

MASTER

EXTERNAL TRANSMITTAL AUTHORIZED

8.26.59

dat rec

OAK RIDGE NATIONAL LABORATORY

Operated by

UNION CARBIDE NUCLEAR COMPANY

Division of Union Carbide Corporation

Post Office Box X
Oak Ridge, Tennessee

EXTERNAL TRANSMITTAL
AUTHORIZED
Distribution Limited to
Recipients Indicated

ORNL
CENTRAL FILES NUMBER

59-6-132

COPY NO. 14

R 9451
DATE: June 29, 1959SUBJECT: Uranium Anion Exchange Equilibria on Dowex 21KTO: J. C. Bresee
FROM: W. E. Dunn

ABSTRACT

Equilibrium loading of uranium on Dowex 21K has been studied in a sulfate system for uranium concentrations from 0.0005 M to 0.005 M, total sulfate concentrations of 0.045 M to 0.6 M, and sulfuric acid concentration of 0.020 M. Loading data have been fitted to Langmuir adsorption isotherms and Langmuir constants have been evaluated. Resin was equilibrated with uranium feed solutions by flowing the feed through a shallow fixed bed of resin.

NOTICE

This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report. The information is not to be abstracted, reprinted or otherwise given public dissemination without the approval of the ORNL patent branch, Legal and Information Control Department.

RELEASE APPROVED

BY PATENT BRANCH

1-18-61

DATE

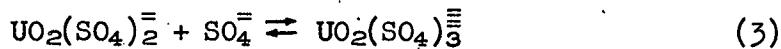
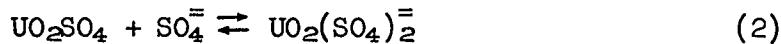
SIGNATURE

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

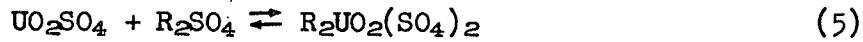
Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.



1.0 INTRODUCTION

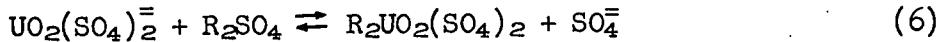
An important application of ion exchange is the concentration of uranium from its ores. Concentration consists in separation of uranium from the main bulk of diluents which accompany it in nature.

Because of the unsuitability of specific gravity and floatation-concentration methods, the extraction of uranium from ores is now effected almost exclusively by leaching. When acid solutions are used for the leaching step, solvent extraction or ion exchange is the preferred method of recovering uranium because either of these permits reuse of some or all of the leaching solution with the next batch of ore. Uranium can be recovered selectively from acidic leach solutions by conventional anion-exchange resins.⁽¹⁾

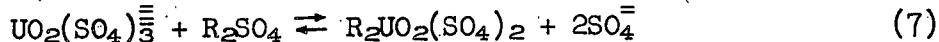
A series of experiments have been carried out to determine the uranium loading on Dowex 21K* in equilibrium with solutions of various uranium and sulfate concentrations.


In the system containing the uranyl ion, sulfate ion, and hydrogen ion the following equilibria are involved:

Equilibrium constants for reactions 1, 2, and 3 have been determined by Ahrlund⁽²⁾ and Allen⁽³⁾.


Sulfuric acid is added to the system to maintain the pH ≤ 2 . At higher pH's the uranyl ion hydrolyzes to the $\text{U}_2\text{O}_5^{++}$ species.

S. H. Jury and J. B. Adams have reported that the UO_2SO_4 and/or $\text{UO}_2(\text{SO}_4)_2^{\equiv}$ species are involved in the exchange mechanism.⁽⁴⁾ Assuming this hypothesis, the reaction could be thought of as:


* Dowex 21K is an anion exchanger which contains quaternary benzyl-trimethyl-ammonium groups on a cross-linked polystyrene-divinyl benzene matrix.

or

where R represents the resin.

Arden and Wood, however, report that uranium is adsorbed from sulfate solution by strong-base anion-exchanges as the complex $\text{UO}_2(\text{SO}_4)_3^-$ at pH's < 2.5. (5) If this were the case, then the exchange could be represented by:

From equilibrium data it is hoped that eventually a consistent model for the exchange mechanism can be formulated.

2.0 ANALYSIS OF RESULTS

Equilibrium sorption of uranium onto resin can be treated mathematically by a formal analogy to the Langmuir adsorption isotherm. The semi-empirical Langmuir isotherm was derived for the adsorption of a monomolecular layer of gas onto a solid. (6)

By extension of this relation to the case of uranium sorption onto resin, the loading expression for a constant sulfate concentration becomes:

$$q = \frac{C_U}{1 + bC_U} \quad (8)$$

with

q = equilibrium resin loading ($\frac{\text{millimoles U adsorbed}}{\text{g dry resin}}$)

C_U = uranium concentration in feed solution ($\frac{\text{millimoles U}}{\text{liter of solution}}$)

a, b = Langmuir constants.

Equation (8) can also be written as:

$$\frac{C_U}{q} = \frac{1}{a} + \left(\frac{b}{a}\right) C_U \quad (9)$$

Figure 1 is a plot of $\frac{C_U}{q}$ vs. C_U using experimental data at six

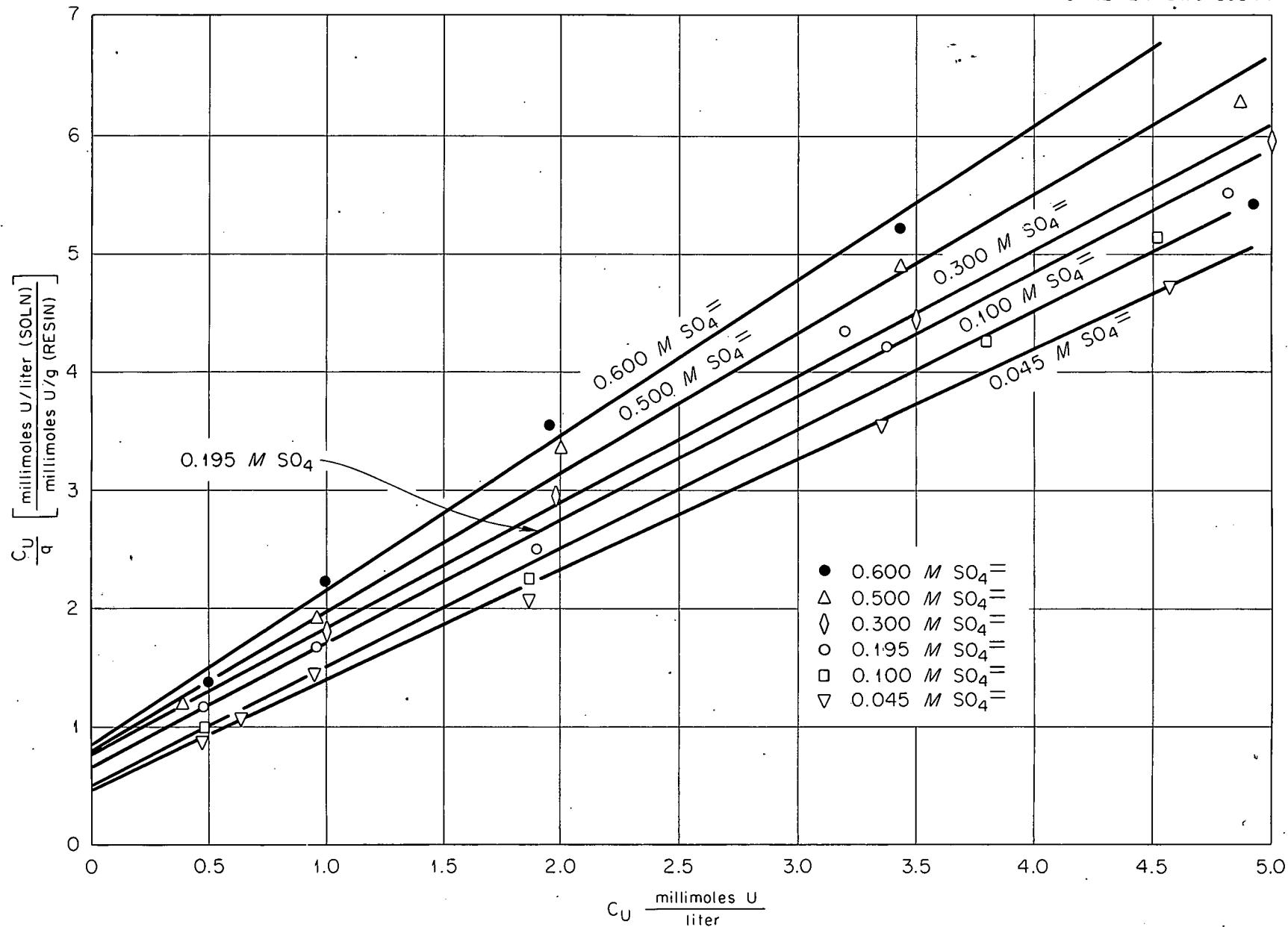


Fig. 1. Resin Loading Data Fitted to Langmuir Adsorption Isotherms.

different sulfate concentrations. This plot shows that the loading decreases with increasing sulfate concentrations over the range of sulfate concentrations studied. From Equation (9) the slope of this line is b/a and the intercept $1/a$. Constants a and b are tabulated in Table 1 for each isotherm in Fig. 1. Also included in Table 1 are maximum resin loading values. Maximum resin loading occurs when $C_u \rightarrow \infty$. Equation (8) predicts this value of q to be a/b .

3.0 EXPERIMENTAL

Dowex 21K, available commercially in the chloride form, was converted to the sulfate form by elution with 1 M Na_2SO_4 at a pH of 2. This sulfate resin was converted back to the chloride form by elution with 1 M NaCl . Resin was cycled from chloride to sulfate twice to insure that the final sulfate resin was free from extraneous ionic and organic contaminants.

Uranium feed solutions were prepared by pipetting stock solutions of uranium and sulfuric acid into volumetric flasks. All solutions were made up to be 0.020 M H_2SO_4 . Na_2SO_4 was carefully weighed out to adjust the total sulfate concentration to the desired value. A total of 8 liters of solution was prepared for the dilute feed solutions and 4 liters for the more concentrated solutions. Homogeneity of solution was achieved by agitation for a period of 1 hr. Samples of these solutions were analyzed potentiometrically for uranium and gravimetrically for sulfate. PH's were measured on a Beckman pH meter.

Approximately 1 gm of resin was placed in a 3.5 cm sintered glass filtering funnel, and feed solutions were flowed through the bed at a rate of 1 cc/min (Fig. 2). After all the feed solution had passed through the bed, the resin was centrifuged for thirty minutes to remove any entrained solution. The resin was then eluted with two 1 liter passes of 1 M NaCl and the effluent was analyzed for uranium. After elution, the resin was washed with 250 ml of demineralized water, dried in an oven at 55°C for a period greater than three days, and weighed on an analytical balance.

Resin loadings are reported as millimoles of uranium adsorbed (as determined from the total uranium in the effluent) per gram of dry chloride resin.

4.0 ACKNOWLEDGMENT

The author wishes to acknowledge J. S. Newman and J. S. Watson who carried out a great deal of the experimental work and again to J. S. Watson for developing the procedures and correlations used.

5.0 REFERENCES

1. Benedict, M. and Pigford, T. H., "Nuclear Chemical Engineering", 137-139, New York, McGraw-Hill Book Company, Inc., 1957.

Table 1 Langmuir Constants and Maximum Loading

Sulfate Concentration <u>M</u>	$\frac{1}{a}$ gm resin	$\frac{a}{1}$ gm resin	$\frac{b}{a}$ <u>gm resin</u> millimoles of U	$\frac{b}{1}$ millimoles of U	$\frac{a}{b}$ <u>millimoles of U</u> g resin
0.045	0.46	2.18	0.89	1.94	1.12
0.100	0.50	2.00	1.01	2.02	0.99
0.195	0.64	1.56	1.05	1.64	0.95
0.300	0.75	1.33	1.07	1.42	0.93
0.500	0.78	1.28	1.18	1.51	0.85
0.600	0.84	1.19	1.32	1.57	0.76

UNCLASSIFIED
ORNL-LR-DWG 39345

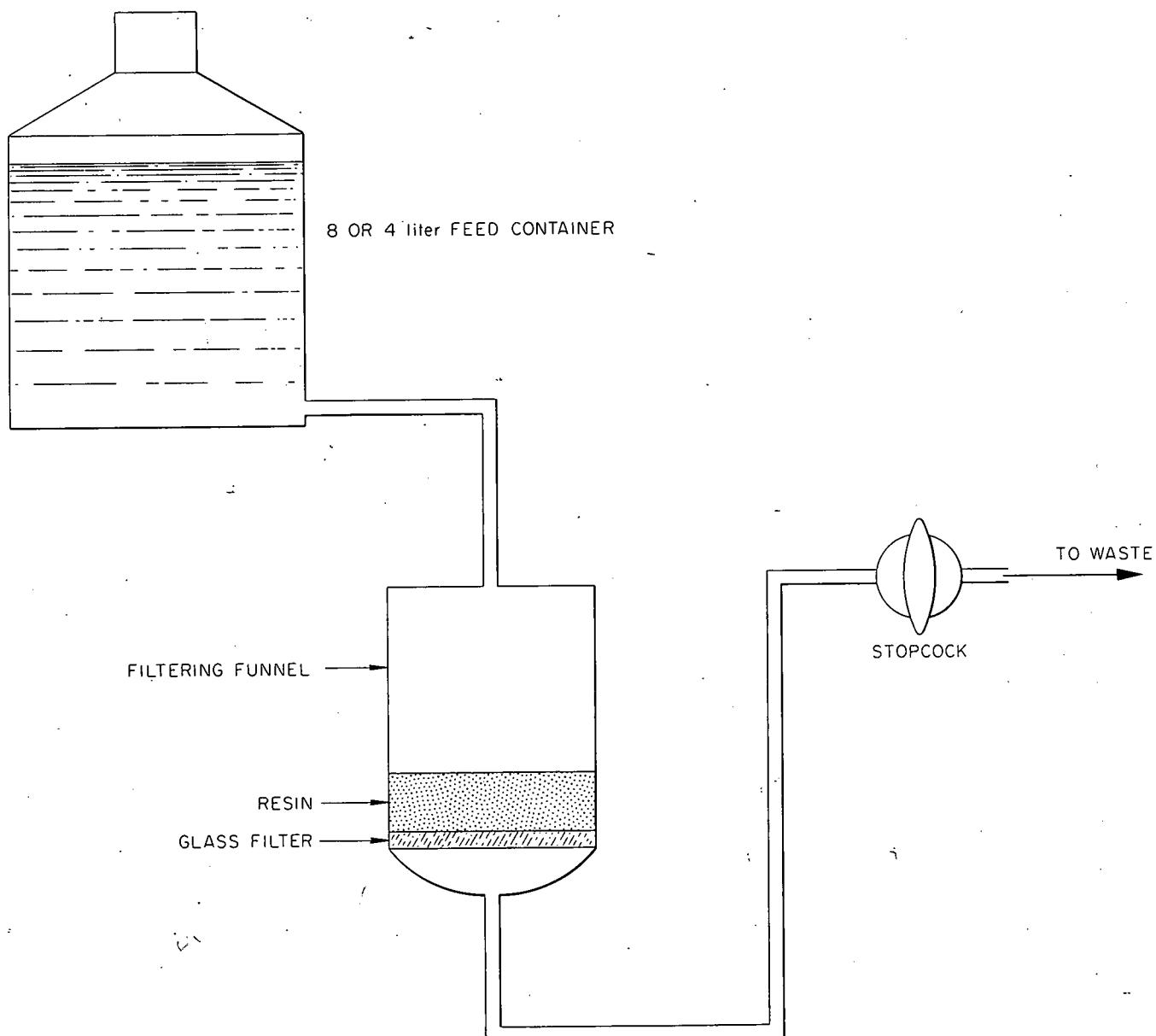


Fig. 2. Schematic Diagram of Apparatus.

2. Ahrlund, S., "On the Complex Chemistry of the Uranyl Ion. V. The Complexity of Uranyl Sulfate", Acta Chemica Scandinavica, 5, 1151-1167 (1951).
3. Allen, K. A., "Uranium Extraction by Tri-n-Octylamine-Sulfate", ORNL-2709, (1959).
4. Jury, S. H., Adams, J. B., "Uranyl Sulfate-Dowex 21K-Anion Exchange", CF-59-5-127.
5. Arden, T. V. and Wood, G. A., "Adsorption of Complex Anions from Uranyl Sulfate Solution by Anion Exchange Resins", J.C.S., 1596-1603 (1956).
6. Langmuir, I., J. American Chemical Society, 38, 2221 (1916).

DISTRIBUTION

1. J. B. Adams
2. J. C. Bresee
3. W. E. Dunn
4. S. H. Jury
5. J. J. Perona
6. M. J. Skinner
7. J. S. Watson
8. M. E. Whatley
9. Northwestern Technological Institute
Department of Industrial Relations
10. Laboratory Records (RC)
- 11-12. Laboratory Records
13. F. R. Bruce
14. F. L. Culler
15. W. K. Eister
16. A. T. Gresky

**DO NOT
PHOTOSTAT**