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ABSTRACT

This report describes the formulation of a f in i te -e lement procedure for the

Implic i t transient and s t a t i c ana lys i s of p l a t e / s h e l l type s tructures In three -

dimensional space. The tr iangular p l a t e / s h e l l element can sustain both membrane

and bending s t r e s s e s . Both geometric and material non l inear i t i e s can be treated,

and an e l a s t i c - p l a s t i c material law has been incorporated. The formulation permits

the element to undergo a r b i t r a r i l y large rotat ions and t rans la t ions ; bv-t, in i t s

present form i t i s r e s t r i c t e d to small s t r a i n s .

The d i s c r e t l z e d equations of motion are obtained by a s t i f f n e s s method. An

impl ic i t Integration algorithm based on trapezoidal integrat ion formulas i s used

to integrate the d l scre t i zed equations of motion in time. To insure numerical

s t a b i l i t y , an i t e r a t i v e so lu t ion procedure with equilibrium checks Is used.



I . INTRODUCTION

In assessing Che safety of liquid-metal fast breeder reactors (LMFBRs),

numerical s t ructural analysis codes are needed for n l.trge variety of time scales

and geometries. In constructing models to represent r ea l i s t i c accident s i tua t ions ,

i t i s imperative that the programs be capable of handling problems in three-

dimensional space. A previously developed code called SADCAT \ftef. 1) par t ia l ly

fulf i l led the above objectives, but was limited to relat ively short time scales

because of i t s expl ic i t temporal Integration. Ihe present code is developed to

augment SADCAT by adding implicit Integration with long time capabi l i t ies so that

together the two codes have the capability to t reat the large variety of time

scales which are found in LMFBR structural safety evaluations.

As mentioned before, the exist ing SADCAT code uses an expl ic i t integration

scheme which Inherently necessitates the use of a small time step to maintain

numerical s t a b i l i t y . The use of a small time step r a s t r i c t s i t s application to

loadings of re la t ively short duration and thus precludes the economic solution of

long duration loadings and s t a t i c problems.

The program described herein is based on an implici t- integrat ion procedure

and is developed to handle both long-duration dynamic problems and s t a t i c problems.

The method i s formulated using corotational coordinate systems. The corotational

coordinates f ac i l i t a t e the forstulation of element related quant i t ies . Argyris e t

a l (Ref. 2) u t i l ized corotational coordinates in s t a t i c problems. The angular

equations of motion are formulated in body coordinates which permit a rb i t r a r i ly

large rotat ions. The t ranslat ional equations of motion are formulated in the

global coordinate system.

The program has the same triangular p la te /she l l element as SADCAT; hence,

the code is applicable to thin s t ructures . The element i s capable of sustaining

both membrane and bending loads. In i t s present formulation, the element i s able
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to undergo arbitrarily large rotations and translations, but it is restricted to

small strains. An elastic and elastic-plastic stress strain law with lsotroplc

linear hardening and a Mlses yield condition Is included In the program, and

other material laws can easily be added.

Because the code was developed to handle problems characterized by both geo-

metric and material nonlinearities, an Iterative-incremental solution procedure

with equilibrium checks based on an energy balance Is used. The code has the

ability to internally adjust the time step or, in the case of static problems, the

load increment when an equilibrium configuration cannot be attained.
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I I . DEVELOPMENT OF THE ANALYSIS

A. Coordinate Systems

The discret izat ion of the continuous structure In space i s accomplished by

a f in i t e element method. The structure is subdivided into a f ini te number of d i s -

crete tr iangular elements which can sustain both bending and membrane loads. This

element f.3 also used in the rtrgonna developed code SADCAT (Ref. 1) .

For ease of formulation and solution three coordinate systems are used: co-

rotat ional coordinates, body coordinates, and global coordinates. A unique set of

corotational coordinates Is associated with each tr iangular element. The use of

these coordinates greatly simplifies the formulation of the deformation displace-

ments, strain-displacement equations, and the s t r e s s - s t r a in re la t ionship . The co-

rotat ion coordinate system has i t s origin at node 1 of each t r iangular element

with the x and y axes lying in the plane formed by nodes 1, 2, and 3 (Fig. 1 ) . The

x-axis bisects the angle a. A hat , - , above a quantity Is herein used to ind i -

cate that the quantity i s referred to the corotational coordinate system.

For the purpose of t rea t ing motion in which the nodal rotat ions are a r b i t r a r i l y

large, a set of unit vectors fixed to each node i s used to describe i t s or ienta t ion .

Tb; unit vectors b , b , and b of each node coincide with the principal axes

of the mass moments of ine r . i a and define the orientat ion of the body coordinate

system (x ,y ,z) , as shown in Fig. 1. A bar, - , above a quantity, indicates that i t

i s referred to the body coordinate system. A global coordinate system (x,y,z) is

fixed in space.

In the computation, i t is necessary to transform quanti t ies measured in one

system into complementary quanti t ies measured in another. To accomplish t h i s ,

several coordinate transformation matrices are developed in Appendix A.
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B. Equations of Motion

The translatlonal equations of motion are

M « - fCXt - flnt (

JUJI .n JI u

whare

M, = mass of node J

uT. = linear displacement of node J in the i**1 direction
J i

fV? , f = Internal and external forces, respectively, at node J in
J X J1

the i t n direction.

The rotational equations, which are identical to the Euler equations, based upon

an isotropic inertia tensor, are expressed in the wving body-coordinate system

in the form

" mJi

where

IT,. = mass moment of inertia of node J in the i body coordinate

direction (a principal moment of inertia)

~int """ext
mJi ' mJi = internal and external moments, respectively, at node J

a) = i component of the angular velocity of node J measured in

body coordinates

a.. = i component of the angular acceleration of node J measured

in body coordinates

i,j,k = x,y,z or any cyclic permutation
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Because the code is being developed for the purpose of analyzing reactor

components,such as hexcans which exhibit nonlinear material and/or geometric be-

havior under extreme loads, i t is necessary to use an incremental form for the in-

ternal forces. The incremental expression for nodal Internal forces are obtained

as follows. Using the local-to-global transformation matrix, [T), the internal

nodal forces for a generic element are given by

{f l n t } - [T]{f in t> . (3)

The increments in internal force for a generic element are obtained by sub-

t ract ing Eq. 3 at time i from 3 at time i+1 to give

Ufinc} = [T.+ i1 ( fm} - [TJU}1"} • W

Expressing the quantities at time i+1 in terms of the quantities at time i,

we obtain

fTi+l] = ^ i 1 + f / T ] (5)

and

{fi+1} = {iTt} + {Afint} • (6)

Substituting Eqs. 5 and 6 into 4 and neglecting terns quadratic in increments

we have, for an element,

{Afnt } = tTi]{Af} + t&TKf^ (7)

These two terms are well known in .structural analysis and correspond to the linear

tangential stiffness [KJ and "initial stress" or geometric stiffness [K_J,

respectively.

Using the latter nomenclature, we may write
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{Af in t} = [KjMd} + [KHAd} (8)

The increment in internal forces expressed in the mixed coordinate system is

obtained from

{&flnt} = [T]{Af lnt} (9)

The total increment in the global internal-force matrix is obtained by summing

the contributions of al l the elements, that i s

where (L], . is a Boolean connectivity matrix (Oden, Ref. 3) and N is the

total number of elements. Similarly, the total nodal internal force at the

i c" step is given by

The total internal nodal force at the i+1 step is now equal to

Writing the equation of motion (Eq. 1) at time step i+1, we obtain

(13)

When the stress-strain law i s linearized about the state of stress at the

1 t h time step, a linear equation for fad} may be obtained

{AFint} s [K]{Ad> (14)

where
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[K_] =• global tangential stiffness matrix

[K ] = geometric stiffness matrix

In view of the above approximations, the equation of motion becomes

[M]{d«..} + [K]{Ad} = {&*;} - {F*nt} . (15)
.. T*X I ' l l X

In order to develop an implicit algorithm i t is necessary to express the

kinematic quantities at the time step i+1 in terms of those at the ic^ step.

To accomplish this, the trapezoidal integration formulas (Ref. ^) are used.

They are

{di+1} = {d±} + itfdj} + ^ [ { d ^ } + (di+1}] (16)

and

Cdi+1} = (d^ + ̂  ({d.} + (d1+1>) (17)

where At is the time step. This corresponds to a linear velocity and constant

acceleration during the time interval. Using (16) and (17), the equations of

motion become

(18)

The above equation is compacted by denoting the coefficient of {Ad} as

^eff "*eff
£K ] and letting the right-hand side be {F }; thus, we have

[KeffHAd> = {F^ff} (19)

[M] + At e[K] I {Ad} = [M][At{d.} + 7-At {d.} ]
' 1 ^ 1
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At this point It is worthwhile to note that the implicit transient program

may also be used for static analysis. The matrix form of the static incremental

equation of equilibrium is

tKj(Ad) = (F***} - {F*nt} (20)

where the subscript now refers to the load step. Thus, it is seen that for a

static problem we define the following matrices

[Keff] = [K] (21)

and solve Eq. (22) for the displacement increments. Equilibrium is checked by

the equations of motion with the accelerations set equal to zero.

The computational procedure for each time step is described here. To begin,

Eq. 13 is solved to give an estimate of the displacement increments from time step

i to time step 1+1. A Cholesky decomposition algorithm is used. The estimate of

the new displacements is obtained by adding the displacement increments to the

total displacement at the i step, that is

( 2 2 )

[{"} At{*} ^ V 1 (23)

By rearranging Eq. 16, the new accelerations are found to be

W T [ {"} ~ At{<*i} ~ T V

The new velocities are obtained from Equation 17. The translational displace-

ments, velocities, and accelerations obtained above for the i+1 time step are

measured in the fixed global coordinate system. The angular quantities for the

i+1 time step, however, are measured in the body coordinate system at the i*-"

time step. It is necessary to transform them to the body coordinate system at
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the i+1 time step in order to make an equilibrium check. The updating is accomp-

lished as follows. First, the increments In the body vectors are determined by

{AW . = l&SHb1} . (24)
J J

where

[A9] = infinitesmal rotational matrix relative to the body coordinate

system at time step i

{b }. = components of unit body vector b_. in the body coordinate system

at time step i

{hb} . = increment in body vector b_. relative to body coordinate system

at time step i.

Next, the body vectors b_ . at time step i+1 are given by

{b i + 1}^ = {b1}.. + {Ab} (25)

where the components {b } . are s t i l l measured relative to the body coordinate

system at time i . The global components of b. at the i+1 time step are

obtained from

{bi+1} = [f^fb1 4 1}.. (26)

where

[T ] = the body to global transformation matrix at the i t t l time step.

The body-to-global transformation matrix at the i+1 time step is now formed from

the body vectors b. as follows: »

[T i+1] = [ { b 1 ^ {b1+1}2 <b1+1}3] (27)
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The numerical procedure used to obtain the unit body vectors 1) is described in

Ref. (1).

Because of the approximations made in arriving at Eq. 19, the predicted dis-

placement, velocity, and acceleration fields will not, in general, satisfy the

dynamic equilibrium equations (i.e., Eqs. 1 and 2). The degree to which the equil-

ibrium equations are not satisfied is determined by comparing the nodal error energy

to the sum of the internal and kinetic energies. Equilibrium is said to be satisfied

when the error energy (Ref. 5) is less than a predetermined fraction of the system

energy, that is

S e r r < Y (EK + E 1) (28)

where E e r r is the error energy, E is the kinetic energy, E is the inter-

nal strain energy, and y is an error criterion. The error energy is determined

in the following way. First, the nodal error forces are computed as the difference

between the right- and left-hand sides of Eq. 15 at the i+1 time step, that is

jJ j j J - [Mj{di+1) (29)

Then the error energy is defined as

E6 r r = Ud}T{Ferr} (30)

I f the error energy exceeds the criterion, Eq. 19 is resolved with y&t {F }

added to {F } . This procedure is repeated until Eq. 28 is satisfied.

C. Deformation Field

When both the strains and variations in rotation within an element are relatively

small, the displacement field within each element can be decomposed, with negligible

error, into two components: rigid body motion, u^ 8 , and deformation, u e :
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ui = uf8 + 4ef

The motion of the corotational coordinate system defines the rigid body mode, while

the deformation displacements are obtained by subtracting the rigid body displace-

ments from the total displacements. The deformation field u." within each element

is approximated by a continuous interpolation function u

u s *def = ^d(N) ( s u n o n N ) ( 3 2 )

(N)where ty is the shape function and d is a measure of the deformation mode of

an element.

For the triangular plate element herein considered, the shape functions are

chosen such that the in-plane displacements, u and u are linear and the
x y

transverse displacement, u , is cubic. The interpolation functions are ex-
z

pressed in matrix aotatIon as

= {iQ {6} (33)

u j 6 f = {.^}T(5} (34)

and

T
u d e f = {^f} {9} (35)

where

{6}T = {<512«23fi31J (36)

and

{e}T = {e e e e e e } (37)

IX ly 2x 2y 3x 3y
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Here the discrete measures of element deformation are the element side elongations,

6TT, and the nodal rotat ions, e T . , re la t ive to the corotational coordinate system.

The membrane shape functions, t ^ j ity }» a s well as the flexural shape function,

{ty } , are described in Appendix B.

D. Strain-Displacement Equations

As shown in Ref. 1, the engineering s t ra ins in each element are related to the

local deformations by

{e} = [Em]{6} - z[Ef]{8} (38)

where

{1}T = { £ £ & } (39)
xx yy xy

The membrane strain-displacement matrix, [E ] , and the flexural strain-displacement

matrix, [E ] , are described in Appendix B.

E. Internal Nodal Loads

The side forces, {f}, and the local monents, {wl, const i tute the local internal

force matrix, f f l n t } , that i s

- in t T * » * * » « .
{f } = { f f f m m m m m m } (40)

12 23 31 1X ly 2X 2y 3X 3y
The side forces in each element, e, are defined as

. T
{& = J [Em] {a} dV (41)

V

where

{ f ] T = {f f f } (42)
12 23 31
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while the local internal moments are defined as

C- f T -
(ml - - J z [E 1 {a}dV

ve

where

{m m m m m m } (45)
lx ly 2X 2y 3X 3 y

V is the volume of element e.

The local internal forces, {f } , are transformed to global coordinates by

{f l n t } = [T]{f lnt} (46)

wnere

T
1 ^ = { f f f m m m f f f m m m f f f }

l x l y l z l x l y l z 2 X 2y 2 Z 2 X 2y 2 Z 3 X 3y 3 2

and the transformation matrix [T], is derived in Appendix A. The global internal

forces are transformed to the mixed global-body coordinate system by

{fint} = [iUf***} (47)

where

T
{ f i n t } = { f f f m m m f f f m m m

lx ly Iz lx ly Iz 2x 2y 2z 2x 2y 2z

f f f m m m }
3x 3y 3z 3x 3y 3z

and the transformation matrix, [T], is also derived in Appendix A. The latter

transformation is necessary because the rotational equations of motion are expressed

in body coordinates.

F. Constitutive Equations

The material property coefficient matrix, [C] relates the element stresses

to the engineering strains as follows:
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(AS)

where [C] may be a function of the stress , strain, or strain rate. The con-

st i tut ive equation is assumed to relate the corotational stress and strain incre-

ments, that i s

(49)

Since both {Aa} and {Ae} are frame indifferent, these relations satisfy the

requirements of frame indifference. [C ] i s defined to be the tangential mater-

ial property coefficient matrix. For an isotropic linear elastic material in a

two-dimensional state of s tress , the coefficient matrix i s given by

1 V 0
[C] [cT]

l - v v 1 0
0 0 l -

(50)

where

E » Young's modulus

v =» Pols son's ratio

For an elast ic-plast ic material, a linear relationship i s developed between in-

finitesmals of stress and strain. Using the Prandtl-Reuss stress-strain relations

along with the Von Mises yield criteria, the incremental relation in matrix form is

given by (Ref. 6) .

{A3} - tCT(o)]{Ae} (51)

where (CT j i s the elast ic-plast ic material property coefficient matrix. For

problems characterized by a two-dimensional state of stress , It i s shown in Ref.

6 that
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tcT] = i -S3

x y
+ 2vPJ s 2 + 2?

S +VS
x yL 1+v xy 1+V xy'2(l+v) 9E

(1-V)CT

where

s ,s ,s = the deviatorlc stress components
x y xy

e , v

(52)

H1

P

Young's modulus and Poisson's ratio, respectively

the equivalent stress

= the slope of the equivalent stress plastic strain curve

9E

-2 -2
s + 2v s s + s
xx xx yy yy

2(l-v )P

G. Stiffness Matrices

The tangential and geometric stiffness matrices are developed in this section.

From Eqs. 41 and 44, it is seen that the increments in element side forces and

internal moments due to stress increments are given by

(53){Af} = / [Em] {Ao}dV

and
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{m} z [Ef] {Aa}dV (54)

Using Eq. 48 to express the stress increments in terms of the strain increments

3nd then expressing the strain increments in terms of the displacement increments

via Eq. 38, the increments in internal forces are given by

{Af ln t} = (AdJ (55)

where the element's local tangential s t i f fnes s , [k ] , i s defined as

[Em] [£TJ[E
m]

-z[E f [CT][E f]

dV (56)

Using the local-to-global transformation, [T], the local element stiffness is

transformed to the global coordinate system- Hence

(57)

Now using the global-to-mixed coordinates transformation, | T ] , the element

s t i f fness i s transformed by

[fc,.] = (T][kTHT]T

The overall structural tangential stiffness matrix, [IC], in the mixed co-

ordinate system is given by

(58)
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N T
[Kj = I [L ] [k_J [L ] (59)

1 n-1 (n) (n) 1 (n)

In order to handle problems with nonlinear geometric behavior, it is nec-

essary to account for the change of geometry on the global equilibrium equation.

This is accomplished by adding a geometric stiffness matrix to the tangential

stiffness matrix. The membrane geometric stiffness matrix for a triangular plate

element is developed in this section.

Martin (Ref. 7) has argued that i t is primarily the axial load at the be-

ginning of the increment that must be accounted for in large displacement prob-

lems. Initial bending moments are of secondary importance. Hence, f~~~ the t r i -

angular plate elements used in this code, only the membrane loads at the beginning

of the increment are taken into account in the geometric stiffness matrix.

Recall that the increment in global nodal forces due to changes in geometry

is given by

{Afint} = [ATl^fS (60)

The transformation matrix, fTlff» *s a function of the translational displace-

ments, u., that is

[T] f f = [T( U l j)] f f (61)

where

u = the displacement of node I in the j t h direction. If we let (T>

denote the i**1 column of [T] f f then

3{T). 3{T} 3{'f}.
d{T}i - 3TuTd{u} " a ^ 7 - 5 ^ d{u} ( 6 2 )
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For small increments we have

{AT}± = [G]±{Au} (63)

and

[GJ [ 3{T)1 3 { T } ± "

1̂7 '"^T
(64)

The [G]. matrices for the triangular plate element are evaluated in Appendix C.

The increment in the transformation matrix is now given by

[AT]T = [G]n{Au} . . . [G] {Au} (65)
ff •*• J

Using Eq. 65, the second term on the right-hand side of Eq. 60 becomes

(66)

which is seen to be equal to

T i 3 i
[ATK,{f } = E f, [G] T {Au}ff J = 1 J J

Defining the element's membrane geometric stiffness, [k ] , at time step i

(67)

fk ] = Z f\ [G]
G J=l J J

and the second term of Eq. 60 becomes

(68)

[AT^f1} = [kG]{Au> (69)

The total structural geometric stiffness matrix, fK
RJ» i n t n e mixed co-

ordinate system is given by

N T
[K ] = I [L ] fit J [L ] (70)

G n-1 G (n) G (n) G (n)
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It should be reemphasized that the geometric stiffness matrix as developed only

pertains to the membrane loads. Hence, the terms in [K,,] relative to the rotational

degrees of freedom are zero.

The total structural stiffness matrix, [K], is equal to the sum of the tan-

gential stiffness matrix and the geometric stiffness matrix, that is

[K] = [KT] + [KG] . (71)
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I I I . SAMPLE RESULTS

The coae predicted response of several s t ructural engineering problems are

presented in this section and compared to ei ther analytical or experimental r e su l t s .

The problems are chosen so that the various aspects of the code are checked.

A. Large Deflection of a Cantilever Plate

The f i r s t example deals with the e las t i c response of a cantilever plate sub-

jected to an end load of sufficient magnitude to cause large displacements. This

problem assesses the code's ab i l i ty to t r ea t s t ructura l problems with a rb i t r a r i l y

large ro ta t ions . The code resul ts are compared to the analytical solution obtained

by Sisshopp and Drucker (Ref. 8 ) . The finite-element mesh along with comparative

resul ts are shown in Fig. 3. Good agreement for both the horizontal and ver t ical

displacements i s achieved.

B. Ncnlinear Behavior of a Simply-Supported Plate and a Clamped Plate

The second problem considered is the nonlinear e l a s t i c response of a square

plate subjected to a uniform l a t e r a l pressure. Two sets of boundary cond.'f "ions are

prescribed: simply supported and clamped a l l around. Unlike the previous problem

in which the nonlinear behavior i s due to large changes in geometry, the non-

l inear i ty here i s due to the large membrane forces generated by the stretching of

the middle surface.

Figure 4 compares the central deflections obtained from the code to the analy-

t i ca l solutions (Refs. 9 and 10) for a square plate under constant l a t e ra l load.

The code predicted deflections agree very closely with the analyt ical for both types

of boundary conditions.

C. Dynamic Elastic Response of a Cantilever Beam

The third problem considered is the dynamic response of an end-loaded can t i -

lever beam. The code resul ts for displacement and velocity are compared to a three-
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term model solution and to the expl ic i t and implicit solutions of STRAW (Ref. 11).

The finite-element model used for STRAW consists of s ix beam-type elements, while the

three-dimensional code uses twelve plate-type elements. The meshes for both codes

are shown in Fig. 5. A comparison of the t ip displacement aud t ip velocity as a

function of time for the various models i s shown in Figs. 6 and 7 , respectively. The

resul ts for the f ini te element models are seen to agree reasonably well with che modal

solution.
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D. Response of a Hexcan to Internal Pressure Pulses

The problem considered here is that of a duct subjected to a triangular pressure

pulse. This problem was first studied by Kennedy (Ref. 13), using the explicit ver-

sion of the STRAW code and subsequently by Schoeberle (Ref. 11), using the implicit

version of STRAW. An axially-symmetric, internal triangular pressure pulse is

assumed to load the hexcan (Fig. 8). Because of geometric and loading symmetries,

a one-quarter strip model (Fig. 9) is used to represent the duct. The finite-element

model consists of 24 triangular elements and 14 nodes.

The material properties of the hexcan are identical to those used in the prev-

iously-mentioned studies. Young's modulus is taken as I! • 23.5 x 106 psl, a yield

stress of o = 57,000 psi, a tangent modulus o£ E = 3.45 x 106 psi, and a density

of 7.35 x 10"" l b - s e ^ / i n A

The first study compares the results previously obtained from the STRAW code

to those obtained with the three-dimensional implicit code. Two finite-element

models were used with the STRAW code. The first model, a fine mesh representation,

was a one-quarter symmetric-segment model which consists of 24 plane-strain beam

elements (Fig. 10), and the second model, a coarse mesh representation, consisted

of six plane-strain beam elements (Fig. 11). I t should be noted that the 3-D model

would correspond to the coarse STRAW model, since the side of each triangular elenent

is the same length as the beam element. The applied load was the short-duration

pressure pulse (Fig. 12A). The normal displacement history of the flat midpoint

and the strain history on the outer surface at the flat midpoint, as predicted by

STRAW, are shown in Figs. 13 and 14; while the results from the 3-D implicit code

are shown in Figs. 15 and 16. The results are seen to agree fairly well. Figures

17 and 18 show the STRAW results for the normal displacement history of the corner

and the strain history of the corner on the inside surface, respectively; Figs. 19

and 20 present the results obtained from the 3-D implicit code. A comparison of the

above corner behavior indicates that there are significant differences between the
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results predicted fay the fine STRAW mesh and those of the coarse meshes (STRAW and

3-D implicit). This is to be expected, since the comer undergoes considerable local-

ized plastic behavior which is better represented by the fine mesh. This comparison

lucidly illustrates the importance of raodtiing technique in obtaining accurate results.

A study using the long-duration pressure pulse (Fig. 12B) was also conducted.

The resulting normal displacement history of the f la t ' s midpoint is shown in Figs.

21 and 22. The lack of oscillatory motion in the 3-D results is due to the larger

time-step used: 50 usec with the 3-D code vs 10 usec with the STRAW code.

The third study compares the results obtained from SADCAT (an explicit code) to

those obtained with the 3-D implicit code. The same finite-element model (Fig. 9)

is used for both codes. The applied load is the long-duration pressure pulse

(Fig. 12B). A 1 psec time-step was used with SADCAT, and a 50 psec time-step was used

with the implicit 3-D code. Figures 22 and 23 show the normal displacement history

of the flat midpoint. Here again, the agreement between the results is acceptable.

As stated previously, the lack of oscillatory motion in the implicit results is due

to the larger time-step used.

The above-studies were performed primarily to compare the results between the

three codes: STRAW, SADCAT, and the 3-D implicit. By doing this, the newly-developed

3-D implicit code can be validated.
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IV. SUMMARY

A fini te-element procedure i s formulated for the purpose of evaluat ing the

i n t e g r i t y of th in s t r u c t u r a l components found in LMFBRs. The method ia based upon

the s t i f fnes s approach of s t r u c t u r a l mechanics and uses a diagonal mass matr ix. The

d i sc re t i zed equations of motion are In tegra ted in time by an impl i c i t in tegra t ion

algorithm. Tbe code produces a s tep-by-s tep evolut ive analys is for e i t h e r long-

durat ion dynamic, or s t a t i c problems. The code can handle problems involving both

nonl inear mater ia l and nonl inear geometric behavior . Present ly the code i s r e s t r i c t e d

as follows:

1. the structure must be thin ( i . e . , plate or shell types)

2. the external loading must be mechanical

3. although large displacements can be treated, the strains must be small.

Future developments with the code will eliaiinate the above limitations.

Several representative problems have been solved with the code for validative

purposes. Comparison of code results with existing solutions shows good agreement.
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APPENDIX A

TRANSFORMATION MATRICES

1. Coordinate Transformation Matrices

Vector components are transformed from one coordinate system to another

by applying the appropriate coordinate transformation. The relation between

body components and global components of an arbitrary vector, v_ , is given

by (Ref. 1)

blx

biy

blz

b2x

b2y

b2z

b3x"

b3y

b3z

< (Al)

where b . is the j-th component of the I-th unit body vector as shown in

Fig. 1. Similarly, the relation between the corotational components of a

vector, \̂  , and the global components of that vector is given by

elx e2x e3x

ely e2y e3y

e, e,. e olz <iz 3z

(A2)

where e_, is the j-th component of the I-th unit corotational vector (Fig. 1),

2. Local Internal Force to Global Internal Force Transformation Matrix

The transformation matrix which relates the local internal force matrix,

{f } , to the global internal force matrix,{f 7 , is developed in this

section. In Ref. 1 the relationships between the global nodal loads and the

elements side forces and moments are given by
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and

I x

i y

i z

I z

2z

3z

IJ

1_
2A

XIJ + U U x

yIJ + uUy

ZU + uUz

X23 y23

IK

XIK + UIKx

ZIK

+ f
Iz \

"3x

"3y

"3z>

(A3)

m. + m_ + m_
T.x 2x 3x

a. + m,, + moly 2y 3y

(A4)

where

"IJ XI " x' e t c

f = the force along side IJ of the element

AJJ = the current length of side IJ

A = the element area

The local moments at a generic node I are transformed to the global system

by the transformation defined by Eq. A2, that is

Combining Eqs. A3, A4, and A5 for the three nodes of an element into a single

matrix equation we obtain

{ f 1 " } = [T]{f ln t} (A6)
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f l y f l Z
 f 2x f 2y f2z f 3x f3y f 3z

m ly "lz ro2x m2y m 2 2
 m3x m3y

{- int }T
l x n. ml -2y "3y

(A7)

(A8)

and

[0] [Tl

<A9)

and the submatrices i i A9 are

[T] = the transformation matrix r e l a t i n g the element s ide forces

to the global nodal forces

[T] =• the transformation matrix re la t ing the nodal moments In therm

loca l coordinate system to the nodal moments in the global

system

[TJ = the transformation matrix r e l a t i n g the nodal moments in the
mm

loca l system to the nodal moments in the global system.

Using re la t ions A3, A4, and A5 the submatrices are given as follows
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l/£12(y12-H.12y)

0

0

0

l/l31(x31+u3lx>

1/£31(y31+u31y)

1 / e31 ( 231 + U31z ) (AlO)
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[T]
mm

3

IX

s i y

e l z

0

0

0

0

0

0

e 2 x

e 2 y

e 2 z

0

0

0

0

0

0

e 3 x

p

3y

G.
3Z

0

0

0

0

0

0

0

0

0

e l x

e i y

e l z

0

0

0

0

0

0

e?-x

e 2 y

e 2 z

0

0

0

0

0

0

e 3 x

p

3y

p

3Z

0

0

0

0

0

0

0

0

0

e l x

e i y

e u

0

0

0

0

0

0

6 2 X

e
2 y

6 2 Z

0

0

0

0

0

0

e 3 x

S y

e
3 z

(A12)
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3. Global Coordinates to Mixed Coordinates Transformation Matrix

Since the transnational equations of motion are written in the global

coordinate system and the Euler equations are written in the body coordinate

system, it is necessary to transform Che moments and the correspond-

ing terms in the stiffness matrices into the body coordinate system.

The following transformation matrix, designated as [T], is developed for

this purpose.

Using the coordinate transformation, [f], the global moments at a node

are transformed to the body coordinate system at that node by

{m} . = [Tl {m} . (A13)

i i i

where the subscript i indicates the node number. Using equation A13 i t

i s seen that the global nodal moments are transformed to the body coordinate

system by

{m} = {T*]{m} (A14)

where

ra}1{ra} [m l x m m l z m ^ m 5 (A15)

(A16)

and

[T*] =

[0] [0]

to] to]

[0] [0]

(A17)

Forming the global to mixed coordinate system transformation, [T], as

"[I] t0]

[T ] [0] [T*]3 (A18)
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where [I] is the identity matrix, it is seen that the global internal

force matrix is transformed to the mixed system by

(flntt - fT]{flnt) (A19)
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APPENDiX B

SHAPE FUNCTIONS AND STRAIN-DISJ'LACEMENT MATRICES

1. Membrane Strain-Displacement Matrix

The strain-displacement matrix, [E ] , which r e l a t e s the engineering

s t r a i n s to the s ide e longat ions of the tr iangular plane element were formu-

la ted by Marchertas and Belytschko (Ref. 1 ) . Their f ina l re su l t s are

{<•} = lEm}{6) (Bl)

where

CB2)

2. Flexural Shape Functions and Strain-Displacement Matrix

Using the cuuic deflection function given by Zienkiewicz (Ref.12) the
f

following shape functions, * . , are obtained by Marchertas and Belytschko

(Ref. 1)

-b,(CiCi+0.5C,Wj).

-b2(CfCi+0.5C,C2C3).

(B3)
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whe re

C , £ , , and 5, » triangular coordinates

a. and b, • lengths defined in Fig. 2

The flexural strain-displacement matrix Is defined as

[EfJ (B4)

Since a numerical integration scheme is used la evaluating the integral con-

taining [E ] in Eq. 56), it is necessary only to evaluate [E ] at the

three integration points (points 4-6 shown in Fig. 2). As shown in Ref. 1

these expressions are
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1. For point 4 (£, = 0, C2 = 0.5, C3 = °-5) :

o2cpf/dx2 = 0.5b,(b3
2-b|)/(2A)2

= 0.5bf(a2 -a3)/(2A)2

= b![0.5b2(3b3-b2) + b|]/(2A)2

a2cp{/ax2 = [0.5bJ(a,-a3) - b2( a ib2+4A)]/(2A)2

a 2 4 / a x 2 = b,[0.5b3(b3-3b2) - b|]/(2A)2

= [0.5bf(a2-a,) +b 3 ( a i b 3 -4A)] / (2A) 2

= 0.5a2(b2 -b3)/(2A)2

= 0.5a,(af -a z) / (2A)2

= [0.5af(b, -b3) - a2(a2bj -4A)]/(2A)Z

= a i [0 .5a 2 (3a 3 - a 2 ) + af ]/(2A)2

32(p|/ay
2 = [0.5af(b2-b!) + a3(a3b!+4A)]/(2A)2

= aj0.5a 3(a 3 -3a 2 ) -

= 0.5a,b1(b2-b3)/(2A)2

- 0.5a1b1(a2-a3)/(2A)2

b | + 0.5b!b2)/(2A)2

af + 0.5 a ia2)/(2A)2

= a i ( b f - b f -0.5b,b3)/(2A)2

(B'5)
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2. For point 5 (£, = 0.5, d = 0, C3 = 0.5):

b2[0.Sbi(b - 3b3) - b3

[0.5bi(a3 -a2) + b,(a2b, -4A)]/(2A)2

0.5b2(b2-b2
3)/(2A)2

0.5b|(a3- a i)/(2A)2

bz[0.5bj(3b,-b,) +b2]/(2A)2

[0.5b^(a2 - a i ) - b3(azb3+4A)]/(2A)2

[0.5at(b3 -b8) + a!(aib2 +4A)]/(2A)2

a z[0.5a,(a l-3a J) - a|]/(2A)J

0.5a|(b3 -bi)/(2A)2

0.5az(af -af)/(2A)2 .

[0.5af(b2-b,) - a3(a3b2--

a2[0.5aj(3a, -a3) + af]/(2A)2

ajCbf - b | - 0.5bjbz)/(2A)2

" " 2b2(a2 - a ^ - 0 .

0.5a2b2(b3 -b1)/(i;A)2

0.5a2b2(a3-a,)/(2A)2

az(bf -bf+ 0.5b2b3)/{2A)2

b2(a| -af + 0.5a2a3)/(2A)2

(B6)



-37-

3. For point 6 (C, = 0.5, Ci = 0.5, £3 = 0):

= b3[0.5b,(3b2 - b,) + bf]/{2A)2

x2 = [0.5bf(a3-a2) -

= b3t0.5b2(b2-3b,) -

ix2 = [0.5bf(ai -a3)

x2 = 0.5b3(bl-bf)/(2A)2

x2 = 0.5b2(a, -az)/(2A)2

y2 = [0.5af(b3-b2) - a ^ a j

y2 = a3[0.5a,(3a2-a,) + a |

= [0.5af(bi-b3) +a2(a2l

2 = a3[0.5a2(a2 - 3aj> - af

y2 = 0.5af(b,-b2)/(2A)2

= 0.5a3(a|-a2)/(2A)2

= a^bf-bf+O.SbjbjJ/UA)2

y = bs(af-af + 0.5aia3)/(2A)2

= aj(b|-bf-0.5b2bj)/(2A)2

! +4A)]/(2A)2

- 4A)]/(2A)2

-4A)]/(2A}2

tZA)2

+4A)]/(2A)2

xay = b3(a|-a2-0.5a2a3)/(2A)2

xdy = 0.5a3bj(b, -b2)/(2A)2

= O.BajbjCa, -a2)/(2A)2

(B7)
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APPENDIX C

EVALUATION OF [G] MATRICES

The [G] matrices as formulated in the text are defined a8
1 am. am,

^ 1 (cl)i teisr
Ix 3z

T
where {lj . is the i-th column of the [T] f f matrix. Using the side force

to global nodal force transformation matrix, [T],, (as given in Appendix A),

the following expressions are obtained for the [G] matrices.
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