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This Colloquium was devoted to recent developments in the

study of Lagrangian models of quantum field theory :

Renormalized perturbation theories,
Supergauge fields,

Asymptotic freedom and infrared slavery in gauge field models
involving quarks,

Gauge fields on lattices,
Theory of critical exponents.
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The CGreen funcrional of the thecry is

This communication is devoted to some recent technical progrecs in
(1), (2) i f;u[;@ﬂ @)+ T @)
the study of renormalizable gauge field models. ZI. J } < ‘~€, v

2 =< X715 2

Gauge theories are among the must aesthetic renormulizabic mcdels

so far investigated The oldest version is quantum electrodynamics wnose and its corvected part s
massive version has been extensively discussed in the litrerature P ’t‘
More sophisticated models involving Yang-Mills fields associated -—3 e “—\—3 (3)
. . . . 4)
with non abelian gauge transformations have been discussed more recently
,
The symbol < >+ defines the renormaiized time ordered product

We shall describe here a new approach Lo gauge field models which
) previously alluded to,

is based on the Bogoliubov—Parasile—Hepp-Zimmelrmann(5 (B v H 2Z) renorma-

lization scheme making extensive use of the quantum action principle which The most powerful resuit of the theory is doubtlessly the renor-

. 0). (7 ; . R -
has been recently proved in this frameWOtk( )1 malized quantum action prirciple which describes the infinitesimal varia-

tion of the Green functional under an infinitesimal variation either of a paramece£6)

Our study is also based on a newly discovered symmetry propertv ( 1)
. let it be s -2 i i
of the gauge field lagrangiam(S)’(l) (Slavaov invariance) In section | ® space-time dependent) or of cthe quantized fields Qg'
we summarize the quantum action principle in the framework of the B P 14(5) 1f /L(k} 1s an external field upon which i (@) depends
scheme and ve discuss a simple application to a global symmetry problem © SZ[I 2/;'
In section II we exhibit the symmetry property of the gauge licld lagran- :ft S - < ]:S J'Ag £(&P)(X)J X[3]> (&)
gians in the tree approximation and we discuss how this property is preser- A g A . x) - - 4+

ved at the quantum level Let on the other hand

. : . . co (1
Finally we make a rapid review of the main results relative ro the abelian

2)

. . ( v
and SU(2) Higgs-Kibble models (ﬁ — f + Nd [ fl] = Q" \ ) kPJ’. ()

be a local variation of the quantized field ‘P , where N;i [E‘}
A

is a normal product local polynomial of power counting degree less than

I - THE QUAN’[LM ACTION PRINCIPLE or equal to d , then the infinitesimal statement of the invariance of
Z Z: Ry 1 under a local changement of variables reads :

(5)

In the BPH Z scheme the renormalized perturbal ion series 1s - 9”‘ — /v
fék [ T2 ) e, l&P.}<x>)\IA]> =o 6

expressed in terms of an effective lagrangian which we shall choose in the

form :

pd ((F):‘H, [(“F L%) 2 e Ml k%’)&‘-,’b ¢ ) *Iﬂ.\\(\( ) 1)
) ' T2%y-N [tZ @)«u%@@p)] .

where n(, defines the substraction procedure, (Y | 4 y o daer
’ - Q+W&x(d-dum. f)
13

mines the propagators and 58 (LP) the vertices of the Feynamn

where T£ (‘\0) is the quantum variation of f(tf) and has the

following form .

! . . . .
graphs, the /rnw Y are monomials of naive dimevsion ¢o - t/(
. .
¢

74/P 639 74/P, 639
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I -G

G v R 2o
where t f (‘P) is the naive variation of ,I (<()) under the trans-~ for some . Here O( ) means quantum connections wh ch vanish

formation . if B:O .

LF' —> (ef - E‘I (8)

[

A simple example of such a problem is the following :

: ST )
V) =(4 ,
and 7& Q("_P) is a polynomial of dimensior not exceeding d{( (W]‘-lk(d‘ d‘““gﬁ) LFL_) ‘P‘ " gkd 88&(?) J) ( " « <P‘ (s

summing up the quantum corrections. Althcugh more detailed stalements of . A .
g vp 9 & where S X,{é Cé, and %/ is a semisimple Lie algebra.

; . Lo L (D i
the quantized action principle exist the general structure indicated

here will be sufficient for the applications we have in mind The quantum action principle reads in terms of the conn.cted Green

funcrional
The identity (6) can be written as a functional differential equa-

tion upon introducing a system of classical fields (sources) { ”Z i (\6 ZEII f?ﬁ [‘I e Zf_J:S U)}(k) E) Z[:}X (1s)
coupled to Z‘T(-P % )

Z (3= fé»[;vg JoZisl- LBZIT] o §:{«£%+€:@«

(16)

where :

;3
B Z [;\:1 :?J:lx [Ti?&f)+ O("Z\ﬂ“‘) XLZSXX (10) Let us introduce a system of classical fields { bﬁ,s coupled to [\’B«‘S
olf -
oﬁq%fj{bﬂ)‘— L ()« 6, B an

After the transformation (14) we get :

A typical problem in the renormalization program is tne following :
Suppose that a theory which is invariant under the transformation (8)
exists at the classical level, is it possible to extend such a theory to

the quantum level ? That is, if we start with a tree approximation lagran- r\C Z [3— {E }J [g% Z b 't b de: B)]Z_ ["Y rb YX a1

gian £ such that :
o(

—t oé = an Applyxng { to both sides of Eq.(18) we obtain for ¢ ‘Q,}—.—o

el - f Zlasan)

Is it possible to find a quantum extension £ of jf) such that Sb(x E

T(ﬁ.‘%: ? a2 J:;Hig Z[;)-g ﬂ\ + [-& D +O@B}sz C]&,o]
{bj=o

(19)

The answer to this question turns out to be positive if we can prove that

BsTaewcﬁ.@JrOdﬁB)zt@ (13)

hence

[’\Cj \6@1 Z[1]= H"(B@—tpaqlzccll (20)

74/P.639
74/P.639
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o |
Now the f, 5 satisfy the same commutatior relations as the cor-

responding elements of the Lie algebra C%» :
& ﬁ J“F (
Cct)(\c 3 = S;?S t (21)

Eq (20) together with Eq (21) Jeads to the consistency condition for

2y
X
6"‘5@’,{"’3’( = \: (; %X (22)

(2)

which can be solved in the case of a semisimple Lie algebra

o G
=4 N —t_ T— EES
Jfgx =t (= ngi (23)

- GAUGE FIELD MODELS

I1

In this section we shall review the relevant properties of the
classical lagrangians on wuich gauge thecries are based in the tree ap-
proximation We shall in particular show that these lagrangians are in-
variant under a family of non linear transformations involving the

Faddeev—Popov(g) (d?Tr ) ghost fields

We shall then shcow how this invariance property allows to extend
the procedure exhibited in the preceding section to prove to all orders
of perturbation theory the so-called Slavnov identities(s) which are in

the present case the relevant substitutes of the Ward identities

The theory is based at the tree level on the classical lagrangian:

L= Lgentaly ™3 eh-

R 2 o o(p _
- 4 00 )& [ G- o)

(24)

7SN

74 /P, 639

[
N
i

o
where Z qa’s denotes a matter field multiplet, £ GE»S is a
Yang-Mills field, ZZBX , ZCK-‘E are the d)T ghost scalar Fermi

fields labelled by the adjoint representation of the gauge group < .

<

o
aecuv({%%%{3,3)is the most general dimension four polynomial invariant un-

der the local gauge transformation :

S (P_(?() = S_i?i):)—- gl\,,(“j)
- SALY

S a,{( g (25)
~ xJ C
Sl = 22— A53)
B S /\F,(‘J)
o
The gauge function i; , labelled by the adjoint representation is a
polynomial of dimension two at most involving ¢ 3 Edg:k, one term of
E 4
which is (EL'EEP , which is familiar in quantum electrodynamics.
«
1%y
x: S i}( )
M x0= < .8 (26)

NS

is thus the kernel of an operator of the hyperbolic type which in general
depends on f AW 75 and £ des

In all the preceding formulae repeated indices are to be summed over and

repeated space-time points are to be integrated over.

The essential property of the lagrangian ‘iz is its invariance
under the following irfinitesimal transformation which we shall call the

Slavnov transformation :

g‘(’.(x) - g/l g—?fz C—f@) =S R

éQz?x) — 2
Sato-SA 2% sp .2 D
fx / SAF@:,) 9) [1%

§ o = S4 Gm

(27)

74/P.639
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(For simplicity we have chosen the non singular part of the Killing form

of gg to be the identicy S l, is a space-time indcpendent 1afi-
nitesimal parameter which comuutes with z'%g‘ l s {4C%; 1 , but
anticommutes with { Cq} , ?E {3)} and for two transformations
labelled by E /L, , and SA’L s 8/2.' and g iLL anticommute

This invariance can be checked immediatelv, using the composi-

tion law for the gauge transformations :

[5_, L} fxﬁﬁéc‘j)

S
SA%g / g/\%) 5/\00 <o

. (2) ; o
Conversely it can be shown that in the casg¢ of a semisimple gauge group
n
., is the most general lagrangian leading to an action invariant undcr
Slavonov transformation and carrying no (b m- charge

In the abelian case the invariance conditior allows the addition

of a term of the form :
ij [E)(x) + jAﬁ Z(fj) %(X,ﬁ) <D _\ (9)

for any iz; such that :
SB(X) _ m@,‘j) 3()\/)
SAw»

when 01/ is the kernel of a possibly field dependent differential ope-

(0)

rator which does not upset the hyperbolic character of i For example

in quantum electrodynamics we can add to
Q, &, =
G cC (1)
Py

which 1s nothing but the mass term for the photon

Another property of the Slavnov transformation which will be used

in the following is that :

%.?}; - g ?;

)

N

74/P 639

.

and of course :

d P
S %d(k) Yy m@?jlc(@)z L —g—w ff“ﬁ'ig -

Sc_(k)

We now discuss the extension of the Slavnov invariance to the juantum

level.

¢? o
Upon introducing a system of external fields Z‘KQ }9 }f ,
’ N,

» oS
X 3 3mu?led to {52 j?ot P 53 m C(,Q'S aid the
sources :S‘ ;L* 1@ for the fields f ?{‘)
’):?/ E‘ ck 3 we can wri:e the quantum action princple in the func-

tional form

c g d § _ § . qfé‘_ Zc
SZ=f (T8 T g%« AR 2ivg g2

= Jax [+ LHEQloz - BES

(34)

Much in the same way as in the previous example the algebraic

structure of the Slavnov transformation implies the consistency condi-

tion for ES H
/ézzca j’,&c [%d%‘ ](’() ZC'»' +BZ% O@(B}f LEZS o

(10)

After a Legendre transformation Eq.(35) reads :

4 S DS T-tR+oER)2tH (36)
gC(k) Sj(x)

'f?'E; is now the local functional corresponding to the irsertion
4R . Since we have also

= A~

1
{

(37)

when fﬁ is a local funcrional of dimension lower than five and

r'/:_ O(%{A) we have
({+ O@\Dfd" St C(m ¢>(’9—¥'t3 (38)

74/P.639
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which is solved by
, 2
=N (39)

thus giving :

‘t_<§3> -t F%~) = (40)

—
Thiis problem of showing that ifS = 1% Gl‘ is now reduced to prove
that for any local functional qu of dimension lower than six and
carrying the ’(b o charge of = the equation

{ :ffskﬂ - (41)
R’ -+ G

where 62; is a local functional of dimension lower than five

implies that

(42)

This result has been proved to be valid in the semisimple models

(11)

in which the Adler-Bardeen anomaly can be excluded a priori

Here we show as an example how the consistency condition (Eq (40))

allows to get rid of terms of the form :
o _—
5 :J’dk (o) € <) 43)

where K?’C) depends only on Z‘Q —3 and g C?))T’%

(Dther possible terms are dealt with in a similar way).

o
The consistency condition for k: ) is

gﬂ!ﬂ gfﬁ) > fqﬁr&k-cp €
by SARW

(12)

which turns our to be the Wess-sumino consistency condition for the

current algebra anomalies.

74/P.639
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(2

One can show that in the absence of the Adler-Bardeen anomaly

Koo = 5w Y
<y = 7. 45
DT SR “
where V/ is a dimension four local functional.

Thus in this case
BR=t Y (46)

which is the desired result,

III -~ RESULTS

The proof of the Slavnov identity is the essential tool for the
physical interpretability of the theory., This has been investigated in
(1) )(2)

all details in the following two cases : abelian and SU(2
Kibble models.,

Higgs-

The results are the following :

i) The parameters defining the theory can be specified in such a way that
the theory be interpreted as an operator theory in the Fock space

of the free fields (including the ghosts).

ii) A physical subspace of this Fock space is then defined. The restric-
tion to this subspace of the S operator is then shown to be unitary
and independent from the parameters which specify the gauge function

to all orders of perturbation theory.

74/P. 639
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WARD IDENTITIES AND SOME CLUES TO THE
RENORMALIZATION OF GAUGE INVARIANT OPERATORS

by

H., KLUBERG-STERN and J.B. ZUBLER

Département de Physique Théorique
C.E.N. - Saclay

Abstract

The problem of the renormalization of gauge-invariant operators in
non-abelian Yang~Mills theory is tackled through the study of a specific
example, Fiv , for which the explicit solution can be derived from renor-
malization group considerations, It is shown that the operator an mixes
with non~-gauge-invariant operators and that this mixing wust be taken into
account for the computation of the anomalous dimension of the renormalized
gauge invariant operator. The explicit solution is examined with the help
of Ward identities derived from a new type of gauge transformations which
appear very convenient from a technical point of view, The multiplicari-

vely renormalizable gauge-invariant operator is shown to satisfy Ward iden-

ticies and to possess an ¢~independent anomalous dimension. As a by-producr,

we analyze the gauge dependence of the Callan-Symanzik function B -

Saclay Preprint DPh.T/74-56

Submitted to Physical Review D.
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[HE PHIRRING MODEL WITH U(n) SYMMETRY * ‘
P.K. MITTER

Laboratoire de Physique Théorique et
Hautes Encrgies - Université Paris VI

* Abstract of talk delivered at Marseille Colloquium on '"Recent
progress in Lagrangian fiecld theo y and applications', June 1474,

A generalisation of the Thirrving model with internal
U(n) symmetry has been studied to all orders in renormalised perturbation
theory. The model is characterised by three coupling censtantsg
characterising the most gcneral set of renormalisable SU(n) invariant
4 - fermion interactions which are also Lorentz and C.P invariant.
The model is studied with the aid of Callan Symanzik equations
and Ward identities for Green functions of composite fields in the
BPIZ renormalisation progranme. It thus generalises the earlier

work of Gomez and Lowenstein.

In contrast to the usual U(1) Thirring model one finds
the presence of hard axial as well as scaling anomalies. However
these anomalies are not independent. There exist identities
relating them valid to all orders of perturbation theory. With
the aid of these one finds locally a critical curve passing through
the origin in the 3-dimensional coupling constant space on which
all anomalies vanish. A region of ultraviolet attraction can be syste~
matically found using qualitative methods from the theory of dynamical
systems. In addition to the previously mentioned curve the identities
(referred to above) are consistent with the existence of another
critical curve not passing through the origin. However to prove

its existence one has to go beyond perturbation theory.

The details can be found in :

P.K. MITTER and P.H. WEISZ : Phys. Rev. D 4410-4429 (1973
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ABSTRACT : A particular class of non renormalizable interactions
is studied in the infinite cutoff limit.

We present arguments which suggest that the theory is
finite after the introduction of a finite number of
counter terms. The Green functions are not C in
the coupling costant at the origine. The same results
are obrained using three different techniques :
infinite resummation of Feynmann graphs in pertur-
bation theory,
analogies with second order phase transitions,
the use of the renormalization group equation to
define the theory.
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In the past the properties of non renormalizalle interactions

(1),(2);(3)

have been the object of intensive studies main y in connection

with weak interactions. After the discovery of renormaliz:ble models of
weak inceractjons(A), this subpct is no more interesting a¢ some years
ago ; however we think that it is still worthwhile to try to understand
if non renormalizable interactions do exist and which are the analiti-
city properties of the Green functions as functions of thé coupling cons-
tant.

The aim of this talk is to present "euristic" irguments which
suggest the existence of some non renormalizable quantum f1:1d theories.
These arguments are similar to those used for renormalizabl: interactions ;
a formal series is coustructed, each term is proved to have a finite limit
when the cutoff goes to infinity, however the convergence o the expansion

remains as usually unproved.

It is well known that standard perturbation rhéory is unable
to cope with the problems presented by non renormalizable irteractiouns :
for example the i-th order of perturbation theory for the Fermi interaction
diverges like (G A* )L . Finite results can be obtained only
introducing an infinite number of counter terms ; no prediction can be
obtained without assumptions on the magnitude of these arbit -ary counter- .
terms.

Many people have conjectured that non renormali :able interac-
tions are finite without the introduction of extra counter-tirms : the di-

vergences found in perturbation theory are supposed to be spiriois and to
be connected to the lack of analyticity in the coupling conswant(1-3)’(é-6).
We will argue that this conjecture is true, at least for a p:i:rticular

class of interactions. Various techniques can be used : we vill describe
them in increasing order of complexity and generality,.

We assumethat ultraviolet divergences arise in perturbation
theory because the vertex has a "wrong" behaviour in the large momenta
region : we strongly believe that no divergences are present in an "im-
proved" perturbation theory in which asymptotic scale invariaice is lmme-

mented at each stage, Non analytical term in the coupling coistant arises
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naturally from the non uniform convergence of perturbation theory in the
large momenta region. R
A 4'1.)“
As a first example we study the A N (¢b . in-
+
teraction in the space-time dimensions D, 4 < D < 6 . The * are
a multiplet of N fidd and the Lagrangian is invarianc under the trans-

formation of the O(N) group. We use standard dimensional analysis : the

length has dimension -1 , the field ¢, —L;EEL 3 the coupling cons-
tant A , 4-D .
(8)

Following Symanzik we introduce an auxiliary field <~ ,

whose zerothorder propagator is equal to 1 in momentum space. The in-

1
teraction term in the new Lagrangian is 3 N'T o ( ¢; ﬁkh) where
1) gL = ——) .

The Green functions can be formally written as an infinite sum
over Feynmann diagrams : the high order terms are undefined because of ul-
traviolet divergences. We try to give a meaning to this expansion perfor-
ming partial resumations of diagrams. The technique we use, is the L/N

(9,10) : at the first order the &-self energy is computed and

expansgion
the resummed O -propagator is introduced in high order diagrams, We
stress that only a finite number of skeleton survive at a fixed order in
/N,

The first order contribution to the & -self energy is :

< _ B 1 . 4 _ 4 D
EAULEE 5[(,(”,)”,7" Pr v (P”mz)r]d P

D g A TR)y e

2 = (- i
K 3w D-t)§ ->)
The corresponding propagator is for large values of k :
-2
-/1 (K << 39“4)
1 Gl =
-2

A'*g‘i‘n"‘b (K; 35’7‘7)
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A simple analysis shows that when (3) is inserted in higher order diagrams,
the large momenta behaviour of the integrals is just the one dictated by
asymptotic scale invariance : the effective coupling constant turas out

to be dimensionless, g-independent and proportional to A_l.

The only divergent diagrams are related to the vertex and
wave function renormalization and to the $ -self mass. The use of the
improved propagator (3) avoids the appearance of additional divergences.
The output of the 1/N expansion is not C” in the coupling costant g .
For example a coutribution to the six point function at zero external mo-

mentum is roughly equal to !
; -3 3 4 =3
o 9§ e DA

This integral is finite for any positive value °§L,§2’ but
it is not analytic around g=0 : a term proportional to %c'a“j is

present (if D =5 the behaviour at small g is g8 In(g) ). These non
analytic concributions come from the integration regions where 3LR}~AJ4 3
for such value of the momenta the effective dimensionless coupling cons-
tant is of order one and high order corrections are relevant also for
small g . The coefficient of the singular term can be expanded in powers
of 1/N : only in very few cases it can be written in a closed form.

The new perturbation expansion reproduces the results of
standard perturbation theory when they are finite ; "divergent" counter-~
terms can be computed in powers of 1/N : they are not €® functions
of the coupling constant,

The 1/N expansion is very simple and straightforward, however
it is possible that a different resummation technique yields different
results (remember Riemann's theorem !). It would be interesting to derive
the same conclusions from more general arguments.

To this end the following procedure can be used : as a first
step we cut off the theory introducing an extra term in the Lagrangian ;
all divergences disappear and the interaction becomes superrenormalizable.
We look for a value of the renormalized parameter for which renamalized
Green functions are finite but all bare paramecters are infinite ; it is

clear that this particular situation corresponds to the infinite cutoff
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limit. A similar technique is used in the study of the infinite coupling

1) We mention 'en passant' that, if we change the dimensions of

tant limit of superrenormalizable theories . . . .
consta limit of P B the space in such a way to transform a renormalizable interaction in a

ifi is id be applied i i
To be more specific let us see how this idea can be app non renormalizable one, no pathology is shown by the conform:l invariant

to the <5-<¢u ¢b) interaction. At the zeroth order in the cou-~ self consistency conditions for the propagator and the vertex(17),: the
2~
pling constant the S -propagator is taken equal to (V?l-}/k ) . values of the coupling constant and of the anomalous dimensiins seem to
A renormalized dimensionless coupling constant (gR) is -introduced and be regular functiod of the dimensions of the space(la’lg).
the function (3  is definad as(lz) :
The conclusions of this talk are the following : there is a

2 1;2_ - /3(% ﬁﬂ) o particular class of non renormalizable theories which exist ¢nd are fi-

5) MVl e &R R> . .
™ m 9a nite (stability problems are neglected) ; the Green functions are not
¢*® inct 1i [

If the function /3 has & zero at g = Sc . all bare quantities he coupling constant, however in the large momenta region they

are divergent for this value of the coupling constant, in particular the are coupling constant independent and scale invariant. In pirticular si-
cutoof becomes infinite. The non renormalizable theory is finite iff the tuations (1/N or &€ expansions) the effective coupling constant in
Green function of the superrenormalizable theory have a finite limit when the large momenta region becomes small and we can compute the coefficient
g goes to g, . The consistency of this last assumption can be checke?13) of the term s;:g:ijida:e ie; SiQ to aoely th ”
looking to the large momenta behaviour of the Green function at g =g Listic model of weak inceracZio & ‘ PPLy these consideraticns to a rea-
(asymptotic scale invariance is valid in the large momenta region). ns ; however we have no contrcl on the
This cechnique is particular suited for the case of 6-5 existence of the zero of the relevant /A function, the presence of a
dimensions. The analytic structure in the coupling constant is the same vector interaction may destroy asymptotic convformal invariarce and in-
as the one found using the 1/N expansion, troduce addicionnal divergences.
The general "equivalence theorem" holds : "non renormalizable Also if we skip these difficulties, we are still faced with
theories are superrenormalizable theories computed at the infrared stable the problem of fixing the low energy structure of the theory : self .
fixed point". The existence of non renormalizable theories is related to the consistency cechniques should be used like in ref. 3 and ref. 20 .
the existence of infrared stable fixed point in superrenormalizable theories. Although the situation may seem quite promising, additionnal studies
Zero mass non renormalizable theories can be constructed using are needed to understand the properties of a finite non renoimalizable
(

s 14) . : ;
the renormalization group (in the massive case we can use the improved

bl di i i ' .
(15)). The idea is to use the output of the Dyson problems disappear in less than 4 dimensions : the presenct of Fermions

model for weak interactions. It may be interesting to note that these

renormalization group
equation.as input for the r.g. equation for the vertex and to use the out- does not introduce new difficulcies.
put of the r.g. equation as input for the Dyson equation. In this way, if

the /3 function has a zero, the Green functions are automatically scale

invarianc and no divergences appear. Non analytic term in the coupling

constant are obtained also in this case. An application of this technique

to second order phase transition can be found in a recent paper of Sugar

and White(ls).
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SUPERGAUGE SYMMETRY IN LOCAL QUANTUM FIELD THECI Y

by
5. _TERRARA
CERN - Geneva
. . . . . (D
Extension of supergauge symmetry to four-dimensional space-time has

allowed Lo investigate the possible role of this symmetry in conventional
local gquantum field theory. ’

Supergauge trasformations form a sort of extended Lie Algebra with both
commut ing and anticommuting parameters. There are both bosoiic and fer-
mionic generators among the charges of this symmetry. As a consequence

the representations of this algebra combine fermions with bosons.

The supergauge algebra is obtained adding to the conformal g:oup:of space-

)

time two Majorana spinor generators and the chiral charge . The two
spinor charges Gy S:, , to be called restricted and special super-
gauge transformation respectively, admit the following commu:ation rela-

tions with the conformal sud chiral charges.
[84.D) =5 S
h o [Qu,D) =4 Ga " 2

[OQ)M/MV]:L@:U Q¥ ['S“,M)“J: u(f/'u‘,S)‘<

[Q Pu] =[Sa Ku = ©
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Qo Ku] =
[Qq: "] ;“(;f(?{s’ Q)d [50(' T = %(2{75)0(
(B} {55, = 4H
{Q’(,Sp} w'-D + Z\of‘a:n—)

Of course this symmetry, due to the presence of conformal charges, is use-

5)0( [Su|’f/()] = ‘/(6,0( Q)t{

g

T
i
Ao
\kgL

2 s"M

{t

ful only for massless theories. However there is a non trivial subgroup,

generated by Poincaré transformations and restricted supergauge transfor-
R N P . .

mations which commute with the mass operator E/u_’_ and which is

therefore consistent with more realistic massive Lagrangian theories.

In order to construct field representations of supergauge symmetry one

congiders the action of an element of the group on the group manifold(”
2) e..:l = P _ éG,
where X, 6 are the coordinates of the superfield
3) ¢(X)9) - e_—t_x..P‘- @Q 47(0’0)
Using the commutation relation of the algebra one easily gets
5 ¢(X' &) =i du 4) (_x, ) translation
4) 549(;(’ 8) = (‘ %3.97 + v 93/“) ¢)("‘; 8) supergauge
5?(’(,9):—4'_‘(»(/‘8‘,-)(03/& 56;,\,?—0_) $(<. ) Lorentz
It is convenient to use Weyl spinors 90‘.5& related to the Majorana

spinor e by the relation

(A+ ¢ %) B

©
i
[

5) Sd:%“-LVs)G Rt
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1t follows that the superfield can be written as

— _‘,)(Eo-beﬁrba_é
&  fixeé) =e ¥ ¢1,0)

Due to the anticommuting properties of the spinor parameters the most gene-
ral form of the superfield is

4’()(, G/é) = As Y + é‘l? f__ee/u + 99/4 4.957,4
» + g + 6068 D

oM+ 9955

where we imposed the invariant constraint
8) d)(x‘, 9/(5) = 47(",9,9)-

This field contains two Majorana spinors \.V,?\ , two scalar fields A,D
a chiral doublet M,Mx and a real vector field, This is called the vec-
tor superfield.

From eqs. 7) and 4), composing the various powers of 9,6 one gets
the transformation properties of the various component of the multiplet
under a supergauge transformation. We remark that the last component of

a supermultiplet always transforms as a total derivative, i.e.

r

9) SD - B/u ’X-'A where X is some Fermi field.

This property will be crucial in order to build up invariant Lagrangian
with supergauge multiplets, In order to develop further the tensor calcu-
lus with superfields we observe that the group-manifold can be parametriz-

ed in three different but equivalent ways(A), i.e.

N ew
.xP¢ibQ _.8Q
(X

10) e

_b.“? Fo éé QL eQ
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They correspond to three different realization of supergauge representa-
tions i.e. to different definition of superfields related by the follow-

ing identity
5,0 8 su €,3,0)
1y dlx,68) = b, (x+105.6,6,8) = dyx - OSK C3

Note, that once the superfields are defined as type I or type L1 fields,
(corresponding to the second and third definition of the group manitold),
they become intrinmsically complex so the reality condition cannot still

be imposed.

4
We introduce now the following spinor derivatives( )
"
2} ) -V —, ;_3;—(,95_3
12) )q-_s—énsﬂea D4 Y >

which have the property of commuting with supergauge transformations.
They are therefore covariant operations., It is important to observe that

they have the following anticommutation relations

= L
13) {Dq,Dﬂj = ZDO( ,ja} -0 {Dqqu} - -2 QX 3/“ .

We call qb(xlelé) a left-handed superfield if it satisfies

the equation

14) Dy ¢, =0 -
In arnalogous way a field such that :nd ¢k =0 will be called
right-handed superfield. Note that ¢L is right-handed in fact
= - O .
15) DO( q)l.. = Do( cb]_

As a consequence of 11), a left-handed type I superfield is only a func-
tion of © Dbecause ')vl ¢.4 (x, & o) = d% ¢,(x,v 0) and

analogously a right-handed type II superfield is only a function of 0.
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It tollows thar a lefr-handed superfield can be always writter as

u

1) dy(x0) = Glx-c652880) = Ale) r & wl) + 8.6 FL)-

The representation CPL @ cﬁ; is now a real represent:tion which
contains two scalars and to pseudoscalar superfields A , F , B, G and
a Majorana spinor ’ﬁf . This will be called the scalar multiplet accor-

€9

ding to the original definition .

We end the basic ingredients of tensor calculus with the observation that

also multiplicati on of superfields is well defined.

The following multiplication rules can be explicitely verificd by the

reader as an exercise. Call ¢b s two superfields, then

¢y =(¢¥)L &YW = ($9)g
17) (f‘_UrR : '#R Y o= ((#Ik)t are vector superfields
ch_Do( Y. = X verifies the property >D v, = O.

The covariant derivatives previously defined, rogether with th: scalar

and the vector supermultiplets are the basic ingredientsin ord:r to

build up supergauge symmetric Lagrangians. We will confine ou-selves with
with the construction of such Lagrangians making use of the poierful tech-
niques previously introduced. Professor Iliopolous will disciis in detail,
in his talk, the consistency of this invariance with the renor alization

(5),(6)

procedure and moreover the problem of spontaneous symmetry bre iking
The previously derived techniques make us sure that the only possible
fields which can be considered as supergauge invariant Lagrang ans are the

' and D components of the scalar and vector multiplets resp:ctively.

. . . 7
Tor the self-interacting supermultxplet( ) we have the paradox that the

less intuitive term which appears in the Lagrangian is the kinectic energy

74/7.639



term. To build this term(h) we remark that the superfield given by

5 :—]5"'( $L is a lefr-handed mulripler with components F*,

Sy 3'"’@: , oa* respectively. From this follows that the [ compo-
nent of the left-handed superfield ¢Lj;‘ D 4L is the kinetic
term of the supergauge invariant Lagrangian. The full Lagrangian is given

by the formula

= T 2 3 Q¢)+h.c
L2 (DD rmPlrgd TR

18) 36 30 ( L L

where the various terms are easily identified making use of the explicit

expression of the superfields.

Interactions of vector multiplets are more involved due to the simultaneous
presence of supergauge and local gauge symmetry.

However there is no problem for what concerns the supergauge symmetric

free Maxwell equations(l). In fact, starting with the vector multipler,
one can construct the left~handed spinor superfield

3, > 4

19) v o

i}

then the F component of the left-handed superfield
20) 22 v w4+ ke

gives the kinetic energy terms for the vector supermultiplet

21) °8 = -

%U;UU’/N- z‘: AY.37 +%Dz .

To construct an interaction with the vector multiplet we [irst consider the
supergauge invariance extension of Q.E.D., i.e. the interaction of a vector
multiplet with a complex left-handed superfield(g).

The role of gauge transformations in a supergauge invariant theory is taken
by an entire scalar supermulciplet. In fact usual gauge transformations are

(8)

not preserved by supergauge transformations .
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Under a local infinitesimal gauge transformation one has

(22) &5 - —<AS §5* - L A'St Sv = "(A-Am’

or in the integrated form

+
23 eV _, N eV e
.
A b3 X (-A
-l
2y S - eSS > - e
S« eVs
It follows that the interaction term e is actually
invariant, However, as parity changes V - - v then it follows
x
that the Lagrangian must contain another piece T e T when
e ~ LA -t
T - T e” T — e T  under local gauge tmnsforma-
tions,
Then it foll S T
en it follows that and are left-handed superfields.
One can put
*® y
J = 34*"52 L 34"'5-3

then it follows that, provided one chooses a special gauge, where
C:=2wYv=M=-nN -0 (Wess, Zumino gauge) the Lagrangian becomes
manifestly renormalizable and takes the form

: = = (55 -5s)V ¢+
< - 310535515 %(2(5454"%“‘;) ¢ 288y - 5,5)

s v (55, ~ S‘S~)>'

The renormalization of such a model, consistent with supergauge symmetry

(8)'

was shown by Wess and Zumino up to one loop
Finally we mention the self-interaction of the vector multiplet, consis-

rent with supergauge invariance. This was discovered independently by

Salam, Strathdee and Zumino and the present author(g).
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Let us consider for i -Mi i i i ‘ i
e instance a Yang-Mills supermultiplet, i.e. a vector As a consequence one gets the result that the interaction of a Yang-

multiplet wvhose component trunsform according to the regular represen- Mills field with a Majorana spinor belonging to the regula- representa-

tation of so . : : : .
me group, say SU(N). tion of #n internal symmetry group is supergauge invariant As a final

In a supergauge invariant theo h -Mi : 3 i . : ; :
pergaug eory the Yang-Mills gauge transformation remark let us mention the possible geometrical meaning of supergauge

has to be replaced by a Yang-Mills left-handed multiplet A transformations. We have already seen that the representa:ions of the

v AT v b v LA v AT restricted algebra can be realized on fields (;’(7_) defined
e’ 5 e’ e~ - = e e . =
(25) > & = 2 7 on the superspace Z = (X, e ) . Now on this s>ace there is
a line element which is invariant under translations and r:stricted su-
In infinitesimal form we get . (10)
pergauge transformations ,i.e
AN A (LANTY e [AEA V) b . - =
(26) V> Vo L(/\ ) L( ’ L / ) (29) LU)A = C’X/u + 0(0’5;‘ C/@ - (JQS/Z 4 ;0
. . A . i o
Note that V always stands for the NxN matrix IA‘, ¢ So its square o] = e W is actually invariait under the

From the previous formulae one easil iv :
P € y derives that whole restricted supergauge algebra. It can be shown that one can en-

oAV vy, oA A il large the representation of the restricted supergauge algeora 4ﬁ(x 9, 9)

(27) e'\/) eV 5 e tle n e Je + e De ) .. -

= to a representation of the enlarged algebra. This is becaise additio-,

nal generators So( ) '<;J D and ™ belong (topether with

-Mi : . .
under a Yang-Mills transformation. From this it follows that the left- M},U ) to che stability algebra of the point 2 = (0,0).
handed multiplet given by Due to the structure of such an algebra one can always consider repre-

- = RY v sentations of this algebra such that
(28) W, = DD(e"D =) :
- - O
A A (30) S = Sa

transforms as Wo( - € CERS under a

. . R . , this is in fact the condition that ensures that the lowest coamponent of
(generalized) Yang-Mills transformation. It follows immediatly chal :

T"(Wu\ WY the superfield q: (x/ o) transforms irreducibly under Lorenrz

the F component of the left-handed field generates

. . P : transformation. 1In this way, for any transformation of the group one
a Lagrangian which is invariant under supergauge transformations and gene-

. i ets the corresponding transformation of the superfield
ralized Yange-Mills transformations. In the special gauge, where 8 P 8 F

P - -3\ =
C{, = M(, B NL‘ =Y, = 0 one gets 5¢'()<,9,§) _ ((f)(,ua)/l . 59_% - 59% 4+ F(xlel G)}l @{XIQ/9)>
Ly = Teltu o o £ D 3 7)

[

M = -
Y/ ko pb where F()‘, 9/9) is some weight associated to the field and
- ' - { ¥ ¢ & i x &8 @
where U/:“, - -&/u v - o+ © 9 [u/;‘ ! b , d6 Y are themselves functions of , ?105 For
% A 3.4 _ B example, under a special supergauge transformation ome finds
- G [V -
pAo= A e gL, AT
74/P.639 74/7.639
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then it follows that the line element (29) transforms as
= 3 = oy A
(32) (g(-u); = —2((5'6;6;\9 + ﬁs}ﬁ; 0) w
under supergauge transformation of special type. Therefore
2 ~") 2
(33 Sw® = L{(pO Lpo)w” .

Analogously under a conformal transformation one finds

&
(34) ng = L’c » X W -

2 2z
Of course Su.,v' - & w under dilatation, and St 0

under chiral transformations.

Then we have that supergauge transformations can be regarded as the sub-
set of general coordinate transformations 2Z 5 f(Z) which di-

late the metric W’ by a function of the point Z(x,®,8)
é; A - L(:L)-
(35) w(2) = f@w

So we see that supergauge transformations are those transformations of
the enlarged space (x,8 ,9? which eaves invariant the "light-

2
like" distance W @:) =0,

The previous analysis suggests the possibility of generalizing supergauge

transformations in curved superspaces.

74/P.639

~40-

-REFERENCES -

. WESS and B, ZUMINQ

Nuclear Phys. B70, 39 (1974).

. FERRARA

CERN Preprint TH.1824 (1974). To appear on Nuclear Physics B,

. SALAM and J. STRATHDEE

Trieste Preprint IC/74/11 To appear on Nuclear Physics B.

. FERRARA, J. WESS and B. ZUMINO

CERN Preprint TH-1863 (1974). To appear on Physics Letters B.

ILTIOPOULOS and B. ZUMINQ

CERN Preprint TH-1834 (1974). To appear on Nuclear Physics B.

L J
2 S
3 A
4 S
5 J.

S.
6 P
7 J

10 S.

74/P.639

FERRARA, J. ILIOPQULOS and B. ZUMINO
CERN Preprint TH-1839 (1974). To appear on Nuclear Physics B,

. FAYET and J. ILIOPOULOS

Orsay Preprint LPTHE/74/26 (1974).

. WESS and B. ZUMINO

Phys. Letters 49B, 52 (1974),

. WESS and B. Zumino

CERN Preprint TH-1857 (1974).

SALAM and J. STRATHDEE
Trieste Preprint IC/74/36

. FERRARA and B, ZUMINO

CERN Preprint TH-1866 (1974). To appear on Nuclear Physics B.

FERRARA and B. ZUMINO
In preparation,



4] -

A) SUPERGAUGE INVARIANCE AND RENORMALIZATION

Presented by

J. ILIOPOULOS

"Broken Supergauge Symmetry and Renormalization"
J. Iliopoulos and B, Zumino
Nuclear Physics B76 (1974) 310-332.

Abstract : A field theory model invariant under supergauge transformations

is shown to be renormalizable to all orders in perturbation theo-

ry. Renormalizarion is shown to be consistent with supergauge
invariance. It is further shown that only one renorwmalization
constant is needed, a common wave f{unction renormalization for
all fields. A symmetry breaking term is introduced which breaks
the symmetry explicitly but so smoothly that the renormaliza-
tion procedure of the symmetric case can still be applied. Re-
lations among masses and coupling constants emerge. Among other
topics discussed, the possibility that the supergauge symmetry
is spontaneously broken and chat a Goldstone spinor appears is
examined.

"Supergauge Invariance and the Gell-Mann-Low
Eigenvalue"
S. Ferrara,J. Iliopoulos and B. Zumino
Nuclear Physics B77 (1974) 413-419,

Abstract : The connections among supergauge, scale and conformal invariance

________ are elucidited on the example of a renormalizable itjeld theory
model. For the massless model, at the Cell-Mann-Low eigenvalue,
a non-perturbative argument leads to the contradictory result
that it can only describe a free field theory. A study of the
Callan-Symanzik equations for the massive model clarilies the
situation from the point of view of perturbation theory. It is
argued that the eigenvalue equation has no non-trivial solution
and that the effective coupling constant increases without hound
with energy.
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3) SPONTANEQUSLY BROKEN SUPERGAUGE SYMIETRY

AND GOLDSTONE SPINORS

Presented by

P. FAYET

"Spontaneously Broken Supergauge Symmetries
and Goldstone Spinors"

P.

Fayet and J. Iliopoulos

Physics Letters 518 (1974) 461-464,

Abstract
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We present a model with a spontaneously broken sunergauge
symmetry which results in the appearance of a massle%s
Goldstone spinor, The model combines supergauge iavarian-
ce with ordinary gauge invariance. After the breating

the gauge boson acquires a mass as a result of the

Higgs
mechanism. 88
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GAUGE FIELDS, QUARKS

ASYMPTOTIC FREEDOM,

INFRARED

SLAVERY

Asymptotic Near Freedom ‘

o
91 D. Bailin, University of Sussex

The work which this report is based upon was done in collaboration with
Alex Love, It came about as a response to the shock we felt when we studied
the experimental data on scaling, It seemed to us that the data do not rule out

a -q2 variation of the structure functions (at fixed qz/U) of perhaps as much as

o

(—q2) 7, if we parumetrize the variation as a power of —q’.' Of course the
asymptotically free gauge theories predict logarithmic deviations from scaling(l)
and the problems of distinguishing between these two types of deviation have heen
discussed by Gross elsewhere in these Proceedings. The N,A, L, experiments
using muon beams should clarify the sitiation, At any rate, we asked ourselves
the question: what would be the theoreti ‘al consequences if the N, A, L, experiments
actually show a power deviation from exact scaling with an exponent less than about
-0.3?

Such a variation is still considerably slower than any known form factor
so probably we should not simply drop the aj uiratus which has been built up to
understand "cxact" scaling, Presumably we :tould say that the underlying strong
interaction field theory was asymptotically "'ne. viy" free rather than asymptotically
free. More precisely we should say that S(A) ha. a zero at X = )\F, near the origin,
which controls the ultra-violet behaviour of thc theory. Then the effective coupling
constant A {t, A) = Ap <<last= oo, Butfor, . tobeanultra-violet stable fixed
point we want

B(x) > 0 A<

and B(A) <0 A>A



and since 3(0) = 0 the simplest possibility is that shown in Fig. la. Of course
B(A) might have two zcros near the origin with the sccond one attructive as in Fig,
1b., We thought this latter behaviour unlikely {and certainly unprediclable) so we
considered only the first possibility. Thus we are considering theorics in which
A = 0 is an infra-red stable point.

¢ , s .

But Zee'™’ has shown that therce are lots of theories which cannot be asymptotically
free so we considered those theories which secemed to us to be a priori the most
reasonable. There are advantages in basing the strong interaction Lagrangian on
a group which commutes with the ordinary classification SU(3), since we gauge parts
of classification SU(3) to generate weak and electro nugnetlic interactions, An
appealing choice of strong interaction group(g) is the group which transfoyms the
colour indices of the three triplets of quarks required to give the correet rate for
2% vy. This rate and the total ¢’¢” annihilation cross-section do not depend upon
the choice of colour group, but only on the fuct that there ave three classification
SU(3) triplets of quarks with conventional charges and weak charges. Thus we way
take the 3 colour indices « = 1, 2, 3 of the quark dq,, 18 transforming as the three
dimensional representation of a group G. This group is usually laken to be SU(3)
and the three dimensional representation is the fundamental representation.  However,
we can also take G = SU{2) which is the same as the rotlation group. This too has a
three dimensional representation namely the regular representation in which the
quarks have "colour spin' unity. The next option open to us is whether to use
vector gluons or scalar gluons transforming according to the regular representation
of G. If G is SU{J) there will be eight gluons while if G is SU(2) there are three,

The Yukawa coupling of scalar gluons is known to be a theory in which the fixed point
@

at the origin is not ultra-violetl stable'™ so that the ulira-violet behaviour must be

controiled by a non-trivial fixed point, such as we are looking lor, which we

h6-

assumie Lo be near the origin, In the vector gluon case we have a 1on-abelinn

7
gauge theory which, if G SU{(3). gives anultra-violet stable orig 11‘4) providec
we do not generale the gauge field's masses by means of Higgs scalars. Thus
B(A) docs not have the form of Fig, la, and we discard this possib lity. On the

other hand if G = SU(2) we have(4)

3 5
8@ - A—F— v p—E—
lez (16a7)
11 4

o > A - 1= PRI,
where [3 02 {G) 3 mT(R)]
and Cc_¢ =
1N 9 (G) 61)’ fike fjke ,

T s® - e [R*RP,

a . . . . .
R are the matrices representing G in the (3-dimeansional) represcniation to which

the fermionsbelong., m is the number of fermion multiplets, 3 in cur case. Now

Al

for G = SU(2) .
C,G = 2 , TE® =2
Thus
A - - [2_2_ .oz ] L2
3 3 3

and we sec that the origin g - 0 is no longer ultra-violet stable, ard again the
asymplotic behaviour must be controlled by a non-trivial fixed poiit. Notice that

the small value of A above results from extensive cancellation bet veen the two terms
50 that if B is pegative and of "normal" size we may expect a zer« of § near the origin,

In fact the results of Jones, presented elsewhere in these Proceccings, and of Casw(lt(ﬁ)
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show that
B =~ +80

for G = SU(2) with three triplets. Thus it is unlikely that in this theory g8 has

a zero near the origin, and in this report we shall henceforth Sonfine ourselves

to the scalar gluon theories.~ Notice however that the form of A does provide

a ""natural"’ mechanism for cancellations and hence for nearby zeros, and it may
be that some other reasonable choice of m, R and G could yield the behaviour we
are seeking; as Wilson has observed earlier in this Meeting, the e+e_ annihilation
cross-section may force us to entertain theories with large numbers of fermion
multiplets,

We now{ —c*alculate the anomalous dimensions of the tensor operators which
oceur in the light cone expansion for e- orl/-productigzl. We assume that the scalar
fields ¢pa have a Yukawa coupling to the quark fields 9,

- a a
»i v & a§a 9 Roypp ¥
where Ra are matrices in the 3 dimenional representation of G, and a runs from

1....8if G=8U(3) and a = 1,..3 if G = SU(2), In addition there is a four scalar

4
coupling, denoted )‘ozp , which however makes no contribution in the single loop order

in which we shall be calculating. We are concerned with the light cone expansion
for the product of two currents, vector or axial. For a spin averaged target and
energies below the threshold for the production of colour non-singlet states the only

terms in the light cone expansion which we need to worry about are

" i . b
OM:l noo 0l Z q, b‘i...'y .ol q
s, a

m m o

(n=0, ...8)

Continued Overleaf/....

-48-

[T, Mook ‘
1 no_ inZ <pab 1.“0n a
a

Oy [

where Am acts in the space of ordinary classification SU(3); the summation

over « and a ensures that the above operators are colour singlets. We see
that for classification SU(3) non-singlets there is only one operator (for a
given n) to worry about, while for SU(3) singlets there are two (Oo and 09 ).

bid 0]

We denote the inserted Green''s functions by T 1 J where ‘b: = qa or goa
and j = 0...9. The SU(3) non-singlet insertions are multiplicatively renormalized
but the singlet insertions are not because of mixing between 00 and 09. In general

the renormalized Green's furctions T are related to Tby
n n
0. 0 _ #4480
riid. E z2@yzt T 11K
m i’ Tjk

(6)

They satisfy a Callan-Symanzik equation'’ which in the deep euclidean region

(relevant for deep inelastic e- and y- production) takes the form

n n
n = d’i ll"iok

(D+2y(p)] T +Zy. Iy =0
i jk
k
where y(y i) is the anomalous dimension of the field abl and
n Z -1 n
ik ~ p (Zn)j!, DZ oy

is the anomalous dimension matrix:

7
o o
bk amd a2 g
du Om A OX g dg

# and m are the masses of the scalar and fermion while X and g are the renormalized
coupling constants. To calculatue the y;lk in lowest order we simply have to calculatae

the divergent parts of the diagrams shown in Fig. 2 which are proportional to



—cp -

for extcrnal fermions,

or P, e p“ for external scalars.

1 n
Fig. 2d. has a convergent contribution which is why A does not enter in lowest

order. The upshot is that for SU({3) non-singlets

2
. = A " =1...8
A A [* ] @ )

For SU(3) singlets we get a 2 x 2 anomalous dimension matrix

(0) 9
24

n

2
@ = 55
16x

/6 CZ(R)

n € Al
P [1 + (-1 ] 12T (R)
5

where

A a 4/3 : SU(3)
C,®I -Z R K ={
a

2 : SU(2)
1/2 . SU(3)

ab b
T@6™ - Tr[R*R™] ={ ) . sug

Using the Callan-Symanzik equation and the Wilson light cone expansion it then

2 .
follows that the Fourier transformed coefficients of On , C;: (q ), satisfy
n 2 n ~n,2
DT @) ‘Zk %y G @)

These equations can be solved by diagonalization of Z:) with the result (writing

~ o~ N
Cjn as the elements of a vector C ) :

n
n E n 2 _gi/2 n
= ¢, a) e.

. b §
1

o]}

n . y .
where gfl are the eigenvalues and & eigenvectors of X.n I‘. In the ultra-violet
1 ~

1)

)
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region we fake g to have it's fixed point value 8y and we see that the
2
SU(3) non-singlets are controlled by one power of -q and the SU(3) singleis

by two powers, Notice that in the limit n - oo the anomalous dimens:ns

approach fixed non-zero values:

2
Er c, ® for SU(3) non-singlets
16n2
2
_g_F;__ (C, (R), 12T () for SU(3) singlets
2
16w

It is this property of Yukawa theories which gives rise to the charactzristic
threshold behaviour discussed by Gross elsewhere in these Proceedi igs.

These statements may be translated directly into statements about the
moments of the structure functions. The SU(3) non-singlet combinal ons of
the currents are always controlied by one operator as we have seen and

n+l

. _1
!(1521—5 F‘; " © () Tm (m- ....8

the same is true of the F;J

<

moments for all SU(3) quantum numbers 1 icluding singlet

combinations - this follows from G-invariance. Thus

. _1 :
‘fdé F;J " © (D Tm (m=0...8

In both of these expressions 721 is given in equation (1), The only complicated
behaviour ariscs when we consider the moments of F2 arising from {,U(3) singlet
combinations, In genera) they are countrolled by two powers of (-qz) corresponding
Lo the two eigenvalues of equation (2). The only exception is the n — 2 case where
onc of the eigenvalues vanishes, This occurs because one lincar corybination of the

H M HoH
operators OOl n , 091 n

3)

“)

is the energy-momentum tensor whose :onservation ensurcs

that it has no anomalous dimensions. The known matrix element of this tensor enables
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us to derive a modified version of the Fritzsch Gell-Mann

1
ep en, vp, vn 4 2
6~/:d§(F2 t ) [ dE(Fy Fy) -y ROk

o

1)

pure quark sum rule:

2
2 -
© ()72
S : . g (6.9 : suE)
where 1(2) = 16"2 [12T(R) + 3 Z(R)] = ;6:2 25.3 : SUE)

is the non-zero eigenvalue of xz.
~

21 7/31 : SU(3)
R = 18T (R) [18T2(R) + cz(n)] {‘)9/10 . sug)

Conclusions

The characteristic power deviations from scaling of theories which are
not asymptotically free should be detectable in the N, A, L. muon experime nts, The
Yukawa theories which we have considered have SU(3) non-singlet structure function
moments varying as a power of —qz, namely (qz)_p. The maximum value of p is

determined from (3) to be

2
P =3 z Gy = 2
162 167 1 SU(2)

( the moments of FS’ even the SU(3) singlet combination, are bounded by the same

power variation). Thus these tests do not provide a very sensitive way of distinguishing

between the two theories,

2-0.3
If we assume that the scaling deviations are something lcss than (-q°) )

we should conclude from thege tests that

=52~

2
o, g [1.8 . SU(3)

. E -
4a LI.Z . sUER)

On the other hand tests of these theories using SU(3) singlet combinations
of the currents provide more stringent restrictions on o and distinguish more
casily between the theories we are considering. It is easy to see that the largest
of the two eigenvalues of Ln' given in (2), is bounded and that the maximum

variation of SU(3) singlet moments is given by

« 2 g 2 f11 ; SU(@3)
ool S erm ro,m] -5
16z 16w 13 : 8U¢2)

If p < 0.3 this gives

ﬁ, 2 {0.33 + 8SU(3)
m

0.092 : SU(2)

Thus the outstanding question is whether the Yukawa theories we have been
considering do in fact have fixed points satisfying these inequalities, Th2 only
way we know of to tackle tl?ls problem is to calculate the 8 function in two loop
order, At this level we have a two coupling constant problem because we have to
include a X (p4 interaction for renormalizability, (In fact for the SU(3) case we
have to introduce a '\w3 coupling which however is presumably negligble
asymptotically(s) ). Thus we are concerned tofind simultaneous (non-trivial)
zeros of Bg and Bl' The calculation is straight forward byt not yet completed:
there are of course no problems connected with gauge invariance which have been
referred to by other contributors.

We have restiricted our attention in this article to three triplet models of

+ -
the hadrons. However, the well known ‘roblem concerning the e e annihilation
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cross-section has made three quartet models much more popular since

these yield a larger value for R = 0(e+e— = hadrons)/0 (e+e_ - Iju-). It is

easy to generalize our results to the case when SU(4) is the classification symmetry.

This makes the SU(3) singlet behaviour even more complicated since in this case

there are three operators instead of two controlling tie asymptotic behaviour.

However, it is easy to see that the SU(3) non-singlet behaviour is unmodificd

80 long as we continue to use SU(3) or SU(2) for the colour group. For this reason

a safer but less rigorous test of our ideas is obtained from a study of the scaling

deviations in SU(3) non-~singlet combinations,

O

(2

(3

“

)

(6)

()

(]
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1) INTRODUCTION

To obtain a detailed understanding of the mechanism that keecps the
quarxs permanently bound is one of today's major problems in particle physics.
It would be most satisfactory if the feature could be explained tn tcrms of
infra-red effects in a renormalizable field theory. And then we are naturally
led to a non-Abelian gauge theory without Higgs-Kibble mechanism, for threen

reasons

a) The theory contains massless fields interacting with each other and 1s
therefore infra-red divergeat. Tne ansence of mass follows rrom the sym-

metry and needs not be put 1n by hand.

b) The theory is infra-red unstable and therefore the long-distance behaviour
is not described by the classical limit of small coupling, and there need

not be physical massless particles.

¢} The theory contains vector fields. These could form vortex lines which

behave like strings.

It is this latter point to which we want to focus attention. Vortex
line solutions are known to exist in an Abelian theory with Higgs mechanism .
However,.in that case, it is the magnétic field lines which are trapped in a
vortex. IY quarks are to sit at the end points of such a vortex, so that they
will be permanently bound, then they have to be magnetic monopoles 2 « The

quantum rules necessary to exclude exotic states are then not very elegant.

We think that it should be the electric (i.e., time-space) components
of F v that are trapped in a vortex. 1In that case the triality zero selection
rule comes out more naturally, as we shall see. We asked ourselves whether
electric vortices can occur in a classical Lagrangian field theory. The answer
is yes, but the Lagrangian is not renormalizable. It deviates from a renorm-
alizable one only for small values of certain fields. Since these fields have
the dimension of a mass, this is a mocification in the infra-red region. It
is not inconceivable that higher order quantum corrections from zero mass
particles give rise effectively’to such modifications. Thig is why we call

our Lagrangian an effective Lagrangian.

2) CONSTRUCTION OF THE LAGRANGIAN (+BELIAN CASE)

We can follow the guide of she renormalization group. We want to
describe an asymptotically free, infra-red unstable theory. Let us assume

that for momenta going to zero, the ciffective coupling goes to infinity :

- .

if k-0,

then 3‘” - o0 . (2.1)

This we now take as an input. So from now on we can forget that the theory
was non-Abelian, and first coastruct an effective Lagrangian with this property

for Abelian gauge fields.

All charged particles will be represented by an external source

function J(x). Consider the Lagrangian

£ = -3ZF.F - LA (2:2)

where
F,o - ;ﬂAv - ;'A# [}

and 2 1is just a constant. Of course one could scale 2 out of the kinetic

term :
’30 -> Zf-qk ,3“ >
£ - _'4’_-’;’7/“ - Zzk LA - (2.3)
So we see that the interactiéns are proportional to Z'1. Therefore we want :
ir koo,
(2.4)

then z A 4 0

Now if we took Z to be momentum depenlent then we would have a non-local
Lagrangian, and (in the non-Abelian case' gauge invariance would be destroyed.
The trick 18 to let Z depend on an auxi!iary scalar field ¢ with the

dimension of a mass :

H F- 0. (2.5)

then Z(q') - O,



’ N
Thus w e led to consider the following Lagrangian,

oot P YA
LIAg) = -3ZOF, F —g/oet - Vi

By definition we shall require

Vigq) >0 if
Vo) = o.

T %0,

In practice one can take

V@Y = fwiqa Aoaqf

oo (2.6)
7

(2.7)

(2.8)

(there is no reason to require symmetry breaking here). And further

Z((‘P) -> -For Lqr?e lq( R

Zf/Cf) - {cr T = 0.

(2.9)

The exact form of Z for smail values of o shall be left open for the time
being. PFor simplicity we take 2 and V both to be increasing functions of

2
0.

3) WHAT HAPPENS TO COULOMB'S LAW

From the Lagrangian (2.6) we derive the ILagrange equation,

%o =

where Euv is the induction field,

E/w = Z(g)F,,

It ie convenient to take Euv as a separate variable and write

(3.1)

(3.2)

-62-
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- - |- e c oy -4
= — - - 3 - = a -- [CEAN
A2 S T o ‘ e (3.3)
t ' N .. A s \
- I3 - - ! 0 AT R Y . PR -
Fzea foe En P AL M

+ total derivativza.

Variation with respect to Euv gives (3.2) and the original Lagrangian (2.86).

Now the vector potential acts as a Lagrange multiplier.

Suppose now that the charged particles are at rest and we are
interested in the stationary solution :

?é = ( Gy o= 1,2,3
’\‘ (I)r\ = !“,(;\v
-4 ’ (3.4)
= e O
t
F“’ = IF(
Then the Lagrangian eguals minus the energy density, which is
=5 v
Mo o= Z ¢ LrdeY o+ V(g)
ZZ(CF\ 1( c.(P
& = p(F): (3-5)

The field configuration is found by requiring the total energy to b2 a minimum

under the additional condition biEi = p.

Since we want to find the Coulomb force between iwo chargzs far
apart, we are mainly interested in fields T that are nearly constant as a
function of space also. In that case the derivative term for the p field

is unimportant. The field ¢ is then determined by the requirement that

N + V) (3.6)
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be minimal, so finally all that is relevant is the relation between 7 and

V. Suppose that for ¢ - O,
~ —_ . NS
Z = CvVv Coee AR (3.7)

(so if we taxe V = dm2e>+ Ole?) then z(g) — c(En%e?)Y)

(3.6) is minimal if

P

\ Jed 2
[vig)y ] = ;e & (3.8)
S0 the energy density for small values of E is
! 2
INTH ' f o
ey = (1555 = el (3.9)
For large values of E we have
2
JC(E) = _;—E 2 (3.10)
so we have roughly,
Z.
JeY = CIEIMT « F1EN (3.11)

Now consider a flux line going from particle A +to particle B
carrying a small flux ¢ [Fig. 1. Remember that due to (3.1) we have flux

conservation]. Let it have a cross-section . The electric induction is then
E = @/ Q0 s (3.12)

and the energy U per unit of length,

N o d !f?; y ba N
= NI - .Q.(C {E<‘ AR b (%.73)

o .
In Fig. 2 the Tunction U(Q) 1is sketched in three cases : o > 1, = 1 aad

a < 1.
Ir tne case o < 1 the flux lines tend to taxe as large a volume

2 ;
as possible and N will be of the order T where r 1is the distance between

the particles. We get a power law for the potential V(r)

vf‘) ol Y M(Y‘) . r Y ”‘-'(_ P (3.14)

leading to quark confinement if o > 1/3.

If o =1 +the energy of a flux line will become independent of its

width and just proportional fo its length. We get

‘/‘/r\ o r [’\( = | ) . (3'15)

Pige »
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If a’ then the flux lines will not spread further than the
cross-section no where the energy is minimal (Fig. 2). The whole field E
will be confined in a tube with a definite width and arbitrary length. These
are the electric vortices meant in the beginning. They will behave exactly as

the dual string. So here also

V() o< r (>1). (3.16)

The success of the dual models in describing the phenomenology of the
strong interactions indicates that most likely o > 1.

Let us now turn back to the term (bicp)2 in Eg. (3.5). It does not
change our arguments. But in the case o > + it is the only term that raises
the energy if we try to split the tube. If it would be absent then the field
would drop sharply to zero at the edge of a tube. So its task is to make the

vortex soft at the edge, end continuous inside.

We observe from the solution that, in fact, a symmetry breaking
mechanism takes place : the gauge field term in the Hamiltonian (3.5) forces
¢ to become non-zero if a vector fiseld is present. In other regions ¢ = 0,
and there the gauge field cannot penetrate. Thus our theory resembles the

bag theory 3) : inside we have ¢ # 0, gauge fields present, and outside

® - 0. But we have a soft bag : everything is continuous. The hard bag 3)
would correspond to neglecting the kinetic term for ¢ and taking 2(v) to
be a step function (& =00 ). Charged particles are automatically confined

to the bag because of the field they drag along.

4) THE NON-ABELIAN CASE

In the non-Abelian case the induction field EEV gatisfies the

equation
ab b
DIEL, = 3N
M v (4.1)
where Dsb is the covariant derivative. So flux is no longer conserved, and

we cannot extend our classical solution to this case : there are no classical,
stable vortex lines. ' Nevertheless we believe that also this theory will have

vortex lines if @ > 1. The argument goes as follows.

@

bLet us take one isospin directlon,'say the 8 direction 11 su(3)
space, and consider the electric field A8 .
powv

8
- vau separately. All other
fields,

i.e., the charged Fermi particles and the charged gauge vect)r particles,
are described by the source 'Ju. The difficulty we had in the beginiing can

now be formulated as follows : given a pair of charged particles wit: an elec-
tric vortex line in between. Then the charged gauge bosons can be ¢ "eated in

pairs and thus neutralize the electric field, and the vortex will fa.l into
pieces.

However, the quarks have charges 1/3, 1/3 and -2/3 wita respect
to this colour electric field. The gauge bosons, on the other hand, have
charges 0, and #* 1 only. In Fig. 3a we depicted what we expect bto happen
if a pair of gauge particles tends to neutralize a vortex between a single
quark-antiquark pair. In Fig. 3b we see that three vortex lines cam be
eliminated if they are parallel. Only colourless, trialit& zero states have
no vortex lines emerging.

2) == O

$ ﬁ- ﬁ-r i
9 q
s e cmm e
2 : A 3

Fig. 3

After completion of these notes the author became aware of the work of Kogut

and Susskind 4), who describe essentially the same model.
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A calculation of the renormalisation constants of
the YangﬁMills field to O(gu) is presented. The function
B(g) is hence evaluated to O(g5) and possible implications

for gauge theories of the strong interactions discussed,
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Introduction

Great interest has been aroused recently in non-abelian

gauge theories of the strong interactions because of the observation1)
that such theories can exhibit free-field asymptotic behaviour at
large Euclidean momenta, hence providing a natural field theoretic
framework for the explanation of the scaling phenomena observed in

2)-U)

electroproduction and neutrino-production experiments” However,
it seems that the introduction of scalar mesons with non-vanishing
vacuum expectation values to give masses to the gauge fields destroys
the free field behaviour, because of the quartic interactions

inevitably present in a renormalisable theory?) This observation

led to the conjectureg)’s)

that the strong gauge symmetry is in
fact exact, and that the absence of masslesc vector bosons is
agsociated with the infra-red divergences involved in such a ithoory.

Asymptotic freedom for non-abelian theories 18 a consequence
of the behaviour near the origin of the calculable function B(g);
in view of the above conjecture its behaviour away from the origin
is also of interest; a zero of B for some finite value of g would
correspond to an infra~red stable fixed point, hence rendering the
conjecture suspect. In the absence of non-perturbative approaches
a two-loop calculation of B is therefore of interest, and is per-
formed here, using the dimensional regularisation technique of
't Hooft and Veltmans).

We find that for the favoured model (SU{3) with thgee fermion

triplets) the second term in B has the same sign as the first,

suggesting that the domain of attraction of the origin is large.

L

-7Q‘ ‘

2. Calenlation of the Renormalisation Constants

"he Lagrangian we shall consider consists of a set of gauge
fields Wi(x) and a pultinlet of suin one-half fields ¥ - (x), and
possesses local fauge invariance with respect to a competct sémi-
simnle Lie groun G, of dimension r., The bare Lagrangiar is

therefore

Ls 108 - -MF o

AV
where
~ nlvc_
Y ~ a [ ~ ~ b ~e
C/.,v = g/u.wv - 3“ M +34f wj‘- WV (2)
and

0.9 = W¥ o+ SRV

(~ means unrenormalised)

abe (a: 1,2...r) are the real, totally antisymmetric

Here f
structure constants of G (Ra)i:j is the matrix representation of
the a'th generator of G on the fermion multiplet. (i = 1,2...4(R),
where A(R) is the dimension of the representation). We asshme that
G 1is non-chiral, to avoid difficulty with Adler anomalies.

In terms of renormalised quantities the Lagrangian becomes

<
St (-2 - L ()

abc c N ale pade w & 4 &
”2135' ’a/uwj W/A&Nv - ta‘z/ii 5. ;f' W/u. w"“p""v

BN A LR N e N S A S
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“L Y (R e Y - 2 TR R YW,

_‘zl"‘(—lzm ") —“?(‘J/M

()

where we have added a gauge term and a ghost Lagrangian in the

usual way. The renormalised quantities g, @ and M are ;iven by
"

J = Z /z;la.a (5)
"7\ = Za M (6)
;l . ;£3 ol (7)

(Note that the longitudinal part of the W propagator is unrenormalised) .

We will work throughout in the renormalised Feynman gaure (a = 1).
The function B(g), as we shall see in the next section, is
related to the renormalisation of the coupling constant ¢. We
choose to calculate this to O(gu) by considering renormalisation of
the W@P vertex, and therefore calculate only Zj, Zg and Z? to O(gu).
Clearly the calculation of z1 would provide a non-trivial check on

the algebra through the Slavnov-Taylor7) identity'—

E
2'/2 - 2'/Zs: (8)

3 3

o 5
This calculation has in fact been performed by %W, Caswell ),
with results in agreement with those presented here.

We use the metric conventions and Feynman rules as given by
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)
AR ;oft’); and stnce tir Hevnman integrals are to’performed in

n  timensions it is convenient to define a new coupline constant

U bv
g = ml2u
(9)
where € = 4-p and m is an arbitrary mass.
Tne outtraction constants (Z1—1), (23-1) etc. are chosen
(foilowing 't Hooft1o)) to contain only inverse powers of e;

in san expancion about € = 0. It follows1o)’11) that the sub-

traction con~tants are mass indepenient; accordingly we set M = O

througtout,

Yor details of how the pole terms are extracted from the
Feynman integrals see reference (12); here we present only the

results,

From one-loop diagrams we obtain
) 2
(23-\) = {!9. () - Svep)f -
3 3 tnte
€ (1))
(23 - \> =
G(g) _u?
Lhte

[3)}
(Z:‘ -1) = (10)
=20 (R) w
* )“/um’e

(2| ~|) = %C;(G) — _E_T(R)}i

102

~Clg) w
2(e) /Tt

"2 §c‘(2) + Cz(Q)g “'L/“,."ze
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where aly

C,(c)$ ;S-w’l ;f-(’“{
G(R)T R* R*
TR)E™ - Te[RORY]

Using these results we obtain from two-loop diagrams

(11)

€

en W€

qet €

] +(€_>_9 - §>C1(Q)T(R)

tv) .
(2;“) o\ W _L)e
€ X +1 _ 4 (e) 2 _§
B [0+ (3-g )

€ [

_ _3_> ¢ ()

et e

N
{
vy
¥
f
;;l’fu
\_/r,
o
»N ‘uq

3. Calculation of B

The renormalisation group equation for a single-particle

irreducible Green's function I‘(pi;u,m,a.,M) is

(12)

E‘lg.m + ﬁ(“) g-w— Xm(“) M%M + S(“)“)gi(" Xr' (“J“-)] n-o (14)
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where

(w) = M.?__L_\_
) Sm | 130 ek
(14)
- 2 In
= me
T () S, M5 e, (19

Note trat we have written B and Yy &8s functions of u only (and not
a). For discussion of this point see references (12) ard (13).

The solution of equation (13) is well known e

- §
N(rg,w, Mymya) e P(p,E)M)m,Q) AT ®
13
Q—*P'J X“(R(x),ECx)) dox (16)

where t: L.\)‘ and

do . (&) W(io) =

o - Pt ") * (17
dM s =f1e (Rt M ™ (o M

A { ™ 'g ’ ) - (18)
d__a s g(‘:):‘) ; —‘2(0) = ol

ok (19)

(§r is t'e mass dimension of T).

(16) expresses the fact that rescaling the external momenta is
equivalent to changing the coupling constant, mass, and the
gauge, (17) showe that the zeroes of B control the behaviour
of the eifective counling constant U in the high or low

momentum 1imits.
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From Q’.ions (%), (8), (9) and (14) we find

~lew

SO

F 2 (20)
tod QM{ ‘ 2' )
+ w a -
l du? Z, /'Z:
Substituting from (10) and (12) we find, in the limit &€ -3 0O
3 s
Blw) = Aw Yu , + O(u?)
Y1 (1e) (1)

where

A e l+/3T(R) - \Ilz C:.CCL)

R . 10/3sz<~)T(R)+kcz(k)\'(k)—i‘:c:(q)
3

L. Discussion

Let us consider the case SU(N), with f multiplets of fermions
in (a) the adjoint and (b) the vector representation.

For case (a) we have

Cla) = GlRYy =N, T(R). N (22)
Thus
}\ 4 L#&""‘ N
3

2 N (23)
z (16§ -13)N

8

For f)/ 3, A) 0 so that asymptotic freedom is lost., This model

(the pasticular case f = 3, N = 2) was proposed by Bailin and
14)

Love as a possible model of strong interactions, with the

®
obscrvation tnat if {f had a zeroc sufficiently near tv%: origin
tre pover violations of scaling predicted might still be com-
patible with the daty. The expression (23) for B clearly does

not support this conjecture.

For case (b) we have

2
Cp(a)= N ; C2(R) = “-‘-5"—3 ) T(R) = '&/z * (2w

. - W.N

Ae 26, - Y, -
: - -3 *

L R T

we have A & O and B > 0, and the possibility of a theory with cal-
culable infra-red and ultra-violet behaviour. The number of
fermions required is too large for strong interaction models,
however - for example in SU(3) we would require 15 or 16 triplets
to give a zero at a believablz,small value of the expansion para-
meter.

For the case SU(3), with three (or four) fermion triplete we
have A = =9 (‘%;) and B = -64 (-1%5). For these cases, therefore,
the domain of attraction of the origin is clearly large; we may even
consider the result as supporting to some extent the conjecture that

the strong gauge group is inbroken.
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INTRODUCTION

Recently field theories have been discovered which at large momenta behave
as if they were free'). More precisely, in the language of the renormalization
group, the effective coupling constant moves towards zero as the momentum in-
creases. In applying these theories to deep inelastic phenomena it is necessary
to consider currents J and in particular the short distance behaviour of the pro-
duct of two currents. When the Wilson?) or light-cone expansion
) Y
Joo Jem ~ J7 Cloe gy aft.. kMR (0) : (.1)
X - PR T
J rl PJ
is written, where for convenience we have suppressed all Lorentz and group indices
(H
Hiseols i
other under renormalization. The problem of mixing is present in all field

of the J's, we have to consider all operators R (0) which mix with each

theories, In ¢“ theory, for example, if we are interested in the Green functions

<ol T( ¢%wm gena ewyy - - P 16> (1.2)

which are generated by adding to the Lagrangian a source term K(x)$"*(x), we must
consider counter~terms linear in K but proportional to operators such as (3u¢)2
which are different from ¢“. This is basically all that the phenomenon of
mixing is. Non-Abelian gauge theories are the only theories which can be asymp-
totically free. They are much more complicated than ¢" theory because of gauge

invariance.

In order to be specific we shall first consider the action?) s

Swi=-tF JF,t Figt3 v gt AL ¥
va

(1.3)

a
TN xFNLF
where FE\, - auA: - BvA: - g £2%° AbA A: is the gauge field; g is the bare
gauge coulping constant; ¥ , X are c-number sources such that x x vanishes;
Y are quark fields transforming under a representation matrix o of the (colour
gauge) group; and fabc are the structure constants of the gauge group. [Mare-
over, the supercondensed notation®) is used for which indices are supposed impli-
citly to carry coordinate labels. In particular, summation over indices implies

space-time integrations as well (in an obvious way).]

¢ it i
i vx is that it is the

simplest operator of twist two which is invariant under the bare gauge transfor-

The reason for considering initially the operator F2

mation

~-80-

A ! c b
At = AF¢ -
R x An x) + 3 f—ngbA"(ﬂA(x) BF_A,“(K) (1.4)

with Aa a c-number infinitesimal group transformation parameter, At short distan-
ces Lt is the lowest twist operators that dominate. There are of course other

operators of twist two, e.g.

= is-a Fa D ...... D

Kk PSﬂ ¥ Hs

()

Xh Xh“"x s a.s)

where Du is a covariant derivative. In general we know that operators of the same
twist and Lorentz structure will mix. We will find some differences in the
mixing of operators with s larger than two and éhe operators with s equal to two.
The action given in (1.3) as it stands cannot be used without specifying a gauge
fixing term Ca(A) and the associated Faddeev-Popov Lagrangian.

The most straightforward way of seeing which operators mix with F Fa)‘xuxA

1s just to insert it into varicus Greem functions and obtain counter-terms’) of
the form

« ) ¥ abe
U A A AT fTTX e
+vx"x’AAAA s

ab J cd
TOW A A AL A pete e
+ 3 c1; {ues{skdl;cde x« X' A: C,l (1.'6)
+Z XA A

%
R A

+ possibl i indi i
p e permutations of indices (where e, denotes the Faddeev-Popov field, and

ekd (cd
geie xBof %9

U, V, W, X, Y, and Z are divergent constants).

In this note we will show how invariance arguments®s7) can tell us the con=
nection between the above constants, at least at the one-loop level. Taylore)
has recently adopted a similar philosophy but we are unable to follow his methods.
The formalism and techniques that we adopt are those of Ref. 6. We find in Fermi~
type gauges for s=2 that the Lagrangian containing one-loop counter~terms is in-

variant under a X-dependent gauge transformation, and in particular the Faddeev~

Popov mixing is nothing other than the consequent y-dependence of the Faddeev-Popov



term arising from this gauge transformation. For higher s we find that the
Lagrangian in general is iavariant under a transformation of A which is non-linear.
The gauge invariance of the Lagrangian them becomes more difficult to disentangle.
Since the one~loop Lagrangian is invariant under some transformation and the bare
Lagrangian is invariant under a different transformation (namely the bare gauge
transformation), the difference (i.e. the set of one-loop counter-terms) is not
invariant under either of these transformations. Consequently there is much
mixing between gauge-invariant and non-gauge-invariant operators. We will discuss,
however, a class of gauges which do not suffer from such problems; these are the
background field gauges?). Gauge-invariant operators mix only with g;uge-invutilnt

operators in such gauges.

In Section 2 we shall give the invariance arguments in Fermi-type gauges.
In Section 3 we will introduce the background field gauge and discuss its conse-

quences.

2.  FERMI-TYPE GAUGES

We will comnsider a bare Lagrangian % invariant under the gauge transforma-
tion

!
» "
A" 2 AR+ 3?”,5(A')Ab + 3 A, 2.1

where A is an infinitesimal parameter, § is field-dependent but t is not. We

must also choose a gauge-fixing function Ca(A) for Y. Under (2.1) we have

) ~ , A
= (2.2)
C (M= C(A) + tjl“(A)Ab + A AL
When c‘(A) is (1/vE) BuA:. £ being the gauge-fixing parameter,

8k = £ 5 A

ach By 14

<

and

4p -
t ab B ‘g‘b :3‘

Taking (1.3) for .%,, regularized Ward identities can be written down in n~dimen-

sions. Diagrammatically they are represented as

Fq(2)
a a0
C I\U|
A
W,
Clq 01
A, R A )
2 a())
S
= E . (2.3) .
LTSRS Tl
’:1
dq ASt
m
q R? H PRt
+ FSETTTIY Lobas

a
ASq
Hq

Bold lines denote vector mesons and dotted lines ghosts. These diagrans often
seem to cause confusion and so we shall explain their meaning using siiple
examples., We would first like to note that (2.3) is valid for the tot il ampli-
tudes on the left~ and the right~hand side. 1In particular it is true .t the txes
diagram level and at the one-loop level. Since we shall only be inter: sted in
the one-loop counter~terms of the theory, this is all that we shall ne«d. Below

we shall omit Ffermion lines because they are not essential to the arguient.

We will first consider q=1 and the tree approximation; (2.3) the: becomes

just

(2.4)

1]
o

where the central vertex is
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4
“24, (pqx X" - xq Xp?

a,a,p b,B,q “p
-xp {Xo +er'15 ) (2.5)

the left vertex is

- iq d
b.EV “L» op (2.6)

and the right vertex is

\b.B,q 5".5 g{’t‘. (2.7

(Our conventions are such that all momenta are taken pointing into the vertex;
p and q denote momenta; «,B Lorentz indices; and a,b group indices.) In order
to understand the conventions for the right-hand side of (2.3) we will consider

the one-loop version of (2.3)

O\ /\O\
(2.8)
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In (2.8) the new vertices that appear (apart from the standard vertices of %)

are
.Iu
2%f (XX TR -D
Y ']
a,a,0/ \e.v.k +R Xlp-i® v 2 8% (rep 2.5
bh.q + 3~ Sﬁxx-li-ln)
‘and the non-Lagrangian vertices
be
9 £ (2.10)
(a,a)
b, .
R - - Lo,y P (2.11)

One method of neatly deriving the Ward identities is by using the path integral
representation of the generating functional and regarding a gauge transformation
simply as a change of variables of the path integral’»'®). The identities obtained
in this way are a general expression of the gauge invariance of (1.3); however,
our problem is to learn something not about the Lagrangian in (1.3) but about the
Lagrangian obtained from it by adding the counter-terms (1.6), %, say. The
counter~term Lagrangian is defined by saying that it is the sum of terms required
to cancel the poles at n=4 of one-loop diagrams of (1.3). Here n is the continued

dimension of space-time required in dimensional regularization.

So far we have -~ knowing the invariance properties of a Lagrangian --
derived identities between Feynman diagrams. We would like to invert this
procedure and ask whether we can deduce the invariance properties of a Lagrangian

if we know something about identities between its diagrams. Such an inversion is
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provided by the tree-loop theorem of 't Hooft and Veltman®). This is not to be

confused with another theorem of the same name due to Feynman.

Equation (2.3) when written in terms of tree diagrams is given by

R
- a
C Alll T 3 e . .
A‘:f blobs <1 I& iC@ a0)
2
[s]
Auz (2.12)

+» LEEEY STENl 123 TTT) cwene oD
ig I(E 1

This is a simple consequence of the fact that the ghost interaction vertex is
given by c:lab(a)cb. On the right-hand side of (2.12) we have intentionally not
explicitly marked the R and A legs. These are distributed in all possible ways

in the blobs.

We shall now state the tree-loop theorem:

Given

i) the existence of functions C: as well as 3', £, 2’, and m' such that
/ Al At ] A, Al 2
C + - A A A
G(AL’ 3 s Iw.(A’Ac t bcAt) - CQ(A) +3 l'o\(,A) b tm ab b + O( )

and that

ii) the equation (2.12) is satisfied with C replaced by C', ) replaced by i',

and the ghost propagator by -m~!,

and, provided all the hierarchy of identities expressed by (2.12) are satisfied,
then the Lagrangian %, under consideration can be written as
12
£ = 1 - ()
1 invarTiant

where Z,

N . is invariant under the transformation
invariant

! Ay ' A
= +
A, = A, + 8 (AHYA + %, A
To 4 a Faddeev-Popov part is added which is given by

A Al
- *a (3 L'nL(A) + mub)ct

Now that we have stated the theorem we will see how we can obtain tree identities

for %,. From (2.8) we can consider the pole parts at 'n=4' and immediately deduce

— s + @ —¥— + —W—

(2.13)

Crosses replace loops in (2.8). In particular a cross above a big bla k dot
denotes replacing a loop involving a source vertex. The factor associ.ted with
a cross is just the pole part (at n=4) of the bubble being replaced. ‘o illus-

trate this we will obtain the factor associated with

wesmesndmecneanseesesoaff .

This is the pole part (P.P.) of

(where p is the momentum flowing in the ghost line). All calculations involved

can be performed using

fd.l -—-——l’ Ly =1 % S, Me-q-1) (2.14)
tﬁ. 1 - S z -M" )‘_yi-. P - _i
(et ¢ Meo .
and
dt LULL  ~ 1 ™ Mee2-%) ' |
= | in® | .
[ (l::-:\:-iz)“ 4 (YR -2 (=) {3”5“ *Jp; Oy *d 'l% (

We find in the Feynman gauge that

RNPO—— |

A -2-3: feufﬂ‘e"’(kf) X.
4°n (2.16)
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Here (a,a) is the quantum number associated with )} and b with the ghost line.

If we add (2.4) to (2.13) we indeed have a tree identity for /) of the type
mentioned in the tree-loop theorem. However, we need to consider the hierarchy

of tree Ward identities of ¥;. So far we have extracted information out of (2.3)

for q=1. In fact for q=2 we can follow through exactly the same pro;edure to

obtain Fig. 1. This is a rather long expression but we think it is instructive
to see it in full. The interesting feature of these identities is that of the
non-Lagrangian vertices. In addition to (2.16) we have now and other topological arrangements of the vector prongs. From power counting we

know that this is finite and consequently there is no corresponding cross vertex.

\\‘\\\\_" ’ B The higher 'q' Ward identities are clearly of the topological form required for
e emcceccaennan e
the tree loop theorem. We have now to check that the condition (i) of the tree-

which arises as the pole part of loop theorem is satisfied.

Looking at the structure of (2.13) and Fig. 1 as well as the 'higher' tree

identities we see that

C'imy= Cay =L 2.A (2.19)
. A() - J—!' &

Moreover, from the identities we note that

(s 'l‘.;(Ah "'\".a)-'\b
= (3T“m + WA

(2.17)

+ P. P. cedquecequosienssesganan &>

.0 @a) c,p)

The quantities in brackets are associated with the appropriate line or vertex.

A straightforward calculation reveals that

-_--..----...X_. = 0 (2.18) +

The pole part of (2.17) is not in general zero for 'higher s' operators.

We can write down the Ward identities for q=3, q=4, etc., but the purpose of show-

ing q=2 identity in detail is to obtain some intuition about the nature of these

tree identities. 1t is clear that apart from vertices (having crosses) with a + + Mt WAt G
ghost line entering but not leaving, all the other vertices can be readily identi-
fied with counter-terms calculated in the usual approach. The question is whether

we get any new non-Lagrangian vertices as we go to q=3 and higher Ward identities.

The only type of graphs that can give rise to such 'cross' vertices are, for example,
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The infinities in the non-lagrangian vertices that we have already discussed
cannot be absorbed by terms in 7j. They have to be removed by renormalization of

s and t, i.e. by a renormalization of the gauge transformation.

Hence

PYIEY SR S . Y

(2.21)

+ renepm e demeimaca Ll

In order to have condition (i) holding, we need to show schematically that
E'k au (Expression of (2.21)] = [Expression of (2.20)]

Fortunately it is necessary only to do combinatorics to verify this. We can see

that the identity is valid from noting that

Then all the integrals become identical and so condition (i) is satisfied. We
now have shown that the tree-loop theorem can be applied to %,. Consequently

the whole Lagrangian at the one-loop level is

% + (gauge:part) .
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Here the gauge part is
[ = .
-3 g (3~A ) + Faddeev-Popov part corresponding

to this gauge fixing.
Explicitly the Faddeev-Popov part is
+ Al Al
c, (gl (A + m..)

Now the yx-dependent parts of 2' and m’' are calculated from the x~dependent parts

of 8/ and t':

?9 = 0o + /A - independent (2.22)
ok terms
and
A Rkd d
‘s 2 g nt §¢ ;. .lﬂxra + X = indepandent (2.29)
ch ne4 [ terms

Thus the Y-dependent Faddeev-Popov contribution is

ehd , cde p (2.2
A QL S A I i S XN

L3
(»-#

The X-independent terms in s’ and t’ reproduce the bare Faddeev-Popov in eractions
together with the one-loop renormalizations of the ghost propagator and ' ertex.
There is a question whether the invariance of %, proved using the tree-liop
theorem is a group invariance. A proof can be given using the tree ider ities,

but we shall not reproduce it here.

There are other twist-two operators such as those given in (1.5). ‘he pro-
cedure followed here would go through exactly for them. However, in gen:ral we
would expect in the Ward identities new varieties of infinities., Apart from the

expected ones such as

I\
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for high enough s, we also have the new non-Lagrangian infinities, which we recall

are responsible for the renormalized invariances of the theory. These arc of the

type given below:

Such infinities would give rise to x-dependent invariance transformations which
are non-linear in A, and so the Lagrangian would no longer be invariant under a
simple gauge transformation. We thus see, just from invariance arguments, that
Fermi~type gauges do not allow us to consider just only the mixings between gauge-
invariant operators. Because of such difficulties we feel that the problem of
mixing should be looked at in a different gauge. In the next section we shall

discuss such gauges.

BACKGROUND FIELD QUANTIZATION

There exist renormalizable gauges in which the gauge renormalization found
in Section 2 does not occur. These are the background field gauges®) which are
based on splitting the vector field into a classical part Ac’l S(X) and a quantum
part Q:(x). It is the quantum parts of the fields which flow in loops, and the

classical parts of the field flow in any tree structures attached to loops.

The invariance (l1.4) can be regarded as being made up of

el 8 el a ack ,el’c b a
AV w2 A v g A Am -3 Ao
* » b k (.1
a / a ach 1 ¢ b
Q = = x) + Q xmNAm
s GZ [ J } ¢
Alternatively the invariance (1.4) can be thought of as
cl @ cl/ @
A wy = A x)
¥ ¥ . (3.2)
a ra ach ¢ - a ;
Q m = xy Q\uLAh)-—(D.AUi:
P Q [ 3 f o r ) Q
where
= ac ac ach d b
D = 2 8 +’ 3 L i
» r J N

B [A)
a

-JL=

The gauge-fixing condition is taken to be

- [
The attractive feature of such a term is that it is invariant under (3.1) but not
under (3.2); so although we are breaking a gauge symmetry we are still maintaining
a very helpful degeneracy. This forces the one-loop counter-terms (which are func-
tions of just Acl) to be invariant under (3.1) and consequently gauge invariant.

At this stage we must take note of the fact that the classical field concept is
defined with respect to sources; so, for example, to (l.3) we must add J:(x)

a . . . : .
Au(x). We want Js to be field-independent. However, the equations of motion give

da _a N QR ¥ 2 ea_a a’
- D, F - x* F + F -
K por TETDT Ly X Dr’ K2 :r"(a.s)
= 0
This has the inmediate consequence that
'
a
(Dv' Jy') = 0

and so J is field-dependent, contrary to our starting assumption. Instead of con~

sidering the equation (3.3) we can take as our classical field a solution of

oo _a 1 ade & ' aa a
-D - yF y2 v A
"l F "lyl X X D", F v') + x, K Df" F#Ia
. o (3.4)
-3t E ) .o

vhere G is defined by

ab
1 ~ ’ et - ]
(Dt b ) Gh(x,x ;A) = JM- dex,x')

Following standard arguments®’ we are led finally to the generating functional Z
Z (3’, v K)
et (S(AY) + [d'% T A o )
¢ »
a - - L
.Iljg[jac\;m S(Da" -¢) Bla,,A,)  as
- o, =

. - ab
exp i (5,37),6,,0,87), e 4 s,’”q:q‘: (1+---)

where S§ is the action of (1.3), stv is 615/6A:6A3, and
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A A [an seh ™ ey =y

this being the Faddeev-Popov prescription. If we now introduce the weight factor
exp (~i/2¢ C:) and integrate over C (owing to the C-independence of Z) we still
retain a term involving JQ. In the background field method we want the external
lines to be classical and so this could, in general, be unsatisfactory, at least
for off-shell matrix elements. The simplest way of avoiding a JQ term is not to
integrate aver C but rather to take a particular value C=0. This has the effect
?:vQ:Q: by Qz ?EVQ: - (ﬁqu)z. Unlike in the Fermi-type gauges, the
background field gauge condition helps not only to define the propagator, but also

of replacing S

gives rise to interaction terms, namely
abe b [ [l
3
f A » C} v o} CQ e
and

abc b c ¥
f APQF Dan

The second of these terms does not contribute owing to the §~function constraint

(3.6)

in (3.5), but the first term certainly leads to additional diagrams for the mixing
of the operators R<'). These are

NA * A.\l + NV
R NV. .
NV NV
N.V. denotes the new vertex arising from the first interaction given in (3.6).

(We have for clarity not indicated in the diagrams the momentum or quantum numbers

of the external legs.)

Owing to the specially attractive property of the background field gauge we

know that the sum of these diagrams plus the diagrams of the Fermi gauges

<94 -

. [where no vertex of (3.6) occurs] gives the true gauge-invariant mixig. (For

simplicity we have left out the fermion contribution.) Owing to the ntricacies
of the calculation we shall report the numerical value of the anomalois dimensions
of the operators R(’) elsewhere. However, any equality of our number with those
obtained from calculations in Fermi-type gauges would seem to be fortiitous,

1 would like especially to thank G. 't Hooft for many discussions.
C.fi. Liaws)lvn Smith and R.J. Crewther hava also made helpful comments.

After this work was completed, H. Kluberg-~Stern and J.B. Ziuber showed me

their work on the mixing of the twist-four operator F? at the Marseilles Con-

a
uvruv
ference, June 1974.
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GAUGE FIFLDS ON A TIATTICE

Presented by

J.M. DROUFFE

"I - General Outlook"
R. Balian, J.M, Drouffe and C. Itzykson
Phys. Rev., D 10, 3376 (1974).

Abstract

We present Wilson's model of gauge-field theory on a
lattice, including a coupling to a matter field. The
algebraic structure is surveyed for both commutative
and noncommutative groups. Various regimes are sug-
gested by mean-field theory according to the relative
values of coupling constants. In particular the gauge
field undergoes a first-order transition while the mat-
ter-field transition is of second a der.

"II - Gauge Invariant Ising Model"
R. Balian, J.M. Drouffe and C. Itzykson

Saclay Preprint  DPHT 74/74.. (To be published in Phys. Rev.)

Abstract

74/7.639

We study the case of a discrete local gauge Z2 in
order to discuss the existence of a transition in di-
mension d =2 3 . We compute the critical constant

for d =3 and 4 and show that in three dimensions
the transition is a second order one.
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"II1 - Strong Coupling Expansions and Transition Points" )0
R. Balian, J.M. Drouffe and C. Itzyksom YANG-MILLS FIELDS ON A LATTICE AND DUAL AMPLITUDES L/k) T:~
Saclay Preprint DPHT 74/89. (To be published in Phys. Rev.) ‘

Abstract We discuss the principles of the high temperature
-------- expansion leading to a variation-perturbation me-
thod. For pure gauge fields, diagrams are two
dimensional manifolds. As an application, we com-
ute the critical coupling constants for discrete,
Zbelian and SU(2) gguge groups and compare them C P. KORTHALS-ALTES
to some earlier results.

( Extended version of a talk given ar the Marseilles Colloquiur on

Lagrangian Field theory , 24-29 Juin 1974 )

Abstract
Coloured W(n} Yang-Mills fields are coupled through a coupling

constant g to quarks The theory is quantized on a d-dimensicial cubic .
lattice , Expanding¢n|ﬂ~keeping g2n fixed - gives as leading ‘ontribution
in the quark-antiquark sector a string type amplitude The th:iory obeys the
area rule of Wilson , Kogut and Susskind for values o¥ 2 with

2_9}({7 x{d), where x=({d4) 1is relared to the number of ways a simply
connected surface with a given border and fixed large area can be realized .
From the requirement that the lattice length be much smaller tien a typical
hadronic distance follows ‘LQFV\% \ @ For x(d) we have only a very
generous bound : x(d) 2 2d.3

ROSTAL ADDRESS Centre de Physique Théorique -~ CNRS
31, Chemin Joseph Aiguier
13274 - MARSEILLE - Cedex 2
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}, INTRODUCTION

Tradition wants it , that the spectrum of a perturbative quantum
field theory is determined by the free part of the Lagranglan S-matrix
elements in perturbation theory can be calculated by referring to this
spectrum . A notable exception 1) s non Abellan Yung-lilla theory .
there the infrared divergences do not cancel and obliterate thie perturbative
calculation of an S-matrix referring to the massless Yang-Mills quanta
A qualitative picture of what might happen at long distance in such theorlenﬁl
{s found in ref, 8 ; due to the peculiar properties of the vacuum polarisation
dielectric constant can be zero everywhere except in a tube between quark and
antiquark ., This means that only in between the quarks there is flux and the
field energy grows therefore linearly with increasing quark antiquark distance
( like in 2 dimensional E D ) . This thin tube of flux between the quarks
would be the basis for the dual string model .

The Justification of this description is yet to be found One way

2,5) and consists in

of attacking the problem has been developed by Wilson
building a small distance cut-off into the theory , by putting the quark field
on a lattice , with the gauge field defined on the bonds between the lattice
points . One can make 8 perturbation expansion for large coupling constant g
and find 5) certain qualit-tl;c features of the model described in ref. 8

3

On the other hand t' Hooft has argued on basis of Feynman dliagram

2n

analysis that an expansion in the dimension n of the pavge group,keeping g
fixed , precisely reproduces the hierarchy of dual surfaces with more and

more complicated topologies .

We want to advocate in this paper the latter approach , but realized
in Wilson's lattice version of gauge field theory discussed in seccion 2[?1
Again , we will find in section 3b a classification of the kind met in the

dual model : the parameter M. distinguishes different classes of disgrams ,

esch class having a given fixed topology .

74/P.639
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The leading term fin an 1c wan the som ot all plwar contyrthnrions
Crucial is vhen the o 1o ow ddoe The e g 00 1 qUALK ant g A
pair vary , when pulled terv 1part (1 e mavv larudce distances) 1lhis {s

discuased in sectinn IC)
In secrion 4 we look for possible critlcal points

We find that for very large ccupling constant rhe free energy is analytic in
the mass ol the fermions and therefore , that evertual critical points should
be searched for g not to» Jarge For bosonic quarks we show thar the sitvation

might be different

2 _The model and fts regularization

In this section we will show howa field
theory of Yang-Mills quanta coupled to quarks can be quantized with the quarks
put on a latiice , and Lhe Yaag-Mills [ields cut-off in & natural way . It
then turns out thet a strong coupling expansion is the natural thing to do ,
and we catablish the graphical rules sssocisted to this expansion . This
section {s subdivided into:

a) The classical action
b) ‘the quancized theory
¢) Graphical rules

o
a) Tue classical action of a gsuge [ield f\“ cariying local Uin)
and coupling to quarks Q in the fundamental representation of U ()
Cve s, ~vt ) is in Euclidean four-space :

S . Sd"‘u%-h(}:, G‘:N v 0\‘ \",zz -m _%f\" E«.)c& 21
o
Here G‘:\‘ = ev(ﬂ'; - D, ﬂ? - %?“YSB E\i ﬂ‘v and knl. are a set

of llermician generators of the fundamental representation of Win) with.

(%, 6P = 20 Q726 n

Te %, 2 TP 22

)
?d LR being 1eel and antisvmmetric X
The density in 2 1 is clearly invariant uander local Win) gauge
transformations: . N

o SAW (a6 % IARY =AY AW
£ A% LR u’\ , Ll AN LT e
A T AL .

with QW Q=< " qw s

CEE PR DIC St
74/9.639
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We want the regularization such,that the gauge fnvariance 2 3 is kept

The first step 18 to put the quarks on a simple hypercubic
latt}ce In each point i of this lattice we have an ', win?) group
4 A , INCC1) ( traceless) Hermitean wawv macrix
We will consider a finite lattice with a finite number N of lattice points
Calculations of physical quantities will alvays be done for finite N, where
upon the limit N & co is taken

How to have a gauge Invariant interaction between quarks and
gauge fields is well knowg . We take two adjacent points { and i' on the
latcice and define :

I
C\*Lﬂ xm,)'T anplig _S Been 8D d%} qtih 24

The integration is along the straight line segment between i and i'

The symbol "{ mean line-ordering along the segment ii' The direction

corresponding to the directed bond (ii') is 1

We will denote the line-ordered unitary matrix by W i)

It is clear that :

k.
PO PR {a) 25
(b)

U, i) = WG,

The part of the action referring to the quarks is now written :
< %
S (qt Wy = 2 12 Ut - .
at,4q,W) Sest v QW Btu,)u(..\n) QG 26

and it is easy to check that in the limit 8\;006%btrn: tho tariice Tength

vector in the \\.direction ) we recover the quark part of the action 2 1

3

except for the mass term

For later convenience 2 6 is written in a short hand

notation :
%(‘\t‘\)u) = g%’» (“—U) MUY G 27

where M(3,¥) has the matrix valuery..,, Wi,

. Ciey sl s Fhoon QLD and gy s - et b
i€ (ii') is directed along the ¢ axis

If i'=i @ M(,= -mE ; that is , we included a mass term for the quarks

o

The field F\rlx7 has been replaced by the unirary waxw matrix &3,
which is a bilocal object Luiniching the interactions between quarks it
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nolghbouring attes { and L',

We are left with the Yang~Mlllae selt luceracticn:

-y a4, QL . AT Ay, Gy 2.8
and we should find an expresaton in rerm of the W), which approxinates
2.8(or ita space-tima integral ) . The bilocals transtorm under a gauje
cranaformation 2-3 aa

G.U,i') AL TURD) RN 2.9

So {invariant arettraces ( determinants) of all producteo' W(,/) aleng
closed circuits . The simplest circuit that gives a non-trivial resulc is the

elementary square Cg .
The choice of what scalar function to take of the product of
around an elementary circuit Ce 18 easy in tle case

4 Wle,i) ‘s

of an Abelian theory :

WEY = W) Wi s Gtmr Wt =enfa § 0,002, ], o

Use of Stokes theorem introduces the curl of the vector field (\v and
we find that :

R L S IR S Y Qave @ @y v sconer 21

€ac C,
The sum'on the left side of eqn. 2.11 is over all elementary circul:s of one
definite orientation ; adding the complex conjugate means adding all the
circuits of the opposite orientation The appearance of the square of the
coupling constant in the right side of 2.11 is important and is .lue to the
form of \W(i,¢') ineg. 24
The non-abelian case can be delt with in the same way ; we get the tame
relation as in eq. 2.11
To resume this section : The action 2.1 is replaced by the latrice :ction

. e =1 Z Te UL v 2 Y T i
5\_ 1%"%, P W) v Ly A MG G 2. 2
The sum Z is now over all elementary oriented circuits CL and
<
the matrix LI i) specifies the bonds and their correspondin; strength

-between adjacent quarks . If the lattice length is let to zero , we recover
from 2+12 the conrinuous classical action 2 1 The lattice action scill
obeys a gauge invariance , with in every lattice point i a local Uin)
group \cﬁA‘ni acting ., Apart from the mass cernbﬂ\ t’)is anti-Hermitean

;n./p. 639
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If the macter fleld consists of bosons b(i) 5 transforming under the
gauge group like quarks :
b)Y — T b

we find easily the following latcice action :

)

. sL(\J‘, b, W =

where MY WLt  if 1 and i' are nearest-neighbour points Ifi-=i

e Z BN mGdbL)
fgic:n W8 Y Gn T S

then MM =-ad&® | S0 in the boson case M(ii')is Hermitean . Although
bosonic quarks are of no interest physically—the colorgauge group was

invented just for the sake of lLaving Fermion quarks -.we mcution them jor

later comparison in section 4

b) Quantization of the lattice action

Basic for the quantization is the Euclidean Feynman path intey-
ral
23 = DA Nt Dgmraone - T3 M) 380 L,
where dots indicate eventual other source terms . Usually one gives 2.13 a

2 and by repuvlating the

meaning by expanding it in che coupling constant g
ensuing Feynman diagrams . The renormalization procedure then gives the phy-
sical answer . For Yang-Mills fields without spontaneous breaking the last
step is only partially realizable ; we can only renormali-ze at unphysical
points . Infrared divergencies do forbid rhe perturbative construction of an
S-metrix with massless Yang-Mills particles in the spectrum . .

The approach followed here is radically differen?j?)[nstead

of a perturbation expansion in gz we will do an expansion in %1 . using
)

the lattice action in the exponant of 2-13 ; and the integration variables
D?\u‘.,Dq* and Dq are replaced by ©wt®) and  datio and AW
where i and i' are points on the lattice and where DWLii') g the (left and
right ) invariant volume element of M (a) . It is not difficult to see that
this replacement reduces in the & —o limit

74/7.639
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to the formal expression 2.13 :

/9% -
2,30 = § oel Dy v apdls sy
as i 2.14

The boundary of the integrations over the gauge-fields comes from the
integration D WLt over the unitary matrices . Since the fx: fields
serve as parameters for these matrices in the ) limit , we must have
a8 cut-off for the gauge-~fields of the order of 1r/<§3 . Thus , when
doing the T o limit , not only the lattice becomes dense , but also

o : T .
the integration range of the ﬂ“ fields becomes infinite , as in 2.13,

c¢) The %1 expansion

We will ‘ow go into a detailed description of the strong

coupling (%"") expansion , when the sources 3 are coupled to
gauge invariant (i.e colorless ) combinations of quark-antiquark pairs .
Simple possibilities for such pairs are: Q,) aiy a‘\\'\'\\&m\ti) and
q\\vs xuv)\ltx}w C\(“ > . We shall opt for the last possibilicy
sinve it is mathematically the simplest . So we are faced with the problem
of calculating
B
%\w.v.{” ';M:.‘\‘,»\% RN

or- what amounts to the same ., we have to compute the connected part of :

3:0 2,15

L g 1 Dutn Fqu\.{it) daqtos q"(:|73wu&I\£")e\(:'\y .

Cabes g, . WAL g0 axp-15 )\ 2.16
abs

74/1.639
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The integrand of 2.16 can be written as:

) Q_de¥Y O 2 1)
e_xp&%:%j" u(co\\i ‘:,'\‘ru(" ) EISTIR SRS

. 1
and the incegration over ihe quark degrees of freedom gives

e " v = eh& m 2.18
(T dato T datr sl o W) g\

The normalization constant in front of the determinant is chosen to be one

The general form of Greens function with sources coupled to

colorless quark-antiquark pairs is therefore

3 dafr N 2 19
(DU erp Dig I TesCa ] FIO R,
The symbol F L) %LL is just a shorthand for operations of the hind

mentioned in eq. 2.17 . The %rz dependence is pnly in the exponent

associated with the elementary squares Ce Expanding the exponential gives us

a power series in Qfl
i % LV T Teuwle )&\A 2.20
Q*P\_%OS" iq:‘_ru((a—xt ore 1:3:) tv’\_cq_ v ¢ '

We now turn to an analysis of the quark determinant det M

This quantity is non-negative and gauge invariant as can be seen from

calculation of its logarithm :

\o%Mm AW \ooém z Tr\a%mﬁ A-_Tr\oeﬂL’\l—K') 2.21
The second term in 2.21 gives:

T T L @Y. - T T
- W ¥ %

N V2% Tegweky 2,22
ed kK @m)T QWY p(Cun

74/P 639
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Here C(k) means a cloged clircult of k steps, p (€U [tg periodicit ,
the wax ua matrix (y M )(CUW)  the product of the matrices y, tid)

0
encountered on the circult € (W)
Rearrangement of the aummation ln 2-22 and use of Vo (yW)(Chan)=
‘r,f“\x]\c*(!A)Xw where CN (&‘) is the non-periudic circuit corresponding

5 v
to C(¥) leads to: "
- " wieh)

Trleg(t- WY= E, Vbt GOHLEDEw T

So : der (1 -0 - W* de (N - (y WYt™ Qz-w\'“ct)) 2 23
[

The ww x 4w matrix (y W)CYIs the product of matrices . UG)  met

R, Clearly eacl tactor in the prosduct

along rhe non perlodic circuit ¢
is gauge invariant . Since to every closed circuit C*® corresponds he reverse
circuit C*  we find that the product consists of pairs with non neiative
value . So the quark determinant is non-negative . '

The expression 2-23 is not useful in connection wit: the Greens
functions we want to evaluate (see eq.2.19) . This is so because thz family of

non-periodic circuitsC* contains gself intersecting ones; on the other hand ,

for finite N (finite numbers of lattice points) we have a finite numnber of
factors (yw N in a term of the determinant so there is a redundancy
in formula 2.23 for the determinant

For the calculation of Greens functions we will use the well knowng) formula

for the determinant:

dak (0 = g;mﬂ“ 2(S) _—

This formula is most easily explained if the quarks have no internal degrees
of freedom (i.e . U\Li') is a number , not a marrix ) . In thit case S
is any family of disjoint, not self-intersecting circuits on the 1littice , and
(%) is the number of circuits in the family @ . Z(9S)D is the
product of the weights encountered on the circuits in .
In the interasting case where there are non trivial quark degrees ‘f freedom
(i.e ., WLiH are matrices ) formula 2-24 remains the sam: ; only the
lattice is changed : To each lattice point we attribute [ (wmber of
quark degrees of freedom ) levels , labelled by (o2 ) ; « :;,q,s.q ;A:\,--)"1

There are only bonds betrween levels (o= owd (OCER at adjacent lattice

74/7.639
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points { and i' , with welght (v ) , (GG}

we have illustrated the situatien

\ . In fig 2 and 3

Now we are in a position to do the final integrations over the unitary

matrices (L (:i') (the gauge field integrations) . Normalizing the volume

08 (Kw) to one,we have

fouway uwen o LRG0 s LB\ B 2.25 (a)

fDWG! Luuo) o Ty Ty {Q““Aw':

\J
= (Bep Bap Byt By + Koo, w‘c-r\%“%ﬁ_‘()%w%.\'&Aw%s-ﬁ« v 2 25(h)

+ Res» r\, V\‘-—«X)
etc,
At every bond (£t') we have a group inregration as in 2 25 Note the tnver-

se powers of n at the right hand sides , becoming higher, the higher the degree

 rhe monomial in the WWLW) matrix elements is .

3- The approximated dual vector amplitude

a) The graphical rules for calcularing a connected n-point function
will now be stated The sourcesi&are supposed to be coupled to "vectorial”
quark-antiquark pairs

q}u) $ou Gl qu'l 2 eatit 31
Thus the source ~XUC\is defined on a bond rather then in a latiice point

The generating functional Z.()] is defined as

zc(—s) < \a%?(‘k) 3.0
and a connected n-point function is given by
s
S - mis)y = ST ?ckl)\ 33
5’3\%\)" S‘l“”q) ‘3'—«.;
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We have implicitely the rules for constructing 1o, it funetions embodicd

in equations 2.24 and 2.25 . The expansloun pavametv: is %JL . What we will
do here isstate the rules for conarrucring any dual ® connected contribution
With dual we mean a contribution that is built up hy using Vv W(€q) k times
wich the k elementary circuits Co adjacent formiry a (multiply ) connected
surface ( no two C, 's the same and not more thentwo C,'s join at any bond)
the sources will lie on the boundaries of the coonected surfaces and the

boundaries are formed by a quark line ( see fig. 4)
wieed wug@  tu calculating the connected 4.point Green function 3,3 we draw any

A
quarkloop going through all & bonds (4,i/), --{i;{ ) “and construct all
connected dual graphs possible . They might contain other quarkloops ( holes )

and wormholes ( handles )

The rules then are

1° For every surface element a factor

2° For every vertex a factor n

3° For every bond a factor wn°'

4° For every quarkloop a trace over the ¥ - matrices

atrtached to the\P\bonds on the loop , and a factore)* "

Fermi statistics forces the Tnop to be self avoiding
5° A normalization factor , which is the same for a given

Green function .

Rules 1° and 4° are clear from the form of the action ., Rule 3° follows from
the gauge field integration 2.25 a) . Rule 2° is explained in fig 5, where it
is shown that for the dual graphs there is only one index cycle ,i.e a cyclic’

product of Kronecher delta's giving rise to a factor n The trace over < -
)S , where < isthe(minimal)

P
S+ v 2\ for any

matrices gives for a dual graph a factor ya(—~
area enclosed by the loop . It is simple to show that (-9
closed loop . (both facts concerning the - sign's are shown by inductive

arguments) .
The rules for non-dual graphs (where at least in cne bond more then two squares

join ) are more complicated , not only because of 2.25 b) , but also because a

¥ We apologize for this terminology , which is due to wishful thinking.

74/P 639
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vertex can carry several index cycles Note also that a square could be used
an unlimited number of times . In using Ising type models this can be avoided

by the tgh transformation .

b) The connection with dual amplitudes becomes clear when we distingustsh for
a given Green function the different topologies a dual surface 2 can have
A surface can have: Q quarkloops and W wormholes
Independent of this let it have B bonds , V vertices , and S surfaces , where

S is counted as follows; first we have A elementary surfaces used in the
perturbation series , and furthermore C; surface elements corresponding to
the Q quarkloops., { so S~ A+Q)

Then we find for the contribution from ,

using rules 1° to 5°:

G{mw -~ wm)) = Le(.L '>ﬁ “‘J -% A p\‘“ P . bete) membcn
z 131 ’LMS.) Yok aQ x‘\kmv\t bande .
Use now Eulers formula ¢
N-Be S = 72-2W
and find
35

21-1%-8 q L ?\-e\'
1) n = +
6”2 (M M(&)) = u (z%"v\) <‘Lm5')

Thus we find that merely the topology of a surface ( H and Q) does define a
perturbation series in W', when we keep 31'\'\ "inite . For example we recover
for Q=1 , H= 0 the string type surfaces ""l‘”, of order n 1 Raising

the number of quarklines and wormholes gives lower order contributions in s
as assumed ad hoc¢ in dual theory .

The question remains how the non-dual graphs do behave for large n and gz n
fixed . Although the bond integrations 2.25(b) , where more then two surfaces
meet , are suppressed by factor r\“, there can be several index cycles at a

vertex , We have no quantitative idea of what happens .

74/P 639
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c) We briefly discuss the dynamical fecatures oif the planar diagrams

(Q=1,H :=0) . We write the contribution which is of order n

A \2

() - wGd) =2 ni. i A P e N
e ) WS G e Qms) ©6

where ZP is any surface with perimeter ' (RP is 1ts area )

First we note that 3.6 can be written ( ap = 'r')‘_,Sl)‘.
— . - ~ 2

S(mw - -mis) 2 a2 exp - 1PHagmE| 2 exp |- .R_P_\f&“}
3 () - 8T

Call the second sum in 3.7 r‘,(wb "; it is reminiscent of the quanicized

( Euclidean ) striné"lz) with fixed boundary P:

- -~ A

o, (srring) = 2 expl- ﬁp | 8
v (’-P) \_ 1’17;(:\ 2

with o' ~\(GeN]™? . Since the cut-off 82 << 1(GeN) we should

expect

o <& \0067—061\'\ <an ]

On the other hand a very generous bound on the number of possihle surfaces

..n
Be Rm‘_‘ P the minimal area enclosed by P; it leads to an upper bound for
3.7:

with total area A and boundary P can be easily constructed in any dimension‘

G (M emr} & 4N %, ""6"‘_' \?\%\nc&tmx- "mﬁ";%.::ﬂ exy ‘}Qmig\’)\ogg‘é‘_f‘
- e
A - 7.411 3.10
‘!3““

3.10 is valid if

1(,&).“7 LO—}T'L*}
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Thus we find for the quanticy?

A ® 3 ~ ]Q‘a Q"P (mald - )
R (P
the bound
\o ('LQZV\ X
? 1&-3) < e
for these perimeters P with
-\
WPl QA (PY —e 312
Some remarks are in order :
1° The inequality 3 12 is the wvasis for the considerations

of K-Wilson 5’ and Kogut and Susskind 8) for quarkbinding

2°  The validity of 3-12 is only shown for 2 n™) 2d-%
For d = 4 and reasonable values of n this is sLill away from the region
where our descriprion might be useful ( see 3 9 ) We expect however that the
r h.s. of 3.11 can be made much smaller, by taking into account that the surface
Z is closed and simply connected ( this did not go into the derivation of 3,10
see ref, 17 ) Note that for d @ 2 both 3.9 and 3.12 are fulfilled !

3° It is not hard to find conditions on the quarkmass , that make
the summation over all perimeters P in the 1 h s,of 3.10 convergentLg'1

4 - Behaviour of the free energy as function of the mass , when ﬂl-q <)
- .

In this section we will show that the free energy for Q;1;o is
analytic in the mass of the fermion ., We have made a simplification : the
quarks are spinless and the gauge-group is \A\\», The quarks are strill
represented by an anticommuting variable in the path integral .

We have also looked at the same problem , where the fermions a-e replaced by

bosons . This case seems to be different , though we cannot gi2 a solution

74/P.639
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when going to the thermodynamic limit Ny o This is 8o because in the

3
termionic case we are helped by a theorem of lleilman and Lieb .>This theorem

does not apply in the boson case .

a) The fermion casa

Wo take the partition function .ZN as in section 2; but we

-t ze from the outaet @

set %
% - »
o lghe,mi) s (DU Dt Dq wp 2 oM v

the quark integratlon glves us the ueusl determinant , which can be analysed as
in mectlon 2 in terms of closed non-intersecting dlsjoint tracks ; each hond (5]

of a track has weight 32‘*“57 , each point not lying on a track has

weight o8& .

Now we do the DU.: Sy integrations, and it is clear that only those tracks
™

will contribute where the weight appears twice with opposite phase . These are

the dimers . The result is :

Sum of all configurations of dimers
2“(0,“"2.): and monomers . Dimers have weight
monomers weight w§ 4 2

% Monomers " are by definition the points not lying on any track . Now we can

use the above-mentioned theorem 13)
3Q ? (Q,MS\ 2 Lim A \0% ZN (_O)"V\gj 4 3
N=er N
then © 1is analytic in ™% , ( Actually the theorem is much stronger and

could be used for the case where sources coupled to the q*(J.q terms are
introduced), Therefore any transition at <§1=o in the variable md is
excluded . The result is true in any dimension . Only for d#=2 , and m8zo

the result is known analytically . 14)

74/P.639
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b) the boson case

U
Let the boson variables be b(1) and ©({) . Then the

partition function reads ( see section 2)

’ZN (o0, m38): QQU Pt Db e f_\:"mef N"Bu')-a"% Vb 4

(% s m&)
Doing the boson integrations gives the inverse of the determinanr ot the
boson marrix . So even for finite N 2 is no longer a polynomial in the
( reciprocal ) mass . Therefore the question of convergence poses itseli
already for finita N . This problem is actaclted best by first integrating the
gauge field variables . We get then :

C o3 Y N ARy P! K
-ZN (0,8 = (D% Dy expl & ARICRIEAN (\;\_“5 ARGEIARYORNTIN

Clearly if Remt is large enough , 4-5 will converge . Since

AT i) ~ \! AL exyp \bG)IbUN) 4.6
—3‘( e b)) ot b9 vl

for large \b(|

T bl we Lot 20T+ 2 oo b1

we find that the integrand in 4 5 will behave as:

The eigenvalues of the adjacency matrix appearing in the exponential should

all be smaller then ° in order to have 4.5 convergent . The eigenvalues

are 9) ‘

R e R S - Sl 67
where each \<§ runs from \ to NV‘ ¥ .Therefore , independent of N, we
find that 4.5 is convergent and analytic +¢ Gll?fzz 1d for & 2 % For
d = 2 we have a singularity at tz 2d . We can push the domain of ana-
lyticity >y noting that 4.5 is absolutely monotone in the variable @

This follows from the expansion

n
e L \rw .
NG Abrvuen): 2 \bw\ \\Ei‘}\ 4.8
-3 n=oe “\ Y\\‘ 2
and by integrating term by term . The ensuing series in W
4.9

Zale, @ty = 2 aglw) el

74/P.639

-118- .

haa clearly only postrive coafficlents , and we Infor absolute won.touy  We
[
know that 4.9 converges on the real m axls  trom o to Li Beragtein's

24
15) tells us thar 4.9 will converge everywhere in the clrcle

theorem
It is easy to see thar T lo,®*Dmust have singulurities ourside the circle
for general dimension . What the implicatious are for the free energy in the
thermodynamic limit we have not been able to calculate . The important
difference with the fermion case is that'ZN is not a polynomial 11 W , but
a function with already singularities(which have nothing to do wit: the

thermodynamic limir )

74/P.639
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CONCIUS ION

The long distance properties of Yang-Mills fields coupled to yuarl s a..
studied . The possibility of having a8 simple linesr system ( the string ) as
the leading contribution is demonstrated in an approximation scheme wheic 1he
dimension W of the gauge group is the expanslon parametcr and where the
coupling constant g2 ias proportional to k . This should guide us when
looking for the "mass-shell' of the theory . Furthermore we have investigatled
for very large coupling constant what happens to the free energy as a function
of the fermion mass : In order to have a criLical point we should
congider values of gz not too large . The point that should be emphasized 1n
this approach is the following :If we want to make the lattice length S omall,
much smaller then say ((‘xo.\J)-l , then comparison of our formula for the
leading contribution with the " string " formula yields 1qﬁn X1
On the other hand we would like to maintain the " area rule " eqn 3.12 , which
we derived under the condition 15’“1\) 24 -3 ; this condition
trivially satisfied for d = 2 , can be certainly relaxed down Lo some critical
value for d = 4 , We find it however difficult to do with our present medns
( raking into account closedness of surfaces etc ) . We envisage a renormals
sation transformation in configuration space that should determine the

18) 2

corresponding fixed point , in the woaw , g“n fixed limit
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Fig. 1: The lattice with the directed bonds between any two points
- A =
N
— weight associated to the bond (i,i') is the
i i R .
matrix LUy Wl

B s weight associated to the bond (i}i ) is the
- -1

i
‘ matrix sl W' )

Fig.2 To each point 1 in Euclidean Y4~ space 8 number
of 4n levels is artributed : each level corresponds to a quark
degree of freedom; the labeling is given by (o) , &= 1,2,3,114J

P
! o A Bond directed from i to i' and connecting levels
,/ a'd ax with a'ol carries a weight g _ . uwl
=l
. A bond directed from i'to i and connecting levels
. with ¢ acarries a weight ¥ . uu'u
(o3 °,
¢ N There are no bonds tpetween levels at Lhe same
sice .
Fig.3 Possible terms in det W\

. . . -

NEnE

:C:§>’ NI )

.

a) one quark degrees of freedom

S

[y

b) 4 quark degrees of freedom
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Some connected planar gauge invariant qunntiLias(gz-t7:

kol > 4
P P
, " P »
- P A -
AN &Y
e ’ i > am / Ly
e P )
- <
§<2 P 1 P
VoL 31
T
.
Voo
L T -
e - -
ol
)

Cress-hatched regions are filled with squares .

that also vertices on the borders of a planar surface carry an index cycle as

i
ﬂ
Fig.5:
; 7
Al
A .2
eI
e
Vs /,;, ,/// 24
11
’n,\f
717
in fig. 5 (b) .
. e
ey
A
Zebt
25225
ST

PANN
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matrices involved .

The broken lines parallel to the bonds

correspond to the unitary index of the

broken line crossing the bond by means of the
integration 2.25 (a) . It is easily seen

They are connected by a

4]

5]
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FOQTNOTES

The gauge group in question is the colotgauge group .
't Hooft mentions this possibility in ref.3

If more than one quarkloop is present the sources miy be coupled
to different qudarkloops These contributions are all of the order

determined by Q; , the number of quarkloops (se: section 3b)

The bound 2d-3 stems from the observation that one can couple an
elementary square to a given one in a given bond ir only 24-3

ways , Lf we want to avoid overlapping squares
A generous bound is got by putting ¢
Ao (PR
[
and by noting that:

number of closed self avoiding quarkloops going th) ough bonds
t, - -~ ,% with fixed length \P\ is smaller then

28 (2a- VWY
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o Quark Confinement \ ?J )()
g A
! ‘ Quark confinement is of great interest at present. It is
Kenneth G. Wilson important that the confinement mechanism be soft. That is, the
Laboratory of Nuclear Studies, Cornell Hgiyérsity, potential energy of two quarks should be small when they are
Ithaca, New York 14850 close together so that quarks can respond as free particles in

pl

deep inelastic electron scattering. The potential energy should

A model of confined quarks is presented. It become large when the two quarks are well separated, to prevent
involves an abelian (or non-abelian) gauge field any quarks from escaping a nucleon and becoming obscrvable
coupled to a quark field. The theory is quantized quark-like particles. Kogut and Susskind1 have sperulated that
on a discrete space-time lattice. It shows quark the potential energy of two quarks (to be precise, ¢ quark and
confinement for strong coupling. Specifically, for an antiquark) will be proportional to the distance t between
strong coupling isolated quarks have infinite mass them when r is large., This is the result found in cne-
and quark-antiquark pairs with a large separation r dimensional quantum electrodynamics for the potenticl energy
have an energy proportional to r. The theory has of an electron-positron pair.
local gauge Invariance as an exact symmetry in A model which exhibits quark confinement and a linear
strong coupling., The strong coupling theory is far potential between quarks will be described in this paper. The
from covariant due to the lattice. model is a gauge field coupled to a quark field, qu:ntized on

a discrete space-time Iattice.a’3 The quarks of the¢ model are

»*
Supported in part by the National Science Foundation. confined for sufficiently strong gluon-quark couplitg constant

g. (For weak coupling the lattice theory behaves like a con-

ventional continuum theory.) This is true for any soace dimen-

To be presented at an informal conference sion,
on Yang-Mills fields at Marseille, The model has one major drawback: It is noncovariant due
June 1974 to the lattice. The lattice provides an ultraviole!. momentum

cutoff. The model can be solved explicitly only in a limit
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where all physical masses are much larger than this cutoff, so

the explicit solution is far from covariant. The problem of

achieving covariance will be discussed further at the end of

this paper. The properties of the model are sufficiently

remarkable to make it worth study despite the lack of covariance.
A detailed description of the model is given in two pre-

prints.?"3

Only some of the principal features will be
described here,

The Lagrangian of the model depends on three parameters: the
bare coupling constant g, the bare quark mass m and the lattice
spacing a. The model can be solved explicitly in two limits.
One limit is the weak coupling limit (g small). The other
limit is g and m a both large (but not infinite). The princi-
pal features of the large g,m_a limit are as follows:

1) An isolated quark has infinite mass.

2) A well-separated quark-antiquark pair has a finite
energy proportional to their separation r, namely
proportional to (Zn ge)r/az.

3) The theory has local gauge invariance as an exact
symmetry of the quantized theory (for weak coupling
the local gauge symmetry is spontaneously broken}).

4} The infinite quark mass is a consequence of exact

local gauge invariance.
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Local gauge invariance means the following. For example
consider the quark propagator on the lattice. This is
S(n) = <O|TY_¥ |> (1)
where |(D is the vacuum state and n is a four-vector with inte-
gral components [e.g. n = (0,1,2,1)] labelling a lattice site.

A local gauge transformation is a transformation
i¢

n
v, >e Y (2)
YV, > e Y, ()
Exact symmetry under this transformation means that
1(0,-0,)
stn)=e " %s(n) (4)

which is possible only if

S(n) « & (5)
This means quarks cannot propagate, i.e. they have infinite
mass., To be precise the model will be quantized in a

Euclidean metric (imaginary time). 1In the Schr8dinger repre-

sentation the propagator, for n, > 0, is

-Hnoa_
S(n) = <Qlye "y | . (6)

The vanishing of S(n) for ng > 0 is the symptom of a more
general result:
-Hnoa_
e VD> =2 (7)
which means ¥_I(> is a state with infinite energy.

The model will be quantized using the Feynman path
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integral framework, hence the quantity of interest is the actionm,
The first step in defining the model is to construct the action
on a discrete space-~time lattice, The action will be defined

so that it is exactly gauge invariant on the lattice. The
crucial part of the lattice action will be the free gauge

field piece, but it is convenient to consider first the quark

part, Consider the free quark continuum action
P F(x) (10"
A= ldx y(x)(1 Vu-mo)W(x) (8)

Converting this to a lattice action in the most naive way one

makes the replacements

fdux > auzn (9)
V(x),¥(x) > ¥,5%, (10)
Vb)) > (Vs - dpq)/ea (11)

where'ﬁ is a unit lattice vector (length a) along the axis u.
This gives
A-z{g—iw(w Ay A)-mauvw (12)
n| 2 "n"'pt o Tn-p o ‘n'n
The product iQWn+ﬁ is not gauge invariant. To make it
gauge invariant one uses the standard procedure: one inserts

an exponential of the line integral of the gauge field. A

lattice approximation to the line integral from n to n%ﬁ is

Just gaAnu where Anu is the gauge field at lattice site n.
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The expression
igaA
- N
wnvuwn e
is gauge invariant provided that the gauge transfornation law for
A 1is
ny

Ay > A - (0] - o) ea (13)
Thus a gauge-invariant action for the quark field is

igaA -
nL_ -
AR

4
+maty s } (14)

A=2{= £ R
T w20 (wnivuwn+ﬁe )

In this action the variable gaAnu appears as a1 angle.
That is, the action is periodic in the variable gaA’u with
period 27, This is no accident, The gauge transformation
variable Qn is an angle so to preserve gauge invari ince gnAnu
is an angle, too.

It is natural to try to write the free gauge fleld
action to preserve periodicity in gaAnu. First we iweed a

lattice approximation to Fuv(x), namely

1
Fnu-V = a{AtH-a,V -AnV -An-{-(l\,u + Anp_ } (15)
Let
B = 834y, (16)
2
fnv = 88 Fouy (17)
Fv ™ Baal,v "By "Bud  + By, (18)
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Then a gauge field action which is gauge invariant and periodie

in the variables B  is (AGF means gauge field action)

"
if

1 e ™ (19)

A = —— 3 =
GF 2g n

It is evident that this action is periodic. To show that

W

it is gauge invariant, it is useful to represent Bnu graphically
by a directed line from the lattice site n to the site n¥a
(Fig. 1). A gauge transformation acts as follows: at the site
”
. ; _ N
nHL, where the line is incoming, one has Bnu > Bnu ®n+u.
At the site n where the line is outgoing the transformation has

the opposite sign: Bnu > Bnu + oo . Then fan is represented
by a closed square (Fig, 2) with the four corners of the square

N AN Fa .
being the sites n, ntu, ntu+v, and ntv, (Backwards lines

Fa

represent a - B, e.g. from v to n represents -an.) It is
easily seen that the gauge transformations cancel at each
is gauge invariant.

corner of the square. Thus fan

In the limit a > O the exponential (19) reduces to the
usual continuum action. This is seen as follows, For a small,

fnuv is also small [from Eq. (17)), hence

1 ;o2 L 2hk2 }
AGF—-ggQ anuzv{l+1ga Fnuv 2gaFan (20)

A constant term has no effect on physics; it can be ignored.

The term linear in Fnuv is zero because Fov is odd under the

interchange u ~> V. Hence the double sum cer n and v of Fnuv
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gives zero. Thus the dominant term is the F: term, The

pv
factors of g2 cancel, and the factor au converts the sum over n
to an integral. Higher order terms (Féiv, etc.) have higher
powers of a and therefore vanish in the a -> 0 limit.

The above analysis of the a ~-> 0 limit is only valid
classically: It was assumed in this analysis that Fan has a
limit (i.e. Fuv(x)) for a > 0 and this is true classically
but not quantum mechanically, This will be discussed further

below.

The complete action of the quark-gluon lattice theory is

A=z ST vy ne o 9 o iy ¥ e-iB““)+ 7
"nl & ¥ 17, nHL nHL Yu¥n m,2 ¢an
if
1 npv }
+ 5;5 zuzv e (21)

This choice for the action is not unique. One could have
if
2 + v
used fan for e ™ , for example; this would violate only the

ad hoc requirement of periodicity. However only an exponential
form such as given above generalizes easily to nonabelian gauge

theories. 1In the nonabelian case I cannot find a gauge invari-
if

v
ant form on the lattice for fnu but e ™ is easily general-

V’
. . a
ized. In the nonabelian case one has a set of variables Bnu'
. . a . .
For each choice of n and p, the variables Bnu parameterize a

finite clement of the gauge group (not an infinitesimal element),
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iB
One replaces e ni by a unitary transformation U[B;:] repre-

senting this element in the quark representation. 1In place
if
v
of e ™' one substitutes the trace of a product of four

unitary transformations:

if

nuyv a a -1 __a
e - Tr U[Bnu]U[Bn+ﬁ,V]U [B

oo 10 B (22)
This trace is gauge invariant under the nonabelian gauge
group.

The quantum mechanics of the lattice gauge theory can now
be defined using the Feynman path integral. The action defined
above is actually in a Euclidean metricu, so the resulting path
integral will define vacuum expectation values for imaginary
times. One can still define the full quantum mechanics in
real time using the "transfer matrix' method, which is dis-
cussed in Ref, 2, The path integral involves integrating over
all values of the Bnu plus an "integral' over the fermion
variables wn. The fermion integral is discussed in Ref, 3;
denote it by < > . Then the path integral for the quark
propagator 1is

m

S(n) = = (23)
ﬁmﬂug_ dBmu. <eA>

m

T
TT T;J; dBmu <wn¢oeA>

where A is the action of Eq. (23). The periodicity of A with

respect to the Bnu makes it unnecessary to integrate over more
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than 1 period (-7 to ) of B The denominator is 1iecessary
to remove vacuum-to-vacuum graphs, The denominator vill be
denoted by Z in subsequent formulae.

In the weak coupling limit, 1/g2 is large and tierefore

the path integral will be dominated by values of fn“v for which
if

v, 2 . ; . .
e ™M™ /g~ is near its maximum, This means, essentially, small

fnuv’ which allows one to make the expansion of Eq. (20), giving
back the conventional gauge theory action. There are details
that have to be straightened out in this limit but it appears
that the small g limit of the lattice theory agrees with the
usual continuum theory. (This requires that ma al:o be small,)

The interesting limit is the limit g large. C:lculations
are simple in this limit if ma is also large. In this case
both the gauge field action and the Yﬁ terms of the quark

action can be treated as a perturbation, The lowest order

approximation is to neglect these terms altogether, giving

-1 v
S(n) =~ Z UmTEf dB

-

- <wnE;e o mmm (24)

Because the action in this expression is quadratic .n the fields
¥, and EA, the < > can be calculated by Wick's th:orem, The

bare propagator to be used in Wick's theorem is

§y(n) = (moa")‘lano (25)
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The approximation (24) gives S{n) = So(n); therefore

icted lier.
S(n) « 6 o 35 predicted ear

In higher orders it remains true that S(n) is proportional

to & o To see this one first expands in powers of the yu
n

terms in the action and picks out terms which give a nonzero
fermion integral < >, It is not difficult to see that the

fermion integral is nonzero only if one can combine terms of
+iB
the form anmiYu¢%ﬁae m (or complex conjugate) to form a

path from the origin to the lattice site m: the term
- iB A
Yy Y re M™ois represented by a line element from wmHi to m

m o mHL
in this path. The fermion integral then xeplaces the ¥'s and
¥'s by products of (moau)—l. One is left with the integration
over B's which now has the form

n
2 (7 an e‘-iZ°B
) P

L 1 v
exp{ —5 2 2 Zoe (26)
- 2g

w v

where Eznmu means a sum over the B's on the path from O to n
defined above,

To clarify this formula a bit consider the case that the
site n is a ncarest ncighbor site to the origin, say
n =h«),l,0,0) =/i. Then one neceds only a single Lerm, namely

-iB
—aBEiivlw e ol from the expansion. That is, one writes
o

o 3 — iBnp. _ -iB'HIJ-
<Yy ¥, exp f Zma (1, ¥, e - Vol ¥ne )§>
, -iB
2 <Pt - Phirye t-]> L (27)

where only one term from the expansion of the exponential
is written out, This bracket when calculated by Wick's

theorem gives
b -2 3 -iB

(ma)%a” (-ivpe °F

(28)
Here the sum zgnmu reduces to the single terxrm Bqe When the
exponential in (27) is expanded to higher orders there are
additional terms contributing to the expression (28); these
additional terms are of higher order in (moa)-1 and contain
more complicated sums of B's in the exponential,

The integral (26) is zero to all orders in g-a, except

when n = 0. It is zero in lowest order because

.

) as e P2 o and there is one such integral for each link

-T

in the path from O to n. Expanding in powers of g 2, the next

term has as an integrand
-iXEB““ if,cuu
b
216° e (29)
The exponentlial can be represented by a wmore complicated path
combining a square (for wao) with the original path from O
to n. There is no way a closed square of B's can cancel an

-2
open path, so in order g there remain some integrals of the

cT
form S dBe_iB. This is true in all higher orders as well:

-T
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hence S{n) is proportional to 6no'

The underlying reason for S(n) being proportional to éno
is local gauge invariance. The action given in Eq. (21) is
invariant to local gauge transformations. In continuum theories
one has to add a gauge-fixing term, which explicitly breaks
local gauge invariance. This was not necessary for the lattice
theory. The reason for this is the finite range of the Bn“
integrations. 1In the continuum theory, where the path integral
over Au(x) has infinite limits, exact local gauge invariance
leads to divergent infinite integrations.5 No such divergences
appear in the lattice theory. It was shown in the introduction
that local gauge invariance implies that S(n) is proportional to
6no'

In weak coupling the quark propagator is certainly not
proportional to 6no’ What happens in weak coupling is that
local gauge invariance is spontaneously broken. This means,
as usual with spontaneous breaking, that an infinitesimal gauge
breaking term must be added to the action in order to calculate
S(n) correctly. The details of this spontaneous breaking are
complex and have not been carefully worked out as yet.6

Now consider a well-separated quark-antiquark pair. The
quantity of interest is the minimum energy of the pair at a

" fixed distance r. One has to form a gauge invariant state
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containing this pair -- otherwise the state will hav: infinite

energy. A simple gauge-invariant state is

iz

ve ™yl (30)

n
with the lattice site n being at time O (no = 0) and a spatial
distance r = ]ﬁ}a from the origin, This state, usingz the
shortest path from O to n, turns out to have the minlmum energy
for two quarks separated by r, in the limit of large g and large
m,a. To determine its energy one can study the time dependence

of the Schr8dinger representation expression

B L S zosmu
<°‘i’”n ™y o) © {w e wc;\0> (31)
With t = n_a this becomes in the Heisenberg represertation
_ -iz‘;Bm _ 122 o
<mwno’o e Yo Yo nc vl o> (32)

When this is computed through the Feynman path intejral and
the fermion integral is computed, one is left with ¢ gauge field

expectation value to compute, namely

1 g 1 ifmuv }
Z Wmﬂ g--"-dBmu' expz i2B S exp/ g2 Zmzuzve (33)

where B 18 a sum over the closed path illustrated in Fig. 3.
The two horizontal (equal-time) legs are the paths nriginally

present in the vacuum expectation value; the verticil legs are

generating by expanding in powers of the wu terms o the
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complete action. The shortest vertical path is used to get
the minimum power of (mga)“1 from the fermion integral. (This
power has been omitted in the expression (33).)

The gauge field integral is easily determined for large g.
In order to eliminate integrals of the form j WdBetiB, it is
necessary to expand to sufficiently high ordeéqgn g"2 so that
the entire area enclosed by the path of Fig. 3 can be filled

by squares representing fmu 's (Fig. 4). There is a factor

v

-0 -
g for each f Hence the expectation value (33) behaves

mv
as

-24nn
(g2

-Enga
This is proportional to e where E is the energy of the

quark-antiquark state, Thus
E = %]_;!2n g2 = r(4n ge)/ae 61D
Hence the speculation of Kogut and Susskind is confirmed
for this model when g and ma are both large.
Consider finally the limit a > 0. One would like the
energy E(r) to be finite in this limit. This is evidently not
true if g2 is held fixed (and large) as a -> 0; this limit

gives E(r) > =, from Eq. (34).
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This is a different result than the carlier {classical)
result that a limit exists for a > 0. The classical argument
fails for the quantum mechanics at large g because Bnu ranges
independently from -7 to m for each n and u., Only for a
negligible subset of this integration range is Bnu a slowly
varying function of the lattice label n, and hence only for
this negligible subset do continuum functions A“(x) and Fuv(x)

exist.

The only hope to obtain a continuum limit is to let g
decrease as a decreases; but this means leaving the range of g
for which the large g approximation is good., Nevertheless one
can discuss qualitatively the behavior of E(r) for intermediate
g. First, note that in weak coupling E(r) is a constant for
large r (twice the quark mass); in other words the coefficient
of r is zero. For sufficiently large coupling g,

E(r) = rc(g®)/a” (35)
where c(g2) =~ fn g2 for sufficiently large g2 but there are
additional terms of order 1/g2, l/gu, etc, from the full l/g2
expansion.

There must be a critical coupling 8¢ where the transition
from exact gauge invariance to spontaneously broken gauge

invariance takes place. If the vacuum changes continuously



-141-

at g, then one would expect c(gf) = 0 so that the energy law
changes smoothly to the energy law for weak coupling. In

this case one can easily define a limit g > gc from above
simultaneously with a -> O such that E(r) has a continuum limit.
Unfortunately it is also possible that there is a discontinuous
jump at 8 from a symmetric vacuum to a spontaneously broken
vacuum, and in this case c(gf) can be nonzero. This is called
a "first order" tramsition. In this situation no continuum
limit is possible.

The evidence from a rough mean field calculationz'3 is
that the transition is first order. However the analysis has
so far been restricted to the case m a > 1, i.,e, static
quarks. A much broader study needs to be made allowing for
small m a, ordinary SU(3)XSU(3), and a nonabelian gauge
group. This has not been attempted yet.

The importance of the lattice gauge theory is that it
provides a specific duantum field theory with confined quarks.
It is therefore a model one can use to study what is reason-
able in such a theory. Consider for example the potential
energy law (34). This form for E(r) has always seemed (to
the author, at least) to be in contradiction with locality.

In a theory with no zero mass particles (there are no zero
R —

mass particles in the strongly coupled gauge theory) it has
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usually been the rule that the potential energy of two parti-
cles decreases exponentially at large distances, apart from
the rest energy.

One can make a rough argument to show that a lirear
potential energy is a natural consequence of locality given
that isolated quarks have infinite mass. 1In a theory with
specific states with infinite energy, the Hamiltoniar is not
the most well-defined operator and it is better to study

e-Ht. Consider the expectation value of e_Ht for a quark-

antiquark (qf) state with separation r:

- ~Ht, =~
<qqle "[qq>
For sufficiently distant q and E, one expects e'Ht tu behave
for
like a product of operators, one eacﬁAq and ;; in otler words

one expects

<aqle "la> = <aje M q> T e HEUD + o(eP(ET) (36)
This is a cluster decomposition formula so one's intuition
is that the error in this formula falls off exponent:aliy in
r, as indicated. The function b(t) is unknown. If the quark
and antiquark had a finite mass m, one would then hare
e-E(r)t - e-2mt + O(G-b(t)r) (31)

-b(t)r

E(r) = 2m + O(e ) (38)
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which is the normal situation. But for infinite mass quarks
the right hand side of (36) vanishes. In this case one is
left with

E(r)t = b(t)r (39)
Clearly in this case b(t) must be proportional to t and E(r)
is proportional to r. Thus the linear form for E(r) appears
reasonable, and the model provides an example to back up this

general argument,

Ongoing studies of the lattice gauge theory model include

7

extensive calculations of the strong coupling expansion
formulation of the Hamiltonian of a nonabelian gauge theory

on the lattice.

I have been helped by many people at Cornell, Orsay, and

elsewhere to bring these ideas into focus.

and a

«lb4b-

J. B. Kogut and L. Susskind, Phys. Rev. D, to be published,
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Figure Captions

Graphical representation of gauge field Bnu'

Graphical representation of fnuv'

Closed loop sum of Bmu appearing in Eq. (33).
Squares enclosed by the loop of Fig. 3; the loop
sum is cancelled by the sum of flwc over the 12

enclosed squares.
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4o shall describe how rerormilizatior group equitions <ppe:r ratuaraldly
in the analysis of the structure of the correlation tunctions near the cri-
tical terperature for a spin system on a lattice. These renormalization
group eguations allow us then to discuss, in a field theoretical language,
%1lson's theory of critical phenomena ! . A more detailed exposal of these
results can be found in a review article by Brezin, Le Guillou and Zinn-

2
Justin 7.

MEAN FIELD THEQRY

For simplicity we shall only consider two-spin interactions, and we

shall often specialize the formulae to the Ising model.

The partition function Z(H) in presence of a magnetic field H reads:

Z) = 2 axp [ 2 Vi Sisy s @
is:d *d *
where the index 1 corresponds to the lattice site, and where we have in-

cluded the factor B =1/kT 1n the interaction. We assume that V_1 1s
1
positive (the irnteraction 1s ferromagnetlc), short-range, and saiisfies the

hypercubic symmetry and the properties:

(2)

Vig = V(@-7)
VL' - o (5)

The last condition 1s purely technical and can be removed 1n a more general

treatment 2 .

A way of deriving the meas field approximation 1s to use the convexaity

1nequality

< expA > 7 e2xp<A> (@)
where the mean value 15 defined in terms of a one-body density:

sxp- p, = “P; Xi Si (5)

The Xi are then chosen to maximize exp <A>. Taking for A:

A ~p (o8- %.) :.E.)V,Lé Si5; + 2: HiSi- %S5
one obtasns Teierls variationsl prancaple:
U Z 3 W Zo - < p(R-B) 7 ()
We now introduce the free energy W{(H):
WH) = ¥ Z(H) (8)
and the function A(X):

ACK) = I ;Z;.} axp S X (9)

fter maximization on the X, , the right-hand side of inequality (7) gives

the Weiss mean-field approximation for W:
! [J [}
Wa 2, Vi ARG +24 RO £ (M- Y2 ALK co
where the Xl ;;3 given in terms of H :;:

Hz "Xi + 2 % V,,A A,(‘Q) =0 (11)

It 1s more convenient to discuss the problem in terms of the magneti-

Mi = ?;_g = A,(XA\ (12)

.
zation ml.

The corresponding potential TI'(M) 1is given by the Legendre transformation:
M)+ WH) = Z HiM; (13)
Here we obtain: )
(M) = - iZj.Vzg M)+ 2B ()
.

withs

2B (ML) =22Mi X - A (15)

A
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In the Ising model this gives

)

DM < - 2V MM+ 2 [ itanl W et
)

Th: magnetization, in the absence of external field, is given by the mini-

mum of [. By translation invariance Mi is independent of i, and

satisfies:

~-2NM « ?.&. = 0 (17)
oM

where we have defined
V = ZVA’ (18)
ys

It is easy to see from (16) that for the Ising model, the minimum of
I' stays at the origin as long as V is smaller than a critical value
Vc=-}, i.e.y as long as the temperature T ig larger than a critical
value Tc’ and then continuously leaves the origin. This continuity of
the magnetization is the characteristic of a second-order phase transition.
For V- Vc smally i.e., T~ TC small, the magnetization is small and all
the properties of the system are determined by the first terms of the
expansion of T(M) around M~0, and T=T,

TS SN NV
":) PO LM

where =a, b, in the situation that we describe, are positive (a= 1y

b=2 for the Ising model). The critical temperature is given here by:
Ve = @ (20)

In particular, the equation of state
H.?r
- _i;‘

can be written, for H, M and T~ Tc small, and after a rescaling of

(21)

T and M, in a universal scaling form:

H/W® = [ (- M%) ‘

(22)
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with .
-‘-(X) = A+X (23)

and the critical exponents B8 and & have the value

b=1/s
?=3

(24)

From the functional (19), one can also derive the two-poiit correlation

-1)
G;‘s. = P_‘:\. . (es)

MM )

In zero magnetization the Fourier transform G(q) of Gij has the form:

- - (@) '
G(ﬁ') = Z- Gij ’;)(biq’-\';} = {a- LVCq)} (26)
3

function GiJ:

with

-

V(Eﬁ = 2. V,Ls QX\)A'. -q'.Y‘;a lquls'T (21)
3

—
From the assumption that vij is short-range, we know tkat V{q) 1is
analytic in g for small g. By cubic symmetry it has the e xpansion
o .

V@@= V(4-§*") + 0 (al) o
G(;) can then be written: '

G(i) = G(o){i-.g‘ .Cr'] + O(q.:') (29)

where £ is the correlation length.

It diverges with T-—Tc as
-y
-?; ~n ( 1-.--EL)

(30}

with

V= 4/’4 (31)
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At D G¢{q) ‘behaves for small g like:

G(cﬂ ~ q-l» (52)

Al. these properties are universal in the sense that they depend only on a

few general features of the system.

These predictions can be compared to what we know for the Ising model
with next-neighbour interaction. The important feature that emerges from
this comparison 1s that the critical properties of the Ising model depend
on the dimension d of the lattice space, unlike the mean-field approxina-

tion.

For d ainfinite, mean-field theory 1s exact. However, for d-1 we
Know that no phase transition exists at finite temperature. For d=2 the
Ising model can be solved exactly in zero external field. It exhibits a
second-order plase transition, various physical quantities like the sponta-
neous magnetization, the correlation length, etc., have 2 power law beha-

viour near TC, but with different critical exponents

= A/8
415
=4 (33)
= A4

H

~ L TP

where 1n characterizes the behaviour of G(q) for small q at T_;
-y -
C(q) A q'? 2 (34)

These reasons, as well as some phenomenological observations lead
various authors like Widom, Domb and Bunter, Kadanoff to postulate, in
general, scaling properties and power law behaviour of types (22), (30) and
(34), put with universal functions and critical exponents varying with the

d.mension d of the lattice space.

In order to show why the mean approximation fails, we shall first con-
struct a perturbation expansion, whose first term is precisely the mean-
field theory result. Again this can be done for general spin systems e s
but we shall restrict ourselves to the special case that we have considered

before.

2.

=10~

The main 1dea 1s to write the density matrix exp-BJ(S) as an inte-

PeHOURPATIC LDy ~I0N OV A LATTICE

gral over one-tody densities, in order to be able to sum over spin configu-
rations.

In the speclal case considered previously, this 1s achieved by the

transformation 3)

(D]
X Z‘ V") S&S):SC‘AF &P ‘z. £ V*) °(A.+Z. 2.3 (35)
44 1) i
which in the case of the Ising model yields:

Z(H)= §a¢; axp - ZJ LV 4+ 2tk (2eieh) e

If one now computes Z(H) using the steepest descent method, one
obtains an expansion similar to the loop-wlse expansion of guantum field
theory. The first term of this expansion, corresponding to the tree approxi-
mation 1in field theory, yields the mean-field approximation. The main dif-
ference with quantum field theory, 1s that the lattice structure provides a

natural cut-off in romentum space to the theory:

lq-«\ <

From this expansion, 1t 13 easy to understand when and why mean-field approxi=

mation fails. The free propagator in zero field is

(&)

G@) = Ve / Ta-2V @) 61

which at Tc behaves like 1/;2.

A typical one~loop correction to the inverse correlation length squared
-2

g will involve an integral of the form:
dfg

- d - -
S(E ~quG(q)Gc(q)m(T-Tc)S —To
3Y*I*T'T (38)
l4ism ==l
For d larger than four, the correction to 5'2 behaves like T-T and
c
wi1ll not modify the power law behaviour of §'2 near Tc' but only the
coefficient in front of the power. On the contrary, for d<4, this cor-
rection will dominate the first term for T close to Tc' This suggests
that this approximation can no longer be valid for d<4. In order to



evaluate the infra-red singularities of all terms of the perturbation expan-
s10n, one can use power counting arguments.

The same arguments which tell us that the term proportional to Mi is

th: least singular in the large momentum region of all even interactions,
show that it is the most infra-red singular. Also, as long as an interaction
is not renormalizable, it is not infra-red singular. This explains the

role of dimension four. Above four dimensions, no 1nteraction, even in the
field, is renormalizable. Therefore, no infra-red singularities will appear
for instance in the two-point function. The result i1s that the ccefficients
which appear in the mean-field approximation will be modified, but not the
general scaling and behaviours. Below four dimensions, the perturbation
expansion is useless and the local four-point interaction gives the most

4) have first remarked that if

singular contribution. Wilson and Fischer
one expands th: terms in the perturbation expansion in the parameter
€=4-4, then order by order the mean-field behaviour is only modified by

power of logarithms which can be summed by renormalization group techniques.

RENORMALIZATION GROUP EQUATIONS

For the reasons given above, one can in a firast step study the critical
behaviour of a local renormalizable field theory whose Hamiltonian density

reads:

2 Y ¢
M(ﬂ: S!:! ()pS(x)) + ‘:_! S+ S'ea (39)

=

but in which the diagrams of the perturbation series are computed with a
cut-off of order one in momentum space. The quantities a, b, c are,

near Tc, regular in the temperature.

Let us now make the following remark. As we are only interested in the
critical domain defined by

momenta ‘P"_\ < 4
magnetization M<< ‘1

.t:T—Tc «4

it is convenient to perform a change of scale which gives a large value A
to the cut-off

bi— /N, i —> Ny

S,ﬂ—-—-——>“5$’3H
"ES - c:'ut /<1’ 44;

The Hamiltonian then becomes:

‘36()&) = (dp SCK))be

(40)

with

1 € ¥
i*lro S (x) + T‘I‘! 30‘\ S (’) (41)

with

€= 4-d

. We have introduced g, the dimensionless coupling constant.

It oo is the critical vaslue of ) the critical domain 12 now
defined by

It & fro-Yocl ¢ AT

momenta << A
-

magnetization

Instead of considering the limit where all the quantities ¢, Pyy M
become small, we can now consider the limit in which A, the cut-¢ff,
becomes large. The behaviour of the theory in the critical domain can

therefore be derived from renormalization theory 5)

It is convenient to study first the critical theory T= Tc’ vhich
corresponds to a massless quantum field theory. Deviation from tht criti-
cal temperature will be obtained then by adding to the Hamiltonian a small

term proportional to ¢ Sz(x).

In order to define renormalized correlation functions for a m.ssless
theory, we have to introduce a mass scale parameter . The renorialized
proper vertices [correlation function moments of F(Mi)] are defilied in

terms of |, by the renormalization conditions:
ri (v \ .
3 ( b i ‘L ) 3 ) P&:o =0

3 ™y, -4
3?" R p'v's)\ﬁt:“} (42)

4 €

i) lepqp = K
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where the symmetry point SP(u) 1s given by:
pi-bj = Wis (48ij-4)

The original (bare) correlation functions and the renormalized one are re-

lated by:
) -V ™)
(pi, B, ) = Z (g,,%)l‘ qn*,g,p) (43)
This equation actuelly means that at g and y fixed, 2 F(N) has a

limit for large A. This implies:

\ KZ (Bo,"lv)r C&h,ac Nxo o
d’\ lpi & I\N)

This yields 6) the renormalization group equation for T

(N
P A N A © @, ,N)xolss)
il\sl_\af w(go,p)%o..zfl(so, v)] r (R, 80, )xo

with

"

“(Qoze)
Q(Q‘H%)

fut ( )( 118 A) doen not deprnd on y, thervfore W(EQvA/u) and

ﬂ(%,yﬁ/u) are 1lso irdependent of
)

(O}
i’\ %R + W (30) %_‘;]—o - tl’: y] (%")l T (Pi. 3.,, '\) 20

dA Q,P 60 (406)
AL[ e 2
(

N

%e are now Interrcted in the Tnrpe A Timit of the F( ). Thin Timit
is domlnated by the infra-icd stuble szeros ol W(go). Lt is easy to verify
that W(g ) has the form:

W(go) = = € 3o + Q(Y) 90 + 0 (g) ()
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*
It hac therefore an infia-red stabl: zero g, of order ¢ for small
¥ !
o(o)

Therefore the F(N) behave like:

(V) NQ
i A ) v A
i« A

qz "((33) (51

This gives, in particular, for r(2)(p,A,g°);

Tm( P,A)go) = G(—?P) ~ [\‘\ P""l

This shows that the correlation function G(p) has a power behaviour of
the form defined in Eq. (34).

£ (p2) (50)

with

From Eq. (47) one can derive all the correlation function scaling in
zero magnetization at Tc. In order to study amnll deviations from the crie
tical temperature, one has to add to the critical Hamiltonian a term of the
form ¢t Sz(x).

But one can express the correlation functions with t£Z0 1n terms of
the corzelutivn functions of the eritical theory with an arbitrary number

of S2 insertione

(y,N)
r (q.,pJ,I\g),<S---.S ‘3...37“,,I
L N

(v2)

Fneh 52 iniertion needn nonew renormallontlon factor Az(A/u, go). Thig
leads to renormalization group equations for the F(L’N) which can be vummcd
and yield finally renormalizition group equations for T N (pi,po,A,t). It 1is
alto powvylble to expund the correlation tunctions with non-zero magneiization
in terms of the magnetization. The coefficients are correlation functions

With 7era magnetiz itian whone renormnli -l Lon group cqunlivns uie Known.  Suime

mation of all these equations yields finally:
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(
- 1Mz, )]

A2 Wil -
{3/\* w M

%% Vt«m )

o
(*;‘q.ll\,l:'ﬂ)zo

From this equation, one can derive all the scaling laws.
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