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This communication is devoted to some recenc techr, if JI pxoji.i t r-. in 

the study of renormalizable gauge field models- ' 

Gauge theories are among the most aesthetic renoimdli:;abic medt-l-) 

so far investigated The oldest version is quantum electrodynamics wiiosc 

massive version has been extensively discussed in the iitteramre 

More sophisticated models involvinj^ Yang-Mills fields ajsociaitd 
(4) 

with non abelian gauge transformations have been discussed morf recenily 

We shall describe here a new approach to gauge field models winch 

is based on the Bogoliubov-Parasiuk-Hepp-Zimmermann (li f W Z ) renorma

lization scheme making extensive use of the quantum actiDu principle which 

has been recently proved in this framework 

Our study is also based on a newly discovered symmetry propertv 

of the gauge field lagrangiait^ ' (Slavnov invariance) in se ct Ion 1 

we summarize the quantum action principle iu the framework of the H V V Z 
(2) 

scheme and \ie discuss a simple application to a global symmetry problem 

In section II we exhibit the symmetry property of the gauge iicld Kigran-

gians in the tree approximation and we discuss how this property is prrser-

ved at the quantum level 
(1 ) Finally we make a rapid review of the main results relative to Lhe abelian 

(7) 
and SU(2) Higgs-Kibble models 

I - THE QUANTUM ACTION PRINCIPLE 

In the B P H Z scheme the renormalized perturbai ion series is 

expressed in terms of an effective lagrangian which we shall choose in the 

form : 

where ^j, defines the substraction procedure, ( "-f L M j >li i ci 

mines the propagators and SL • C'"C ) the vertices of cho Feviiamn 

graphs, the (7/1 -^ ^^e monomials of naive dimersiori CO •- ' i 

74/P 639 

The CrcfTi functional of the theory is 

(2) 

and its connected part \s , 

JL - (3) 

The symbol < ">- defines the renormalized time ordered product 

previously alluded to. 

The most powerful result of the theory is doubtlessly the renor

malized quantum action principle which describes the infinitesimal varia

tion of th» Green functional under an infinitesimal variation either of a parameter^^ 

(let it be space-time dependent) or of the quantized fields (7) 

If A/C>«} IS an external field upon which ^ C^^ ) depends 

Let on the other hand 

c p ^ C ^ ^ M [ f ^ ] ^ ( | + \ ) Y (5) 

be a local variation of the quantized field 4'. . where Ni LZ-\ 

is a normal product local polynomial of power counting degree less than 

or equal to d , then the infinitesimal statement of the invariance of 

2 r 5! 1 under a local changement of variables reads : 

where I ji C^') is the qjancum variation of X ( f J and has the 

following form . 
2/1-

74/P,639 
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,.°^ o f 
where \- cC (j\) i s t h e n a i v e v a r i a t i o n of } . V T ) u n d e r t h e t i a n s -
formation . 

f.• -=> "^i - £>' (8) 

and ^Lj^C^r j is a polynomial of dimension not exceeding (̂1 'I'lcijcC"-̂  * 'Aiu.Ŷ J 

summing up the quantum corrections. Although more detailed staiements of 

the quantized action principle exist the general structure indicated 

here will be sufficient for the applications we have in mind 

The identity (6) can be written as a functional differential equa

tion upon introducing a system of classical fields (sources) f "7 • \ 

coupled to [T'-p- 3,. 

XZ CS>J''̂  C3-.-1-]"ZC?) ' I BZfT] ». 
where 

, - i l 

A typical problem in the renormalization program is tne following : 

Suppose that a theory which is invariant under the transformation (8) 

exists at the classical level, is it possible ro extend such a theory to 

the qjuantum level ? That is, if we start with a tree approximation lagran

gian ^ such that : 

(11) 

Is it possible to find a quantum extension J^ of ?^ such thai 

1 Z --0 ? (12) 

The answer to this question turns out to be positive if we can prove that 

' " ' " ' " ( i j ) £)^T^^^--^.(^-oCiB3^t^^t 

74/P.639 
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for some (J\j . Here v_yLr- d j means quantum connections wh ch vanish 

if ^ ^ O . 

A simple example of such a problem is the following : 

where o / \ ^ M- and M_- is a semisimple Lie algebra. 

The quantum action principle reads in terms of the conmcted Green 

functional 

with p„ 

^-^ ^ (16) 

Let us introduce a system of classical fields j 0^'] coupled to (_>£> ) 

After the transformation (14) we get : 

ex. 

Applying (̂  to both sides of Eq.(18) we obtain for £ b, } = o 

^ P> ^ - (19) 

%^Z.l:^ (K)]- [gf-Z b/e?.cCiB^l^lj rb̂ -̂̂  (,8) 

c 

hence 

[X̂  ^^3 d 2 ] - [-tV-t^B'l^1:^3 (20) 

7 4 / P . 6 3 9 
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Now the \Z- ^ satisfy Che same commutation relations as the cor

responding elements of the Lie algebra -̂

Eq (20) together with Eq (21) leads to the consistency condition for Jgether with Eq (21) leads t 

^^b^^'^'^-r.^' (22) 

(2) 
which can be solved in the case of a semisimple Lie algebra 

£rs£(S- -^ ifi J~>' (23) 

II - GAUGE FIELD MODELS 

In this section we shall review the relevant properties of ihe 

classical lagrangians on wiiich gauge theor.ies are based in the tree ap

proximation We shall in particular show that these lagrangians are in

variant under a family of non linear transformations involving Che 
(9) J_ 

Faddeev-Popov (M^T ) ghost fields 

We shall then show how this invariance property allows to extend 

the procedure exhibited in the preceding section to prove ro all orders 
(8) 

of perturbation theory the so-called Slavnov identities which are in 

the present case the relevant substitutes of the Ward identities 

The theory is based at the tree level on the classical lagrangian: 

«K • •̂  «- ,..̂ '=̂ P - P- 1 (24) 

74/P,639 

where / f^ ^ denotes a matter field multiplet, ' '̂ y. J is a 

Yang-Mills fields ^C.^\ , l'^^^ are the ct)lr ghost scalar Fermi 

fields labelled by the adjoint representation of the gauge group ^-f, 

oC^ ^^ v ̂ '^ J J is the most general dimension four polynomial invariant un

der the local gauge transformation ; 

%H>,.,= l ! ^ ^A.^^i^ 

The gauge function ^ , labelled by the adjoint representation is a 

polynomial of dimension two at most involving f'p̂ ;̂  f <3o. i • °"^ terra of 

which is v^ ^•, , which is familiar in quantum electrodynamics. 

'^'^•^'^' sTsT 
is thus the kernel of an operator of the hyperbolic type which in general 

depends on ^ "̂.̂  Jj and £ ci. j 

In all the preceding formulae repeated indices are to be summed over and 

repeated space-time points are to be integrated over. 

The essential property of the lagrangian o o is its invariance 

under the following infinitesimal transformation which we shall call the 

Slavnov transformation : 

6 H'fi 
oi 

(27) 

lUlV.bi'i 
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(For simplicity we have chosen the non singular part of the? Killing form 

of M^ to be the identity o AJ is a space-time incir ppadenc infi

nitesimal parameter which commutes with ^ *x̂ , A > C ^^ \ ^ ^"^ 

anticommutes with C. C. ji , ^ C ' i and for two transformations 

labelled by (̂̂  A', , and o/L , o/L| and o> /(- anticommute 

This invariance can be checked immediately, using the composi

tion law for the gauge transformations ; 

T (28) 

(2) 
Conversely it can be shown that in the case of a semisimple gauge group 

"^l^ is the most general lagrangian leading to an action invariant under 

Slavnov transformation and carrying no tCp 11" charge 

In the abelian case the invariance condition allows the addition 

of a term of the form : 

for any i ^ such that : 

when (i[^ is the kernel of a possibly field dependent differential ope

rator which does not upset the hyperbolic character of 'tn_ For example 

in quantum electrodynamics we can add to P O 

which is nothing but the mass term for the photon 

Another property of the Slavnov transformation which will be used 

in the following is that : 

74/P 639 

and of course 

We now discuss the extension of the Slavnov invariance to the quantum 

level. 

Upon introducing a system of external fields /_ V' V fi 

X ^ ^ 3 coupled to f £ _p^^ p^ c.^ ^ ^ ^ < ^ ^ \ "-^ the 

sources ( 3^, "J ^"^ '^ ^ y^ ^ for the fields 2 f,'_̂  

^ C e F > ' ^ we can write the quantum action principle in the func

tional form 

(33) 

Much in the same way as in the previous example the algebraic 

structure of the Slavnov transformation implies the consistency condi

tion for Jj) : 

-^^^ 

(36) 

After a Legendre transformation Eq.(35) reads : 

TT l5> is now the local functional corresponding to the irsertion 

- ^ j ^ . Since we have also 

r = A -̂  '^' (37) 

when PI is a local functional of dimension lower than five and 

r'- 0 ( ^ A ) we have 

a^otj)> l . a (nil c)p^^% 
C(>cj 

74/P.639 
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which is solved by 

t & ^ -t̂ ^ (39) 

thus giving : 

(40) -irl^-'tRj-^O 

This problem of showing that -O = ^ ̂ '^ is now reduced to prove 

that for any local functional Bi of dimension lower than six and 

carrying the 'Cp jT" charge of c the equation 

implies that 

(42) B^ - -̂  ̂ ' 
0"^ is a local functi where U"^ is a local functional of dimension lower than five 

This result has been proved to be valid in the semisimple models 

in which the Adler-Bardeen anomaly can be excluded a priori 

Here we show as an example how the consistency condition (Eq (40)) 

allows to get rid of terms of the form : 

(41) 

where r^ C^) depends only on Z *T^ \| and (_ <-? , J 

(Other possible terms are dealt with in a similar way). 

The consistency condition for K f'̂ O is ; 

~ J. - ~ • =- •i Q(><-M) 'f-iX^ (44) 

which turns out to be the Wess-iumino consistency condition for the 

current algebra anomalies. 

74/P. 639 
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C ) 
One can show chat in the absence of the Adler-Bardeen anomaly 

where I is a dimension four local functional. 

Thus in this case 

' & —'^ \ (46) 

which is the desired result. 

Ill - RESULTS 

The proof of the Slavnov identity is the essential tool for the 

physical interpretability of the theory. This has been investigated in 

all details ir 

Kibble models. 

all details in the following two cases : abelian and SU(2) Higgs 

The results are the following : 

i) The parameters defining the theory can be specified in such a way that 

the theory be interpreted as an operator theory in the Fock space 

of the free fields (including the ghosts). 

ii) A physical subspace of this Fock space is then defined. The restric

tion to this subspace of the S operator is then shown to be unitary 

and independent from the parameters which specify the gauge function 

to all orders of perturbation theory. 

74/P.639 
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WARD IDENTITIES AND SOME CLUES TO THE 

RENORMALIZATION OF GAUGE INVARIANT OPERATORS 

by 

H._KLUBERG-STERN and J.B^_ZUBER 

D^partement de Physique Theorique 
C.E.N. - Saclay 

Abstract 

The problem of the renormalization of gauge-invariant operators in 

non-abelian Yang-Mills theory is tackled through the study of a specific 
2 

example, F , for which the explicit solution can be derived from renor-
'̂  î-v '̂  2 

malization p.roup considerations. It is shown that the operator F mixes 
|iv 

with non-gauge-invariant operators and chat this mixing muse be taken into 

account for the computation of the anomalous dimension of the renormalized 

gauge invariant operator. The explicit solution is examined with the help 

of Ward identities derived from a new type of gauge transformations which 

appear very convenient from a technical point of view. The multiplicari-

vely renormalizable gauge-invariant operator is shown to satisfy Ward iden

tities and to possess an (^independent anomalous dimension. As a by-producr, 

we analyze the gauge dependence of the Callan-Symanzik function p . 

Saclay Preprint DPh.T/74-56 

Submitted to Physical Review D. 
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niE rniRRlNG MODEL WITH U(n) SYMMETRY 

P.K. MITTER 

Laboratoire de Physique Theorique ct 
Hautes Enctgies - Universite Paris VI 

* Abstract of talk delivered at Marseille Colloquium on "Recent 
proi^ress in Lagrangian field theo y and applications", June 1<S74. 

A <;eneralisation ot the Thirring model with internal 

U(n) symmetry ha^ been studied to all orders in renorraalised perturbation 

theory. The model is characterised by three coupling constants 

characterisin-? the most general set of renormalisable SU(n) invariant 

4 - fcrmlon interactions which are also Lorentz and C.P invariant. 

The model is studied with the aid of Callan Symanzik equations 

and Ward identities for Green functions of composite fields in the 

liPllZ renoimallsaLion programme. It thus generalises the earlier 

work of Goraoz and Lowenstein. 

In contrast to the usual U(l) Thirring model one finds 

the presence of hard axial as well as scaling anomalies. However 

these anomalies are not independent. There exist identities 

relating them valid to all orders of perturbation theory. With 

the aid of these one finds locally a critical curve passing through 

the origin in the 3-dimensional coupling constant space on which 

all anomalies vanish. A region of ultraviolet attraction can be syste

matically found using qualitative methods from the theory of dynamical 

systems. In addition to the previously mentioned curve the identities 

(referred to above) are consistent with the existence of another 

critical curve not passing through the origin. However to prove 

its existence one has to go beyond perturbation theory. 

The details can be found in : 

P.K. MITTER and P.H. WEISZ : Phys. Rev. D 4410-4429 (1973) 
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1 1.1 

SOME CONSIDERATIONS ON NON RENORMALIZABLE INTERACTIONS" 

by 

G. PARISI 

Columbia University - New York 

ABSTRACT : A particular class of non renormalizable interactions 
is studied in the infinite cutoff limit. 

We present arguments which suggest that the theory is 
finite after the introduction ot a finite number of 
counter terms. The Green functions are not C in 
the coupling costant at the origine. The same results 
are obtained using three different techniques : 

infinite resummation of Feynmann graphs in pertur
bation theory, 
analogies with second order phase transitions, 
the use of the renormalization group equation to 
define the theory. 

This research was supported by the U.S. Atomic Energy Commisssion 

XX 

In leave of absence from INFN Frascati (Italy). 
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In the past the properties of non renormalizal Te interactions 
, , , , . . .. (1),(2);(3) 

have been the object of intensive studies , mam y in connection 

witli weak interactions. After the discovery of renormalizc ble models of 
(4) 

weak interactions , this subjsct is no more interesting at some years 

ago ; however we think that it is still worthwhile to try to understand 

if non renormalizable interactions do exist and which are the analiti-

city properties of the Green functions as functions of the coupling cons

tant. 

The aim of this talk is to present "euristic" irguments which 

suggest the existence of some non renormalizable quantum fi!ld theories. 

These arguments are similar to those used for renormalizabl ' interactions : 

a formal series is constructed, each term is proved to have a finite limit 

when the cutoff goes to infinity, however the convergence o the expansion 

remains as usually unproved. 

It is well known that standard perturbation theory is unable 

to cope with rhe problems presented by non renormalizable irteractions : 

for example the i-th order of perturbation theory for the Fermi interaction 

diverges like (G ^ I . Finite results can be obtained only 

introducing an infinite number of counter terms ; no prediction can be 

obtained without assumptions on the magnitude of these arbit -ary counter-

terms . 

Many people have conjectured that non renormali ;able interac

tions dre finite without the introduction ot extra counter-ti-rms : the di

vergences found in perturbation theory are supposed to be spi rioiis and to 

be connected to the lack of analycicity in the coupling constant ' 

We will argue that this conjecture is true, at least for a pirticular 

class of interactions. Various techniques can be used : we vill describe 

them in increasing order of complexity and generality. 

We assume that ultraviolet divergences arise in perturbation 

theory because the vertex has a "wrong" behaviour in the largs momenta 

region : wo strongly believe that no divergences are present in an "im

proved" perturbation theory in which asymptotic scale invaria ice is imme-

mented at each stage. Non analytical term in the coupling co istant arises 

74/P.639 
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naturally from the non uniform convergence of perturbation theory in the 

large momenta region. 

As a first example we study the A /V ( 9^ " "̂  in

teraction in the space-time dimensions D, 4 < D < 6 . The y are 

a multiplet of N fiid and the Lagrangian is invariant under the trans

formation of the 0(N) group. We use standard dimensional analysis : the 

length has dimension -1 , the field <(> ) -̂  — ; the coupling cons

tant -̂  , 4-D . 
(8) 

Following Symanzik we introduce an auxiliary field <5^ , 

whose zerothorder propagator is equal to 1 in momentum space. The in

teraction term in the new Lagrangian is q N (y \ (f^ cp ) where 

1) ^ ^ . _ > . 

The Green functions can be formally written as an infinite sum 

over Feynmann diagrams : the high order terras are undefined because of ul

traviolet divergences. We try to give a meaning to this expansion perfor

ming partial resumations of diagrams. The technique we use, is the 1/N 

expansion * ; at the first order the O'-self energy is computed and 

the resummed <3~-propagator is introduced in high order diagrams. We 

stress that only a finite number of skeleton survive at a fixed order in 

1/N . 

The first order contribution to the O'-self energy is : 

ii> 

^̂ '̂ ^ - 3' WrTT^T^ - - ^ 

2) , % „2>-U 

dv 
__> . . ^ ^ . - ^ . A.-r(i^) 
t^^y:. " ' • V ' W (r)-,)(̂  .J.) 

The corresponding propagator is for large values of k : 

3) G-(K) ^ 
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A simple analysis shows chac when (3) is inserted in higher order diagrams, 

the large momenta behaviour of the integrals is just the one dictated by 

asymptotic scale invariance : the effective coupling constant turns out 

CO be dimensionless, g-independent and proportional to A . 

The only divergent diagrams are related to the vertex and 

wave function renormalization and to the ^ -self mass. The use of the 

improved propagator (3) avoids the appearance of additional divergences. 

The output of the 1/N expansion is not C^ in the coupling costant g . 

For example a contribution to the six point function at zero external mo

mentum is roughly equal to ; 

4) 3̂ ĵ P̂ [r'^'^'ft^^i'^'f ' 
2 

This integral is finite for any positive value of g , but 

it is not analytic around g"0 : a term proportional to i\ '"̂  is 
o 

present (if D =5 the behaviour at small g is g ln(g) ). These non 

analytic contributions come from the integration regions where q (̂  -v^ j 

for such value of the momenta the effective dimensionless coupling cons

tant is of order one and high order corrections are relevant also for 

small g . The coefficient of the singular term can be expanded in powers 

of 1/N : only in very few cases it can be written in a closed form. 

The new perturbation expansion reproduces the results of 

standard perturbation theory when they are finite ; "divergent" counter-

terms can be computed in powers of 1/N : they are not C°° functions 

of the coupling constant. 

The l/N expansion is very simple and straightforward, however 

it is possible that a different resummation technique yields different 

results (remember Riemann's theorem ! ) . It would be interesting to derive 

the same conclusions from more general arguments. 

To this end the following procedure can be used : as a first 

step we cut off the theory introducing an extra term in the Lagrangian ; 

all divergences disappear and the interaction becomes superrenormalizable. 

We look for a value of the renormalized parameter for which renaraalized 

Green functions are finite but all bare parameters are infinite ; it is 

clear that this particular situation corresponds to the infinite cutoff 

74/P.639 



-25-

limit. A similar technique is used in the study of the infinite coupling 

constant limit of superrenormalizable theories 

To be more specific let us see how this idea can be applied 

to the C"('J>,,T''^ interaction. At the zeroth order in the cou-
1 ^\—* 

pling constant the "S'-propagator is taken equal to ( I'x +yt*- J 

A renormalized dimensionless coupling constant (g ) is introduced and 

the function /I is definsd as^^^^ : 

If the function /* has a zero at g = g , all bare quantities 

are divergent for this value of the coupling constant, in particular the 

cutoof becomes infinite. The non renormalizable theory is finite iff the 

Green function of the superrenormalizable theory have a finite limit when 

g goes to g . The consistency of this last assumption can be checked 
'^ (13) 

looking to the large momenta behaviour of the Green function at g = g 

(asymptotic scale invariance is valid in the large momenta region). 

This technique is particular suited for the case of b-t 

dimensions. The analytic structure in the coupling constant Is the same 

as the one found using the 1/N expansion. 

The general "equivalence theorem" holds : "non renormalizable 

theories are superrenormalizable theories computed at the infrared stable 

fixed point". The existence of non renormalizable theories is related to the 

the existence of infrared stable fixed point in superrenormalizable theories. 

Zero mass non renormalizable theories can be constructed using 
(14) the renormalization group (in the massive case we can use the improved 

renormalization group ). The idea is to use the output of the Dyson 

equation.as input for the r.g. equation for the vertex and to use the out

put of the r.g. equation as input for the Dyson equation. In this way, if 

the f) function has a zero, the Green functions are automatically scale 

invariant and no divergences appear. Non analytic terra in the coupling 

constant are obtained also in this case. An application of this technique 

to second order phase transition can be found in a recent paper of Sugar 

and White^^^\ 
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We mention 'en passant' that, if we change the dinensions of 

the space in such a way to transform a renormalizable interaction in a 

non renormalizable one, no pathology is shown by the conforms 1 invariant 

self consistency conditions for the propagator and the verten . : the 

values of the coupling constant and of the anomalous dimensicns seem to 
(18 19) 

be regular functiori of the dimensions of the space ' 

The conclusions of this talk are the following : there is a 

particular class of non renormalizable theories which exisr End are fi

nite (stability problems are neglected) ; the Green functions are not 

C in the coupling constant, however in the large momenta region they 

are coupling constant independent and scale invariant. In pirticular si

tuations (1/N or £, expansions) the effective coupling constant in 

the large momenta region becomes small and we can compute the coefficient 

of the terra singular at g = 0 . 

It would be tempting to apply these consideraticns to a rea

listic model of weak Interactions ; however we have no contrc1 on the 

existence of the zero of the relevant /i function, the piesence of a 

vector interaction may destroy asymptotic convformal Invariarce and in

troduce additionnal divergences. 

Also if we skip these difficulties, we are stilJ faced with 

the problem of fixing the low energy structure of the theory : self 

consistency techniques should be used like in ref. 3 and ref, 20 . 

Although the situation may seem quite promising, additionnal studies 

are needed to understand the properties of a finite non renoimalizable 

model for weak interactions. It may be interesting to note ihat these 

problems disappear in less than 4 dimensions : the presence of Fermions 

does not introduce new difficulties. 
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SUPERGAUGE SYMMETRY IN LOCAL QUANTUM FIELD THEOlY 

by 

S^__FERRARA 

CERN - Geneva 

Extension of supergauge symmetry to four-dimensional space-cime has 

allowed to investigate the possible role of this symmetry in conventional 

local quantum field tlieory. 

Supergauge eras formations form a sort of extended Lie Algebra with both 

commuting and anticommuting parameters. There are both bosoiic and fer-

mionic generators among the charges of this symmetry. As a :onsequence 

Che representations of this algebra combine fermions with bosons. 

The supergauge algebra is obtained adding to the conformal g:oup*of space-

time two Majorana spinor generators and Che chiral charge " . The two 

spinor charges Q ^ , Ocv , to be called restricted and special super-

gauge transformation respectively, admit the following commu;ation rela

tions with the conformal sud chiral charges. 

1) r Q . , 3 ] - t Q ^ c s , , j > j ^ - i S . 
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fe., K,,J . -. (5> 5)^ C5,, T^] = c(5; Qh 

J) ^ ^r^TT) 

Of course this symmetry, due to tti e presence of conformal charges, is use 

ful only for massless theories. However there is a non trivial subgroup, 

generated by Poincare transformations and restricted supergauge transfor-

• Li J- and which is 

therefore consistent with more realistic massive Lagrangian theories. 

In order to construct field representations of supergauge symmetry one 
(3) considers the action of an element of the group on the group manifold 

where ^i " are the coordinates of the superfield 

3) H^>9) = ^-""-^- ^^ ^0,0) 

Using the commutation relation of the algebra one easily gets 

S ci)(x, e) ~ i ^j^S U. 9) , . 
-r>. , / _ i. -^ y V. , translation 

4) S<p(>^,e) - ^ ^ + ^^^'^^/^)(f)Ke) supergauge 

It is convenient to use Weyl spinors ĵ ' oJ related to the Majorana 

spinor Q by the relation 
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It follows that the superfield can be written as 

6) 

Due to the anticommuting properties of the spinor parameters the most gene

ral form of the superfield is ^ 

^U,e,e) = A. ey- . ^ T . ^^/^ -.Uy.B^^ejJ'.Bee^ 

where we imposed the invariant constraint 

8) ^{x, OG) - 4> (x ,e ,^ ) . 

This field contains two Majorana spinors ^ ) ^ , two scalar fielck A,D 

a chiral doublet M,M^ and a real vector field. This is called the vec

tor superfield. 

From eqs. 7) and 4), composing the various powers of ^, ® one gets 

the transformation properties of the various component of the multiplet 

under a supergauge transformation. We remark that the last component of 

a supermultiplet always transforms as a total derivative, i.e. 

9) ol' - ~^M '^ where ^ is some Fermi field. 

This property will be crucial in order to build up invariant Lagrangian 

with supergauge multiplets. In order to develop further the tensor calcu

lus with superfields we observe that the group-manifold can be parametriz-
(4) ed in three different but equivalent ways , i.e. 

10) & ^ 

e ^ 
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They correspond to three different realization of supergauge representa

tions i.e. to different definition of superfields related by the follow

ing identity 

U ) c);(.,e,e) -_ 4>J. ..0 ^y.e,0,o) - 4,(-- ̂  eo> 0, 3,P ) ^ 

Note, that once the superfields are defined as type I or type II fields, 

(corresponding to the second and third definition of the group manifold), 

chey become intrinsically complex so the reality condition cannot still 

be imposed. 

(4) 
We introduce now the following spinor derivatives 

which have the property of commuting with supergauge transformations. 

They are therefore covariant operations. It is important co observe chac 

they have the following anticommutation relations 

We call <$[" ,9 ^) 3 left-handed superfield ii it satisfies 

the equation 

14) 5 ^ CĴ L = 0 . 

In analogous way a field such that ^o( ^f^ ~ will be called 

right-handed superfield. Note that (^ is right-handed in fact 

15) 3>ri ^^ = ^oC k = o 

As a consequence of 11), a left-handed type I superfield is only a func

tion of 0 because 3 ^ 4, (•<; /̂ "̂ ^ - ^ (^A['^ i^, ^^ and 

analogously a right-handed type II superfield is only a function of 0. 
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1 lollows that a left-handed superfield can be always wriccei as 

The representation ^i_ ® T^I_ is now a real representation which 

contains two scalars and to pseudoscalar superfields A , F , B , G and 

a Majorana spinor "^ . This will be called the scalar multiplet accor

ding to the original definition 

We end the basic ingredients of tensor calculus with the observation that 

also multiplication of superfields is well defined. 

The following multiplication rules can be explicitely verifii=d by the 

reader as an exercise. Call Cp T^ two superfields, then 

1^^ 'I'I_̂ 'R - 4 ' K = (•̂ '̂ )i are vector superfields 

'^L-^'^i- - y^ verifies the property 5 5 V^ = ^ ' 

Tiie covariant derivatives previously defined, together with ciii scalar 

and the vector supermultiplets are the basic ingredients in ordjr to 

build up supergauge symmetric Lagrangians. We will confine ou-selves with 

with the construction of such Lagrangians making use of the po jerf'ul tech

niques previously introduced. Professor Iliopolous will discL is in detail, 

in Ills talk, the consistency of this invariance with the renor lalization 

procedure and moreover the problem of spontaneous symmetry bre iking . 

The previously derived techniques make us sure that the only possible 

fields which can be considered as supergauge invariant Lagrang ans are the 

F and D components of die scalar and vector multiplets respi ctively. 

For the self-interacting supermultiplet we have the paradox chac the 

less intuitive term which appears in the Lagrangian is the kin<tic energy 
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term. To build this term we remark that the superfield given by 

3,5 ZD"* 4'L. 1^ ^ left-handed multiplet with components I" , 

<S^ '^^ 'Tjf , J5 A respectively. From this follows chat the F compo

nent of the left-handed superfield 'P^-^^ -'̂  "* Ti_ Is the kinetic 

term of the supergauge invariant Lagrangian. The full Lagrangian is given 

by the formula 

,3) ^̂  1-^(455 4 : — ^ ^ - J < ^''^'-^" '̂̂  

where the various terms are easily identified making use of the explicit 

expression of the superfields. 

Interactions of vector multiplets are more involved due to the simultaneous 

presence of supergauge and local gauge symmetry. 

However there is no problem for what concerns the supergauge symmetric 

free Maxwell equations . In fact, starting with the vector multiplet, 

one can construct the left-handed spinor superfield 

19) sx^^^ = 5 ^ 5̂ ^ 3>^ 4> 

then the F component of the left-handed superfield 

20) 5. 2- \>cy \>e^^ + k ^. 

gives the kinetic energy terms for the vector supermultiplet 

21) ^ = -iu;.i^^^'-t^^-'^^^i^' -

To construct an interaction with the vector multiplet we first consider the 

supergauge invariance extension of Q.E.D., i.e. the interaction of a vector 
f Q\ 

multiplet with a complex left-handed superfield 

The role of gauge transformations in a supergauge invariant theory is taken 

by an entire scalar supermultiplet. In fact usual gauge transformations are 
(8) 

not preserved by supergauge transformations 
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Under a local infinitesimal gauge transformation one has 

<rS .- -c/15 fS^ = ^A'5* f v . 4^-A'*) (22) 

or m Che incegraced form 

(23) . ^ _ . e.-^" e ^ e ^ ^ 

(24) S -, e-'-^S S ;̂, 5 e 

It follows that the interaction term -> e -' £g actually 

invariant, However, as parity changes v -«• - then it follows 
-r* -V-r tha t the Lagrangian must contain another piece ' e. I when 

1̂  —» T e.'' "T -!> & I under local gauge transforma

tions. 

Then it follows that <J and "'" are left-handed superfields. 

One can put 

then it follows that, provided one chooses a special gauge, where 

C r T p = i M - ' V - 0 (Wess, Zumino gauge) the Lagrangian becomes 

manifestly renormalizable and takes the form 

" 36 je -je 59 ^ 

The renormalization of such a model, consistent with supergauge symmetry 
(8) was shown by Wess and Zumino up to one loop 

Finally we mention the self-interaction of the vector multiplet, consis-

lent with supergauge invariance. This was discovered independently by 

(9) Salam, Strachdee and Zumino and the present author 
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Let us consider for instance a Yang-Mills supermulciplec, i.e. a veccor 

multiplet \7hose component transform according to the regular represen

tation of some group, say SU(N). 

In a supergauge invariant theory the Yang-Mills gauge cranslormacion 

has to be replaced by a Yang-Mills left-handed multiplet ' A 

(25) e. U 
^- iA _,/ ^ /\'' 

In infinitesimal form we get 

(26) V _> V . c(/\-A'^ -ii^f^X^ . ^ L A f / \ > J ) ̂ ••• 

Note that V always stands for the NxN matrix '̂  • ^ 

From the previous formulae one easily derives chac 

(27) e'^J) . ^ _> ^ - ^ ^ e : - % . . M e ^ ^ , e'-^'^Jl^e,^^ 

under a Yang-Mills transformation. From this it follows that the left-

handed multiplet given by 

(28) 

transforms as 

W^ -_ J>J)(e-% •̂"') 

W^ --' w; .,-^ 
under a 

(generalized) Yang-Mills transformation. Ic follows immediacly chat 

the F component of the left-handed field I f-(xX/̂, w ) generates 

a Lagrangian which is invariant under supergauge transformations and gene 

ralized Yange-Mills transformations. In the special gauge, where 

C. ^ <^i -. f^i ^ •>•, =. 0 one gets 

^. ^1^ ^ I 

where iT.o - > ^ , - ^o-> - ^ ^^^v'-T.^ 

^ ^ ^ ^ -^^;» -t -. 3 c ^^ , :̂  ] 

74/P.639 

As a consequence one gets the result that the interaction of a Yang-

Mills field with a Majorana spinor belonging to the regula" representa-

Lioii of ;'n internal symmetry group is supergauge invariant As a final 

remark let us mention the possible geometrical meaning of supergauge 

transformations. We have already seen that the representa :ions of the 

restricted algebra can be realized on fields Y^(.Z) defined 

on the superspace Z. ~ i^, O, O) . Now on this ŝ ace there is 

a line element which is invariant under translations and restricted su-
.• (10) • 

pergauge transformdtLons ,i.e. 

(29) •̂̂ ^ = <=^> ^ •'[O'r^Je - de^e]' 

So its square "-̂  - '•̂/- '~^ is actually invaria it under tlie 

whole rescricced supergauge algebra. Ic can be shown thai: one can en

large Che represencacion of the restricted supergauge algebra "f C"*.. ^j^) 

to a representation of the enlarged algebra. This is becaise additio-. 

nal generators Sa( > ^-^ , S) and '' belong (tO|.>ether with 

M ^ u ) CO the stability algebra of the point Z = (0,0). 

Due to tlie structure of sucli an algebra one can always consider repre

sentations of this algebra such that 

(30) S ^ - K ^ = O 

this is in fact the condition that ensures that the lowest conponent of 

the superfield <^ [x^ O) transforms irreducibly under Lorentz 

transformation. In this way, for any transformation of rl" e group one 

gees Che corresponding transformacion of the superfield 

where li^/ / ' 1̂  some weight associated to the field and 

6;^^ SB ••, S^' 3re themselves functions of " , ^ ^ • Fot 

example, under a special supergauge transformation one finds 
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(31) cT̂  - ^ 5 - . p ^ M P e + ^ - / ^ e ^ v ^ e 

then it follows that the line element (29) transforms as 

(32) ^u.^ - - 2 ( f i ^ < ^ e t ^ ^ A ^ e ) ^ " ' ' 

under supergauge transformation of special type. Therefore 

(33) (Tu;^ -. i+(pe .(ie)w^ . 

Analogously under a conformal transformation one finds 

(34) ^oo'' = 4<^ • ''>*̂ *' 

Of course O U/ —> * £ to under dilatation, and '̂  ̂^ - 0 

under chiral transformations. 

Then we have that supergauge transformations can be regarded as the sub

set of general coordinate transformations 2 —>J'(2.) which di

late the metric ^ by a function of the point 2.(x^C,S) 

35) SJ\-Z.-) ~- f(^)U.^(^^' 

So we see that supergauge transformations are those transformations of 

the enlarged space (•'^/6,6) which aaves invariant the "light

like" distance CO (z) =. O . 

The previous analysis suggests the possibility of generalizing supergauge 

transformations in curved superspaces. 
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A) SUPERGAUGE INVARIANCE AND RENORMLIZATION 

Presented by 

J. ILIOPOULOS 

"Broken Supergauge Symmecry and Renormalizacion" 
J. Iliopoulos and B. Zumino 
Nuclear Physics B76 (1974) 310-332. 

Abscracc ; A field cheery model invarianc under supei gauge Lransformations 
is shown Co be renormalizable to all orders in pcrLurbacion Lheo 
ry, Renormalizarion is shown to be consisienc witli SLI}X̂  rj.',auge 
invariance. It is lurcher shown cliaL only oiie renoniu I izac ion 
constant is needed, a common wave funccion renormalizacion for 
all fields. A symmecry breaking cerm is introduced \jli i ch breaks 
Che symmecry explicicly buc so smooclily chat the ronorinal i i;a-
tion procedure of che symmetric case can sclll be applied. Re-
lacions among masses and coupling conscants emerge. Among otiier 
topics discussed, the possibility chat che supergauge symmetry 
is spontaneously broken and chac a Goldscone spinor appears is 
examined. 

"Supergauge Invariance and che Gell-Mann-Low 
Eigenvalue" 

S. Ferrara,J. Iliopoulos and B. Zumino 
Nuclear Physics B77 (1974) 413-419. 

Abscracc : The connections among supergauge, scale and conformal invariance 
are elucidated on che example of a renormalizable tield theory 
model. For che raassless model, ac che Cell-Mann-Low eigenvalue, 
a non-percurbacive argumenc leads co che concradiccory result 
chac it can only describe a free field tlieory, A scudy of che 
Callan-Symanzlk equacions for c!ie massive model clarifies tlie 
sicuacion from the point of view of perturbacion cheory. Ic is 
argued chac the eigenvalue equation has no non-Crivial solution 
and chac che effeccive coupling conscant increases wichouc bound 
with energy. 
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"''> SPONTANEOUSLY BROKEN SUPERGAUGE SYMIIETRY 
AND GOLDSTONE SPINORS 

Presented by 

P. FAYET 

"Spontaneously Broken Supergauge Symmetries 
and Goldscone Spinors" 

P. Fayec and J. Iliopoulos 
Physics Leccers 51B (1974) 461-464. 

Abstract We present a model with a sponcaneously broken sucsrgauge 
symmecry which resulcs in che appearance of a massless 
Goldscone spinor. The model combines supergauge invarian
ce wich ordinary gauge invariance. After che breating 
the gauge boson acquires a mass as a result of che Hii?gs 
mechanism. 
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V 

III - G A U G E F I E L D S , Q U A R K S 

A S Y M P T O T I C F R E E D O M , 

I N F R A R E D S L A V E R Y 

Asymptotic Ne.ir Freedom 

D. Bailin, University of Sussex 

The work which this report is based upon was done in collaboration with 

Alex Love. It came about as a response to the shock we felt when we studied 

the experimental data on scaling. It seemed to us that the data do not rule out 

2 2 / 
a -q variation of the structure functions (at fixed q 'V) of perhaps as much as 

(1) 

(-q ) ' ' , i£ we parametrize the variation as a power of -q. Of course the 

asymptotically free gauge theories predict logarithmic deviations from scaling' 

and the problems of distinguishing between these two types of deviation have been 

discussed by Gross elsewhere in these Proceedings. The N .A .L . experiments 

using muon beams should clarify the sii^iation. At any rate, we asked ourselves 

the question: what would be the theoreti 'al consequences if the N.A.L . expciimcnts 

actually show a power deviation from exa^'t scaling with an exponent less than about 

- 0 . ,3? 

Such a variation is still considerably slovver than any known form factor 

so probably we should not simply drop the ai .jaratus which has been built up to 

understand "exact" scaling. Presumably we t hould say that the underlying strong 

interaction field theory was asymptotically "ne. ily" free rather than asymptotically 

free. More precisely we should say that/3(X) haa a zero at X = \ , near the origin, 
F 

which controls the ultra-violet behaviour of thi t leory. Then the effective coupling 

constant X (t, X) •* X_ « 1 as t -• oo. But for , to be an ultra-violet stable fixed 
r r 

point we want 

/3(X) > 0 X < Xj, 

and /3(X) < 0 ^ ^ ^p- • 



and since fJ(0) - 0 the simplest possibility is that shown in Fig. la. t)f course 

/3(X) might have two zeros near the origin with the second one attractive a.s in Fig. 

l b . We thought this lat ter behaviour unlikely (and certainly unpredictable) so we 

considered only the first possibility. Thus we are considering theories in which 

X = 0 is an infra-red stable point. 

(2) 
But Zee has shown that there a re lots of theories which cannot be asym|)totically 

free so we considered those theories which seemed to us to be a priori Che most 

reasonable. There a re advantages in basing the strong interaction Lagrangian on 

a group which commutes with the ordinary classification Sl'(;i), since we gauge purls 

of classification SU(3) to generate weak and electro nugnelic interactions. An 

(3) a])pcaling choice of strong interaction group is tlie groiiji wliicli transl'oi nis the 

colour indices of the three triplets of quarks required lo give the correct rate for 

;"-> •}•>. This rate and the total e e annihilation cross-sect ion do not depend upon 

the choice of colour group, but only on the fact that there a t e three el.'is.silicaiion 

Sl'(.3) triplets of quarks uith conventional elKirges and wetik charges. Tlius ue iViay 

take the 3 colour indices a -- 1, 2, y of the quark q as translorniing tis the three 

dimensional representation of a group G. This group is usually taken to be SU(,3) 

and the three dimensional representation is the fundamental representtition. However, 

«e can also take G - SU{2) which is the same as the rotation group, 'i'his too has a 

three dimensional representation namely the regTiIar representation in which the 

quarks have "colour spin" unity. The next option open to us is whether to use 

vector gluons or sca lar gluons transforming according to the regiihir rcpresenUition 

of G. If G is SU(.3) there will be eight ghions while it G is .SU(2) there are Ihree. 

The Yukawa coupling of scalar gluons is known to be a theory in which the fixed point 

(2) at the origin is not ultra-violet stable so that the ultra-violet behaviour must l)e 

controlled by a non-trivial fixed point, such as we arc looking for, which we 

- / .6 -

assunie to be near the origin. In the vector gluon case we have a i on-abclian 

gauge theory which, if G SU(.3). gives an ultra-violet stable orig n̂  ' provided 

we do not generate the gauge field's masses by means of Higgs sca ia rs . Thus 

IS{\) docs not have the form of Fig. l a . and we discard this possib lity. On the 

other hand if G ^ SU(2) we have^ ' 

where 

,a(g) 
1 6 1 

2 2 (16;. f 

T S ^̂> - t ""'̂ «̂) 

and S <«) ^J 

T (R) 6 ab 

ike ike ' 

Tr LR'^R' ' ] ; 

R ' are the matrices representing G in the (3-dimensionai) rcpresi ntation to which 

the fermionsbelong. m is the number of fermion multiplets, S i n t u r c a s e . Now 

for G = SU(2) 

S '̂°> = 2 T{R) 

Thus 

22 
3 

24 
3 

and we see that the origin g - 0 is no longer ultra-violet stable, ai d again the 

asymptotic behaviour must be controlled bv a non-trivial fi.xed poiit. Notice that 

the small value of A above results from extensive cancellation bccveen the two te rms 

so thill if B is negiitivc and of "normal" size we may expect a zerd of/3 near the origin. 

In lact the results of Jones, presented elsewhere in these Proceecings, and of Caswdt 
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show that 

B >« + 80 

for G = SU(2) with three t r iplets . Thus it is unlikely that in this theory (i has 

a zero near the origin, and in this report we shall henceforth feonfine ourselves 

to the sca la r gluon theor ies . \Not ice however that the form of A does provide 

a "natural" mechanism for cancellations and hence for nearby zeros, and it may 

be that some other reasonable choice of m, R and G could yield the behaviour we 

+ -
are seeking; as Wilson has observed ea r l i e r in this Meeting, the e e annihilation 

cross-sec t ion may force us to entertain theories with large numbers of fermion 

multiplets. 

We now! calculate the anomalous dimensions of the tensor operators which 

occur in the light cone expansion for e- or v-production. We assume that the sca lar 

fields ip have a Yukawa coupling to the quark fields q^: 

a',/3, a 

where R a re mat r ices In the 3 dimenional representation of G, and a runs from 

1 . . . . 8 if G = SU(3) and a = 1 . . . 3 if G = SU(2). In addition there is a four scalar 

4 
coupling, denoted X ip , which however makes no contribution in the single loop order 

in which we shall be calculating. We a re concerned with the light cone expansion 

for the product of two currents , vector or axial. For a spin averaged target and 

energies below the threshold for the production of colour non-singlet states the only 

t e rms In the light cone expansion which we need to worry about are 

s . Of 

(m = 0, . . . 8) 

Continued Overleaf/. . 
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A---^ _ ,n 5- a h /n a 
O9 = i ^ <p 6 . . . b <p 

where X acts in the space of ordinary classification SU(3); the summation 

over a and a ensures that the above operators are colour singlets. We see 

that for classification SU(3) non-singlets there is only one operator (for a 

given n) to worry about, while for SU(3) singlets there a re two (O and O ). 
„n 

where 1/1 = n or i,, 

and j = 0 . . . 9. The SU(3) non-singlet insertions are multipUcatively renormallzed 

/ • I' n 
We denote the inserted Green"s functions by T ^ where 4 = q or 0 

but the singlet insertions a re not because of mixing between O and O . In general 

the renormallzed Green's functions f a re related to Fby 

„n 

^ = L 2 (*i> ĵk ^ 

They satisfy a Callan-Symanzik equation^ which in the deep eucUdean region 

(relevant for deep inelastic e- and w- production) takes the form 

k 

where ^(((j ) is the anomalous dimension of the field tj) and 

is the anomalous dimension matrix: 

ft 6 b ft 

a p 6m "̂ X 6X '^g 6g 

li and m are the masses of the scalar and fermion while X and g a r e the renormallzed 

coupling constants. To calculatue the y., in lowest order we simply have to calculut'! 

the divergent parts of the diagrams shown in Fig. 2 which a re proportional to 



E,.... 7 • • . P 
'^1 '^s n 

for external fermions, 

p . . . p for external sca la r s . 
' ' l '̂ n 

Fig. 2d. has a convergent contribution which is why X does not enter in lowest 

o rder . The upshot is that for SU(3) non-singlets 

2 

7 " (g) = — ^ C„ (R) f l -—T—T, 1 (m = l . . . a ) 
"" 1631 2 ^ ' L n (nU)J ' 

(1) 

For SU(3) singlets we get a 2 x 2 anomalous dimension matrix 

2 / (o) (9) 

16!f 

'̂̂ ^2<^V n1 
2n{n 

(2) 

where 

c , (R) I = Z R"" R' 

T { R ) 6 ' ' ^ = T r C R ^ ' R ^ ] 

4 / 3 

2 

1/2 

2 

: SU(3) 

: SU(2) 

: SU(3) 

: SU(2) 

Using the Callan-Symanzik equation and the Wilson light cone expansion it then 

n ~ n 2 
follows that the Four ier transformed coefficients of O , C (q ), satisfy 

DR"(q^) = E n ~ n 
J . . , - ^ . k j - k ^ ' ^ ' ) 

These equations can be solved by diagonalization of y with the result (writing 

Cj as the elements of a vector C ) : 

~ n y n ^ 2-h^' n 
C - Z - / c. (-q ) e. 

i 

n T where g. are the eigenvalues and e. eigenvectors of y . In the ultra-vi olet 

region \\c (ake g lo have it 's fixed point value g :\ncl ue see that the 

2 
SU(3) non-singlets a r e controlled by one power of -q and the SU(3) singlets 

by two powers. Notice that in the limit n -•00 the anomalous dimensii ms 

approach fixed non-zero values; 

2 
for SU{3) non-singlets (3) % 

1671^ 

2 

16;r^ 

c„(R) 

(C2 (R), (C (R), 12T(R)) for SU(3) singlets (4) 

It is this property of Yukawa theories which gives r ise to the charactsr is t ic 

threshold behaviour discussed by Gross elsewhere in these Proceedj igs. 

These statements may be translated directly into statements abott the 

moments of the structure functions. The SU(3) non-singlet combinat ons of 

the currents are always controlled by one operator as we have seen and 

n+1 

J d5 | | F^' 1 " oc ( - q V ^ ^ ni (m - . . . . 8) 

the same is true of the F -̂  moments for all SU(3) quantum numbers 1 icluding singlet 

combinations - this follows from G-invariance. Thus 

; 

, n+l 
d5 Fg' S" oc (-q )'== •^m (m = 0 . . . 8) 

In both of these expressions y is given in equation (I) . The only c<implicated 

behaviour a r i ses when we consider the moments of F^ arising from .MJ(3) singlet 

2 
combinations. In genera) they a r e controlled by two powers of (-q ) corresponding 

to the two eigenvalues of equation (2). The only exception is the n ^ i case where 

one of the eigenvalues vanishes. This occurs because one linear conbination of the 

operators O , O is the energy-momentum tensor whose':onservation ensures 

that it has no anomalous dimensions. The known matrix element of this tensor enables 
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(7) us to derive a modified version of the Fr i tzsch Gcll-Mann' pure quark sum rule: 

6 f" dl (F^P . F^") - f' dl (F^^ F^) - I R ^ O (g^) 
>'o >'o 

oc (-qV^(2)^2 

2 .2 
gp, r 9 1 „ gp l ^ - ' ' • ^^<'''* 

j g ^ 25.3 : SU(2) 

2 
is the non-zero eigenvalue of y . 

R = 18T(R) [18T2(R) + C^ (R) J [ g/^o ^ ĝ ^̂ ) 

Conclusions 

The character is t ic power deviations from scaling of theories which are 

not asymptotically free should be detectable In the N, A. L. muon experime nts. The 

Yukawa theories which we have considered have SU(3) non-singlet s tructure function 

2 2 -D 
moments varying as a power of -q , namely (q ) . The maximum value of p is 

f : SU(3) 

1 : SU(2) 

( t h e moments of F , even the SU(3) singlet combination, a re bounded by the same 
3 

power variation). Thus these tests do not provide a very sensitive way of distinguishing 

between the two theories. 

2 -0 , 3 
If we assume that the scaling deviations a re something less than (-q ) ' , 

we should conclude from these tes ts that 

determined from (3) to be 

2 
1 ^F 

16i 
C2(R) = 

2 
% 

16ir^ 
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Oj, g/ r i . 8 : SU(3) 

1^1.2 : SU(2) 471 
2 

On the other hand tests of these theories using SU(3) singlet combinations 

of the currents provide more stringent restr ict ions on a and distinguish more 

easily between the theories we a r e considering. It i s easy to see that the largest 

of the two eigenvalues of y , given in (2), is bounded and that the maximum 

variation of SU(3) singlet moments is given by 

P = 

2 2 / U ; 

I - \ [12 T (R) + C (R) 1 = — ^ < ^ 
SU(3) 

SU(2) 

If p < 0.3 this gives 

^ ' ( 

0.33 : SU(3) 

0.092 : SU(2) 

Thus the outstanding question is whether the Yukawa theories we have been 

considering do In fact have fixed points satisfying these inequalities. Th3 only 

way we know of to tackle this problem is to calculate the p function In two loop 

order . At this level we have a two coupling constant problem because we have to 

4 
include a X <p interaction tor renormalizability, (In fact for the SU(3) case we 

have to introduce a |\(o coupling which however is presumably negligble 

asymptotically ). Thus we a re concerned to find simultaneous (non-trivial) 

zeros of j} and ;3. . The calculation is straight forward byt not yet completed: 

there a re of course no problems connected with gauge invariance which have been 

referred to by other contributors. 

We have restr icted our atteiltion in this article to three triplet models of 

the hadrons. However, the well known Problem concerning the e e annihilation 
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cross-sect ion has made three quartet models much more popular since 

these yield a la rger value for R = ff(e e - hadrons)/" (e e -» M >; ). It is 

easy to generalize our results to the case when SU(4) is the classification symmetry. 

This makes the SU(3) singlet behaviour even more complicated since in this case 

there are three operators instead of two controlling t.ie asymptotic behaviour. 

However, it is easy to see that the SU(3) non-singlet behaviour is unmodified 

so long as we continue to use SU(3) or SU(2) for the colour group. For this reason 

a safer but less rigorous test of our Ideas is obtained from a study of the scaling 

deviations In SU(3) non-singlet combinations. 
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1) IHIRODUCTION 

To obtain a detailed understanding of the mechanism that keeps the 

quarks permanently bound is one of today's major problems in particle physics. 

It would be most satisfactory if the feature could be explauned m terms of 

infra-red effects in a renormalizable field theory. And then we are naturally 

led to a non-Abellaii gauge theory without Higgs-Klbble mechanism, for throo 

reasons : 

a) The theory contains massless fields interacting with each otlior and in 

therefore infra-red divergeat. Tue aosence of mass follows from the sym

metry and needs not be put m by hand. 

b) The theory is infra-red unstable and therefore the long-distance behaviour 

is not described by the classical limit of small coupling, and there need 

not be physiceil massless particles. 

c) The theory contains vector fields. These could form vortex lines which 

behave like strings. 

It is this latter point to which we want to focus attention. Vortex 

line solutions are known to exist in an Abelian theory with Higgs mecheL-iisin 

However, in that case, it is the magnetic field lines which are trapped in a 

vortex. If quark.s are to sit at the end points of such a vortex, so that they 
2) will be permanently bound, then they have to be magnetic monopoles '. The 

quantum rules necessary to exclude exotic states are then not very elegant. 

We think that it should be the electric (i.e., time-space) components 

of F that are trapped in a vortex. In that case the triality 3ero selection 

rule comes out more naturally, as we shall see. We asked ourselves whether 

electric vortices can occur in a classical Lagrangian field theory. The answer 

is yes, but the Lagrangian is not renormalizable. It deviates from a renorm

alizable one only for small values of certain fields. Since these fields have 

the dimension of a mass, this is a modification in the infra-red region. It 

is not inconceivable that higher order quantum corrections from zero mass 

particles give rise effectively to such modifications. This is why we call 

our Lagrangian an effective Lagrangi'ui. 

2) COHSTRUCTION OF THE LAGRAHGIAM (hBEhlAS CASE) 

We can follow the guide of ihe renormalization group. We want to 

describe an asymptotically free, infrri-red unstable theory. Let ar, a.inumo 

that for momenta going to zero, the el'fective coupling goes to infinity : 
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II ^ (2.1) 

This we now take as an input. So from now on we can forget that the theory 

was non-Abelian, and first construct an effective Lagrangian with this property 

for Abelian gauge fields. 

All charged particles will be represented by an external source 

function j(x). Consider the Lagrangian 

«*. * ~ T "̂  '/** ̂** ' ̂  /*• ' (2.2) 

where 

and Z is just a constant. Of course one could scale Z out of the kinetic 

term : 

/ y -* Z-'^'-Pj^ . 

^ "• " T i/t^ '/iv " 2 " ^ /^ 
(2.3) 

So we see that the interactions are proportional to Z~ . Therefore we want ! 

if k ^ 0 , 

(2.4) 

then Z •'.* 0 

Now i f we took Z to be momentum depen lent then we would have a n o n - l o c a l 

Lagrang ian , and ( i n t he non-Abel ian c a s e ' gauge i n v a r i a n c e would be d e s t r o y e d . 

The t r i c k i s t o l e t Z depend on an a u x i l i a r y s c a l a r f i e l d <p w i th t he 

dimension of a mass ; 

" ^ - - ^ ^ ( 2 . 5 ) 

then Z C T ) "t ©. 
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Thus vWtK-e led to consider the following Lagrangian, 

L(f),q) =. -lZ(<^)T^^T^^ _I^^O^_ VÂ r̂  „ ;:̂. ,. . (2.6) 

By definition we shall require 

Vfq) > 0 i^ ff ^ " , 

In practice one can take 

(there is no reason to require symmetry breaking here). And further 

Z((f) -> I -for («M€ |q I , 

Z^q-) -=> C for q -^ O . (2.9) 

The exact form of Z for small values of tp shall be left open for the time 

being. For simplicity we take Z and V both to be increasing functions of 

3) WHAT HAPFEMS TO COULOMB'S LAW 

Prom the Lagrangian (2.6) we derive the Lagrange equation, 

?- /̂ ^ ~ dv ^ (3.1) 

where E is the induction field. 

It is convenient to take E as a separate variable and write 

-62-

= —- - ^ r ... -' r T-- _ I ' ^ '••- .. • -'a ̂  _ "1 p, (3 ̂ ) 

k7«\^ -r- '•-' ' ' '•' ' ^ /• ̂ "-'̂  ''̂  • 

+ total derivativs. 

Variation with respect to E gives (3.2) and the original Lagrangian (2.6). 

Now the vector potential acts as a Lagrange multiplier. 

Suppose now that the charged particles are at rest and we are 

interested in the stationary solution ! 

^\^(A = '>'''•^ . 
(3.4) 

F . 

1^. 
' If 

-= (, 

= 

) . 

- F . 
i 

Than the Lagrangian equala mlnu» the energy deneity, which !• 

(3 .5) 

The field configuration is found by requiring the total energy to bj a minimum 
under the additional condition 6.E. = p. 

1 1 

Since we want to find the Coulomb force between two chargss far 

apart, we are mainly interested in fields E that are nearly constant as a 

function of space also. In that case the derivative term for the p field 

is unimportant. The field cp is then determined by the requirement that 

1 r-7 

- ' ' - + V"l') (3.6) 
2. IT) 
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be minimal , so f i n a l l y a l l t h a t i s r e l e v a n t i s t h e r e l a t i o n between 'A and 

V. Suppose t h a t f o r tp -• 0 , 

( so i f we t a k e V = ^ cp + (5(cp'^) t h e n Z(cp) - C ( | m % ^ ) " ) 

(3 .6 ) i s minimal i.f 

r -ic<.(-1 , 

So the energy density for small values of E is 

I -2. 

1 ^UB) . ( u i ) ( | - f r ^ = c:\E\ I+- OL 

For large values of E we have 

so we have roughly, 

(3.8) 

(3.9) 

(3.10) 

Now consider a flux line going from particle A to particle B 

carrying a small flux i [i'ig' I- Remember that due to (3.l) we have flux 

conservation J. Let it have a cross-section D. The electric induction is then 

E = < $ / n . (3.12) 

and the energy U per unit of length, 

\ ' .11, 1 - I .J„ 1 / 
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In Pif';. ? the function U(n) in sketched in three cases : a > 1, ̂ ffT 1 and # 
c* < 

Ii tne case a < 1 the flux lines tend to taKe as large a volume 
2 

as poGsible and n will bo of the order r where r is the distance between 

the particlea. We get a power lav/ for the potential V(r) 

V t-̂  o<: V UCr 1-) o< r <i ! • 
(3.14) 

leading to quark confinement if a > 1/3' 

If a = 1 the energy of a flux line will become independent of its 

width and just proportional to its length. We get 

V'/r (•y '^ \ ) (3.15) 

n. 
B 

Fig. 1 

a 

j i 
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If d^^^ then the flux lines will not spread further than the 

cross-section n where the energy is minimal (Plg. 2). The whole field E 

will be confined in a tube with a definite width and arbitrary length. These 

are the electric vortices meant in the beginning. They will behave exactly as 

the dual string. So here also 

VCO <x^ r (.X > i\ . (3.16) 

The success of the dual models in describing the phenomenology of the 

strong interactions indicates that most likely o > 1. 

Let us now turn back to the term (&.cp) in Eq. (3.5). It does not 

change our arguments. But in the case of > i it is the only term that raises 

the energy if we try to split the tube. If it would be absent then the field 

would drop sharply to zero at the edge of a tube. So its task is to make the 

vortex soft at the edge, and continuous inside. 

We observe from the solution that, in fact, a symmetry breaking 

mechaniem takes place s the gauge field term in the Hamlltonian (3.5) forces 

cp to become non-zero if a vector field is present. In other regions <p = 0, 

and there the gauge field cannot penetrate. Thus our theory resembles the 

bag theory ' : inside we have cp ̂  0, gauge fields present, and outside 

cp -» 0. But we have a soft bag : everything is continuous. The hard bag 

would correspond to neglecting the kinetic term for cp and taking Z(v) to 

be a step function (e» = oo ) . Charged particles are automatically confined 

to the bag because of the field they drag along. 

4) THE NON-ABELIAN CASE 

In the non-Abelian case the induction f ie ld E s a t i s f i e s the 

equation 

^ / " " <^^ ( 4 . 1 ) 

where V is the covariant derivative. So flux is no longer conserved, and 

we cannot extend our classical solution to this case : there are no classical, 

stable v"brtex lines. " Nevertheless we believe that also this theory will have 

vortex lines if tf > 1. The argument goes as follows. 
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Let us take one isospin direction, 'say the 8 direction i i SU(3) 

space, and consider the electric field 6^A^ - b^A^ separately." A], L other 

fields, i.e., the charged Fermi particles and the charged gauge vect )r particles, 

are described by the source J^. The difficulty we had in the begin ling can 

now be formulated as follo-vs : given a pair of charged particles wit i an elec

tric vortex line in between. Then the charged gauge bosons can be c -eated in 

pairs and thus neutralize the electric field, and the vortex will fa.l into 

pieces. 

However, the quarks have charges 1/3, 1/3 and -2/5 witi respect 

to this colour electric field. The gauge bosons, on the other hand, have 

charges 0, and ±1 only. In Pig. 3a we depicted what we expect to happen 

if a pair of gauge particles tends to neutralize a vortex between a single 

quark-antiquark pair. In Pig. 3b we see that three vortex lines can be 

eliminated if they are parallel. Only colourless, triality zero states have 

no vortex lines emerging. 

)̂ -• > 0 *« o -

b) 
^ ^ N^ W ' • "V 
^ . — > - — ^ - . rt?^ » — - y • ^ 

Pig. 3 

After completion of these notes the author became aware of the work of Kogut 

and Susskind ', who describe essentially the same model. 

'̂  
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ABSTRACT 

A calculation of the renormalisation constants of 

the Yang-Mills field to O(g^) ie presented. The function 

P(g) Is hence evaluated to 0(g-') and possible implications 

for gauge theories of the strong interactions discussed. 
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Introduction 

Great interest has been aroused recently in non-abelian 

1 ) gauge theories of the strong interactions becauae of the observation 

that such theories can exhibit free-field asymptotic behaviour at 

large Euclidean momenta, hence providing a natural field theoretic 

framework for the explanation of the scalinp; phenomena observed in 

electroproduction and neutrino-production experimento .•̂~ ' However, 

it seems that the introduction of scalar mesons with non-vaniGhing 

vacuum expectation values to give masses to the gauge fields destroys 

the free fjeld behaviour, because of the quartic interactions 

2) inevitably present in a renormalisable theory.' This observation 
2) 5) 

led to the conjecture '' ' that the strong gauge symmetry is in 

fact exact, and that the absence of mass] esc vector boi-,onr; i r; 

nesoclated with the infra-red divergonoes involved in such a thoory. 

Asymptotic freedom for non-abelian theories is a oon.seciuenGe 

of the behaviour near the origin of the calculable fiuiotlon P(P;) ; 

in view of the above conjecture its behaviour away from the origin 

is also of interest; a zero of p for some finite value of g would 

correspond to an infra-red stable fixed point, hence rendering the 

conjecture suspect. In the absence of non-perturbative approaches 

a two-loop calculation of p is therefore of interest, and is per

formed here, using the dimensional regularisation technique of 

't Hooft and Veltman '. 

We find that for the favoured model (SU(3) with three fermion 

triplets) the second term in 3 has the same sign as the first, 

suggesting that the domain of attraction of the origin is large. 
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2 . Cfjlciil'U i on of thp Uenormallr.a t i on Gon.;tantF. 

xhe Lagrangian we s h a l l c o n s i d e r c o n s i s t s of a s e t of gauge 

f i e l d s VV (X) and a raultinlet of s:jin o n e - h a l f f i e l d s 7 ' (x) , and 

pOEsesses l o c a l rauge i n v a r i a n c e with r e s p e c t t o a comps c t semi-

simnle L ie grouD G, of d imension r . The b a r e Lagrangiar i s 

t h e r e f o r e 

r 
(1) 

where 

~Q;. = ^.vi:- -j.^; -a f^ 'v; / : 
(2) 

and 

(3,# . VT' + ^3(RTf H V (3) 

{f^ means unrenormalised) 

Here f^°° (a: l,2...r) are the real, totally antisymmetric 

structure constants of 0; (R^)JJ is the matrix representation of 

the a'th generator of CJ on the fermion multiplet. (1 = 1,2...d(R), 

where d(R) is the dimension of the representation). tie assume that 

G la non-chiral, to avoid difficulty with Adler anomali<=.s. 

In terms of renormalised quantities the Lagrangian becomes 
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(u) 
where we have added a gauge term and a ghost Lagrangian in the 

usual way. The renormalised quantities g, a and M are jlven by 

^ = ^7^;'-3 (5) 

|V\ ., ^ ^ ^\ (6) 

(7) 
^ -- ^ A O C 

(Note that the longitudinal part of the W propagator is unrenormalised) 

We will work throughout in the renormalised Peynman gauce (a = 1). 

The function p(g) , as we shall see in the next section, is 

related to the renormalisation of the coupling constant p. We 

choose to calculate this to 0(g ) by considering renormalisation of 

the YI1616 vertex, and therefore calculate only Z,, Z^ and Z^ to 0(g). 

Clearly the calculation of Z^ would provide a non-trivial check on 

the algebra through the Slavnov-Taylor'' identity*.— 

^3 k, - "/.^ 
This calculation has in fact been perfoi'med by '•'.. Caswell' , 

with results in agreement with those presented here. 

We use the metric conventions and Peynman rules as given by 
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i ^ ^ ^ e ' t I j o f t^ ' ; and since f" i-'Cv'nman in l ep ra l s are to W^Tierformed in 

n iimens]onB It is convenient to define a new coupling, constant 

u bv 

^ (9) 

where fe = h~i' and m is an a rb i t r a ry mass. 

Tne Eut t rac t ion constants (Z.,-1), (Z^-1) e t c . are chosen 

(following ' t Hooft ' ) to contain only inverse powers of ^ 

in -'in expan:;ion about € = 0. I t follows ' ' ' that the sub

t rac t ion corr'tants are mass indepen'ient; accordingly we se t M = 0 

thr juglout . 

•''or d e t a i l s of how the pole terms are extracted from the 

Keynman intop;rals see reference (12); here we present only the 

r e s u l t s . 

From one-loop diagrams we obtain 

(?r - 0 
i»> 

(10) 

t«) 

- ' ^ ' ' ^ % . ^ . 

bU f̂e 
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where ' ^ ^dil, - c>.c.e(. 0-tcA 

( i i : 

Using these results we obtain from two-loop diagrams 

C'-^ g j ^("l.^^".)^'^'^^-^^^'«)^'«)^ 

L 11'' */ _ 

(H.'^^)^^^^^^fti.>^^^^^^) 

(12) 

3 . Calculation of B 

The renormalisation group equation for a s i n g l e - p a r t i c l e 

i r reducible Green's function r(pj^;u,ra,a,M) is 

L "̂̂  9M. ^M 3ot ^ '^-0(1. d'O 

V. here 

/3(u) 
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^, Uj A «***5|4-. 

du) 

(15) 

Note that we have written 3 and YJ. as functions of u on]y (and not 

a ) . For discussion of this point see references (12) ard (13). 

The solution of equation (13) is well known ; — 

(16) 

where and 

U. 

(J- is tfe mass dimension of r) 

^ oC 

(17) 

(18) 

(19) 

(16) expresses the fact that rescaling the external momenta is 

equivalent to changing the coupling constant, mass,, and the 

gauge. (17) shows that the zeroes of 3 control the behaviour 

of the effective couoling constant u in the high or low 

momentum 1Imits. 



e ^ r a t i 
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Prom e"^ifftions ( ^ 1 , ( 8 ) , (9) and (IJ4) we f i n d 

-J. ̂  U. 

r . / - » p \ * ^ (20) • 
1 + " • ^'h'-lii^l] 

Substituting from (IO) and (12) we find, in the limit & -> 0 

where 

U. Discussion 

Let us consider the case EU(N), with f multiplets of fermions 

in (a) the adjoint and (b) the vector representation. 

For case (a) we have 

Cj.CO = C:,CR) = N ; T U ) = rf W (22) 

Thus 

W^'W u 
(23) 

For f ̂  3f A ^ 0 so that asymptotic freedom Is lost. This model 

(the patticular case f = 3, N = 2) was proposed by Bailin and 

Love ' as a possible model of sti*ong interactions, with the 
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obr.t rvatj on tnat if P had a zero sufficiently near ^ ^ origin 

tit Dover violations of scaling predicted might still be com

patible with the dat'i. The expression (23) for p clearly does 

not support tiiis conjecture. 

For case (b) we have 

Q f M ^ M ; C i (R) - ' ' -^ ; ' ^ ^ * ) - * / i - (2U) 

(25) 

3 • /N 

j3 

we have A <^ 0 and B ̂  0, and the possibility of a theory with cal

culable infra-red and ultra-violet behaviour. The number of 

fermions required is too large for strong interaction models, 

however - for example in SU(3) we would require 15 or 16 triplets 

to give a zero at a believabliL small value of the expansion para

meter. 

For the case SU(3), with three (or four) fermion triplets we 

have A = -9 (~-̂ ) and B = -6ii (~—i^). For these cases, therefore, 

the domain of attraction of the origin is clearly large; we may even 

consider the result as supporting to some extent the conjecture that 

the strong gauge group is unbroken. 
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INTRODUCTION 

Recently field theories have been discovered which at large momenta behave 

as if they were free^). More precisely, in the language of the renormalization 

group, the effective coupling constant moves towards zero as the momentum in

creases. In applying these theories to deep inelastic phenomena it is necessary 

to consider currents J and in particular the short distance behaviour of the pro

duct of two currents. When the Wilson^) or light-cone expansion 

JcoT,-., ~ Z: c"\Ai)^>''...A>'sf (o) (1 .1) 

is written, where for convenience we have suppressed all Lorentz and group indices 

of the J's, we have to consider all operators R u-^"^ which mix with each 

other under renormalization. The problem of mixing is present in all field 

theories. In <(i'* theory, for example, if we are interested in the Green functions 

<^0l T ( ^*«) j5(«,l ̂(Xj) . . . 0CX,) 1 ^ (1.2) 

which are generated by adding to the Lagrangian a aource term K(x)i^''(x), we muse 

consider counter-terms linear in K but proportional to operators such as O * ) ' 

which are different from iji''. This is basically all that the phenomenon o£ 

mixing is. Non-Abelian gauge theories are the only theories which can be asymp

totically free. They are much more complicated than 0'* theory because of gauge 

invariance. 

In order to be specific we shall first consider the action^' S 

S:AI = - i F V F ' + t •• ^ ^ ^ + g ^ ' A\ ) H^ 

x'-x' F V F .1 (1.3) 

where F^ - 3 A* - 3 A^ - g f**"̂  A^"^; A^ is the gauge field; g is the bare 

gauge coulping constant; X • X *re c-number sources such that X X^J vanishes; 

^ are quark fields transforming under a representation matrix o of the (colour 

gauge) group; and f , are the structure constants of the gauge group. [̂ More

over, the supercondensed notation'*' is used for which indices are supposed impli

citly to carry coordinate labels. In particular, summation over Indices implies 

space-time integrations as well (in an obvious way).J 

The reason for considering initially the operator ^ f^)^ is that it is the 

simplest operator of twist two which is invariant under the bare gauge transfor

mation 
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A (X) = A^x> + o f A^x,A^.) - ^ AM (1.4) 

with A^ a c-number infinitesimal group transformation parameter. At short distan

ces it is the lowest twist operators that dominate. There are of course other 

operators of twist two, e.g. 

R = *̂-'̂ . K D r . r'x'-
where D^ is a covariant derivative. In general we know that operators of the same 

twist and Lorentz structure will mix. We will find some differences in the 

mixing of operators with s larger than two and the operators with 9 equal to two. 

The action given in (1.3) as it stands cannot be used without specifying a gauge 

fixing term C^(A) and the associated Faddeev-Popov Lagrangian. 

The most straightforward way of seeing which operators mix with F " F* y*'y* 

IS just to insert it into various Green functions and obtain counter-terms') of 

the form 

eJc 

ae5^$kircJe - - - ^ -̂'̂  

* V fx'A'A[A' l\" S,S, 
a k c d ab "cd 

^ ^ x'xuy,Ay\ f'' § 

(' I 

+ possible permutations of indices (where c^ denotes the Faddeev-Popov field, and 

U, V, W, X, Y, and Z are divergent constants). 

In this note we will show how invariance arguments'"') can tell us the con

nection between the above constants, at least at the one-loop level. Taylor') 

has recently adopted a similar philosophy but we are unable to follow his methods. 

The formalism and techniques that we adopt are those of Ref. 6. We find in Fermi-

type gauges for s=2 that the Lagrangian containing one-loop counter-terms is In

variant under a x-dependent gauge transformation, and in particular the Faddeev-

Popov mixing is nothing other than the consequent x-dependence of the Faddeev-Popov 
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term arising from this gauge transformation. For higher s we find that the 

Lagrangian in general is invariant under a transformation of A which is non-linear. 

The gauge invariance of the Lagrangian then becomes more difficult to disentangle. 

Since the one-loop Lagrangian is invariant under some transformation and the bare 

Lagrangian is invariant under a different transformation (namely the bare gauge 

transformation), the difference (i.e. the set of one-loop counter-terms) is not 

invariant under either of these transformations. Consequently there is much 

mixing between gauge-invariant and non-gauge-invariant operators. We will discuss, 

however, a class of gauges which do not suffer from such problems; these are the 

background field gauges'). Gauge-invariant operators mix only with gauge-invariant 

operator* In such gaugas. 

In Section 2 we shall give the invariance arguments in Fermi-type gauges. 

In Section 3 we will introduce the background field gauge and discuss its conse

quences. 

FERMI-TYPE (^UGES 

We will consider a bare Lagrangian % invariant under the gauge transforma

tion 

where A is an infinitesimal psrameter, S is field-dependent but t is not. We 

must also choose a gauge-fixing function C (A) for % . Under (2.1) we have 

C^(A)« C(A') +5t,,(A'a, . ;».,A, (2.2) 

When C (A) is (1/,^) 3 *„, 5 being the gauge-fixing parameter, 

§ ' - f ^ A' 

and 

V :̂ - J 5 
ab "b /* 

Taking (1.3) for .2o, regularized Ward identities can be written down in n-diraen-

sions. Diagrammatically they are represented as 

(2.3) 

Bold lines denote vector mesons and dotted lines ghosts. These diagrana often 

seem to cause confusion and so we shall explain their meaning using sinple 

examples. We would first like Co note that (2.3) is valid for the tot il ampli

tudes on the left- and the right-hand side. In particular ic is true HC the ciea 

diagram level and aC the one-loop level. Since we shall only be inters seed in 

che one-loop counter-terms of che theory, this Is all that we shall na<d. Below 

we shall omit fermion lines because they are not essential to che argunent. 

We will first consider q'l and the tree approximation; (2.3) thci becomes 

just 

= 0 (2.4) 

where the cencral vertex is 
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a.a.R/ \b,p,q 

'(J /*.i9 ^ ib (r%X x ' - x-^X p' 
• * / » , 

^ f T,V t ^ p n * ^ ) (2.5) 

the left vertex is 

' \ )- ^f* 
(2.6) 

and the right vertex is 

sb.P.q (2.7) 

(Our conventions are such that all momenta are taken pointing into the vertex; 

p and q denote momenta; a,6 Lorentz indices; and a,b group indices.) In order 

to understand the conventions for the right-hand side of (2.3) we will consider 

the one-loop version of (2.3) 

-.. .; 

*-<rA * 
(2.8) 
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In (2.8) the new vertices that appear (apart from the standard vertices of jfo) 

arc 

(2.9) 

b.P.q 
* x* ' i ' ' ' x i i -k ) ) 

and the non-Lagrangian vert ices 

(Q,a) 

9f 
flbe 

(2.10) 

b,P 
ob (2.11) 

One method of neatly deriving the Ward identities is by using the path integral 

representation of the generating functional and regarding a gauge transformation 

simply as a change of variables of the path integral'""). The identities obtained 

in this way are a general expression of the gauge invariance of (1.3); however, 

our problem is to learn something not about the Lagrangian in (1.3) but about the 

Lagrangian obtained from it by adding the counter-terms (1.6), ^i say. The 

counter-term Lagrangian is defined by saying that it is the sum of terms required 

to cancel the poles at n=4 of one-loop diagrams of (1.3). Here n is the continued 

dimension of space-time required in dimensional regularization. 

So far we have — knowing the invariance properties of a Lagrangian — 

derived identities between Feynman diagrams. We would like to invert this 

procedure and ask whether we can deduce the invariance properties of a Lagrangian 

if we know something about identities between its diagrams. Such an inversion is 
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provided by the tree-loop theorem of 't Hooft and Veltman^). This is not to be 

confused with another theorem of the same name due to Feynman. 

Equation (2,3) when written in terms of tree diagrams is given by 

R 

= - Z I 
blobs I = 1 

(2.12) 

+ •...._., vi t'i' 

This is a simple consequence of the fact that the ghost interaction vertex is 

given by c Ĵ  , (a)c. . On the right-hand side of (2.12) we have intentionally not 

explicitly marked the R and A legs. These are distributed in all possible ways 

In the blobs. 

We shall now state the tree-loop theorem: 

Given 

1) the existence of functions C' as well as s', t', l ' , and iii' such that 

c'(A,+gS'(A)A+t'A\, c'(A).<,i'(AU + A ' 1 + o a ' ) 
and that 

ii) the equation (2.12) is satisfied with C replaced by C', I replaced by V, 

and the ghost propagator by -m~^, 

and, provided all the hierarchy of identities expressed by (2.12) are satisfied, 

then the Lagrangian -^i under consideration can be written as 

1 inviriant 

where S/^. . is invariant under the transformation 
invariant 

)art is added which is given by To ^i a Faddeev-Popov part is added which is given by 

^ I ... A ' 

Now that we have stated the theorem we will see how we can obtain tree identities 

for ^i. From (2.8) we can consider the pole parts at 'n=4' and immediately deduce 

-><-• • + - X — • + 

* • « • .. . ..A 
(2.13) 

•m * 

Crosses replace loops in (2,8), In particular a cross above a big blai k dot 

denotes replacing a loop Involving a source vertex. The factor aisoci.ited with 

• cross is just the pole part (ac n-4) of the bubble being replaced. °o illua-

crace this we will obtain the factor associated with 

This la th« polt part (P.P.) of 

(where p is the momentum flowing in the ghost line). All calculations Involved 

can be performed using 

I J n l *f.v rc^'-i-u) (2.14) 

and 

1 <i"tJAM. = 1 iiiH^ , ^^"•'•"^V L, .<r,j , , . . ' i,V^-jr:;^. ^irr*r\-^ Pj,, U'^^ 1^^-' '»̂ it 
15) 

We find in the Feynman gauge that 

- * 
^f f " ( A f ) x 
+*" (2.16) 
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Here (a,a) is the quantum number associated with ]|[ and b with the fjiiost line. 

If we add (2.4) to (2.13) we indeed have a tree identity for '-'] ot Llic type 

mentioned in the tree-loop theorem. However, we need to consider the hierarchy 

of tree Ward identities of ̂ . So far we have extracted information out of (2.3) 

for q=l. In fact for q'=2 we can follow through exactly the same procedure to 

obtain Fig. 1. This is a rather long expression but we think it is instructive 

to see it in full. The interesting feature of these identities is that of the 

non-Lagrangian vertices. In addition to (2.16) we have now 

which arises as the pole part of 

(c,P) 

la,a) 

(c.p) 
(2.17) 

(k) 

7a!a)""(^'P> 

The quantities in brackets are associated with the appropriate line or vertex. 

A straightforward calculation reveals that 

0 (2.18) 

The pole part of (2.17) is not in general zero for 'higher s' operators. 

We can write down the Ward identities for q=3, q=4, etc., but the purpose of show

ing q*2 Identity in detail is to obtain some intuition about the nature of these 

tree Identities. It is clear that apart from vertices (having crosses) with a 

ghost line entering but not leaving, all the other vertices can be readily identi

fied with counter-terms calculated in the usual approach. The question is whether 

we get any new non-Lagrangian vertices as we go to q=3 and higher Ward identities. 

The only type of graphs that can give rise" to such 'cross' vertices are, for example. 
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and other topological arrangements of the vector prongs. From power counting we 

know that this is finite and consequently there is no corresponding cross vertex. 

The higher 'q' Ward identities are clearly of the topological form required for 

the tree loop theorem. Ue have now to check that the condition (1) of the tree-

loop theorem is satisfied. 

Looking at the structure of (2.13) and Fig. 1 as well at the 'higher' tree 

identities we see that 

C (AI « C (A) (2.19) 

Moreover, from the identities we note that 

(3^>* -'.b)̂ b 

• P.P. 

(2.20) 

v̂ - • / . . . 
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The infinities in the non-Lagrangian vertices that we have already discussed 

cannot be absorbed by terms in '-f\- They have to be removed by renormalization of 

s and t, i.e. by a renormalization of the gauge transformation. 

Hence 

+ p.p. / .^^ 

(2.21) 

In order to have condition (i) holding, we need to show schematically that 

5"^ 3jj [Expression of (2.21)] - [Expression of (2.20)J . 

Fortunately it is necessary only to do combinatorics to verify this. We can se 

that the identity is valid from noting that 

...1. 
Then all the integrals become identical and so condition (i) is satisfied. We 

now have shown that the tree-loop theorem can be applied to ^\. Consequently 

the whole Lagranglan at the one-loop level is 

^\ + (gauge-part) 
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Here the gauge part is 

_ J. r" (3- A ) + Faddeev-Popov part corresponding 

to this gauge fixing. 

Explicitly the Faddeev-Popov part is 

<(g^jA) + mljc^ 

Now the X'dependent parts of V and m' are calculated from the "̂dependeii t parts 

of s' and t': 

5' - 0 J^ f^- independent (2.22) 
cK terms 

and 

* * • " - + P terms 
23) 

Thus the X'dependent Faddeev-Popov contribution is 

(2.24) 

The X"independent terms in s' and t' reproduce the bare Faddeev-Popov ir eractions 

together with the one-loop renormalizations of the ghost propagator and - ertex. 

Tl>ere is a question whether the invariance of 'J^ proved using the tree-luop 

theorem is a group invariance. A proof can be given using the tree iden ities, 

but we shall not reproduce it here. 

There are other twist-two operators such as those given in (1.3). the pro

cedure followed here would go through exactly for them. However, in gen>ral we 

would expect in the Ward identities new varieties of infinities. Apart from the 

expected ones such as 
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for high enough s, we also have the new non-Lagrangian infinities* which we recall 

are responsible for the renormalized invar lances of the theory. These arc of the 

type given below: 

7 V 
Such infinities would give rise to x~'̂ P̂'̂ "'̂ "̂t invariance transformations which 

are non-linear in A, and so the Lagrangian would no longer be invariant under a 

simple gau^e transformation. We thus see, just from invariance arguments, that 

Fermi-type gauges do not allow us to consider just only the mixings between gauge-

invariant operators. Because of such difficulties we feel that the problem of 

mixing should be looked at in a different gauge. In the next section we si\aU 

discuss such gauges. 

BACKGROUND FIELD QUANTIZATION 

There exist renormalizablc gauges in which the gauge renormalization found 

in Section 2 does not occur. These are the background field gauges^) which are 
c£ a 

based on splitting the vector field into a classical part A (x) and a quantum 

part Q (x). It is the quantum parts of the fields which flow in loops, and the 

classical parts of the field flow in any tree structures attached to loops. 

The invariance (1.4) can be regarded as being made up of 

o la. at b I c ,b 

Q. («) = Q u) -t <) J- Q t«l A txl 
Alternatively the invariance (1.4) can be thought of as 

(3.2) 
[A] 

V 

= 

= 

= 

A t<i 

Q CX) 

3 r 

= q CX) + 3 f Q. i»)A(») - CD^A(«>) ^ 6)'̂  

9i 

V 

The gauge-fixing condition is taken to be 

( D Ct'o.ii = C o) 

The attractive feature of such a term is that it is invariant under (3.1) but not 

under (3.2); so although we are breaking a gauge symmetry we are still maintaining 

a very helpful degeneracy. This forces the one-loop counter-terms (which are func-
cH 

tions of just A ) to be invariant under (3.1) and consequently gauge invariant. 

At this stage we must take note of the fact that the classical field concept is 

defined with respect to sources; so, for example, to (1.3) we must add J*(x) 

A (x). We want J to be field-independent. However, the equations of motion give 

_ D " c-" - /̂-'-l /"pr" ^ y^.7 
h % . . . - ^ ' ' ' ' » , . ' ' , . . " ^ ^ » : " % . . - ^ 

(3.3) 

Thi« has the imnediate consequence that 

and so J is field-dependent, contrary to our starting assumption. Instead of con

sidering the equation (3.3) we can take as our classical field a solution of 

(K, \f - 0 

-^' ^ (̂ .̂ .̂Tj" 
(3.4) 

where G is defined by 

Following standard arguments'' we are led finally to the generating functional Z 

ZCJ^.TC) 

where S is the action of (1.3), S, is-6*S/6A*I5A , and 
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^f^^'^''^)/='^ sfs^Q'^ U1 - cj = 1 

this being the Faddeev-Popov prescription. If we now introduce the weight factor 

exp (-i/2C C^) and integrate over C (owing to the C-independcnce of Z) we still 

retain a term involving JQ. In the background field method we want the external 

lines to be classical and so this could, in general, be unsatisfactory, at least 

for off-shell matrix elements. The simplest way of avoiding a JQ term is not to 

integrate over C but rather to take a particular value C"0. This has the effect 

of replacing sf Q^Q}J by Q^sf Q̂ J - (D 0^)^. Unlike in the Fermi-type gauges, the 
\iv a D a Ljv D y a 

background field gauge condition helps not only to define the propagator, but also 

gives rise to interaction terms, namely 
ttbc ,b - c -, /-.F 

S f A Q d Q 

and 
9 f'^ A'' Q^ D̂ Q̂ ^ 

(3.6) 

The second of these terms does not contribute owing to the cS-function constraint 

in (3.5), but the first tern cartainly leads to additional diagrams for the mixing 

of the operators R , These are 

N.V. denotes the new vertex arising from the first interaction given in (3.6). 

(We have for clarity not indicated in the diagrams the momentum or quantum numbers 

of the external legs.) 

Owing to the specially attractive property of the background field gauge we 

know that the sum of these diagrams plus the diagrams of the Fermi gauges 

A • A 
•A 

[where no vertex of (3.6) occurs] gives the true gauge-invariant mixi ig. (For 

simplicity we have left out the femion contribution.) Owing to the ntricacies 

of tha calculation wa shall raporc tha nunarical value of tha anonalo is dlmanslona 

of the operators R clsawhere. However, any equality of our number with thoie 

obtained from calculations in Fermi-type gauges would seam CO be forciitous. 

I would like especially to thank G. 't Hooft for many discussions. 

C.ll. Llcv^llyn Smith and R.J. Ccewchar have also made helpful coimencs. 

After this work was completed, H. Kluberg-Stern and J.B. Zuber showed me 

their work on the mixing of the twist-four operator f F" at tha Maiseilles Con

ference, June 1974. 
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GAUGE FIELDS ON A LATTICE 

Presented by 

J.M. DROUFFE 

"I - General Ouclook" 
R. Balian, J.M. Drouffe and C. Itzykson 
Phys. Rev. D 10, 3376 (1974). 

Abstract : We present Wilson's model of gauge-field theory on a 
lattice, including a coupling to a matter field. The 
algebraic structure is surveyed for both commutative 
and noncommutative groups. Various regimes are sug
gested by mean-field theory according to the relative 
values of coupling constants. In particular the gauge 
field undergoes a first-order transition while the mat
ter-field transition is of second order. 

"II - Gauge Invariant Ising Model" 
R. Balian, J.M. Drouffe and C. Itzykson 
Saclay Preprint DPHT 74/74.- (To be published in Phys. Rev.) 

Abstract : We study the case of a discrete local gauge Z in 

order to discuss the existence of a transition in di
mension d 2 3 . We compute the critical constant 
for d = 3 and 4 and show that in three dimensions 
the transition is a second order one. 
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"III - Strong Coupling Expansions and Transition Points" 
R. Balian, J.M. Drouffe and C. Itzykson 
Saclay Preprint DPHT 74/89. (To be published in Phys. Rev.) 

Abstract : We discuss the principles of the high temperature 
expansion leading to a variation-perturbation me
thod. For pure gauge fields, diagrams are two 
dimensional manifolds. As an application, we com
pute the critical coupling constants for discrete, 
abelian and SU(2) gauge groups and compare them 
CO some earlier results. 
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,«•?'/' 

YANG-HILLS FIELDS ON A LATTICE AND DUAL AMPLITUDES , . . \ 'P-

( Exiended version of a talk given at the Marseilles CoUoqulun on 

Lagrangian Field theory , 24-29 Juin 1974 ) 

Abstract : 

Coloured U^,^^\') Yang-Mills fields are coupled through a coupling 

constant g to quarks The theory is quantized on a d-dimenslo lal cubic 

lattice J Expanding in li'-keeping g^n fixed - gives as leading •ontribution 

ill the quark-antiquark sector a string type amplitude The th lory obeys the 

area rule of Wilson , Kogut'and Susskind for values at <a with 

2 <A^« ̂  •*• ('î  > where x(<i) is related to the number of ways a simply 

connected surface with a given border and fixed large area can be realized . 

From the requirement that the lattice length be much smaller t len a typical 

hadronic distance follows Z. O. n % \ a For x(d) we have only a very 

generous bound : x(.d') ̂  7.ci-1. 

POSTAL ADDRnSS : Centre de Physique fheorlque - CNRS 
31, Chemjn Joseph Aiguier 
13274 - MARSEILLE - Cedex 2 

74/1' fiV) 
Octoher 197'i 
K .Snpporied by DRME n° 74/140 - CPT. ( Marsei l le) 
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I.INTHODUCTIOH 

Tradidon wane* it , chat the spectrum of a pertutbatlvc quantum 

field theory Is determined by the free part of the Lagrangian S-matrlx 

elpmencs in perturbation theory can be calculated by referring to this 

spectrum . A notable exception ^' Is nun Abcltun Yung-ilUls theory . 

there the infrared divergences do not cancel end obliterate the perturbatlve 

calculation of an S-matrlx referring to the massless Yang-Mills quanta 

A qualitative picture of what might happen at long distance in such theories '̂  

Is found in ref, B ; due to the peculiar properties of the vacuum polarisation 

dielectric constant can be zero everywhere except In a tube between quark and 

antlquark , This means that only in between the quarks there is flux and the 

field energy grows therefore linearly with Increasing quack antlquark distance 

( like in 2 dimensional E D ) . This thin cube of flux between the quarks 

would be the basis for the dual string model , 

The Justification of this description is yet to be found One way 
2 5) 

of attacking the problem has been developed by Wilson ' and consists in 

building a small distance cut-off into tha theory , by putting the quark field 

on a lattice , with the gauge field defined on the bonds between the lattice 

points . One can make a perturbation expansion for large coupling constant g 

and find ' certain qualitative features of the model described in ref. 8 
3) 

On the other hand t' Hooft has argued on basis of Feynman diagram 

analysis that an expansion In the dimension n of the gauge group,keeping g^n 

fixed , precisely reproduces the hierarchy of dual surfaces with more and 

more complicated topologies . 

We want to advocate in this paper the latter approach , but realUed 

in Wilson's lattice version of gauge field theory discussed in section 2 . 

Again , we will find in section 3b a classification of the kind met in the 

dual model : tha parameter n. distingulshea different classee of diagrams , 

each clase having a given fixed topology . 

74/P.639 
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The leniUny, term In n !• icim i !•<' turn .>t nil nlnnr r oiii i r Imr loni 

Crurl'il is I hen tin .(MI ii.m imw <li'i i in IM" i i ui i '|IMIK jiiiU|iail< 

pair very , when PMIIPII t«i ip.ii I (i P mHiiv laiilcc distances) This is 

discussed in sort pm IT) 

In Rcci ion 4 we look lor possible critical points 

We find that for very large coupling constant the free energy is analytic in 

the mass of the Cermions and therefore , thai everlual critical points should 

be searched for g ""' f"'' '"rge For bosonlc qvarks we show thar the situation 

might be different 

2 The model and Its rtRnlarIzatlon 

In this section we will show how a field 

theory of Yong-MlHi quanta conplpd to quarks can be quantized with the quarks 

put on a lattice , and the Tang-HlUs fields cut-off in a natural way . It 

then turns out that a strong coupling expansion is the natural thing to do , 

and we establish the graphical rules asaoclated to this expansion • This 

section Is subdivided into; 

•) The classical action 

b) 'the quanclced theory 

c) Graphical rules 

a) The classical action of a gauge flrld \\ rariying local U-to") 

and coupling to quarks <̂  In tlip fundamental representation of U.̂ «̂ ') 

J , . ̂ 1 1 Is In Euclidean four-space : 

Here G % = ^i.^*; - -̂  . < - <J, f ^ ^ < >^l and t^ are a set 

of llermltian generators of the fundamental representation of VJLIH) with. 

1, (.•'*tf' , x"S^>^ 2 2 

^ • o being leel and antisymmetric " 

The density in 2 1 Is clearly invariant under local ^Atw") gauge 

transformations: ,^ ^ ^ ,̂ .̂. ,^„ 

with 'N 0>>-^ a ^ U ) - * -^VA") ;.3 

7*/P.ti39 
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We want the regularlzation such,that the gauge Invariance 2 3 is Utpt 

The first step is to put the quarks on a simple hypercubic 

lattice In each point i of this lattice we have an '. i - VJ^I..H7 group 

j|^i/v(0 ^ A-(l) ( tracelcss) Hermltean n» « matrix 

We will consider a finite lattice with a finite number N of lattice points 

Calculations of physical quantities will always be done for finite N, where 

upon the limit N --> oo is taken 

How to have a gauge invariant interaction between quarks and 

gauge fields is well known , We take two adjacent points L and 1' on the 

lattice and define : 

The integration is along the straight line segment between i and 1' 

The symbol ~T" mean line-ordering along the segment ii' The direction 

corresponding to the directed bond Ui')is \̂  . 

We will denote the line-ordered unitary matrix by UL(.CjC'> 

It is clear that : 

u!u,C'VUlU^O (a) 2 5 

(b) 

The part of the action referring to the quarks is now written ; 

and it is easy to check that in the limit S(,-)o(5 bt'ii; 11 .• 1.111 U c Icngtii 

vector in the ^-direction ) we recover the quark part of the action 2 1 , 

except for the mass term 

For later convenience 2 6 is written in a short hand 

notation : 

•^Cc^U^^J-T = ̂ %^ C^VLCI mii,c'7 '̂ (.;'7 2 7 

where rr\(t.''') has the matrix value i T(.-/. ULI^.L') and v - - ~i. -- >, 

ilj (ii') is directed along the ff. axis . 

If i' = l : \X\(c^O?= _rw£ ; that is , we included a mass term for the quarks 

The field f^^UT has been replaced by the unitary O X M matrix t̂ ii'.lO , 

which is a bilocal object Im iii!:'i iny the Interactions between quarks cxt 
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nolghbourtnR s i t e s I and 1 ' . 

We are l e f t with tlio Ysiig-MLlls s e l l U u u r a c i t u n : 

and we should find an expression in term of the U>(i>'), which approxliiuiea 

2 .8(or I t s spsce-t lma i n t e g r a l ) . The b l l o c a l s t ranstorm under a gaune 

t ransformat ion 2-1 aa • 

(H;.c') . i"̂ "' a u . c o .'•'^^''^ r, 
So invariant are'.traces ( determinants) of all productBO' Uo.iO n'cij 

cloued circuits . The simplest circuit that gives a nnn-trlvlal result la the 

elementary square C^ . 

The choice of what scalar function to rake of the product of 

4 Ullt,;') •> around an elementary circuit C^ Is easy in tie case 

of an Abelian theory : 

acco i L̂(..,x) ULU,i)a(.t,H? au.>)--"(taj'^,-^^)^?vl2 u 
Use of Stokes theorem introduces the curl of the vector field C\y, and 

we find that : 

\-.~ 1 v\.'J^<-'^<'"> * =-"^-'}i -- - - ^ \"*"'* "^v- ̂ v « * ««*^'*-''' 
2 11 

The sum on the left side of eqn. 2.11 is over all elementary circuirs of one 

definite orientation ; adding the complex conjugate means adding all the 

circuits of the opposite orientation The appearance of the square af the 

coupling constant in the right side of 2 11 is important and is lue to the 

form of VXti.t') in eq, 2 4 

The non-abelian case can be delt with in the same way ; we get the same 

relation as in eq, 2,11 . 

To resume this section : The action 2.1 is replaced by the lattice ; ction 

\ - -4- } ^^ ̂ '̂*̂  " <|i'-> ̂'"' ^^'"'' ^̂ "̂  2. 2 

The sum "i- is now over all elementary oriented circuits C ,_ and 

the matrix VTl Ci (.') specifies the bonds and their correspondin ; strength 

between adjacent quarks . If the lattice length is let to zero , w« recover 

from 2.12 the continuous classical action 2 1 The lattice action jclll 

obeys a gauge Invariance , with in every lattice point 1 a local (J-Lv\ ; 

group \«.''^"'^ acting , Apart from the mass termjft\ (."'')is anti-Hern Itean 

74/P.639 
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If Che matter field consists of bosons b(i) , trsnsforming under the 

gauge group like quarks : 

we find easily the following lattice action : 

where CAUl')-- IVl-t;'") if 1 and 1' are nearest-neighbour points If i ' i' 

then fA Ui*) =-'î '̂ t̂  . So in the boson case M(ii')is Hermitean . Although 

bosonic quarks are of no interest physically—feihe colorgauge group was 

invented Just for the sake of Uaving Ferraion quarks-.we ''iniion ilicin lor 

later comparison in section 4 

b) Quantization of the lattice action 

Basic for the quantization is the Euclidean Feynman path InteK-

ral 

Z{-:^.~-l '. '\^K^\ i:)ĉ Û 0̂ .̂ •..»f -L?.CV<\f' >> !«>' "1? I,! 
where dots Indicate eventual other source terms . Usually one gives 2,13 a 

meaning by expanding it in the coupling constant g'̂  and by rc;;iilal i ii;', i lie 

ensuing Feynman diagrams . The renormalization procedure then gives the phy

sical answer . For Yang-Mills fields without spontaneous breakin;; Ihe last 

step Is only partially realizable ; we can only renormali'.e at unphysical 

points . Infrared divergencies do forbid the perturbatlve construction of an 

S-metrix with massless Yang-Mills particles in the spectrum , 

The approach followed here is radically differeiti , instead 

of a perturbation expansion in R*̂  we will do an expansion in -„ , usiiic, 
0 

the lattice action in the exponant of 2-13 ; and the integration variables 

0?."̂ jDc\̂  and V5 H are replaced by Ovx.lu'') and \̂.\* .•) aiul v\^i,) 

where i and i' are points on the lattice and where O U L U ; ' ^ is the (left and 

right ) invariant volume element of VXtn) . It is not difficult to see thai 

this replacement reduces in tlie c -% o limit 

74/P.639 
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to the formal expression 2.13 

The boundary of the integrations over the gauge-fields comes from the 

integration t>l-),l>it') over the unitary matrices . Since the ^^ fields 

serve as parameters for these matrices in the ^ -» ̂^ limit , we must have 

a cut-off for the gauge-fields of the order of "tr/aS . Thus , when 

doing the S -< o limit , not only the lattice becomes dense , but also 

the integration range of the ^ yi fields becomes infinite , as in 2.13. 

c) The i, expansion 

We will iiM go into a detailed description of the strong 

coupling (, A"^ •) expansion , when the sources ^ are coupled to 

gauge invariant (i.e colorless ) combinations of quark-antiquark pairs . 

Simple possibilities for such pairs are: ^^.0»^^o , T*-'"̂  \tr|\'-* ̂  "̂"̂  

uî  ̂ r% •< , VAliy) et (,"•'•> . We shall opt for the last possibility 

sinre it is mathematically the simplest . So we are faced with the problem 

of calculating 

or- what amounts to the same ̂  we have to compute the connected part of : 

?(o-) ' Qi'7 

7.'i/r.639 
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The Integrand of 2.16 can be written as: 

10) 
and the incGiiration ovei the quark do^rees of freedom gives 

The normalization constant in front of the determinant is chosen to be one 

The general form of Greens function with sources coupled to 

colorless quark-antiquark pairs is therefore : 

The symbol f l U ^ i is just a shorthand for operations of the hind 

mentioned in eq, 2.17 , The o,"̂  dependence is only, in the exponent 

associated with the elementary squares Ce Expanding the exponential gives us 

a power series in â  

We now turn to an analysis of the quark determinant i«-V tTl 

This quantity is non-negative and gauge Invariant as can be seen from 

calculation of its logarithm : 

The second term in 2.21 gives; 

CO 

Z i i V "2- ^ T f (,y U.)IC ikV) 2,22 

74/P 639 
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Here C(k) means a closed circuit of K stfpt, Ĵ i,*̂  CW) Ita pcriodlclt" , 

the \i,fl»Hn. matrix (.̂  vi ") (.c (.v.i) ihc product ol the matrices '^.,'^'''") 

encountered on the circuit C (.V-'l-

Rearrangement of the summation In 2-22 aiui iisf of T'l (jj U^l^ClVD-s-

to C(Vf) leads to: 

"Trflx U.'H'̂ *'( ^ V l where C" C t") Is the non-periodic c ircui t corresponding 

S o ; d e t ( t - Q L " ) •- •^^ <i.ft ('Ii -( i , U !'.<-'••) ;̂̂ .v,•)•̂ ''•*^*') 2 2) 
c 

The u,y^ »- Hvv mair ix (•!( UL)\CV^ "̂''̂  product ol m=nrlcen •«.,,, U (,.') met 

along the non periodic circuit C . Clearly eacli lanor In the pr idiict 

is gauge invariant , Since to every closed circtiii C" corresponds he reverse 

circuit C* we find that the product consists of pairs with non nejative 

value , So the quark determinant is non-negative . 

The expression 2-23 is not useful In connection wii- i the Greent 

functions we want to evaluate (see eq.2,l9) , This is so because th3 family of 

non-periodic circuitsC" contains self intersecting ones; on the other hand , 

for finite N (finite numbers of lattice points) we have a finite nutiber of 

factors ( H •" ̂4 ") in a term of the determinant so there Is a cedundancy 

in formula 2.23 for the determinant . 
c) 

For the calculation of Greens functions we will use the well known formula 

for the determinant: 

A^^m = Z e-̂ ^̂ ^̂  "?C^> ;.24 

This formula is most easily explained if the quarks have no interiial degrees 

of freedom (i.e -jj..,U.̂ ii' ") is a number , not a matrix ) . In rh,it case S 

is any family of disjoint, not self-intersecting circuits on the 1 ittice , and 

y (. ̂  ^ *s t-ĥ  number of circuits in the family ^ . c C S ^ Is the 

product of the weights encountered on the circuits in S 

In the interesting case where there are non trivial quark degrees if freedom 

(i.e 'j.^, ^JLU <"> are matrices ) formula 2-24 remains the sani; ; only the 

lattice is changed : To each lattice point we attribute t̂  <i (lumber of 

quark degrees of freedom ) levels , labelled by (,o.ot);c«i\,,i,!..^-ji» = i,-j*' 

There are only bonds between levels (an S o..Att (̂ u'5! ") at adi.acent lattice 

74/P,639 
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points i and i' , with weighr (\,,),j L'^^'''^V^,\ • In U K - a"d ' 

we Have illustrated the situation 

Now we are in a position to do the final integrations over the unitary 

matrices IJllc;') (the gauge field integrations) . Normalizing the volume 

0 ̂  (JLtv\̂  to one^we have : 

5 D U H . O LO^uCa^^. lU^(--'^l>,v - i^^X^Vc'V 2,25 (a) 

$0(1 It;') lattt',1,^, C^^-'^^ixV t̂ ''-'>̂ v,̂ . *t̂ -̂'>lf,p' = 

= _L. l.^v.K^.%p^vV'"^^V * ^"'^'«'-''^'>- -̂  ^Sv^.S^,j^,& %p,^, V 2 25(b) 

V Vi ** A , v.V« \ ) 

etc, 

At every bond (CC'') we have a group integration as in 2 25 Note tlie inver

se powers of n at the right hand sides , becoming higher tlie higher the degree 

f t-iif monomial in the U.I11') matrix elements is , 

3- The approximated dual vector amplitude 

a) The graphical rules for calculating a connected n-poini function 

will now be stated The sources \̂ are supposed to be coupled to "vectoti.Jl" 

quark-antiquark pairs : 

Tlius the source îjv'\ is defined on a bond rather then in a lattice point 

The generating functional tj^t^"^ J is defined as 

and a connected n-point function is given by 

a-(.«.l<-. ----- vv̂ lB̂ ,̂ ̂  ^! "̂  = 0)1 3 3 
^::)i.«',^-- s-:)(ft.,) '-;j-.o 
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Ue hflvc impllcllely the nilci for congt 1 uoi i rij- r, , it luiu 1 ioim emi.odiod 

in equations 2.24 and 2.25 , The expansion pai-uaioi.i is <x'' . What we will 

do here Is state the rules for constructing any dnai " connected contribution 

With dual we moan a contribution that is built up hv using 'T T Vi.C.ĉ ') k times , 

with the k elementary circuits Cg ad)acent., formtr;, a (multiply ) connected 

surface ( no two Cg 's the same and not more than two Cg's join at any bond) 

tile sources will lie on the boundaries of the connected surfaces and the 

boundaries are formed by a quark line ( see fig. 4) 

ii;rcu .i/co iti calculating the connected 1-polnt (,reen function 3, J we draw any 

quarkloop going through all s bonds (1̂ , i,'), • - Cs'l ) and construct all 

connected dual graphs possible . They might contain other quarkloops ( holes ) 

and wormholes ( handles ) 

The rules then are 

1° For every surface element a factor 

2° For every vertex a factor n 

3° For every bond a factor irv" 

4° For every quarkloop a trace over the 15 - matrices 

attached to the^Plbonds on the loop , and a factor^)i-

Fermi statistics forces the loop to be self avoiding 

A normalization factor , which is the same for a given 

Green function , 

Rules 1° and 4° are clear from the form of the action . Rule 3° follows from 

the gauge field integration 2,25 a) . Rule 2° is explained in fig 5, where it 

is shown that for tiie dual graphs there is only one index cycle ,i.e a cyclic 

product of Kronecher delta's giving rise to a factor n The trace over "g -

matrices gives for a dual graph a factor VynC-") > where 'o i5the(minimal) 

area enclosed by the loop , It is simple to show that C-") z ** s. i for any 

closed loop . (both facts concerning the - sign's are shown by inductive 

arguments) . 

The rules for non-dual graphs (where at least in one bond more then two squares 

join ) are more complicated , not only because of 2.25 b) , but also because a 

K We apologize for this tt-rminology , which is due to wishful thinking. 
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vertex can carry several index cycles Note also that a square could be used 

an unlimited number of times . In using Ising type models this can be avoided 

by the tgh transformation . 

b) The connection with dual amplitudes becomes clear when we distinguish lor 

a given Green function the different topologies a dual surface Z can have 

A surface can have: Q quarkloops and H wormholes 

Independent of this let it have B bonds , V vertices , and S surfaces , where 

S is counted as follows; first we have A elementary surfaces used in the 

perturbation series , and furthermore Q surface elements corresponding to 

the (̂  quarkloops, (so S' A+Q) 

Then we find for the contribution from . 

using rules 1" to 5°: 

<S-(.twto--•CAW') - \?( X "X r^'^ I \ -Pv^\ ?, - VoVo\ «._\,^, 

Use now Eulers formula 

and find 

Thus we find that merely the topology of a surface ( Ii and Q) does define a 

perturbation series in rC'', when we keep <^>n ^inlte , For example we recover 

for Q « 1 , H « 0 the string type surfaces '*' , of order n Raising 

the number of quarklines and wormholes gives lower order contributions in 

as assumed ad hoc in dual theory . 
2 

The question remains how the non-dual graphs do behave for large n and g n 

fixed , Although the bond integrations 2.25(b) , where more then two surfaces 

meet , are suppressed by factor n" , there can be several index cycles at a 

vertex . We have no quantitative idea of what happens . 
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c) We briefly discuss the dynamical ftaLures. ol the planar diagrams 

( Q - 1 , H = 0 ) . We write the contribution which is of order n : 

where 2.- is any surface with perimeter > ( flp is its area ) . 

First we note that 3.6 can be written ( ft , 'i flp^^V-

P <.£p') ' 5.'-
Call the second sum in 3,7 ^,,('"''1-"); it is reminiscent of the quantized 

( Euclidean ) string' ' with fixed boundary P: 

with ot'~\(^eMr^ . Since the cut-off &^ « iQj*^") we ihould 

expect 

On the other hand a very generous bound on the number of possible surfaces 

with total area A and boundary P can be easily constructed in any dimension' 

Be "„,,, ̂ 'f) the minimal area enclosed by P; it leads to an upper bound for 

3.7: 

3.- li.^ 3.10 

3.10 is valid if 

74/P 639 
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Thus we find for the quantity*. 

'P'^t.l.?? 

the bound : 

for these perimeters P with 

\Pl «̂ <iP>""' --"^ 3 12 
Some remarks are in order : 

1" The inequalitu 3 12 \S the .lasis for the considerations 

of K-Wilson 5 and Kogut and ̂ iusskind ^' for quarkbinding 

2" The validity of 3-12 is only shown for '2.a^.(\^ Z<^-% 

For d = 4 and reasonable values of n this is still away from the region 

where our description might be useful ( see 3 9 ) We expect however that the 

r h.s. of 3.11 can be made much siPTller, by taking into account that the surface 

Z. is closed and simply connected ( this did not go into the derivation of 3,10 

see ref, 17 ) Note that for d a 2 both 3.9 and 3,12 are fulfilled I 

3° It is not hard to find conditions on the quarkmass , that make 

the summation over all perimeters P in the I h s,of 3.10 convergent ' 

4 Behaviour of the free energy as function of the mass , when u*•-^ oo 

In this section we will show that the free energy for oT -o is 

analytic in the mass of the fermion . We have made a simplification : the 

quarks are spinless and the gauge-group is U^VO, The quarks are still 

represented by an anticommuting variable in the path integral . 

We have also looked at the same problem , where the fermions a-e replaced by 

bosons^. This case seems to be different , though we cannot gi\3 a solution 
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when going to the thermodynamic limit t^-^ co This is so because in the 

lermlonlc case we are helped by a theorem of llcllman and Lleb . This theorem 

does not apply In the boson case . 

a) The fermion case 

Wn take the partition function "2 as in section 2; but we 

sat oT^ s o from tha outset i 

the quark Integration gives us the usual determinant , wliich can be analysed as 

in section 2 in terms of closed non-Intersecting disjoint tracks i each bond B 

of a track has weight «J "̂  ̂ ^^ , each point not lying on a track has 

weight <viS 

Now we do the \bU. t i.^ integrations, and it is clear that only those cracks 

will contribute where the weight appears twice with opposite phase . These are 

the diraera , The result is s 

t Sum of all configurations of dimers 
2^Co,<vvS)= -i and monomers . Dimers have weight ̂ s 

*- monomers weight wiS 4 2 

" Monomers " are by definition the points not lying on any track . Now we can 

use the above-mentioned theorem 

•:^e ? C ° . - S ^ l \,-«A A V o ^ ^ ^ L o . w , ^ ^ 4 3 

then f is analytic in oiS , ( Actually the theorem Is much stronger and 

could be used for the case where sources coupled to the <^* (\ oy terms are 

introduced), Therefore any transition at ô *= o in the variable w d is 

excluded . The result is true in any dimension . Only for d--=2 , and TVIS-O 

the result is known analytically . ^^' 

74/P.639 
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b) the boson case 

Let the boson variables be b(i) and t'(l) . Then the 

partition function reads ( see section 2) 

1 Co.,^'v^5^c ^<^U X>v=M"̂ w i*p^yto*'<'''''^>^i')-s;^l'^^ou•:n.4 

Doing the boson integrations gives the inverse of the determinant of the 

boson mafrix . So even for finite VN ? is no longer a polynomial in the 

( reciprocal ) mass . Therefore the question of convergence poses itself 

already for finite N . This problem is attacked best by first integrating the 

gauge field variables . We get then : 

Clearly if ^ t . ^ is large enough , 4-5 will converge . Since 

-\ (-.i:\Vin W ) \ " ) - ^ T ^ Z L 4>̂ v\'°t-=)̂ '-=''l 4.6 

for large \V)Cf7\ we find that the integranti in 4 5 will behave as; 

The eigenvalues of the adjacency matrix appearing in the exponential should 

be 
9) 

all be smaller then tn^ in order to have 4.5 convergent . The eigenvalues 

runs from \ to N f).Therefore , independent of N, we 

find that 4.5 is convergent and analytic <f V-ivn > ij. for " ^ " ^ For 

d - 2 we have a singularity at nn"^ ^ •zA .We can push the domain of ana-

lyticity jy noting that 4.5 is absolutely monotone in the variable tvv 

This follows from the expansion 

- \ ^-.•. W U ^ W A V ^ ^ . ^ ^ ^ ^ ^ ' ^ 4,8 
Oft ^ -aso 1 ^ \ 

xi'- ^ - -^ 
and by integrating term by term . The ensuing aeries in fvt~ 
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lian rlfiarly only positive uoflf f icttnt» , and wc infer ubsoluli. .luiii..: oi,y Mc 

know that 4.9 converges on the real <v fixia l rom o to )- lli-t uai i m'u 
15) * ̂"̂  

theorem tells us that 4.9 will converge evfrvwhere In the circle 

It is easy to see that ^ ^ (o^w^") must have singularities outside che circle 

for general dimension . What the implications are for the free energy in the 

thermodynamic limit We have not been able to calculate . The Important 

difference with the fermion case is that "i^ la not a polynomial 11 "vvT , but 

a function with already singularities( which have nothing to do witi the 
thermodynamic limit ) 

74/P.639 
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CONCLUSION 

The long distance properties of Yang-Mills fields coupled to quarl i j,. 

studied . The possibility of having a simple linear system ( the string ) as 

the leading contribution is demonstrated In an approximation schcrat whei c i lit 

dimension w. of the gauge group is the expansion parameter and where the 

coupling constant g' is proportional to i- . This should guide us whfn 

looking for the "mass-shell" of the theory . Furthermore we have investigaieJ 

for very large coupling constant what happens to the free energy ai a tunction 

of the fermion mass ; In order to have a critical point we should 
2 

consider values of g not too large . The point that should be emphasized m 

this approach is the following :If we want to make the lattice length S snidll 

much smaller then say \ (Gt'^) , then comparison of our formula for the 

leading contribution with the " string " formula yields ta^""!. ^ t 

On the other hand we would like to maintain the " area rule " eqn 3.12 , which 

we derived under the condition I.^'-A"^ xa ~ i ; ihis conditioi, , 

trivially satisfied for d = 2 , can be certainly relaxed down to r.ome rriLi<.,il 

value for d = 4 . We find it however difficult to do with our present medns 

( caking into account closedness of surfaces etc ) . We envisage a remrmali 

sation transformation in configuration space chat should determine the 
18) 9 

corresponding fixed point , in the v\-5c/i , g^n fixed limit . 
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Fla, 1; The lattice with the directed bonds between any two points 

1 

weight associated to the bond (i,i') is the 

matrix "4 W i' ~) ULIV ,' •) 

weight associated to the bond (i', i ) is the 

matrix •f̂i.̂'c ) 'ACv' O 

F^g,2 To edch point i in Euclidean i\~ spjce a number 

of 4n levels is attributed : each level corresponds to a quark 

degree of freedom; the labeling is given by (o-^oc) , a = 1,2,3,4^ 

Fig.3 

l̂-̂l 

A Bond directed from i to i' and connecting levels 

ax with a'dl carries a weight ^c.,J ^=t«<' 

A bond directed from i'to i and connecting levels 
with c scarries a weight X , U. < 

There are no bonds Between levels at the _satiie 
site . 

Possible terms in det Vî  

D L J 
a) one quark degrees of freedom 

b) 4 quark degrees of freedom 
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Flg.4: 

Some connected planar gauge Invariant quantlLies (£ri') : 

^V -"" 
Cross-hatched regions are filled with squares . 

Fli^t 
/.--(X 

U 

J^^ ^ 

The broken lines parallel to the bonds 

correspond to tha unitary index of the 

'/'!(/ matrices involved . They are connected by a 

broken line crossing the bond by means of the 

integration 2.23 (a) . It is easily seen 

that also vertices on the borders of a planar surface carry an index cycle as 

tn fig. 5 (b) . 
/ 1 

/\ 

.1̂  

I — 

,'1 /"/'\ 
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FOOTNOTES 

[ll The gauge group in question is the colotgauge group , 

[2] 'c Hooft mentions this possibility in ref,3 

Tsj If more than one quarkloop Is present the sources tioiy be coupled 

to different quarkloops These contributions are alt of the order 

determined by Q , the number of quarkloops (sei' section 3b) 

[4! The bound 2d-3 stems from the observation that one can couple an 

elementary square co a given one in a given bond ir only 2d-3 

ways , if we want co avoid overlapping squares 

[sj A generous bound is got by putting : 

H 

and by noting chac: 

number of closed self avoiding quarkloops going thiough bonds 

t, - .- ,% with fixed length \P \ is smaller then 

74/P.639 
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strong coupling isolated quarks have infinite mass 
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strong coupling. The strong coupling theory is far 

from covariant due to the lattice. 
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Quark confinement is of great interest at present. It is 

important that the confinement mechanism be soft. That is, the 

potential energy of two quarks should be small when they are 

close together so that quarks can respond as free particles In 

deep inelastic electron scattering. The potential energy should 

become large when the two quarks are well separated, to prevent 

any quarks from escaping a nucleon and becoming observable 

quark-like particles. Kogut and Susskind have speculated that 

the potential energy of two quarks (to be precise, £ quark and 

an antlquark) will be proportional to the distance t between 

them when r is large. This is the result found in cne-

dimensional quantum electrodynamics for the potential energy 

of an electron-positron pair. 

A model which exhibits quark confinement and a linear 

potential between quarks will be described in this [aper. The 

model is a gauge field coupled to a quark field, qusntized on 

a discrete space-time lattice. '̂  The quarks of th« model are 

confined for sufficiently strong gluon-quark couplitg constant 

g. (For weak coupling the lattice theory behaves like a con

ventional continuum theory.) This is true for any saace dimen

sion. 

The model has one major drawback: It is noncovariant due 

to the lattice. The lattice provides an ultraviolet, momentum 

cutoff. The model can be solved explicitly only in a limit 
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where all physical masses are much larger than this cutoff, so 

the explicit solution is far from covariant. The problem of 

achieving covariance will be discussed further at the end of 

this paper. The properties of the model are sufficiently 

remarkable to make it worth study despite the lack of covariance. 

A detailed description of the model is given in two pre-

prints." Only some of the principal features will be 

described here. 

Tlie Lagrangian of the model depends on three parameters: the 

bare coupling constant g, the bare quark mass m and the lattice 

spacing a. The model can be solved explicitly in two limits. 

One limit is the weak coupling limit (g small). The other 

limit is g and m a both large (but not infinite). The princi

pal features of the large g,m a limit are as follows: 

1) An isolated quark has infinite mass. 

2) A well-separated quark-antiquark pair has a finite 

energy proportional to their separation r, namely 

2 2 
proportional to (j8n g )r/a . 

5) The theory has local gauge invariance as an exact 

symmetry of the quantized theory (for weak coupling 

the local gauge symmetry is spontaneously broken). 

4) The infinite quark mass is a consequence of exact 

local gauge invariance. 
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Local gauge invariance means the following. For example 

consider the quark propagator on the lattice. This is 

S(n) = <0|T^^^^|0 (1) 

where \Ci> is the vacuum state and n is a four-vector with inte

gral components [e.g. n = (0,1,2,1)] labelling a lattice site. 

A local gauge transformation is a transformation 

i* 
\ -> e \ (2) 

-i* 

Exact symmetry under this transformation means that 

i(* -* ) 
S(n) = e " ° S(n) (4) 

which is possible only if 

S(n) " «no (5) 

This means quarks cannot propagate, i.e. they have infinite 

mass. To be precise the model will be quantized in a 

Euclidean metric (imaginary time). In the SchrHdinger repre

sentation the propagator, for n > 0, is 

-Hn a_ 
S(n) = <n|t^e ° f^\n> . (6) 

The vanishing of S(n) for n > 0 i s the symptom of a more 

general r e s u l t : 
-Hn a_ 

e °fJCl>^0 (7) 

which means f I (T> is a state with infinite energy. 

The model will be quantized using the Feynman path 
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Integral framework, hence the quantity of interest is the action. 

The first step in defining the model is to construct the action 

on a discrete space-time lattice. The action will be defined 

so that it is exactly gauge invariant on the lattice. The 

crucial part of the lattice action will be the free gauge 

field piece, but it is convenient to consider first the quark 

part. Consider the free quark continuum action 

A - jd'*x?(x)(l/7^-m^)V'(x) (8) 

Converting this to a lattice action in the most naive way one 

makes the replacements 

f d ^ -» a \ (9) 

?(x),^(x)->?^,Vn (̂ °) 

V/(x) -» (̂ „̂ - - Vli)/2a (11) 

where ii is a unit lattice vector (length a) along the axis n. 

Thl8 gives 

A "• 2 < ^r- i & i v f ^ I ' ' ^ - * ' ^ ) - m a V ' ^ fl2) 

' "1 2 ^n^ti^^n+g. ^n-a' o '̂ n'̂ n ^ ' 
The product ij/ i/ ^ is not gauge invariant. To make it 

n n+ii 

gauge invariant one uses the standard procedure: one inserts 

an exponential of the line integral of the gauge field. A 

lattice approximation to the line integral from n to n+p. is 

just gaA where A is the gauge field at lattice site n. 
nil n|j, 
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The expression 

•p y f ,^e 
igaA. 

n|J. 

i s gauge i n v a r i a n t p r o v i d e d t h a t the gauge t r a n s f o r i i a t ion law for 

A i s 
nix 

V "^ ^nii (* n+ji 
*„)/ga (13) 

Thus a gauge-invariant action for the quark field is 

( a^ - ^8«An _ -IgaA 
Ne - f .'̂ iY f e 

n+p. M. n 
nil, 

4- 1 
+ m a ll/ f > 

o '̂ n'̂ n J 

(14) 

In this action the variable gaA appears as ai angle. 

That is, the action Is periodic in the variable ga/i with 

period 2Tr. This is no accident. The gauge transformation 

variable *^ is an angle so to preserve gauge invarlmce gaA 

is an angle, too. 

It is natural to try to write the free gauge field 

action to preserve periodicity in gaA . First we lood a 

lattice approximation to F,,y(x), namely 
^v 

F a —(A •̂  - A - A ' ^ + A 
'niiv a n+u,v "nv % + v , n * ^n|i 

Let 

(15) 

B = gaA np. ^ np. 

2 

^nnv " »n+il,V • ^nv " V v . w + ^nn 

(16) 

(17) 

(18) 
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Ilien a gauge field action which is gauge invariant and periodic 

In the variables B ,, is (A„„ means gauge field action) 
np, yjV 

It is evident that this action is periodic. To shov; that 

it is gauge invariant, it is useful to represent B graphically 

by a directed line from the lattice site n to the site n+p, 

(Fig. 1 ) . A gauge transformation acts as follows: at the site 

n+p., where the line is Incoming, one has B ,, -^ B - * /^ • 

np. np. n"rp. 

At the site n where the line is outgoing the transformation has 

the opposite sign: B ,, -> B , + * . Then f is represented 

by a closed square (Fig. 2) with the four corners of the square 
'̂  /\ ^ y^ . 

being the sites n, n+u, n+p,+v, and n+v. (Backwards lines 
/\ 

represent a - B, e.g. from tri-v to n represents -B .) It is 

easily seen that the gauge transformations cancel at each 

corner of the square. Thus f is gauge invariant. 

In the limit a -» 0 the exponential (19) reduces to the 

usual continuum action. This is seen as follows. For a small, 

f is also small [from Eq. (17)], hence 

ĜF = ̂  Vix^ [ 1 + iS^'Vv - I «'^Vpv - • • • ] (20) 

A constant term has no effect on physics; it can be ignored. 

The term linear in F „ is zero because F „ is odd under the 
np.v n'. V 

Interchange p, -> v. Hence the double sum c e r p. and v of F 
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2 
gives zero. Thus the dominant term is the F ^ term. The 

2 4 

factors of g cancel, and the factor a converts the sum over n 

to an integral. Higher order terms {7 ^, etc.) have higher 

powers of a and therefore vanish in the a -> 0 limit. 

The above analysis of the a -> 0 limit is only valid 

classically: It was assumed in this analysis that F ,, has a 

npv 

limit (i.e. F (x)) for a -» 0 and this is true classically 

but not quantum mechanically. This will be discussed further 

below. 

The complete action of the quark-gluon lattice theory is 

n) ]V ^n V n+p, '̂ n+p 'p. n ' o '̂ n'̂ n 

This choice for the action is not unique. One could have 

2 1^ V 
used f ^ for e , for example; this would violate only the 

ad hoc requirement of periodicity. However only an exponential 

form such as given above generalizes easily to nonabellan g.iuge 

theories. In the nonabelian case I cannot find a gauge invari-

if^ V 

ant form on the lattice for f ^, but e is easily general

ized. In the nonabellan case one has a set of variables B 
np. 

For each choice of n and p, the variables B parameterize a 
np 

finite element of the gauge group (not an infinitesimal element). 
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IB 

One replaces e "̂"̂  by a unitary transformation U[B ~ ] repre

senting this element in the quark representation. In place 
If V 

of e one substitutes the trace of a product of four 

unitary transformations: 

«''""' -> Tr U[B„;]U[B^°^^JU-^[B^°^^^JU-^[B^°J (22) 

This trace is gauge invariant under the nonabelian gauge 

group. 

The quantum mechanics of the lattice gauge theory can now 

be defined using the Feynman path integral. The action defined 
4 

above is actually in a Euclidean metric , so the resulting path 

integral will define vacuum expectation values for imaginary 

times. One can still define the full quantum mechanics in 

real time using the "transfer matrix" method, which is dis

cussed in Ref. 2. The path integral involves integrating over 

all values of the B plus an "integral" over the fermion 

variables f . The fermion integral is discussed in Ref. 5; 

denote it by < > . Then the path integral for the quark 

propagator is 

TT^T^l dB„„a„ 
S(n) '-1 (25) 

TT TJ [ dB^. < e ^ m p.j_^ mn 

where A is the action of Eq. (25). The periodicity of A with 

respect to the B makes it unnecessary to integrate over more 
np. 
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than 1 period (-F to TT) of B . The denominator is lecessary 

to remove vacuum-to-vacuum graphs. The denominator ^111 be 

denoted by Z in subsequent formulae. 
2 

In the weak coupling limit, 1/g is large and tierefore 

the path integral will be dominated by values of f ,, for which 

" n V 2 " 

e /g is near its maximum. This means, essentially, small 

f , which allows one to make the expansion of Eq. (20), giving 

back the conventional gauge theory action. There aie details 

that have to be straightened out in this limit but [t appears 

that the small g limit of the lattice theory agrees with the 

usual continuum theory. (This requires that m a also be small.) 

The interesting limit is the limit g large. CiIculatlons 

are simple in this limit if m a is also large. In (his case 

both the gauge field action and the y terms of the quark 
P* 

action can be treated as a perturbation. The lowest order 
approximation is to neglect these terms altogether, giving 

4^ T , 

S(n)~Z-ll7Tr d B „ < ^ ? e ° ™ ™ "V (24) 
^ ' — m p. J_ mp. ̂ '̂ n'̂ o ^ ' 

Because the action in this expression is quadratic .n the fields 

f and f , the < > can be calculated by Wick's thiorem. Tlie 

bare propagator to be used in Wick's theorem is 

So(") = (v'*)"^^o (25) 
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The approximation (24) gives S(n) = S^(n); therefore 

S(n) = 6 as predicted earlier. 
^ ' no '^ 

In higher orders it remains true that S(n) is proportional 

to 6 . To see this one first expands in powers of the v, 
no P' 

terms in the action and picks out terms which give a nonzero 

fermion integral < >. It is not difficult to see that the 

fermion integral is nonzero only if one can combine terras of 
,_ +1B 

the form a"̂ î  iY f.rT-^ (or complex conjugate) to form a 
m (i m+p. 

path from the origin to the lattice site n: the term 
"i R 

•di y ilj '"G is represented by a line element from n>Hi. to m 
'̂ m p, iiH-p. ^ 

in this path. The fermion integral then replaces the f ' s and 

- 4-1 
Tj/^s by products of (m a ) . One is left x*ith the integration 

over B'S which now has the form 

,ir -iX^B f 1 if „ ) 
Z-^n n f dB e' ° "̂  oxp -^ S S V "̂  (26) 
^ "m p ) _ ^ mti ''j 2g2 to (̂  V ) 

where ^ " D moans a sum over the B's on the path from 0 to n 
o mp. 

defined above. 

To clarify this formula a bit consider the case that the 

site n is a nearest neighbor site to the origin, say 

n =(0,1,0,0) = 1. Then one needs only a single Lcrm, n.iniely 

,_ -iB^i 
-a-^^-ilY,^ e from the expansion. That is, one writes 

<f'f exp/2 a-'(V iY i' r^ ^^ - f ,'̂ iY f e ^ ) > 
1 o '^l np. ^ n p. nl-p- n+U P- n j 

- < V o ^ " ̂  -^ilYiV - •"[> . (27) 

where only one term from the expansion of the exponential 

is written out. This bracket when calculated by Wick's 

theorem gives 
-IB 

(m^a'^)-V (-iŶ )e "̂  (28) 

Hero the sum Ĵ B̂ reduces to the single term B ,. When the 

exponential in (27) is expanded to higher orders there are 

additional terms contributing to the expression (28); these 

additional terms are of higher order in ( m a ) and contain 

more complicated sums of B's in the exponential. 

The integral (26) is zero to all orders in g , except 

when n = 0. It is zero in lowest order because 

' ^ -iV, 
\ du e = 0 and there is one such integral for each link 
-TT 

in the path from 0 to n. 

term has as an integrand 

'" -2 
in the path from 0 to n. Expanding in powers of g , the next 

-i?-."n if, 

Va^ "-e ^- (29) 

Tlic oxpoiicuLLal can bo roiJLosouLod by a more coinpllcaLod path 

combining a square (for f, ) with the original path from 0 

to n. There is no way a closed square of B's can cancel an 

-2 
open p.Tth, so i n o r d e r g Lhcrc remain sotnc I n t e g r a l s of the 

.' TT , 

form \ dBe . This is true in all higher orders as well: 
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hence S(n) is proportional to 6 

The underlying reason for S(n) being proportional to 6 

is local gauge invariance. The action given in Eq. (21) is 

invariant to local gauge transformations. In continuum theories 

one has to add a gauge-fixing term, which explicitly breaks 

local gauge invariance. This was not necessary for the lattice 

theory. The reason for this is the finite range of the B 

np, 
integrations. In the continuum theory, where the path integral 

over A (x) has infinite limits, exact local gauge invariance 
p. 

5 
leads to divergent infinite integrations. No such divergences 

appear in the lattice theory. It was shown in the introduction 

that local gauge invariance implies that S(n) is proportional to 

6 . 
no 

In weak coupling the quark propagator is certainly not 

proportional to 6 . What happens in weak coupling is that 

local gauge invariance is spontaneously broken. This means, 

as usual with spontaneous breaking, that an infinitesimal gauge 

breaking term must be added to the action in order to calculate 

S(n) correctly. The details of this spontaneous breaking are 

complex and have not been carefully worked out as yet. 

Now consider a well-separated quark-antiquark pair. The 

quantity of interest is the minimum energy of the pair at a 

fixed distance r. One has to form a gauge invariant state 
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containing this pair -- otherwise the state will havi; infinite 

energy. A simple gauge-invariant state is 

1 2 " B 

V ""̂ ôl̂  00) 

with the lattice site n being at time 0 (n = 0 ) and a spatial 

distance r = |nja from the origin. This state, uslnj the 

shortest path from 0 to n, turns out to have the minimum energy 

for two quarks separated by r, in the limit of large g and large 

m a . To determine its energy one can study the time dependence 

of the SchrHdinger representation expression 

iX"B + „..r 1 2 " B 

<Olp^e ° "^^^|^^-»^|?^e ''^f]\a> (51) 

With t = n a this becomes in the Heisenberg represertation 

<0/T?^ e"''"'-^ t^ . ^0,^-''°'"^ ̂ l"> (32) 

o' o 

When this is computed through the Feynman path integral and 

the fermion integral is computed, one is left with f gauge field 

expectation value to compute, namely 

-IT , . ,, if ) 
Z" TT T dB expiiSB ',e^Pj~ZZZe "^ 

" m p, J_ mp. '^l mp.) .2g2 m p v J 

where E la a sum over the closed path illustrated in Fig. J. 

The two horizontal (equal-time) legs are the paths originally 

present in the vacuum expectation value; the verticil legs are 

(35) 

generating by expanding in powers of the Y terms o: the 
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complete action. The shortest vertical path is used to get 

the minimum power of ( m a ) from the fermion integral. (This 

power has been omitted In the expression (33).) 

The gauge field integral is easily determined for large g. 

f '̂  ±iR 
In order to eliminate integrals of the form I dBe , it is 

necessary to expand to sufficiently high order in g"^ so that 

the entire area enclosed by the path of Fig. 3 can be filled 

by squares representing f^^y's (Fig. 4 ) . There is a factor 

-2 
g for each f y Hence the expectation value (33) behaves 

as 

-Enoa 
This is proportional to e where E is the energy of the 

quark-antiquark state. Thus 

E - i | nlin g^ = r(in g^)/a^ 0>^) 

Hence the speculation of Kogut and Susskind is confirmed 

for this model when g and m a are both large. 

Consider finally the limit a -> 0. One would like the 

energy E(r) to be finite in this limit. This is evidently not 

2 
true if g is held fixed (and ] 

gives E(r) -> ", from Eq. (3^), 

2 
true if g is held fixed (and large) as a ->• 0; this limit 

-lAO-

This is a different result than the earlier (classical) 

result that a limit exists for a -> 0. Tlie classical argument 

fails for the quantum mechanics at large g because B ranges 

independently from -v to ir for each n and p.. Only for a 

negligible subset of this integration range is B a slowly 

varying function of the lattice label n, and hence only for 

this negligible subset do continuum functions A,,(x) and F ̂ {x) 

exist. 

The only hope to obtain a continuum limit is to let g 

decrease as a decreases; but this means leaving the range of g 

for which the large g approximation is good. Nevertheless one 

can discuss qualitatively the behavior of E(r) for intermediate 

g. First, note that in weak coupling E(r) is a constant for 

large r (twice the quark mass); in other words the coefficient 

of r is zero. For sufficiently large coupling g, 

E(r) = rc(g^)/a^ (35) 

2 2 2 
where c(g ) ̂  ^n g for sufficiently large g but there are 

2 4 2 

additional terms of order 1/g , 1/g , etc, from the full 1/g 

expansion. 

There must be a critical coupling g where the transition 

from exact gauge invariance to spontaneously broken gauge 

invariance takes place. If the vacuum changes continuously 
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2 
at g , then one would expect c(g ) = 0 so that the energy law 

changes smoothly to the energy law for weak coupling. In 

this case one can easily define a limit g -> g from above 

simultaneously with a -> 0 such that E(r) has a continuum limit. 

Unfortunately it is also possible that there is a discontinuous 

jump at g from a symmetric vacuum to a spontaneously broken 

2 
vacuum, and in this case c(g ) can be nonzero. This is called 

a "first order" transition. In this situation no continuum 

limit is possible. 

2 3 

The evidence from a rough mean field calculation "̂  is 

that the transition is first order. However the analysis has 

so far been restricted to the case m a » 1, I.e. static 
0 

quarks. A much broader study needs to be made allowing for 

small m a , ordinary SU(3)XSU(3), and a nonabellan gauge 

group. This has not been attempted yet. 

The importance of the lattice gauge theory is that it 

provides a specific quantum field theory with confined quarks. 

It is therefore a model one can use to study what is reason

able in such a theory. Consider for example the potential 

energy law (3'^). This form for E(r) has always seemed (to 

the author, at least) to be in contradiction with locality. 

In a theory with no zero mass particles (there are no zero 

mass particles in the strongly coupled gauge theory) it has 
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usually been the rule that the potential energy of txso parti

cles decreases exponentially at large distances, apaict from 

the rest energy. 

One can make a rough argument to show that a lirear 

potential energy is a natural consequence of localit) given 

that isolated quarks have infinite mass. In a theory with 

specific states with infinite energy, the Hamiltoniat is not 

the most well-defined operator and it is better to study 

e . Consider the expectation value of e" for a quark-

antiquark (qqf) state with separation r: 

<qq|e" (qq> 

For sufficiently distant q and q, one expects e' tn behave 
for 

like a product of operators, one each q and q; in otlier words 

one expects 

<qqle""''/qq> =1 <q|e""''(q> <q(e-"'=lq> + 0(e'^(*^ "") (36) 

This is a cluster decomposition formula so one's intuition 

is that the error in this formula falls off exponent .ally In 

r, as indicated. The function b(t) is unknown. If i:he quark 

and antiquark had a finite mass m, one would then ha're 

^-E(r)t ^ ^-2mt ̂  Q^^-b(t)rj ^̂ .̂ j 

i.e. 

E(r) = 2m+ 0(e'̂ ('')'') (58) 
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which is the normal situation. But for infinite mass quarks 

the right hand side of (36) vanishes. In this case one Is 

left with 

E(r)t = b(t)r (39) 

Clearly in this case b(t) must be proportional to t and E(r) 

is proportional to r. Thus the linear form for E(r) appears 

reasonable, and the model provides an example to back up this 

general argument. 

Ongoing studies of the lattice gauge theory model include 

extensive calculations of the strong coupling expansion and a 

formulation of the Hamiltonian of a nonabelian gauge theory 
p 

on the lattice. 

I have been helped by many people at Cornell, Orsay, and 

elsewhere to bring these ideas into focus. 
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Flgure Captions 

Fig. 1 Graphical representation of gauge field B 

Fig. 2 Graphical representation of f . 

Fig. 3 Closed loop sum of B appearing in Eq. (33). 

Fig. 4 Squares enclosed by the loop of Fig. 3; the loop 

sum is cancelled by the sum of f. over the 12 

enclosed squares. 
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'\ ^ shall describe how rc-ornilizatior group equ it ions -ippe ii n itiir ill/ 

in the analysis of the structure of the correlation tunctions near the cri

tical teirperature for a spin system on a lattice. These renonnalization 

group equations allov/ us then to discuss, m a field theoretical language, 

'.'ilson's theory of critical phenomena . A more detailed exposal of these 

results can be found in a revipw article by Brezin, Le Guillou and Zinn-

tjustm 

MEAN PIELD THSORY 

For simplicity we shall only consider two-spin interactions, and we 

shall often specialize the fornulae to the Ismg model. 

C?he partition function Z(H) m presence of a magnetic field H reads 

where the index i corresponds to the lattice site, and where we have in

cluded the factor 0 = l/kT m the interaction. We assume that V is 
1J 

positive (the interaction is ferronagnetic), short-range, and satisfies the 

hype rouble syrcmetry and the properties: 

Vx^-=V (1^-^,1) 

V. iJi ~ o 

(2) 

(5) 

The last condition is purely technical and can be removed m a more general 
2) 

treatment 

A way of deriving the mea.i field approximation is to use the convexity 

inequality 

<̂  Ax|j A ;> I?- J^^ ^ A > (4) 

where the mean value i;; defined m terms of a one-body densi ty : 

jx^|>-6"^o = -a/bZ X;Sx (5) 

The X. are then chosen to maximize exp <A>. Taking for A: 

A =: - ^ (Se- - ^ J J,Y;^ S;S; + Z. W;S--X;S; (s) 

one obtains Peierls variational principle: 

We now introduce the free energy W ( H ) : 

W(H)= VZCH) (e) 
and the function A ( X ) : 

A(x)c u Z j^feiSX 0) 
After maximization on the X , the right-hand side of inequality (?) gives 

the Weiss mean-field approximation for W: 

where the X are given m terms of H by: 

W= Z Vxi A'(x;)f\'aiWZ /\(X;]+(Hi.y:)AkV-) 

It is more convenient to discuss the problem in terms of the magneti

zation K : 

M; . -̂W , A'(y.) 

The corresponding potential r(M) is given by the legendre transformation: 

r(M) +W(i+) = Z H ; W I / 0,) 
Here we obtain: 

r(M)= -Z,Y;.-M,H;f ZtiCn:^ (,,) 

with: 

Z^CHi) 4M;X.-A(Yi^ 05) 
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In the Ising model this gives 

r(M) . - Z. V,i H;Mv +ZlH;Ut'ft,>i*»0-H!)1(^^^ 
Th'3 magnetization, in the absence of external field, is given by the mini

mum of r. By translation invariance M. is independent of i, and 

satisfies: 

•3H ~ 
where we have defined 

(18) 

It is easy to see from (l6) that for the Ising model, the minimum of 

r stays at the origin as long as V is smaller than a critical value 

V =-J, i.e., as long as the temperature T is larger than a critical 

value T , and then continuously leaves the origin. This continuity of 

the magnetization is the characteristic of a second-order phase transition. 

For V-V small, i.e., T-T small, the magnetization is small and all 

the properties of the system are determined by the first terms of the 

expansion of r(M) around M-'O, and T=T 

i (19) r(H)= - Z V,:HiM> t L a H i N b H -
where a, b, in the s i t ua t ion that we descr ibe , are pos i t ive ( a = 1 , 

b= 2 for the Is ing model). The c r i t i c a l temperature i s given here by: 

Vc. = S: (20) 
2 

In particular, the equation of state 

can be written, for H, M and T-T small, and after a resoaling of 

T and M, in a universal scaling form: 
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with 

and the critical exponents 3 and 6 have the value 

^ = ^1^ (.0 
IS = 3 

Prom the functional (19), one can also derive the two-poii t correlation 

(25) 

function G. 

In zero magnetization the Fourier transform (}(q) of Gj^. ha i the form: 

(26) 

From the assumption t h a t V^ i s shor t - range , we know tit at v(q) i s 

ana ly t i c in q for small q. By cubic symmetry i t has the expansion 
at 

G(q) can then be wr i t t en : 

where 5 i s the co r r e l a t i on length . 

I t diverges with T - T^ as 

V:i V î (31) 

with 
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At T , G(q) behaves for small q like: 

Q(^) A. q-i (52) 

Alx these properties are universal m the sense that they depend only on a 

few general fe£.tures of the system. 

These predictions can be compared to what we know for the Ismg model 

with next-neighbour interaction. The important feature that emergen from 

this comparison is that the critical properties of the Ising model depend 

on the dimension d of the lattice space, unlike the mean-field approxma-

tion. 

For d infinite, mean-field theory is exact. However, for d- 1 wp 

Know that no phase transition exists at finite temperature. For d = 2 the 

Ismg model can be solved exactly m zero external field. It exhibits a 

second-order phase transition, various physical quantities like the sponta

neous magnetization, the correlation length, etc., have a power law beha

viour near T , but with different critical exponents 

(33) 

where r\ characterizes the behaviour of G(q) for small q at T : 

GCq) A. q ^ ^ (34) 

These reasons, as well as some phenomenological observations lead 

various authors like Vndom, Domb and Hunter, Kadanoff to postulate, in 

general, scaling properties and power law behaviour of types (22), (30) and 

(34), out with universal functions and critical exponents varying with the 

dimension d of the lattice space. 

In order to show why the mean approximation fails, we shall first con

struct a perturbation expansion, whose first term is precisely the mean-
2) 

fjeld theory result. Again this can be done for general spin systems , 

but we shall restrict ourselves to the special case that we have considered 

before. 

2. Pr-RTL'TFATir E'T'. "lO'l 07 A LATTICE 

The main idea is to write the density matrix exp-pJe(s) as an inte

gral over one-body densities, in order to be able to sum over spin configu

rations. 

In the special case considered previously, this is achieved by the 

transformation 

xx\) Z Y;r S^Si:^ \ dd; 4J(P - 2 -i: y^l ĉy +1 U'S; (35) 
^l\ ' 'J ^ 

which m the case of the I s m g model y i e ld s : 

2 (H) = \Ui ftXb - I < .̂V'4U,- t Z V̂X Ĉ  (i^i + H0(36) 

If one now computes Z(H) using the steepest descent method, one 

obtains an expansion similar to the loop-v/ise expansion of quantum field 

theory. The first term of this expansion, corresponding to the tree approxi

mation m field theory, yields the mean-field approximation. The m a m dif

ference with quantum field theory, is that the lattice structure provides a 

natural cut-off in romentum space to the theory: 

Prom this expansion, it 13 easy to understand when and why mean-field approxi

mation fails. The free propagator m zero field is 

(^(S) = VCq) /U- lV(q)] ' ' " (37) 
which at T behaves like l/q . 

A typical one-loop correction to the inverse correlation length squared 

5 will involve an integral of the form; 

I^UH III) •• T-T:.; 

For d larger than four, the correction to % behaves like T-T and 
2 ^ 

will not modify the power law behaviour of I, near T , but only the 

coefficient in front of the power. On the contrary, for d < 4 , this cor

rection will dominate the first term for T close to T . This suggests 

that this approximation can no longer be valid for d < 4 . In order to 
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evaluate the infra-red singularities of all terms of the perturbation expari-

sion, one can use power counting arguments. 

4 
The same arguments which tell us that the term proportional to M is 

thi least singular m the large momentum region of all even interactions, 

show that it is the most infra-red singular. Also, as long as an interaction 

is not renormalizable, It is not infra-red singular. This explains the 

role of dimension four. Above four dimensions, no interaction, everi m t}ie 

field, is renormalizable. Therefore, no infra-red singularities will appear 

for instance in the two-point function. The result is that the coefficients 

which appear in the mean-field approximation will be modified, but not the 

general scaling and behaviours. Below four dimensions, the pei-turbation 

expansion is useless and the local four-point interaction gives the most 
4) singular contribution. Wilson and Fischer ' have first remarked that if 

one expands tfe terms in the perturbation expansion in the parameter 

' = 4-d, then order by order the mean-field behaviour is only modified by 

power of logarithms which can be summed by renormalization group techniques. 

RENORMALIZATION CROUP EQUATIONS 

For the reasons given above, one can in a first step study the critical 

behaviour of a local renormalizable field theory whose Hamiltonian density 

reads: 

1! ll !̂ (39) 

but in which the diagrams of the perturbation series are computed with a 

cut-off of oi'der one in momentum space. The quantities a, b, c are, 

near T , regular in the temperature. 

Let us now make the following remark. As we are only interested in the 

critical domain defined by 

momenta 1 P i \ K,^ 'd. 

magnetization rl ̂ "C d 

irT-Tc«'l 
it is convenient to perform a change of scale which gives a large value A 

to the cut-off 
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C^^ J. ̂ ;/A ̂  Xi . » Ax/ 

(s H — ^ 3 s\w 
with ' 

The Hamiltonian then becomes: 

(40) 

^{f) .. 1, (-̂ ^ %c4 4 i,r„ S'cx̂  41, ^,A^ SV) (40 

with 

£*^ -dL 
We have introduced g the dimensionless coupling constant. 

If r is the critical value of r , the critical domain ia now 
oc o 

defined by 

ltl-Uo-f,cU< A^ 
momenta ^ ^ (\ 

magnetization {\ 

Instead of considering the limit where all the quantities t, p., M 

become small, we can now consider the limit in which A, the out-cff, 

becomes large. The behaviour of the theory in the critical domain can 
5) therefore be derived from renormalization theory 

It is convenient to study first the critical theory T = T , v hich 

corresponds to a massless quantum field theory. Deviation from thi criti

cal temperature will be obtained then by adding to the Hamiltonian a small 

term proportional to t S (x). 

In order to define renormalized correlation functions for a m.. issless 

theory, we have to introduce a mass scale parameter u. The renonialized 

proper vertices foorrelatlon function moments of r(M.)] are defl)ied in 

terras of ^ by the renormalization conditions: 

_ o 

(42) 
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where the sjrunetry point SP(|j.) is given by: 

The original (bare) correlation functions and the renormalized one are re

lated by: 

:C*i) -% ,(-) 
(43) 

This equation actually means that at g and ^ fixed, Z T^ ' has a 

limit for large A. This implies: 

This yields ' the renormalization group equation for r 

'^ O (44) 

^̂  3. + vj (9.,^)i _d (,(5,, t)] r'(V,3./)=»' 45) 

•W(3v4) = 
( 4 0 ) 

Hilt r ' ( r ^ , g ,A) doon not dPixnd on n, thiTuforo w(g^,A/^i) nrid 

T,(g^ ,̂̂ /tj,) -̂ re i l so irdepondpnt ol „ 

-(N) 
'Ae 'irr. n')w intprr"^tnd in thn 1 arf'o /̂  l imit nf th-- r^""'. Thin l imit 

i s dominated by the infru- icd btabit; /,erot> oi W(g ) . i t i s ea^y to verify 

that ^(g^) has the form: 

W ( ^ o ) = - £ 3 o + cx(0 9o + OC?.^) (1") 

- I C O -

I t h-̂ r- t h r r r fo re nn mf ia - rod s table zero g of order e for small 

fii) 
Therefore the r behave like: 

n(H) , ftHI/a. -
(50) 

with 

(51) 
1;= ijc?.*) 

This gives, m particular, for r (p»A,g ): 

This shows that the correlation function G(p) has a power behaviour of 

the form defined m Eq. (34). 

Prom Eq. (47) one can derive all the correlation function scaling in 

zero magnetization at T . In order to study amnll deviations from the cri

tical temperature, one has to add to the critical Hamiltonian a term of the 

form t 3^(x). 

But one can express the correlation functions with t ;̂  0 m terms of 

the co i io lu t iun runction^j of the c r i t i c a l theory with an a r b i t r a r y number 
of S imort inn." 

Fnnh .̂ inmrt ioi i nindn -i n( w miu i 111 il i.ji Liun fiictur "p(A/p., g ) . ThiO 

leads to renormalization group cquatlonn for tlio V ' which can be uurajncd 

and yield f i na l l y renormalization group equations for T^ (p,>f , A , t ) . I t i s 

ulLo pobjible to expand the cor re la t ion iunctiona with non-zero magnetization 

in tormu of the magnetizat ion. The coeff ic ients are co r r e l a t i on functions 

with vf^v^ ni'i^nt't" I 7 11 1 rin v/hnnn rnnr't innl i - 11 1 uii (^mup niuutiuun mc Kuuwii. Sum

mation of a l l these equations y ie lds f i n a l l y : 
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From this equation, one can derive all the scaling laws. 

* * * 
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