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ABSTRACT

The current formulation of the theory of weak interactions
predicts complete and opposite polarization for the positive and nega-
tive mu mesons created in the decay of pi mesons. The remaining polar-
ization of the mu mesons, when they decay, may be detected by
observation of the decay electrons. It is known that when positive
mu mesons are stopped in certain substances they remain completely
polarized; under identical circumstances the negative mu mesons are
only about 13 per cent polarized when they decay. Thus it is of
significance to understand this observed polarization of the negative
mu mesons.

It is shown that the depolarization of the negative mu mesons
may be explained by consideration of the processes attendant to the
formation of mu-mesic atoms. The depolarization occurs when the mu
mesons are initially captured into a highly excited bound state and
in the subsequent transitions. As an essential preliminary to deducing
the depolarization on capture the distribution of the mu mesons in
initial states of the capturing atoms is determined. This distribution
depends on the rate at which the mu mesons loose energy in the
stopping process.

The depolarization in the initial capturing event is due to the
spin-orbit coupling; however, the extent of the depolarization in
capture is strongly conditioned by the scattering preceeding capture.

It is shown that the mu mesons may be regarded as having random




direction when they are captured.

In the cascade subsequent to capture-both radiative and Auger
transitions are important. These are treated in an adequate manner and
the final polarization of the mu mesons is derived theoretically. The
circular polarization of the x-rays emitted in the last stage of the
cascade is discussed.

It is found that the negative mu mesons should retain a polari-
zation of 0.133 in the ground state of mu-mesic carbon.

The results obtained are compared with the best experimental
data available. The excellent agreement and the unambiguous nature
of the analysis presented indicate the validity of the basic assumption
that the mu mesons interact with matter in just the same manner as an

electron.
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CHAPTER T
THE PHYSICS OF MU MESONS

In this dissertation we deal with a certain area of m meson

physics. ©Specifically we determine the mechanism by which negative mu

mesons are depolarized when they interact with matter and give a quanti-

tative account of the observed depolarization. In order to understand
the depolarization we find it necessary to call on much of the previous
work concerning the physics of electrons and mu mesons; in particular
we will be concerned with the formation of mu-mesic atoms and the
processes of de-excitation which occur in these atoms.

This chapter contains the necessary background for an under-
standing of the depolarization problem. The role of the weak inter-
actions in providing meson polarization and a means for the analysis of
this polarization is discussed and the experimental data is presented.
We then use the relevant known facts concerning mu mesons to determine
what processes must be given an analytical treatment so that one may
obtain a quantitative understanding of the depolarization. We now

turn to the discussion of the nature of mu mesons.

1. M Mesons as Diruc Particles

Mu mesons are known to have the properties expected of a Dirac
particle. This means that the mu mesons obey the Dirac equation.
Therefore the essential properties of mu mesons are exactly those of

electrons. The only differences are that the mass of the mu meson is
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about 207 times greater than the electron mass and that the mu meson
is unstable. Thus mu mesons carry an intrinsic spin 1/2, the masses
of the positive and negative mu mesons are identical, and the inter-
action of mu mesons with the electromagnetic field is the same as for
electrons except for the difference in mass. This has been verified
experimentally to an accuracy sufficient to include the electrodynamic
effectsl. It has also been shown that the scattering of mu mesons by
an electric field is in accordance with the Dirac theoryz. Conse-
quently we must treat the mu mesons as Dirac particles in all that
follows. We also point out that the mu mesons are not subject to the

strong interactions.
2. Mu Mesons and the Weak Interaction

Mu mesons are created by the decay of pl mesons and then after
a lifetime of 2.2 microseconds decay also. These decays are discussed
in the next section. The point here is that both the pi and mu decay
are due to the weak interaction. The fact that the mu meson decays
into an electron does not contradict the fact that the mu meson is a
Dirac particle; in fact, it furnishes additional evidence for such a

statement. Further evidence that the intrinsic natures of the mu

1. R. L. Garwin, D. P, Hutchinson, S. Penman, and G. Shapiro, Phys.
Rev. 118, 271 (1960). The theoretical value for the magnetic mo-
ment of the mu meson is 1.00116 eh/mc; the experiments confirm
this to within 0.007 per cent.

2. J. Rainwater, Ann. Rev. Nuclear Sci. 7, 1 (1957). This is an ex-
cellent review of meson physics and gives additional details con-
cerning the present discussion.



meson and electroq are identical comes from the decay of the pi meson
into electronss. The evidence is that the weak interaction of mu
mesons is the same as for electrons except, of course, in that the
electron has no other states to decay into and that there is never

sufficient energy to produce mu mesons in nuclear beta decay.
3. The x -/u - e Decay Chain

The pi mesons are produced in processes involving the strong
interactions. They decay in the following manner, with a mean life-
time of 0.025 microseconds.

ot —77uf + Vv (1.1a)

——

n"——7/¢2 + vV (1.1v)

The energy release, about 34 Mev,is the same in (1.1a) and (1.1b). The
mu mesons then decay according to the scheme

+ -
R (1.2)

¥
//L — e
The neutrino is indicated by 9, the antineutrino by ¥ . The assign-
ment of YV and ¥ instead of 2% in the mu decay is determined by the
spectrum of the decay electronsh. The assignments of % and ¥ in the

pi decay (1.1) are based on measurements of the polarization of the

3. E. J. Konopinski, Ann. Rev. Nuclear Sci. 9, 99 (1959). In
connection with the statement above we point out that only one pi
meson in many thousand decays into an electron; the decay is in-
hibited for kinematical reasons. These matters are discussed in
detail in this review article and references to the experimental
observations are given.

4. C. Bouchiat and L. Michel, Phys. Rev. 106, 170 (1957).
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electrons in mu decay. These matters have been discussed at length in
the literatures. We point out that the distinction between neutrino
and antineutrino is that they have opposite helicity. The helicity is
given by the expectation value of éL-B, where p is a unit vector along
the direction of propagation and.é}'is the vector composed of the Pauli
spin matrices. The helicity of the neutrino is-1; the helicity of the
antineutrino is +1.

The facts of interest in the study presented here are the follow-
ing. In pi decay the mu mesons are created with a definite polarization.
This fact is a consequence of the parity nonconservation in weak inter-
actions6. The extent of the polarization and its direction depend on
the exact nature of the coupling in the decay. If the mu mesons retain
any of their polarization until they decay, then the angular distri-
bution of the decay electrons serves to analyze the polarization.

These matters have been discussed theoretically by Lee and Yang7. The
necessary experimental information was first given by the observations
of Garwin, Lederman, and Weinrich8. These observations were of great
value in the study of weak interactions and, of course, were important
in the general reformulation of the theory of weak interactions follow-

ing the discovery of parity nonconservation. For a treatment of these

5. M. Gell-Mann and A, H. Rosenfeld, Ann. Rev. Nuclear Sci. 7, 407
(1957). See also Konopinski, op. cit.

6. TIbid.
7. T. D. Lee and C. N. Yang, Phys. Rev. 105, 1671 (1957).

8. ?. L. Garwin, L. M. Lederman, and M. Weinrich, Phys. Rev. 105, 1415
1957).




matters the references already cited may be consulted. It is sufficient
to state that thé results of the present study are in no way in dis-
agreement with the current formulation of weak interaction theory but
rather they furnish additional confirmation of the theory. We now
present some quantitative information concerning the mu meson polari-
zation Jjust mentioned.

The angular distribution of the electrons in mu decay was first
given by Lee and Yangg. The distribution of the decay electrons in

energy and angle is given by:
2 1
an - 22 (5 - 20) + (1 - 20)] ax a, (1.3)

where x is the ratio of the electron momentum to its maximum momentum

and y is given by

7= F (G - p) (1.1)

where ét is a unit vector along the spin direction of the mu meson
and ﬁe is a unit vector along the electron direction. The upper signs
are taken for positive mesons; the lower for negative mesons. Equation
(1.3) is approximate in that the electron rest mass is ignored in its
direction. Since the mu decay releases an energy of 105 Mev this
approximation is well justified over almost all of the spectrum. Now
the prediction of the current formulation of weak interaction theory

is that the positive mu mesons are created with complete longitudinal

polarization opposite to their direction of motion and the negative mu

9. Lee and Yang, loc. cit.
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mesons are created with complete longitudinal polarization along their
direction of motion. We discuss the experimental verification of this

in the next section. Using these facts we rewrite equation (1.4) as

7=I—(f>/,-ge)P (1.5)
where P is the remaining polarization on decay, including the proper
sign and the - or + is taken for positive or negative mu mesons re-
spectively. Note that P is originally negative for positive muons and
positive for negative muons. On integrating equation (1.3) over the

electron spectrum the following result is obtained.
I(e)=1 -;- (1.6)

Thus there is an angular distribution of the decay electrons that de-
pends on the amount of polarization of the muons when they decay. Using

y as given by (1.5) we rewrite (1.6) as

I(&) =1 - —Lgi— cos (1.7)

where & 1is the angle between the electron direction and the original
direction of the muon. Since there are two sign changes in going from
positive to negative muons in (1.5) the angular distribution relative
to the muon beam is of the same form for either positive or negative
muons. We shall call the quantity, —Lgl—, the asymmetry coefficient.
Since (1.7) often appears in the literature as

I(6) =1+ a cos (1.8)
values we give for the asymmetry coefficient will differ from some of
the references by a sign.

It is possible to accept electrons of a specific energy and to



measure the angular distribution at this energy. In such a case equa-
tion (1.3) would be used to analyze the polarization of the decaying
muons. Since there is very little data of this type available, we do
not pursue this point further. Consequently whenever we discuss the
asymmetry coefficient it is always the quantity J—gl— and thus refers
to the integrated electron spectrum.
The = -/pb - e decay chain is schematically represented in

Figure 1. In considering the conservation of angular momentum in this
diagram one should note that the pi mesons have zero spin. Since the

angular distribution of the positive and negative electrons is the same

one should note their respective spin directions.
4, Experimental Information Concerning Muon Polarization

In the immediately preceding section we discussed a formula that
allows the polarization of mu mesons to be determined experimentally.
Table I gives some representative values of the observed asymmetry co-
efficients. It is seen that the asymmetry coefficients that are ob-
served vary from 0.33 to essentially zero. We discuss first the
asymmetry coefficients for the positive muons.

Only two values of the asymmetry coefficient are given by the
positive muon. The asymmetry coefficient given for positive muons
stopping in emulsion is evidence for the mu muons being created com-

pletely polarized, since it was deduced by studying mu mesons produced



Spin Direction =

Direction of Motion —_—

Figure 1. Schematic Representation of =n -/L- e Decay Chain



TABLE I

Observed Asymmetry Coefficients for the Decay of Mu Mesons

Meson Stopping Material

Asymmetry Coefficient

- Hydrogen o.oL ¥ o.01
- Carbon 0.04 * 0.005
- Oxygen 0.043 + 0.005
- Magnesium 0.058 * 0.008
- Sulfur 0.042 £ 0.006
- Zinc 0.056 + 0.012
- Cadmium 0.055 * 0,012
- Lead 0.054 % 0.013
- Carbon 0.054 £ 0.006
- Helium 0.024 £ 0.01
- Magnesium 0.036 t 0.003
- Carbon ~ 0.05

+ Carbon 0.33 + 0.03
+ Fmulsion 0.303 £ 0.024
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by the decay of pi mesons which decayed after they had stoppedlo. The
study of mu meson polarization in emulsion is complicated by the fact
that there is a large depolarization of positive mu mesons due to the
emulsion. This was prevented in the study mentioned by applying a strong
magnetic field. In view of this known complication, we present the
emulsion datum but prefer to base our principle arguments on other data.

The asymmetry coefficient for positive mu mesons stopped in
carbon was observed for muons produced by the decay of pi mesons in
flightll. This value is the maximum value of the asymmetry coefficient
and this means that the positive muons were created completely polarized
and that they retained this polarization until they decayed. This
value for the asymmetry coefficient for positive muon decay under
the circumstances mentioned has been verified recently in an extremely
precise experimentle. Thus we emphasize this point; under certain con-
ditions positive mu mesons are experimentally observed to be completely
polarized when they decay. The implications of this fact are discussed
in section 6, below.

We now consider the experimental asymmetry coefficients for
negative muon decay. From Table I it is seen that the maximum

asymmetry coefficient for negative mu mesons does not exceed 0.06. It

10. G. Lynch, J. Orear, and S. Rosendorff, Bull. Am. Phys. Soc., 4, 82
(1959). For a review of early emulsion work concerning the
asymmetry coefficients and additional data concerning the positive
mu mesons see D. H. Wilkinson, Nuovo Cimento 6, 516 (1957).

11. R. L. Garwin, L. M. Lederman, and M. Weinrich, Phys. Rev. 105,

1415 (1957).

12. R. L. Garwin, D. P. Hutchinson, S. Penman, and G. Shapiro, Phys.
Rev. 118, 271 (1960).
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is also seen that the asymmetry coefficient depends on the element in
which the mesons are stopped. Thus we can state that the negative mu
mesons suffer severe depolarization and that this depolarization depends
on the stopping material.

In Table I we point out that the first eight values presented are
the work of a single grouplB. It is instructive to compare the values
given by this group with those obtained by other workers for magnesium

14,15

and carbon Clearly there is room for refinement in the experi-

mental techniques.
5. Statement of the Problem

The problem that is solved in the following chapters is implic-
itly stated above. Positive mu mesons are observed to remain completely
polarized under certain conditions; under identical conditions negative
mu mesons retain less than twenty per cent of their original polariza-
tion. The problem is to account for this difference in a quantitative
fashion., To do this requires a treatment of every physical process
that can contribute to the depolarization. However, one can gain
sufficient understanding of many such processes by a careful comparison

of the properties of positive and negative mu mesons. Therefore the

13. A. E. Ignatenko, L. B. Egorov, B. Khalupa and D. Chultem, Soviet
Phys. - JETP, 35(8), 792 (1959).

14. W, F. Baker and C. Rubbia, Phys. Rev. Letters, 3, 179 (1959).

15. R. Prepost, V. W. Hughes, S, Penman, D. McColm, and K. Ziock, Bull.
Am. Phys. Soc. 5, 75 (1960).
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solution of the problem may be subdivided into two steps. First one
must consider the well known parts of mu meson physics and determine
where there is an essential difference in the behavior of positive and
negative mu mesons. This qualitative analysis will then indicate which
mechanisms must be considered in detail so as to follow the process of
depolarization. Therefore we turn our attention to the life history of

mu mesons and consider the various events relevant to this purpose.
6. The Interaction of Mu Mesons with Matter

Since mu mesons are Dirac particles their interaction with
matter will be precisely the same as for electrons except in that there
are differences due to the meson's greater mass. These differences are
pointed out in their proper context. In order to present the essential
facts with maximum clarity we consider three different stages in the
life history of mu mesons.

a. The first stage in the lifetime of the mu mesons we consider
is the following. The mu meson is born in the decay of a pi meson in
flight. The energy of the mu meson in the laboratory system is of the
order of 100 Mev. The mu meson then looses energy by passing through
various stopping materials until it has an energy of several kev. Thus
as stage one we consider factors important during this period of the
meson's lifetime.

Fermi and Teller have shown that this stage is complete within

6

10-9 secs after the meson is createdl . Therefore a negligible nurber

16. E. Fermi and E. Teller, Phys. Rev. 72, 399 (1947).
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of the mu mesons decay during this period. The first interaction of the
mu meson after it is created i1s with the accelerator's magnetic fringing
field. 1If there is any depolarization due to the magnetic field, it
should be the same for both the positive and negative mu mesons. There
is, however, no reason to expect any depolarization because of the
fringing field. Case has discussed this point in the literature and
proved that such a field does not depolarize Dirac particlesl7.

As discussed in section 3 above, the mu mesons are created with
complete polarization, in the rest frame of the pl meson. Since the
laboratory energy of the pl mesons is quite high one might expect a re-
duction of the polarization in the transformation from the rest frame
of the pi meson to the laboratory frame. This problem has been discuss-
ed in the literature and it was shown that if the mu mesons are obtained
as a well collimated beam then the loss of polarization is negligiblel8.
Again, this effect would be the same for positive and negative mu
mesons.

Now we consider the high energy scattering. It is known from
electron theory that the sign of the charge has 1little to do with high
energy scattering or ionization. Consequently positive and negative

mu mesons will be scattered in the same fashion to a very good approx-

imation. Further we note that the scattering is principally small

17. K. M. Case, Phys. Rev. 106, 173 (1957).

18. J. H. P, Jenson and H. Overas, Det. Kongeleige Norske Videnskabers
Selskabs for Handlinger 31, 34 (1958).
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angle scattering even in inelastic events such as ionization. The de-
polarization expected from such scattering is very small. This problem
including the effects of multiple scattering has been treated in de-
tail in the literaturel”.

The effects just mentioned are the only matters of importance
during stage one. We conclude that there is no theoretical reason why
the mu mesons, either positive or negative, should be depolarized sig-
nificantly during this stage. This conclusion is verified by the fact
that the positive mu mesons are found to retain their polarization in
carbon. One might argue that the positive mu mesons do not retain
their polarization in certain other substances, which is true; however,
variations in the interactions of mu mesons with,bsay,carbon and emul-
sion are variations which occur at very low energies, not at the
energies involved in stage one. Since there is no significant differ-
ence in the interactions of positive and negative mu mesons during stage
one we assert that both species pass through this stage without suffer-
ing appreciable depolarization.

b. Now we define the second stage in the history of mu mesons.
This is the stage in which the behavior of positive and negative mu

mesons beomes totally different. Before we define the end of this stage

19. B. Muhlschlegel and H. Koppe, Z. Physik 150, 496 (1958). In con-
nection with depolarization in scattering see also L. Wolfenstein,
Phys. Rev. 75, 1664 (1949) and G. W. Ford and C. J. Mullin, Phys.
Rev. 108, 477 (1957). These studies all conclude that the depolar-
ization due to scattering should be small.



we consider the events that are occurring at its beginning. The mu

mesons have energies of several kilovolts and are being scattered.
Since mu mesons of this energy have velocities small compared to the
velocity of light, magnetic forces are small and the scattering is
essentially spin independent. Thus neither the positive nor the nega-
tive mu mesons suffer depolarization from the scattering. There are
other effects and we now define the process that we call Auger capture.
The process of Auger capture consists of a mu meson in a free
state interacting with an atom to eject an atomic electron and leave
the meson in a bound state. This process is possible because the meson
has greater mass than the electron and therefore has lower lying energy
levels in the Coulomb field. Clearly only negative mu mesons undergo
Auger capture. This then is a process that involves negative mu mesons
but not positive mesons; consequently there is a mechanism that can
lead to differences in the asymmetry coefficients. GStage two for the
mu mesons then ends for the negative mu mesons when they are captured
by an atom, and for the positive mu mesons when they have been slowed
down to energies roughly equivalent to the energies involved in molec-
ular binding. From this point on the histories of the two species are
totally different. The positive mu mesons would resemble a proton in
their chemical interaction and therefore may form positive ions in
some materials. Since all of stage two occurs in times of the order

of 10‘15

sec, the total elapsed time since the creation of the mu mesons
is still of the order of 10-9 sec, thus a negligible fraction the mesons

decay before the end of stage two.
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At this point it is possible to give a qualitative outline of the
processes that must be dealt with in detail. We have been unsble to
find any significant difference in the behavior of positive and negative
m mesons until the negative mu mesons are captured by an atom. There-
fore, the depolarization of negative mu mesons is due to this capture
and to subsequent events; these then are the processes that must be
given an analytical treatment so that the amount of depolarization may
be understood.

c. ©Stage three is defined only for the negative mu mesons and
includes all events subsequent to the capture of the meson into an atomic
bound state. At this point we only mention that the mu meson is cap-
tured into atomic states of high-excitation and then must make a series
of transitions to reach the atomic ground state. These matters are dis-
cussed in detail in the following section. The mesons reach the atomic
ground state in times of the order of lO-12 sec and, therefore, the
total time between the creation of a negative mu meson and its arrival
in an atomic ground state is around lO'9 sec. Consequently, the mu
mesons either decay from the ground state of a mu-mesic atom or are

captured from this state by the following reaction.

/Lb' +pP—n+ ¥V (1.9)
where p is a nuclear proton and n, a neutron. Except for the electro-
magnetic coupling, this is the only known interaction of mu mesons
with nuclei. The competition of this process with the mu decay merely

decreases the number of mu mesons decaying and is of no interest to
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the problem considered herezo. Clearly this process will not interfere
with experimental observation of the decay electrons.

Thus far we have established that the solution to the depolari-
zation of negative mu mesons is to be found in the formation of mu mesic
atoms and in the subsequent de-excitation processes that occur in these
atoms. We now discuss the general properties of mu mesic atoms as a

preliminary to the subsequent chapters.
7. Mu-Mesic Atoms

A mesic atom is an atom containing a meson in a bound state.
Since the negative mu meson participates in electromagnetic processes
Just as a heavy electron, the theory of ordinary atoms applies to mu-
mesic atoms with the only change being a replacement of the electron
rest mass by the mu meson rest mass. Consequently, there is an adequate
theoretical framework for the discussion of processes occurring after a
m meson is captured by an atom. However, as was pointed out in the
preceding section, we must also understand the process of capture. We
now give a qualitative discussion of this capture mechanism.

The mu meson must make a transition from a free state to an atomic
bound state. The mechanism which induces this transition is the electro-

static interaction of the meson with the atomic electrons and this re-

20, For a discussion of the mu meson proton reaction, see the previous-
ly cited review by Rainwater. This reaction is, of course, due to
the weak coupling.
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sults in the ejection of one of the electrons. Ir would be possible to
consider the capture of the meson by a radiative process. It is shown
in Chapter II that a typical cross section for capture by electron
ejection is 0.1 nai where N is the electron Bohr radius, whereas the
known cross sections for radiative capture would be a thousand times
smallerzl. Therefore we need only consider the electron ejection mecha-
nism which we call Auger capture, in analogy with the normal Auger effect.
One notes that almost all of the atomic states are accessible to the
meson and that these states will all compete in the capture of the meson.
Consequently, msny of the mesons will be captured into states having
high excitation. We must now consider the properties of these highly
excited states and understand how they liberate the energy of excitation.
If effects due to screening, finite size and relativity are neglected

the energy levels of a mu-mesic atom are given by:

E =’%k'rzf'\2 aen;u_cz (1.10)

where @ is the fine structure constant, 7“/ the mu meson rest mass and
n the principle quantum numbers. This is the same as the energy rela-
tion for normal hydrogen-like atoms if pr is replaced by the electron
mass. Thus the energy of any given level in a mesic atom is about 207
times the energy of the corresponding electron level in a normsl atom.

The fact that the bound level for the mu mesons lie so much lower in

energy than for the electrons explains why the mesons are captured.

21. Hans A. Bethe and Edwin E, Salpeter, Quantum Mechanics of One and
Two Electron Atoms (Academic Press, Inc., New York, 1957) Chap. 4,
p. 322.




The radii of the Bohr orbit of the mu meson are given by:

n2 h
% () -z @

Thus for comparison, the Bohr radius of the ls state in hydrogen is

(1.11)

about 0.5 x 10-8 cm, whereas the radius for the ls state of the mesic
hydrogen atom is about 0.25 x lO'lo cm, Two facts are immediately
obvious from the foregoing; namely, that the effect of electron screen-
ing on the meson will be smell and that in heavy elements the effects of
finite nuclear size will be significant. The effects of finite nuclear
size on the mesic energy levels have been considered by Wheeler22. We
do not consider these effects nor do we consider any other corrections
to the hydrogen-like energy leve125. The justification for this neglect
will be presented at the pertinent point.

It is of interest to consider the transition energies involved
in mu-mesic atoms. In Table II we present some transition energies
based on equation (1.10). These are taken from the previously cited

review by Rainwater. The experimental evidence for the existence of mu

mesic atoms was the observation of such X rays corresponding to the

22. J. A. Wheeler, Revs. Modern Phys. 21, 133 (1949).

23. There are many such corrections. Their study has led to additional
confirmation of certain aspects of field theory and to information
concerning nuclear radii. TFor a review dealing with these subjects
see: M. B, Stearns, Prog. in Nuclear Phys. 6, 108 (1957). It is
of interest to note that the mesic 2p 1ls transition in Pb has an
energy of 1L Mev according to equation (1.10). The true transition
energy is 6 Mev. The difference is due to finite nuclear size.

In this connection see: D. L. Hill and K. W. Ford, Phys. Rev. 9k,
1617 (1954).
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TABLE IT

Transition Energies in Mu-mesic Atoms

Element Transition Energy (kev)
C 2p - 1s 76
N 3d - 2p 19
0 5g - Lf 4
Ce 5g - Lf 26
Zn 5g - Lf 57
Br 5g - Lf 78
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appropriate mesonic transitions. These X rays were first observed by
Changeu. They have since been studied in detailzs. Our interest in
this x-radiation is not so much the energy as the transition rate, since
there are competing processes. The theory of radiative transitions is
well known and is easily applicable to the mesonic transitions. It will
suffice to state here that the transitions of interest are electric di-
pole and that they are of exactly the same nature as the transitions in
a normal hydrogen-like atom. The process that competes with the radi-
ative transitions is'the Auger effect. We now discuss this effect and
the nature of the competition.

The Auger effect in mesic atoms was first investigated by Wheeler26
This process is just the same as the normal Auger effect; namely, the
mu meson is in an excited state and there are bound electrons in the
same atom, the meson makes a transition to a state of lower excitation
by ejecting one of the electrons. ©Such electrons have been observed in

photographic emulsion27.

There has, however, not been an extensive
study of these electrons. It is possible to calculate the transition

rate for the Auger process in mesic atoms in a straightforward fashion.

24. W. Y. Chang, Revs. Modern Phys. 21, 166 (1949).

25. M. B. Stearns and M. Stearns, Phys. Rev. 105, 1573 (1957).

26. Wheeler, loc. cit. It is also shown in this paper that the process
of internal pair production (possible for Z>» 26) does not compete

favorably with the other processes.

27. E. H. S, Burhop, The Auger Effect (Cambridge University Press,
London, 1952) Chap. 7, p. 162.
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The most informative calculations are those of Burbridge and de Borde28.
These are not complete in that only certain types of transitions are
considered, however, they do show that to a good approximation, the
selection rules for the Auger process are the same as those for the
electric dipole radiative transitions. This fact will be shown to be
of considerable value for our purpose in Chapter V. In Table III we
present some typical values for Auger and radiative transition rates.
These are taken from a table due to Burhop29. There are two important
points; namely, the Auger rates are essentially independent of Z, the
nuclear charge, whereas the radiative rates are proportional to Zh and
at moderate excitation the Auger transitions are much faster than the
radiative transitions. For our purposes we take the mechanism by which
mu-mesic atoms are de-excited to be the proper combination of radiative
and Auger transitions. Other processes have been proposed in the liter-
ature. We now mention these and give the reasons why we do not consider
such processes in detail.

It has been suggested that mesic atoms may make collisions with

other atoms and that these collisions may lead to either an exchange of

the meson between the two atoms or to ejection of an electron from the

28. G. R. Burbidge and A, H. de Borde, Phys. Rev. 89, 189 (1953 ) and
also A. H. de Borde, Proc. Phys. Soc. (London) A67, 57 (1954 ).

29. Burhop, op. cit.



TABLE III

Mu-mesic Trensition Probabilities (sec-l)
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Transition Type of Z =5 7 = 20

n,{ n',Q Transition

7,6 6,5 Radiative 9.96 x 108° 2.6 x 10%0
b3 3,2 Auger b x 1000 5.4 x 100
4,3 3,2 Radiative 1.86 x 10%2 4.8 x 1olh
32 2,1 Auger 6.0 x 102 9.0 x 10%
32 2,1 Radiative 8.68 x 102 2.25 x 10%°
2,1 1,0 Auger 2.1 x 10 3.1 x10M
2,1 1,0 Radiative 8.4k x 102 2,15 x 10'°
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second atom with the mesic atom going to a state of lower excitation3o.
In the case of hydrogen such mechanisms may be reasonable since the

mesic hydrogen atom is a small neutral system and therefore could pene-
trate another atom. For other mesic atoms these processes appear to

be somewhat unreasonable; the arguments have been presented in the
literatureEl. There has also been a conjecture that collisions with
other atoms could induce transitions between the fine structure levels

in mesic atoms32. For certain light elements the level structure is such
that this is plausible, however, those proposing the mechanism could
exhibit no reason why the effect should be competitive with either

Auger or radiative transitions. There is some experimental data which
points to an inadequacy in the theory of the Auger effect in light mesic
atoms33. This data indicates that the predicted Auger transition rate

is too low for mesic atoms lighter than carbon. This point remains un-
settled; however, for reasons which we present in Chapter V it is of
little consequence to the problem solved herein. In any case, it is of
interest to point out that the validity of the data mentioned has been
questioned in a recent papersh. We now turn to a qualitative discus-

sion of the depolarization suffered by the negative mu mesons in con- -

nection with the processes occurring in mesic atoms.

%0, T. B. Day and P. Morrison, Phys. Rev. 107, 912 (1957).
31. J. Bernstein and T. Y. Wu, Phys. Rev. Letters 2, L0k (1959).
32, N. A. Krall and E. Gerjuoy, Phys. Rev. Letters 3, 1h2 (1959).

3%, M. B. Stearns and M. Stearns, Loc. cit.

34. R. A. Ferrell, Phys. Rev. Letters L4, 425 (1960).
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8. The Process of Depolarization

We anticipate the results of the following chapters and state
here that the observed depolarization of the negative mu mesons may be
accounted for by an adequate treatment of the meson capture and the sub-
sequent radiative and Auger transitions. The reason for the depolari-
zation in the capture is that the orbital motion of the mu meson causes
the meson to experience a magnetic field which by virtue of the mesons
magnetic moment causes the spin to precess. Quantum mechanically this
states that the effect of the spin-orbit coupling is to mix the spin
states of the captured meson. The additional depolarization due to the
various transitions depends upon the number and type of transitions
and therefore it is determined by the initial state of the meson (im-
mediately following capture). One may think of this depolarization in
transitions as an additional manifestation of the effects of spin orbit
coupling since depolarization occurs only in transitions in which there
is a change in the nature of the coupled state. A more specific dis-
cussion of this point is given in Chapter V. We now wish to mention
the effect of nuclear spin.

Since it is our motivation to account quantitatively for the
observed depolarization we wish to check our results as precisely as
possible against experiment. At the moment, it is not possible to do
so to a thoroughly satisfying extent since the experimental errors
quoted in Table I are quite large. Except for hydrogen the elements
listed in Table I are composed principally of spin zero isotopes. These

are the elements which show the largest asymmetry coefficients, and
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thus the relative uncertainty in their measured asymmetry coefficients
is the smallest. For this reason we find no need to consider the
effects of nuclear spin in detail; however, for completeness we give
the following information. The effect of nuclear spin is to split the
levels of the bound mu mesons through the hyperfine interaction. This
leads to greatly increased depolarization. The depolarization due to
the hyperfine coupling has been investigated for certain types of
radiative cascades in atoms with nuclear spin %.55 Applying the pub-
lished results in an approximate fashion leads to the conclusion that
the asymmetry coefficient observed for atoms with spin % nuclei will be
less than one third of the coefficient observed in atoms with zero
nuclear spin.

It is of interest to consider briefly the asymmetry coefficient
for hydrogen given in Table I. One might be tempted to use our final
results and the immediately preceeding remarks to predict an asymmetry
coefficient for hydrogen. This procedure would not be meaningful since
there are two effects not considered. These are peculiar to the iso-
topes of hydrogen and occur because the experiments require hydrogen as
a liquid. The mu mesic hydrogen atom can exchange its meson with a

36

normsl hydrogen atom” . In such a transition one might expect some de-

polarization. There is also the formation of mu mesic hydrogen mole-

35. M. E. Rose, Bull, Am. Phys. Soc. 4, 80 (1959).

36. \(I B.)Beliaev and B. N. Zakharev, Soviet Phys. - JETP 35(8), 696
1959).
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cules which also depolarize537. Thus we state that we find no incon-

sistency in the observed asymmetry coefficient for hydrogen. We now
give an outline of the means by which we predict asymmetry coefficients

in the case of spin zero nuclei.

9. Program of Analysis

The problem of accounting for the observed asyrmetry coefficients
is solved by proceeding in the steps outlined below. The method of
analysis is applicable to any element containing only spin zero iso-
topes; however, throughout the following chapters we will consider car-
bon to be the element of principle interest. The reasons why we are
especially concerned with carbon are the following: It consists almost
entirely of spin zero isotopes, thus there need be no correction for
hyperfine complications and it is a common stopping material for meson
experiments, thus there is experimental data from several sources. The
steps in the analysis are as follows:

a. The problem of computing the capture cross section for the
formation of mu-mesic atoms is formulated and reduced to a problem
suitable for machine computation. This is the subject of Chapter II.

b. Since the mu-mesons are captured strongly over a consider-
able energy range it is not sufficient to know only the capture cross

sections as a function of energy. To get the distribution of the mu

37. JTa. B. Zeldovich and 8. S. Gershtein, Soviet Phys. - JETP 35{8),
b51 (1959).
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mesons among the states of the capturing atom it is necessary to take
account of the number of mesons captured at each energy increment as
they are slowed down. A slowing mechanism is introduced and the prob-
lem of capture is solved. The results obtained are discussed in ref-
erence to certain previous assumptions by others. These matters are
treated in Chapter ITI,

c. Given the initial distribution in atomic states on capture
one must calculate the depolarization due to the capture. We show how
to calculate the depolarization for two extreme cases. It is shown
that the amount of scattering before capture determines which, if eith-
er, of these cases has physical meaning. Using a conclusion which we
show to be very well justified we find that the polarization after
capture may be calculated in a fashion totally independent of assumptions
concerning the atomic model. These results are derived in Chapter IV.

d. After the mu mesons are captured they undergo a cascade to
the atomic ground state. The problem of depolarization in the various
transitions is solved. Results are presented which show the importance
of the Auger transitions in causing depolarization. Certain illustra-
tive data concerning the radiative transitions is also given. The -
polarization of the emitted X rays is discussed. Thus in Chapter V we

present a theoretical asymmetry coefficient.



CHAPTER II

THE CROSS SECTION FOR AUGER CAPTURE

In this chapter we calculate the cross section for an incident
mu meson to be captured into an atomic state by the ejection of an
atomic electron. This calculation is carried out by using first order
perturbation theory. The wave functions of the free particles are
taken to be plane waves. The wave functions of the bound particles are

those appropriate for a hydrogen like atom.
1. The Interaction

The total hamiltonian for a meson and electron in the field of a

nucleus of charge Z is:

Y2 £y 2 2 2 2
1 2
T 2m T T2m T "y tr (2.1)
Yaud e 1 2 12

H=H +H' =

where subscripts,l, refer to meson coordinates, subscripts, 2, refer to

is";; —~;é'. We consider two different de-

electron coordinates, Tio
compositions of this hamiltonian into components H® and H'. For a

meson approaching from infinity the unperturbed hamiltonian, Hg, is
given by:
2_ 2 2 2
o] G Vl A V2 Ze2

B = -5 T Tom “r (2.2)
Vs e 2

Jf the initial wave function is defined as:

_@ - gfree(/b) -Zjbound(e) (2.3)
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then clearly:
HOZ - EoS_D - (E/“’ +E,) (2.4)

is satisfied. The perturbation is, in this decomposition,

2 2
H = - ;Ze— * = (2.5)
1 12
If we now consider the system after interaction H? must be: "
,hEVE 412’\7 2 5
HO _ l - 2 - Ze (2 6)
f~ " 2m 2m T ) -
/" e 1
end,
2 2
H - -2, & (2.7)
2 12

The effect of applying Hg to the wave function of the final state,

}» - -%bound(/"/) &free(e) (2.8)

is:

2 - (1604 (2.9)

Although the requirement of conservation of energy is that:

5/«,* ee = E/u,'*‘ E (2.10)
the wave functions _? and I are eigenfunctions of different operators
and are not orthogonal. Thus we must determine the proper formulation
of the perturbation theory.

We define the exact wave function of the system, 77— , to be an

eigenfunction of H such that

HIT = ihME (2.11)
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The wave functions QP and the wave functions_z; both form com-
plete sets. Therefore we may expand 7T'in terms of either. When we
remove the time dependence from a wave function we lower the case of

the latter. Using n and m as eigenstate labels we write:

EO
-1 2t
7T =Z(aeaye. . o, e (2.12)
n

when the expansion coefficients of the orders in t are explicitly indi-

cated. Alternatively,

o]
-1 t
o ! A
7] =Z(bm+bm+...)¢me (2.13)
m
We may now write:

(H?. - 14 0%—5)77: -5, T (2.1k)

and then use either (2.12) or (2.15) as we choose:!

En
HO . 1A 4 (b°+b'+...)¢ e-Tt=
( f it z m m m

m

iEC
_Zny
1 O ' 41
-Hf?(an+an+...)$0ne (2.15)

*
we now multiply (2.15) by ¢ m and integrate over all coordinate spacel.

This gives in first order:

1. Note that we use a2 standard notation for the matrix elements. The

*
notation (X, AY) means explicitly'vgx AYdV where dV is the appro-
priate volume element.
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From this point the treatment is the same as that of standard perturba-
tion theory as given, for example, by Schiffe. The result for the

transition probability is:

w = %F' ( m’ H; an)

With the requirement that all quantities not observed be summed over.

2
F(ES) (2.17)

H; is defined by (2.7). The term in ;i in H% arises because we use
2

plane waves for the free particles; if we had used Coulomb wave functions

in the free states this term would not have occurred because the hamil-

tonian would have been decomposed differently.
2. The Cross Section

We now apply equation (2.17) to determine the cross section.
The mu mesons are taken as plane waves incident along the axis of quan-
titazation and as having their spin along the direction of motion. The
cross sections will not depend on these specifications; they are taken
here so that certain intermediate results may be used in the following
chapters. The initial state of the electron is taken as the ground
state of a hydrogen-like atom. It would be possible to consider
electrons outside of the K shell. We do not do so because their greatly
reduced binding energy means that they would contribute only at incident

meson energies much lower than we need consider. The final state for

2. Leonard I. Schiff, Quantum Mechanics (McGraw Hill Book Company, Inc.,
New York, 1955), 2nd ed., Chap. 8, p. 197.
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the electron is a plane wave. We discuss the approximations implicit in
this treatment in Section % below.

For the initial state

51/n=71/(/u/) 40 (2.18)

with

Y () - JEW Yﬁo(r )3 ey ,Zil (2.19)

where the Rayleigh expansion has been used for the plane wave. V is a

normalization volume, Y (r ) is a spherical harmonic, jy (k.,r,) is a
> Y1

0
- ( ) (2.20)
1

at a convenient point.

spherical Bessel functlon and
1 1 -
2 .
X_:L = ) x
2 0

We will choose ‘tl =

(e) -—--——R(r (2.21)
Yo - i) )0

where R(r ) is a radial function defined below. For the final state:

?3 f(/.«,) %(e (2.22)

ol ]~

N

with
¢e) - (") )y, tr)x 2 (223)
e k ) 3 k 2.23
; 2’ o Lo 2 3
1k2 r2
where the plane wave, e , has been expanded.

byr- Z cligmT, TN, L DR, L () >X (2.24)

_f(rl) is a radial function defined below. For the Clebsch-Gordan
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coefficients we follow the notation and conventions of Rose5. The
choice of ¢(/b) is dictated by the requirement that the final state
wave functions diagonalize the spin-orbit coupling.

We are interested in the cross section for absorption of a partial
wave,.ﬁlj with the meson going to a state n,-/, J and the electron

being emitted into the partial wave 17 Therefore, the quantity that

o*
we refer to as cross section will be the partial cross section for this

process, unless otherwise indicated. The cross section is given by:

g = - - (2.25)

where jinc is the incident meson current; V, a normalization volume,
and vy is the velocity of the incident meson. 1In all that follows sub-
scripts 1 refer to the meson; subscripts 2 refer to the electron. The

transition probability is obtained according to

21 Y v‘p 2
Vo= f(¢ H )’ P (E) (2.17)
We first evaluate the density of final states for the ejected

electron.

(2.26)

va L.
(E.)AE. = 2 Y 24JL 4
A T (et ) (o) P2 ko Pe

where dhjlk is the s0lid angle in the electron direction. At this
2

3., M. E. Rose, Elementary Theory of Angular Momentum (John Wiley and
Sons, Inc., New York, 1957). All of the relations used in the
following pages concerning the Clebsch-Gordan coefficients and the
Racah algebra are proven in this book. A summary of the basic re-
lations is given in Appendix I.
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point it is evident that all normalization volumes must cancel in W and

we therefore drop the Vs. Using %%— = g and taking the energy of the
electron as mec2 yields:
2
PE - = /Lk (2.27)
(2:rh) 2

Thus the cross section becomes

m2 d\jlk
- - — 2 <v2) )l2 (2.28)
(21r)2‘ﬁl‘L
and
B - "‘(-5’:—- 2 (2.7)
f © r2 + r12

taking the e2 out of H% we have

- (12)(1 > /(‘#(%};%N’)/edﬂ% (.29)

1/ (2na )
e

2
vhere a, = 155 is the electron Bohr radius. To carry out the angular

me

interaction we use the standard expansion

1 R MX 4 MX A
r = DA+l x (r ) £ (r » To ) (2.30)
12
X,MX
A
r(
where fx = rx+l (2.31)
>
We now define functions FX as follows:
F -1 -2 . F -f , iftr#o (2.32)
o) §> r2 A A

4. See, for example, Schiff, op. cit., p. 175.
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We now evaluate ((P, ( - 'IZ._ + -I‘—]-_) 4/) which we denote by Hf“i'
2 12

i A M, T oal

c . T
X (Ylgmg(x?g), Y)‘M)‘(r/'2 )) c( Ly;m-T, 'C)(Z%, Z%l)

A

(x?, Z;e 4,(’( jl,ﬁg,f,x) Yfgme(kg) (2.33)

Where L[( ,01, 12,,« ,A) is the radial integral defined by:

(/q( ﬂl’ Ie,j,x) =ffr§ dr, rg dr, jI

X R(rp) TACEA (2.34)

l(klrl) Rn,f (rl) Fx(rl,rg)

We now have the following:

To Ce

(X_lz_ ,}f% ) - Szg <, (2.35a)
z C

(% 1 ,%;) = 5“ (2.350)

1

From the orthonormality of the spherical harmonics we have:

<Y12m2(fe), me(zf‘g)) - Sﬂzx .gmeMx (2.36)

We also have5

5. Rose, op. cit. p. 62, The general form of the relation is given
in Appendix I.

' *e 1 (21 +l)% A * A
thy - (e =2 ()7 (e (g ) Y () Yp o

4)



37

, . ] b&{:(zk+l)(2jl+l)‘l%
((Yj,m-t(rl)’ I M)\(rl) ylo(rl)) = (-) w2 f+1) |

X C(/lxﬂ;O;Mwm-z) c( /le;OO) (2.37)
Where use has been made of the following two relations
*, N m
Y[m(r) = (-) Y’[,_m(l‘)

and
. A (24 +1)2 ¥ +15)%
(F)y) ()Y, (r)al - 2 2
j Lymy 7 L pm, A5ms (24 +1) bx _J

C(j5j/ m3m2m C(/ j/ ;000)

3 2 1’

C(/ ./ 3000) is called the parity coefficient since it has the value

zero unless j + / + / = even integer. We replace A by / and MX
3 2 1 2

by m, as is permitted by (2.36); but we are interested in the partial

cross section for which the electron is emitted into the [2'th partial

wave so we drop the sum on A. Since 'Cl is to be fixed, we drop the

sum on T as indicated by (2.35b). We now have

lap O\
B, - (i 2E <-1>p2 iﬂl <->"12[ bl c( 4, 4,4 ;00)
i m, (24 +1)(24+1) 1

C(ﬂ%—j;m-t,t) c( ’01 je,v;o,-me,m-t) Yj (k )(ﬁ(! / j (2.38)
2

We are not concerned with the direction of the emitted electron, there-

. v )2 .,
fore we next find Z dﬂz /Hﬁl since we must sum over the
I
2
quantities not observed (m). We have:
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foay B L
IHILi‘e adl, = (P > (1) ° A2 (-1)* (1) ?

) m2

j+l) z e /v T3
. 4 DA 00) (I, 0L
jﬂ 2ﬂ+1] [(Eﬂ'+l)(2/€+l)_ c( ¥ 2/,oo) C(¥, X, %;00)

C(,/l/ﬂeﬁ;o,-mg,m- ,V ,( ﬁO -m,, , m- )[C(ﬂ%,j;m-f’,‘c 3)2
xdot S Ddot: 4 ) (% Q %%(ée)/ (2.39)

Orthonormality of the spherical harmonics gives g/ /, so there is no
2 42

interference between partial waves of the ejected electrons. From

c( / / / ; 0, -m ,m-T ") we have T -m = me; consequently we may rewrite

(2.39) as

2 5 Ay 4y et
B | aJl = () (1)1 (1)
%ji eil 2 (2/?2+1)(2Y+1)

Xc(}ije,ﬂ;oo) c(,/l fz,/;oo)(p(/ljef)j([i,/eﬂ) > [c(/335m-1, z;)'Je

c(,/l/g/;o,m.t)c(j’i/2 Adiom-T)= -;‘—K (2.40)

For any element other than hydrogen it is necessary to multiply (2.40)
by two to account for the two K shell electrons. As we are not prin-
cipally interested in hydrogen this factor is inserted henceforth. We

now carry out the sum over m. Define
= Z@(j%j;m-t,tﬂe C(/l /ejgo,m- T) C(ji]ej;o,m-t) (2.41a)
m

We use a symmetry relation to rewrite the last two Clebsch-Gordan co-
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efficients.

C(/plﬂejsoym'z) =
c( /i '{2 Jiom-T) = (-

In each of these the phase may be dropped since in (2.40) the parity

<-)/l+j’¢‘+/
)ji" je"/

c( /2[1 g;m-'C,O)

C(ﬂ,a/l,/;m-'(:,o)

coefficients vanish unless the sum of their arguments is even. Now

we may write:
s, = ZLc( 4, {1 dm-t,0) (4 55m- z,z)]
m

X [c(ﬂgjl/;m-'c,o) c(/%g;m-t,c)] (2.41p)

It is now necessary to rewrite each of the square brackets in (2.41p)

using the Racah recoupling theorem.

C(/gﬂl/ sm-T,0) ¢(f3ym-T,T) - S [(2]+l)(2v+l)]§

v
XL, pr35:4v) c(f 3v;0,T) c( Lyvgsme T, T)
Where W( ju; #v) is a Racah coefficient. In exactly the same
2A41v2

manner

c( /efi/;m- 7,0) c(fijm-t, <) = 2521+l)(2v'+lﬂ§

v|

X w(f, 0195 Ae) o 0350, T) o( My gim-Z, T)

So we now have:



5y = o> (2.4+1) [(2v+1)(2v +1j (ﬂeﬁlj%;fv)XJ( /2/'13%;/W)

o
1
v,V

XC( ji%v';o,t’ / lv ;0 T) Z c( jev'j;m- t,t) C(/2vj;m-‘b‘,r:')
m

(2.41c)
The sum over m is accomplished by using a symmetry relation to rewrite

both Clebsch-Gordan coefficients as follows:

{,-(n- ©) :

C(,éevj;m- C,C) = (-)2 (2v+l) /vm, -m)
Do(m-T) 2441 \2

C(12v'j;m- T, C) = (") 2 (2V'+l\| C(j/QQV';m)t-m)

Since (m- T) is an integer the phases give unity and the sum over m is:

2j+1 . c(./v;,t_m)c(./v,;, _m)
[(2V+l)(2v'+l]§ Zm J 2 m J N m, T -m

which by the orthogonality of the Clebsch-Gordan coefficients reduces

to
2j+1 §
2v+1 vv'
Therefore:

- > ) WL, F 3 8v) iy 0y 55 )

X e(fizv0) e(f3vi07) (2.414)

Now we agein consider the two parity coefficients in (2.40). Since
Ja + ,/% + l/= even integer and similarly for ,/i + ,/2 +‘A/it follows

that /,/l -ji/= 0,2, . ... Inthis case it is impossible to
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6
. '1 1 '
satisfy A (Ilgv) and A (jlgv) unless /l = /l' Therefore, there
is no interference between different partial waves in the cross section

and we rewrite (2.41d4) as

s, = S (ed+1)(25n1) (WL, /13%;/vz)2[c(]l—§-v;o, T )_]2 (2.k1e)

At this point we assign to T its value % since we wish to specify the
initial spin direction. We now use the explicit values of the Clebsch-

Gordan coefficient as follows:

EC(ﬂl—é-v;O,-lz—Hz = rf}ji— for v = / +

1
5
< 2 1 1
1 (2.1&28.)
1 _ 1
L2 A f°r‘"’/1'2
In either case
2 1 (ov4l
[c(h 2v,03)) = % (2.420)
1 2\ 2 Zl+1

We now mske use of a symmetry relation for the Racah coefficients to

write
w(d B 530 v) = w( b5 0 33 0)

and rewrite So as:

2
SO = 37 2,':]+l+172(2V+1 )(21+l) [W( 123 [l—zl—;v] )] (2.43)
l

6. The symbol A (313233) is used to indicate that the three angular
momenta must for a triangle, meaning that )31-32, £ 35 < ‘jl+32j.
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By the orthonormality property of the Racah coefficients

? (2v+1)(24 +1) [W(/ejfl%;v/ﬂg -1
and therefore
S, = 557 (2.11)
Thus

(2/l+1)(23+1)

K= (b (2 7+1)0(2 7 +1) [c(f1 2, 450,002 AL 4, 0P (245)

and
v
_ ;f ?;;i_3§ K (2.46)
e

At this stage several points may be mentioned. Except for the
evaluation of the radial integrals,tp(‘al‘[2di), the partial cross
sections for the Auger capture are given by (2.46). One notes that the
two levels, J 7N % and j =,[ - 1, velonging to a given f are popu-
lated in sccordance to their statistical weight. If the electron is

ejected with zero orbital angular momentum then K becomes

€= (P (ss1) (L£,00) 04,0 (2.47)

and the cross section has a very simple form. Otherwise the Clebsch-
T

Gordan coefficients are evaluated by the relation

7. Rose, op. cit. p. L7.
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j~

-12—(L +Ly-Ly ) 2L3+1 2
C(L)L,L5300) = (-) (Ll+L2+L5+l

7 (L1+L +L )
7‘(L1+L2-L5) 7'(L1-L2+L )7 (-L +L +L5)

(2.48)

1)
where 7 (x) = .(.a’.‘_)- and Ll+L2+L3 must be an even integer. We now dis-
x!

cuss the evaluation of the radial integrals.
To evaluate the radial integral we must first specify the radial
bound state functions. These are taken as those appropriate to a

hydrogen-like atom and these are well known. Thus in (2.34) we set:

3/2 -z
R(r,) - 2 (% ) "2/% (2.19)
and
27V (n-f-1) : 4x 4 2fn
Rn:j(rl) {{( 2n[(n+/)!_.—) 3} ) e £ )
(2.50)
where IFLe;l(x) is the associated Laguerre polynomial given as:
n+
n-‘[-l
24 +1 = k+1 (n+ f)r ]2 XX
g )= Z G (n-[[?I-k)!j(ei+l+k)! k! (2.51)
k=0
and
x=22 ¢ (2.52)

=]

7
The normalization is

'Sdo[Rn 4 (rlg_]2 ri dr, =1
s v0 ’
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We now define:

dA 00 - 5w &y (2.55)

Corresponding to the definition (2.32). We now consider the term J, and

use the following definitions:

3/2

R, (r,) - (n;v) X(r,) (2.54a)

7\3/2
R(r2) =(€) Y(re) (2.54p)

The J is: ‘

3/2 3 /2
z VA : ?U 2
J =(m7~§ (§> ) X(rl) ry ,jj l(klrl) V(rl) dr, (2.55)
where:

ry r2+,(¢2 ar
vry) 3 S Y dp legry)

(o] I‘l
o Edr
r
+j 1 T2 Y(r,) 3, (kyr,) (2.56)
-1 &
rl F 2
2

y = —2 (2.57a)

2
b, = (2.570)




. L5
nk_a
b, - — L (2.57¢)
na
/4'
b, = 52 (2.574)

to change variables in (2.55)jwe then have:

. J = (n;)3/2< E;)}/Q(%:f ‘J;wx(x) 'S JI l(blx) V(x) dx (2.58)

where:

/2+3 j2+1

V(x) = (i%) (ni,z.,) =

b x
(]
Y(y) 3, (b,y) L——?——Id
50 [2 2 2+1

X

/2'1 na /2 ¥ j2
o) y

Therefore J is rewritten as

o (1"

e

ob 1-
X 5 X 2 Jﬁl(bIX) X(x) Kl(x) dx
o

or A
+ b{zrx +t4o le(blx) X(x) K2(x) dx } (2.60)
(e}

where
b x
o

+2
Kl(x) = % yﬂ2 eV 312(b2y) dy (2.61a)
o]




4,6
and

k() =] v eV, (o) ay (2.610)
2

b x
o

This defines the term J. It is possible to carry out all of the in-
tegrations analytically. Except for a special case, J/Q = 0 and a
circular capturing orbit, this is of little value since the results are
obtained as multiple sums in a form not suited for numerical evaluation.
Therefore in the term J the integrals were done numerically. We defer
discussion of the results until after the evaluation of G. For a

purpose that will be obvious presently we define

o= (a2 (2" (B (-

Using the definitions (2.54) the term G is

Z5/2Z5/2 00 0
G = (n%/p) ( E;) j; g X(r ) r Q[ (klrl) Y(r ) q/ (k r, ) r,

o

X dr,, dry (2.63)

and on changing variables as before and substituting for Y(r2) we get

ool 3/7?—) (3 [0 2 0

X o (ooy) dy (2.64)
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and we now define

=& & (H ()

At this point we rewrite the cross section, (2.45),as

o -

<|<
no

2
3 na (2 f.+1)(23+1) 2 2
i}l e 1 E-c(/l/ej;o,og [I-ZF 5120]

1 z' (207F (24 +1)(2 1)

(2.66)

The quantities bl and b2 are related by energy conservation. The con-

servation of energy requies that the change in energy of the mu meson

equal the change in energy of the electron. Thus:

2.2 2 2

&kl 1 a22 2 ka 1 2 2

—'——+-é'(-n—) m, c =§m—+§(aZ) mec (2.67)
eﬂﬁb /~' e

and this may be rewritten as

o

2 _ 828 by , 207

2° 2 2 -
n n

1 (2.68)

Using the definitions, (2.57), one may rewrite (2.66) as

o ) i%(%)h 1 (2j1+1)(23+1) [C(jl 12 /;0,0az[I-ZF 512,-—0]2

8 b (2077 (24+1)(2 £+1)

(2.69)
We must still consider the functions I and F although these are both
defined explicitly above. The parameters bl and b2 must satisfy (2.68).
From (2.68) we have the interesting result that sufficiently slow mu

mesons cannot be captured into states with principle quantum numbers
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greater than 14, since bg must remain positive. However, we will find
in Chapter III that such slow mesons need not concern us.

We now carry out the integration indicated in (2.64). TFor this

purpose we use the definition

Jp (x) = V;:Jj 1(x)

where Jf.,_l(x) is the standard Bessel function. We then have
5

w 2 - &y
F = X J b d - J1 (b a 2.70
l () & Bz g yep0) xfe Vo Byt &y (270)

(e}

Integrals of this form may be evaluated using a result given by Watson8.

Namely,
b 1_
= (pr+ov) PG et
et g, (bt) t/71 dt:LEasvrl Yo (1+b—2-)
o o/ [ (oys1) a
2
Fl(V-él&l’ 'V-,ng;(yﬂ; ) 1;_2)

2Fl is the hypergeometric function. The condition that this result be

valid is that V + M > 0. Application of this gives

(67
F = X(x) x2V Jp ,1(bx) ax 1 (2.71)
J x Ly+d (l+b§)

o

Inserting X(x) and taking /l = ], which follows from (2.53) gives

8. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cam-
bridge University Press, London, 1944 ) 2nd. ed., Chap. 13, p. 385.
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-

Rl k+l
p_ .2 ((n-0-1) (n+d )2 = (-1)

l+b§ 2 nby (n-_¢-1-k)! (2.4 +1+4k!) k!

oo
XJ ox/2 e d 432 7 pa(eyx) ax (2.72)
(o]

The integration is done according to the prescription above and we

obtain

F=%((nﬂl) (n+ ) j - (ﬁ)ﬁ(r—l——jw .

2Pl T

nE- - k (?ﬂ+k+?) 1 k ( el « | hg)

)< (n-,y-l-k)' k'( (l)2+b2) 2F1 S Y +3/2; - bl
Pk (R 3

(2.73)
Since k is never negative the 2Fl terminates in all cases. One notes
that the evaluation of (2.73) involves a double summation. The structure
of the expression is such that very precise numerical work is required
to get meaningful results.

We now discuss the relative magnitude of the terms in (2.71).
Clearly, if I and F are of comparable magnitude the term in F will be
dominant for large values of Z, if we consider electrons emitted into
partial waves with zero orbital angular momentum. If we consider other
values of the electron orbital angular momentum only the quantity I
exists. In Figure 2 we present some typical values for the expression

[ﬁ - g] and —i?—-_ I The ordinate is arbitrary. The curve labeled,

,(2 = 0 is for[I - 1:_}2_ the two curves labeled j = 1 are the two
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possible cases for the electron being ejected with one unit of orbital
angular momentum. The three points labeled ,ﬁg = 2 are corresponding
peaks for the ejection of electrons with two units of orbital angular
momentum. Consequently, we conclude from Figure 1 that the important
contributions to the total Auger capture cross section will be from the
partial cross section involving ejection of electrons with zero and one
unit of orbital angular momentum. However, all of Figure 2 is for Z = 1;
and we have little interest in hydrogen. 1In Figure 3 we show the
quantity[:l - 2@]2 corresponding to the case Z = 2. We also show the
point corresponding to the peak of the ,02 = O curve in Figure 2.

From this information we conclude that the ejection of electrons into
partial waves other than those with zero orbital angular momentum is un-
important if Z-> 2. We also conclude that the term F is the dominant
term in the cross section for medium values of Z. A detailed numerical
study was made concerning this point and it was found that for Z = 6

the replacement of Z by (Z - 1) in the term ZF and neglect of I led to
less than 10 per cent inaccuracy in the cross sections obtained.

At this point we may remark that in the calculation of the
partial cross sections 10 per cent errors in the numerical work need
cause no concern. This is true for several reasons. We are calculating
to first order using plane waves. This is therefore an approximate
calculation, regardless of how precisely the various terms are computed.
The relevant point is that we do not need very good absolute values of
the partial cross sections. This will be discussed in the following

chapter but we state here that the relevant quantities are the ratios
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of the various partial cross sections to their sum. Further, we find
that the quantity we are principally concerned with, namely, the meson
polarization, is quite insensitive to the accuracy of the calculated
cross sections. For these reasons we make use of the fact that the
quantity F, defined above, is adequate for computing the cross sections
as indicated.

It is of interest to consider some of the individual partial
cross sections. These are presented in Figures 4, 5, and 6. These are
all for capture of the mu mesons by carbon. In Figure U4 the partial
cross sections are shown for capture of the meson into three states be-
longing to the level n = 15. The state,,?-: 14, is the circular orbit,
namely, the state with radial quantum number n,=n -.[ -1=20. One
notes that there is only one peak in the partial cross section for
capture into this state. Further,‘this peak is higher than any peak
belonging to the same n and any other lﬂ at incident meson energies
higher than the one at which the peak occurs. For the state with,f:= 12
there are three peaks. In general there are nr +1l=n -,f peaks in a
specified partial cross section plot. Figures 5 and 6 show the partial
cross section for capture into the state n = lh,JV = 0. The figure
does not cover the entire relevant energy range and so only shows nine
of the fourteen peaks. The variation with n is not very rapid. For
example, if Figure 4 had been constructed for n = 16 then the peak in
the Aﬁ = 15 partial cross section would have been at 0’/na§ = 0.48 and

at the same b, value as the peak in the,p-z 14 curve in Figure 4. A

1

similar decrease in n would cause about the same decrease in ¢~ . The
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difference is essentially due to the different statistical weights of
the states. The relevant point is that bl is a function of the prin-
ciple quantum number, n, and therefore increasing n causes the peaks to
be shifted to lower incident meson energy. The importance of this will

be demonstrated in the following chapter.



CHAPTER III

THE DISTRIBUTION OF MU MESONS IN ATOMIC STATES

FOLLOWING AUGER CAPTURE

1. The Capture Rate as a Function of the Meson Energy

It was demonstrated in the preceding chapter that the partial
cross sections for Auger capture are strongly varying funtions of the
incident meson energy. Consequently, the number of mesons captured into a
specific state will depend on the rate at which the mesons lose energy
in the slowing down process and the rate at which the mesons are captured
at a specific energy. We must now formulate this process in terms of the
Auger partial capture cross sections. This is done as follows:

Let N(E) be the number of free mu mesons at energy E; then

dI(;I}(EE) - dg)%E) % (3.1)

where dx is the path increment for the meson beam. Now,

L ==Y noyE) (3.2)

where n is the number of stopping atoms per unit volume, CFE(E) is the
total elastic scattering cross section for mu mesons incident on the atoms
of the stopping material, and <ZE;> is the average energy loss in a
collision between meson and atom at energy E. The minus sign occurs because
a collision leads to a reduction of the meson energy. The energy loss

in such an elastic collision is given by:
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4E = KE(l-cos®) (3.3)

2 mye M . .
where = l_ﬁgz__jg and M is the mass of the atom. Thus E
- m i o om u {E) is

given by the average of (3.3) over the scattering angle,® . This is:

T
27r.£0“(6) (1-cos® ) sined e

, (3.L4)
271'&’)70-(6) sinéd &

(4E) =xE

where (&) is the differential elastic scattering cross section. How-
ever the denominator of (3.4) is just 67& and the numerator (apart from
HE) is commonly called the transport cross section. Thus, we write

- J—Tr(E)
<AE>'*LE};('ET (3.5)

The reduction in the number of free mesons may now be expressed as

aN '
& = - 0 N(E) 74 (E) (3.6)
where n and N(E) have been previously defined. ¢ A(E) is the total Auger
capture cross section at energy E; namely, the partial cross sections of

Chapter II summed over all j, f, and n.l We now have:

an(®) _ N(E)g(E)

dE )(,EJ—,ITr(EJ (3.6a)
which may be put into the form of an elementary differential equation:
dN(E E)dE
® _oa® (3-6D)

N(E) ~ KEJG.(E)
The appropiate boundary condition is that

N(E) = N(E,) where Eo< E

1. There should be no confusion due to the use of n for the principle
guantum number and also for the number of scattering centers per unit
volume, since the context is always adequate for a clear distinction.
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Thus we have EO

N(E) = N(Eo) exp[ - )l(

with the requirement that E < Eo.

In (3.7) we will consider E, to be an energy sufficiently high so that

no mesons have been captured; then we may use (3.7) to determine the number
remaining at energy E down to energies sufficiently low so that essenti-
ally all of the mesons have been captured. Thus we know the number of
mesons captured at energy E, namely N(E+ A E) - N(E). Define the number

of mesons captured into a specified state n,_f » J, in the energy range A4 E

to be A Pp (n, £, j). Then

ey d, 5,8 = L@l BB w4+ a8 - () (3.8)
o A(E)

Since

> 0, 4,58 =05

n, £, J
Summation of A PE over all relevant /A E then gives the distribution of
the mu mesons in the initial states.
Thus we can find all we need from (3.7); however, we must do the inte-
gration in (3.7) numerically and then sum (3.8) over the energy. We now

determine ‘TEr(E) in a form suitable for machine computation.
2. The Elastic Scattering of Mu Mesons by Carbon Atoms

Since the best experimental data concerning the asymmetry coeffic-
ients is for mu mesons stopping in Carbon we calculate CTEr for Carbon.
The method we use is clearly applicable to any atom. The problem of

elastic scattering from atoms has been treated by many writers. The
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differential cross sections is given by2

2 2 2
7 (6) = *W [ z —F(e)j (3.9)
p° sin® @ /2

where m 4, is the mass of a mu meson having incident momentum p and Z is the

atomic number of the scattering atom. The form factor F (6;) is usually

given as

F(@) = uﬂ'j )Sanr re dr (3.10)

where p(r) is the electron density and £ X is the momentum transfer; namely
K = 2 k sin ©/2 where k is the incident meson wave number.

The normalization is such that

1 5 r°p(r)dr = number of electrons
W «4%

We must now evaluate this form factor for the Carbon atom. Using hydrogen

like wave functions gives
s) =YY =¥ D), (), (3.11)
2

where the contribution to the electron density from each of the filled
electron states in Carbon has been explicity indicated. It is clear that
(3.10) is valid for scattering from f7:L 0 states; however, one may be
inclined to question its wvalidity when there is a ,ﬂ:ﬁl state involved.
Since this point is not discussed in the literature we give the following

proof.

2. N. F. Mott and .. S. W. Massey, The Theory of Atomic Collisions
(Clarendon Press, Oxford, 1949) 2nd ed., Chap. 7, p. 117. The deri-
vation of this formula may be found in many other standard treatments
of gquantum mechanics.
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First we construct the proper antisymmetric wave function for the 2Py
2

state, namely:

%3 = o %05 m m) X ) Z2(2) (3.12)

so that the total angular momentum in the shell is zero.
m
X1la) — %— c(15 3; ml- T,7)

Xt @ 7)) s "L )/(// (3.13)

//i:(:),%-iz(:) (3.14)

Note that (3.12) is antisymmetric since interchange of electrons 1 and

where

2 gives:
C(3 305 mym)= -C(30; mm)

=

Also we have that m = - Mo

In complete generality we may write the form factor as:3
_ i K-F.3
F(&) = j (r)e a’r (3.15)
In (3.15) we take p(r) = 99'/%) and use

to get

1, - 2 = w

1, 2
m 1’ ml

mu

m'*

Xt (1)7c(1)k 2)7(

B

3. Ibid.
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iK-'r m ! % m l-m -m'
1 ™ 2 ol
@) %) J ak ad, () 11 (3.16)
where the sum over 1 and 2 has been written out. The angular integration
and over\/)_2 in the

over\/Ql in the first term of (3.16) gives é; '
m, m
171

second term gives(g ; thus the two terms are equivalent and we have
L]

My Mo
m, % i K'; m
FO)=> | rfar X' e XKlal (3.17)
my

since the other radial integration in each term yielded unity because
we are dealing with normalized wave functions We now use

= >
iK.r L A * A
e = WIZ i (k) Y (r) ¥ (3.18)
IL,M L M M

and obtain
A 2
FE) = 472 v (® 1" [cly b m-T, z)] Jre R, (1) jp(ke)dr
L,M 1M ’
mlJC
a A
X (y () Y (0 Y (D) (3.19)
1, m-7, L,M 1, m-T
This becomes ,
AL 2 z
F(8)= u?fZY*(K)l (c (1% 3; ml-Z’,z)) c(lLl;oo)(EL“;.,E)
L,M LM
ml,t
* 2
(3.20)

)( C(LL1; m-T, M, m-T)
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From the last Clebsch-Gordan coefficient in (3.20) we have M = 0, and

we see that L == 0,2. We now do the sums over T , and my; for this

purpose we make the substitution m -7 = 4, and we then have
2&3(1 % %;;/.c,z:)j 2 c(1L 1;/¢ 0) which we define as S.
=

Using the symmetry relation

+T
c(1 3 5p,T) = (-) 2/3 331 - (purT),T)

yields

s = 2/3 20(1 L 1;/,¢o) __;__C! (3 3 1; Vs T ,‘CS] . (3.21)

and by the orthbnormality of the Clebsch-Gordan coefficients this is
s=2/33> cllL 1;/,,0) (3.22)
The most satisfying way to do this sum is as follows:
c(r1o 1;/‘,0) =1
Thus
s= 2/3Z c(1o 1 p0) €1 L 1;40) (3-23)
Applying a symmegﬁ;'relation to each of the Clebsch-Gordan coefficients

yields

1-/,o 1-/1/
s = 'V—’g'LJr'———TE(') (-) C(L1 L5 gy ) CLLL 05, ) (3.24)

and again by the orthonormality relation we have

5= e St,0 (3.25)

F2P ()= 2 jr2 Ri,l (r) jo (Kr) dr (3.26)

Consequently the form factor given by (3.10) is correct, even for scattering
from the P% shell. The factor 2 in (3.26) is of course due to the presence

of 2 electrons. We now evaluate the form factor for Carbon.
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The following radial wave functions are used:u
_ z \ 3/2 _7r )
Rip(r) = 2 <5;> e - (3.27a)
R = (2)3/2 (2-2r)e -2r :
0™ = (&) % (2-F)e -5 (3.270)
Ry (r) = (% \3/2 2Zr _, _2r (3.27¢)
2l (2ae) 5. 13 ©  Zag
. with the understanding that Z will be set equal to 6 at a convenient point.
Using these the form factor for Carbon becomes:
F(&) = Fio+ Foq + FQP%_ (3.28)
where
iKr -i Kr
1s re=? Ir - < ) ar (3.29a)
1s 21
o 1 K r_ -1 Kry _yr
F, = B/K 3 [h-ua/rer 2_] ) & r (3.29)
iKr -1iKr
EQPJ» EL P r3e—rr (e ¢ ) dr (3.29¢)
2i
where B =2 (_E_) ’ and )/~ Z
'” 2ae - Eﬁ: :
) The integrals are elementary and may be evaluated as:
. 88 Y
Fi.= 16 —F——— (3.30a)
e (Y
) 2
p = __GB T ¢ 3X(X-K)]
2s (X2+K2)2 P2 (Y2+ K2)2 (3.30b)
2 ye 2
= Bl L), (3.300)
.30c

L., These are the same as the hydrogen-like wave functions used in Chapter
- II; except here they contain the electron mass.
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So now we have

4 22 L
F(6) = aBr[ + 20 2y KFK) .
(48 2 K2)2 (re+ @F (3-31

Now the differential cross section becomes:

2 2
g (e)= ul?— ( 5 12 y ) [Z-F(G)] (3.32)
k“sin© &/2
B/"

Using K = 2 k sin & /2 one may show that:

b g, - Kh’
sin /2 = —n (3.33a)
16k
l -cosé = —K2— (3.33b)
2ke
sin 46 = K_i.é_K (3.33¢c)
So we obtain:
7 ‘ 1 16 kb' K2 d K 2
_ 2 K Z2-F(©) (3.3ka)
Coe™iep2 ), i w2 e L )]
which may be rewritten as
0, = M j _[Z-F(Q)] (3.3)
(o]

/A,k

Using 8BY =2Yb' in (3.31) and setting Z = 6 gives:

Lexte )] [ o iea + 2 Pl r1605 z(3 35)

We note that this has the proper limiting values; namely:

Lim 6 -F (6 = 0
Lin (67 (&) (3.368)
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Lim (6 -F (8)) = 6 (3.36b)
K——

It is obvious that it would be possible to substitute (3.35) into
(3.34b) and carry out the indicated integration; this leads to a compli~
cated function not ideally suited for machine computation. Therefore,
we proceed in the following fashion. In Figure 7 we have plotted the
integrand of (3.34%b). The dotted line is for 6-F(®) = 6. Thus

with reasonable accuracy we may use this value when K. l+f. 50 we have:

O—Tr = ;t—z}g— [ I, + 12] (3.37)

by 5
h I, = aK 6-F(&
where I, j k[ er(e))

S2k ax )
Ly PE =% m [W)

Il is obtained by applying Simpsons rule and using the points given in

and I

no
i

Figure 7. The formula obtained is given by:

L md (@) ChsrgnE)] -

0 36 /Y

r

where we have multiplied and divided by a’h and used

= (2]

We must note that (3.38) is not correct when 2 x < b Y’ hovever, it will

o]

o M-
—
(W8]
o
\O
~—

be seen later that we have no need to concern ourselves with such low
energy mesons. The expression given by (3.38) is a simple function of
its arguments and may therefore be used efficiently in a machine calcu-

lation.
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At this point we may make several remarks concerning the accuracy
of (3.38). The error introduced by the numerical treatment is very small
and therefore of no concern. It is, of course, known that the treatment
used; namely, using hydrogen-like wave functions to calculate the form
factor, is not the best. Nevertheless, we feel that the transport cross
section we obtain is suitable for the purpose at hand. We are not striving
for great numberical accuracy in the distribution we obtain since it will
be evident in Chapter IV that small errors in the distribution will not
affect the final results. In fact, we will see presently that the energy
range of importance is such that the scattering is principally nuclear
(k 2 ub’) so the form factor corrections one might make would alter the

distribution obtained in a negligible manner.
3. Calculation of the Distribution

In (3.7) the initial distribution, N(Eo) was taken as unity corres-
ponding to the assumption that all of the mesons have a given energy Eg,.
The expression (3.7) was then programed for the electronic computer using
the expression for partial capture cross sections derived in Chapter II
and (3.38) above.”’ The relevant range of energies over which the mesons
are captured strongly was found by trial. The mu mesons are not captured
to any appreciable extent when their energy is such that k >'ﬂ)x; this is
about 11.5 kev. The mesons are captured strongly at energies around 8 kev.

and lower; essentially none of the mesons remain free until their energy

5. The computer used for all of these calculations was the IBM~-704 located
at the Oak Ridge Gaseous Diffusion Plant.
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is reduced to 2.5 kev. The number of free mesons as a function of k/{ is
shown in Figure 8.

It was found desirable to modify the notation of Chapter II and
express all momentum dependent gquantities in terms of J’. A suitable
increment for the integration of (3.7) was the energy increment corresponding
tod k= 0.4¢. This was determined by trial. The actual integration
was done by using Simpson's rule and recomputing N(E,) at each inteval.

It was not necessary to compute the distribution as a function of j since if
the number of mu mesons in a state n,,p is given the two corresponding
states j = /A % are populated according to their satistical weight.

We have indicated at several points that certain approximations
were made. If one should attempt to improve on the work presented here,
presumably by using Coulomb waves for the free particles in the cross
section calculetion, then the following problem would arise. In the course
of evaluating N(E) as a function of E, it was necessary to compute 21,600
values for the partial cross sections. The expression we used for the
partial cross section is not very complicated as may be judged by the
fact that the final run took slightly less than one hour of computer time.
It is our feeling that the expressions involving Coulomb waves would be
much more complicated than these and that the evaluation of N(E) with
these expressions would take an unreasonable amount of computer time in view
of the relatively small sensitivity of the final polarization results on

N(E).
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4. The Distribution

Table 4 gives the calculated distribution of mu mesons in atomic
states. We found that there was no need to consider states for which
n > 16. Figures 9 through 11 show how this distribution varies with the
quantum numbers involved. From Figure 9 it is seen that the mesons are
captured into states around 27:: 5. Figure 10 shows that the states
around n = 7 get the maximum number of mesons. In Figure 11 we show
the distribution as a function of the radial guantum number, n, = n-,(-l.
These are the results we calculate; however, as there has been some
qualitative discussion in the literature concerning what one might expect
we present the following remarks.

Since there has been no previous analytical treatment of the
distribution, several writers have attempted to guess its form.6 Their
arguments go something like this. The meson orbit has nearly the same
Bohr radius as the electron orbit if the meson goes into a state for which
n = 1lk; this means that the meson wave function and the electron wave
function have maximum overlap for this case. Since maximum overlap some-
times leads to large transition rates, it is asserted that the mesons will

be captured into states around n = 14, As the statistical weight of a

6. G. R. Burbidge and A. H. de Borde, Phys. Rev. 89, 189 (1953). See
M. Demeur, Nuclear Phys. 1, 516 (1956). Assumptions concerning the
initial distribution appear in many other places in the literature.
It is usually assumed that the mesons are captured into states around
n = 14 and then the distribution in X is varied to suit the problem
at hand. As will be seen in the subsequent chapters, the observable
facts are rather insensitive to these assumptions, and for this reason
the inaccuracy of such a procedure has not been brought to light
previously.




NUMBER OF

TABLE 4

MESONS, IN 10,000, CAPTURED INTO ATOMIC STATE n, £ IN CARBON

Circular

n- { 1 2 3 L 5 6 7 8 9 10 11 12 13 1k 15 16
n

1 1

2 35 13

3 232 38 21

L Lgg sk 101 12

5 525 256 82 87 15

6 338 L4g 134 102 6k 16

7 151 401 302 98 93 48 15

8 50 227 346 204 82 77 38 13

9 13 91 236 273 1h4s5 70 62 31 11

10 3 27 110 215 212 108 59 L9 26 9
11 - 6 37 113 186 165 8L 50 Lo 21 7

12 - 1 10 b2 107 157 130 67 L1 32 17 6

13 - - 2 12 Ly 97 132 104 54 35 27 14 5

14 - - - 3 13 Lo 87 110 85 Ly 29 22 12 L

15 - - - 1 3 14 Lo 7 93 69 37 25 19 10 3
16 - - - - 1 L 14 37 67 79 58 31 21 16 9 3
Total 1847 1563 1381 1152 0965 0798 0661 0538 0hl7 0289 0175 0098 0057 0030 0012 0003

TOTAL NUMBER SHOWN:

9986
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state having given n is largest when ‘/7== n-1 it is further assumed that
these circular orbits will get the most mesons. We do not disagree with
these considerations; we merely state that they are not adequate. From
Figure 11 it is evident that the circular orbits do get the most mesons.
The reason that the states of high n, n > 12, get so few mesons is that
the mesons are captured before they are slowed down enough to be captured
by these states. It is in this respect that the qualitative arguments are
inadequate; they do not take into account the competition of the various
capturing states as a function of the meson energy.

In view of the foregoing we make the following statements concerning
the distribution given in Table 4. There is no theoretical argument that
contradicts the results we have presented; in fact, the distribution we
have is in several ways in agreement with the expectations. There is no
experimental information that can be used to test this distribution directly;
any such test using the results of the reported observations is indirect.

In Chapter V we obtain results which are to some extent a test of this
distribution and we find that, in so far as the results we get constitute

a test of the distribution, the agreement is very good. Therefore we assert
that the mu mesons are captured into the states of mu-mesic Carbon as

given in Table L.




CHAPTER IV

THE POLARIZATION OF MU MESONS IN THE INITIAL STATES OF MU-MESIC ATOMS

In the preceding chapter we have found how the mu mesons are dis-
tributed in atomic states when they are initially captured. Although
the problem of the distribution had not been previously solved, we are
principally concerned with the polarization of the mu mesons. Thus the
results to be derived in the present and following chapter constitute
an adequate solution of one of the several problems that require knowl-
edge of such a distribution. In this chapter we show how one may de-
termine the polarization of the mu mesons in their initial states
following capture if we know their polarization previous to capture.

As was explained in Chapter I, we have excellent reasons to believe that
the mu mesons are completely polarized along their original beam di-
rection. We will see here that the important consideration is the
amount of scattering the mu mesons suffer before capture. To show this
in detail we show how to obtain the polarization after capture for the
case of no scattering and for the case of much scattering. We then
prove that one of these cases is an extremely good approximation to the

actual situation. We now turn to an analytical treatment of the problem.

1. Definition of Polarization
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We define the polarization of the mu mesons asl:

’;=M (’-J».l)
(&, ¢)

where 90 is the meson wave function and & 1is the vector composed of the
Pauli spin matrices. We have indicated previously that the muon beam
is along the z axis and that it is initially completely polarized along
the beam direction. Thus, initially we have that

P& - +1 (4.2)

where e, is a unit vector along the z axis. The process of depolari-
zation will reduce ?igz ; of course a strong spin flip mechanism could
reverse the sign in (4.2), however, we do not treat a case where this
occurs. We use the fact that the meson wave functions are normalized
and write
A

P= (o) e, (4.3)
where we have used the standard notation for the expectation value.
Thus we are going to calculate <101;) in the following and at any stage
this will correspond to the surviving average spin orientation along the
initial beam direction. If one should wish to consider an incident beam
not fully polarized then the only change would be to multiply (4.3) by

the appropriate factor.

1. M. E. Rose, Relativistic Electron Theory (John Wiley and Sons, Inc.,
New York, to be published ) Chap. I. This reference contains a
complete discussion of the description of the polarization in the
Pauli representation. Since the mu mesons have small velocity when
they are captured we need not consider relativistic effects.




80
Although it was Jjust stated that we intend to calculate <QT;)>,
we do not do so directly; since it will be easier to work in terms of
<Jz> . The relationship between <Cré§> and (Ji) may be obtained by

using the projection theorem for first rank tensorse. Thus,

{3, GIHET)
S = (4.4)
N 3(3+1)

and one may take the reduced matrix element as the expectation value of
ZF-E: namely
r -
LG5> = 3(341) - 0 (L+41) + 3/b (4.5)

Then we obtain

J
<0z~> =é—‘-jz—>— when j = f + 3 (L.6a)
J
o> ="<§Iil when j = / - % (4.6v)

When we discuss bound states, the values of J and f’ are known, there-

fore having <:JZ> is equivalent to having <i&ré7'. Since we will find

that <fbr;j> is required only for the final atomic state of the mu

mesons, namely, the ls; state we will only need to use (4.6a). There-
2

I
J

speak of this as the polarization. Thus, with the restriction that we

fore the quantity which we shall deal with will be ; and we shall

only apply this to the ls; state, the asymmetry coefficient of Chapter
2

I is:

2. This and the other important theorems that we use to treat angular
momenta are reproduced in Appendix 1, suitable references are given
there.
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In Chapter V we shall see how to obtain 3 for the mu mesons in the

ls; state. Here we must find this quantity for the states that the mu
2

mesons are initially captured into.
2. Depolarization of Mu Mesons Captured from a Beam

In this section we consider the depolarization of the mu mesons
if they undergo Auger capture from a beam. By capture from a beam we
mean that the mu mesons are incident on an absorber as a well collimated
beam and that we assume them to be captured before their initial di-
rection is altered by scattering. Discussion of the extent to which
this represents the physical facts is postponed to section 4 below.

We now note that

3> S m pop(m)
zz . =2 (4.8)
J J ”Empop(m)

where pop(m) means the number of mu mesons that go into a state of J
and.,f having the magnetic quantum nunber m. In Chapter II we saw that

the partial cross section for capture into a state j and _{ was gliven

- (;2') s lHt"i\edﬁ‘k

2
1 (Qnae) )

which is Jjust (2.29) with the integration over electron directions in-

dicated. Since there is no dependence on the magnetic quantum numbers
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in the front factors we may take

pop(m) ocJIHILil"’ 1Ny (1.9)

Thus we use the result

] P gl (24 41)(2 ¥ 41)
SJHf]J 2 dJl2 = (lm)j (-1) )l (2/;1)(2[1{1) c( /i /2/;00)

C( 4y £, 0500) XA J,0) 303 o 0)] o 433sm-7,T )]

(4, 4 from-©) c( 4 4, £30,m-T) (4.10)
which is Just (2.40) with the,ﬁf.removed. In Chapter II, XK was defined
m
as
2
K=2 2‘() H,) dJL2 (4.11a)
m
and we now define
2
K =22> mJleiI a A, (4.11b)
m
so that
J " TK 12

We now define S. such that

1
o oty () ot BAeve )
' (2 £ 1) 40)

(4, 4,0 10 D) s, (4.13)

o 2y Ay h300) o S, I, s00)




83

Thus

5, - S w[c(0¥nm-7,2) o 4, 4, £:0m- )

c( 4, 4, #;0,m-T) (4.14)

Now, T must be taken as + 1 and we do so in the following. We define

a new quantity, an integer,
M=m-% (k.15)

and substitute this into (4.14) to obtain

2
- S b [cosimd)” c(f 4 Liow) o 4 J,L0m)  (4.26)
M
and we now use the explicit values of the Clebsch-Gordan coefficients

to obtain
2
[C(ﬁ%J;M,%)] = %M% for = f +3 (k.17a)
[C( P35 M;2] 2}_*_1 for = 4 - % (L.170)

We substitute these into (4.16) to obtain

5] Z[% %1%+M2+1l 2}61 C( Ay £ £3:0M) c( Ay 4, £50,M)
M

(4.188)

5 E[Q-QQL*- MQI;%_']. QjMil C(Il/QI;O’M) C(ﬂijgj;O,M)

(4.18b)

|

Where the superscript + and - refer to the j = £ +5 and j = / -3 cases

respectively.
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Use of the symmetry relations and the fact that /l+ f ot / and
f i+ /2+ ,( mist both be even integers as was shown in Chapter II will
verify that
]
C( ﬁl jej;oyM) C( /I:'L jej;oyM) = C( ‘/l /2 /;O:'M) C( /l 12/50,-M)
(4.19)
Consequently, the terms linear in M in (4.18a) and (4.18b) vanish in

the summation. Now we use the symmetry relations to obtain
1

. 24 -om J )2 2
Z e /1 Vy £50,M) C(/l VQI’O’M)=§M.(') i [(Miil)éfiﬂ)]
M

X (0, 00 sm,-M) UL /s, -H) = é-%j—% ) (1.20)

as the last sum is immediately evaluated by the orthonormality condition.
This allows the evaluation of the contributions due to the first terms
in SI and Si and also those due to the additional constant term that
arises when the explicit value of C(/ 2 #;M,0) is used to find how we

must write IVF Thus
¥ -1 [(fa)er-)ets)] chafmo) + 3 AL (n2)

Therefore, the final summation required to evaluate Sl is

Z (2 459,0) c( fy 4, £30,M) c( 4y 9,4 50,M)
M

and the symmetry relations may be used to show that this is equivalent

to

= c( 4, f, f:0m) (S, J, £3v0) c( 2 fm0) (4.22)
M
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We use the Racah recoupling formula to rewrite the last two Clebsch-

Gordan coefficients in (L4.22) as

(¢, 4, 4s0) cf 2f;m0) Sl(ess1)(2d+1) ° (G NEINEY

X C( £ 5 £ 3M4,0) c(jlzs;o,o) (4.23)

and the sum over M we are now required to evaluate is

S c(fy 4, 050M) c( 48 05M,0)
M
and by the symmetry relations and the orthonormality condition this is

[N

- 2
Z(‘)zﬂfm (2(;?{1)()2%1] C( Ly 4 f154 1) C(4, L3, -0
M

2 +1 gﬂ (k.2k4)

Now (4.22) may be written as

: 3/2
c( 42 £150,0) (—(i{ﬁ%— Wl D hes 4 0) (k.25)
2

2
l+l

We use a symmetry relation for permutation of the arguments of the Racal

coeffient as follows

w( /2 jlﬁ23 j,(]'_) = w(j/[i /71;21}1) (L.26)

Clearly the phase is unity and we may write out SI and Si.

s* _Il (+1 /+l>‘] éﬁ [I(Ahl)(gﬂ 1)eg)
l

1 52]l+1 5(2 ¢,+1)

) Lor2- 4= [y

2 *l_x co(f 2/1,0 0) w(/// I 2.4,) (4.27a)

2f+
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s _[.l_ J (/+1)75 [4 (1) d-1)(24+3)]
17| 227,41 5(2jl+1) 1 4 3

1
2

X _Q'LL) c( A2 4130,0) WL ) 41524) (k.270)
We use
S 4 5= A+
a4 J=4 -3 ‘
and
()-8 oy j= 4 +1%
(a2 j= 4 -%
to write

[%22};1 ),? -J+— /+1 ‘_J gﬂl ,Q' + (=) 4 -3+3

X 4 (f+1) (21 1)(24+3) jﬁ (ﬂ:l)z c( 4,2 430,0) w(ﬂﬂ]iflﬁjg)

2 ,Qi+l

(4.28)
So from this result, we see that although there was no interference N
between the different partial waves in the cross section, there is

|
interference in the polarization. The only values possible for / 17

given /l’ are /l ’/l’ jl"‘

We may now write
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A - fy (@4 41)(20 1)
7 Av it (2.4,41)(24 +1)
J ; (24,41 )2
1o, (2L 41)(2041)

(4 4o 050:0) Ay Fpyd50,0) I 4o ) 1 0, 0) 8
X c(fy fod300)° WL 4, D) °

(4.29)
from which one can obtain the polarization of the mu mesons captured
into a state j,f .5 The Racah coefficients occurring in Sl may be
evaluated by using formulas given in the literatureh.

In Chapter II we found that the majority of the mu mesons were
captured by emission of an electron with zero orbital angular momentum,
If we set /2 = 0 in (4.29) we see that: jl = /i - /, the sums
contain one term each and the interference disappears. So, for the case

jg = 0, we may write

3, In (k. 29) there occur products of I(/ // . Since our radial
functions are real this is correct. However , in obtaining (h 29
we make no assumptions concerning radial functions ang the calcu-
lation would be the same for Coulomb waves if the I( A ../, f) vere
redefined. This would involve redefining F. in Chapter IE In such
a calculation the Coulomb phase would be kept with the radial
functions and the relevan jroducts 71 }h ) would be replaced by

| 14y £, )% ema (4

4, L. C. Biedenharn, J. M. Blatt, and M. E. Rose, Revs. Modern Phys.
24, 29 (1952).
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<ijé> Sl
3 = 55 (4.30)

(o)

So was evaluated in Chapter II and is

23+1
so = 575 T (2.44)

For ,ﬁe = 0, Sl becomes

s 1 1
s oL o2s T TA) re g0 ) e 26

1° % 2¢+a 3 (2.0 +1)
X c(f24;00) Wil ; 20) (4.31)
and using a symmetry relation for the Racah coefficient we have
WAL 520) = W(LLLL 02) (4.32)
5

which may be evaluated as follows

WP 50) = gy (4.33)

The Clebsch-Gordan coefficient may be evaluated by using (2.48) to

obtain

C(/ 2/300) = = (gj(_é-s%e)p -l)J ° (h.}h)

Thus we see that, if ,(2 = 0, 5, reduces to

1 235+1
8, = T 217_;1- (4.35)

5. When one of the arguments of a Racah coefficient is zero it may be
evaluated by using the symmetry relations and:

(7% Sop Gea
EEb+l)(2d+l ):] 3

W(abed;of) =



and (L4.30) becomes, on setting ‘fl = ﬂ in S

J
<—Jﬁ>— - -;-3 (4.36)

Consequently, for the problem we are concerned with, (4.36) gives the
remaining polarization after capture if the mu mesons are completely
polarized and if they are captured from a beam. We make a rough esti-
mate of the remaining polarization under these circumstances. In
Figure 9 as discussed in Chapter III we show that the peak in the dis-

tribution of the mesons in states of ,[ is around 47 = L4, 5. So a fair

value for J is g and (4.36) tells us that the remaining polarization
is about l. Therefore, since we know from experiment that the depolar-

9

ization is not this severe, we know that we have not described the
physical situation correctly6.

So that we may understand why the result, (4.36) gives such a
small polarization it is worthwhile to look for this reason in the
mechanics of the calculation. The reason may be found by looking at the
last two Clebsch-CGordan coefficients in (4.10). Since we took the
original beam along the z axis X&z = 0 and the maximum value of jz in
the bound state is determined by the requirement that ‘/22 =m - T,
Since ’QE is taken as zero there is clearly a severe restriction on the

values that m assumes in (L4.1h4). Indeed, the only case where there is

6. By this statement we mean that we have not described the situation
that prevails when the asymmetry coefficients are measured. It is
easy to think of a case where one would expect (4.36) to apply;
namely, for the mu mesons ceptured, which would be very few, when
a fast beam penetrates a thin foil.
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no restriction on m, namely j = %, gives the maximum value ——3~—— =1,
Thus we may ask how the physics of the problem must be so that when we
calculate, this restriction on jz will be lifted. The answer is clear
from the above statements; the mesons must not move along the axis of
quantization. If this is the case then ’(lz can have values of the same
magnitude as,/ . Since the axis of quantization is fixed by the initial
beam direction we are led to consider the scattering of the mu mesons

before they are captured. 1In section 4 we will treat this scattering

quantitatively; we now determine how it affects the polarization.
5. Depolarization of Mu Mesons Captured after Scattering

In Chapter II and therefore in the above treatment we represented
the mu mesons by plane waves along the z axis. We could now take them
as plane waves moving in the direction ﬁl' However, as will be shown,
we need not limit ourselves to the use of plane waves. Therefore we

will take the free meson wave function to be given by

ti . 11 * A
(kfree(/a) = b Z%— Z * f,(l(klrl) Y/el,ml(kl) Yfl,ml(?l)
A1)

(4.37)
where we neglect to write normalization volumes, since these always

cancel., The function f (x ) is defined to be the proper radial wave
1

function; if one wished, it could be g Coulomb function with phase.

171

There is another improvement which we use here. 1In Chapter II
we took the wave function of the bound electron to be a hydrogen-like

function and we considered only electrons in the K shell. We now take
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the wave function of the bound electron to be

C
A 3
= Lsi .m -
V/bound(e) - 20(13235’"]3 T3 T5) Yy smg-T (re)l% R(r,)
T 5 3

> (4.38)
with the stipulation that R(rg) is the correct radial wave function for
the bound electron. Thus, for example, R(r2) might include the effects

of screening.

The wave function for the ejected electron is taken as

Vo) = i X2 P k) Y)Y, ()
free'€/ = 1 Z * /2 T2 12, 2 f2’m2 To
Aosmp
(4.39)

where the same remarks apply to f (k ) as to £ , (k,r,). The wave
,(2 ( 1M1

function for the final meson state is

stound%): Z U, o)y, VAT R ) (ko)

where Rn,ﬂ (rl) is not necessarily a hydrogen-like function. For the
b

interaction we keep the definition of Chapter II, since the only con-

ceivable modification would be to change the definition of FX. Thus

we write

Z 2X+1 b9Y MX 2) ¥y Mx(rﬂl) Fy(ry,r,) (4.41)

oM
with the understanding that the choice of Fx is determined by the proper
formulation of the perturbation; which depends on the choice of ff’

and f We are now ready to begin the calculation.

44
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The quantity which contains all the information concerning polar-

ization isj ] Hf'.]I 2 dJLke. Thus we must first find H..
H, = () Z ( e (i)jl (£ 23nsme-Tx, ) C(P235m-7,T)
£i = bl - 32J3:m3"' 2 “3 sdsm-C,
z . r 4
X (7(_;’ Z/_;)(Z%_, 'Z%-l) B (Y; ,m-t(rhl)’ Yx,MX(rAl) le,ml(xf\l))

X (¥, (), 1,

) m (ry) ¥ () 1 r b, £ J)

oM 4303 T5 2

A

X (k) (4.b2)

Y, (?{ )Y

E ST R PP
where the sum is over ?."2, (5, A, M')J m, m,, ‘/l’ and ,(2; we do not
write the sum on m and g yet since we will form < jz> before we do

these sums. Also we have used the definition
' PN
2 2
I(/X /2 /l /3) =j j r| r, dr, dr, Fx(rl,rg) Rn,/ (rl) R(r2)
o Yo

X 1:;2(1«:21-2) fjl(klrl) (4.43)

Henceforth we denote (4.43) by I, with the understanding that the

arguments are implied. In (4.42) we use
t‘2 *c3
(Z%, X3) - 55253 (4.4ha)
(Z“ 3 )= 8;—5 (4.4k4p)



95

i

(7

) Yoy (7)) ¥ (7)) = ( f”[’c‘*’z*”"““lT
P r r = (-
27 MM e fymmTst 2 (2.9,41) bn

¥ m,

X C(jj)» ﬁQ;O,O) c( /3X ﬂz;mB- T}"MX’mQ) (4.4hc)

* / (24 +1)(2A1)]7
(YI,m- ‘c(rl): Y)" MX l jly (I‘ )) = [(21-}-1) i C(,{ llﬂ;o,o)

X c(fpf sm,M ,m-T) (4.4ka)

We see that the spin sum is now over ‘(;‘3 Eventually we will take T = %

. i\ taking

account of the following consideration. The problem is formulated so

so there will be no sum on T . Now we may write out ' H

that j j and jJ are specified in advance. Thus we have

3’33,
' ' 5
|701|® - ) = (s e de )jl[C(/s%Js""s'fy z,)]
\
[ (2f (+1)(2xm1) (2,{)i+1)(2>»'+1{t/z
(2x+1)(2x +1)L (2f+1) (2.0 +1)

[C(j 1j;m-T, C]

Xe(f ' 4 50,0) ¢( 414 50,0) cu;x'/ smy M me T) C( £\ f3m M ,m-T )

(24 .+1)(22"+1) (2 +1)(2>»+1) \ . .
[ {5 45 (-)M)”+M)” C(/BX'YQ;mB- Tso-My,my)

(24)+)  (244)
Xc( ’/3)‘ /2;m3- T5,-M,m,) C(/Bx' A's00) o fsx 0p30,0)

'
*

p ' 2 I L5
Ql’ )Y 92’ (k )Yfe’ 2! zfl’m'(Pl (1:5)




4

*7 *
The meaning of the prime on I 1is that the appropriate arguments of T
. ' 1

are primed. The sum is over 175, A, A, MX’ Mi, ml,mi, m,, m, Xg) jl’

,/2 and ,[é. We now integrate over the unobserved electron direction;

this involves only the last two spherical harmonics.

* n n
Y (k.) Y (k.) d . = ' (4.46)
J/é’“é 27 " hpimy 2 ks Smemé g*pe/e
This results in considerable simplification of (L.45) since MX must now
be Mi, and therefore mi =,

At this point we must discuss the fashion in which we will proceed.

n % A
)Y (k ) using a standard

.(kl 7+
o 1™l 43,

technique and proceed eventually to the evaluation of ——3———. However,

We could expand the product Y( '
l}

we will prove, in the following section, that this is unnecessary. For
the present we assume that the mu mesons have random directions. This

A
assumption is equivalent to stating that all directions of kl are equally

A
probable. Therefore we shall average over kl. We define

12
Q = %j 9 dJLk2 dﬂ.kl = (b.07)

The factor, U=, is Just\{ d»ALk . The integral over duflk involves
1 1

only the spherical harmonics Just mentioned.
* n n
Y )Y, o()all, =§ g . (4.148)
jfl’ml 10w L k" Omom 94 4

So, we now obtain
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b
Qo = (b) E Z Z [C(ji'%j};%- CB’ C}ae
mms fo, 01 T T

A,

X[c({155m-T, cﬂe c( A n ;00) c(fx A 500) (A 2 sm M, me )

Xe( nr fsm M, ome 2) CCfh fpsmy- Tg, My ,my) CAgh fysmy= T, ,mp)

) 2f51 24,41 *
2/ 24+

Xc(Axpt £,30,0) c(4p £,50,0 I (3.49)

Now the sums over the magnetic gquantum numbers must be carried out. We

consider the sum involving these four Clebsch-Gordan coefficients

S c(dpdimm meT) (A Fimy i ,n-T) ol At fping- T, oM )

m T
X C( /5>" Z-é;m}" z;’-MX’mE) (’"’-50)
We consider two of these as follows:
MX = m- T-my (k.51a)
Since we also have
m, = my-T,-M, (4.51p)
m2 is determined by m and we need sum only over m . We use the symmetry

relations to obtain

c( fle;ml,m- z-m ) = c(x /l/ sm- gem,m ) (4.52a)

since 4¢i + A+ 47 is even.
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)ﬂ 375t T ( 24 2+1>§

221

C(/3>~ lping-Tsy-(n-Tomy)) = (-

X C(/3ﬂ2k;m5-t3,m- T-m, -mg+ t‘3) (4.52b)

Applying the Racah recoupling formula:

ot T, 2 /.41)2
(')IB & 3(;/;—{;) C( Ly fphsmg=Tm- Tomy st ©5) €O ) A sme Tompm )

/— +Tz /2 +l% i
= (-) 373 5(-?{%—-) ZHQWI)(QHlﬂZ c( ,(5v1;m3- ‘Cj,m- t-m3+'C'3)

X C( £, £yvsm- T-m) -mgt C3,m1) w( /3 ]2/,/1;>~V) (k.53)

We do exactly the same with the other pair of Clebsch-Gordan coefficients
in (4.50); we then obtain the equivalent expression

Z (2 j2+l) B2v+l)(2v'+13]5 w(,/3 /2//1;)‘\,) w(/3 /2 //l;x,v,)

Xe( /3v f;rrt3-'c5,m- T-mg+ Ts) C(/QV'/;HB- Ty m- T-mg+ Ty )

XZC( ,{2 [lv;m- T-m, - tB’ml) C(,ﬂ2 jlv';m- t-ml-m§+‘c3,ml) (k.54)
my

The sum over my gives SW' by the orthonormality relation, so Qo is

reduced to:

(2 £+1)(2v+1)(2 £ +1)
% = (W? S S e 2wl 4, g )
2) ﬂl m,m} -C3 v

A,

X w( YA (l;x'v)[C(/%j;m- T )]2 c( f 1 4300) (4 n f500)

X ¢ ﬂsxvje;oo) 1 [9( /3V1;m3-t3’m- T -Tgt Z’B) c( VB%jB;m5-'[3, %82
X ¢( ﬂBx {,300) (k.55)
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where the last four Clebsch-Gordan coefficients have been written with
the brackets to indicate how we will do the sum on ‘C‘5 and rn3 Using a

symnetry relation we may write

v-(m3- Z’5 Hm-T d {v- /5
) (¢ ;‘11) (-)

C( /(3V /;mj't3;m‘ T"m3+ %) = ('
Xe( v Ls+(n- T),-(m- Tho(mg- T)) (4.56)

and we now recouple the last Clebsch-Gordan coefficient in (4.56) with

the last in (4.55) to obtain

v-(m,- T, )J+m- T+ ey 3 1
(-) s t3 3 (%ﬁﬁ) g[(25+1)(213+12 W(/v,jj-%; [35)

c(fs3gsm- T,ms-(m-T)) Clvdssmy- T5-(m- T), Ty) (4.57)

and we do exactly the same with the other pair in the last bracket of

(4.55), clearly the phase must be unity

> [ ]2 - 5 [less1)(2s'41)]” (2441) W(Avishs £38) W(Lvyshs fss')
Uss T3 58’

XZ c( 2ypm-gms-(n-T)) c(fs 355me T,m5-(n-T))
l’l’l3

X ZC(V%S;I%-‘%-(IH-C), ‘C3) C(vds'smy- Ty-(m- T), ‘5‘5) (4.58)

'g

Applying a symmetry relation to each of these last two Clebsch-Gordan
coefficients and then using the orthonormality relation yields g 55! "

For the Clebsch-Gordan coefficients in the sum over rn3 we use two

symmetry relations to write:
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23 +l

Z[c(l syine € - (aT))] - - 5fa1 ZE:(J3s1 g, (e T)emy)] (h.59)

2jz+1
So, by the orthonormality relation the sum over m3 is 5]7:i' Now Qo

becomes:

(2 L+1)(ev1)(2 4 +1)(255+1 )(2s+1)

- (b ) 1 :
S Hs wm
A AT

X s ﬂ3sﬂg W(f5 0 0 B) W s 0, 5nv) o4 pA500)

2

c(Lyp £500) o b f50,0) e hp £y0,0) 1™ 1 [e(Lasm- T, 7))

(4.60)
We use a symmetry relation for the Racah coefficients to write
2
[W( Ivisks /38)]2 = LW(/JBV%;S »@ﬂ (k.61)
and the sum over s is, by the orthonormality of the Racah coefficients,
% (2s+1)(2 I3+1) [w( jJBV%;s ﬂ392 =1 (k.62

The sum over v is done in a similar fashion. From the symmetry re-

lations
W A5 b0 0 bW o h s 0v) =0l f 4y fso) Wb 20, f o)

(h.63)
and the sum over v is

S (ev+l)(2n+1) w(f5jj2 Ly3vn) W( ,@//2/ 3VAY) = gu' (h.64)
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Consequently, Qo becomes

(2,/+1)(23 +1) 2 5

b 1 b

Q, = (L) f%x (5 f+T(zneD) [C( /lxj;ooﬂ [c(jix,(g;ooﬂ
2

2 - 2
X |zl [c(L33m-7, )] (4.65)

Now, if we wished, we could use Q_ to calculate a cross section; however,
<z
J
S u pop(m)

by calculating . One should note that m occurs in (4.65)

j Z pop(m)

only in the last Clebsch-Gordan coefficient and that the quantum numbers,

we wish to find We find this quantity just as we did before,

,( and j, that are the arguments of the coefficient are not summed over
L2
J

we have

in evaluating Qo. Thus when we form the expression for

(5> £ u[c(@3pn-T, )
zl . & = (L.66)
J = [c(£3sm-T, )|

and all the other factors have canceled. We now evaluate this expression.
First we use the symmetry relations to rewrite the Clebsch-Gordan co-

efficients in the denominator; thus
2 2441 2 2341
Z E:(l %j;m" t: t)] = _g—’ Z@(j’%ﬂ;m)t'm)} = ) (h'-67)
m m
To accomplish the sum in the numerator of (L4.66) we use

C(J14;m,0) = ——o—— (4.68)

Vj(j+l)
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and the sum we now have is
S V3G+) oL 335m- T, T) C(4145m0) ¢ $4,m-T, T) (4.69)
m
We recouple the first two Clebsch-Gordan coefficients in (4.69), thus
%
C(hLs5m-T, 7) C(3185m,0) = S [(2we1)(23+1))" W( fE5159v)
v .
c( fvysm-T,T) c(31v; T,0) (4.70)

When we substitute (4.70) in (4.69) the remaining sum is done as follows:
1

Z c(fvim-T, T) c(fism-T, ) = (%%)2 (?'%ﬂ)

m

i
2

XSC(34vim, T -m) C(304,m7z-m) = 2L S (4.71)
2 V5

So we now have

3,7

J

1

3
= 3 [(esa1) 5(34202)” cads T,0) W(LBL;E)  (b.72) ‘
and we now use

T
c(31%; T,0) = — (4.73)
13

2 2 -
and the explicit value of the Racah coefficient
3341) + 2 - 4(f41)

w(f331;5%) = (-)f*l“"% W31 0 ) = +
[23(3+1)(23+1)3)

(L.74)

Consequently we obtain our result:

4,7

= gjt [J(J+l) + % - /([+1)J (4.75)

J
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We note that we still must choose the value of €., First we remark that
L357
J

polarization of the initial beam is taken opposite to the beam instead

(4.75) clearly is an odd function of T , thus changes sign if the
of along the beam. So, even though we have averaged over the meson di-

rection the initial direction of the meson's spin is still with us. One
also notes, that had the initial beam been unpolarized then we would now
have to sum over T and we would find that ¢ J£7 = 0 as we should. T is

now taken as 3 and (4.75) evaluated for the two possible cases:

3,7

fEEE__ = % ( 1+ % ) 3 i= {4+ % (4.76a)
J

_S_'ji___._% 3 J:j-% ()-#.761))

We wish to emphasize that these results, (4.76), depend only on
the assumption that the mu mesons have random direction when they are
captured. The results do not depend on which electron is ejected, which
partial wave in the incoming beam is captured, or which partial wave the
electron is emitted into. Further, in setting up the wave functions
used in obtaining (4.76) we were careful to point out that the wave
functions were defined in such a way that one could introduce any re-
finements desired; therefore the results do not depend on the atomic
model. Of course, when we deal with an ensemble of mesons we must know
the relative number of mesons captured into each state j; for this
purpose we will use the distribution obtained in Chapter III. We must

now determine if the assumption of random directions is valid.

4. Randomization of a Mu Meson Beam by Scattering
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We wish to determine what the effect of scattering is on the mu
A A
meson beam. For this purpose the guantity <~kE'kE‘> is defined. This
o]
gquantity is Jjust the expectation value of cos & where & is the angle
between the original beam direction of the mu mesons with energy Eo and
the direction of the mu meson when it has energy E. If (_kE-kE> =1
o]
the mu mesons form a beam; if < kE-kE7> = O the mesons have random

directions. To calculate this quantity we proceed as follows. Define:

A
kz current
S = cos & = E————__—__ (4.772)
z initial
A
kz current +1
s' = cos g ' = v (k.770)

z initial
wvhere & is the angle between the initial direction and the direction
after some scattering has occurred. Then e;' is the angle between the
direction of the meson after one more scattering event and the initial

direction. Then we may write
&s =s'-s=cos ) cos6 + sin®® sin & cosf -cos® (4.78)

where 6; is the angle that the meson was scattered through by the
scattering event current + 1. Now we may average A s over an incre-
ment of path 4 x, and obtain
_4<s2 =n§o-(e)dJLas (4.79)
A x
where CrT 6) is the differential scattering cross section, n, the number

of scattering centers per unit volume and d /L the surface element.
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Using (4.78), and observing that the second term of (L4.78) does not con-

tribute, we have

.%432_ =-n<s>j0‘(6)(l-cos9)d~/)— (4.80)

where we have used the definition, (4.77a). We note that the integral
in (4.80) is just the definition of the transport cross section, J_Tr;

so we have
a s> _ o= (4.81)
o = -n{sy Ty .81
Now we use the ldentity
dx = dE/(dE/dx) (4.82)
and dE/dx is given by
=— = = \/AE> nd‘T(E) (3.2)

as in Chapter III; use of (3.5),

(E)
<aEy =ME%"—E—5— (3.5)
then yields
dx = - dE (4.83)
n KLE U—T_r(E)
where
2m M
K- (—mﬁ’—&)—g (1.84)

M is the mass of the scattering atom. We now integrate (4.81) to obtain

¢s> - exp (-nj O g %) (14.85)
(o]
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we interchange the limits in (4.85) to remove the minus sign and use
(4.83) to find
sy o=ew -5\ ) (1.86)
E
and clearly the right side of (4.86) may be evaluated as (E/Eo)l/K.

Thus we obtain the result, -

A A 1 6
Cigieg > = (/) (.87)

This expression tells us, in effect, how well the mesons remenber their
initial direction. To see what one may say about the direction of the
mu mesons when they are captured it is necessary to compare the energy
dependence of their direction memory with their capture rate. In Figure
12 we have taken Eo to correspond to p = 70 y A and taken carbon as the
scattering atom, as was done in Chapter III, when we derived the initial
distribution. The nearly flat curve in Figure 12 shows the number of

mu mesons remaining free at energy E; the other curve represents (4.87).
Thus we see from Figure 12 that the vast majority of the mu mesons will
have forgotten their initial direction before they are captured. There-
fore we have shown that we have a very good description of the physical -
situation if we assume that the mu mesons have random directions when
they are captured. Further, we understand why we obtained a result that
could not be compatible with the experimental facts when we assumed that

the mesons were captured from a beam.

5. Discussion
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The results of sections 3 and 4, above, lead us to a very definite
conclusion concerning the amount of polarization the mu mesons retain
after they are captured7. We reproduce these results here so that we

may point out some of their consequences.

{32
.———.—Z—.—.— -—.:_L- l . —_ _1_ by
3 ..5<l+ j) 3 j = /+ 3 (L.76a)
{3,
z 1 .
_.____J = ..-5. 3 J = j --_%— (11-76b)
First we note that if a mu meson is captured into a state‘f = 0, then

it remains completely polarized. Next we point out that there appears
to be an asymmetry in the expressions (4.76a) and (L4.76b), this is be-

<z :
cause we calculate ——5———; in particular the minus sign in (k.76b) does

not mean spin reversal for the mesons that go into states with J =‘/ - %.

For the purpose of this discussion we write (L4.76) in terms of QGF;\7

(l + % ) ; i= f+3 (4.88a)

D, (1-3m) 5

From these we see that the mesons never suffer a spin flip in

"
N

<o, >

g - (4.88b)

i
VTS

It
N[+

capture; however, we note that those mesons captured into states

J =‘f - % are always depolarized to some extent. This is understandable

7. There have been previous attempts to determine the depolarization
due to capture. None of the articles are very comprehensive, OSee:
J. Von Behr and H. Marshall, Nuclear Phys. 14, 342 (1959); also
I. M. Shmuskevitch, Nuclear Phys. 11, L419 (1959).
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when one recalls that there are values of m, the projection of jz’ for
which the bound state wave function is an eigenfunction of CT; when
3 =0+ vhen j = f - 5 eigenfunctions of -, do not occur.

We now discuss a statement that we have made several times pre-
viously; namely that the depolarization on capture is insensitive to
the distribution of the mesons among the atomic states. As we mentioned
in section 2 above, a fair value for j according to our distribution is
%- Therefore the term % in (4.76a) represents a correction of about
20 per cent. Consequently, a 10 per cent change in our distribution
would amount to only 2 per cent change in the depolarization due to
capture.

The results of Chapter III and sections 3 and 4 above constitute
an adequate solution of the depolarization suffered when the mu mesons
are captured; it is now necessary to study the events that occur after

the mesons are captured.




CHAPTER V
DEPOLARIZATION OF MU MESONS IN THE ATOMIC CASCADE
1. The Nature of the Atomic Cascade

As shown in Chapter III the mu mesons are captured into highly
excited states of the mu mesic atom. The mesons in such states meke
transitions to the lower states and in general suffer some depolari-
zation in these transitions. There are only two possible types of
transitions that the mu meson may make; namely, radiative transitions
and Auger transitions. The mesic Auger transition was defined in
Chapter I, where typical rates for these two processes were also
presented. The matters to be discussed in this section are the details
of the cascade as determined by the selection rules and the available
energy.

First, it is necessary to recall that the states of the mesic
atom are described by the three quantum numbers n, ,? 5 4. The
principle quantum number n gives the energy of the state. A given
state n is n-fold degenerate in states of,/ ; that is, for a given
state n, ,f takes on the value O f;uﬂfi n-1. The degeneracy in energy
is lifted by the finite nuclear size but we have no need to consider
this small effect. For each state {/ there are two states of
i, 3= 4/ + %and j= ¥ - %; except when / = O where there is
one state j = %. We now temporarily confine ourselves to a discussion
of the radiative transitions. It is well known that the electric
dipole transitions are the only transitions that occur with significant

probability in hydrogen-like atoms, excluding meta-stable
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states of course.l The selection rules for electric dipole transitions
are
ad= +, (5.1a)
45 = 0, T2 (5.1b)
Since we will see, presently, that the transition rate depends strongly
on the avallable energy we exclude transitions with A n = O because
the splitting between states of different<ﬁ , belonging to a given n, is
never sufficient to meke such transitions competitive. Comsequently, we
may add the selection rule,
An £ -1 (5.1c)
Now that we have the classification of states and the selection
rules we can discuss the possible transitions. In Figure 13, we show the
state of a mu-mesic atom ina schematic manner. The possible paths that a
mu meson may take in reaching the ground state are shown for two assumed
initial states. There is a significant amount of understanding to be
gained by a study of Figure 13. First one will note that the possible
transitions are either straight down or further to the left in such a
representation. This means that the eccentricity of the orbit of the
meson is never increased by the transition. We use the term eccentricity

as a measure of n -‘P because in the Bohr theory the states in 4/ at the

1. Hans A. Bethe and Edwin E. Salpeter, Quantum Mechanics of One and Two-
Electron Atoms (Academic Press, Inc., New York, 1957) Chap. 4. This
includes a comprehensive treatment of radiation by hydrogen like atoms.
The radiative decay of the meta-stable state is discussed beginning
with p. 285 of the chapter cited.
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extreme left of Figure 13 are the circular orbits (n-,/ = 1); as one
goes across Figure 13 toward the right the orbit becomes less circular
until one reaches the most penetrating orbit (,f = Q). Further, it is
to be noticed that once a meson is in a state j = A + % then only a

n2 = + 1 transition can cause it to go into a state j' = /' - 2.
In particular, for states for which n—,jf& 2 there is no possibility of
a meson leaving a state of type J — 2+ %.

There is an important fact that may be deduced from Figure 13
that we wish to point out before we go further. Consider a meson captured
into a state n- £ = 1. Then it must be in one of the two possible states
of j. For mesons in these circular orbits, the selection rules require
bn - -1, /43 = 0,-1. Since the two states in j are degenerate in
energy the branching ratio for a meson in a state j = A -% to go to
a state j' = £ - 3/2 or to a state ' = /' 4 5 = j is determined
only by angular momentum considerations. This fact is utilized in some
previous work concerning the problem at hand. We will discuss this
in section 6 below.

There is one question that arises from the preceeding; how does
a mu meson leave the ZS%_ state? The answer is given in section 4,below.

It is clear that to determine how the mesons reach the ground
state from the states shown in Figure 13 one mist be able to compute
the various branching ratios. The branching ratios are determined from
the transition rates for the various specific transitions; and the theory
of these transition rates is well known. The reciprocal lifetime for a

transition from a state jJ', A/' to a state j,,f with emission of an
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electric multipole, E-L, is given by:2

T L [(eL+1) ! ::[2 [ 4125 00)

Xw(ghi' s %Lﬂ ¢

2 2
Xw 2= (R (5.2)
where
P L.
M, = S Ry, 4(r) ('11%) R, g.(r) v° dr (5.3)
(0]

and where Rny'r) is a radial hydrogen-like wave function. The meaning
of R need not concern us; since we are only interested in electric dipcle

transitions (L ==1) and R cancels in all cases. Therefore, we have

- 3
1
M = S. Rn, Rn',l ,rodr (5.4)
0

This integral may be evaluated in general and is given by:3

n'-,/ n
s‘ooanRn'j_lr\gdr:_g__L_____ [ Ln-f!)_’(nl‘*_’e_l) :]/7,

b (20 -1)! (n-Z-1) ! (n'-2) !

o}

0 ')_[+—1( ‘)n+-n'-2/4—2
X 2 “(H ')nrf[ﬁ. G (5.52)

2. M. E. Rose, Multipole Fields (John Wiley and Sons, 1955) p. 78. This
formula was derived for application to nuclear radiation, thus the
parameter R. We note that the condition kR<<K 1 is well satisfied
for the radiation we discuss when R is taken as the meson Bohr radius.

3. Bethe and Salpeter, op. cit. p. 262.
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where

2
— n-n' P n,. -2, -nl; 20, - Y nn' j
< n-+n' > 21 ( i nyi 24 (n - n")2/| (5.50)

and

! -
r=n- X4 (5.54)
We can discard the constants in (5.2) since we need only the branching

ratios. Then for the electric dipole radiation the relative rates are

obtained from:

L @4+ 1) (2i4+ 1) (22" + 1)
-

2 -
X [c( V01,00 wiAids %l)j E3 M (5.6)

where for our purpose E is defined as:
1 1
E = ( -_—)
;2 n'e (5.7)

Thus the quantity E is proportional to the energy available in a given
transition and we note that the transition rate is proportional to E3.
For this reason, the branching ratios that may be derived from (5.6) will
tend to favor the maximum decrease in n. One also notes that the branching
between states in J for a specific transition in ,/ and n is determined
by the angular momenta involved and is independent of E and M.

The rate of the Auger transitions in the cascade is discussed in

section 4, below. It suffices to state here that, the Auger transitions
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do not cause any transitions that violate the selection rules for

radiative transitions, within the limits of a good approximation.
2. Depolarization in Radiative Transitions

We now give a derivation of the depolarization due to radiative
transitions. After we have found how the different transitions affect
the polarization, we may continue with the study of the cascade.

By definition:
Py is the meson population of a final state m belonging to j and £ ;
o is the population of an initial state m' belongingix)j'and,ﬁk

A

m' to m.

L

mm' is proportional to the transition probability from state

Thus we have
m - = m' 2
/\m o :Z/(%J y [ VeAp ( o )/ p(Bpi o) (5.8)
P ;

Where V is the current operator and-ZL M is the vector potential for the

radiation field. The vector potential is taken as

1

- L 2 L
A= VAR ZS1 (2L+1) D (cﬂ,e, 0)
LM M P

> g
X| X (mag) + 1PA (el)j (5.9)
LM LM
L
where D is a rotation matrix, P= "t 1. Since we are only concerned
MP

k., For information concerning the rotation matrices and the multipole
potentials see: M. E. Rose, Elementary Theory of Angular Momentum
(John Wiley and Sons, New York 1957) Chapters 4 and 7 respectively.
For proof of the Wigner-Eckart theorem see also Chapter 5.
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with electric dipole radiation we may rewrite (5.8) as

/\m o /D;P (P, e, o)’ i [C(j'LJ; m,m - m')] i
o e i1 o] “ea (5,20

where we have used the Wigner-Eckart theorem.
There will be no need to consider the reduced matrix element in (5.10)
further since it is independent of m. We proceed as follows. The prodwt

L
of D may be expanded;

M P
¥ L M-P L L M-P
D D = (-) D D =3> () c(LLV; -M, M
MP MP -M, -P MP
v
Xc(LLV ; -P,P) D (5.11)
0, 0
But
v
DO O: P \/(COS & ) (5.12)

Now the population of the state m' is expanded;
p , =2 a C(J'nJ';m',0) (5.13)
m h n

which is just a power series in m.

The population of state m is given in terms of Py 8s

Pp = 2;; Ppt /A mm' (5.14)

Substitution of (5.11) into (5.10) and then (5.10) into (5.13) yields

M-P
by T Ey e C(n im0 () C(LL V ; B, - P)

e
XC(LLv; M, -M) [_C(J" Lj;m', m-m')] J’ PV(COSG) a/L (5.15)
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Since,
P (cos @) a JL = we obtain
Jey <
= "
P = m,zn a C(3'nj'sm', 0) [cs LJ;m,m-m'{] ST
(5.16)

We may drop the factor 2L£—l' Now, the notation is altered as follows.

Define Sn such that

Pp ——“—Zn a, Sp (5.17)
Thus,
2
s = = Cynism, 0 [ c(iLym, m-n)| (518
Use of a symmetry velation yields
i
L+ m-mnm' . 2
C(y' L gsmm-m)= (-) 2 * L) oLy gm-m, m
237 + 1
(5.19)
Next & Racah recoupling is used.
L+m - m' S N
(-) (-‘?—J‘l-,—é—_—-]j> 2 c(Ljg'sm -mm C(j'ny';m, 0 =
% L+m-m'__ 5
(25+ 1) (=) 4:, (2v+ 1) C(jnv;m0)c(L §', m-m, m)
X WLJJ" n; j'v) (5.20)

where Vv is now different from the previous V . 8§, becomes

—

|

C(jnyv; m 0)

L
s, = (2j+ 1)2§W(L Jd' ny grv) (2v+1)

L+m-~-nm'
)( :EZ (-) C(j*Lj;m,m-m) C(LVJ';m -mm (5.21)
m|
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Using the symmetry relations one cbtains,

L+m - m'
Z(-) (' Ly;m,m-m) C(LVI'; m' -m m) =
m

X
S /25 + 1) 2
%% (ZV'+ l> c(y' Ly m, m-m) C(§J'LV;m, m-m")

1
s 2
— 2j'+ 1 .22
(2v+1 '§J'V (5.22)
Using a symmetry relation to permute the arguments of the Racah

coefficient in (5.21) now allows us to write

L+n - j' - J :

2
5. = (-) [(25+1) (2% 1)] W' 3§35 nL)
Xc(j n j; my, Q) (5.23)
We define
5, =T, C(inj;m 0) (5.24)

for the sake of compactness. The condition on n is that n< 2 j

min, *
Where dmin, IS the minimum possible value of j. Here j , = 3 sO
n = 0, 1. We now use P to designate ;S%?Z_ - Thus for the final state
= mPy
P =0 (5.25)

- i= o
Since

Pp = 8, 5qt8; S5 (5.26)
and since Sy 1s an even function of m and Sl is an odd function of m

we have
=& 5mn
P — m

-~ 5.2
S = o 5o (5.27)
m
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taking m = [/ j (j+ 1) C(j 1 j; m, O) and using the definition of T,

yields 2
Zamn Vi GH) [c31 gm0 |
b= , (5.28)
S =3 8, Tg
m

and we have immediately

S agTo = (2 j+1) ag T, (5.29)

m

Further; use of the symmetry relations gives

2 2
:E?:.[:C(J 1J; m, 05:] = gj%g;ik f%?:[}l(j jl; m - nO:] = ajt1

3
(5.30)
Therefore
a T
po JiGF1) 11 (5.31)
3J & To
For the initial state
=, (agkey C(J' 1 j'; m', 0) m'
P'= (5.32)

V= Gore CG Iy, 0)

m
The numerator and denominator of (5.32) are evaluated in the same fashion

as was done for (5.28); thus

pr= Vit '+ 22 (5.33)

33! )

The quantity that concerns us is the change in the polarization in a

given transition, therefore we form

- [éi_t_lLrL] Ty (5.34)
S T,

To evaluate this we need only take the part of (5.23) that is defined

nj=

9|
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as T, and evaluate the Racah coefficients for n = O and n =1 We find,

Ty = 1 (5.358)
- 331t (G+1) - L (L 1) (5.35b)
' [ (+1) 5+1) 5 2

and consequently
P _J @G+ +3(i+1) -L(L+1) 6
P’ 233"+ 1) (5:3%)

We set L = 1 since we wish to consider electric dipole ratiation. Now

we may evaluate P/P' for the three possible cases 4 j =0, 1. We

find:
= =1 5 aj= -1 (5.37a)
.13_._1.. 1 ; Aj=0 (5.37b)
Pl—’ J J_'_l b J" ’3
1 1 .
E7:1-———--—-——.-_1-—— 5 A = +1 (5.37¢c)
P . 2 . 2
(3'+ 1) J N,
Thus we can find the change in __1;__ for any possible radiative

transition. We note that for 4 j = - 1 transitions there is no depol-
arization. For A jJ =11 transitions the maximum depolarization
corresponds to P/P' = %%—- The most severe depolarization is due

to the A3 = 0, j= % transitions; here P/P' = -1/3. This type
transition is of considerable importance since it is the final tran-

sition for many of the mesons (2p; —> 1s,).
2 F

3. Pure Radiative Cascades

Now that we know how much the various transitions depolarize the

mu mesons we can determine what the remaining polarization in the 1ls;
2



120

state should be. In order to treat the cascade, we need the fcllowing
formulation. We denote a quantity proportional to the partial width of
. s . n#J
a state n', £ ', j' for a transition to a state n,,( sy J by nt 45
Then we may use (5.6);
n)/)J 2
[0(111';001 (24 + 1) (25 + 1)
n‘)/:
X[w(JJJ',/';%l):( F3 M (5.38)

Then the total width of the state n’

) J
[—' = F [ (5.39)
nl’j l, jv . n'

n,

It is possible to do the sum on j as follows:

We use a symmetry relation to rewrite the Racah coefficient in (5.38);

AL -3-1
Wy 43431 = (-) Wt 431540 (5.50)
Then for the sum over j we have
2
-—7,—1—— 2(2J+1 2('+1)[w '1,Jj] _2_7%:__1_

J
(5.41)

by the orthonormality of the Racah coefficients. Therefore

m i E——’—(————E(Jl}',;oo)jg E3 M

n, 2 L' .
£ 2L (5.52)
The Clebsch~Gordan coefficient in (5.42) has values such that
- 2 2/0'+ 1 /Z'>/
2/“’ 1 Z: [ = !
L2 L [elrd500)] (5.43)

Z""l {}(l
2L£'+ 1
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So (5.42) may be written as

= 3 = PR = ( '+l)E3I\a
5.44)

Evaluation of this requires evaluation of the quantities M for all the
possible transitions. Consider now an initial state containing N mesons
Then the fraction of these mesons that make the transition n', X' J =

n, ,/ , J 1s given by

/'"47 n, 4 ,J
F = n', £', ' (5.4
n),() J Fn‘,j', 3 > 5)

We mention that there are in general n - j? states n that are accessible
from a state n'.

The cascade problem was programed for the electronic computer.
Quantities equivalent to (5.45) were computed along with the change in
polarization for the various transitions. This was done by setting up
arrays in the computer memory similar to Figure 13. The initial distri-
bution as a function of j and the corresponding initial polarization as
determined by (4.76) were computed for each state. The resulting ensemble
was then treated in a static fashion by considering first the states
n = 16. The program computed the change in population and polarization
in all the other states due to transitions out of the states n = 16;
states with n=15 were then considered and so on until all of the mesons
were in either the 2s; or 1 s, state. For reasons given in section L,

2 2

we assert that the Auger transition from the 2s; to the ls, state causes
2 5]

no additional depolarization. This transition will always proceed by




122

electron ejection since the 2s, state is metastable against radiative
2
transitions.

Some results derived for pure radiative transitions in Carbon
are given in Figures 14 and 15. In Figure 1k the final polarization
of mu mesons, assumed to be captured in specific states n and n,. is
given. This includes the depolarization due to capture. If we take
the mu mesons to be captured as given by our initial distribution the
polarization in the ls; state is

2
P = 0.24 (5.46a)
This leads to an asymmetry coefficient of
a = 0.08 (5.46Db)
which is not in agreement with experiment, since the experimental
asymmetry coefficiente do not exceed 0.06.

In Figure 15 we show the relative number of mu mesons that pass
through the 2s state when they are captured into states of different
belonging to n= 8. As we are considering only radiative transitions
here, these are the relative numbers of mesons that would not producea
mesonic K - X-ray. We mention this point because of its bearing on the
yield of X-rays per captured mu mesons, which we discuss briefly in
section 6 below. It is clear from Figure 13 that the complexity of the
cascade is such that any attempt to use the observed X-ray intensities
to extrapolate back to the initial distribution will fail.

There have been twopapers, dealing with the problem just discussed

which did not contain obvious errors.5 In both of these the problem was

5. M. E. Rose, Bull. Am. Phys. Soc. 4, 80 (1959); see also I. M.
Shmushkevitch, Nuclear Phys. 11, Hi9 (1959). An additional paper,
V. A. Bzhrlashyan, Soviet Physics-JETP 36(8), 188 (1959), contains
the same approximations but obtains an incorrect result.
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considered in such a manner that the radial matrix elements were
ignored. This can be done by, either restricting one's attention to
the circular orbits or by Jjust assuming all the matrix elements to be
equal (0 Af=4). Using either approximation one finds that the polari-
zation is reduced by about é due to radiative transitions. In the
study discussed in this section we did not attempt to seperate the
depolarization due to capture from that due to transitions. Our
results, however, are rigourous in that nothing has been left out.
Since the asymmetry coefficient we obtain is not in agreement
with experiment, it is clear that we must consider the Auger tran-

sitions as well as the radiative transitions.
4. The Auger Transitions

We must include the Auger transitions in competition with the
radiative transitions in order to determine the final polarization.
It has been shown by Burbidge and de Borde that the principle contri-
bution to the mesonic Auger transition rate occurs when the Auger
transition satisfies dipole selection rules. In other words, the
same selection rules as those for emission of electric dipole
radiation, apply to the ejection of electrons.6 Now, this yields
the following significant simplification when we consider the
Auger transitions. When we derived the expressions for the

polarization change in & given transition in section 2 ahbove

6. G. R. Burbidge and A. H. de Borde, Phys. Rev. 89, 189 (1953) and
also A. H. de Borde, Proc. Phys. Soc. (London) AG7, 57 (1954).
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we did not need to consider the reduced matrix elements but obtained all
of the results from considerations of the angular momentum. Thus the
results obtained depend only on the multipolarity of the transitions.
Therefore the change in polarization in a dipolar Auger transition is
given by (5.37). Further, as we mentioned in the preceeding section,if
we consider a monopolar Auger transition, then L in (5.36) is zero and

J = J'. This leads to

I"U

= 1; 49 = 0 (5.47)

t

o

So there is no depolarization in the 2s, — 1ls, transition. Thus we know

3 2
how to calculate the change in the polarization for the Auger transitions.
Next we must determine how the competition of the Auger transitias
with the radiative transitions is to be handled. Burbidge and de Borde
also show that the Auger transitions favor A n = - 1, whereas the
radiative transitions favor 4 n = =~ maximum. This is an important
difference for it is clear that, in general, the more transitions a mu
meson makes, the greater the depolarization. There is however,no simple
formula for the Auger transition rates, such as (5.6) for the radiative
rates. Therefore we use a schematic method to handle the competion.
Figure 16 shows the relative probability of radiation to Auger transitions
for certain transitions and different elements. The Z dependence comes
in because the radiative rates vary as ZLL whereas the Auger rates are

essentially independent of Z. The graph is based on the work of Burbidge
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and de Borde and is taken from a paper by Rainwater.7 To deal with the
Auger transitions we use the data of this graph and one other fact.
Demeur has shown that for 4 n = - 1 the dipolar Auger transitions have
the same branching ratio between transitions that involve ﬂ;@ = +t
as the radiative transitions.8 In view of the information Jjust given,
we were able to include the Auger transitions as follows. The computer
program for the radiative transitions was rewritten so that for states
n > M only radiative transitions of the type //n =- 1 were allowed,
where M is an integer. For n <M the progrem computed as it did originally.
This scheme includes the effect of the Auger transitions with reasonable

accuracy. Mis determined from Figure 16 as a function of 2.

5. Theoretical Asymmetry Coefficients for the

Decay of Bound Mu Mesons

For Carbon, Figure 16 tells us that all of the transitions should
be Auger transitions until the mu mesons reach the states n = 3. From
then on the the normal radiative transitions occur. By utilizing the
scheme outlined in section 4 above, we find that the final polarization
in the lsi state of mu mesons stopping in Carbon is

2

P = 0.133 (5.472)

7. Rainwater, Ann. Rev. Nuclear Sci. 7, 1 (1957). The graph appears in
this source because of the bearing of these relative transition proba-
bilities on the still unexplained experiments of Stearns and Steams.

8. M. Demeur, Nuclear Phys. 1, 516 (1956). This work was also an
attempt to understand the data of Stearns and Stearns.
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This gives a theoretical asymmetry coefficient,
a = 0.0Lk (5.47b)

this should be compared with the two experimental values given in Chap. 1:

a = 0.047% 0.005 (5.48a)
a = 0.054E 0.006 (5.48p)
9

and a more recent value

a = 0.045 (5.48¢c)
The agreement is satisfying. Only one of the reported values of the
three asymmetry coefficients is inconsistent with out result, and this
is only a very small difference.

Although our initial distribution was derived for Carbon, we can
assume that it will not vary significantly when we go to heavier elements
If we make this assumption, then we can predict the osymmetry ccefficients
for heavier elements by stopping the Auger transitions at higher n values.

With the last Auger transition being into the state n = U we find

P = 0.153 (5.49a)
a = 0.051 (5.49p)
and with the last Auger transition being into the state n = 5 we find
P = 0.183 (5.508)
a = 0.061 (5.50b)

The limiting value is, of course,

a = 0.08 (5.46)

9. Oral communication from the floor, Session 0, Washington meeting of
Anerican Physical Society, April 1960. No limits of error sere
stated.
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which we found for pure radiative transitions.

The values (5.49) and (5.50) would apply to elements with spin zero
nuclei around Z = 14 and 72 = 30)respectively. If the elements contain
non spin zero contaminants then the observed asymmetry coefficient should
be corrected for this before comparing with the values given. Since the
depolarizing effect of nuclear spin is very strong an approximate correction

can be made by dividing the observed asymmetry ccefficients by the fract-

ional. abundance of the zero spin isotope when the element contains pre
dominately spin zero nuclei. Applying this procedure to Cadium, we
correct the observed asymmetry coefficient, 0.055 1 0.012 by a factor
1.33 to obtain

a = 0.073 £ 0.016 (5.51)
since Z = U8 for Cd this is just about what we would predict. There
are two asymmetry coefficients given in Table 1 for Mg. These are 0036
+ 0.003 and 0.058 * 0.008. Since the difference is so great, we only
point out that we would expect the cobserved asymmetry coefficient of
Mg. to be about

a = 0.045 (5.52)

after correction for a 10 per cent spin 5/2 impurity.

6. Discussion and Conclusions Concerning the

Theoretical Asymmetry Coefficients

In connection with our treatment of the atomic cascade, we wish
to present the following remarks. The experiments of Steerns and Stearns

indicate a discrepancy between theory and experiment concerning the Auger




0
transition ra.te.1 They were able to deduce that the Auger rates

should be of the order 102 times the calculated rates in order to
account for the observed yield of X-rays per stopped mu meson. They
attempt to explain this by assuming that the mu mesons pass through
the 2s state. Therefore, we give the following information; using

our initial distribution and the appropriate schematic description of
the Auger transitions in Carbon we find that 5.4 per cent of the mu
mesons pass through the 2s state and 55.1 per cent pass through the 2p
stateg this is not consistant with what they report. As was mentioned
in Chapter l; their data has been questioned and it would be desirable
to have their results verified. However, as we treated the Auger
transitions in a schematic manner, we can make no stronger statements
concerning their results. Part of the treatment we used for the Auger
effect is based on the assumption that the atomic electrons are
replenished as fast as they are ejected, Thisis a common assumption;
see, for example, the paper of Demeur which we mentioned earlier. No
substantial evidence concerning this replenishment of electrons has
appeared in the literature.

We have just pointed out certain unsettled questions that might
have some bearing on our results; nevertheless, we feel that we have
presented for the first time an adequate and comprehensive treatment of
the depolarization mechanisms. We conclude that there is no lack of
understanding concerning the observed asymmetry coefficients; by this we

mean that the negative mu mesons are created with complete polarization

10. M. B. Stearns and M. Stearns, Phys. Rev. 105, 1573 (1957).
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and that they retain this complete polarization until they are captured
by an atom. With these remarks we conclude the consideration of the

asymmetry coefficients.
In connection with the atomic cascade, there is a possibility of

observing the polarization of the x-rays. We now determine the magni-

tude of this polarization.
7. Circular Polarization of the Mu-Mesic XRays

We consider a radiative transition from the state j', ﬁ' to the

state j, | . The intensity of the emitted x-rays is

I = Z /(Wr;,,( T"TLM /(/?' 1')/ 2 Pr /O(Efinal) (5.53)

where P is the population of the state j', j', m' and is defined as

before

P = Z a_ C(3'nj';m',0) (5.13)

m'
n

Then using the Wigner-Eckart theorem we have
L 2 2
Io:Z}DMP\ (C(J'Lj;m',m-m')) P (5.54)
ml

where we have dropped all quentities that do not depend on the magnetic
quantum numbers. If P = + 1 the X-ray is right circular polarized; if
P = - 1 the X-ray 1s left circular polarized. We also have that M, the
projection of L is m-m'. Now expanding the product ‘Dﬁp\e as before

we have
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PP S C(LLv;P,-P) C(LLv;M,-M)
v

I aﬁ:i: Ppt (

X@(j'Lj;m',m-m' )]2 Pv(cos & ) (5.55)

where & 1is the angle between the axis of quantization (the initial
beam direction) and the direction of the x ray.

We now use (-)P = (--)l and write

2
5= S ()" (v, ) [o(3Lam,nen )] (5.56)
m

Using the symmetry relations

C(LLv;M,-M) = (-)" C(LLv;-M,M) (5.57a)
_%_
c(3Lasm memt ) = ()3 (g;;) ¢(3 JLsm’,-m) (5.57)

and a Racah recoupling then yields the following for the first pair of
Clebsch-Gordan coefficients in (5.56)

1
(-)‘j'-m‘w(%)a C(3'JLsm',-m) C(LLv;-M,M) =

(-3 (B S osn)(e1a1) ¥ olsrovsat,-mt) Ol gesmmen)

S

X W(§'visLs) (5.58)
where we used M = m-m'. Substitution of (5.58) in (5.56) gives for the

sum on m

2 C(j'Ly;m',m-m') C(jLs;-m',m-m') (_)m-m' (5.59)

m
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Use of the symmetry relations gives this as

(23+Jlrl> z( jirrmmt ymem+l oeynge, -mym-m' ) C(JLs;-m,mem' )

(gj-’-il (- )L+l gj 's (5.60)

The Racsh coefficient in (5.58) becomes

W5 gvisLg ) = (<)L w(giginvy) (5.61)
and S is
s = (=)™ (2541) c(31 g vim,-mt ) W(J' I LL;vS) (5.62)

- '
But (-)l m'_ (- '™ and we rewrite I as

I- E (23+1) C(LLv;P,-P) W(j'§'LL;vy) P (cos € ) (- )3
v,n,m'
X c(313tvimt,mt) a, C(J'my';m',0) (5.63)
where we used (5.13). We do the sum on m':

Z (_)vj+m' C(j'.j'v;m'}'m') C(,j'n,j';m',O) =
m'

o=

ST N ey, o) c(grgmsmt, ) (2522 (5.60)

After we have applied the usual procedure to (5.64) we find

S - P ('e'ﬁﬁ—) dv,n (5.65)

ml
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So
1
2

TeeS (23+1) W(3'3'1L;vy) P (cos © ) C(LLv;P,-P) a, (g%iﬁ?ﬂ (-)3'+d
v

(5.66)
We need only be concerned with the quantities that contain v; there-

fore we have

. 1
I oczav Pv(cos &) W(jrj'LL;vy) C(LLv;P,-P) — (5.67)
v

But v is n and n is limited to be & 23min° J is %. So we have

min

IQ:Z’Iv Pv(cos €)= Io + Il cos & (5.68)
v

We evaluate Io and Il as follows:

I, =8, C(LLO;P,-P) W(j'J'LL;0J) (5.69a)
. VLT _3x
I, =8 C(LL1;P,-P) W(3'J'LL;13) e (5.69v)
which may be determined to be:
' 1 =8 (-)379 " (5.70m)
(21+1)(23'+1 )2

J!(J|+l) + L(L-l-l) - J(J+l) T (5.7%)

I, = 8y P (-)J'-J T
L(I+1)(2L+1) [ﬁj'(3'+l)(23'+1§] ®

1

and the ratio Il/Io is
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J2 5 a(3) ¢ L(Ie) - §(g41)

2 T
° L) i) ]

Now we found before, that the polarization of either the initial or

(5.71)

H|
H

o]

final state could be expressed in terms of al/ao. Thus from (5.33) we
have
a
1 __ 33
I P (5.72)
sr(g+) /°

{2

where 3“’ is Just 3 for the mu mesons in the emitting state., Thus:
D3 23) L) - (g 5 g (5.73)
I, 2 L(L+1)(j'+1) r

and L is taken as 1 since we deal with electric dipoles. The transi-
tions of interest are 2p57§f7 1ls; and 2p; —~1s;; since the K-x rays

2 2 2
are those that one might observe. Therefore we evaluate (5.75) for

J* = J#¥1 and j' = j, respectively.

: 3= 8 (5.74a)

i

]
STTeY

g

ol
\F*U

—

'_J
av

}"d

H
I
1
NN
C
+
'_J
-
[
H
[

(5.7 )

o
For the K-x rays j = & in (5.7k4b).
The experimental determination of these ratios may be quite
difficult because one cannot get enough mesons to have a high counting
rate. To get good results, the 2p5/2 - 2p% splitting should be well

resolved. TFor carbon, we predict that 55.1 per cent of the mesons pass




through the 2p state, with the statistical distribution.

states, we predict

4,
/ﬁ/ = -—jl-= 0.17 in 2p, ),
/; = <§Z> = - 0.25 in 2py
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For these

(5.758)

(5.750)
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APPENDIX A

The following relations are those that were used in the various

calculations.

be found 1n the place c¢ited.

Derivations, references and additional information may

The basic symmetry relations for the Clebsch-Gordan coefficients

are:

C(Jy Jp 35 my my mg) = (-)

o4 s
(3,9, 9,

C(Jl J,

J_s ml

From these one may obtain:

c(J, J

R

C(Jl LY

gy 3, -3
1 2 3 C(3) Jp 333 = mpy - my, - m)
(Al.1a)
ot -
= ()L 2 93 . . ..
m2 m3) - ( ) C(J2 Jl J3) m2, ml m3)
1 (Al.1b)
Jy - m 2.+ 1) 2
smomom)= () (__3__)
31 2 3 23, + 1
XC(jl j3 j2; ml)‘m3, - m,2) (Al.lc)
ot my 25+ 1) 3
m,, mg) = (-) éﬁffC-T C(J3dpdy 3 7mysmy, -my)
(Al.2a)
Jp-m (2J3+1)%
m2, m3) = (-) 2————_32 s T
1 dof My Ty m) (AL.2Db)

X ¢4y 4

1. M. E. Rose, Elementary Theory of Angular Momentum (John Wiley and

Sons, Inc., New York, 1957) Chap. 3, p. 38.
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. 1
32~+ mo 2.+ 1\2
N — (. 3
C(Jl Jy dgi My My m3) (-) ( 2§, + 1‘>

Clj_ 3 J.;s ~m, m, m Al.2
Kels, 3, 93 = my moy my) (A1.2¢)
In all cases the third projection quantum number is the sum of the first

two.
The orthonormality relation for the Clebsch-Gordan coefficients 13:2

= c(, Sy ip s mem) Oy dp i mom-m) =& 5 (AL3)

" 3 93

The coupling rule for the rotation matrices 1is the Clebsch-Gordan

series;3
5 I
D D = = C(Jl J2 j;/&ﬂ_’ //bg)
Lt e T2 J
J
X €y dp 35 m, my) D (AL.L)

fat fe, m o+,

Use of (Al.4) may be shown to lead Lot

p noo (2jl+JQ(212+1) 3
A A ?I YT 2D

Ko 4 dimm)  ch hdioo) v, (A)

> M4 2
(A1.5)

2. Ibid., p. 3k4.
3. Ibid., p. 58.
4. 7Tbid., p. 61.
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*

I3

A
Multiplication of (Al.5) by Y (n) and integration over the solid

angle leads to

elivr 1) @44 1)\ %
Y* oy Y aJ) = (, 1 2 ‘>
j f3m /2 m Aym e dyt Y

XeCdy 4, A ms my m) o Ay Lpoo) (a6
because of the orthornomality of the spherical harmonics.

The dependence on the magnetic quantum numbers of the matrix
element of any irreducible tensor, TL is given by the Wigner-Eckart
theorem;5
Grw (o, 9w = c@ry,mmw) (Il D

(AL1.7)
where (j' / / TL / / j) 1s a reduced matrix element independent of the
magnetic quantum numbers.

The basic relation used in performing sums over the magnetic

gquantum numbers is the Racah recoupling theorem;
1
- 2
c(a b e;%,f) Cledc; ot+pB Sy = ?[@e-ﬁl) (2f-+—l)_J

W(abcd;e/) C(bdf;/&,é) C(afc;D\,/@‘f‘S)(Al.B)

Some symmetry relations for the Racah coefficients are:!

Wabcd;ef) = Wbadc;ef)=Wcdab;ef)=Wachbd;fe)
(Al.9a)

5. Ibid., p. 85

6. Ibid., p. 110

T Ibid., p. 111
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e +f ~-a -4 e+ f -b-c
Wlabcd;ef) = (-) Wlebecf;ad = (-)

X W(e e £d; bc) (AL.9b)
8

The orthornormality relation for the Rocah coefficients is:

= (2e+1) (er+ 1) Wabecd;ef) Wabcd;eg) = é;
e fg

(A1.10)
9

The proJjection theorem for first rank tensors may be written as:

Gw [ay[am G [ a1 /]
J (3+ 1)

u'wlwlM(jm
(A1.11)

where 'I‘l M is the Mth component of Tl.

8. Ibid., p. 113.

9. Ibid., p. 9k4.
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