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Disclaimer

The individuals and institutions listed on the cover of this document disclaim all warranties with
regard to the PCG software package, including all warranties of merchantability and fitness, and any
stated express warranties are in lieu of all obligations or liability on the part of these individuals and
institutions for damages, including, but not limited to, special, indirect, or consequential damages
arising out of or in connection with the use or performance of PCG. In no event will these individuals
or institutions be liable for any direct, indirect, special, incidental, or consequential damages arising
in connection with use of or inability to use PCG or the documentation.

The current version of PCG is preliminary, and the package is under development. Expansion
of the package is in progress. Reports of difficulties encountered in using the system or comments
and suggestions for improving the package are welcome. Please direct comments or inquiries to:

Wayne Joubert

Los Alamos National Laboratory
Group C-3, MS-B265

Los Alamos, NM 87545

e-mail: wdj@lanl.gov

G. F. Carey

TICAM, WRW305

The University of Texas at Austin
Austin, TX 78712

e-mail: carey@cfdlab.ae.utexas.edu
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Preface

What is PCG ?

PCG (Preconditioned Conjugate Gradient package) is a system for solving linear equations of
the form Au = b, for A a given matrix and b and u vectors. The PCG package employs various
gradient-type iterative methods coupled with preconditioners of various types. The PCG software
library is designed to be applicable to general linear systems, with emphasis on sparse systems
such as those arising from the discretization of partial differential equations arising from physical
applications.

The PCG package can be used to solve linear equations efficiently on parallel computer ar-
chitectures, such as the Intel Paragon, Connection Machine and Cray T3D computers. Fortran
versions of the package are supported for computers which use either a data parallel programming
environment or a message passing programming environment.

PCG is available in a generic Fortran 77 version, usable on single-processor computers. Platform-
specific Fortran versions are available as well, such as a CM Fortran version for Connection Ma-
chines, a node-level Fortran version for the Intel Paragon, and a node-level Fortran version with
PVM calls for systems or networks which implement the PVM (Parallel Virtual Machine) system,
including the Cray T3D. The use of macros in a higher-level language for the package implies that
Fortran versions for other machines can be constructed within the existing framework. Thus, much
of the code is reusable across architectures and in this sense the package is portable across very
different systems. A complete list of machines that are currently supported is found in Chapter 1
of this manual.

How to Use This Manual

This manual is intended to be the general-purpose reference describing all features of the
package accessible to the user. Suggestions are also given regarding which methods to use for a
given problem.

Users wishing to get started right away with the package should see the Getting Started with
PCG document, which shows how to implement a single example from start to finish. A more
extensive list of examples is found in the PCG Examples Manual. The user may wish to study
the sections of the Getting Started manual, or the actual sample code, in conjunction with the
associated chapters of this manual. A graphical user interface XPCG is also provided and is
described in the XPCG User’s Manual.

Section 2.1 of this Reference Manual describes the calling sequence for the simplest (“black box™)
level of accessing the package; lower-level means of access are described in Sections 2.2 and 2.3.




Other chapters describe in detail the choices of arguments and switch settings to be passed in to
the package to control the iterative process in detail. Chapter 3 describes particular considerations
for porting to specific parallel machines. Brief examples of usage are given in Chapter 10, and
troubleshooting tips are given in Chapter 11.

Some chapters contain both a section on available methods or features, as well as a shorter
section on guidelines for use. The user wishing to get started more quickly should begin with the
guidelines section and later make use of the longer section when trying to fine-tune performance.

Related Documents

The following materials are included in the PCG documentation:

¢ PCG Reference Manual (this document).

¢ Getting Started with PCG, a short introductory document which describes in detail one
example of using the package.

PCG Examples Manual, a lengthy list of usage examples, used to illustrate a range of possible
ways to use the package.

PCG Quick Reference Card, a short reference card for package calling sequences and similar
information.

XPCG Users’ Manual, a reference manual for the X-windows-based graphical interface for
using the package.

PCG Programmer’s Manual, a manual describing in detail the internal construction of the
package as an aid to adding features to the package.




Chapter 1

Introduction

1.1 Design Objectives

PCG is a computer package to solve large sparse systems of linear equations by iterative methods
on different computer architectures. The package implements various iterative methods such as the
conjugate gradient method and generalized conjugate gradient methods for nonsymmetric systems,
in conjunction with various preconditioners. This document describes in detail the usage of the PCG
package. For a briefer introduction, please consult the introductory document, Getting Started with
PCG.

1.2 Basic Features

The goal of the PCG software is to provide high-performance state-of-the-art sparse iterative
algorithms across a variety of architectures, including in particular shared and distributed memory
parallel machines. Some of the specific features of the package are the following:

(i) Iterative Methods. A wide variety of iterative methods are provided, such as the conju-
gate gradient (CG) method, the conjugate gradient squared (CGS) method, the biconjugate
gradient (BCG) and QMR algorithms, and restarted GMRES.

(ii) Preconditioners. Various parallelized preconditioners are available in PCG.

(iii) Matrix Formats. PCG provides predefined matrix storage schemes for storage of the user’s
matrix. These storage schemes have been chosen to provide sufficient generality to implement
a wide variety of sparse problems while at the same time taking greatest advantage of the
given machine architectures. -

(iv) Levels of Access. The package features several layers of access. The simplest means of access
is by a top-level or “black box” call, using one of the available predefined package sparse
matrix formats. Alternatively, the package can be called at the level of the iterative method
with a direct communication interface, for which the user provides subroutines to perform
the matrix-vector product and preconditioner kernel operations for a user-defined format.
Finally, a reverse communication layer allows greater user control of the iterative process by
permitting more general forms of the matrix-vector product and preconditioning operations.




(v)

(vi)

(vii)

(viii)

(ix)

x)

1.3

Preprocessing Options. Several matrix preprocessing options are available with the top-level
access mode. These options can be used to improve the linear solution process, by means
such as diagonal matrix scaling.

Differing Precisions and Arithmetics. All package routines are available in single and double
precision and real and complex arithmetic versions. The LINPACK/LAPACK subroutine
naming conventions are followed, by which the first letter of the routine denotes the de-
sired arithmetic and precision (S=single real, D=double real, C=single complex, Z=double
complex).

Modularity. The user is allowed to utilize virtually any combination of preconditioner, itera-
tive method, matrix format, arithmetic, precision and machine type provided in the package
to solve the given problem.

Solution of Multiple Systems. The package may be used to solve a series of linear systems
efficiently by reuse of the calculated preconditioner. This is particularly effective for the solu-
tion of time-dependent partial differential equations (PDE’s) and certain nonlinear problems,
for example.

High Performance. Considerable effort has been directed to optimizing the package to give
high performance on particular parallel machines.

Portability. Besides a generic Fortran 77 version, optimized Fortran versions for specific
parallel machines are provided, which have as nearly as possible the same user interface
across machines. These may be generated from a single source written using higher-level
macros. See the PCG Programmer’s Manual for more details.

Currently Supported Machines

The machines and compilers in Table 1.1 are currently supported by the PCG package:

Table 1.1: Current Implementations

Machine Compiler
Intel iPSC/860 if77
Intel Paragon f17
Connection Machine 2/200 CM Fortran (slicewise)

Connection Machine 5, data parallel CM Fortran
Connection Machine 5, message passing | {77

generic Fortran 77 + PVM (Fortran)
generic Fortran 77 + MPI (Fortran)
Cray YMP cf77

Cray T3D, PVM interface cf77




Due to inherent differences in programming models for the different machines, small variations
in the usage of the package are necessary from machine to machine. These differences are described
in detail in Chapter 3.

1.4 Mathematical Notation

The following notation is used throughout this manual to describe the solution techniques for
solving system of linear equations. The system of equations to be solved is denoted by

Au=1b (1.1)

where A is a square matrix of size N. The corresponding preconditioned system A@ = b may be
obtained by defining the related quantities A = QL AQR, u = Qgri and b = Qrb, for some square
nonsingular preconditioning matrices @, and Qg, so that

(QrAQR)(QR'w) = (Qrb) (1.2)

or

Au=5b (1.3)

The preconditioned linear system (1.3) is then passed to one of the iterative methods, such as the
conjugate gradient method, GMRES, and so forth. It is common to utilize left preconditioning, for
which Qr, = Q is given and Qg = I, but other arrangements of the preconditioner are also possible.

The user supplies the package with the vector b and an (optional) initial vector u(®). The
package then generates iterates (¥, §=1,2,.... The error in u(") is denoted in this document by
) = u — ul), and the residual associated with (1.1) by r® = b — Aul) = —Ael). We also define
the related quantities associated with (1.3): Qri¥) = u(®), &) = 4 — 20), Qréel) = e, and the
preconditioned residual #) = b — Aa() = Qrr®.

Throughout this manual, (-,+) and || - || denote the standard Euclidean #? inner product and
norm, (u,v) =} @y, ||v]| = \/iv, v). A Hermitian matrix is a matrix which satisfies the property
M* = M, where * denotes the conjugate transpose. When the matrix is real, this definition reduces
to the definition of a symmetric matrix.




Chapter 2
Usage

Three usage levels are provided: (1) Top level usage; (2) Iterative method level usage; and (3)
Reverse communication usage. Each of these levels is now briefly described. Finally in Section 2.4
we include some remarks on solving multiple systems.

2.1 Top Level Usage

The basic top-level calling sequence for the package is given by:

CALL _PCG (IJOB,_ppff,.meth,IA,JA,A,U,UEXACT,B,
& IWK,FWK,IPARM,FPARM, IER)

Here, the LINPACK/LAPACK convention is used for subroutine names: _PCG is one of SPCG, DPCG,
CPCG or ZPCG, depending on whether single precision real, double real, single complex or double
complex arithmetic is to be used. Throughout this manual, the prefix “_” for a subroutine name
will refer to one of these four prefix letters. For all calls to the package, all floating point arrays
passed into the package must conform in type (precision and arithmetic) to the type specified in
the subroutine name. A value of this type will be referred to throughout this manual simply as a
“floating point value”. Furthermore, subroutine names for different types may not be mixed in the
same subroutine call, and calls associated with the same package initialization call must not mix

types.
The parameters passed to the top-level routine _PCG are defined as follows:

1J0B (Input) An integer scalar which specifies the task to be performed by the package. The
choices for this parameter are described in detail in Section 2.4. Mnemonics as defined
in the system header file pcg_fort.h (see Chapter 4) may be used, as indicated below in
parentheses. Allowable choices are:

IJOB=0 (=JIRT) Initialize, apply the iterative method, and terminate. This is the simplest
and most common means of using the package.




-ppff

Jmeth

IA

JA

1J0B=1 (=JINIT) Perform the setup for the initialization only (without solving the sys-
tem), and save the preconditioner and other initializations internally for use with
a future call to PCG. The IPARM variable IPTR is used to reference the matrix and
preconditioner setup from this call.

I1JOB=2 (=JINITA) Same as IJOB=JINIT, except that a copy of the matrix is also stored
internally. This is important if the package is called later with a different matrix
but with the same preconditioner as was generated by the setup call, and the
preconditioner requires reference to the original matrix.

I1JOB=3 (=JRUN) Apply the iterative method to the linear system based on the matrix
and preconditioner from the initialization call. The arrays IA, A, IWK and FWK
must be the same arrays as those passed into the package at the setup call and the
terminate call. Furthermore, the preconditioner and iterative method choices and
certain entries of IPARM and FPARM must be unchanged across such calls.

IJOB=4 (=JRUNA) Same as IJOB=JRUN, except that the entries of the matrix may have
changed from those for the setup call. The new matrix but the old preconditioner
are used. The structure of the new matrix must conform to that of the saved ma-
trix. The initialization call for this case must necessarily have been IJOB=JINITA,
not IJOB=JINIT. The saved matrix from the initialization call is not replaced by
the new one from this call.

IJOB=5 (=JRUNAQ) Same as IJOB=JRUNA, except that the matrix is changed and the pre-
conditioner is to be recalculated based on the new matrix. In this case the matrix
and vectors need not agree in any way with the saved information from the setup
call. In some cases, however, the previous setup information may be used to im-
prove the speed of the new setup. The saved matrix and preconditioner from the
initialization call is not replaced by the new one from this call.

I1JOB=-1 (=JTERM) Termination: the saved matrix and preconditioner from a call with
IJOB=JINIT or IJOB=JINITA are released from memory. It is not necessary to
make this call if the package terminated with a fatal error.

(Input) An externally-defined name which refers to the user’s choice of the precondition-
ing and also indicates the matrix storage format being used. The letters pp select the
preconditioning, and the letters £f select the matrix format. The actual name must be
chosen from the lists given in Chapter 5 and Section 6.2.

(Input) An externally-defined name which refers to the user’s choice for the iterative
method. The actual name must be chosen from the list given in Chapter 7.

(Input, Output) An integer array used to store indexing information for the nonzero
elements of the matrix stored in A. The exact specification of this array depends on the
format chosen and is described in Chapter 5.

(Input, Output) A second integer array used to store indexing information for the nonzero
elements of the matrix stored in A. The exact specification of this array depends on the
format chosen and is described in Chapter 5.




UEXACT

IWK

FWK

IPARM

FPARM

(Input, Output) A floating point array used to store nonzero entries of the matrix A.
The exact specification of this array depends on the format chosen and is described in
Chapter 5.

(Input, Output) A floating point array. On input, this array contains an optional initial
guess u(® to the true solution u. By default, the IPARM variable IUINIT specifies that this
vector is to be initialized by the package to an appropriate vector, so the user need not
set it initially; however, the initial guess may be set by the user if desired. On output,
it contains the final approximation u(™ to the solution u generated by the package. The
exact specification of this array depends on the matrix format used and is described in
Chapter 5.

(Input, Output) A floating point array which optionally contains the true solution u to
the linear system (1), used for testing purposes. If not used, then this reference to UEXACT
should be replaced by a reference to the vector U, which functions as a dummy array. The
IPARM variable IUEXAC indicates whether UEXACT in fact contains a valid value for the true
solution u. The exact specification of this array depends on the matrix format used and
is described in Chapter 5.

(Input, Output) A floating point array which contains the right hand side b of the linear
system (1.1). The exact specification of this array depends on the matrix format used and
is described in Chapter 5.

(Output) An integer array which contains integer workspace which may be used by the
package. For CM Fortran versions, this is a front-end array. For machine-specific versions,
the IPARM variable MALLOC by default indicates that workspace is obtained by the package
by internal memory allocation, in which case this may be an array of length one; however,
in any case this parameter must be an array, of type integer, and this single memory
location is in fact used by the package. Furthermore, the memory location passed to the
package in the form of this parameter must be identical across calls to the package related
by the same value of the IPARM variable IPTR.

(Output) A floating point array which contains floating point workspace which may be
used by the package. For CM Fortran versions, this is a front-end array. For machine-
specific versions, the IPARM variable MALLOC by default indicates that workspace is obtained
by the package by internal memory allocation, in which case this may be an array of length
one; however, in any case this parameter must be an array, of precision and arithmetic
consistent with the called name of the PCG subroutine, and this single memory location
is in fact used by the package. Furthermore, the memory location passed to the package
in the form of this parameter must be identical across calls to the package related by the
same value of the IPARM variable IPTR.

(Input, Output) An integer array which is used to pass integer parameters to and from
the package. For CM Fortran versions, this is a front-end array. The size and entries of
IPARM are described in Chapter 4.

(Input, Output) A floating point array which is used to pass floating point parameters to
and from the package. For CM Fortran versions, this is a front-end array. The size and
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entries of FPARM are described in Chapter 4.

IER (Output) Error code for the package. A value of zero indicates normal termination, while
values greater than zero indicate warnings, and values less than zero indicate fatal errors.
The possible error codes are described in Section 8.2 and are also listed in the pcg_fort.h
header file (see Chapter 4).

Remark:

The arrays IPARM and FPARM contain many parameters which for most cases need not be altered
from certain commonly-used default settings. To simplify setting these arrays, a package routine is
supplied to initialize these arrays to default settings before calling PCG.

The defaults routine _DFALT of precision and arithmetic corresponding with that of the as-
sociated PCG call initializes the arrays IPARM and FPARM. The calling sequence for this routine
is:

CALL _DFALT (IPARM,FPARM)

Sample programs to illustrate the use of the .PCG and _DFALT routines are given in Chapter 10
of this manual.

2.2 TIterative Method Level Usage

The PCG package allows the user the option of calling the iterative methods, such as _CG,
directly, by specifying the matrix-vector product and preconditioning as user-defined subroutines.
By calling the package at this level, the user can avoid using the builtin array storage formats and
instead define a custom format for the desired matrix and vectors. An even greater amount of
control of the matrix-vector product and preconditioning operations may be obtained by accessing
PCG iterative methods at the reverse communication level as described in Section 2.3 following.

The basic calling sequence for the package called at the iterative method level is given by

CALL _meth (IJOB,mysuba,IA,JA,A,mysubq,IQ,Jq,Q,U,UEXACT,B,
& IWK,FWK,IPARM,FPARM,IER)

The allowable choices for meth (e.g., CG) are listed in Chapter 7. As with the top-level call, a call
to the package at this level is typically preceded by a call to the routine _DFALT. The parameters
for the call to meth are given as follows:

mysuba (Input) The subroutine name of an externally declared user-supplied routine which must
compute the product of the matrix A (or its conjugate transpose, for some iterative meth-
ods) times a vector. The calling sequence for this routine must satisfy the specifications
given below.

IA, JA, A (Input) Arbitrary arrays, used by the mysuba routine to accomplish the matrix-vector
product, in whatever fashion the user wishes.

7




mysubq (Input) The subroutine name of an externally declared user-supplied routine which must
compute the product of the matrices Qz or @r (or the conjugate transposes, for some
iterative methods) times a vector. The calling sequence for this routine must satisfy the
specifications given below. It should be noted that if IQSIDE specifies that either Qf, or
QR is the identity matrix, then the corresponding operation or its conjugate transpose will
never be requested of this routine by the iterative method, so in such cases this routine
need not perform any action.

1Q, JQ, Q (Input) Arbitrary arrays, used by the mysubq routine to accomplish the preconditioning,
in whatever fashion the user wishes.

All other arguments to the iterative method follow similar guidelines to those for the arguments
to the top-level routine _PCG defined in Section 2.1. The argument IJOB must always be 0 =JIRT.
The specifications for the vectors U, UEXACT and B, as well as VI and VO described below, are
arbitrary, but the elements of these vectors must be contiguous (except for CM Fortran versions),
and the size of the vectors must be specified in the IPARM variable NRU. For CM Fortran versions,
the arrays are assumed to be back-end arrays of matching rank and dimension on each axis, with
NRU denoting the total number of elements.

The user-defined routines mysuba and mysubq are assumed to have calling sequences of the
following form:

CALL mysuba (IJOB,IA,JA,A,VI,VO)
CALL mysubq (IJOB,IQ,JQ,Q,VI,VO)

Here, VI is the input vector to the routine and VO is the output vector. These vectors, as passed
to the routines by the iterative method, are guaranteed not to overlap in any way. The parameter
1JOB is defined as follows. For mysuba, when IJOB=3=JAV the routine should compute the matrix-
vector product with A, and when I1JOB=4=JATV the product with the conjugate transpose of A
should be computed. Similarly, for mysubq, IJ0B=5=JQLV specifies Q1,, IJOB=6=JQLTV specifies Q7,
IJOB=7=JQRV specifies Qr, and IJOB=8=JQRTV specifies QF, all multiplied by the vector VI.

The conjugate transpose operations are only requested of mysuba and mysubq by those iterative
methods as described in Chapter 7 which require them. Furthermore, the package will not call
mysubq for preconditioning operations not specified by the variable IQSIDE. The IPARM variable
ICTRAN is not used in a call to this level, but the user may choose for mysuba and mysubq to apply
the transpose rather than the conjugate transpose in situations in which this is desired.

The use of user-defined routines allows a high degree of generality in the formats for the matrix
and preconditioner storage. The iterative method performs low-level vector operations such as
vector adds as well as the allocation of temporary vectors based on the specifications of the user-
specified vectors B and so forth. The low-level operations assume that every element of each array
B etc. corresponds to a distinct vector element, and that contiguity of the elements in memory is
assured. Thus, duplication of points by overlapping of subdomains is not currently allowed.

For CM Fortran versions, the vectors supplied to mysuba and mysubq are back-end arrays which
have a certain layout. For mysuba performing the matrix-vector product operation, VI’s rank, size
and layout matches that of U, and V0’s matches that of B; when the conjugate transpose is requested,




VI is shaped like B, and VO is shaped like U. In mysubq, for an operation with @1, both vectors are
shaped like B; similarly, for an operation with Qgr, both vectors are shaped like U.

For examples of the use of the package in matrix format free mode, see the PCG Examples
Manual.

2.3 Reverse Communication Usage

The reverse communication layer of PCG is similar to the iterative method level of access but
allows greater flexibility and control by the user. For this level of access, it is not necessary to
encapsulate the matrix vector product and preconditioner into subroutines with a specific calling
sequence, but instead, the package routine returns temporarily to the calling routine with a request
to perform the desired vector operation on specified vectors.

The calling sequence for PCG at the reverse communication level is given by

CALL _methR (IJOB,IREQ,U,UEXACT,B,IVA,IVQL,IVQR,
& IVK,FWK,IPARM,FPARM,IER)

The allowable choices for meth (e.g. CG) are listed in Chapter 7. As with the other levels, a call to
the package at this level is typically preceded by a call to the routine _DFALT. The parameters for
the call to methR are given as follows:

1JOB (Input) An integer scalar which specifies the task to be performed by the package. Ad-
missible choices are:

I1JO0B=1 (JINIT) This choice for IJOB should be used for the first call to .methR. On return
from this call, the package makes its first request of the user via IREQ.

I1JOB=3 (JRUN) This choice should be used for every call following the initialization call,
up to termination.

IJ0B=-1 (JTERM) This choice should be used to force the routine to terminate and yield

the final value of U. This call is not necessary if the package terminates due to a
fatal error.

IREQ (Output) An integer scalar by which the routine .methR requests of the caller to perform
a certain operation and then make another call to methR. Admissible choices are:

IREQ=3 (JAV) The caller should apply a matrix vector product to the vector in location
IVQR and put the result in location IVA. The meaning of “vector location” is
described below.

IREQ=4 (JATV) The caller should apply a conjugate transpose matrix vector product to
the vector in location IVA and put the result in location IVQR. This request is never
made if the conjugate transpose operation is not required by the iterative method,
as described in Chapter 7.




Iva

IvVQL

IVQR

IREQ=5 (JQLV) The caller should apply Q1 to the vector in location IVA and put the
result in location IVQL. This request is never made if the IPARM variable IQSIDE
denotes that the relevant preconditioner is the identity.

IREQ=6 (JQLTV) The caller should apply @} to the vector in location IVQL and put the
result in location IVA. This request is never made if the conjugate transpose oper-
ation is not required by the iterative method, as described in Chapter 7, or if the
IPARM variable IQSIDE denotes that the relevant preconditioner is the identity.

IREQ=7 (JQRV) The caller should apply Qg to the vector in location IVQL and put the
result in location IVQR. This request is never made if the IPARM variable IQSIDE
denotes that the relevant preconditioner is the identity.

IREQ=8 (JQRTV) The caller should apply Q% to the vector in location IVQR and put the
result in location IVQL. This request is never made if the conjugate transpose
operation is not required by the iterative method, as described in Chapter 7, or if
the IPARM variable IQSIDE denotes that the relevant preconditioner is the identity.

IREQ=9 (JTEST) The caller should test for convergence, and then call _methR with either
IJOB=JRUN or IJOB=JTERM, based on the result. The IPARM variable NEEDRC may
be used to force the package to return u(™ (in U), #(*) (in location IVA), Qrr(™ (in
location IVQL), and QrQrr(™ (in location IVQR), for the calling routine to use for
its stopping test. These vectors are only returned when IREQ=JTEST. This request
is never made if the IPARM variable NTEST is not TSTO.

IREQ=-1 (JTERM) The routine .methR has terminated, either normally or abnormally, and
should not be called again.

(Input, Output) For non-CMF versions, this is an output integer scalar which is the first
location in the array FWK of the desired vector, which is of length IPARM(NRU) supplied
by the caller. For CM Fortran versions, this is a back end array of rank and axis lengths
matching those of U, UEXACT and B supplied by the calling routine and used for the re-
quested operation.

(Input, Output) For non-CMF versions, this is an output integer scalar which is the first
location in the array FWK of the desired vector, which is of length IPARM(NRU) supplied
by the caller. For CM Fortran versions, this is a back end array of rank and axis lengths
matching those of U, UEXACT and B supplied by the calling routine and used for the re-
quested operation.

(Input, Output) For non-CMF versions, this is an output integer scalar which is the first
location in the array FWK of the desired vector, which is of length IPARM(NRU) supplied
by the caller. For CM Fortran versions, this is a back end array of rank and axis lengths
matching those of U, UEXACT and B supplied by the calling routine and used for the re-
quested operation.

All other arguments to the iterative method follow similar guidelines to those for the arguments
to the top-level routine _PCG defined in Section 2.1. The specifications for the vectors U, UEXACT and
B, as well as those at locations IVA, IVQL and IVQR, are arbitrary, but the elements of these vectors
must be contiguous (except for CM Fortran versions), and the size of the vectors must be specified
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in the IPARM variable NRU. For CM Fortran versions, the arrays are assumed to be back-end arrays
of matching rank and dimension on each axis, with NRU denoting the total number of elements, but
they may differ in layout. For non-CMF versions, vector locations supplied to the user guarantee
that the relevant vectors do not overlap in memory in any way. For CMF versions, the vectors are
only used for the requested operations, and the user may allow the vectors to overlap or be the
same vector if desired.

For non-CMF versions, if the IPARM variable MALLOC is 1=YES, then the indices IVA, IVQL
and IVQR may denote locations that are not within the declared extents of FWK, which may cause a
subscriptrange error within the user’s program. This may be remedied by turning off subscriptrange
checking or setting MALLOC to 0=NO.

The user should not modify the arrays IPARM or FPARM within an associated sequence of calls,
or modify the contents of IWK or FWK, except as requested by IREQ. Also, as mentioned earlier, the
references IWK and FWK must be to the same memory locations across associated calls.

If the IPARM variable MALLOC is set to 0, then the user may attempt to save IWK, FWK, etc. on
disk in the middle of a run in order to complete the solution process at a later time. This will not
work however for CM Fortran versions since back-end memory will be lost.

For examples of the use of the package at the reverse communication layer, see the PCG Ex-
amples Manual.

2.4 Solving Multiple Linear Systems

In many applications it is desirable to solve a sequence of linear systems for which the matrix
entries are unchanged or changed slightly but the right hand side vector b may have totally different
entries. In such cases it may be desirable to reuse the matrix-vector product initialization or
preconditioner calculation generated for the first solve in subsequent solves. This option is available
for top-level calls to PCG.

The description of IJOB given in Section 2.1 gives a basic description of how to perform multiple
solves. The following describes the general procedure:

e The package should first be called with IJOB = JINIT or JINITA. These calls apply matrix
preprocessing options, perform precomputations required for the matrix-vector product, and
calculate the preconditioner based on that matrix. If it is expected that the matrix entries
will change for future calls but it will be desired to use the preconditioner based on the matrix
supplied by this call, then IJOB=JINITA should be used, so that the package saves an internal
copy of A. This is necessarily for preconditioners such as polynomial preconditionings which
require A for their application. Otherwise, IJOB=JINIT can be used, since this value of A will
be available for all future calls, for preconditioners which make use of its entries directly. In any
case, the result of this initialization is referenced by the IPARM variable IPTR.

e A call using IJOB=JRUN following an initialization call simply applies the matrix and precondi-
tioner from the initialization call to the given vector b. The values of IA, JA and A must match
those of the initialization call. This call may be repeated for different values of U, UEXACT and
B, but these vectors must not change in their specifications from those given in the initialization
call.
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e A call using IJOB=JRUNA following an initialization call solves the system with a different value
of A from the initialization call but the same preconditioning. The arrays IA and JA must match
those used for the initialization call, but A, U, UEXACT and B can have different entries though
otherwise their specifications (size, layout, etc.) must match those from the initialization call. It
should be noted that this call does not change the matrix vector product setup or preconditioner
calculation generated by the previous initialization call, so calls with IJOB=JRUN may be mixed
with calls with this option.

e A call using IJOB=JRUNAQ following an initialization call solves the system with a different value
of A as well as a new value of the preconditioner based on this new A. The arrays IA, JA,
A, U, UEXACT and B need not match those from the initialization call in any way. Currently
this call is not much different than calling the package with a separate initialization call, but
in future versions of the package the computation of the new matrix vector product setup and
preconditioner may be increased in speed by making use of the information from the previous
initialization. It should be noted that this call does not change the matrix vector product setup
or preconditioner calculation generated by the previous initialization call.

e A call using IJOB=JTERM following an initialization call terminates the result of the initialization
call by releasing any allocated memory. It should be noted that this call is not necessary if the
package terminated before this with an error termination.

The user should not change any entries of the IPARM or FPARM arrays across associated calls.
Also, as mentioned earlier, the references IWK and FWK must be to the same memory locations across
associated calls. '

It should be noted that matrix preprocessing operations are always undone before any return
from the package to the calling routine.

If the IPARM variable MALLOC is set to 0, then the user may attempt to save IWK, FWK, etc. on
disk to solve other systems at a future time with the given setup. This will not work however for
CM Fortran versions since back-end memory will be lost.

For examples of using the package to solve multiple linear systems, see the PCG Examples
Manual.




Chapter 3

Adaptations for Particular Machines

Since some parallel computers support node-level Fortran with message passing, while others
support a data-parallel style of Fortran with global address space, the usage of the package will
vary slightly across machines. The purpose of this chapter is to describe these differences.

3.1 Use of Arrays

For versions of Fortran with a global address space, a single global copy of each array exists,
and in particular, arrays like A, U and B refer to the global array and vectors. On message passing
machines under the SPMD (single program, multiple data) model of programming, arrays exist as
multiple, possibly differing copies across processors. In this case, variables such as IJOB, IPARN,
FPARM and IER exist as multiple copies across processors and, unless otherwise noted, must have
identical values across processors. On the other hand, arrays such as IA, JA, A, U, UEXACT and B
may have different values across processors and are typically interpreted to refer to the subvector
or submatrix located on that processor. The means by which the vectors and matrix are mapped
to the processors is described in Chapter 5.

The user must insure that the values provided in IPARM and FPARM as input to the package
are consistent across processors. Furthermore, values output from the package in these arrays are
guaranteed to be consistent across processors. The few exceptions to these rules are documented
in Chapter 4.

3.2 Processor Numbering

For message passing machines, processors are assumed to be numbered starting with processor
zero and increasing to the number of processors minus one. For PVM and MPI versions, it is
assumed that PCG is being run on a user-specified processor group, and that each processor is
running exactly one instance of PCG associated with the particular solve. Other machines, e.g.
Intel Paragon, assume that exactly one instance of PCG is being run on each allocated processor
for the particular solve.

For PVM versions, a processor group is used by PCG for the solve, whose name is formed by
concatenating the string “PCG” with the final 3 digits of the IPARM variable ICOMM, yielding by
default “PCGO00,” for example. All package communication is made within this group with the
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associated processor numbering in that group. This admits the ability to run PCG on a subset
of the allocated processors. For PVM versions, it is assumed that before entering the package,
all desired processors have already joined this group. Note that for the T3D/PVM version, the
group numbers are used, not the processing element numbers; if the PE numbers must be used,
the processors must be added to the group in the proper order to assure that PE number equals
the group processor number. PCG uses its own PVM message passing buffers for communication
to avoid the possibility of corrupting the user’s buffers.

For MPI versions, the IPARM variable ICOMM denotes the (intraprocessor) communicator in which
communica