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ABSTRACT

This report describes the formulation of a finite-element procedure for the

implicit transient and static analysis of plate/shell type structures in three-

dimensional space. The triangular plate/shell element can sustain both membrane

and bending stresses. Both geometric and material nonlinearities can be treated,

and an elastic~plastic material law has been incorporated. The formulation permits
the element to undergo arbitrarily large rotations and traaslations; bu%z, in its
present form it is restricted to small strains.

The discretized equations of motion are obtained by a stiffness wathod. An

implicit integration algorithm based on tr<pezoidal integration formulas is used

to integrate the discretized equations of motion in time. To insure numerical

stability, an i{terative solution procedure with equilibrium checks i{s used.



I. INTRODUCTION

In assessing the safety of liquid-metal fast breeder reactors (LMFBRs),
numarical structural analyvais codes are needed for a large variety of time scales
and geometries. In constructing models to represent realistic accident situations,
it 13 imperative that the programs be capable of handling problems in three-
dimensional space. A previously developed code called SADCAT (Raf. 1) partially
fulfilled the above objectives, but was limited to relatively short time scales
because of its explicit temporal integration. The present code is developed to
angment SADCAT by adding implicit integration with long time capabilities so that
rogether the two codes have the capability to treat the large varfety of time
scales which are found in LMFBR structural safety evaluations.

As mentioned before, the existing SADCAT code uses an explicit integration
scheme which inherently necessftates the use of a small time step to maintain
aumerical stability. The use of a small time step rastricts its application to
loadings of relatively short duration and thus precludes the economic solution of
long duration loadings and static problems.

The program described herein 1s based on an implicit-integration procedure
and is developed to handle both long-duration dynamic problems and static problems.
The method is formulated using corotational coordinate systems. The corotational
coordinates facilitate the formulation of element related quantities. Argyris et
al (Ref. 2) utilized corotational coordfnates in static problems. The angular
equations of motion are formulated in body coordinates which permit arbitrarily
large rotations. The tranclational equations of motion are formulated in the
global coordinate system.

The program has the same triangular plate/shell element as SADCAT; hence,
the code is applicable to thin structures. The element is capable of sustaining

both membrane and bending loads. 1In its present formulation, the element is able



to undergo arbitrarily iarge rotations and translations, but it 1s restricted to

small strains. An elastic and elastic-plastic stress strain law with isotropic

linear hardening and a Mises yleld condition is included in the program, and
other material laws can easily be added.
Because the code was developed to handle problems characterized by both geo-

metric and material nonlinearities, an iterative-incremental solution procedure

withh equilibrium checks based on an energy balance is used. The code has the

ability to internally adjust the time step or, In the case of static problems, the

load increment when an equilibrium configuration cannot be attained.
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1I. DEVELOPMENT OF THE AMNALYSIS

A. Coordinate Systems

The discretization of the continuous structure in space is accomplished by
a finite element method. The structure is subdivided into a finite number of dis-
crete triangular elements which can sustain both bending and membrane loads. This
element fs also used In the argonne developed code SADCAT (Ref. 1).

For ease of formulation and solution three coordinate systems are used: co-
rotational coordinates, body coordinates, and global coordinates. A unique set of
corotational coordinates is associated with each triangular element. The use of
these coordinates greatly simplifies the formulation of the deformation displace-
ments, strain-displacement equations, and the stress-strain relationship. The co-
rotation coordinate system has its origin at node 1 of each triangular element
with the x and } axes lying in the plane formed by nodes 1, 2, and 3 (Fig. 1). The
;—axis bisects the angle a. A hat, ~, above a quantity is herein used to indi-
cate that the quantity is referred to the corotational coordinate system.

For the purpose of treating motion in which the nodal rotations are arbitrarily
large, a set of unit vectors fixed to each node 1s used to describe its orientation.
Tk2 unit vectors gl, 92, and 93 of each node coincide with the principal axes
of the mass moments of iner :ia and define the orientation of the body coordinate
system (X,¥,z), as shown in Fig. 1. A bar, -, above a quantity, indicates that it
is referred to the body coordinate system. A global coordinate system (x,y,z) is
fixed in space.

In the computation, it is necessary to traasform quantities measured in one
system into complementary quantities measured in another. To accomplish this,

several coordinate transformation matrices are developed in Appendix A.



B. Equations of Motion

The translational equations of motion are

- ext int
Mygyy = £y - )

whare

MJ = mass of node J
ugy < linear displacement of node J in the 1th direction
fj;t,fizt = 1internal and extevnal forces, respectively, at node J in

the 1th direcrion.

The rotational equations, which are identical to the Euler equations, based upon
an isotropic Iinertia tensor, are expressed in the mwmving body-roordinate system

in the form

T - - =ext_ ~int - -~ -
T5i1851 myy T My Fugepe Thyy 7 Ingd )
where
ITii = mass moment of inertia of node J in the ith body coordinate
directicn (a principal moment of inertia)
~int -
mJ: , mj?t = internal and external moments, respectively, at node J
GJi = 1th component of the angular velocity of node J measured in
body coordinates
511 = ith component of the angular acceleration of node J measured

in body coordinates

i,j,k = X,¥,z or any cyclic permutation
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Because the code 1is being developed for the purpose of analyzing reactor
components,such as hexcans which exhibit nonlinear material and/or geometric be-
havior under extreme loads, it is necessary to use an incremental form for the in-
ternal forces. The incremental expression for nodal internal forces are obtained
as follows. Using the local~to-global transformation matrix, [T], the internal

nodal forces for a generic element are given by
(1Y = rEny : 3

The increments in intemnal force for a generic element are obtained by sub-

tracting Eq. 3 at time 1 from 3 at time i+l to give

int, _ int, _ int,
e = qr  WETY - (™ : (4)

Expressing the quantities at time 1i+1 in terms of the quantities at time 1,

we obtain
(T, q) = [T+ [iT) 5
and
int, _ int int .
(fi+1} = (fi }o+ {af 7} (6)

Substituting Eqs. 5 and é into 4 and neglecting terms quadratic in increments

we have, for an element,
int _
a1 = [Ti](Af} + [AT]{fi} ¢))

These two terms are well known in structural analysis and correspond to the linear

tangential stiffness [KTJ and "initial stress" or geometric stiffness [KG].

respectively.

Using the latter nomenclature, we may write



int R
{af ") = {KT]uﬂd} + [KG]{Ad}

The increment in internal forces expressed in the mixed coordinate system is

obtained from

e < 71ty

The total increment in the global internal-force matrix is obtained by summing

the contributions of ail the elements, that is

N T -~

~int
} n£1 {L](n){Af

(AF int}

(n)

where [L}(n) is a Boolean coanectivity matrix (Oden, Ref. 3) and N is the

total number of elements. Similarly, the total nodal internal force at the
1th step is glven by

~ N ~
int, _ T int
{Fi b= nil [L](n) {fi }(n)

The total internal nodal force at the i+l step is now equal to

-~

nt, o (oF

“int _
{F1+1} = {Fi

4
in
©)
Writing the equation of motion (Eq. 1) at time step i+l, we obtain

-4 . .
nt int} - {Fext}

[Ml{d”l} + {Fi } + {aF 141

When the stress-strain law 1s linearized about the state of stress at the

ith rime step, a linear equation for {ad} may be obtained
("% 2 k1D
where

Kl = [Rp) + [

(8)

(9)

(10)

(11

(12)

(13)

14)
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[KT] = global tangential stiffness matrix

geometric stiffness matrix

L}

(K]

In view of the above approximations, the equation of motion becomes

e LA xt, ~int

Ma, ) + [Kl{ad} = F‘iﬂ - (5" (15)

In order to develop an implicit algorithm it is necessary to express the
kinematic quantities at the time step i+l in terms of those at the ith step.
To accomplish this, the trapezoidal integration formulas (Ref. &) are used.
They are

- - ; 1 2 .

= 1 -

{di+1} {di, + AL{di} + e [{di} + {diﬂl (16)
and

4,0 = (3} + ({d} + {4 b an

where At 1is the time step. This corresponds to a linear velocity and constant

acceleration during the time interval. Using (16) and (17), the equations of

motion become

[{fﬂ + Aczstil] (0 = [MlAefa} + %—Atz tap
(18)
1 ext ~int
L S Gt SR i B

The above equation is compacted by denoting the coefficient of {Ad} as

~off {‘F'.eff} ;

K ] and letting the right-hand side be thus, we have

&0 - = (19)



At this point 1t 1s worthwhile to note that the implicit transient program
may also be used for static analysis. The matrix form of the static incremental

equation of equilibrium is

D -$ . int
[K]{ad} = (F1+1} - {Fi } (20)

where the subscript now refers to the load step. Thus, it is 3een that for a

static problem we define the following matrices

eff, ~ext _ “int
{F ;= {F1+l} {Fi }

and solve Eq. (22) for the displacement increments. Equilibrium is checked by
the equations of motica with the accelerations set equal to zero.

The computational procedure for each time step 1s described here. To begin,
Eq. 13 is solved to give an estimate of the displacement increments from time step
i to time step 1i+l. A Cholesky decomposition algorithm 1s used. The estimate of
the new displacements is obtained by adding the displacement increments to the

total displacement at the 1th step, that is

{a, ) = fab + {ad (22)

By rearranging Eq. 16, the new accelerations are found to be

. . 2

- 4 p - At” 5
{d, .} = —5 [{ad} -~ acld,} -~ —H4.}]} (25)
ael 1 451

1+1

The new velocities are obtained from Equation 17. The tramslational displace-
ments, velocities, and accelerations obtained above for the 1+1 time step are
measured in the fixed global coordinate system. The angular quantities for the
i+l time step, however, are measured in the body coordinate system at the ith

time step. It is necessary to transform them to the body coordinate system at




the i+]1 time step in order to make an equilibrium check. The updating is accomp-

iished as follows. First, the increments in the body vectors are determined by

{ab}, = [AB]{(DT, (24)
3 J
where
[48] = infinitesmal rotational matrix relative to the body coordinate
system at time step 1
=1
{» % = components of unit body vector Ej in the body coordinate system
at time step i
{Ag}j = increment in body vector Ej relative to body coordinate system
at time step 1.
Next, the body vectors Eii at time step i+l are given by
—1+1 ~i, ~
{b 5 = {b}, + {4ab} 25
3 J 3 (23)

~i4
where the components {bl l}j are still measured relative to the body coordinate

system at time 1. The global components of Ej at the i+l time step are
obtained from

i+l

) - [T pity 26)
{ }j [T 1{b J (26)

where

i
[T 1 = the body to global transformation matrix at the ith time step.

The body-to-global transformation matrix at the i+l time stap is now formed from

the body vectors b +1 as follows: v

—1+1
T = et o™, oith ) n
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1+1

The numerical procedure used to obtain the unit body vectors yj is described in

Ref. (1).

Because of the approximations made in arriving at Eq. 19, the predicted dis-
placement, velocity, and acceleration fields will not, in general, satisfy the
dynamic equilibrium equaticns (i.e., Eqs. 1 and 2). The degree to which the equil-
ibrium equations are not satisfied is determined by comparing the nodal error energy

to the sum of the intemmal and kinetic energies. Equilibrium is said to be catisfied

when the error energy (Ref. 5) 1s less trhan a predetermined fraction of the system
energy, that is

geTT .y (EK < EI) (28)

I
where E®™T is the error energy, EK 1s the kinetic energy, E is the inter-
nal strain energy, and vy is an error criterion. The error energy is determined
in the following way. First, the nodal error forces are computed as the difference

between the right- and left-hand sides of Eq. 15 at the 1+l time step, that 1is

cerr, Text Zin -
= - - 2
(7T - (T - (RSP - [MMd ) (29)
Then the error energy is defined as
T = (ad T{F°TT (30)
. . 1l,. .2, err
If the error energy exceeds the criterion, Eq. 19 is resolved with ZAt {F 71

added to {FEff}. This procedure is repeated until Eq. 28 is satisfied.

C. Deformation Field

When both the strains and variations i1n rotation within an element are relatively

small, the displacement field within each element can be decomposed, with negligible

error, into two components: rigid body motion, uzig’ and deformation, ufEf:
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£
u = uIig + uge‘ (31)

The motion of the corotational coordinate system deflnes the rigld body mode, while

the deformation displacements are obtained by subtracting the rigid body displace-

ments from the total displacements. The deformation field uief within each elewment

*def
is approximated by a continuous interpclation function uget

def _ *def _ N)
uy oy = de

(sum on N) (32)

where wN 1s the shape function and d(N) 1s a measure of the deformation mede of

an element.

For the triangular plate element herein considered, the shape functions are

chosen such that the in-plane displacements, G:ef and G;ef are linear and the

de
transverse displacement, u, f, is cubic. The interpolation functions are ex—
pressed in matrix notation as

T

~def _ o
u = {wx} {6} (33)
T
~def m
= A 4
ug {Ly} {5} (34)
and
T .
R A IR (35)
where
T
{637 = {8;,85465,} (36)
and
AT ~ ~ -~ ~ -~ ~
{6}° = {6 & &4 @€ 6 8 } 30

1x ly 2x 2y 3x 3y
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Here the discrete measures of element deformation are the element side elongations,
SIJ’ and the nodal rcotations, éIi’ relative to the corotational coordinate system.
The membrane shape functions, {¢:? {w;}, as well as the flexural shape function,

{w:}, are described in Appendix B.

D. Strain~Displacement Equations

As shown in Ref. 1, the engineering strains in each element are related to the

local deformations by

ey = [E%Her - zIES)BH (38)
where
aA T A A A
{e}° = {e_e 2} (39)
xx yy° xy

The membrane strain-displacement matrix, [Em], and the flexural strain-displacement

matrix, [Ef], are described in Appendix B.

E. Internal Nodal Loads

The side forces, {f}, and the local moments, {Eﬂ, constitute the local internal

force matrix, fflnt}, that is

e L A A A N N U (40)
12 23 31 1x ly 2x Zy 3x 3y

The side forces in each element, e, are defined as

T,
= J M@ av 1)
ve
where
T
{1} = {f £ £ } (42)
12 23 31
T = axxayyaxy} _ (43)
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while the local internal moments are defined as

" % T .
W = - J2ef] (orav (44)
v e
e
where
T -~ ~ ~ -~ ~ -~
{m = m m m m m m} (45)

1x ly 2x 2y 3x 3y

Ve is the volume of element e.

The local internal forces, {%int}’ are transformed to global coordinates by

(£ < ety (46)
where

ey’ L s £ £ f £}

f m m m £ f m m m
1x ly 1z 1lx ly 1z 2x Zy 2z 2x 2y 2z 8x 3y 3z

and the transformation matrix ([T], is derived in Appendix A. The global internal

forces are transformed to the mixed global-body coordinate system by

-.i -
(Y = [T 7)
where
- T p— — -—
{fint} = (£ £ £f m m m f £ f m m m
IXx 1y lz 1x 1y 1z 2x 2y 2z 2x 2y 2z

f £ £ m wmw m }
3x 3y 3z 3x 3y 3z
and the transformation matrix, [T], 1is also derived in Appendix A. The latter

transformation is necessary because the rotational equations of motion are expressed

in body coordinates.

F. Constitutive Equations

The material property coefficient matrix, [C] relates the element stresses

to the engineering strains as follows:
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{o} = [Clie} (48)

where [C] may be a function of the stress, strain, or strain rate. The con-

stitutive equation is assumed to relate the corotational stress and strain incre-

ments, that is
(a0} = [Cplise) (49)

Since both {Ac} and {Ae} are frame indifferent, these relations satisfy the
requirements of frame indifference. {&T] is defined to be the tangential mater~
ial property coefficient matrix. For an isotropic linear elastic material im a

two-dimensional state of stress, the coefficient matrix is given by

R . E 1 v 0
(€ = &1 = =5, 1 o (50)
0 0 1l-y
2
where
E = Young's modulus
V = Ppoigson's ratio .

For an elastic-plastic material, a linear relationship is developed between in-
finitesmals of stress and strain. Using the Prandtl-Reuss stress-strain relations

along with the Von Mises yield criteria, the incremental relation in matrix form is

given by (Ref. 6).
{ag} = [6T(8)1us£} (51)

where [CT ] is the elastic-plastic material property coefficient matrix. For
problems characterized by a two-dimensional state of stress, it is shown in Ref.

6 that



where

sx,sy,sxy

e,v

. -
2
+ 2P ) s
t y m.
TTTTTTTTTTTT T
. L A2 1
- s s + 2vP's + 2P |
X t X '
! i
- A ! !
+ + J
e M s T emer
1+v xy i 1+v xy:2(1+v) 9E A
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the deviatoric stress components
Young's modulus and Poisson's ratio, respectively
the equivalent stress

the slope of the equivalent stress plastic strain curve

2H' -2 cxz

9% ° * In

~2 ~ ~ ~2
s + 2vs s + s
x= XX yy

R + 2(1-v2)P

G. stiffness Matrices

(52)

The tangential and geometric stiffness matrices are developed in this section.

From Eqs. 41 and 44, it is seen that the increments in element side forces and

internal moments due to stress increments are given by

T .
{af} = f[E"'] {Ag}dV
v e

e

and

(53)
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) . LT
m o= - J 2" ey

v
e

(54

Using Eq. 48 to express the stress increments in terms of the strain increments

and then expressing the strain increments in terms of the displacement increments

via Eq. 38, the increments in internal forces are given ty

(wi'™h - [k (ad) (55)
where the element’s local tangential stiffness, [kT], is defined as
T | T, ]
[E"] [c )(E™ - 205" [ NE'}
[kpl = f v, (56)
v
e
A T. N T
~2(e"] 16 11E™) 22 [E7] (e lIE"]
L d

Using the local-to-global transformation, ({T], the local element stiffness is

transformed to the global coordinate system. Hence

- T
= (57)
lkpd = [TI[k;1LT] (53
Now using the global-to-mixed coordinates transformation, [T}, the element
stiffness is transformed by
(58)

(e ] = (1 dTT

The overall structural tangential stiffness matrix, [KT], in the mixed co-~

ordinate system is given by
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N T -

K] =z [t [k  I[L)
“r nel T (n) T @ T (o)

(59)

In order to handle problems with nonlinear geometric behavior, it 1s nec-
essary to account for the change of geometry on the global equilibrium equatlion.
This is accomplished by adding a geometric stiffness matrix to the tangential
stiffness matrix. The membrane geometric stiffness matrix for a triangular plate
element is developed in this section.

Martin (Ref. 7) has argued that 1t is primarily the axial load at the be-
ginning of the increment that must be accounted for in large displacement prob-

lems. Initial bending moments are of secondary importance. Hence, f-— the tri-

angular plate elements used in this code, only the membrane loads at the beginning
of the increment are taken into account in the geometric stiffness matrix.
Recall that the increment in global nodal forces due to changes in geometry

is given by

{aglnt < [AT]Ef{fi} (60)

The transformation matrix, [T]ff, is a function of the translational dispiace-

ments, ui, that is

[Tl = [Tapy)lg, (61)
where
upy = the displacement of node I in the jth direction. If we let {T}i
denote the ith column of [T]'frf then
a{'r}i 3(T}1 a(’r}i
d(T}i = 3 a d{ul = ™ “**3u d{u} (62)

1x 3z
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For small increments we have

{AT}i = [G]i{Au} (63)
and
a{T} {1}
61, = | go= .ot (64)
1x 3z

The [G]i matrices for the triangular plate element are evaluated in Appendix C.
The increment in the transformation matrix is now given by
T
(aT]” = [G] {au} ... [G] {8u} (65)
1 3
ff
Using Eq. 65, the second term on the right-hand side of Eq. 60 becomes

TIEAEY = (O] euas + [6l,(auey + (610065 (66)

which 1s seen to be equal to

(1) (€1 =J§1 £lrel, taw (67)
Defining the element's membrane geometric stiffness, [kG], at time step i
as
) = ¢ 6 e (68)
G J=1 J J
and the second term of Eq. 60 becomes
Tt (Y = [k ] (69)
ff G
The total structural geometric stiffness matrix, [iG], in the mixed co-
ordinate system 1is given by
. N T
(K] = I [l [kgl L] (70)

n=1 (n) {n) (n)
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It should be reemphasized that the geometric stiffness matrix as developed only

pertains to the membrane loads. Hence, the terms in [KG] relative to the rotational
degrees of freedom are zero.
The total structural stiffness matrix, [K], 18 equal to the sum of the tan-

gentlal stiffness matrix and the geometric stiffness matrix, that 1s

K] = (K] + [K;] (o
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III. SAMPLE RESULTS
The coae predicted recponse of several structural engineering problems are
presented in this section and compared to either aralytical or experimental results.

The problems are chosen so that the various aspects of the code are checked.

A. Large Deflection of a Cantilever Plate

The first example deals with the elastic response of a cantilever plate sub-
jected to an end load of sufficient magnitude to cause large displacements. This
problem assesses the code's ability to treat structural problems with arbitrarily
large rotations. The code results are compared to the analytical solution obtained

by Bisshopp and Drucker (Ref. 8). The finite-element mesh along with comparative

results are shown in Fig. 3. Good agreement for both the horizontal and vertical
displacements is achieved.

B. Ncalinear Behavior of a Simply~Supported Plate and a Clamped Plate

The second problem considered is the nonlinear elastic response of a square
plate subjected to a uniform lateral pressure. Two sets of boundary condi-ions are
prescribed: simply supported and clamped all around. Unlike the previous problem
in which the nonlinear behavior is due to large changes in geometry, the non~

linearity here is due to the large membrane forces genzrated by the stretching of

the middle surface.

Figure 4 compares the central deflections obtalned from the code to the analy-
tical solutions (Refs. 9 and 10) for a square plate under constant lateral load.
The code predicted deflections agree very closely with the analytical for both types

of boundary couaditionms.

C. Dynamic Elastic Response of a Cantilever Beam

The third problem considered is the dynamic response of an end-loaded canti-

iever beam. The code results for displacement and velocity are compared to a three-
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term model solution and to the explicit and implicit solutions of STRAW (Ref. 11).

The finite-element model used for STRAW consists of six beam-type elements, while the

three-dimensional code uses twelve plate-type elements. The meshes for both codes

are shown in Fig. 5. A comparison of the tip displacement and tip wvelocity as a

function of time for the various models is shown in Figs. 6 and 7, respectively. The

results for the finite element models are seen to agree reasonably well with che modal

golution.
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D. Response of a Hexcan to Internal Pressure Pulses

The problem considerad here is that of a duct subjected to a triangular pressure
pulge. This problem was firat studied by Kennedy (Ref. 13), using the explicit ver-
sion of the STRAW code and subsequently by Schoeberle (Ref. 11), using the implicit
version of STRAW. An axlally-symmetric, internal triangular pressure pulse 1s
assumed to load the hexcan (Fig. 8). Because of geometric and loading symmetries,

a one-quarter strip model (Fig. 9) is used to represent the duct. The finite-element
model consists of 24 triangular elements and 14 nodes.

The material properties of the hexcan are identical to those used in the prev-
E = 23.5 x 10° psi, a yleld

iously~-mentioned studies. Young's modulue 1s taken as
stress of Oy = 57,000 psi, a tangent modulus of ET = 3,45 x 10° psi, and a density
of 7.35 x 107" lb-sec?/in.".

The first study compares the results previously obtained from the STRAW code
to those obtained with the three-dimensional implicit code. Two finite-element
models were used with the STRAW code. The first model, a fine mesh representation,
was a one-quarter symmetric-segment model which consists of 24 plame-strain beam
elements (Fig. 10), and the second model, a coarse mesh representation, comsisted
of six plane~strain beam elements (Fig. 11). It should be noted that the 3-D model
would correspond to the coarse STRAW model, since the side of each triangular element
is the same length as the beam element. The applied load was the short-~duration
pressure pulse (Fig. 12A). The normal displacement history of the flat midpoint
and the strain history on the outer surface at the flat midpoint, as predicted by
STRAW, are shown in Figs. 13 and 14; while the results from the 3-D implicit code
are shown in Figs., 15 and 16. The results are seen to agree fairly well. Figures
17 and 18 show the STRAW results for the normal displacement history of the corner
and the straln history of the corner on the inside surface, respectively; Figs. 19

and 20 present the results obtained from the 3-D implicit code. A comparison of the

above corner behavior indicates that there are significant differences between the
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results predicted by the fine STRAW mesh and those of the coarse meshes (STRAW and
3-D implicit). This is to be expected, since the corner undergoes considerable local-
ized plastic behavior which is better represented by the fine mesh. This comparison
lucidly 1llustrates the importance of mod..iing technique in obtalning accurate results.

A study using the long-duration pressure pulse (Fig. 12B) was also conducted.
The resulcing normal displacement history of the flat's midpoint 1s shown in Figs.
21 and 22. The lack of oscillatory motion in the 3-D results is due to the larger
time-step used: 50 psec with the 3-D code vs 10 psec with the STRAW code.

The third study compares the results obtaimed from SADCAT (an explicit code) tc
those obtained with the 3-D implicit code. The same finite-element model (Fig. 9)
is used for both codes. The applied load is the long-duration pressure pulse
(Fig. 12B). A 1 psec time-step was used with SADCAT, and a 50 psec time-step was used
with the implicit 3-D code. Figures 22 and 23 show the normal displacement history
of the flat midpoint. Here again, the agreement between the results is acceptable.
As stated previously, the lack of oscillatory motion in the implicit results is due
to the larger time-step used.

The above-studies were performed primarily to compare the results between the

three codes: STRAW, SADCAT, and the 3-D implicit. By doing this, the newly-developed

3-D implicit code can be validated.
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IV. SUMMARY

A finite-element procedure is formulated for the purpose of evaluating the
integrity of thin structural components found in LMFBRs. The method is based upon

the stiffness approach of structural mechanics and uses a diagonal mass matrix. The

discretized equations of motion are integrated in time by an implicit Integration

algorithm. Tbe code produces a step-by-step evolutive analysis for either long-~

duration dynamic, or static problems. The code can handle problems involving both

nonlinear material and nonlinear geometric behavior. Presently the code is restricted

as follows:

1. the structure must be thin (i.e., plate or shell types)

2, the external loading must be mechanical

3. although large displacements can be treated, the strains must be small.

Future developments with the code will eliwinate the above limitations.

Several representative problems have been solved with the code for validative

purposes. Comparison of code results with existing solutlons shows good agreement.
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APPENDIX A

TRANS FORMATION MATRICES

1. Coordinate Transformation Matrices

Vector components are transformed from one coordinate system to another
by applying the appropriate coordinate transformation. The relation between

body components and global components of an arbitrary vector, v , 1s given

by (Ref. 1)
Vx blx b2x b3x. Gx
vy = By Py b3y Gy (A1)
vJ 512 Paz b3, \—)z

where bIj 1s the j-th component of the I-th unit body vector as shown In
Fig. 1. Similarly, the relation between the corotational ccmponents of a

vector, v , and the global components of that wvector iIs given by

Vx e1x e2x e3x] Vx
vy = ely e2y ey y (A2)
Vg e1z eZz e3z V2

where te is the j-th component of the I-th unit corotational vector (Fig. 1).

2. Local Internal Force to Global Internal Force Transformation Matrix

The transformation matrix which relates the local internal force matrix,

{flnt} » to the global internal force matrix,{fint} , is developed in this
section. In Ref. 1 the relationships between the global nodal loads and the

elements side forces and moments are given by
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f ) X .+ u X+ u (e
Ix J IJx IK IKx 3x
£ £
1J IK
Jf =—-—-Jy +u + = Jy +u + £ Je (A3)
Iy > QIJ 1J 1Jy ? QIK IK IKy 1z 3y
fI?J z_..+u +u e
\ (P13 7 Y132 L7k 7 “1Kz 3z
and _
r" \ .~ e
fiz ¥3 Y23
y + m2 + m3x
£ SRS (a4
2z A 3 Y3
+
1y 2y 3y
f3z * v
\. J L i
where
130T Fr T Xp Vpgx T VIx T Vaxt O
fIJ = the force along side IJ of the element
EIJ = the current length of side IJ
A = the element area

The local moments at a generic node I are transformed to the global system

by the transformation defined by Eq. A2, that is

m} = [THmy (45)

Combining Eqs. A3, A4, and A5 for the three nodes of an element into a single

matrix equation we obtain

(£ = ey (46)
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where
int, T
{7 - {flx fly flz fo f2y f22 f3x f3y f3z
™ x m1y M2 Mox mZy Mz ®3x m3y mBZ} (an
“int, T " - " - . " - N "
e B {f12 f23 f31 ™ x mly mlz mZx m2y 2 m3x m3y m32 (48)
and
[Tl [Tl
[r] = (49)
o1 I,
and the submatrices i1 A9 are
[T]ff = the transformation matrix relating the element side forces
to the global nodal forces
[T]fm = the transformation matrix relating the nodal moments in the
local coordinate system to the nodal moments in the global
system
[T]mm = the transformation matrix relating the nodal moments in the

local system to the nodal moments in the global system.

Using relations A3, A4, and AS the submatrices are given as follows
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3. Global Coordinates to Mixed Coordinates Transformation Matrix

Since the transclational equations of motion are written in the global

coordinate system and the Euler equations are written in the body coordinate

system, 1t is necessary to transform the moments and the correspond-

ing terms in the stiffness matrices into the body csoardinate system.

The following transformation matrix, designated as [T], is developed for

this purpose.
Using the coordinate transformation, [T], the global moments at a node

are transformed to the body coordinate system at that node by

- _ =T
{m}i = [Tli{m}i (A13)

where the subscript 1 1indicates the node number. Using equation Al3l it

is seen that the global nodal moments are transformed to the body coordinate

system by
{m} = [T*](m (A14)
where
-~ T - e e m e e e e -
tm) [y By ™z ox P2y 2z Max M3y M3z (A15)
T -
w" = [mlx My Pz Max M2y M2z M3x M3y m3z] (A16)
and
(@7 01 (o
L
(4] = |l0] [T (0] (a17)
=T
_[0] {01 [T]3
Forming the global to mixed coordinate system transformation, {%], as
(11 (0]
(T1 = |[0) [T*) (A18)
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where [I] 1s the identity matrix, it is seen that the global internal

force matrix is transformed to the mixed system by

(Y = ety (19)
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APPEND1LX B

SHAPE FUNCTIONS AND STRAIN-DISYLACEMENT MATRICES

1. Membrane Strain-Displacement Matrix

The strain-displacement matrix, [Em], which relates the engineering
strains to the side elongations of the triangular plane element were formu-
lated by Marchertas and Belytschko (Ref. l). Thelr final results are

et = (E®){6} ' . (B1)

where

‘(Li) + Lz')/(4L|,L2I)1(Ll|/ill)g 'lLix/(4L3llllL‘|’l)i(Lllvl"ll)‘ l(l'll + Lll)/(.IlllL?I)I‘L‘l/';ll)‘ ‘
FE™) = ] [0y - /@800, /308 T8/ (3808 L0 [ Le /70 [y - (30N K Y (B2)

(Lll/;ll,‘LRl/;’“)l/(zl'lol, 0 '(Lll/ill)l'(ll/;'ll’/(‘!lfl,

2. Flexural Shape Functions and Strain-~Displacement Matrix

Using the culic deflection function given by Zienkiewicz (Ref.l2) the

following shape functions, wf, are obtained by Marchertas and Belytschko

(Ref. 1)

S
[}

f = balcde, +0.50,2,85) - by(edC, +0.5€,C:€5), )

0f = a,(C3Cs +0.5C,82Cs) - a3{C3C; +0.50,C2C5),
©f = by(E2C, +0.50,62C,) - by(C3Cs +0.5C,C2C,),

(B3)
f- a3(€§§l +0.5¢,8,65) - a)(Cigs +0.50,8:85),

h:]
-
1

f- by (€3€, +0.56,8,8,) - by(€3C, +0.5C,8,C5),

S
w
)

:p£ = a1{€362 +0.5¢18283) - a2(C50y +0.50,8,€5), J
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where

Z :2. and 43 = triangular coordinates

ll
a; and b1 = lengths defined in Fig. 2
The flexural strain~displacement matrix is defined as
azu{/axz
ey - S (84)
azwf/axay
Since a numerical integration scheme is used in evaiuating the integral con-
taining [Ef] in Eq. $6), it is necessary only to evaluate {Ef] at the

three integration points (points 4~6 shown in Fig. 2). As shown in Ref. 1

these expressions are
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For point 4 (¢, = 0, {, = 0.5, {; = 0.5):

3%l /52
def /a2
3ol /232
/35
dtgl/ag?
d%0f /38
3! /392
O%pf/35?
d3%f /337
3%t /037
LS
3%f/5%°
3%l /3335
3ol /a%3%
3%f /o305
3%f /3%y

%ol /o%a%

0.5b,(b% -b%)/(2A)

0.5b%(az - a;)/(2A )

b, [0.5b,(3b, - b,) + B3]/ (2AF
[0.5bf(a; - a5) - by(arb, +4A)]/(2AY
b,{0.5b5(b; - 3b,) - bZ]/(2A)
[0.5b%(a; - a,) + by(a;b; -4A)]/(2A)
0.5a%(b, - b3)/(2A)

0.5a;(a% -a2)/(zA)

[0.5a3(b; - b;) - azlazb; -4A)]/(2A)
a;[0.5a,(3a; - a,) + ajl/(2A)
[0.5a3(b, - b;) + aj(asb; +4A)}/(2A)
a,[0.5a;5(a; - 3a,) - a2l/(2A)
0.5a;b;(b; - b,)/(2A)?

0.5a,b,(a; -a;)/(2A)

a (b} -b% +0.5b,b;)/(2A )

by(a} - ai+0.5a,a,)/(2A)

a;(b? -b% - 0.5b,b,)/(2A)

v
.

(B5)
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2. For point 5 (¢, = 0.5, L, =0, Cy =0.,5):

a%pf /3%
3%f /o%?
Bzmg/a;{‘z
p2of /2%2
d%0f /352
%ol /0%
3%t /33
d%0f /352
%yl /oy
d%pf /a3
%0f/3y?
d%0f /a5
d2pf /3%3¢
3%0f /o%3%
d2ef /323§
atol/a%3%
el /350G

3ol /2535

b,[0.¢b,(b. - 3b,) - BE]/(2AF
[0.5b2(a; - a,) + bylasb; -4A))/(2A)?
0.5b,(b% -b%)/(2A)

0.5bi(a; -a,)/(2A)

b,{0.5b,(3by - by} + B3]/ (2AP
[0.5b3(a;, - a;) - by(a,by +4A)1/(2A)2
[0.5a%(b; - b,) + a;(a;b, +4A)])/(2A)
a,[0.5a,(a, - 3a;) - a}}/(2A)
0.5a%(b; - by)/(2A)

0.52,(af - a2)/(2A)?

[0.5a%(b, - by) - aj(asb, -4A)1/(2A)
a,{0.5a5(3a, - a3) + af]/(2A)

a,{b? -b% . 0.5b,b,)/(2A)

b,(a? -a% - 0.5a,2,)/(2A)

0.5a;b,(by - b}/ (2A)

0.5a,b;(a; -a,); (2A)

a,(b% - b2 +0.5b,b;}/(2A)?

b,(al -a%+0.5a,a,)/(2A)

(86)
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For point 6 (§; = 0.5, {; = 0.5, {3 = 0):

3of /382
o0 /o3?
3l /a%2
el /352
3l /332
d%ef Ja5%2
of /332
Def/25?
2%l /3%
d%f /37
Bzw£ /agz
¥%0f /39*
azwf/BQBQ
%0l /353y
3%l /3535
3ol /axdy
2%l /oxay

3%l a%ay

H

b,[0.5b,(3b, - by) + b31/(2A)
[0.5b%(a; - a;) - bylash, +4A)1/(2A)
b,[0.5b,(b, - 3b,) - b]/(2AF
[0.5b%(a; - a;) + bylasb, - 4A)}/(2A)?
0.5b, (b3 - b3)/(2A Y

0.5b3(a; -a,}/(2A)

[0.5a(b, - by) - a,(a;b; -44)]/(2A)
a;[0.5a;(3a; - a,) + a}l/(2AP
[0.5a%{b, - bs) + az(a b; +4A))/(2AY
a;{0.5a,(a; - 3a;) - ail/(2A)
0.5a%(b, - b;)/(2A)

0.5a,(a} - a})/(2A)

a;(b? - b +0.5b;b;)/(2AY

bsyla3 - af +0.5a;a;)/(2A)

as(b3 - b2 - 0.5b,by)/(2A )

by(aZ - a2 - 0.5a,a;)/(2A)

0.5a;bs(b; - b;)/(2A)?

0.5a;bs(a; - a,)/(2A)

(B7)
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APPENDIX C
EVALUATION OF [G]i MATRIGES
The [G]i matrices as formulated in the text are defined as
3{’1‘)1 B{T}i
k]

6], = I “ee 1 (cl)
i 3u1x 3u3z

where {l?i is the i~th column of the {T]Ef matrix. Using the side force
to global nodal force transformation matrix, [T]ff (as given in Appendix A),

the following expressions are obtained for the [G] matrices.
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[6l, =

. )
/2, 0 0 -1/%4 0 0 0 0 0
0 1/% 0 o -1/2y o 0 0 ]
0 0 1/2 0 0 -1/%, 0 0 0
0 0 0 0 o 0 0 0 0
0 0 0 0 0 0 0 0 o (€2
0 0 0 0 0 0 o 0 0
1/% 0 0 0 0 0 -1/ 0 0
£y
0 1/, 0 0 0 0 0 ~1/2, 0
0 0 1/2, 0 0 0 0 0 -1/8,




(61, =

>

-1/2
1

0

~40~-

0 1/111 0 0 0

0 0 1/111 0 0
-1/2 0 0 1/4 0

1 1
0 1/2 0 0 —1/!1.2
0 0 1/2 0 0
2

0 0 0 1/% 4]

0 0 0 0 0

0 0 0 0 o

0 0 0 0 0

(C
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lel; =
/ N
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 -1/2, 0 ] /e, 0 0 (Ch)
0 0 0 0 -1/s, 0 0 1/%, 0
0 0 0 0 0 -1/s, 0 0 172,
-1/, 0 0 0 0 0 1/%, 0 0
0 -1/2, 0 0 0 0 0 1724 0
0 0 -1z, 0 0 0 0 0 1/4,
/
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