

MASTER

UNCLASSIFIED
(CLASSIFICATION)

GENERAL ELECTRIC

HANFORD ATOMIC PRODUCTS OPERATION - RICHLAND, WASHINGTON

TITLE

AMINE EXTRACTION OF PLUTONIUM FROM NITRIC ACID SOLUTIONS

LOADING AND STRIPPING EXPERIMENTS

AUTHOR

A. S. Wilson

DOCUMENT NO.

HW-68207

COPY NO.

January 19, 1961

ISSUING FILE

ROUTE TO PAYROLL NO. LOCATION FILES ROUTE DATE SIGNATURE AND DATE

DO NOT
PHOTOSTAT

UNCLASSIFIED

(CLASSIFICATION)

54-3000-030 (9-56)

TO BE USED ON UNCLASSIFIED AND OFFICIAL USE ONLY DOCUMENTS

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

AMINE EXTRACTION OF PLUTONIUM FROM NITRIC ACID SOLUTIONS

LOADING AND STRIPPING EXPERIMENTS

by

A. S. Wilson

Chemical Research
Chemical Research and Development
HANFORD LABORATORIES

January 19, 1961

**HANFORD ATOMIC PRODUCTS OPERATION
RICHLAND, WASHINGTON**

NOTICE!

This report was prepared for use within General Electric Company in the course of work under Atomic Energy Commission Contract AT-(45-1)-1350, and any views or opinions expressed in the report are those of the authors only. This report is subject to revision upon collection of additional data.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

50 11

Distribution

1. G. J. Alkire
2. C. R. Anderson
3. E. A. Berreth
4. L. P. Bupp
5. L. L. Burger
6. R. E. Burns
7. E. W. Christopherson
8. E. A. Evans
9. R. G. Geier
10. M. K. Harmon
11. O. F. Hill
12. J. F. Honstead
13. H. H. Hopkins
14. E. R. Irish
15. W. E. Keder
16. P. F. Kingsley
17. C. E. Linderoth
18. L. H. McEwen
19. R. L. Moore
20. J. M. Nielsen
21. D. W. Pearce
22. A. M. Platt
23. W. H. Reas
24. J. L. Ryan
25. M. F. Sullivan
26. E. E. Voiland
27. M. T. Walling
28. 300 Files
29. Records Center
- 30-40. Extra

**DO NOT
PHOTOSTAT**

The information in this document has been extracted from the monthly reports of the author during a search (1957-1958) for a suitable amine processing system for plutonium nitrate.⁽¹⁾ These experiments with concentrated plutonium nitrate solutions show that triaurylamine (TLA) plus an aromatic diluent, xylene, was the solvent system which did not form a second organic phase. Experiments are also reported with tri-n-octylamine (TnOA)-xylene and TLA-Amsco, 2 volume percent normal octyl alcohol. Second organic phases appear in both of these systems at high plutonium nitrate concentrations.

Distribution experiments with plutonium(VI) nitric acid - perchloric acid mixtures indicate that perchloric acid suppresses the extraction of plutonium.

Loading Experiments

These experiments were conducted by contacting equal volumes of the aqueous and organic solutions of interest for three to five minutes. The phases were allowed to separate and then were sampled and the plutonium determined by alpha counting. The organic solutions were pre-equilibrated with an aqueous phase containing all constituents of interest except the plutonium. The results are presented in Tables I, II, III, and IV.

Stripping Experiments

The stripping of plutonium from the amine solutions has generally been accomplished by reducing the plutonium(IV) to plutonium(III). Other methods would include a dilution of the amine solution by the addition of diluent and the use of an acid or anion which would react more strongly with the alkyl ammonium ion than does the plutonium species. The former procedure may be satisfactory for analytical procedures, but would probably not be acceptable for process work. If a suitable acid or anion could be found, the latter procedure would be acceptable. In this regard the extraction of plutonium from nitric-perchloric acid mixtures was examined. The results are in Table V. It is seen that perchloric acid profoundly effects the extraction of plutonium. Other anions which have a high affinity for the alkyl ammonium ions would also be expected to be effective.

(1) A. S. Wilson, "Tertiary Amine Extraction of Plutonium From Nitric Acid Solutions," Proceedings of the Second International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958, P/544, Vol. 17, p. 348 United Nations (1959).

TABLE I

EFFECT OF PLUTONIUM CONCENTRATION ON ITS EXTRACTION BY TLA-AMSCO

Organic Phase: 10 vol.% TLA, 2 vol.% n-octylalcohol-Amsco (0.15 M TLA)
pre-equilibrated with 2 M HNO₃, 0.03 M NaNO₂.

Aqueous Phase: 2 M HNO₃, 0.03 M NaNO₂, Pu(IV) as shown.

#	Pu gm/l		E _A ^O
	Aq. Phase	Org. Phase	
1	4.88x10 ⁻³	0.455	93
2	1.02x10 ⁻²	0.890	87
3	4.23x10 ⁻²	2.12	50
4	2.58x10 ⁻¹	4.24	16
5	6.21	25.7 H 1.85 L 6.65 A	1.1*
6	14.8	34.8 H 1.21 L 7.85 A	0.53*

* E_A^O was calculated using the average plutonium concentration in the organic phase

H - The heavier of the two organic phases which formed

L - The lighter organic phase

TABLE IIEFFECT OF PLUTONIUM CONCENTRATION ON ITS EXTRACTION BY TnOA-XYLENEOrganic Phase: 10 vol.% TnOA-xylene (0.22 M TnOA)Aqueous Phase: 2 M HNO₃, 0.03 M NaNO₃, Pu(IV) as shown.

#	Pu gm/l		E _A ^o
	Aq. Phase	Org. Phase	
1	6.65x10 ⁻⁴	0.482	725
2	2.54x10 ⁻³	0.920	362
3	1.08x10 ⁻²	2.24	207
4	4.08x10 ⁻²	5.60	137
5	0.157	8.90	57
6	0.635	29.0 H 2.42 L 13.0 A	20*
7	7.25	47.8 H 1.78 L 13.3 A	1.8*

* E_A^o was calculated using the average plutonium concentration in the organic phase

H - The heavier of the two organic phases which formed

L - The lighter organic phase

TABLE III

EFFECT OF PLUTONIUM CONCENTRATION ON ITS EXTRACTION BY TLA-XYLENEOrganic Phase: 10 vol.% TLA-xylene (0.15 M TLA)Aqueous Phase: 2 M HNO₃, 0.03 M NaNO₂, Pu(IV) as shown.

#	Pu gm/l		E _A ^o	<u>M</u> HNO ₃ (aq.)
	Aq. Phase	Org. Phase		
1	8.5x10 ⁻³	0.47	55	1.81
2	1.9x10 ⁻²	0.92	49	1.81
3	7.5x10 ⁰²	2.08	28	1.81
4	0.36	3.96	12	1.81
5	6.54	7.20	1.1	2.03
6	14.7	7.86	0.54	2.08
7	27.2	9.39	0.34	2.51

TABLE IV

EXTRACTION OF PLUTONIUM BY TLA-XYLENE
AT HIGH AQUEOUS PLUTONIUM CONCENTRATIONS

Organic Phase: 20 vol.% TLA-xylene

Aqueous Phase: HNO_3 as shown, Pu as shown.

<u>M</u> HNO_3 Aq.	Pu gm/l		<u>E</u> ^o <u>A</u>	<u>M</u> TLA/ <u>M</u> Pu
	Aq. Phase	Org. Phase		
2	38	22	0.58	3.3
4	32	25	0.78	2.9
5.5	27	30	1.1	2.4
6.7	24	30 ₃	1.2 ₆	2.4

Organic Phase: 10 vol.% TLA-xylene

Aqueous Phase: HNO_3 as shown, Pu as shown.

<u>M</u> HNO_3 Aq.	Pu gm/l		<u>E</u> ^o <u>A</u>	<u>M</u> TLA/ <u>M</u> Pu
	Aq. Phase	Org. Phase		
2	43	10	0.23	3.6
4	38	12	0.32	3.0
5.3	32	13	0.40	2.8
6.6	28	13	0.46	2.8

TABLE VEXTRACTION OF PLUTONIUM FROM NITRIC-PERCHLORIC ACID MIXTURES

Organic Phase: 10 vol.% TnOA-xylene pre-equilibrated with the proper acid solution.

Aqueous Phase: Nitric acid and perchloric acid concentration as shown; 0.03 M NaNO₂, tracer Pu(IV).

<u>M HNO₃</u>	<u>M HClO₄</u>	<u>E_A^o</u>
2.0	0.0	2.8x10 ²
1.5	0.5	0.7
1.0	1.0	0.04
0.8	0.2	0.04

UNCLASSIFIED