will incorporate more useful information, or an
iterative method such as a nonlinear GMRES. This work, a cooperation with Nick Gould [5],
will be reported in the near future.

We are almost done with the implementation and testing of the two-dimensional trust region -

global strategy described in §5. This work will be reported in a forthcoming paper.
- We are also implementing the algorithms discussed in this paper in a software package. This
package uses one past point in the formation of the tensor terms, which makes the additional
cost and storage of the tensor method over the standard method very small. The package will
be available soon.
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Appendix: Test Problems and Detailed Experimental Results

The columns in Tables A-3—A-6 have the following meanings:

!

fune: name of the problem.

t

n: dimension of the problem.

zg: starting point. 1, 10, 100 stand for zo, 10.7:0, and 100z, respectively.

it f: mmal value of the objective function.

— fen: number of function evaluations.

grad: number of gradient evaluations.
— time: execution time in seconds.
— finalf: final value of the objective function.

IL, NC stand for iteration limit exceeded and convergence to a nonminimizer, respectively. The
iteration limit is 300 for the MINPACK-2 collection and 200 for the CUTE collection. All starting
points were provided by the MINPACK-2 and CUTE collections.

Remark: For rank n — 1 and n — 2 problems grad does not include the number of gradients
required by Hessian evaluations. On the other hand, fen does include the functions evaluations
required by Hessian evaluations.

Table A-1: MINPACK-2 test problems

Name | Description

F

DEPT | Elastic-plastic torsion problem
DGL! | Ginzburg-Landau (l-dimensional) superconductmty problem

DGL2 | Ginzburg-Landau (2-dimensional) superconductivity problem

DLJ2 | 2-dimensional Leonard-Jones clusters (molecular conformation) problem
DLJ3 | 3-dimensional Leonard-Jones clusters (molecular conformation) problem
DMSA | Minimal surface area problem

DODC | Optimal design with composite materials problem

DPIJB | Pressure distribution in a journal bearing problem

DSSC | Steady state combustion problem




Table A-2: CUTE test problems

Name Description

ARWHEAD | Quartic problem whose Hessian is an arrow-head (downwards)
with diagonal central part and border-width 1

BDQRTIC Quartic problem whose Hessian is banded with bandwidth 9

BRYBND Broyden banded system of nonlinear equations, considered in

N the least square sense

DIXMAANA | Dixon-Maany test problem (version A)

DIXMAANB | Dixon-Maany test problem (version B)

DIXMAANC | Dixon-Maany test problem (version C)

DIXMAANI Dixon-Maany test problem (version I)

DIXMAANJ | Dixon-Maany test problem (version J)

DIXON3DQ Dixon’s tridiagonal quadratic

EDENSCH Extended Dennis and Schnabel problem, as defined by Li

ENGVALI A sum of 2n — 2 groups, n — 1 of which contain 2 nonlinear elements

FLETCBV2 Boundary Value problem

FREUROTH | Freudenstein and Roth test problem

LIARWHD A simplified version of the NONDIA problem

- MOREBV = | Boundary Value problem. This is the nonlinear least-squares

version without fixed variables

NONDIA /| Shanno’s nondiagonal extension of Rosenbrock function

NONDQUAR | A nondiagonal quartic test problem with an
arrow-head type Hessian having a tridiagonal central part and
a border-width 1. The Hessian is singular at the solution

PENALTY1 A sum of n + 1 least-squares groups, the first »
which have only one linear element ’

PENALTY2 A nonlinear least-squares problem with m = Zn groups,
group 1 is linear, groups 2 to n use 2 nonlinear elements,
groups n + 1 to m — | use 1 nonlinear element, and group m
uses n nonlinear elements

POWELLSG | Extended Powell singular problem

QUARTC A simple quartic function

SINQUAD A function with nontrivial groups and repetitious elements

SROSENBR | Separable extension of Rosenbrock’s function

TQUARTIC A quartic function with nontrivial groups and repetitious elements

TRIDIA Shanno’s TRIDIA quadratic tridiagonal problem

WOODS Extended Woods problem

WOODS! Scaled extended Woods problem




Table A-3: Results of the MINPACK-2 test problems

Standard Tensor
n £g intf ~ fen grad Tinalf time fen grad Finalf Time
100 ] -0.36364D 401 2 2 -0.10694D 402 0.410D-01 2 2 -0.10694D 402 0.391D.01
400 1 -0.36584D 401 2 2 -0.10902D 402 0.130D 400 2 2 -0.10902D+02 0.182D 400
900 1 -0.36629D 401 2 2 -0.10946D 402 0.449D 400 2 2 -0.10946D <402 0.471D+400
16800 1 -0.36645D 401 2 2 -0.10961D 402 0.900D +00 2 2 -0.10961D 402 0.900D 400
2500 1 -0.36653D+401 2 2 -0.10969D+02 0.153D 401 2 2 -0.10969D4-02 0.151D 401
3600 1 -0.36657D+4-01 2 2 -0.10973D 402 0.239D 401 2 2 -0.10973D 402 0.236D 401
4900 1 -0.36659D+401 2 2 -0.10976D 402 0.343D 401 2 2 -0.10976D 402 0.349D 401
6400 1 -0.36661D-+01 2 2 -0.1097TD 402 0.478D+401 2 2 -0.10877D 402 0.483D 401
8100 1 -0.36662D 401 2 2 -0.10978D 402 0.746D+01 2 2 -0.10978D 402 0.713D+401
10000 [ 1 -0.36663D+01 2 2 -0.10978D 402 0.833D401 2 2 -0.10979D 402 0.831D401
- 100 3 -0.16619D-03 18 18 -0.84562D 404 0.410D 400 5 5 -0.84562D+04 0.110D+400
400 1 -0.16619D-03 18 18 -0.84562D 404 0:173D+01 9 6 -0.84562D 404 0.620D 400
900 1 -0.16619D-03 18 18 -0.84562D 404 0.397D 401t 6 6 -0.84562D 404 0.129D 401
1600 1 -0.16619D-.03 18 18 -0.84562D 404 0.706D +01 7 7 -0.84562D 404 0.282D 401
2500 1 -0.16613D-03 i8 18 -0.84562D 404 0.110D+402 8 8 -0.84562D 404 0.512D+01
b 3600 1 -0.16613D-03 19 19 -0.84562D+404 0.169D+02 9 9 -0.84562D 404 0.847D401
4900 1 -0.16619D-03 19 19 -0.84562D 404 0.230D+02 7 7 -0.84562D 404 0.860D 401
8400 1 -0.16619D-03 17 17 -0.84413D 404 0.270D+02 7 7 -0.84562D 404 0.115D+402
8100 1 -0.16619D-03 - NC - - 7 7 -0.84562D 404 0.149D402.
10000 1 -0.16619D-03 - NC - - 9 3 -0.84562D+04 0.236D+4-02
100 1 0.18190D 402 231 84 0.16228D+02 0.113D402 150 38 0.16228D+02 0.531D 401
400 1 0.20131D402 159 a7 0.16231D 402 0.450D 402 210 43 0.16231D4.02 0.307D 402
900 H 0.22015D 402 265 96 0.16232D+02 0.202D+03 418 76 0.16232D 402 0.169D 403
1600 i 0.23884D402 306 1t1 0.16232D 402 0.584D+03 455 a1 0.16232D <402 0.444D+403
2500 3 0.25748D+02 354 122 0.16232D 402 0.133D +04 607 102 0.16232D+02 0.117D 404
3660 i 0.27609D 402 503 165 0.16232D +02 0.314D+04 751 137 0.16232D+402 0.219D 404
4300 1 0.29469D+02 686 223 0.16232D 402 0.128D 405 8349 144 0.16232D 402 0.644D 404
100 1 -0.10698D 403 252 107 -0.13375D 403 0.113D+403 176 51 -0.13396D+03 0.544D+4-02
200 1 -0.22945D403 405 132 -0.28056D 403 0.103D 404 475 83 -0.28140D403 0.698D 403
300 1 -0.35261 D403 544 145 -0.44216D+403 0.372D 404 631 118 -0.44025D+403 0.305D 404
120 1 -0.11782D+03 375 112 -0.17954D+03 0.137D+03 348 65 -0.17073D+03 0.805D+02
210 i -0.23253D403 435 139 .0.34073D 403 0.838D+03 608 113 -0.34522D+403 0.687D4-03
360 1. -0.42908D+403 1031 281 -0.63744D 403 0.826D 404 263 173 -0.63311D+403 0.466D 404
100 1 0.14608D 401 4 4 0.14185D 401 0.150D 400 4 4 0.14185D401 0.160D 400
400 H 0.148931D 401 4 4 0.14206D+01 0.640D+00 10 4 0.14206D+01 0.710D 400
= 300 1 @.15035D4-01 5 5 0.14210D 40t 0.212D+401 4 4 0.14210D <401 0.172D 401
1600 1 0.15123D+01 -5 5 0.14212D+01 0.396D+01 10 5 0.14212D+01 0.446D 401
2500 3 0.15183D+401} 6 6 0.14212D 401 0.833D+01 14 5 0.14212D 401 0.761D401
3600 1 0.15227D 401 6 6 0.14213D 401 0.130D 402 10 6 0.14213D 401 0.146D 402
v 4900 1 0.15260D 401 € 6 0.14213D 401 0.190D 402 11 ] 0.14213D 401 0.210D+402
6400 1 0.15286 D401 7 7 0.14213D+01 0.308D 402 3 7 0.14213D 401 0.342D 402
8100 1 0.15307D <401 17 12 0.14213D 401 0.846D+02 16 8 0.14213D <401 0.595D 402
10000 1 0.15324D+401 21 14 0.14213D+01 0.117D 403 17 7 0.14213D 401 0.601D402
100 1 0.44626D-01 i4 8 -0.10980D-01 0.420D+4-00 16 8 -0.10980D-01 0.487D 400
400 1 0.47194D-01 13 10 -0.11248D.01 0.234D+01 19 10 -0.11248D-01 0.272D 401
9500 1 0.47771D-.0} 23 13 -0.11329D-.01 0.744D 401 41 14 -0.11329D-01 0.943D+401
1600 1 0.47974D-01 55 23 -0.11351D-01 0.256D+402 56+ 21 -0.11351D-01 0.267D 402
2500 1 0.48082D-01 70 33 -0.11359D-01 0.617D+402 117 - 28 -0.11353D-.01 0.623D+402
3600 1 0.48139D-01 129 49 -0.11368D-01 0.143D+03 194 42 -0.11368D-01 0.144D+403
4900 1 0.48178D.0t 565 163 -0.11372D-01 g.713D 402 406 76 -0.11372D.01 0.380D 403
6400 1 0.48202D.01 597 168 -0.11374D-01 0.999D 403 526 94 -0.11374D.01 0.640D+403
8100 1 0.48221D-01 - IL - - - iL - -
10000 1 0.48234D.01 - 1L - - - L - -
100 1 0.11274D 402 2 2 -0.27881D 400 0.488D-01 2 2 -0.27881D+400 0.508D-01
400 i 0.13331D <402 2 2 -0.28144D 400 0.203D 400 2 2 -0.28144D+400 0.201D+400
900 1 0.14544D 402 - 2 2 -0.28213D+00 0.500D+00 2 2 -0.28213D+400 0.490D+400
1600 1 0.15545D 402 2 2 -0.28249D 400 4.5393D 400 2 2 -0.28243D 400 1.959D 400
2500 1 0.16462D +02 2 2 -0.28264D+00 0.150D+01 2 2 -0.28264D 400 0.160D+01
3600 1 0.17336D+02 2 2 -0.28272D+00 0.243D+0¢ 2 2 -0.28272D 400 0.256D 401
4900 1 0.18186D 402 2 2 -0.28277D+00 0.274D+01 2 2 -0.28277D <400 0.362D+01
6400 1 0.13022D 402 2 2 -0.28280D+00 0.496D+01 2 2 -0.28280D 400 0.483D+01
8100 1 0.19848D 402 2 2 -0.28282D+00 0.733D401 2 2 -0.28282D+00 0.741D+01
- 10000 1 0.20666D 402 2 2 -0.28284D+00 0.878D+01 2 2 -0.28284D+00 0.862D401
100 1 -0.52548D 401 3 3 -0.55973D 401 Q.11gD+00 3 3 -0.55979D 401 0.120D 400
400 1 -0.50507D 401 3 3 -0.56077D 401 0.510D 400 3 3 -0.56077D 401 0.540D 400
' 300 1 -0.43183D 401 3 3 -0.56098D+01 0.120D+01 3 3 -0.56098D 401 0.131D+40t
1600 3 -0.48224D 401 3 3 -0.56105D401 0.223D 401 3 3 -0.56105D 401 0.246D+401
2500 i -0.47466D 401 3 3 -0.56108D 401 0.382D 401 3 3 -0.56108D 401 0.413D+01
3600 1 -0.46842D 401 3 3 -0.56110D+01 0.595D 401 3 3 -0.56110D+01 0.624D 401
4900 1 -0.46312D 401 3 a -0.56112D+01 0.880D+01 3 3 -0.56112D401 4.913D+01
6400 1 -0.45852D 401 3 3 -0.58112D 401 0.115D+402 3 3 -0.56112D 401 Q.122D+02
8100 1 -0.45445D 401 3 3 -0.56113D+01 0.173D 402 3 3 -0.56113D 401 §.179D 402
10000 1 -0.45080D4-01 2 2 -0.56113D+01 0.102D 402 2 2 -0.56113D+01 0.102D 402




Table A-4: Results of the CUTE test problems

Standard Tensor
func n 29 initf fen gra finalf time fen grad “Jinalf time
ARWHEAD 5000 1 0.14997D 405 7 7 0.00000D 400 0.496D 402 3 3 0.00000D +00 0.168D+02
10 0.19978D+09 12 12 0.00000D 400 0.909D 402 18 14 0.00000D +00 0.110D+03
100 0.19996D+13 18 18 4.00000D 400 0.140D+03 33 20 0.00000D 400 0.160D+03
BDQRTIC 1000 1 0.22510D 406 10 10 0.39838D +04 0.992D+01 24 12 0.39838D-+04 0.127D 402
" 10 0.22424D 410 16 16 0.39838D +04 0.165D 402 33 17 0.39833D+4-04 0.183D+02
N 100 0.22410D+14 22 22 0.39838D 404 0.231D+402 51 23 0.39838D+-04 0.254D+02
BRYBND 5000 1 0.12490D 406 24 17 0.13587D-19 0.327D 402 49 16 0.12928D-186 0.381D402
10 0.10765D+12 37 26 0.14231D-19 0.510D 402 50 24 0.98532D-17 0.551D 402
100 0.12303D+18 - IL - - 810 188 0.35466D-16 0.473D+03
DIXON3DQ 5000 1 0.80000D 401 2 2 0.11414D-24 0.600D 400 2 2 0.11414D-24 0.560D+00
10 "0.24200D 403 2 2 0.34514D-23 0.570D 400 2 2 0.34514D-23 0.570D 400
100 0.20402D 405 2 2 0.29050D-.21 0.560D 400 2 2 0.29050D-21 0.560D 400
DIXMAANA 3000 t 0.20501D+405 6 [ 0.10000D +01 0.165D+401 8 6 0.10000D 401 0.205D+01
10 0.80013D+10 18 12 0.10000D 401 0.366D+01 19 12 0.10000D+01 0.455D 401
100 0.80000D+16 29 21 0.10000D 401 0.654D+01 19 19 0.10000D+01 0.724D+01
DIXMAANB 3000 13 0.43242D+405 3 6 0.10000D+-01 0.162D+01 15 8 0.10000D +01 0.218D+401
10 0.17227D+11 - iL - - - iL - -
100 0.16116D+17 - IL - - - IL - -
DIXMAANC 3000 1 0.74433D 405 15 15 0.10000D+01 0.450D 401 15 13 0.10000D +01 0.506D+01
10 0.34452D+11 - IL - - - L - -
oo 4.32233D417 - IL - - - 1L - -
DIXMAANI 3000 1 0.12022D+05 100 33 0.10000D 401 0.119D+02 108 18 0.10000D+01 0.907D+01
10 0.80004D+10 184 58 0.10000D 401 0.217D+02 152 32 0.10000D 401 0.157D 402
100 0.80000D 416 263 77 0.10000D 401 0.287D+02 247 41 0.10000D 401 0.208D+02
DIXMAANI 3000 1 0.00000D 400 1 1 0.00000D 400 0.900D-01 1 1 0.00000D+00 0.700D-01
10 0.00000D 400 1 1 0.00000D+00 0.700D-01 1 1 0.00000D +00 0.700D-01%
100 0.00000D 400 1 1 0.00000D 400 0.700D-01 1 1 06.00000D 400 0.700D-01
EDENSCH 2000 1 0.73583D 407 13 - 13 0.12003D 405 0.442D+40Q1 31 16 0.12003D+05 0.666D+01
10 0.15i184D+12 19 19 0.12003D 405 0.666D+01 53 20 0.12003D+-05 0.877D+01
100 0.16253D+16 24 24 0.12003D 405 0.848D+01 48 25 0.12003D+05 0.106D+02
ENGVAL1 5000 i 0.29494D +06 8 8 0.55487D 404 0.536D+4-01 7 7 0.55487D 404 0.548D+01
10 0.31980D+10 14 14 0.55487D +04 0.983D 401 27 14 0.55487D+04 0.124D 402
100 0.31994D 414 20 20 0.55487D+04 0.143D+02 49 20 0.55487D 404 0.1836D+02
FLETCBV2 10000 1 -0.50013D +00 1 1 0.00000D 400 0.460D+00 1 1 0.00000D 400 0.380D +00
10 0.39995D 402 2 2 -0.50013D 400 0.207D 401 2 2 -0.50013D+400 0.215D+01
100 0.48995D 404 2 2 -0.50013D 400 0.212D 40} 2 2 -0.50013D+00 0.212D+401
FREUROTH 5000 1 0.50486D 407 461 83 0.60793D 406 0.956D 402 424 53 0.60821D+06 0.785D+02
10 0.15963D 409 444 77 0.60726D+06 0.894D 402 200 30 0.35200D+07 0.414D+02
too 0.13056D+15 92 45 0.42206D 406 0.426D 402 155 51 0.53483D+06 0.605D+02
LIARWHD 10000 1 0.58500D 407 13 13 0.81983D-21 0.217D 403 13 38 0.49397D-27 0.148D+03
10 0.97359D+11 22 21 0.63218D-17 0.363D+403 24 12 0.11125D-16 0.205D 402
100 0.10183D 416 % 26 0.16259D-16 0.463D0403-+] 48 18 0.31712D-21 2.319D+03
MUOREBV 5000 t 0.15969D-06 2 2 0.58271D-14 0.100D+01 © 2 2 0.58271D-14 0.940D+00
10 0.15983D-04 2 2 0.22833D-09 0.950D 400 2 2 0.22833D-09 0.960D+00
100 0.17190D-.02 2 2 0.32151D-04 0.910D 400 2 2 0.32151D-04 0.910D+00
NONDIA 10000 1 0.39996D 407 6 [ 0.47632D-24 0.909D +02 10 5 0.11200D-20 0.737D+02
10 0.12093D+11 34 34 0.53482D-25 0.595D 403 20 16 0.15919D-28 0.274D+03
100 0.10200D+15 39 39 0.22382D-20 0.681D+03 52 21 ¢.65733D-17 0.367D+03
NONDQUAR 10000 1 0.10006D 405 20 20 0.41398D-09 0.965040Q3 20 20 0.41413D-09 0.970D 403
10 0.99981D+08 25 25 0.12450D-08 0.122D+04 25 25 0.12538D-08 0.123D+04
100 0.99980D+12 31 31 "0.73954B-09 0.152D+404 31 31 0.87210D-09 0.153D+04
PENALTY!1 oo 1 0.11448D+12 47 38 0.30255D-03 0.493D+01 10 7 0.90249D-03 0.780D 400
10 0.11448D+16 51 43 0.90255D-03 0.557D 401 7 7 0.50249D-03 0.850D+00C
100 0.11448D420 55 48 0.90257D-03 0.625D401 30 16 0.90252D-03 0.213D+01
PENALTY2 100 1 0.16885D+07 24 21 0.97096D+05 0.296D+01 26 20 0.97096D+05 0.300D+01
{0 0.15933D 411 27 26 0.970260D 405 3.369D 401 47 27 0.97096D+05 0.411D+01
100 0.15939D+15 31 31 0.97098D 405 0.444D+01 70 31 0.37096D+05 0.481D401
POWELL3G 10000 i 0.53750D 406 16 16 0.10%47D-04 0.143D 402 33 15 0.83306D-05 0.179D 402
10 0.40385D+10 21 21 0.32920D-04 0.190D 402 28 22 0.11685D-04 0.257D+02
100 0.40251D+14 27 27 0.19556D-04 0.247D+02 31 27 0.54051D-05 0.316D+02
QUARTC 1000 1 0.138350D+15 35 35 0.22354D-09 0.231D+01 35 35 0.22354D-09 0.287D 401
10 0.18125D+15 35 35 0.20411D-09 0.229D 401 35 35 0.20411D-09 0.285D 401
100 0.65804D04 14 34 34 0.37515D-09 0.2230+401 35 34 0.37515D-09 6.278D+01




Table A-4: Results of the CUTE test problems (continued)

Standard Tensor
func n zg inttf fen grad Finalf ttme fen gra “finalf time
SINQUAD 10000 1 0.65610D 400 25 20 0.39609D-10 0.975D+03 66 21 0.35876D-15 0.103D 404
10 0.00000D+00 1 1 0.35876D-15 0.290D+00 1 1 0.35876D-15 0.300D +00
100 0.65610D 404 18 18 0.69625D-08 0.881D+03 47 19 0.42524D-15 0.966D+03
SROSENBR 5000 1 0.48500D+0% 9 8 0.93253D-11 0.297D 401 16 7 0.10927D-17 0.332D+01
10 0.44893D+10 a7 66 0.38588D-18 0.279D 402 65 33 0.22535D-15 0.179D+02
100 0.51123D+14 - IL - - 204 97 0.26051D-08 0.547D 402
TQUARTIC 1090 1 0.81000D 400 2 2 0.39936D.27 0.270D 400 2 2 0.39936D-27 0.260D+00
- '~ 10 0.00000D +00 1 t 0.39936D-27 4.2000-01 1 1 0.39936D-27 0.200D-01
100 0.81000D 402 2 2 0.12622D-24 0.260D+00 2 2 0.12622D-24 3.260D+00
TRIDIA 10000 1 0.50005D 408 2 2 0.41242D-24 0.119D 401 2 2 0.41242D-24 0.117D 401
10 0.50005D+10 2 2 0.13131D-22 0.117D 301 2 2 0.13131D-22 0.117D+0t
100 0.50005D 412 2 2 0.33835D-20 0.117D+01 2 2 0.33835D-20 0.117D+01
wWoOoDs 10000 1 0.27296D+08 28 23 0.31973D-14 0.259D 402 49 21 0.33996D-17 0.305D 402
10 0.22566D+12 51 42 0.42521D-12 0.484D+02 72 34 0.42039D-09 0.503D+02
100 0.22122D+18 73 60 0.27578D-10 0.698D 402 100 49 0.16526D-16 0.730D+02
WOODsS1 10000 1 0.55500D 4-06 9 9 0.17486D-11 0.949D 401 12 8 0.25903D-20 0.103D 402
10 0.41460D+10 15 15 0.38193D-13 0.165D+02 22 14 0.26198D-19 0.196D+402
100 0.40591D 414 21 21 0.61171D-14 0.236D+02 33 20 0.17403D.17 0.285D 402
Table A-5: Results of the rank n — 1 test problems from the CUTE collection
Standard Tensor
Junc n zg inst f fen grad finalf time “fen grad finalf time
BRYBND 5000 1 0.12488D 406 488 30 0.17586D-10 0.376D 403 176 10 0.13179D-10 0.130D+03
10 0.10765D 412 - L - - 1088 60 0.85644D-10 0.785D403
100 0.12303D+18 3396 201 0.97750D-21 0.263D 404 1560 84 0.16631D-11 0.111D404
DIXMAANJ 3000 1 0.00000D 400 ] 1 0.00000D +00 0.800D-01 - 1 0.00000D 400 0.700D-01
10 0.00000D 400 1 1 0.00000D 400 0.800D-01 1 1 0.00000D 400 0.700D-01
100 0.00000D +00 1 1 0.00000D 400 0.700D-01 1 1 06.00000D 400 0.800D-01
DIXON3IDQ 5000 1 0.40000D 401 6 2 0.62536D-17 0.712D 401 “ E3 2 0.62536D-17 0.718D+01
10 0.12100D+03 6 2 0.18917D-15 0.713D+01 -6 2 0.18917D-15 0.713D+4-01
100 0.10201D 405 8 2 0.15948D-13 0.713D+01 6 2 0.15948D-13 0.713D+401
NONDQUAR too00 1 0.10003D 405 - iL - - 182 24 0.57721D-07 0.635D+403
10 0.99981D 408 - iL - - 4414 187 0.17004D-07 0.608D+04
100 0.99980D 412 - 1L - - 3820 194 0.62846D-07 0.560D+04
QUARTC 1000 1 0.45000D 405 57 15 0.61708D-05 0.631D+01 13 4 0.24654D-07 0.144D 401
10 0.45000D+409 a1 21 0.36635D-05 0.205D+01 29 5 0.53107D-07 0.240D+01
100 0.45000D +12 {01 26 0.11038D-04 0.113D+402 130 22 0.30306D-06 0.107D+02
SRI)SENBR 3000 i 0.48481D+05 30 3 0.17403D-09 0.477D+02 44 7 0.45822D-12 0.422D+02
10 0.44888D+10 286 65 0.23622D-12 0.440D 403 121 21 0.16587D-10 0.146D 403
100 0.51122D4 14 - L - - 242 49 0.35217D-11 0.344D+03
TQUARTIC 1000 1 0.32368D'404 38 12 0.38436D-15 0.433D+01 17 4 0.98215D-17 4.155D+01
10 0.15962D.23 1 1 0.98215D-17 0.200D-01 1 1 0.38215D-17 0.200D-01
100 0.32368D 406 23 8 0.20695D-15 0.275D4-01 28 9 0.14036D-15 0.335D+01
TRIDIA 10000 1 0.50005D 408 6 2 0:41155D-14 0.267D402 6 2 0.41155D-14 0.266D 402
10 0.50005D 410 6 2 0.44999D-12 0.266D 402 6 2 0.44999D-12 0.266D+402
100 0.50005D 412 11 3 0.14577D-13 0.531D+402 11 3 0.14914D-13 0.535D+02
WoODs 1000 1 0.27296D 407 248 49 0.52712D-11 0.236D+02 224 32 0.41838D-10 0.168D+02
10 0.22566D+11 342 67 0.63534D-11 0.324D 402 245 38 3.20794D-11 0.199D+402
100 0.22122D+15 446 87 0.44137D-11 0.423D+02 308 47 0.22064D-10 0.247D+02
wooD31 1000 1 0.55431D 405 36 18 0.25201D-09 0.816D+01 50 10 0.21981D-08 0.463D+01
10 (.41460D 409 116 24 0.21634D-09 0.111D+02 84 186 0.40452D-038 0.765D 401
100 0.40591D413 146 30 0.19591D-03 0.139D 402 125 22 0.50008D-08 0.108D+02




Table A-6: Results of the rank n — 2 test problems from the CUTE collection

Standard ‘Tensor
Junc n zg initf cn grad Jinalf time fen grad finalf time

BRYBND 5000 1 0.12487D 406 527 29 0.42357D-09 0.454D 403 268 14 0.30203D-08 0.219D+03
10 0.10765D+12 824 46 0.16732D-15 0.724D 403 870 32 0.34308D-10 0.519D+403

100 0.12303D+18 - IL - - 1401 68 0.26897D-12 0.110D+4-04

DIXMAANI 3000 1 0.00000D 400 1 1 0.00000D 400 0.800D.01 1 1 0.00000D 4-00 0.700D-01
10 0.00000D+00 1 1 0.00000D+00 0.800D-01 1 1 0.00000D 400 0.800D-01

100 0.00000D 400 1 1 0.00000D 400 0.800D-01 1 1 0.00000D 400 0.800D-01

DIXUN3IDQ 5000 1 0.80000D+01 7 2 0.62564D-17 0.338D 401 7 2 0.62564D-17 0.938D 401
10 0.24200D 403 7 2 0.18928D-15 0.934D+01 7 2 0.18928D-15 0.934D 401

100 0.20402D+405 7 2 0.15948D-13 0.933D+401 7 2 0.15948D-13 0.936D 401

NONDQUAR 10000 1 0.10002D 405 - iL - - 1109 70 0.14468D-06 0.271D 404
10 0.99980D 408 - iL - - 1674 86 0.96220D-07 0.332D +04

100 0.99380D 412 - iL - _ - 1923 101 0.40263D-07 0.382D+04

QUARTC 1000 H 0.45000D 405 57 15 0.61708D-05 0.646D 401 i3 4 0.24654D-07 0.145D 401
10 0.45000D 409 81 21 . 0.36635D-05 0.921D 401 101 17 0.53107D-07 0.819D 401
100 0.45000D 413 101 26 0.11038D-04 0.115D 402 130 22 0.50906D-06 0.107D 402
SROSENBR 5000 1 0.48481D405 72 13 0.82242D-14 0.108D+03 91 15 0.23908D-16 0.128D 403
10 0.44850D+10 429 77 0.69440D-04 0.883D 403 465 68 0.14337D-16 0.615D+03

100 0.51122D +14 - IL - - 1294 201 0.80433D 406 0.183D 404

TQUARTIC 1000 1 0.32335D+404 48 12 0.34635D-16 0.565D+01 30 6 0.65443D-18 0.305D+01
10 0.15946D.23 1 1 0.15846D-23 0.200D-.01 1 1 0.15946D-23 0.200D-01

100 0.32335D+406 49 12 0.18893D-15 0.564D 401 54 12 06.56162D-18 0.636D 401

TRIDIA 10000 1 0.50005D+08 8 2 0.41344D-14 0.349D+02 8 2 0.41344D-14 0.345D 402

: to 0.50005D+ 10 8 2 0.45002D-12 0.350D 402 8 2 0.45002D-12 0.349D 402 1

100 0.50005D+12 15 3 0.25973D-12 0.703D 402 15 3 0.25973D-12 0.709D 402
WoOODs 1000 1 0.27277TD 407 196 31 0.77284D-13 0.189D 402 188 26 0.18453D-12 0.165D 402
10 0.22564D 411 325 51 0.68702D.06 0.316D 402 289 41 0.10869D-12 0.268D 402

100 0.22121D+15 434 68 0.56038D-05 0.423D+02 ‘89 11 0.11251D-08 0.684D+01

WOODSH 1000 1 0.55470D 405 113 18 0.18927D-09 0.107D 402 91 16 0.10966D-07 0.975D+401
10 0.41458D+09 - NC - - 127 22 0.30436D-08 0.136D 402

100 0.40530D 413 - NC - - 3 6 0.19654D-08 0.324D 401




