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Introduction

The goal of the 7th International Meshing Roundtable is to bring together researchers and
developers from industry, academia, and government labs in a stimulating, open environment for
the exchange of technical information related to meshing and general pre-processing techniques.
In the past, the Roundtable has enjoyed significant participation from each of these groups from a
wide variety of countries.

The Roundtable will consist of technical presentations from contributed papers, an invited
speaker, and an invited panel of experts discussing topics related to the development and use of
automatic mesh generation tools. In addition, we will again feature a “Meshing Maestro”
competition and poster session at Ford’s Automotive Hall of Fame to encourage discussion and
participation from a wide variety of mesh generation tool users.

Papers are being sought that present original results on meshing and pre-processing techniques. In
addition to our core topics in meshing related algorithms, we are also interested in obtaining
technical papers that relate analysis and application solution to the mesh generation process.
Potential topics include but are not limited to:

Volume and surface mesh generation techniques
Anisotropic mesh generation
Hybrid meshing approaches
Mesh optimization and mesh quality control
Adaptive mesh refinement techniques
Geometry decomposition and clean-up techniques
Industrial robustness and complex geometries
Technical issues related to working with million element meshes
Assemblies of automatically generated meshes
Theoretical or novel ideas with practical potential
Technical presentations from industrial researchers
Application sessions
Issues with CAD/CAM
Mesh visualization

The 1998 Roundtable is steered by a committee taken from private industry, universities, and
government laboratories.

Roundtable information can be found on the World Wide Web at URL
http://www.mcs. anl.gov/-freita71MRMR/

Front Coven Mitzie Bower, Sandia National Laboratories
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Enhancing CAE Effectiveness: The Next Steps “

Dr. Marc Halpern
Director of Research; Engineering, Manufacturing, and Design

D. H. Brown Associates, Inc.
222 Grace Church Street
Portchester, NY 10573

Abstract

Across all industries, companies have embraced the concept of early problem solving or “front-
end loading”; to improve product development lead times. As a critical component of the strategy,
companies adopt FEA-based simulation tools to construct models of components and products. If
these models effectively capture the essence of the problem to be solved, the simulations provide
insight to design decisions earlier in the product development process than higher fidelity physical
prototypes which take longer to build and cost more.

Historically, model preparation has been a major barrier to fulfilling the promise of finite element
analysis. Reliable results were often delivered too late to have a significant impact on design deci-
sions. Fortunately, technological innovation has enabled substantial progress towards improving
model preparation time since the early 1990s. Recent innovations promise additional reductions
in model preparation times.

Our research over the past year suggests that the next wave of productivity gains will derive from
data management that supports finite element analysis requirements. For example, major manu-
facturers report that they still face substantial challenges making the right data and models avail-
able to their analysis specialists in the form they need it. A new wave of technology should “
facilitate effective reuse of accumulated data, models, and product development knowledge.

This presentation explores these trends. It will highlight progress made, the current status of com-
mercial technology, and the critical issues shaping further advancement of CAE technology.
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BMSweep: Locating Interior Nodes During Sweeping

M. L. STATEN1,S. A. CANANN1’2, S. J. OWEN”2

lANSYS Inc. 275 Technology Drive, Canonsburg, Pennsylvania, 15317, U.S.A.

2Department of Civil and Envimomental Engineering, Carnegie Mellon University, Pittsburgh
Pennsylvania, U.S.A.

1.0 Abstract

BMSweep is a new algorithm to determine the location of interior nodes while volume sweeping.
BMSweep uses background mesh interpolation to locate interior nodes while sweeping two and one half
dimensional volumes. Three dimensional volumes can be swept using BMSweep after being decomposed
into two and one half dimensional volumes. The interpolation method provides for qutilty element creation
while allowing the volume boundary to vary.

KEYWORDS: mesh generation, sweep, background mesh, hexahedra, mapped meshing, 2.5D.

2.0 Introduction

For a variety of reasons, hexahedral elements are often prefered over tetrahedral elements for use in finite element
analysis[l ,2]. However, unlike tetrahedral meshes, hexahedral meshes are much more constrained and, therefore,
much more dhlicult to generate[3]. Sweeping is a technology that has received significant research in the past few
years and is a method of meshing hvo and one half dimensional volumes with an all hex mesh [4-9]. A hvo and one
half dimensional volume is a volume that has a topologically constant cross section along a single r& known as the
“sweep axis.” (Figure la).

The procedure used in most sweeping methods is to tlrst identify a source area and a target area at opposite ends of
the sweep axis. The source area is meshed with a quadrilateral mesh. This quadrilateral mesh is then swept through
the volume towards the target area using a specified number of layers. Each quadrilateral on the source area forms a
single hexahedral element in each of the layers during sweeping. If the source area is meshed with triangles, wedges
(i.e. triangular prisms) are formed instead of hexahedra.

The method of sweeping can be modified to mesh more complicated geometries by allowing for multiple source
and/or multiple targets [4-6]. Blacker[4] presents the Cooper Tool which is a variation of sweeping. The Cooper
Tool takes a volume and divides it up into “barrels”. Each barrel has a single source mea and a single target area.
Each barrel is meshed separately, ensuring that the boundary mesh of each barrel conforms to any adjacent barrels.
Once each barrel is meshed, the final mesh is simply the combination of the elements in all of the barrels. Liu and .
Gadh [6] also use sweeping to mesh some of their BLOBS (Basic LOgical Bulk). Similar to the Cooper Tool, Liu
and Gadh [6] decompose the volume into simpler shapes which are sent to either a sweeper or a volume mapped
mesher.

One problem with the current sweeping technology is how to determine the location of the new nodes created on the
interior of each barrel. Shih and Sakurai [7] present a method to determine these interior node locations; however,
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their method requires that both the source and target areas be planar and parallel to each other. Mingwu and
Benzley [5] present another method of determining these interior node locations, but their algorithm requires a time-
consuming smoothing operation after the hexahedral elements are formed[lO]. In addition, even with smoothing, the
qurdity of the resulting elements can be poor for complex models. Blacker [4] indicates that the Cooper Tool
determines the interior node locations using a least square weighted residual method, however, the algorithm is not
documented.

This paper presents an alternate method for determining the location of these interior nodes via background mesh
interpolation. Hereafter, tlis algorithm will be called Sweeping via Background Mesh Interpolation (BMSweep).
BMSweep provides the following benefits:

●

Is General enough to sweep any hvo and one half dimensional volume.
Is Orientation insensitive.
Is computationrdly inexpensive.
Does not require flat source and target areas.
Does not require that the source and target areas be parallel.
Does not require smoothing after the initial placement of the interior nodes.
Does not require the source and target areas to have the same shape. (While both the source and target
areas must have the same number of loops, the areas can have different surface area and shape.)
Does not require a constant cross section shape along the sweep direction, however, constant cross
section topology is required.

3.0 The Sweeping Algorithm

Before BMSweep begins to sweep through a volume, the following four assumptions are made:

1. The geometry to be swept is a two and one hrdf dimensional volume either unaltered or created by decomposing
the volume. Volume decomposition may be done manually or by employing an automated method [4,6,8,13].

2. The source area is meshed with a quadrilateral, quad/tri mixed or triangle mesh [11,12].
3. The target area is meshed with a projection of the source rweamesh. Both source and target meshes must have

the same mesh topology.
4. All side areas are meshed with a regular, ~tidded, quadrilateral, mapped mesh [13]. In addition, the mapped

meshes on the side areas must conform ffom one side area to the next. The nodes on the side area mapped
meshes are organized into “ribs”. A rib is a continuous line of edges extending from a node on the source area,
through a single node on each layer and terminating at a node on the target area [4]. Figure la shows a two and
one half dimensional volume and Figure lb shows what the boundary ribs may look like. With the side areas
mapped meshed, the boundary ribs are defined before invoking BMSweep. Interior ribs begin at the source area
interior nodes and terminate at the corresponding target mea nodes. The objective of BMSweep is to determine
the location of the nodes on the interior ribs.

With these assumptions, BMSweep proceeds using the following steps:
1. Generate a background mesh. (see section 3. 1)
2. Calculate interpolation information using the background mesh. (see section 3.2)
3. Using the background mesh and interpolation information, calculate the location of each interior node and place

it on the correspondhg rib. (see section 3.3)
4. Comect the nodes created in step 3 to form the new elements. (see section 3.4)

These four steps are described in the following sections.

8



3.1 Generation of the Background Mesh

BMSweep requires a background mesh to provide a framework for computing the locations of the nodes on the
interior ribs for each layer of the mesh. The background mesh is generated by tesselating the source area’s boundary
nodes. Since tessellationis more conveniently and robustly done in 2D, the parametric coordinates of the source area
boundary nodes may be used. For this implementation, a 2D Bowyer/Watson[16] Delaunay triangulation algorithm
is used to tesselate the nodes. For example, Figure lC shows the mesh on the source area of the volume in F@re la.
Figure ld shows the source area boundary nodes projected to parametric space and tesselated. For the volume in
Figure la, Figure ld serves as the background mesh.

The background mesh must be created using only the boundary nodes of the source area. No intenor points should
be added to the background mesh. Although there are interior nodes on the source area that could be inserted into
the background mesh, these nodes should not be inserted. This is because the background mesh will elevated to
each layer during the sweep (see section 3.3) and none of the intermdlate layers have nodes yet that correspond to
the source mea interior nodes.

sourcearea{

(a)

N;l

(c)

(b)

(d)

Figure 1 Example of background meshfor simple 2 Y2dimensional volume

ribs
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3.2 Calculating Interpolation Information

Interpolation data is needed at each interior source area node, including
1. Which triangle in the background mesh contains it (see section 3.2.1),
2. Its Barycenrnc coordinates in both the source and target areas (see section 3.2.2), and
3. Its offset distance with respect to the source and target areas. (The offset distance is the distance from

an interior node to the background mesh triangle containing the node in 3d space. The offset distance is
zero if both the source and target areas are flat.) (see section 3.2.3)

3.2.1 Triangle determination

With the background mesh in 2D parametic space, the 2D pamnetric coordhates of each interior source area node

N: is used to determine which background mesh mangle, ~ contains it. Once ~ is determined, a pointer to ~

is stored with N: for future reference. It is likely that a single background mesh lrirmgle will contain more than one

interior source area node. In this case, each N; contained in a particular triangle stores a pointer to the same

background mesh triangle.

For example, Figure 2 shows the background mesh in parametric space horn Figure 1 with the source area mesh
projected onto it (shown with dotted lines). The triangles that contain each of the interior source area nodes ( N~3 -

N~ ) are determined using a 2D triangle node location algorithm [14,151. For ex~ple, timgle ~3 contains node

N~3, triangle 7’17conttins node N~7, ad so forth.

N9 N8 N7

Figure 2 Background mesh with source area mesh connectivi~ (dotted lines) projected to parametric space

10
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3.2.2 Barycentric Coordinates

Barycentric coordinates with respect to the background mesh triangles are used to locate each interior rib node. Two

sets of barycentric coordinates are needed for each source area interior node N::

1. ~,~~,~~}: Barycentric coordinate of the uv location of N: ‘with respect to the source area uv

locations of the comer nodes of the background mesh triangle ~ , and

2. &,&;} -. Barycentric coordinates of the uv location of the corresponding target area node N: with

respect to the-t area uv locations of the comer nodes of the background mesh triangle ~

At each la er, the barycentric coordinates used to locate the new interior point area linear interpolation of

Gb;c;]@ ‘@b;,c;}

If the shape of the source and target areas are identical, then these two sets of barycentric coordinates will be
identical. If, however, the shape of the source area varies at all from the shape of the target area, these barycentric
coordinates could be quite different. In fact if the source and target areas have drastically different shapes, then the

background mesh triangle, & , after being elevated to the target area, may not contain N: at all, causing one or

more of the barycentric coordinates ~ib,~,}~ r T to be negative. This is perfectly acceptable. The barycentric

coordinates of the N: and N: must be with respect to the same background mesh triangle, ~ since each interior

node is located using a linear interpolation of ~,b;.c;]~d _&.b;,C;].

3.2.3 Offset Distance

If either the source area or target area is not fla~ then offset distances are needed to locate the interior nodes. Offset
distance interpolation data is needed to catch source and target area curvature that is not captured by the background
mesh. Since only boundary nodes are used to generate the background mesh, the background mesh only catches the
curvature that is present on the boundary of the source and target areas (see Fi=~re 9).

The offset distance is the distance, in 3d space, ftom an interior node to the background mesh triangle, ~ ,

containing the node. Two offset distances, d: and df, are needed for each interior source area node. Let p! be

the location of the source area intenor node, N;, and p: be the location of the target area node, N:,

corresponding to Nf. Let (#,p~z,p~3)be the source area xyz comer node coordinates of the background mesh

triangle ~ . Let @,p~,py) be the corresponding target area xyz comer node coordinates of the background

mesh triangle ~ . Offset distances d; and “d: are determined using Equations 1 &2. If the source area is flat,

d; will be zero. Likewise if the target area is flat, d: will be zero.



& = (a: ● P:’+ b,? ● P:’+ c,: ● P:’) –P: [1]

[2]

3.3 Locating the Nodes on each Layer

Once the interpolation information is calculated, the location on each layer, P:, of each interior node, N:, can be

determined. For each new interior node N;, four steps are required to determine its location. The first step is to

linearly interpolate the Barycentric coordinates and offset distances calculated fkom the source and target areas. That

islet ~~.~~,c~}betielinemin~rpolationof ti.b~.c~}~d ~.b~.c~}fornodei onlayerL. Also,let & be

T. If the layers during the sweep are evenly spaced, the interpolation parameterthe linear interpolation of d? and di

can simply be the layer number. Otherwise a dktance along the sweep path over the total sweep distance can be used
as the interpolation parameter.

The second step is to elevate the background mesh triangle, ~ , containing the corresponding source area interior

node to the current layer L. This is done by retrieving the corresponding boundag nodes at layer L from the

boundary ribs that originate at the nodes defining ~ on the source area (see Figure 3). Let (p~.p~,p~) be the

locations of these three nodes defining the triangle ~ at layer L.

The third step is to define ~iL which is used with the offset distance d: to specify the location of N; to

compensate for source and target area curvature. ~iL is calculated using the following:

[where ~iLl, ?iLz, ~iL31 are unit vectors in the direction of the sweep at (p~,J?~.P~) (seeFigure 3).

The final step is to use the following equation to determine the location, P:, of interior node, N:, on layer L of an

interior rib.

[4]

Equation 4 calculates the final location of the interior nodes. No smoothing is required. Equation 4 interpolates the
location of the interior nodes directly from the location of the boundary nodes on the current layer L. The locations
of the nodes on the layers directly above and below a particular layer have no effect on the node locations of that
layer. As a result, the locations of the nodes on each layer twist, turn, and rotate along with the boundary nodes of
that layer completely independent of the volume’s globrd orientation. This allows BMSweep to sweep volumes that
have dramatic twists, turns and changes in cross-sectional area (see examples in section 4.0).

As the interior nodes are created, they are stored in order of increasing layers on each interior rib so as to facilitate
element creation.

12



Target

~ elevated to level L

.............................

...........................

Area

qT2 Source Area

Figure 3 Vectors used to calculate node locations at layer L

3.4 Creating the new Elements.

Once all of the interior nodes have been located and placed on the interior ribs, the formation of the elements can
begin. Each facet on the source area is individually processed by determining the nodes on the next layer that are on
the same rib as each facet node. Thk process is repeated for each source area facet on each layer until all volume
elements are created.

4.0 Examples

Figure 4 through Figure 11 are examples of volumes swept using BMSweep.

13
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Figure 4 BMSweep sweeping three adjacent volumes in different directions. CAD model courtesy of Pratt &
Whitney

Figure 5 Bit4Sweep sweeping six adjacent volumes in different directions. CAD model courtesy of Pratt &
Whitney

Figure 6 BMSweep sweeping volume with irregular sweep direction

———



Figure 7 BillSweep sweeping volume with twisted and curved sweep direction

Figure 8 BMSweep sweeping thin walled volume with curved sweep direction



sweep

I

Direction

Cut-away showing interior
nodes placed with offset
distance interpolation.

Figure 9 BMSweep sweeping volume using offset distance interpolation

Cut-away showing interior
nodes placed without offset
distance interpolation.

Figure 10 BMSweep sweeping volume with 150 degree rotation in sweep direction

Figure 11 BMSweep sweeping volume with circular source and rectangular target

16



5.0 Conclusions

BMSweep, a method for determining interior node locations during sweeping, has been presented. BMSweep uses
background mesh interpolation to locate the interior nodes. BMSweep is orientation insensitive and meshes two and
one half dimensional volumes without requiring flat or parallel faces. In addition, the cross section of the sweep can
twist, turn, and rotate freely. The shape of the cross section can also vary along the sweep path as long the cross
section remains topologically constant. The algorithm has been extensively tested for robustness and has proven
able to mesh a large variety of complex models. Coupled with volume decomposition, BMSweep can be used to
mesh a large class of three dimensional volumes.
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On Optimal Bilinear Quadrilateral Meshes

Ed DAzevedo*

Abstract.

Thenoveltyojthis workis in presentinginterestingerrorpropertiesof two typesof asymptotically“optinraZ”quadrilateralmeshes
jbr bilinearapproximation.Thejirsf typeof meshhasanerrorequidistn”butingpropertywherethemm-muminterpolationerroris

WPtoti~llY t~ sameov~all el~ents. ~ second@e tifutm thn wecfed “supm-mnvergence”propertyfmcertainsaddle-
shapedaktafunctions. The “super-convergent”meshmaybe an orderof magnitudemoreaccuratethantheerrorequrllistn”buting
mesh.Bothtypesof mesharegeneratedbya coordinatetransfwtion of a regularmeshofsquares.Thecoordinatetransfmation
k derivedby intqoretz”ngtheHess-tinmatrixofaaktafunctionasa meti-ctensor.Theim”ghtsin thisworknq haveapplicationin
meshdesignnearknownwmer orpointsingulan”ties.

keywords. anisotropic mesh, quadrilateral mesh, mesh generation, super-convergence.

1 Introduction

This paper presents the theoretical effectiveness of two types of “optimal” bilinear quadrilateral meshes. The novelty of
this work is in presenting interesting error properties of two types of asymptotically “optimal” quadrilateral meshes for
bilinear approximation. The first type of mesh has an error equidistributing property where the maximum interpolation
error is asymptotically the same over all elements. The second type has faster than expected “super-convergence”
property for certain non-convex saddle-shaped data functions. The “super-convergent” mesh may be an order of
magnitude more accurate than the error equidistributing mesh. Both types of meshes are generated by a coordinate
transformation of a regular mesh of squares. The coordinate transformation is derived by interpreting the Hessian
matrix of a data function as a metric tensor. This work is a basic study on optimal meshes with the intention of gaining
insight into the more complex meshing problem in surface approximation and finite element analysis espeaally near
comer or point singularities.

For simplicity, we consider the problem of interpolating a given smooth data function with continuous piecewise bi-
linear quadrilaterals over a domain to satisfy a given error tolerance. A mesh that achieves this error tolerance with
the f~est elements is defined to be optimally effiaent. Intuitively, one would expect smaller and denser elements in
regions where the function has sharp peaks or large variations.

Provably optimal triangular meshes [2, 4] have been produced by anisotropic mesh transformation. Anisotropic mesh
transformation is emerging as an effective technique for unstructured grid generation where the vertex distribution is
highly non-uniform. The central idea is to control the element shapes and s~es by specifying a symmetric metric ten-
sor that measures the approximation error. The metric tensor determines the corresponding anisotropic transformation.
The anisotropic mesh is then the image of a uniform mesh of optimal shape elements under the anisotropic transforma-
tion. Simpson [9] gives a survey on anisotropic meshes. Nadler [6], D’Azevedo and Simpson [3, 4], and DAzevedo [2]
have studied local anisotropic transformation for generating optimally effiaent triangular meshes. Numerous works
such as Borouchaki [1], Peraire [71, and Shimada [8], have used the Hessian matrix as a metric tensor for anisotropic
mesh generation. In this paper we apply a similar analysis to bilinear approximation on quadrilateral patches.

An outline of the paper follows. In $2, we present a simple local quadratic model for error analysis and introduce the
coordinate transformation to the “isotropic” space. In ~3 we show a square over the isotropic space is the most effiaent
shape to minimize the ratio of Error/Area. A regular mesh of squares over the isotropic space would correspond to an
optimally efficient mesh in the original space. Section 4 states a classical result in differential geometry on the conditions
for finding the anisotropic transformation [2(x, y), ij(x, y)] for a general data function. Results of numerical experiments
are presented in $5 to demonstrate the error equidistributing prope~ and the effectiveness of the super-convergent
meshes.

“ComputerSaenceandMathematicsDivkion,OakRidgeNationrdLabcnatory,P.O.Box2008,OakRidge,TN37831-6367.Workwasfundedinpart
by theAppliedMathematical.5&ricesResearchProgram,Officeof EnergyResearch,U.S.Deparlrnentof EnergyundercontractDE-ACQ5-960R2Z464
withLockheedMartinEnergyResearchCorp. Thissubmittedmanuscripthasbeenauthoredby a contractorof theU.S.GovernmentunderContract
No.DE-ACOS-960RZZ464.AccordinglytheU.S.Govemrnentretafnsanonexclusive,royalty-freelicensetopublishorreproducethepublishedformof
thiscontribution,oraltowotheratodo so,forU.S.Govemcnentproposes.
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2 Quadratic model

We shall consider a local analysis where we assume the data function ~(x, y) in the neighborhood of (XC,y,) is well
approximated by its quadratic Taylor expansion,

f(x> y) = m.+ dx, y. +dy)

= fkYJ + vf(xc>YJ[%~Yl + ;[d@YIH[dx,dY1’ o (1)

The function is convex if det(H) >0 and saddle-shaped if det(ll) <0. The key insight in [2] is in interpreting the
Hessian matrix H in (1) as a symmetric metric tensor. Let the symmetric Hessian matrix be diagonalizable as

H=Qt[~f,lQ=S’[:w ‘here’=siw(det(m)(2)

S= I$JO
[ m 1Q, and Q is orthogonal, QIQ = 1.

Note that transformation S is essentially a rotation to align eigenvectors along the coordinate axes then followed
by a simple scaling. Under this transformation S, the expression [dx, dy]H[dx, dy]t reduces to (dZ)* + e(dij)2, where
[z, ~]t = S[x, y]’. Over the transformed space (i(x, y),ij(x, y)), the Hessian matrix is reduced to a simple form (2) with
no preference for any direction. We shall call this transformed space the “isotropic” space. We shall use a quadratic data
function to derive a simple model for deriving the maximum interpolation error over a bilinear quadrilateral patch.

3 Quatillateral patch

The bilinear interpokmt over a quadrilateral element is given by the isoparametric formulation (commonly used in
finite element analysis) over the normalized (p, q)-space on the unit square, O S p, q <1. Basis functions are

@l(P>q) = o – P)(1 – q)> @z(P,q) = PO – W
#3(P>@ = Pq, @4(p,q) = (1 – P)q ,

(3)

that satisfy@i(xj, Yj) = dijtand SLUIIto one, 1 = ~:~~ @i(p, q).

Mapping from (p, q) to the original (x, y)-space is by

X(p, q) = xl~l(p, q) + x2#2(p, q) + x3rj53(p,q) + x4@(p, q) (4)

Y(P>q) = yldn(p,q) + y2@2(p,q)+ y3dJ3(p,q)+ y444(p,q)

that maps vertex (O,0) to (XI, yI), vertex (1, O)to (x*,Y*),(1,1) to (x3,YJ and (0,1) to (x4, Y4). The Minear interpokmt
(over (p, q)-space) is given by

i=4

pb(x(p, q),y(p,q)) = ~f(xi,Yi)#i(P,q) . (5)

The error function for quadratic interpolation over a parallelogram can be shown by direct algebraic expansion (see
Appendix A) to be

EQ(p, q) = pb(X(p, q), y(p, q)) – f(X(p, q), y(p, q))

= % – ; (P1(P – Pc)2+ P2(q– %)2) >

with centroid at [pc, qcl = [~, ~1,

[k, Uyl= [X2–xl, y2 – yll, [Zk,vyl = [X4–XI, y4 – yll,

20
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f%= EQ(Pc>qc) = ; k + /J2) >

0 = l.E&bqc) = &(Pc>@ ,
ap (i)

/4 = [24X, UJH[UX,UJ, ,f.Q= [Vx,oylmx, Vy]t .

For a convex function (det(H) > O),pl and p2 are positive, hence the maximum error is attained at the centroid [p., q,].

For the case of a general convex quadrilateral, the error expression is more complicated. However, we can show a square
over the isotropic space is of optimal shape by minimizing the efficiency ratio (Error/Area). Since the isoparametric
bilinear interpolant (5) exactly fits linear functions [5], the error attained at the centroid (XC,y,) can be written as

f%=

=

[xc,y.] =

( )~ ~+[xi,yil~[xi,yil’ - j[xc,ycl~[xc,ycl’ (8)

(

1 iti
~ ~ ([xi, YilWxi,yil’ - [xc,ycl~[%,ycl’)

)

[(xl +x2 +%+ x4)/4, (y*+ y2 + y3 + y4)/41 . (9)

This expression can be further simplified over the isotropic space where H is the identity,

.

where [Xi, iji]~= S[xi, yi]~ and [YC,jic]~= S[x,, y,]f are the corresponding coordinates over the isotropic space. The area
of this transformed convex quadrilateral is (see Figure 1)

Since the isotropic transformation Sin (2) is a rotation followed by a resealing of coordinate axis, the area of quadr-

ilateral over the isotropic space is scaled by m = ~m (intrinsic to H). By calculus, we can show this ratio
of !EM/Area is minimized and attained by a square with L1 = L2 = L3 = L4 and 01 = 02 = 03 = 7r/4. Hence the most
effiaent shape among all general convex bilinear quadrilaterals is a square over the isotropic space with an effiaency
ratio of 1/4.

If ~(x, y) is saddle-shaped (det(H) < O), the error expression for a parallelogram is still

EQ(P>q) = & + /.42)– &I(p – PC)2+ P2(f7 – @2) -

Under the anisotropic transformation S,

For a square over the isotropic space, we have

[%>~yl= [Lo], [%,oyl= [0,L], fh = L.z, pz = –L2 ,

‘Q(%q) = ‘+2(P–:)2– ~2(q– ;)2)=:((P;)2– (P– ;)2) .

‘I’he maximum error is L2/8 and attained at (p, q) = (~, 1) or (~,0).
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Figure 1: Convex quadrilateral over isotropic space.

Note that both pl and j.LZvanish for

[17X,iiy] = [L, L], [%’,ql] = [–LLI , (11)

which correspond to a square rotated by m/4. The above indicates an “exact fit” (~Q(p, q) = O) if PI = jJZ= O. This
suggests bilinear approximation has higher than expected accuracy and the simple quadratic model is inadequate to
fully capture the error properties in this case.

To summarize, a square over the isotropic space in any orientation is of optimal shape for the convex (det(H) > O)case,
and a square rotated by n/4 is the optimal shape for the saddle-shaped (det(H) < O)case. A regular square mesh over
the isotropic space would correspond to a error equidistributing mesh where each patch incurs the same maximum
error. For a saddle-shaped data function det(H) <0, a regular mesh of squares rotated 7T/4 would have higher than
expected accuracy.

4 Differential Geometry

The constant Hessian Matrix 23= {hij} in (1) determines the coordinate transformation S that maps [Z, $]1 = S[x, y]t so
that

[dx,dy]H[dx, dy]’ = di? + ed~ .

For more general functions, we may view the Hessian matrix H(x, y) as a metric tensor for measuring the interpolation
error [dx, dy]H[dx, dy]t. Thus we need to determine [2(x, y), ?(x, y)], a corzh”rzuoustransformation that globally satisfies

[dx, dy]H[dx, dy]t = d~ + ~d~ for infimitestimals [dx, dy]. The transformation [Y(x, y), ij(x, y)] should satisfy

-.
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The conditions for finding the anisotropic coordinate transformation [2(x,y), ij(x, y)] are given by a classical result in
differential geometry for characterizing a “flat” space [10]:that the Riemann-Christoffel tensor formed from the metric
tensor His identically zero. In this case, a sufficient condition is for H = {hij} to satisfy

Klhll + K2h12+ &hz = O (13)

for some constants Kl, K2, K3. In particular, (13) is satisfied by harmonic functions (hll + hz = O). The coordinate
transformation [i(x, y), ji(x, y)] maybe found by solving an initial value ordinary differential equation. The details for
computing the anisotropic coordinate transformation [f(x, y), ij(x, y)] are described in [2].

5 Numerical Experiments

In this section, we demonstrate the effectiveness of a super-convergent mesh for interpolation over bilinear quadrilat-
erals on several harmonic functions. To clearly illustrate the error equidktributing properties, only elements entirely
interior to the unit square are generated to simplify the presentation.

Example 1. A logarithmic singularity at (xO,yO)= (0.5, –0.2),

\(x,Y) = ~((x - xo)’ + (y – yO)2)/Z, det(w = –((x–xo)’ + (y – yo)2)-2.

Coordinate transformation is

X(x, y) = arctan(y – yo, x —Xo), lj(x, y) = In((x – XO)2+ (y – yJ’)/2 .

Example2. A near singularity at (xo, yo) = (0.5, –0.2),

f(x, y) = @– XO)2– (y – Ye)’ det(H) = –36((x – XO)2+ (y – yO)2)-4.
((x – XO)2+ (y – yo)2)2‘

Coordinate transformation is

( X—xo
qx, y)=ln l– ) ij(x, y) = w y–yo

(x – XO)2+ (y – ye)’ ‘ (x – XO)2+ (y – ye)* “

Example3. A more severe near singularity at (xo, yo) = (0.5, –0.2),

f(x, y) =
((X – Xo)2 + (Y – YO)2)2 = 8(x – Xo)’(y – ye)’ det(~ = _~((x _ Xo)z+ ~ _ yo12)_c

((x – XO)2+ (y – yo)*)4 ‘

Coordinate transformation is

( (Y–YO)2–(x – XO)2Z(x,y)=fi 1+ ) I-j(x,y) = 2W
(x – Xo)(y – yo)

((x – XO)2+ (y – ye)*)* ‘ ((x– XO)2+ (y – yo)2)2

Example4. Potential flow around a comer at (xo, yo) = (0.5, 0.5) where n = 7r/cY= 16/31, o = 27r– 7r/16 is the angle of
comer, and 6 = arctan(y, x),

f(x,Y) = ((x– XO)2-1-(y - yO)2)’’/2COS(n6), det(K) = –=((X – XO)2+ (y – yo)2)-4’/3l.
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Table 1: Summary of results for Example 1.

Minimum
error

F

Mesh I 3.56e-04
Mesh I 8.90F05
Mesh I 2.22e-05

I Mesh II II 5.37e-08

Median 90 Maximum Number of
error percentile error elements

3.56e-04 3.56d4 3.56e-04 918
8.90e-05 8.90e05 8.90e-05 3841
2.22e-05 2.22e-05 2.22e-05 15674
3.44e-06 3.44e-06 3.44e-06 923
4.3oe-07 4.3oeo7 4.3oe-07 3847
5.37e-08 5.37@38 5.37e-08 15695

Table 2 Summary of results for Example 2.

Minimum Median 90 Maximum Number of
error error percentile error elements

Mesh I 1.30e-02 1.30e-02 1.30e-02 1.30e-02 920
Mesh II 1.27e-04 1.79e-04 3.18EW4 6.93e-04 921

Coordinate transformation is

[f(~>Y),!7(%Y)] = ~((x – x,)’ + (y – y,)’)’i” [sin(80/31),cos(86/31)] .

The results of the experiments are summarized in Figures 2,3,4,5 and in Tables 1,2,3 and 4. Mesh I is generated
by a re@ar mesh of squares over the isotropic space. Mesh II is generated by a regular mesh of squares but with the
m/4 rotation over the isotropic space to capture the super-convergent behavior. Both Mesh I and Mesh II have similar
element size, element shape and density and differ mainly in the 7T/4 rotation. The error equidistributing meshes
(Mesh I) are displayed in Figures 6,8,10 and 12. The super-convergent meshes (Mesh II) are displayed in Figures 7,9,
11 and 13. The error profiles in 2,3,4 and 5 clearly show significant improvement in accuracy of Mesh II over Mesh I.
The almost level error profile for Mesh I indicates an equidistribution of interpolation error evenly over all elements as
predicted by our simple error model.

Note that Example 1 produces a simple radially symmetric mesh with a regular angular partition. Even in this simple
case, a 7r/4 rotation yields substantial improvement in approximation accuracy.

Results on Table 1 and Table 3 show the expected 0(h2) convergence rate for Mesh I. A four-fold increase of elements
leads to a four-fold decrease in error. Results for Mesh II demonstrate a higher than 0(Iz2) convergence. A four-fold
increase of elements leads to an eight fold decrease in error. This suggests O(@ convergence behavior for Mesh II.

In summary, we have derived a simple error model for bilinear approximation over a parallelogram. We used this
model to motivate the generation of super-convergent meshes using an anisotropic coordinate transformation of a
regular mesh of squares. The numerical experiments clearly demonstrate the effectiveness of the super-convergent
mesh for certain non-convex data functions. The insight gained here might have application to mesh design near
known point or comer singularities.
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Table 3 Convergence test on Example 3.

Minimum Median 90 Maximum Number of
error error percentile error elements, , J

I Mesh I II 1.51e+O0 I 1.51e+O0 1 1.52e+O0 I 1.56e+O0 I 255 I
I MeshI II 4S4e-01 I 4.5441 I 4S4e-01 I 4.60e-01 I 916 ]

Mesh I 1.13e-ol 1.1341 1.14e-ol 1.15e-ol 3837
Mesh I 2.84e-02 2.84e-02 2.84e-02 2.85e02 15685
Mesh 11 2.36M2 4.06e-02 9.66e-02 5.09e-ol 259
Mesh II 3.69e-03 6.69e-03 1.63e-02 9.64e-02 918
Mesh II 4.52e-04 8.29e-04 2.04e-03 1.4&02 3834
Mesh II 5.53e-05 1.03(44 2.54e-04 1.92e-03 15682

Table 4 Summary of results for Example 4.

Minimum Median 90 Maximum Number of
error error percentile error elements

Mesh I 4.21e-4 4.21e-4 4.22e-4 4.26e-4 576
Mesh II 5.9oe-6 . 9.90e-6 1.9oe-5 3.97e-5 575
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Figure 6 Mesh I for Example 1.
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Figure Z Mesh II for Example 1.

Figure 8 Mesh I for Example 2.



Figure 9: Mesh II for Example 2.

Figure 10 Mesh I for Example 3.
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Figure 11: Mesh II for Example 3.

Figure 12 Mesh I for Example 4.
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Figure 13 Mesh II for Example 4. ‘
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Appendix A

In this section, we show the error function for quadratic interpolation over a parallelogram is given by (6) using only
simple algebraic expansion. Let the data function be

f(x>y) = ;[% Ylfm y]’ + kl,gzl[x, y]’ + c

and the affine isoparametric transformation be

Then the interpolation error can be shown to be

EQ(p, q)

with centroid at [p~,qJ = [~, ~1,

~.

P1 =

= pdx@,@, Y(P,q)) – j(x(p> q), y(P>q))

= % – ; (M(P – PJ2 + I@? – %)z) ~

EQ(Pc>qc) = ; (fh + P2) ,

[11X, Z@l[ux,uy]’, /42 = [vx,z@@x, vy]’

Let the data function over (p, q)-space be written as

f(PJ@ = f(NP>@,Y(p>q))

~[= .2 P,@[P> d + El> /%l[P>d + ~

[%+%1= (hd + [xI>YIIH) T ,

l?= c + ~1, g2][x1 , yI]f + ;[xI> YIIMx1, ?h]f .

The function values at the four interpolating comers are

~1 = ~(0, O)=E, f3=f(l,l) =;@11+h2+%2)+&+ &+~,

f2 = f(l, O)=$u+&+~, f4=f(0,1) =;h2+~2+t.

By (5) and (16) (note the vanishing of linear and constant terms),

EQ(p, q) =

=

=

=

=

(14)

(15)

(16)

(17)

(18)

(19)

(20)

From (15) and (17), we have ~11= PI and & = pz; hence the error function has the form given in (16).

32

———



References

[1] Houman Borouchaki, Paul Louis George, Frederic Hecht, Patrick Laug, and Eric SalteL Delaunay mesh generation
governed by metric specifications. Part I. Algorithms. FiniteElementsin Analysis and Design,25:61-83,1997.

[2] E. F. D’Azevedo. Optimal triangular mesh generation by coordinate transformation. HAM]. Sci. Statist. CompZft.,
12(4):755-786, 1991.

[3] E. F. DAzevedo and R. B. Simpson. On optimal interpolation inadences. HAM ]. Sci. Statist. Cornpnf., 10:1063-
1075,1989.

[4] E. F. DAzevedo and R. B. Simpson. On optimal triangular meshes for minimizing the gradient error. Nurnex
Math., 59:321-348,1991.

[5] A. R. Mitchell and R. Wait. TheFinife Element Method in PartialDiff2renfial Eqnafions. Wiley-Intersaence Publication,
1977.

[6] E. Nadler. Piecewise liiearbest 12approximation on triangulations. In C. K. Chui, L. L. Schumaker, and J. D. Ward,
editors, Approximation Theory V, pages 499-502, Boston, 1986. Academic Press.

[Zl J. Peraire, M. Vahdati, K Morgan, ~d 0- C. Zenkiewk Adaptive remeshing for compressible flow computations.
J Cornpnf.Phys., 72449-466,1987.

[8] Kenji Shimada. Anisotropic triangular meshing of parametric surfaces via close packing of ellipsoidal bubbles. In
Proceedings 6fh International Meshing Round fable1997, October 1997, Park City, Utah, 1997. Also available as Sandia
Report SAND 97-2399 UC-405.

[9] R. B. Simpson. Anisotropic mesh transformations and optimal error control. Applied Numerical Mathematics, 1992.
Speical issue as the proceedings of the US Army sponsored Workshop for Adaptive Methods for Partial Differential
Equations, Rensselaer Polytechnical Institute (accepted).

[10] I. S. Sokolnikoff. TknsorAnalysis, Theoryand Applications to Geomehy and Mechanicsof Corztinua.John Wiley New
York, second edition, 1964.



34



Solving Difficult Grid Related Problems
Utilizing the Volume Grid Manipulator

Stephen J. Alter*
Lockheed Martin Engineering @ Sciences

Hampton, Virginia 23681
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Abstract. This &ticfe presents a set oj methods to solve dificult problems in grid generation as related to
Computational Fluid Dynamics (CFD). Throughout the evolution oja CFD simulation, modification ojm”sting
volume grids may be reguired to improuejiow domain cnpture, resolve characteristic gmdients, and enhance the
accuracy of computed aerodynamic and thermodynamic parameters. The processes identified in this paper make
eztensiue use oj the Volume Grid Manipulator (VGM) multi-purpose gn”dmanipulation code which wntains an
interpretor style language. The VGM software enables the build up oj simple processes, or manipulations, to
develop wmpleztechnigues that can beusedto solve awidevariety ojgrid related problems. The VGM code also
provides a user friendly environment for the solution of dificult grid relatedproblems. Coupling the rich command
language with the joumaiing or script generation capability afforded by the VGM code, enables the use of complex
solution techniques to solve a variety of gn”dproblems as well as provide quick turnaround. To demonstrate the
powerful manipulative capabilities of the VGM code, a volume grt”dof a simple shape with multiple jlow jentures
will be adapted, a wake volume grid will be appendedto a volume grid of an X33 Venturcstar, and the volume grid
of another X33 Venturestar will be expanded to ensure flow capture while removing negative volume cells.

keywords. topology, structured grid-generation, parametric studies, grid-adaption

1 Nomenclature

1,~

?<
R

P
(s2-s, )

ASP
ASj
A&
x, Y,z

streamwise computational direction measured from nose to tail of body
circumferential computational direction measured from top to bottom of body
computational direction normal to body surface
gas constant
density
entropy change between points
dwtance between points (i, j, k) and (i – 1, j, k)
d~tance between points (i, j, k) and (i, j – 1, k)
d~tance between points (i,j, k) and (i, j, k – 1)
Cartesian coordinates

2 Introduction

Iterative schemes have been used to solve fluid problems for a multitude of applications for nearly a century. Histor-
ically, complex fluid flow equations were simpliied to algebraic and ordinary dfierential representations to simplify
the analysis. As computer technology has progressed, the simplifications of the fluid flow equations have been reduced
lea&ng to the solution of partial differential equations. For most of the applications of the fluid flow equation models,
structured grids have been employed. Structured grids are so named because there is an ordering to the points
that discretize the geometry and volume on which the computation is performed. Three-dimensional surfaces can
be represented in two computational coordinates, and volumes are represented in three-computational coordinates.
The ordering of the points for surfaces and volumes is done such that at each computational coordinate there is
an equal number of points in the second coordinate. For example, in a surface grid of 15 by 35 points, at each of
the 15 points there are 35 points that locate specific physical coordinate points on the surface. Structured grida in
the computational domain take on the appearance of square cells for surfaces and cubes for volumes because there
is always one computational unit between points. The ordering of the grid points that define a configuration in a
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(a) O-grid (b) C-grid (c) H-grid

Figure 1: Structured grid topologies for a wing.

structured grid provide easy application of boundary conditions ss well as computation of derivatives that comprise
the various fluid flow equations.

The ordering of the points that d~cretize and define a surface or volume grid is called topology. The topology of a
structured grid provides the ordering of deting grid points or domain discretizing points such that the pertinent
geometrical features in the computation are captured. For example, an O-grid topology, Fig. la, is typically used to
model a three-dimensional wing, a C-grid topology, Fig. lb, could be used on the same wing attached to a fuselage,
and an H-grid topology, Fig. lc, could for the same purposes.

Until recently, most configurations and geometries analyzed with structured grids have been simple in shape and form,
requiring only a single block. As the geometries being aqalyzed are increasingly complex, the use of multiple simple
blocks to define the discretized volume of the modeled fluid flow has become common. Multiple block decompositions
of a flow domain provide a simple solution to the most difficult obstacle in structured grid development, topology. By
breaking the domain into simpler segments (blocks), the development of the ordering (topology), is manageable. The
blocks csn be overlapped where there are regions of grid points in one block that occupy the same region of another
block, abutted where the gird points match point-to-point at their interfaces, or patched where the point-to-point
matching is a subset of one grid to another, i.e., a 3 to 2 point matching. Additionally, structured grids of any
topology can be tailored for Euler or Navier-Stokes computations.

Structured grids used for solving Euler or Navier-Stokes flow models have several common features. These include
the necessity to capture gradients that significantly tied surface properties, capture of the affected flow domain
as it reacts to the geometry being analyzed, and the highest fidelity possible. High fidelity of structured grids is
characterized by point-to-point spacings changing at a rate close to unity, skewness is kept to a minimum throughout
the domain, and orthogonal grid lines traversing from the w,all of the configuration to the outer domain limits.
Although structured grid generation technology is mature, there are a number of challenges that need solving, to
improve the productivity in using such grids. These most common challenges include reductions in the resources of
computers and labor to do:

● grid adaption that produces high fidelity grids that capture those flow features that significantly affect the
accuracy of the comput atiom,

● wake generation for existing flow domains where separation can play a key role in accuracy of the computation;
and

● proper flow domain capture.

All flows require grid adaption to some extent for the resolution of flow variable gradients. The adaption allows for
the efficient placement of grid points in the volume grid by removing resolution of the flow domain where gradients
are non-existent or benign as compared to other regions. Structured volume grid adaption in three dimensions is
a diflicult task. Anisotropic adaption, which moves grid points with respect to the flow gradient, usually requires
laborious iterative techniques to properly capture strong flow field grtilents while retaining grid qudlty throughout
the domain[l]. A simpler approach is to utilize isotropic grid adaption which moves points along a grid line, but
capture of flow gradients can be difficult as there is no dependency on the adjacent grid lines[2]. Further complications
arise in the selection of the proper flow variables to be used in computing the flow gradients to be resolved. Use
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of multiple flow variables can be difficult to incorporate into a single grid adaption. In any case, maintaining grid
quality while adapting to flow field gradients is nearly impossible in a batch operation because of flow variable choices
and the use of interactive operations is extremely time consuming.

Analysis of the wake region of vehicles moving through a fluid, in both high and low speed flows is important with
respect to aerodynamic computations. Development of appropriate grids for wake regions for hypersonic vehicles is
difficult due to engine nozzles, control surfaces and servicing apparatus located in the base region. Hence multiple
block decompositions are generally employed. The difficulty in constructing the multiple blocks with adjacent zonea
is compounded by the need to have grid line slope, cell size, and point-to-point stretching continuity at the interfaces.
Development of the grid point distributions usually requires the extraction of grid point spacings at a boundzq and
the spacing grachent approacldng the boundary in all computational directions. Combining these parameters with a
requirement of slope continuity at the boundaries, makes the development of high fidelky wake volume grids next to
impossible without the use of software to rapidly compute these quantities.

A common obstacle encountered during the evolution of the Computational Fluid Dynamic (CFD) simulation, is the
construction of an adequate flow domain for the affected region of fluid surrounding a vehicle. Thk type of volume
grid may arise from adapting the outer boundary with internal transients that result in a false position of the outer
reaches of flow effects, or the initial improper sizing of the flow domain. Many techniques exist to expand or contract a
volume grid to ensure flow capture, including Iocfllzed coordinate expansions[3] and grid lime extrapolation, to name
a few. Use of these two methods can produce a volume grid that adequately captures the flow domain, but they can
cause grid lines to cross resulting in the formation of negative cell volumes. However, the two expansion techniques
mentioned can produce regions of volume grids that are usable, but combining the usable regions is diflicult without
writing specific C or Fortran code to perform the merging operation.

This paper will discuss the methods and tools that can be used to solve the three major challenges facing grid
generation previously identified. The methods make extensive use of the Volume Grid Manipulator[4] (VGM) multi-
purpose grid manipulation code because it offers a wide variety of capabilities and functional@ required to solve
these difficult problems. Though there may be other challenges to be solved in the structured grid generation arena,
the three liited above address the most common encountered obstacles. Solution of these will provide improved
productivity and applicability of structured grids to CFD sirmdations.

3 ~The Volume Grid Manipulator

All of the complex and difficult issues mentioned in the introduction can be easily solved through the use of the
VGM tool. The VGM code has a language structure with 12 commands, listed in table 1, that offer the necessary
operations and methods that can be used to perform grid adaption, generate and append wakes onto existing volume
grids, and provide adequate flow capture for CFD simulations.

Command Description
allocate Create a new block or array variable
blend Interpolate between existing points in a variable
combine Regroup volume grids into a single grid system
copydist Copy a distribution horn one grid line to another
for Looping for a repetitive complex manipulation
quit End execution
read Input data
realist Redktribute a grid lime based on a function
set Equate variables and data or compute data
smooth Smooth a grid with algebraic or PDE solvers
tfi Perform Trans-Finite Interpolation on a region/zone

write Output data

Table 1: VGM command summary.
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Although there are only a dozen commands, each command has several options such as physical versus computational
domain based parameters, d~tribution functions, computational direction to be used, and arclength versus normfllzed
arclength interpolants, to name a few. By changing one option on each command, over 1000 specific manipulation
instructions result. ThB command rich language embodies the capabtity to build up various commands to perform



fast and powerful manipulations of grid points, lines, surfaces and volumes (i.e., grid data). YVhUemost commands
are designed to operate on existing grid data, some manipulations cam be used to generate grid points, lines, surfaces
and volumes. Examples of the simple manipulations VGM was designed to perform include single to multiple block
decompositions and vice versa, insertion of parametric design changes into existing grids, and the conversion of grid
data between PLOT3D[5], GRIDGEN[6], TECPLOT[7], and LAURA[2] data sets. Although the VGM code currently
supports the input and output of LAURA restart files, extension to other commonly used flow solvers like GASP[8],
and TLhTS3D[9] is straightforward and can be easily implemented.

Examples of the simple manipulations VGM was designed to perform are coarse grain to fme grain grid adaption,
inviscid to viscous grid conversion and topological changes, illustrated in Figs. 2, 3a, and 4, respectively. Notice that
the inviscid to viscous grid conversion usually improves grid quality which can be seen by the thinner grid lines in
Fig. 3b, where the largest change in grid line character occurs. The grid quaMy is improved by virtue of the increased
orthogonality in the body to outer domain direction. This improvement is provided by a combination of a spline
with local corrections to prevent severe overshooting and re-parameterization of the resulting grid line in the event of
overlapping points. Typically VGM either retains the existing quahty of the grid, or it improves the qua.hty through
reduced skewness, enhanced orthogonality, reduced point-to-point stretchhgs and slope continuity. The illustrated
alterations appear to be complex, but they are all accomplished using less than six manipulator command lines. The
VGM script used for the most complex of these manipulations, the coarse to fme grain grid adaption, % shown in
Pig. 5.

The VGM code is a powerful, multi-purpose grid manipulation tool that allows the use of the VGM language
interactively or in a batch mode of operation using a script, thereby making the code applicable towards parametric
design studies. The compactness of the VGM language counteracts the lack of a Graphical User Interface for the
code. The VGM language scripts, like the one shown in Fig. 5, use easy to read layout for each command, where there
is no order to the command arguments for most commands. Ordering of command arguments becomes important
when speci~lng source and destination grids to be manipulated. Unlike Computer Aided Design (CAD) systems,
and most grid generation systems, the VGM code also has the unique feature of being able to compute existing grid
spacing, spacing gradients and slope continuity angles for any existing grid. ThB adds to the power of relational grid
generation, a key to developing high fidelity surface and volume grids. Some flow regimes require more refinement
than others, however, the techniques discussed in this article will be applicable to all fluid speeds. Tectilques for
solving the three difficult grid related problems mentioned above will be addressed, by adapting a volume grid for a
simple sphere-cone-cylinder-flare configuration with an appended wake using a quasi-isotropic scheme, constructing
a wake for an existing solution converged X33 Venturestar forebody, and expanding the flow domain of a similar X33
confijjation to ensure flow capture. Although these capabilities are not unique to the VGM code, this is the only
code that embodks all the necessary tools and operations to perform these complex manipulations.
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(a) Flow adaptedcoarsegrid (b) Coarsegrid insertion (c) Adapted fine grid

(d) Enlargedviewof aft end

Figure 2: Coarse

(e) Enlargedview of middle section (f) Enlargedview of adaptedfinegrid

to fine grain grid adaption of a proposed X33 concept.
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(a) Inviscid grid (b) VISCOUSgrid

(c) Local region (d) Orthogonalityimprovement

Figure 3: Inviscid to viscous grid conversion on an X33.
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(a) Originalsurfacegrid (b) Originaltopology on the nose

(c) New topology on the nose (d) Final smoothedgrid

Figure 4: Conversion of a parabolic singularity to a pole boundary on a finks Reusable Launch Vehicle.
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# Adapt a fine grid of a candidate x33 based on a coarse grid
# solution. First, read in the coarse then fine grids.

read X33_mod-2.g plot3d unformatted sin91e
read X33_mod-O.g plot3d unfo~atted sin91e

# Generate the distribution function for the entire domain by
# inserting the coarse grid and interpolating to get the fine
# grid distribution functions. First, memory is allocated to
# store the distribution function to be built.

allocate dskl[153,121,651

# The current arclength distribution function from the coarse
$ grid, which has dimensions of (20 x 16 X 65), in the body to
# outer domain direction is extracted:

set dskl[l-0:8, 1-0:8,1-651 = dska(xyz[l, l,l-0:1,1-O :1,1-651)

# Holding the coarse grid distribution fixed at intervals of
# 8 points in the streamwise and cross-sectional di.recti.ens,
# interpolate with a spline function to compute the distribution
# function between these fixed K-direction grid lines.

blend dskl[ :8,:8] ld i-direction parametric interpolation=spline
blend dskl[:8 , :8] Id j-direction parametric interpolation=spline

# Holding the topologically rectangular volumes separated by
# intervals of 8 points in the I- and J-direction, fill in the
# volume of the distribution function by interpolating with
# Trans-Finite inte~olation in 2D (l,J), -d marching in the
# K-direction.

blend dskl[:8, :81 2d k-direction physical interpolation=tfi \
xyz[l,l, :8,:81

# Adapt the fine grid with the inserted and interpolated coarse
# grid distributions.

red%st k-direction spline normarc physical points=65 func(dskl) \
XYZ[2,1] newblock=no

# Output the resulting grid:

write X33_mod-3.g plot3d single XYZ[21
quit

Figure5: Coarse tofinegrain gridadaption procedmeusingVGM.

42



4 Volume Grid Adaption

One of the most important aspects of performing CFD simulations is the proper use of available computer resources
and labor. All flow domains are similar in one respect, there is a region of fluid around the body being analyzed
that is tiected by the fluid. A wise use of computer resources dictates that th~ region be the only region in which
computations are performed. A priori knowledge of the size and location of the region of fluid tiected by a geometry
cannot be accurately determined with engineering tools. The size and location of the flow domain is dependent on a
fluid model such as equilibrium, non-equilibrium, and chemically-reacting flow as well as the flow conditions such as
Mach number and angle of attack. Typically, approximations in fluid models are used to determine the limits of the
flow domain. This results in portions of the flow domain that are not affected by the geometry. These regions of no
flow activi~ can be eliminated by moving the discretized domain to capture only the flow domain. Further, during
the alteration process, otherwise known as grid adaption, the discretized domain is altered to capture those regions
containing strong flow g-radlents. Th~ procedure significantly increases the efficient use of computer resources.

Grid adaption in two dimensions is simple in comparisori to three dmensions. There are as many grid adaption
schemes as there are codes to do grid adaption, but most of them use anisotropic movements in the grid to adapt
to flow grtilents as well as restricting the flow domain to the affected region of fluid[l, 10, 11]. Anisotropic grid
movements are the shiftiig of grid points with respect to the flow gradient, while isotropic grid movement is with
respect to the grid line on which the points lie. Aniiotropic grid adaption typically destroys grid quality by producing
highly skewed cells and point-to-point stretchbgs that may not be conducive to obtaining solution convergence with
the CFD solver being used. Isotropic grid adaption retains the overall grid character but moves points along existing
grid lines to capture flow field gradents. Although skewness may be produced, the point-to-point stretc.hhgs and
slope continuity are retained. Jsotropic grid adaption is preferred because two measures of grid quaMy are preserved
while providing adequate resolution of flow field grtilents.

The VGM code enables the use of isotropic grid adaption through the manipulation of existing grid lines to capture
flow gradients. The process of adapting a volume grid with VGM is to first determine the control points to remain
fixed. ThB is done for one computational direction on a very coarse representation of the flow domain or a coarse
grid both on which the flow has been computed and is appropriately captured. These control points are typically
the positions of extrema in a flow variable. For example, in the simple sphere-cylinder-cone geometry illustrated in
Fig. 6, the grid is comprised of seven blocks, but each set of blocks traversing the body to the outer domain direction
can be combined to produce three separate zones. This reduction is performed to appropriately adapt the grid in
the direction from the body to the outer boundary (i.e., the k-direction) and improve slope continuity in the other
computational directions. The first zone contains blocks 1 and 2, the second zone contains blocks 5 and 3 and the
third zone contains blocks 7, 6, and 4.

Figure 6: Simple sphere-cylinder-cone geometry with a nozzle embedded
blocks.

in the wake domain and comprised of 7



F@me ? Lines on which grid adaption is based.

For this example, only the wake is adapted as this region is the most complex. Coamening the grid in the streamwise
and cross-sectional directions results in a set of lines in Fig. 7. It is these limes that are evaluated for flow variable
gradients, for which control points are computed. The control points will be the fixed points along each of the grid
Iiies.

The control points can be obtained by considering any number of flow variables, with each giving a new set of points
to remain fixed, as shown for an interior grid line in the body to outer domain direction in Fig. 8. By using several
flow variables, the domain is adapted based on the pertinent flow characteristics without sacrificing the gradients
of one variable in favor of another. For the flow domain, the entropy and magnitude of local velocity contours are
shown in Fig. 9. Although there are similarities between each variable in the location of the gradients, some matching
regions do not overlap, or do not have as strong a grtilent betwmn the two chosen variables. Using both significantly
improves the qua.Wy of the solution through resolution of these various gradients. Additionally, focusing the available
grid points on these gradients increases the efEcient use of computer resources.

Each of the identified control points along the respective grid line to be adapted serves as end points for red~tributing
the grid Iiie. The curvilinear segment between each control point will have ‘a new set of points that clusters cells
to the ends of the segment, thereby adapting the grid to the control points. Each grid line is redistributed in th=
manner, noting that the total number of grid points along the bmidIiie does not change. By using the same number
of points between the control points on each segment, and by ut~lzing the block referencing data structure of the
VGM code, reduces the labor required for redistribution. Labor is reduced because of the commonality between the
segments in point distribution functions and dimension, despite differences in computational length. For the example
grid line, the original and new grid point d~tributions are shown in Fig. 10.

These new grid lines now serve as the basis for the entire domain. The remaining grid lines in the domain, along
the computational direction chosen for grid adaption are then adapted by interpolating between the known adapted
grid lines. The interpolation can be done linearly, elliptically [12], using a spline, or any combination of these three.
Typically the streamwise direction is done first, then the cross-sectional as the dependency is more an issue in
controlling grid quahty in the streamwise direction. The interpolations result in an adapted volume grid based on the
two flow quantities chosen, and is shown in Fig. 11. Notice the overall grid quality remains consistent, the point-to-
point stretchiigs do not exceed a growth rate of 50%, and slope continuity along the streamwise and cross-sectional
grid lines is maintained. The growth rate is kept to a minimum by using distribution functions that inherently do not
permit excessive point-to-point stretchhgs, such as those of Vhokur[13] and the LAURA grid adaption code. This
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Figure 10: Adapted grid line for entropy and velocity gradients along an interior line.

volume grid is still considered to be of high fidelity, but now is appropriately distributed to capture the important
flow gradients. Although only two flow variables are chosen for this adaption, any number of variables can be used.
This process has been used on a variety of problems, each resulting in enhanced resolution of flow gra&ents[14, 15].

The described grid adaption process is simply accomplished by a build up of VGM commands, and is applicable to
any volume grid and any flow regime. The process uses algebraic d~tribution functions and blending or interpolation
algorithms. The use of algebraic manipulators significantly reduces the time required to adapt the grid, and their
simplicity reduces the labor required to use them. Additionally, these manipulators are independent of flow regime,
grid topology, and even grid composition be it overlapped or embedded, patched, or abutting.
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F@uell: Adapted wake domain grids using an isotropic scheme.
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Figure 12: Interface of the @rid engine block to the wake.

5 Wake Domain Grid Generation

During the evolution of a CFD simulation, a necessity may arise to model the wake region. Analysis of wake regions
can be done to study the effects of applying the correct boundary conditions for exit surfaces, the affects of a sting
mounting for wind tunnel configurations and the base region contributions to aerodynamics. For the case at hand,
the contributions of aerodynamic forces and the thermal environment of the X33 Venturestar dictate the analysis of
the wake domain. Generation of a wake volume grid for the solution-converged forebody grid of an X33 Venturestar
commences by selecting the topology of the domain to be generated, and the cutoff distance for the wake. The cutoff
distance was selected at twice the length of the body. The topology is a multiple block data set comprised of 15
blocks. Each block is generated in a specific order based on the availability of boundary data from newly generated
adjacent blocks. Assuming the wall surface grids have been generated, the process of generating these blocks begins
by constructing the engine block that encompasses the nozzle of the aerospike engine shown darker shaded in Fig. 12.
The topology of this block is au O-grid that traverses horn the leeside symmetry plane to the windside, as shown in
Fig. 12. The connecting edges at the symmetry plane are generated by projecting the base wall grid at the symmetry
planes to the end of the engine nozzle using straight lines. The remaining edges are then constructed as straight line
connections at the end of the nozzle, with distributions copied from the opposing face edges. The surface that serves
as an interface at the end of the engine nozzle does require the use of a 2D grid generator, but is the only surface
that requires the additional computing. The next blocks that are generated are at the end of the vertical tail, and
the end of the canted fin.

The remaining blocks that comprise the wake are constructed by generating the block above the bodyflap with
straight lines from the base to the end of the flap, and splines on the top of the block. Subsequent blocks of the
mid-engine, engine core, mid-tail, and mid-canted-fin are constructed in this order such that the interfaces to each
consecutive block serve as known data for consistency in block-to-block matches. The remaining blocks in the wake
core are generated identically to the mid section blocks. Grid point spacing continuity is enforced in all blocks by
using the known data of previously generated block interfaces.

The final set of wake core blocks is developed iteratively with VGM until monotonicity in point spacing and proper
grid clustering for resolving flow gradients about vehicle comers is a.cMeved. Grid point monotonicity spacing can be
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(a) Originalgrid (b) Grid modified with a newfunction

Figure 13: Bodyflap block modified to improve.grid effectiveness for boundary layer modeliig.

obtained through the use of the 8 different dwtribution functions available in the redistribution command of VGM[16],
or by building up a combination of the available distribution functions as well as copies of grid distributions witbin
the available volumes. The build up is simply accomplished by multiplying the contributing d~tributions by a factor
less than unity, such that the sum of the factors is unity. The results of this technique is shown in Figs. 13a and
13b. The initial dwtributions on top of the bodyflap were not conducive to viscous computations around the corners
of the geometry nor the base of the geometry, as shown in Fig. 13. The distributions in the cross-sectional direction
on top of the bodyflap, were improved by first reducing the cell sizes to 10~0 of the original values at the end points,
and then doubling the number of points. This change wss then propagated to the top of the base using parametric
re-mapping[17], to retain the current distribution at the top of the base but account for the change in distribution on
top of the bodyflap. The next direction modified wss the top of the bodyflap to the top of the base in the body to
outer boundary direction, at the end of the bodyflap. Initially this region did not have point-to-point stretching that
would properly capture a boundary layer. The d~tribution of points is improved by utilizing a copy of the current
distribution in combination with a copy of the distribution at the opposing edge on the base. The results of these
modifications in grid point spacings to improve boundary layer capture and modeling are shown in Fig. 13b. The
result of the wake core grid generation is the set of blocks shown in Fig. 14.

The final block to be generated is the outer domain that uses the wake core interfsce, and the exit from the forebody
domain, aa starting surfaces. The domain is constructed by projecting upstream grid lines, or drive curves, on the
forebody exit at the symmetry planes and. a circular cross-section at the wake exit, as shown in Fig. 15. Drive
curves represent the lines that control topology in a structured grid, because these lines “drive” the grid around the
configuration. The dashed lines identify the projected lines used in the formation of the wake, while the dotted lines
represent the straight line connections to the wake core. The large dots on the exit cross-section are the control points
used in constructing the conic section of a circle for closing off the volume. The remaining undefined surface grids
are generated with 2DTFI and GRIDGEN2D [6] at the exit, ad the volume is generated with 3DTFI. The volume

49-



——.—.—..—._— —.—_

Figure 14 Expanded view of the X33 wake core blocks.

is then improved by running the 3DMAGGS[18] elliptic sol’ver to smooth the grid and obtain orthogonal incidence
angles at the interface to the wake core. Representative cross-sectional planes are shown in Fig. 16.

This process initially consumed 18 hours of wall clock time, but a subsequently generated wake took only 2.5 hours
because the scripts were already generated, and parameter data from each block was used in the construction. A
pseudo parametric grid generation capabili~ is then afforded through the use of the block data as well as the scripts
to do the generation. The generation of this domain discretization in a generaXzed grid generation tool required
over 30 hours of wall clock time. Considering the fact that thki tool does not have a scripting language, the time to
generate esch subsequent wake field domain would have required nearly the same amount of time. Therefore, use of
the VGM code with its script language and the block data in the construction of the wake flow fields can significantly
reduce the time to do parametric studies of wake field phenomenon.
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Fi~re 15: Projected drive curves used in outer block wake construction.

Figure 16: Representative planes of the X33 wake.
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(a) Extrapolated (b) Local coordinateexpansion

Figure 17 Good and poor results from two grid expansion techniques.

6 Grid Expansion for Flow Capture

Another application of the grid generation methods of the VGM code is the expansion of a volume grid to enable flow
field capture and to correct the negative volumes that can result. The VGM code also has the capability of merging
several volume grids such that the best characteristics of each can be combined into the final volume grid. Using
this grid merging technique, any number of methods can be used to expand a volume grid. For the case at hand two
techniques are used, extrapolation along grid lines, and Iocdlzed coordinate expansions with an exponential growth
function[3]. The extrapolation along grid lines is accomplished with VGM, but produces the typical result of crossed
grid lines, as shown in Fig. 17a. Although the extrapolation does not produce a usable grid everywhere, the forebody
region of the volume grid is excellent. The second expansion, using a localized coordinate expansion, is shown in
Fig. 17b. Again, the usable portion of this grid is the aft region because the forebody region has a spike due to near
pole boundary problems which is common when using this technique.

As shown in Fig. 17a, a common side effect of applying extrapolation for grid expansion is the generation of negative
volume cells. The severity of the negative cells is usually measured by the number of cells and the number of regions
that contain the negative volume cells. Increases in these numbers indicate an increase in negative cell volume severity.
Depending on the severity of the grid line curvature, there are several methods that can be used to eliminate these
negative volume cells. These are in the order of increasing negative volume cell severity:

(1)

(2)

(3)

(4)

TFI in two dimension can be used on the most severe surface and the volume regenerated with 3D-TFI.

A spline curve, surface, or volume that smoothes over the section of negative volumes can be created accompa-
nied by an application 2D-TFI on the faces and 3D-TFI on the volume to re-generate the volume grid.

Redistributing along a coarse set of grid lines that are used as defining curves for the domain.

Merging of multiple volume grids resulting from various domain expansion techniques.

For the current situation, the fourth ttilque is used because the number of negative volume cells comprises nearly
40% of the volume grid which occur in over 8 different regions of the domain. This technique merges the forebody
region of the extrapolated grid to the loca.hzed @d point expamded grid using a small interface region. Through
the interface region, the contributions of the forebody grid are reduced from 100% at the beginning of the interface
to 0~0 at the end of the interface region. The locahzed grid expansion region is blended in an opposite manner by
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Merged

Figure 18 Correction of negative volumes through the merging of high fidelity grid regions.

increasing the contributions at the beginning of the interface region to the end of the region at the same rate that
the extrapolated grid is reduced. The results of these manipulations are shown in Fig. 18.

Of the two volume expansion methods, the merging method is more robust as the expanded grid can be obtained
through a variety of methods, and only those usable regions need be merged into a master volume grid. The transition
scheme used in thw grid merging process was a linear function. Numerous functions can be created from the existing
d~tribution functions in VGM as well as the use of the interpolation schemes in VGM. For example, expanding the
forebody region ahead of the canted fin root can be done by merging the extrapolated region on the nose to the
localized grid expansion on the middle region and mer~ng back to the original grid in the aft region. For these three
volume grids, the blendlng function couId be a combination of a sine in the nose region, a cosine in the middle region, “
and a combhed blending finction subtracted from unity for the aft region. The resulting merging function is shown
in Fig. 19 with the original and final grids shown in Figs. 20 and 21, respectively. Notice that the poor regions of the
extrapolated and local coordinate expansions are ignored infavor for the good expanded quahties of each volume grid.
By utilizing only those portions of good grid fidelity, a single master volume grid can be easily produced. The zones
that are merged have no negative cell volumes, which results in a master volume grid that has stillar characteristic
quality. Hence, another expanded volume grid can be produced though the merging of three volume grids.
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7 Concluding Remarks

It has been demonstrated in this article that the multiple zone, multiple variable isotropic adaption in three dimensions
is a powerful procedure that improves the efficient use of available grid points to capture gradients that are important
to the CFD simulation. Use of isotropic grid adaption retains most of the grid quaMy, while multiple variable
dependency provides adequate resolution of the entire flow field. The VGM code enables the use of existing geometry
and extracted grid data to produce appended wake domains. Using the scripting capability of this code, wake domain
grid generation is simple and quickly repeatable, allowing minor modifications to the resulting discretizations, thus
facilitating parametric analysis. Additionally, the scripting and data extraction capabilities of this code permits
fast and efiicient accommodation of new geometry. Development of a new volume grid can then be parametrically
driven, providing a powerful mechanism to assess design changes. The expansion of volume grids through the grid
merging technique, provides a hybrid approach for the use of straight line extrapolation and local coordinate scahg
to ensure flow capture. The grid merging approach to grid expansion enables the use of any number of grid expansion
techniques, by enabling the capture of high fidelity regions in the various expanded grids. Although this technique
is not as robust as regenerating the flow domain, it is a fast and powerful alternative that can result in high fidelity
d~cretizations. The techniques described herein are all algebraic operations which translates into reduced cost of
grid alterations because of the inherent computational speed, and significantly reduces the cost associated with using
structured volume grids for flow field analysis.
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Abstract

This paper proposes a computational method for fully automated quadrilateral meshing. Ufllke previous

methods, thk new scheme can create a quadrilateral mesh whose dwectionaMy is precisely controlled. Given

as input: (1) a 2D geometric domain, (2) a desired node spacing distribution as a scalar function deilned over
the domain, and (3) a desired mesh directionality as a vector field defined over the domain, the proposed
method first packs square cells closely in the domain. The centers of the squares are then connected by
Delaunay triangulation, yielding a triangular mesh topology. The triangular mesh is further converted into a
quad-dominant mesh or an all-quad mesh that satisfies the given mesh dwectionality. Since the closely packed
square cells mimic a pattern of Voroni polygons corresponding to a well-shaped graded quadrilateral mesh,
the proposed method generates a Klgh qufllty mesh whose element sizes and mesh directionahty conform
well to the given input.

Keywords: quadrilateral meshing, unstructured grid, mesh directionality, Voronoi diagram,
Delaunay triangulation

1 Introduction

Some FEM analyses prefer quadrilateral meshes over triangular meshes. Examples of such analyses include
automobile crash simulation, sheet metal forming simulation, and fluid dynamics analysis. It is also known
that 4-node quatillateral elements perform better than 3-node triangular elements when used in FEM
analyses of plain stress and strain[15].

Quadrilateral meshing is often a bottleneck in FEM, however, due to its severe requirements of element
shape regularity, precise node spacing control, mesh directionaMy control, and adaptive remeshing capabdity.
These requirements are also common to triangular meshing, with the exception of mesh directionality control,
which is unique to quadrilateral meshing. Quadrilateral meshing usually has a desired “mesh flow duection”
predicted by boundary geometries or the dwectiondlty of physical phenomena to be analyzed using FEM.
For example, in fluid dynamics simulation a quadrilateral mesh should al&n along shock/boundary layers
and stream lines. Similarly, in automobile crash simulation, a mesh should align along the direction of force
transmission.

Assuming that grid size distribution is given as a scalar field and the directionality is given as a vector
field defined over a domain to be meshed, we propose a computational method that creates a well-shaped,
well-aligned, graded quadrilateral mesh. The proposed approach is an extension of the bubble mesh method
that we previously proposed for triangular meshhg [23, 21, 22, 29]. In bubble meshmg, a well-shaped graded

“Kenji Shimada, Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.
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triangular mesh is created by (1) packing an appropriate number of spherical cells, or bubbles, closely in
a domain, while the sizes of the spheres are adjusted based on a specified node spacing function, and (2)
connecting the bubbles’ centers by constrained Delaunay triangulation to generate node connectivity. The
novelty of the bubble mesh process is that the close packing of bubbles mimics a pattern of Voronoi polygons
that yields well-shaped triangles.

In this paper, we extend the bubble mesh concept for quadrilateral meshing such that we pack square
cells, instead of spherical cells, closely in a domain, mimicking ideal Voronoi polygons that yield a well-shaped
quadrilateral mesh. Another major extension over the original bubble mesh is to allow the user to specify a
desired mesh directionality by a vector field.

The remainder of the paper is organized as follows. After reviewing previous work we outline our basic
approach to quadrilateral meshing. We then elaborate on the technical issues of (1) how to find node
locations suitable for quadrilateral meshing, and (2) how to connect the nodes to obtain a mesh topology
that aligns along a specified mesh dkectionahty.

2 Previous Work

There are several reviews available of mesh generation methods [27, 5, 9, 19]. Ho-Le, in his comprehensive
survey paper [9], gives a classification based on the temporal order in which nodes and elements are created.
The resultant classification is well-accepted and referred to by many other researchers. One problem, as
Ho-Le acknowledged in the paper, is that some methods do not seem to fit into any class, while others
could be put into two or more classes. In fact, as research in mesh generation has matured, most modern
algorithms utilize and combine several sub-processes to improve the quaXty and efficiency of meshing.

In this section, therefore, we summarize and review some of the key sub-processes commonly used in

existing quadrilateral meshkg methods. These sub-processes include: (1) node placement and connection,
(2) mesh template mapping, (3) element-level domain decomposition, (4) grid-based spatial subdivision, and

(5) triangular to quadrilateral mesh conversion. One complete meshing scheme can be characterized by a
combination of these sub-processes, performed sequentially or merged into a single process.

Common limitations among previously proposed approaches to quadrilateral meshing include: (1) little
or no control over mesh directionality; (2) poor control over node spacing, and/or (3) no efficient adaptive
remeshlng capability.

2.1 Node placement and connection

In this process, a mesh is constructed in two stages: (1) node placement, and (2) node connection. Node
placement and connection can serve as a complete meshmg process. The process has become popular due
to its conceptual simplicity and the availabtlty of a robust mathematical algorithm for node connection,
called Delaumzy triangulation. When Delaunay triangulation is used for node connection the triangular
mesh generated must be converted to a quadrilateral mesh by using a mesh conversion process described
later under Trhngula.r to Quadrilateral Mesh Conversion.

During node placement, an appropriate number of nodes needs to be inserted in a well distributed
configuration. Several early methods use random node placement followed by validity checks[7, 3, 4, 16]. Lee
proposed a CSG-based node placement method[12, 13] in which regular node distribution patterns prescribed
for all CSG primitives are combined by Boolean set operations into a single set of nodes.

Although most approaches place all the nodes at one time and then connect them at once in another
stepY in Frey’s and Ruppert’s methods[6, 18] two stages of node placement and connection are applied in an
iterative manner.

Shimada et al.’s bubble mesh[25] and Bossen and Heckbert’s pliant metho~2] use proximity-based forces
to find node locations suitable for anisotropic meshing.

2.2 Mesh template mapping

When used for 2D meshing or surface meshing, the template mapping technique maps a prescribed simple
mesh template such as a square grid into a given four-sided patch usitig a blendlng function. Thk mapping
technique has been one of the most popular approaches in commercial software packages. One drawback
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of this method, however, is that it is applicable only to topologically simple domains, and thus it is often
necessary for users to subdivide the domain manually into a set of simple subdomains. If thk manual
subdivision is carefully done the mesh dkectionality can be controlled to some extent. The process, however,
is highly labor intensive, and the mesh directionality cannot be controlled in a precise manner. .

2.3 Element level domain decomposition

Element-level domain decomposition refers to the process of subdividing a domain to the element level either
by: (1) iterative element extraction[l, 28, 17, 14]; or (2) recursive domain splitting to the element level.
The former is more suitable for quadrilateral meshmg, and the advancing front method, adopted in many
modern commercial packages, is one example of such an algorithm. In Blacker and Stephenson’s paving[l],
meshing fronts that start from domain boundaries are advanced to the interior of the domain, generating
quadrilateral mesh eleinents one by one. A mesh created by an advancing front type of method al@s well
along boundaries, a desirable characteristic in most engineering analysis. Such a method, however, cannot
control a mesh directionality inside the domain or generate a mesh with an arbitrary mesh directionfllty.

2.4 Grid-based spatial subdivision

Grid-based spatial subdivision methods superimpose a hierarchical grid, similar to a quadtree, onto the
domain to be meshed. Such methods are typically followed by a two-step procedure: (1) classification of
grid elements into three types, inside/outside/on-boundary and (2) adjustment of on-boundary elements to
make them consistent with the domain boundary. Yerry and Shephard’s modijied octree is a representative
method in thk category[30, 20]. A mesh created by a grid-based method typically has a strong dwectionality
in the coordinate axis directions, and it is not possible to adjust mesh directionality over a domain.

2.5 Triangular to quadrilateral mesh conversion

It is well known that any triangular mesh can be converted into a quadrilateral mesh by adding a node
to the center of each triangle and by dlvidmg the triangle into three quadrilaterals. Although the idea is
straightforward and the implementation is simple, thk process introduces a significant topological irregularity
into a mesh, and thus it is usually not practical.

More sophisticated ways to convert triangles into quadrilaterals are proposed by Heighway[8] and Jonston
et al.[10].

Heighway presents a technique for combtig two adjacent triangles into a quadrilateral. Isolated triangles
remaining in the mesh are then combined by moving them toward each other until they become adjacent
and can be combined.

Johnston proposes a three step procedure: (1) extract boundary information from mesh data, and apply
Laplacian smoothln~ (2) identi& and prioritize corner- and boundzq~elements, and pefiorm element by
element conversion by coupling elements, splitting a coupled element, and propagating the split to maintain
the conformity; and (3) combine all isolated triangles into adjacent quatillaterals, and divide the combined
five-sided elements into three quadrilaterals by introducing nodes inside.

Shimada and Itoh propose a conversion method that uses three conversion templates: (1) from one
triangle to three quadrilaterals; (2) from two triangles to four quadrilaterals; and (3) from four triangles to”
nine quadrilaterals[24]. The method first subdivides a triangular mesh into layers by offsetting boundary,
similar to the advancing front method, and then applies conversion templates within each layer.

3 Outline of the Technical Approach

This section describes our basic approach to the following quadrilateral meshing problem.

Given:

● a 2D geometric domain

. a desired node spacing dktribution d(x), given as a scalar field

. a desired mesh directionality v(x), given as a vector field
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F@u-e 1: Quadrilateral meshing procedure

Generate:

. a well-shaped, graded quadrilateral mesh that is compatible with the given node spacing and mesh
dlrectionahty

The proposed approach consists of seven steps, as illustrated in Figure 1:

Step 1: Place square cells on all vertices.

Step 2: Pack square cells on all edges.

Step 3: Pack square cells on the face.

Step 4: Place nodes at centers of square cells.

Step 5: Triangulate the domain by Delaunay triangulation.

Step 6: Selectively combine pairs of triangles to generate a quad-dominant mesh.

Step 7: Apply mesh conversion templates to obtain an all-quad mesh.

In Steps 1, 2, and 3 we find a node configuration suita,ble for quadrilateral meshing by closely packing
square cells in a domain. The reason we pack squares is that the pattern of packed squares mimics a Voronoi
diagram of a well-shaped quadrilateral mesh as shown in Figure 2. Note that the sizes of the cells are
adjusted based on a given node spacing distribution d(x) and that the directions of the squares are adjusted
based on a given mesh directionality v(x).

There are two technical issues to be solved in packing square cells tightly in a domain: (1) what are the
optimal locations of the squares? (2) how many squares should be packed to fill the domain?

To solve the first issue we use a physically-based model, similar to a particle system in computer graphics.
A proximity-based force field is defined between two squares such that the force field exerts an attracting
force or a repelling force, moving the cells so that they touch each other along their edges. Also assuming a
point mass at the center of each square and the effect of viscous damping, we solve the equation of motion
numerically to find a tightly packed configuration of cells.

The second issue of obtaining an appropriate number of squares in the domain is solved by checking the
population density and then adaptively adding or removing squares during the numerical integration of the
equation of motion, or dynamic simulation.
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Close packing of square cells for quad meshing

Because square cells are placed in order of dimension (i.e. vertices, then edges, then faces) two fixed
squares are already placed at the two endpoints when squares are packed on an edge these two end squares
are stable throughout the packing process, which prevent moving squares from escaping the range of the
edge. Similarly, when squares are packed on the face, the boundary edges are already iilled with fixed
squares, preventing moving squares from escaping the domain. In thk way we put higher priority on the
cell placement of lower dimensional elements, i.e., vertex square cells over edge square cells, and edge square
cells over face square cells. This strategy is sensible because lower order geometric elements are often more
critical than higher order elements in FEM analyses.

Once square cells are packed so that they cover the entire domain without significant gaps and overlaps,
their centers are connected by Delaunay triangulation (Steps 4 and 5), yielding a triangular mesh. Pairs of
triangles are then selectively connected to create a quad-dominant mesh that aligns along the given mesh
directionality (Step 6). When an all-quad mesh is required we further apply mesh conversion templates (Step
7). The edge lengths of the mesh elements in Step 7 are reduced by a factor of two compared with the mesh
elements in Step 6.

The next two sections, (1) Close Packing of Square Cells and (2) Mesh Topology Generation, describe
the essential elements of Steps 1 to 3 and Steps 5 to 7 respectively.

4 Close Packing of Square Cells

In this section we will first discuss how we can generate mesh directionahty over the domain. We will then “
describe how proximity-based forces and potential fields are specified so that square cells repel or attract
each other to yield a force-balancing configuration, or a closely packed configuration.

4.1 Mesh directionality

It is important that a desired mesh dwectionaWy be specified over the entire domain so that directions of
packed square cells are adjusted accordingly. Unless a desired mesh directionality is automatically generated
from a previous FEM result, the user typically gives only partial dwections or no preference. In such a case
it is important that the algorithm generates a complete mesh dkectionality over the entire domain.

To store a desired mesh directionaMy we define a background grid that covers the whole domain. The
mesh directions are then explicitly stored at the grid nodes, and for an internal point of a grid cell a mesh
directionaMy vector is calculated by linearly interpolating the directions at the four grid nodes.

If mesh directionality vectors are given at only some grid nodes we need to find the mesh directionfllty
vectors at all the others so that the mesh directionality changes smoothly over the domain.

We solve this smooth interpolation problem by using relaxation, sin-&r to Laplacian smoothing, widely
used to improve mesh element shapes. As in Laplacian smoothing, which moves a mesh node iteratively to
a location which represents the center of gravity of its adjacent node locations, the mesh direction vector at



,,
06

04
a
:
; 02
~
o
Lo

-02

0 +AA=’”” 0“5 “
-15 -15

(a) potential ~eld in the originalxbubble mesh

Figure 3:

a grid node is iteratively modified to approach an ,

. . ...
06\ ..’ .-

05

$::
: 02

$ 0.1
-O

-0.1

4,2
1.s

15

(b) new potential field for qu~drilateral meshing

Potential fields

average of the dkection vectors at its four adjacent grid
nodes.

4.2 Proximity-based potential fields and forces

In triangular meshing the ideal node configuration is a regular hexagonal arrangement. As proven in the

original bubble mesh method [25, 21, 22], such an arrangement can be obtained by defmiig a force field
sirnhr to the van der Waals force, which exerts a repelling force when two molecules are located closer
together than the stable dkdance and exerts an attracting force when two molecules are located farther
apart than the stable distance.

Let the positions of adjacent nodes i and j be xi and xj; the current dktance between the two nodes
Z(xi,Xj); the targetstable distance Zo(xi, Xj) = ~ (d(xi)) + d(xj)), which is a desired element size specified by

the node spacing function cl(x); the ratio of the current distance and the target distance w(xi, Xj) = ~;
Z(xj,x. )

and the corresponding liiear spring constant at the target distance ko. The force model used in the ongmal
bubble mesh is then written as

(1)

By integrating the above force field we obtain the following potential field around the center P of the potential
field.

{
( ‘)_l .&w4 — ~W3 + &- ’56 ~

Vp(w) = 10 16 05 W51.5
o, 1.5< w,

(2)

Figure 3(a) shows thk potential field function used in the original bubble mesh for triangular meshing.
Thk potential field applies either a repelling or attracting force between two nodes based on the following

dktace comparison. Assuming that two nodes &e adjacent to each other, a repelling force is applied if 1 is
smaller than 10, or if w < 1.0. An attracting force is applied if 1 is larger than 10, or if 1.0< w ~ 1.5. No
force is applied if two nodes are located exactly at the stable distance or if they are located much farther
apart, the cases where w = 1.0 or 1.5< w. Note that the potential field shown in Figure 3(a) has circular
stable positions–anywhere on the circle is equally stable.

In achieving a close packing of squares, however, the potential field shown in Figure 3(a) is not appropriate
because it does not take into account mesh dlrectionalky, essential to quadrilateral meshing. Considering a
mesh directionality there should be only four stable locations around a node, as shown in 3(b), and each of
the stable locations corresponds to a situation where two square cells are placed side by side with their edges
touching each other. In order to force squares to al@ this way, we need to add to the original potential
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Figure 4: Stable positions in packing square cells

field four sub-potential fields *P1, VP,, VP., and Qp. at the four corners of a square PI, Pz, Ps and Pd as
shown in Figure 4.

If the desired element size is locally uniform the radti of the four sub-potential fields should be (W– I) To,
where To is the radius of the central potential field VpO. If graded element sizes are specified, however, the
radii of the sub-potentials should be adjusted accordingly.

The potential field shown in Fi&re 3(b) is thus expressed as a weighted linear combination of the central
potential field and the four sub-potential fields, i.e.,

If = Vpo + (fi– l)(?lp,+ vp, + VP, +VP4). (3)

With the above potential field, the primary stable positions of the squares surrounding square POare Qo,

%, Cl and Q6asshownin Fiwe 4. Once these prfiary stable positions are occupied by squ~e cells, then
Ql, Qs, Q5 andQ7alsobecomeStablewsitions.

4.3 Force-balancing configuration of square cells

Given the proximity-based intercell force, we apply physically-based relaxation to find a close packing con-
figuration of square cells. Thk is also a configuration that yields a static force balance.

Due to the nonlinearity of the force and complex geometric constraints on square locations, the force
balance equation becomes highly nonlinear, and thus it is dficult to solve the equation directly by a multi-
dimensional root-finding technique such as the Newton-Raphson method.

Our alternative approach is to assume a point mass m at the center of each cell and the effect of viscous
damping c, and to solve the following equation of motionl by using a standard numerical integration scheme
such as the fourth-order Runge-Kutta method.

77ZXi(t)+ ti~(’t) = fi(’t), i=~, . . ..n. (4)

In solving Equation (4) numerically, we adaptively adjust the number of square cells packed in the
domain. This is important because we do not know beforehand an appropriate number of squares that is
necessary and sufficient to fill the region. We generate an initial configuration by using octree subdivision,
and although thk process gives a reasonably good guess of the number of squares it is still not optimal. We
therefore implemented a procedure to check a local population density and to add more squares in sparse
areas and delete squares in over-packed areas.

1The first order equation can also be used [2]. In either case, the essentialpoint is that after a Certainnumberof iterations
the system reaches a virtual equilibrium, whereboth the velocity term & and the acceleration term 5 approach zero, leaving a
static force balance.
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Figure 5: Converting a triangular mesh into

(c) quad mesh

a quad-dominant mesh

Note that the dynamic simulation and the adaptive node population control described above make efficient
adaptive remeshhg possible because we do not need to rebuild a mesh from scratch when the domain

geometry, node spacing, and/or mesh directionality is slightly modified.

5 Mesh Topology Generation

Once a force-balancing configuration of squares is obtained, the squares’ centers must be connected to
form a complete quadrilateral mesh. In connecting nodes, Delaunay triangulation is fist applied to create
a triangular mesh, and the triangular mesh is then converted into a quad-dominant mesh by selectively
merging two adjacent triangular elements into a quadrilateral element in such a way that the resultant mesh
aligns along the specified mesh directionahty (see Figure 5). In the final step the quad-dominant mesh is
converted into an all-quad mesh by applying two mesh conversion templates: (1) splitting a quad element
into four quad elements, and (2) splitting a triangular element into three quad elements.

In converting a triangular mesh to a quad-dominant mesh we use the following three steps so that the
resultant mesh al@s along the specified mesh directions. This procedure is based on the practice of removing
the shared edge between two adjoining triangles in order to form a quadrilateral element.

1. For the ith non-boundary edge of a triangular element, calculate a score Ai that measures how well
the resultant quadrilateral element aligns along the specified mesh directions if the edge is removed to
form a quadrilateral.

2. Make a priority queue of all the non-boundary edges by sorting the scores assigned to the edges. “

3. Delete edges one by one from the top of the priority queue-one edge deletion creates one quadrilateral
element.

The quality score Ai of a possible quadrilateral element is calculated by comparing the directions of the
four side edges of the resultant quadrilateral element with specified mesh direction vectors at the centers of
the four edges. For the jth side edge of the quadrilateral element, we take the absolute value of the inner
product Aij ofi (1) the unit vector uij of the side edge and (2) the mesh direction vector vii at the center
of the edge or the unit vector orthogonal to the mesh dkection-. ~ij is thus expressed

.

{~

Illij “ Vijl , ll~ij “ Vijl Z *
Aij =

1 – (U~j - Vij)2, lt~ij .Vijl < *

where j = 1,2,3,4, the subscript i represents the index of a quadrilateral element, and the subscript j
index of the side edge of the quadrilateral element. Note that the the value of Aij is bounded between

and 1.

(5)

the
&
&
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Using the A defined above we can calculate the score Ai as follows, and it measures how well the ith
quadrilateral element aligns along the given mesh direction vector v(x)

(6)

The value of Ai is bounded between ~ and 1, and as Ai approaches 1 the ith quadrilateral element aligns

more accurately along the mesh direction vector field.

6 Results and Discussions

The proposed quadrilateral meshing algorithm has been implemented in C and C++ on Unix workstations
(IBM RS6000 and SGI 02) and Windows PCs.

In this section we measure the quaMy of generated quadrilateral meshes using two types of mesh irregu-
larity measures, topological irregularity and geometric irregularity.

For topological irregularity, we use the following measure [24]:

(7)

where & represents the degree, or the number of neighboring nodes, and n represents the total number of
nodes in the mesh. D = 4 if the ith node is an internal node; D = 3 if the ith node is a boundary node. As
the mesh becomes topologically similar to a structured grid thk topological irregularity approaches O, but
vanishes only when the mesh is perfectly structured, a rare situation. Otherwise, it has a positive value that
measures how much the mesh topologically differs from a perfectly regular structured grid.

For geometric irregularity we detie the measure, e~, that is the ratio of the radius of the minimum
inscribed circle 2 to the radius of the mm-mum circumcircle 3. Geometric irregularity S9 is thus calculated
as . m

(8)

(L-4where gi = ~ ~i , m is the number of quadrilaterals, r~ the minimum inscribed circle radius of the ith

quadrilatera~,”and &-the maximum circumcircle radius of the ith quadriiateral. Since the ratio r~/Rj takes
its maximum value ~ for a perfect square element, an ideal element, the smaller the value of&g, the more

geometrically regular the quadrilateral mesh.
Five meshing results are shown in F@ures 6,7,8,9, and 10, and some statistics are shown in Table 1 and

Figure 11 for the first four meshes. Table 1 summarizes the mesh statistics including: (1) the numbers of
mesh nodes and elements; (2) CPU times for the initial meshing and CPU times for 100 iterations of dynamic
simulation; and (3) mesh irregularity measure. All the CPU times are measured on a SGI 02 workstation
with a R5000/180MHz CPU.

In generating Mesh 1 and Mesh 2 shown in F@mes 6 and 7 respectively the vector fields that represent
desired mesh directions are automatically generated from the boundary geometry. The final quadrilateral
meshes are thus aligned along the boundary duections. The node spacing functions are uniform so that the
domain is packed with squares of a uniform size, yieldlng uniform quadriiateral meshes.

In Mesh 3 shown in F@ure 8 a non-uniform node spacing function is specified to generate a graded
quadrilateral mesh. Note that the sizes of the packed square cells in Figure 8(c) are adjusted based on the
node spacing function shown in Figure 8(b), yielding the well-shaped, graded quadrilateral mesh shown in
Figure 8(f).

Mesh 4 and Mesh 5 shown in Figures 9 and 10 respectively are meshes of the same geometric domain. The
two meshes are created, however, using different mesh dwection vector fields. In Mesh 4 the mesh directions
are specified so that they align along the domain boundary, and in Mesh 5 the mesh directions are uniform.
Note that both meshes are well al@ed along the specified mesh directions.

zThe ~inimum inscribed circle is the smallest circle tangent to at least three edges Ofa quadrilateral element.
sThe mmimum circumcircle is the largest circle that goes through at least three vertices Ofa qu~rilater~ element.
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Table 1: Mesh statistics.

Number of Number of CPU time
Mesh

CPU time Mesh irregularity .

elements in nodes, quad, andtri initial mesh 100 iterations* after convergence

all-quad mesh in quad-dominant mesh

Mesh 1 743 222, 167, 25 0.787 sec. 4.366 sec.

Mesh 2

&t= O.18468 C9 =0.09933

1748 488, 401, 48 1.259 sec. 11.631 sec.

Mesh 3

&t= O.12705 &g=0.08428

617 166, 134, 27 0.660 sec. 2.480 sec. Et = 0.19880 S9 = 0.08841

Mesh 4 804 239, 180, 28 0.794 sec. 4.432 sec. et = 0.13389 .s9 = 0.09867

* Approximately 50 to 100 iterations are sufficient to generate a reasonably good mesh.

7 Conclusion

We have presented a new physically-based method for well-shaped, graded quadrilateral meshing of a 2D
region. Our central idea was to pack squares closely in a domain to mimic a pattern of Voronoi polygons
corresponding to a well-shaped, graded quadrilateral mesh. To obtain a close packing of squares, we proposed
a physically-based approach using a proximity-based potential field.

The most powerful feature of this new approach is that we can specify arbitrary mesh directionality as a
vector field defined over a domain as well as arbitrary node spacing as a scalar field. The mesh directionality
can be either: (1) manually specified by the user; (2) automatically generated from domain boundary
directions; or (3) automatically generated from a previous analysis restdt.

One advantage of our physically-based packing of square cells is that the quadrilateral elements generated
are so well-shaped that no further smoothing or topological cleanup [26, 11] is necessaxy. Most previous
approaches require smoothing or topological cleanup to improve the mesh quaMy, and these operations
often destroy the node spacing or mesh directionality in the original mesh.

Another advantage of using dynamic simulation is that it makes adaptive remeshing efficient. Adaptive
remeshmg is necessary in some FEM analyses in which the domain boundary, node spacing, and/or mesh
dh-ectiormhty change over time. Fluid dynamics simulations with moving boundaries and large deformation
structural analyses fall into this category. In these analyses it is possible that a mesh becomes too dktorted
over time to yield a tild computational result, and the mesh has to be updated. Our method can handle thk
remeshing efficiently because it updates the mesh easily by running a few iterations of dynamic simulation
without constructing the new mesh from scratch.

A potential limitation of the proposed method is its relatively expensive computational cost compared to
some of the purely geometric approaches. The method, therefore, can best be uttilzed in applications that
benefit from regular element shapes, well-controlled element sizes, and well-controlled mesh directionaMy.
Such applications include FEM analysis of thermal/fluid dynamics simulation, automobile crash simulation,
and sheet metal forming simulation.

Finally, like the original bubble mesh method for triangular and tetrahedral meshing, the proposed
method can be naturally extended to quadrilateral meshing of a parametric surface and hexahedral meshing
of a solid by packing cubical cells instead of square cells.
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(a) mesh directionally (b) packed square cells

(c) triangular mesh (d) quad-dominant mesh

Figure 6: Mesh 1: uniform size, mesh dwectionality

(e) all-quad mesh

aligned along boundary
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(a) mesh directionaMy (b) packed square cells

(c) triangular mesh (d) quad-dominant mesh (e) all-quad mesh

Figure 7: Mesh 2: uniform size, mesh directionaMy aligned along boundary
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(d) triangular mesh (e) quad-dominant mesh

Figure 8: Mesh 3: graded size, uniform mesh
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(a) mesh directionality (b) packed square cells

(c) triangular mesh

Figure 9:

(d) quad-dominant mesh

Mesh 4: uniform size, mesh dlrectionahty
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Figure 10: Mesh 5: uniform size, uniform mesh directionality
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Abstract: This paper proposes an automated quadrilateral meshing technique based on the conversion of triangular
meshes. Given a triangular mesh and a vector field representing the desired directionalityy of quadm”lateral elements, our
new approach generates a well-shaped and well-aligned quadm”lateralmesh. In the approach> the values of three scalar
functions are first calculated for each pair of adjacent triangular elements. These functions evaluate the following
conditions: (1) directionalii!y control, (2) optimization of the shapes of elements, and (3) reduction of the number of
isolated triangular elements. Pairs of triangular elements are then converted into quadm”lateralelements in order of
the sum of the values of the three functions.

Keywords: quadrilateral mesh, square packing, bubble mesh, directionality.

1 Introduction

In some types of FEM analysis, such as sheet-metal forming simulation and automobile crash simulation, quadrilateral
meshes are preferable to triangular meshes because they allow more accurate and efficient simulation. However,
conventional quadrilateral meshing techniques do not always satisfy the requirements of such simulations. We think
that quadrilateral meshing techniques should satisfy the following requirements:

Requirement 1: Fully automated operation
For example, mapping methods [9], which are implemented in many commercial meshing programs, require
manual operations by users to decompose given geometric domains into triangular or quadrilateral subdomains.
Manual operations should be omitted from the meshing procedures, because such operations sometimes require
lengthy design processes.

Requirement 2: Adaptive control of the size of elements

For efficiency of simulations, it is desirable that the size of elements should be freely controlled, and that fine
elements should be generated only in regions that have sensitive solutions.

Requirement 3: Directionality control of quadrilateral elements
Many simulations require quadrilateral elements to be aligned along the boundary of given domains or physical
phenomena. It is therefore desirable to generate quadrilateral elements aligned along arbitrary vector fields
encompassing the geometric domains given by users.

Requirement 4: Well-shaped quadrilateral elements
Generally, it is desirable that all quadrilateral elements in a mesh should be almost ware or rectangular-
Distorted elements often give poor solutions in the abovementioned simulations.
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One of the most popular quadrilateral meshing approaches is the conversion of triangular meshes [2] [3] [4] [5] [6].
Here, Requirements I and 2 are satisfied by the use of such conversion techniques, since there are triangulation
methods that can automatically generate size-controlled elements in complicated geometric domains. However, we do
not think that the conversion techniques always satisfy the other two requirements which concern the directionality
and shape of elements. We think that the following Condition A needs to be satisfied in order to meet Requirement
3. Similarly, we think that the following Conditions B and C need to be satisfied in order to meet Requirement 4:

(Condition A) Alignment of elements with the given directions
It is desirable that the given direction and the four edges of a quadrilateral element be almost parallel or
perpendicular.

(Condition B) Improvement of geometric irregularity
It is desirable that the angles of the four vertices of a quadrilateral element be approximately right angles.

(Condition C) Reduction of the number of isolated triangular elements
It is desirable that the largest possible number of adjacent triangular elements be coupled and converted into
quadrilateral elements.

In this paper, we propose a new conversion method that meets all of the above three conditions. This method first
calculates the values of three scalar functions that evaluate the abovernentioned three conditions. Pairs of triangular
elements are then converted” into quadrilateral elements in order of the sum of the values of the three functions.

2 Related Work

2.1 Node Generation Met hods Using Particle Models

Many triangulation approaches first generate a set of nodes inside a given domain, and then connect them to form
triangular elements. We previously proposed node generation methods that use particle models.

(a)Bubblepacldng (b)Trfengular elements
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(d)Quadrilateralelements

Figure 1: Voronoi diagram and generation of elements.

Shlmada proposed the bubble mesh method [7],which tightly packs spherical objects that exert repulsive or attractive
forces on each other. The packed spherical objects, called bubbles, form a pattern like the hexagonal pattern of a
Voronoi diagram, and therefore well-shaped triangular elements can be generated by connecting the centers of these
bubbles (see Figures 1 (a) and 1 (b)).

The method properly distributes nodes in complicated geometric domains, and the density of nodes can be adaptively
controlled according to a scalar function representing the size of the bubbles. These characteristics allow the method
to satisfy Requirements 1 and 2 if the elements are properly generated.

The method generates triangular meshes by connecting the centers of bubbles, using the Delaunay triangulation
method. The triangular meshes are generated by coupling most of the triangular elements [6]. However, well-shaped
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quadrilateral elements are not always generated by merging regular triangular elements. Moreover, such conversion
of regular triangular meshes often causes topological irregularities.

Shimada, I.&o, and Itoh proposed the square packing method [8], which tightly packs square objects instead of
bubbles. The packed square objects form a pattern like square pattern of a Voronoi diagram, and well-shaped
quadrilateral elements can be generated by connecting the centers of these squares (see Figures 1 (c) and 1 (d)).

The method properly distributes nodes in complicated domains, and the density of nodes can be adaptively controlled,
aa in the bubble mesh method. Moreover, the square packing method aligns nodes with a vector field given by a
user. Figure 2 (a) shows an example of a vector field, while Figure 2 (b) shows an example of squares packed by the
method. The figures demonstrate that the method distributes nodes along the given vector field, indicating that tbe
square packing method can satisfy Requirement 3 if the quadrilateral elements are then properly generated.

The method generates triangular meshes by connecting the centers of squares, using the Delaunay triangulation
method. Note that triangular elements generated by the square packing method are not regular but almost right-
angled isosceles triangles (see Figure 2 (c)). When two such adbcent trianmdar elements that share their hypotenuses
ar~ coupled, they can-be ~onver;ed into a well-shaped quadril&eral eleme-nt.

. .

I.Ez’ENl– –:-- ////\\\\\

Figure 2: Example of (a) a vector field, (b) packed squares, and (c) a triangular mesh.

2.2 Quadrilateral Elements Generation

This section introduces some typical conventional quadrilateral mesh generation methods.

Mapped mesh

This method first manually divides a given region into a group of triangular or quadrilateral subdomains, and then
divides the subdomains into small elements [9].The method is not fully automated, and it is difficult to freely control
the distribution of the size of elements. Therefore, it does not satisfy Requirements 1 and 2.

Grid-mapping

This method first maps a lattice grid inside a given region, and then connects nodes on the ends of the grid to nodes
on the boundary of a given region [9]. Poor elements are often generated around the boundary, and it is dMicult to
freely control the distribution of the element size. Therefore, the method does not satisfy Requirements 2 and A.



—-.

Advancing front

This method recursively generates elements along the boundary of an empty region, until elements occupy the entire
region [10]. In typical implementations of the method, nodes are generated simultaneously with elements; however,
a set of nodes previously generated by using one of the abovementioned particle-based methods [7] [8] can be used.

Conversion of Triangular Elements into Quadrilateral Elements

This method first pairs together adjacent triangular elements in some particular order, and converts them into
quadrilateral elements by eliminating their shared edges (see Figure 3 (a)). When the process is complete, most
of the triangular elements have been converted into quadrilateral elements, and finally a quad-dominant mesh that
includes a small number of triangular elements is generated. If an all-quadrilateral mesh is necessary, the templates
described in 161are useful. They convert a triangular or quadrilateral element into half-size quadrilateral elements
(see Figure 3-(L)).

A.-a
u-w

(a) Mesh conversion
(b) Templates for generating

all-quadrilateral meshes

Figure 3 Conversion into quadrilateral mesh.

In the above conversion methods, the quality of quadrilateral meshes strongly depends on the order in which pairs
of adjacent triangular elements are converted. The algorithms of the conventional methods can be categorized into
the following three types:

1.

2.

3.

Optimization of geometric irregularities. In this approach, the scalar function representing the shape of quad-
rangles generated from all possible pairs of adjacent triangular elements is first calculated, and the unprocessed
triangle pairs are then converted in order of the value of this function [2] [3]. The approach satisfies Condition
B, but does not meet the other two conditions.

Minimization of the number of isolated triangular elements. In this approach, the number of unprocessed
adjacent triangular elements Nt for each triangular element are counted, and triangle pairs for which the value
of NL of at least one triangular element is 1 are then converted [4] [5]. The approach satisfies Condition C, but
does not meet the other two conditions.

Belt-shaped decomposition of triangular meshes. In this approach, groups of triangular elements are first created
according to the t~pological dktm-ce of each element &n arbit~ary ‘marked n~des, and triangular elements
in each group are then coupled [6]. The approach attempts to satisfy Conditions A and C, but it sometimes
generates poor meshes when the grouping process does nc)t work properly.

3 New Conversion Method with Directionality Control

In this section, we propose a new method for generating quadrilateral meshes by converting triangular meshes. Our
implementation first applies node-generation methods such as the square packing method [8], and then connects them
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by the Delaunay triangulation algorithm to form a triangular mesh. The new method then evaluates the quality of
all the possible quadrangles that can be generated by merging pairs of adjacent triangular elements, and converts the
pairs in order of the evaluation results.

Such a quadrilateral element generation procedure can be also realized by the advancing front methods. However,
we think that the new conversion method has the following advantages:

1.

2.

3.1

Delaunay triangulation and mesh conversion are easier to implement, since the advancing front method has
complicated procedures for managing the topology of empty regions.

The order of quadrilateral element generation is nearly optimized in the new conversion method, while the
advancing front method always generates quadrilateral elements starting from the boundary of a given region.

Scalar functions for three conditions

The new mesh conversion method uses scalar functions FA (Pi,j ), FB (Pi,j), and Fc (Pi,j), to evaluate the above-
mentioned three conditions. Here, Pi,j denotes a pair of adjacent triangular elements Ti and Tj that share an edge
of a triangle. The method first calculates the values of these functions for all possible pairs of adjacent trianWlar
elements. The pairs are then converted in order of the sum of the values of the three scalar functions.

The method uses a vector field to represent the desired mesh directionality, as in the square packing method [8].

Vector field

///

FA(P1,2)c FA(P3,4)> FA(P5,.J

(a)Function for Condition A

ElE14
~(~,2)>Fs(~,4)>FB(P5,6)

(b) Function for Condition B

lz3Eiz
N,=l

4
3

~\6
9’

1
2 +8 10

11112

Fc(P1,2 )>0, Fc(P3,4) >0, ....

(c) Function for Condition C

Figure 4: Scalar functions for three conditions.

Scalar function for generating elements aligned along the vector field

The function ~,4(Pi,j) is used to evaluate Condition A. We implemented it as the following equation:

(1)

Here, L?i denotes the unit vector of an edge of the quadrilateral elements generated from Pi,j, while V denotes the
unit alignment vector according to the given vector field at the center of the quadrilateral element, N denotes the
unit normal vector of the quadrilateral element, and Vo denotes the outer product of N and V. The function returns
a higher value, when the edges and the vector are parallel or perpendicular (see Figure 4 (a)). Many quadrilateral
elements aligned along the vector field are generated by converting pairs of triangular elements in order of the value
of FA.
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Scalar function for generating well-shaped quadrilateral elements

The function FB(Pi,j ) is used to evaluate Condition B. We implemented it as the following equation:

~B(pi,j) = 4.0 – ~~=l(~li-~(i+l)%4) (2)

Here, Ei denotes the unit vector of an edge of the quadrilaterid elements generated from Pi,j. It returns a higher

value when the angles of the vertices of the quadrilateral element generated from Pi,j are almost right-angled (see
Figure 4 (b)). Many well-shaped quadrilateral elements are generated by converting pairs of triangular elements in
order of the value of FB.

Scalar function for minimizing the number of isolated triangular elements

The function FC (Pi,j ) is used for Condition C. It returns a positive value only when the only unprocessed adjacent
triangdar element of Ti is Tj, or the only unprocessed adjacent triangular element of Tj k Ti; otherwise, it returns
zero. When PiJ is not converted into a quadrilateral element but the value of FC is positive, it means that an isolated
triangular element is to be generated. The number of isolated triangular elements is reduced by converting pairs of
triangular elements in order of the value of Fc. We implemented it as a constant value.

!&ure 4 (c) shows examples of the values of this function. In the mesh, triangular elements Ts and TEihave already
been coupled and converted. Similarly, T7 and Ts, and TI I and T12 have been coupled and converted. T1, T~, T9, and
T13 have only one unprocessed adjacent triangular element, and therefore the values of FC (P1,2), Fc (P3,4), FC (%1o),
and FC (Ps, 1s) become positive.

3.2 Procedure for converting triangular elements

The procedure for converting triangular elements into quadrilateral elements in the new method is as follows. Here
a, b, and c are coefficients representing the importance of Conditions A, B, and C.

1. Calculate the value of VI = aF,4 + bFB for each pair of adjacent triangular elements. pairs that generate
well-shaped and well-aligned quadrangles have higher values.

2. Sort the triangle pairs according to the value of V1, and register them in a list L1.

3. Calculate the value of FC for each pair of adjacent triangular elements. If FC is positive, register the pair in a
list L2, and calculate the value of VZ = UFA + bFB + CFC. The latter value is higher than that of VI, since the
pairing should place high priority on not causing isolated triangular elements.

4. Extract from L1 the triangle pair that has the highest value V1m.=. Similarly, extract from LZ the triangle pair
that has the highest value VZ~~z. Compare the values VI~~z and V2~~., and select the triangle pair P that
has the highest value.

5. If at least one of two trian~lar elements of P, Ti and Tj, has been marked,

(a) Eliminate P horn L.1 or L,.

(b) Go to 4.

6. If both Ti and Tj are unmarked,

(a) Convert P into a quadrilateral element.

(b) Eliminate P from L1 or Lz.

(c) Mark Ti and Tj.

(d) Extract unmarked triangular elements T. from adjacent triangular elements of Ti and Tj.

(e) Calculate the values of FC for triangle pairs that include T*, since the number of unmarked adjacent
triangular elements of T. may become 1 at that time.



7.

(f) If there are any triangle pairs for which the value of FC is positive, register them in Lz, and calculate the
value of VZ.

(g) Go to 4.

Repeat 4, 5, and 6 until both L1 and LZ become empty.

4 Results

The new conversion method was implemented and executed on an IBM PowerStation RS/6000 Model 42T (AIX
4.1.4). Some results are given in this-section.

Figure 5: Quad-dominant meshes generated by conventional and new methods.

Table 1: Comparison between conventional and new methods.
Computation time (sec.) Geometric irregularity Number of triangles

Conventional method 0.09 3.106304 47
New method 0.14 2.698476 43

Figure 5 shows the meshes generated by our conventional method [6] and the new method. In the new method,
the values of the coefficients are a = 0.5, b = 1.0 and c = 0.3. The meshes were obtained by converting the
same triangular mesh generated by the square packing method with a vector field, as shown in Figure 2. Table 1
shows the computation times of the two methods and the quality of the generated meshes. These results show that
the conventional method does not always generate well-shaped and well-aligned meshes; however, this problem is
dramatically reduced by the new method.

Here, the values of geometric irregularity are calculated as the ratio of the circumscribed and inscribed circles of
elements. Generally, well-shaped meshes have lower values for the geometric irregularity.

Figures 6 and 7 show the packed squares, triangular meshes, and quadrilateral meshes generated by the new method,
when the values of the coefficients are a = 0.5, b = 1.0, and c = 0.3. The packed squares were generated by using
a scalar field representing the dktribution of the sizes of elements. The results show that the method generates
well-shaped and well-aligned meshes in which the sizes of elements are adaptively controlled.



.

Figure 6: Quad-dominant meshes with adaptively controlled sizes of elements (l).

Figure 7: Quad-dominant meshes with adaptively controlled sizes of elements (2).

F@e 8 shows the meshes generated by setting the value of the coefficient a to 0.0, 0.15, and 0.5, and the values
of the other coefficients to b = 1.0 and c = 0.3. Figure 9 shows the meshes generated by setting the value of the
coefficient c to 0.0, 0.55, and 1.0, and the values of the other coefficients to a = 0.5 and b = 1.0. The meshes were
obtained by converting the same triangular mesh generated by the square packing method with a vector field, as
shown in Figure 2. Table 2 shows the quality of the quadrilateral meshes. These results show that the values of the
coefficients should be carefully adjusted according to users’ requirements.

Finally: we observed how changing the number of nodes inside the same region affected the computation time for the
new method. Table 3 shows the computation time for the Delaunay triangulation and mesh conversion processes.
These results show that the computation time is more than proportional to the number of nodes. Actually, it can
be regarded as O(n log n), where n denotes the number of nodes, since the mesh conversion method includes the
sorting process. If the time needs to be reduced, it is useful to classify pairs of triangular elements according to the
evaluation, instead of using the sorting process. The order of element conversion is slightly changed by using the
classification process; however, in many cases the results are acceptable.

84



Figure 8: Quad-dominant meshes obtained by setting the value of the coefficient a to 0.0, 0.3, and 1.0, b to 1.0, and
c Lo 0.3.

Table 2: Comparison by changing the values of coefficients.
b Geometric irregularity Number of triangles

0:0 1.0 0:3 3.901622 31
0.3 1.0 0.3 2.760574 41
1.0 1.0 0.3 2.697353 45
0.5 1.0 0.0 2.697353 45
0.5 1.0 0.55 2.906827 35
0.5 1.0 1.0 3.111585 31

5 Conclusion

We have proposed a new method for converting triangular meshes into quadrilateral meshes. The method uses three
scalar functions for evaluating directionality, the shape of quadrilateral elements, and the reduction in the number
of isolated triangular elements. In this way, it generates well-aligned and well-shaped quad-dominant meshes with
small numbers of triangular elements.
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Abstract: A novel method is presented for automatically generating quadrilateral meshes on arbi-
trary two-dimensional domains. Global minimization oj a potential function governs mesh forma-
tion and characteristics. Comprised of several terms, the potential function distributes the elements
throughout the domain and aligns the edges of the elements to form valid connectivities. If there are
any remaining unlinked element edges, the local connectivity is examined and a “hole eliminationtt
algom”thmis applied that successively finds alternative connectivities. Unlinked edges, representing
holes in the mesh, are moved to either coalesce, or to a boundary. The components of the potential,
the minimization procedure, and the connectivity refinement algorithm are presented. The method
shows promise for extension to automatic three-dimensional hezahedral meshing.

Initial conditions required to ensure mesh closure include an even number of elements on the bound-
ary and a closed bounday. The desired mesh characteristics are programmed into the algorithm. A

Poisson’s solution scheme is utilized to generate a better initial placement, density, size and orien-
tation of elements, leading to faster and more robust mesh closure. A number of example geomettv”es
have been meshed.

Keywords: Automatic quadrilateral meshing, global minimization-based meshing, mesh, compu-
tational mechanics.

1. Introduction and Motivation

The use of finite element codes is accelerating in industry, science, and academia [10]. Driven by cheaper
computing, shorter design cycles, and costlier laboratory and destructive testing, this acceleration is taxing
the ability of analysts to keep pace. In an attempt to shorten the design cycle, and to allow the analyst
to focus on the results, many codes are turning to automated generation of meshes. In fact many modern
designs require meshes which if generated by hand would take longer than the entire allotted design cycle
[19, 13]. Evolutionary problems (where the model changes as the analysis progresses) and adaptive mesh
refinement procedures also require robust, reliable and repeatable automatic mesh generation algorithms.

Many problems plague current methods for generating unstructured meshes. The most often used meshes
are triangular/tetrahedral and quadrilateral/hexahedral meshes. Triangular/tetrahedral meshmg is well
understood, but many analysts dkdike triangular/tetrahedral meshes. This dislike is due to the fact that
triangular/tetrahedral meshes are inherently stiffer than quadrilateral/hexahedral meshes. Thk forces the
use of more, or higher order, elements to produce the same level of accuracy [1, 12]. No reliable, widely
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accepted method of automatically generating good quality, unstructured, quachilateral or hexahedral meshes
has been adopted. The current state of the art in the field of quadrilateral meshing is the Paving algorithm
which has some problems closing local discontinuities such as two elements needing to attach to five elements
or two elements overlapping in space. These discontinuities occur when multiple advancing fronts of elements
converge at “unacceptable” angles and densities [20]. Several other reliable but less accepted or less automatic
algorithms are available [2].

In an attempt to find a new approach to these problems, Sandia National Labs and the University of New
Mexico have developed a new algorithm. This algorithm is based on using a 2D particle model to govern
the movement of each element and then forming links between particles to create a completed mesh. By
creating a generalized functional that relates each quadrilateral element directly to the geometry and to
the other elements, the global problem is discretized without a loss of generality. Using methods borrowed
from physics, chemistry, and other scientific computational methods, a “mostly connected” mesh is created.
Topologically-based connectivity improvement tectilques are then utilized to close the remainder of the
mesh. While mesh refinement is sometimes useful to alleviate the problem of acute angles, no smoothing
is required as the global minimization algorithm uses a technique very similar to existing mesh smoothing

algorithms (known as Relaxation Smoothing [8]) to smooth the mesh during its creation.

During the course of developing this method, it was necessary to create an intlastructure which would allow
the algorithm to be easily studied and debugged, and allow flexibility in the data structure of the mesh at
various stages of the mesh creation. To this end, the meshing tool was implemented in the CoMeT (Com-
putational Mechanics Toolkit) framework which is described in detail by Panthaki et. al. [15]. (Additional
information on the CoMeT knework can be obtained at http://www. arc.unm. edu/CoMe~. A new mesh-
ing subsystem was added to CoMeT to facilitate development of this and other mesh generation schemes.
CoMeT provides software utilities that allow the algorithm developer to graphically view the state of the
mesh during execution. CoMeT also provides an interpreted, extensible language that is used to modi~, test
and debug the meshkg algorithm. Changes can be made to the flow of the algorithm, often without the need
to modify any of the underlying C++ code. These changes allow the algorithm developer to interactively
modify and test various algorithmic parameters including the actual flow of the algorithm and proved useful
during the developmental stages of this meshing tool. The graphical debugging tools and animation tools,
of course, provided insight into the runtime behavior of the meshing algorithm.

While still a prototype tool, this meshmg algorithm is a considerable step toward meeting the goal of robust,
fully-automatic all quadrilateral mesh generation over arbitrary two-dimensional domains. The essence of the
algorithm is promising for extension to fully-automatic three-dimensional hexahedral meshing. Furthermore,
the mesh subsystem developed in CoMeT will make future research on advanced meshkg algorithms much
simpler. So far, all the research has been targeted towards aclieving robust closure of meshes (resulting
in a topologically-vdld quachilatera.1 mesh) using any arbkrary, user-speciiied number of elements over any
arbitrary two-dimensional domain. Little emphasis has been given to either the final qualty of the resulting
mesh or the computational efficiency of the algorithm. The next phase of the research will address these
issues as their resolution is critical to the eventual adoption of thki algorit~ into analysts’ tool box of
meshing tools.

2. Global Minimization-Based Quadrilateral Meshing Algorithm

A functional is used to drive a dynamic simulation in a manner similar to computational chemistry and
molecular biology simulations [4, 11, 6]. Use of a functional to represent desirable relationships between
elements, the geometry and other elements makes the method extensible to 3D or to genertilzed surface

meshing. Only the functional needs to be changed to mod~ the bulk of the program’s behavior. An
implicit goal of the method is to mhirnize the user input required to create a topologically-valid, high
qua.lky mesh that captures the geometry of the domain as well as it can, using the criteria specified by the
user.
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2.1. Overview of the Algorithm

In creating a meshing tool that provides a global approach to all the various stages of mesh generation, all
data are distributed at the lowest possible object level. All particles have the same level of knowledge about

“ their surrounding conditions and act as independently as possible. A number of methods were borrowed
from particle physics, and molecular dynamics to control element movement and linking, with the final mesh
being completed using one of several methods developed for coalescing “holes”, (see Figure 1), or removing
them at the mesh boundary.

After establishing the 2D geometry, particles
are placed using one of several user-prescribed
methods as described below. At present the
main constraint on particle placement is that
a layer of elements must be attached to the do-
main boundary. Also the system is designed
to allow the particle si~ to be defined ac-
cordhg to user criteria. The iritial size for
a particle is maintained throughout the algo-

Wm -tau

rithm. The functional is then applied to con- Figure 1. Detail of a Mesh Which Shows a ‘l!ri-

trol the movement of the particles in several angular Hole Between Quadrilateral Elements.

phases.

● Initially a boundary mesh of particles is attached to each boundary of the domain, and interior particles
are placed as directed by the user (see Section 2.2).

● The second phase of the simulation distributes the particles throughout the domain to be meshed, using
simple particle-to-particle and particle-to-boundary repulsive forces as described in Section 2.3.2. The
simulation then runs until an equilibrium (within a user-speciiled tolerance) position is reached. In
cases where the initial input is known to have good gradation(e.g,, Poisson placement [9]), this step
may be omitted.

. For the third phase, each particle finds the best match it can for each arm end (see Section 2.3.3) and
creates a link. In a similar fashion to the way atoms form covalent bonds to form a molecule, each
arm then has an attractive force based on the distance to its bond paxtner (see Section 2.3.4). Each
link also creates a force to align each particle as well as possible with the other particles to which the
particle is linked (see Section 2.3.4). When the original input is not well graded, this phase is continued
until the system is deemed to be in an approximate state of force equilibrium.

● In the final phase, the algorithm locates the unliied particle arms and determines the best closure
states of the “holes” they belong to (see Section 2.4). These holes are then coalesced or moved to the
boundary to close the mesh.

The result is a closed, topologically valid quadrilateral mesh containing approximately the distribution of
elements specified by the user. Note that the final phase of the algorithm may result in the addkion or
removal of a few elements on the boundary - future improvements will work to eliminate thk aspect of the
algorithm as it interferes with the need to maintain mesh compatibility across shared domain boundaries.

2.2. Initial Particle Placement

As with any nonlinear problem, the closer the iritial guess is to the final solution, the shorter the time
to convergence. In this research there are also multiple solutions and it has been found that better initial
conditions also favor better finished meshes.
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a) Completed Particle Mesh U-sing Random Placement

b) Completed Particle Mesh Using Poisson’s Placement

Figure 2. Compariso; of Two Initial Placement Methods - Dual Representation
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a) Completed Quadrilateral Mesh Using Random Placement

b) Completed Quadrilateral Mesh Using Poisson’s Placement

Figure 3. Comparison of Two Initial Placement Methods - Quadrilateral Mesh Represen-
tation



As an example, two meshes of a dog-bone shape are shown in Figure 2. The top series was created using an
initially random placement. This method simply places a predeiined number of particles evenly spaced on
the boundary and then scatters the remainder randomly throughout the interior. In this case 235 particles
were used to mesh the figure with 81 of them on the boundary. The bottom figure is a comparable mesh
created using a placement technique called Poisson’s placement method based on a local feature size, which
is calculated using a boundary integral solution [9]. The Poisson’s placement method created a mesh which
was smoother around the corners and had a much better gradation of element size. Also, due to better initial
conditions (distribution, size and orientation of the particles), the Poisson’s mesh took about a third of the
time to close when compared to the time it took to close the mesh using the random placement method. In
both figures there are clumps of particles whkh represent areas that dld not run to complete equilibrium or
where a hole was cben to the boundary. Large holes caused by coalescing holes which do not complement
each other well such as the one shown in Figure 2(b) also occur. Figure 3 shows the resulting meshes for the
same figures. Inspection of these meshes shows that the large open areas produce the worst type of elements
with acute included angles and a high number of elements sharing a single node. Efforts are underway to
eliminate these two related problems.

Another placement method used consists of placing all of the interior particles in a box smaller than the
area to be meshed. Other methods have been considered includhg partial results of other meshing tools in
the same manner as the Poisson placement method.

At present, the only constraint on initial particle placement is that a layer of particles must first be attached
to the boundary. This helps to constrain interior particles from leaving the domain during the minimization
phase. The functional is then applied to control the movement of the interior particles in the domain, with
the goal of distributing the particles appropriately. Any method can be used for initial particle placement
over the domain so long as this constraint is met.

2.3. I&ctional Definition

The functional, 0, is a set of relations between the particles and their environment which govern how the
particles behave. To define the functional the particle is first defined and then the parts of the functional
@ = ParticleRepulsion + ArmAttraction + ArmAlignment + Damping are examined. Each part of the
functional is described in a separate section. The complete functional is

Repulsion – see Section 2.3.2.)

cAlAikAj~2+ (Arm Attraction - see Section 2.3.4.)

C~Ot(AikAJ . CjkAI(k-1~)2 } (Arm Alignment - see Section 2.3.5.)

(1)

and viscous Damping is defined as

(Damping - see Section 2.3.6.)

(2)

This functional represents the dfierential equation of motion for the particle whkh the program must solve.
The entire algorithm can be thought of as simply a way to mitilze the functional as a scalar representation
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of the state of the particles. Note that the form of the functional is a fairly simple one which was chosen
for proof of concept and development. For instance, the repulsive potential is set as a basic inverse power
relation but a Lennard-Jones potential could instead be used in its place [6, 3]. The fact that the algorithm’s
driving differential equation is simple to change and is loosely coupled to the system insures mesh closure,
maldng the algorithm provably robust. In subsequent sections, we will exanine how the particle moves in
response to the functional and what thk means in terms of reproducibility.

2.3.1. Particle Description

Figure 4 shows the basic particle used in the sim-

ulation as a dual representation of a quadrilateral \
element. A particle consists of a location (Ci (z, y)), f -~

size (li ), and orientation (0) along with dynamic in- /

formation used in the simulation. / :x.;

f w
AU e i = Element

For each particle we define five positions. C~ for f

L*,

k
the center and four Akn for the ends of each par- -* -- -b ------

--c,
title arm. Thk allows us to define each arm as a I A., / Horizon Reference

vector which will be useful in the functional. Since / I

the rigid particle is potentially rotating, we do not \ A. I
\

actually store all of these positions but instead store 1, \ particle k(x, y)

position C~ and angle O defining the particle’s rota-
+ + .1

tion from the horizontal.
Figure 4. Schematic of a Particle (Dual of

~ is the relative angle from arm number one to the Quadrilateral Element)
arm for which we need information. Note that the
particle arms are fixed at a 90° relationship to each other, so that no storage of this information is required.
As links can be formed at any angle, it was found that allowing a degree of freedom in ~ added complexity
and instability to the solution.

The size of a particle is defined as the distance lC~Ak.~ where all arms will have the same length. This
information is enough to allow the rapid determination of all the required vectors at a given point in time
but does not require computing all of them every time C~, 0, or the size changes.

The dual nature of our particle with the eventual element which will replace it is also shown in Figure
4. Although we have drawn a regular quadrilateral with no distortion, there is no such constraint on the
finished mesh (see Figure 5). This can result in some elements which are severely distorted. In order to
limit this as much as possible, the tool tries to maintain nodes that are shared by only four elements. WMle
not a panacea, this does help to keep the number of vertices with small included angles to a minimum.
Mesh quaMy could also be improved by adding another term to the functional, using a simulated annealing
[6] approach to get a better initial set of liiks and improved link iinding methods. In fact, almost any
quality measure can be incorporated into the algorithm at an early stage if it can be well defined in terms
of particle-to-particle and particle-to-boundary interactions.

2.3.2. Repulsive Potential

Each particle sees potential from all of the other particles and boundaries in line of sight (LOS). In Figure
6 particle “I” (Ci) has a dhect line of sight to particles “h” (Ch), ‘j” (Cj), “k” (C~), and ‘l” (Cl). The lime
from the center of particle “I” to particles “o” (Co), and “p” (CP) are blocked by intersecting with boundary
segment ‘A” (~A). For each of the directly seen particles, particle “I” will have a functional contribution

()

2
>

of CR --f , where CR is the repulsive constant defined by the user, lCiCZI is the dktance between
lCiCZl
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_ Particle — Link — hlesh

Figure 5. Relationship of Dual Representation and Mesh

centers of particles, lr is the nominal size of the particle “I”. Since we want to keep track of the forces rather
than the functional, we actually use the first derivative with respect to position of all the functional formulas
in the program. This requires less computation because it removes the exponential term. .4 good deal of
work was done to balance the repulsive coefficients (CR) with the attractive (CA and Cnot) terms in order to
have a stable simulation. The simulation is very stable after the links are formed and the forces are mostly
in balance, but in the initial stages a bad combination of particle placements and constants can easily send
a particle completely out of the domain. The system does not contain any functional contribution designed
specifically to handle this. The problem of particles leaving the simulation domain is dealt with by adapting
the time step to a small enough size to allow the particle to remain inside the domain while the functional
acts to counteract the excess velocity.

Figure 6. Particle Repulsive Potential

Particle ‘I” will also see a contribution from
boundary segment ‘A” since a line perpendicu-
lar to it will not cross any other boundary seg-
ments. On the other hand, no contribution is
seen from boundary segment, “B” (BB ), since a
perpendicular line to this segment does not in-
tersect the segment itself. Again, the functional

()
2

contribution is of the form, CR 4 , where
lCiBxl

all variables are the same as d~scussed before ex-
cept that the dktance lC~BX I is defined as the
shortest (perpendicular) distance to the bound-
ary segment “X”.

Note that at each time step each particle must

check n – 1 other particles, either to determine
the functional contribution or to determine that

no functional contribution is required due to the LOS rules. If well implemented, this can be brought from

0(n2 ) to 0(-). This small improvement still leaves determining the repulsive potential as the main
performance bottleneck. Several possible performance enhancements are under discussion, none of which
have yet been implemented.
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2.3.3. Link Creation

Each link between two particle arms represents a shared edge between two quadrilateral elements in the 2D
mesh. If an element edge lies on the domain boundary, that edge is “linked” to the geometric boundary
rather than to another particle’s arm.

Requiring that each arm be linked to one and
only one other arm or boundary ensures that
upon completion a finished mesh exists with
no ambiguous connections. To find these con-
nections a simple method was developed which
finds the closest arm end in the direction that
the arm points to within a predefine angle (see
figure 7). The system can also set the maxi-
mum distance at which a link will be made in
terms of a multiple of the particle size. Too
small a distance will result in no liiks at all
being formed, and too large a distance will re-
sult in extra computation time. Lhks cannot
be formed if the two ends are not within LOS
as described in Section 2.3.2.
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Figure 7. Capture Zone for a Particle Arm

In contrast to a molecular dynamics simulation in which all molecules feel alignment forces from all other
molecules, [4] each particle arm in the simulation feels alignment forces horn only the one particle arm
to whkh it is linked. Thk method is used in simulated annealiig where the randomness of the molecules
movement is slowly reduced leaving all of the molecules closely aligned with its neighboring molecules [3].
Some thought has been given to using a generalized method until the particle links are found in order to
have better a@ed particles, resulting in more suitable lii being made.

For the 2D case the existing method functions quite well. The 3D version may require a more sophisticated
solution. Several refinements have been suggested to improve the way that links are selected between multiple
carddates in the search area or “Capture Zone.” The current implementation~taka best dot product
match between particle arms on the working and target particles, [min(CWAW - ,CtAt~)] with the target
particle simply being the closest particle in the capture zone. As an alternative the best dot product match
of all of the particle arms in the capture zone might be used. Another alternative is to assign each target arm
a weight based on a fuzzy evaluation of the arm’s distance, deviation from the arm angle, and dot product
match [16].

2.3.4. Attractive Potential

Each particle has up to four links (one per arm). These links can be attached either to other particle’s arms
or to a boundary as dkcussed in Section 2.3.3. A particle 1 with arm k attached to arm j of particle Zwill

see a functional contribution of CAlAMAil 12(see Figure 8). Since the force must act through the center of
the particle, an additional rotational contribution to the fictional is present in the alignment potential as
discussed in Section 2.3.5. It is not possible to make a link to a particle or boundary that would be out of
line of sight so the LOS rules specified in Section 2.3.2 are implicitly accounted for.

2.3.5. Alignment Potential

In most cases, any two linked arms will not be colinear. The attractive force, therefore, would not pass
through the center of the particle. This results in a torque and an additional force component to rotate the
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pafticles into alignment to match this offset. This moment is represented by a functiomd contribution in the
form of CROt(A~~Ajf> . CikAI(k-1~)2 for particle 1 arm k attached to particle j arm 1.

Connection(“link”)

~+

1

x, ‘j

‘k~ “

Torque from
Forcefrom AlignmentPotential

AttractivePotential

Figure 8. Attractive Forces Due to a Link

The arms are fixed at a perpendicular angle,
so using AI(k_l) gives us only the component
of the vector which is perpendicular to the line
through the center of the particle, creating a
pure torque to apply to the particle. Again
these forces are only applied along existing links
(see Section 2.3.3).

Figure 8 shows two particles which share a link
and the resultant force and moment which must
be applied to the centers of the particles.

As each pzuticle has four liis and each link is
shared with exactly one other particle, we have

4n/2 calculations to perform in finding both the attractive and a@nment potentials. This is “small by
comparison to the work required for the repulsive potential.

2.3.6. Viscous Damping

Fhmlly each particle has a damping force based on its translational velocity (Vi) and its rotational velocity
(tii). This force is in direct opposition to the dwection of movement. A particle 1 would see a functional
contribution of CD,_a Vi + CL)FO,Wi. This reduces the amount of free vibration in the system and helps to
insure that the system will reach an approximate equilibrium state.

2.3.7. Particle Movement Based on the Potential

After collecting the forces and torques due to each of the parts of the potential the algorithm determines a
new location, velocity and acceleration for each particle in both translational and rotational frames. A fairly
standard first-order method known as the Euler method is used for forward time integration [6]. Thnslational
and rotational velocity tolerances for the simulation allow the algorithm to determine when it has reached
equilibrium. (These trigger points are set to control the amount of expansion or other activity.) The use
of finite, non-zero values for these tolerances provide the algorithm with reasonable convergence criteria,
allowing it to ignore undamped high fkequency vibrations that could prevent convergence of the system.

By moving particles in this manner, the algorithm is reproducible. This means that if a problem occurs, it
can be exactly reproduced and corrected. It also allows the system to be stopped and restarted with no loss
of generality as long as the complete state of both particles and the mesh controller are maintained.

2.4. Connectivity Refinement

After the link finding phase and when the system has reached a new approximate equilibrium, either the
mesh will be complete, or more likely, there will be unliied arm ends. These unlhked arms represent
“holes” in the mesh. Holes are dealt with as ordered loops of particles surrounding one or more open arm
ends (see Figure 9). These loops are manipulated to reduce the number of loops and/or the number of open
arm ends in each loop. At the end of thk iterative process, a closed mesh results.
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2.4.1. Determination of Holes (Loops)

Several types of loops exist. A “closed” loop is a loop with no unlhked arm ends. A loop with only a single
unlinked arm is a ‘%ingleArm” loop. A loop with two unlinked arms on a single particle (of the loop) is a
“doubleArm” loop. Similarly, a “tripleArm” loop has three unlinked arm ends on a single particle bounding
that loop. Any loop that contains unlinked arms on two or more particles is defined as a “compound” loop.
Figure 9 illustrates each of these types of loops. This figure also illustrates the value of the debugging tool
used in the program. All particles which are not completely linked are rendered in a separate user-specified
color and the state of the simulation can be rendered as often as needed during its execution. The current
list of unclosed loops in the mesh is kept up-to-date for execution efficiency. -

— Fully Linked Particle — Link _ Partially Linked Particle

a) Closed Loop b) SingleArm Loop c) DoubleArm Loop
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d) lMpleArm Loop e) Compound Loop

Figure 9. Types of Loops

f) Compound Loop

2.4.2. Movement of Holes to Close the Mesh

After finding all the “unclosed” loops the algorithm begins the process of dezhg with them. The goal is
to remove them all, resulting in a closed, topologically va.hd mesh of quadrilateral elements. The loops are
moved through the mesh to force them to either coalesce with other loops or to “squeeze” them out of the
domain at the boundary.

Loops are often in a state which can be directly reduced in complexity. This is referred to as “reducing a loop
to its minimum state”. Figure 10 shows a loop reduction process - the loop is not closed but its complexity



is reduced. The dashed line indicates the new link which is added to change the loop from a compound loop

to a double arm loop - this is considered to be a reduction in complexity. The system is restrained to create
only valid connectivities in that no crossed links are allowed, no two particles may share more than one link,
and no particle may have links to itself. By restraining the possible links to the adjacent free arms in the
loop we insure that the loop is never split into two loops. This reduction favors links that will create a node

shared by four elements over one shared by three or five elements, which, in turn, are favored over those
which would be shared by six or more elements. This helps to improve the quality of the final mesh.

?kW$
When two loops coalesce, they will either form a sin-
gle loop of different complexity, or if they are com-
plementary, they will result in a closed loop. For
instance, two single-arm loops coalescing will either

form a two arm compound loop or they will close
completely as shown in Figure 11. In all cases, the
overall complexity of the problem is always reduced
during the process of loop coalescence.

Holes moved to the boundary will either add or re-

a) Before Reduction
move a particle to eliminate the open arm ends in

a) .4fter Reduction that loop, as shown in Figure 12. This is undesirable
Figure 10. Reduction of a Compound
Loop to a DoubleArm Loop

not only because it can interfere with the require-
ment of nodal continuity across shared boundaries
with meshes on both sides but also because the total

number of particles on the boundary is a user input value which the system tries to maintain as closely as

possible. Hence: the preference is to coalesce loops rather than move them to a boundary. On the other
hand, the ability to add or remove at least one particle from the boundary is critical in proving the mesh
can always be closed [14]. In the future, the need for particle addition/removal will be reduced to only the
level required to keep the algorithm provably robust.

— Fully Linked Particle — Link — Partially Linked Particle

%

) i

\ \.
a) Two Single.Arm Loops Which Close b) Two SingleArm Loops Which Form a

Upon Coalescence Double Arm Loop

Figure 11. Two Possible Outcomes From Combining Two SingleArm Loops

In order to select a pair of loops to coalesce, priority is given to the following items in order.

1. Loops which share a common link are favored over those at a distance.
2. Loops which share a common particle are favored over those at a distance.
3. Loops of opposite type are preferred (loops with free arms on particles on the boundary prefer loops

with all free arms on interior particles.)
4. Closer loops are preferred to more distant ones (in terms of distance between geometric centers.)

FLgure 13.1 shows a pair of loops which share a link. The shared link is opened and then the reduction
routines dkcussed previously act to close the loop. The dashed link will be removed creating a single larger
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— Fully Linked Particle — Link — Partially Linked Particle
~ Removed Pmrticl.

I a) A Loop Ivloving out of the Boundary b) A Loop Moving out of the Boundary
Which Adds a Particle Which Deletes a Particle
Figure 12. Two Possible Outcomes From Moving a Hole to the Boundary

loop. The new loop is then reduced giving the result shown. The system again runs to an approximate
equilibrium before finding another pair of loops to combine.

Figure 13.2 shows two loops which share a common particle. The algorithm first opens a link in one loop
which will force it to share a link with the other loop. The link on the shared particle which is most closely
aligned to the vector between the centers of the two loops is selected for removal. The dashed link has been
selected for removal. After removing the selected link the two loops are now in the shared link condition
and are handled accordingly.

i
b) Resulting Loop Reduced

1) Joining of Two Loops Sharing an Edge 2) Joining of Two Loops
Sharin~ a Particle

Figure 13. Two Methods of Joining Loops

In the case of a pair of loops that do not shaxe a common particle, one loop is told to ‘open” itself to the
other loop. This is done by ilndlng the link which is most closely in the direction of the target loop and
opening that link. These steps are repeated until the two loops share a link, and then merging is handled
as described above (see Figure 14.) It is important in this case that the loop which is opening itself does
not come to share a link with a loop other than the one it is mer@ng with. The loop which is opening also
must not intersect a boundary of the domain. To avoid these problems, the closest pair of loops is always
selected, and a test is performed to insure that there are no boundaries between them.

3. Algorithm Analysis

All work that has been done on the algorithm to date has been focused on attaining reliable mesh closure.
No work has been done on improving the computational efficiency of the algorithm.



Starting Condition Particle Shared

Loop Being Reduced

Edge Shared Single Loop Formed

Final Loop

Figure 14. Two Non-Adjacent Hoies Moving to Coalesce -

Finding the distance between particles to calculate the repulsive potential dominates the computation. If
we assume that we have n particles and m boundary segments, then each particle must check (n + m – 1)
other items every time repulsive forces are found. Thk gives a total of n(n + m – 1) operations to find the
repulsive forces. If we take advantage of the fact that the force contribution on particle I due to particle j

(F”j, is equal to the opposite of the force on particIe j due to particle I (Fij = –Fji), we can cut this in
half. If we also assume that m <<n (which is the case for the class of meshes used in our testing) this gives
n(n – 1)
~ operations per time step.

Since this functional contribution diminishes quickly as the inter-particle distance increases (approximately
as the inverse square of the dkdance), one method of optimizing the simulation would be to maintain lists of
the particles which significantly affect the amount of force on a given particle. At each time step, only the

items on these proximity lists would be used to find functional contributions for a given particle. The lists
would be rebuilt from the global data only when the simulation had moved the particles enough to change

the proximity lists. .4 number of other potential performance enhancements to the algorithm are under
consideration and the authors are confident that the meshing times will eventually become acceptable.

4. Results and Conclusions

The vast majority of the effort so far has been directed toward aclieving closed, topologically-valid meshes

on a consistent basis rather than toward mesh quaXty or algorithm performance.

Several test domains were used to determine the robustness of the code in closing meshes and handling

various topologies. The test domains were a circle, a crescent figure, a cam, a dog-bone figure to test
how the system handles ligaments and an offset washer to test a multiply-connected topology. Closure was

achieved in better than 99 percent of the figures tested in the latest version of the code. All failures, so far,
were traced to a single bug in a vendor’s geometric modeling code rather than to the meshing algorithm.

The circular and crescent figures are the easiest to test and run in a relatively short time period. Most of
the robustness testing was done using these two figures. The circular figure was used with a set number of

particles (45), and the seed for the random number generator used to determine the initial location of the
particles was varied. A script was used to run and save the results of 125 simulations in a way that allowed
reproduction of the results at any time (see F&ure 15).
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Only one of the simulations failed to form a closed mesh. The problem was traced to a bug in the vendor code
used for geometric computations. Work is currently underway with the vendor to solve this problem. Several
of the meshes have areas of low element density (represented by a %rge” number of elements sharing a single
node). Thk results in unacceptable, acute element angles at these locations. Techniques for eliminating these
types of problems before they occur are currently under development. The authors believe that such mesh
quality issues can be addressed by modifying the functional appropriately.

The crescent figure was tested with a fixed number
. .

of boundary particles and a varying number of inte-
rior particles (see Figure 18). All fifteen of the se-
ries that were tested resulted in a topologically-valid,
closed mesh. Larger numbers of interior particles pro-
duced a more evenly graded mesh. This brings up
the question of how to balance the interior and exte-
rior numbers of particles to produce a properly graded
mesh. No solution to this has yet been found.

The cam and bone fi~es were used to verify various
input methods and ligament behavior. Five versions of
each were run using two with random inhtial placement
and three using a method based on a Poisson’s solu-
tion developed by Dr. Walter Gerstle [9]. This allows
the size of the elements to be varied as a function of
the geometry, reducing the total number of particles
needed to produce a reasonable mesh. The completed
meshes are shown in Figures 16 and 2.

II

No difference in the percentage of simulations closed Figure 15. Closed Meshes on Circular
has been noted due to the initial placement methods Figure (Dual Representation)
selected.

The offset washer (see Figure 17) shows that the system can handle multiply connected topologies. Five
versions were run with various numbers of particles and random number seeds. Three of the five closed
correctly. The problem with the two was traced to the same vendor bug discussed in the results for the
circular figure.

Although a formal proof of the algorithm’s ability to close an arbitrary figure is beyond the scope of this
paper, the algorithm appears to be a variant of the same class of problems that include the Hzuniltonian
Path and several shortest path problems [5, 7]. -Although proof that the “best” solution of a Hamiltonian
Path Problem is accomplished is NP hard, proof that a solution can be reached has been found [5]. This
means that we can expect the algorithm to produce closed meshes on a routine basis. The most important
remaining question is how to measure the quality of those meshes and improve them when required to meet
the user’s needs. To achieve the primary goal of the algorithm, this, too, must be done fully automatically.

Continuation of this work, planned or underway, includes the following:

. Methods to prevent the formation of and reduce the number/severity of acute angles in the 2D mesh.

. Extension of the functional definition and connectivity refinement method to 3D.
● Use of the connectivity refinement method to increase the robustness of other meshing algorithms.
● Use of a combkatorial approach to find better links and minimize mesh qualky problems a priori.
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Figure 16. Closed Mesh on Cam Figure (Dual Representation)

a) 100 Particles at Start b) 105 Particles at Start c) 110 Particles at Start

Figure 17. Closed Meshes on Offset Washer Figure (Dual Representation)

Ia)120 Particles at Start b)125 Particles at Start I
I I

Figure 18. Closed Meshes on Crescent Figure (Dual Representation)
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Abstract.

High reynokls number flow simulations exhibit strong gradients normal to walls and across shear layers
requiring much finer resolution of the solution in some directions compared to others. To keep mesh sizea
manageable for such problems, meshes with highly anisotropic elements are necessary. In this paper, a
method for generating boundary layer meshes for arbitrarily complex non-manifold geometric domains is
discussed. A popuIar strategy for generation of boundary layers meshes is generalized to deal with non-
manifold model topology as well as to generate better shaped elements. Results on complex configurations
are presented to demonstrate the capabilities of the mesh generator.

1 Introduction

High Reynolds numbers flow simulations exhibit strong gradients near walls and in free shear layers requiring fine
resolution of the solution normal to the boundary layer and across the free shear layers. Refiniig a finite element mesh
isotropically to capture strong gradients in some directions results in excessive refinement along the other directions.
In the interest of keeping the mesh size manageable anisotropic elements are needed in the critical regions.

The requirements on a mesh generator capable of producing such meshes are severe. Some of the characteristics
of anisotropic meshes capable of capturing the solution in high Reynolds number flows are (i) elements with aspect
ratios of 1000 to 100000 or more, (ii) elements of high quality, created by careful choice of node positions to control
dihedral angles, and (iii) smooth gradation into the isotropic mesh.

A popular strategy for generating boundary layer meshes is the Advancing Layers Method (also called advancing
normals method) [1, 2, 3, 4, 5]. Other techniques for generating anisotropic meshes can be found in [6, 7, 8, 9, 10, 11,
12, 13, 14]. The advancing layers method starts from a triangulation of the surfaces from which the boundary layer
mesh is grown. Prom ea& surface node, nodes are generated along a single direction. These nodes form the basis
for constructing layers of prisms on top of each surface triangle. The prjsms are used directly as elements, or are
subdivided into three tetrahedral. Care is taken to prevent crossover of the normal directions along which nodes are
placed to avoid formation of invalid elements by smoothing of the directions or deletion of elements. Also, interference
of the boundary layer mesh on different surfaces has been accounted for and eliminated by element deletion in some
implementations. The restriction of growing a single set of nodes from each surface node constrains the advancing
layers method to a subset of non-manifold models and also limits the qualky of elements that can be created.

A generalization of the advancing layers is presented in this paper. This generalized advancing layers method has
several improvements over the standard advancing layers techniques allowing the generation of quaMy boundary
layer meshes for non-manifold geometric models of arbitrary complexity. Section 2 provides motivation for, and an
outline of the Generahzed Advancing Layers method. Section 3 discusses issues associated with point placement for
boundary layer meshing of arbitrarily complex non-manifold geometric domains. Section 4 describes techniques to
ensure that the boundary layer elements generated will be valid, while the process of boundary layer element creation
is presented in Section 5. Section 6 dMcusses the method used to guarantee that the boundary layer mesh is not self
intersecting. The paper concludes with results and d~cussion in Section 7.

2 GeneraEzed Advancing Layers Overview

The Generahzed Advancing Layers Method uses the surface mesh as the basic structure on which to grow the
anisotropic boundary layer mesh. However, unhke other methods, the current approach allows for multiple sets of
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nodes to emanate from each surface mesh vertex thereby facilitating the creation of vahd meshes for non~manifold
models and good quahty element construction near boundaries with sharp corners or high curvature.

The presence of multiple sets of nodes originating from a single surface node allows the prisms on the mesh faces to
be much better shaped naturally leading to good tetrahedral element quahty. The gaps created between the prisms
are abstracted as more general polyhedral shapes called blends which are tetrahedronized. FNing the gaps between
the prisms is an important part of the algoritkun since failure to do so will expose the highly anisotropic faces to the
isotropic mesher. High aspect ratio faces may also get exposed if the number of layers between adjacent prisms is
different. To hide these faces from the volume mesher, tetrahedral elements called transition elements are created on
top of the prisms with fewer layers than any adjacent prism.

Curves along which boundmy layer nodes must be placed are chosen for all surface mesh vertices (growth curves).
The number of growth curves at mesh vertex is dependent on the topology and geometry of the mesh at the vertex.
In non-manifold models, model faces may have regions on one or both sides of the face. Also, any number of model
faces may be connected to a single model edge. Due to the genera.lh.y of the non-manifold topology, two or more
growth cumes may be necessary at nodes at non-manifold boundaries to ensure that mesh edges will not penetrate
model faces that locally divide the space into two halves [15].

Growth curves are first chosen at mesh vertices on model vertices. Mesh entities of growth curves lying on model edges
are incorporated into the model edge dkcretization. Next growth curves are chosen for mesh vertices classified on
model edges. Growth curves on model faces are smoothed, shrunk or pruned to avoid crossover and self-intersection.
Boundary layer mesh vertices and edges are created for these growth curves and adjacent growth curves are joined to
form abstracts quadrilaterals and triangles. These boundary polygonal constructs are triangulated and the triangles
incorporated into the model face dkcretization. Growth curves are then constructed at mesh vertices classified on
model faces and are smoothed, shrunk and pruned to ensure creation of vahd elements. Mesh vertices and edges
are created along these growth curves. Entities from adjacent growth curves connected up to form tn”angular prisms
built on surface trisngles and the prisms are tetrahedronized. If there is a difference in the number of layers between
adjacent prisms, transition elements axe created atop the prisms with fewer layers. As a final step in the creation of
anisotropic elements, the gaps created between prisms due to the presence of multiple growth curves are abstracted
as more general polyhedral shapes (blends) and tetrshedronized.

Once the anisotropic mesh is created, it is checked for any self intersections. Self intersections are fixed fist by
shrinkhg the layers locally and then by deletion of elements, if necessary. Thk completes the boundiwy layer mesh
which is then handed over to isotropic mesher for completing the meshing process. The steps in the process are
illustrated in F@re 1.

3 Finding Growth Curves

Point. placement in the boundary layer mesh occurs along growth curves while respecting user mesh size specification
for the boundary layers. Growth curves may be boundary, interior or both. The definition of growth curves allows
them to start off with the nodes on the boundary of the model, then to separate from the model surface and grow into
the interior of the model, and then reattach to the surface again. Reattachment of growth curves is not yet permitted
in the implementation. Since the elements in the anisotropic mesh are created from triangular prisms and other
blend polyhedra the quaEty of elements resulting is heavily influenced by the deviation of the growth curves from
the norrmd direction to the base triangle. Therefore, nodes of growth curves growing from mesh vertices classified
on model edges and vertices are allowed to lie on the boundary if the normal direction of the growth curve is close
enough to the boundary. Figure 2 illustrates the types of growth curves.

Since multiple growth curves can go into a single region from any mesh vertex on the surface, each growth curve
is associated with mesh face uses (mesh faces and their sides) using nodes of this growth curve to form elements.
This information facilitates the connection of nodes of different growth curves in an unambiguous manner. Nodes of
growth curves from mesh vertices of a mesh edge use are connected to form sn abstraction called a boundary layer
quadrilateral (F@re 3a) if they reference a common mesh face use. Nodes of growth curves from vertices of a mesh
face are connected to form a boundary layer prism (Figure 3b) if they reference a common mesh face use. Nodes
from multiple growth curves of a mesh vertex use are comectecl to form a boundary layer triangle (Figure 3c). The
connectivity between nodes of a multiple boundary layer quads at mesh mesh edge uses ad multiple growth curves at
mesh vertex uses is more general. These constructs will be connected using more general procedures to create blend
meshes (Figure 3d,e). Note that boundary layer quads, triangles, prisms and blends are abstract constructs that
never actuslly exist in the mesh but are useful for algorithmic procedures and their d~cussion. In reality, triangles
and tetrahedral of the individual layers are created dhctly in the mesh generator.
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Figure 1: Steps in creation of boundary layer mesh (a) Surface mesh (b) Growth curves on model vertices and model
edges (c) Boundary retriangulation (d) Growth curves on model faces (e) Prism creation (f) Blend creation.

3.1 Calculating the number of growth curves at each vertex

The number of growth curves at any mesh vertex with respect to a model face on which a boundary layer mesh is
to be grown depends on the local mesh topology and geometry. The topological requirement for multiple growth
curves at a mesh vertex with respect to a single face always arises for non-manifold faces with region to be meshed on
both sides. At these boundaries at least two growth curves are necessity for a tild mesh. F@ure 4 gives an example
of such a situation. More complex interactions occur at model edges and vertices where, locally, the space may be
subdivided into subspaces or manifolds, such that points from two different manifolds cannot be connected to each
other without penetrating a model face [16, 17, 18, 19]. At such places, the minimum number of growth directions
required depends on the number of manifolds.

Multiple growth directions may also be necessary at some mesh vertices due to the geometry of the model faces.
Multiple growth directions are needed if the normals of the mesh faces vary so much that it is not possible to find
valid common nodes that yields positive volume elements for the wedges of the comected mesh faces. Multiple growth
directions are also desirable in cases where the normal variations are large enough to result in poorly shaped elements
with large dihedral angles. Therefore, the procedures to find the growth curves first find the minimum number of
growth curves required by the topology and increase th~ number further as dictated by. the geometry.

3.2 Node placement and classification

The determination of growth curve starts with a procedure which assumes a single classification for all the nodes of
the growth curve. If th~ causes problems with geometric or topological valMity that cannot be resolved then a more
general procedure is applied in which the nodes of a growth curve can have different classifications. In both cases
the starting point is to place the nodes of the growth curve on the lowest order model entity possible.The basis for
growing a boundary layer growth curve on a model face or edge is to use the average normal of the given mesh face
uses of that dkection and then find appropriate locations on the model entity close to the Wltial positions of the
nodes. The specific checks to be satisfied for node placement and classification required to respect topological vahdlty
of the mesh, topological compatibility of the mesh with the model and estimated geometric validlty of mesh are given
in [15]. If creating a boundary growth curve violates any of these requirements, the growth curve is grown into the
interior. Growth curves from the mesh vertices on a model face are always straight Ymes classified in the interior of
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Figure 2: Types of growth curves (a) Interior Growth curve (b) Boundary growth curves (c) Partly boundary and
partly interior growth curves

the model. Node spacing for growth curves may be gwmettic, exponential or adaptive [15]. In the adaptive method
the growth curve at any location is terminated as soon as the layer thickness is approximately equal to the isotropic
mesh size in the neighborhood.

4 Ensuring Element Validity

While growth curves are created with consideration for topological validity and topological compatibility, only pre-
liminary consideration is given to geometric validity of t$ements during the point placement phase. ThE is because
geometric invahdity arises mostly due to interactions between entities of neighboring ~owth curves connected to form
tetrahedral elements. For this reason, it is only viable to check for geometric valklity after creation of all growth
curves. Invalidity of boundary layer elements occurs either due to crossover of growth curves or more than a 90°
deviation of the growth curve from the mesh f=e normal.

4.1 Element Validity Checks

The individual triangles of the boundary layer quad are checked in real space for near zero area since negative area
does not have any meaning for triangles on a general surface in 3-space. Then adjacent triangles are checked to see
if the dihedraJ angle along their common edge is greater than au assumed tolerance CK(taken to be 900). This is to
measure if the d~cretization of the surface is excessively distorted. Finally, the lateral edges of the boundary layer
quad are checked for intersection by projection onto a common plane to verify that the growth curves are not crossed
over. The vakiity of boundary layer prisms is done by checking the va.hdlty of all its component tetrahedral.

4.2 Correcting Invalid Elements

Correction of crossover considers three different methods, Smoothing, Shrinhg and Pruning in that order. In
the smoothing step, a weighted Laplacian smoothing procedure is applied to growth curves to eliminate crossover.
Smoothing of boundary and interior growth curves is done separately on a model edge-by-edge and model face-
by-face basis respectively for two reasons. Fhstly, all boundary quads must be incorporated into the surface mesh
before growth directions are determined at nodes on the model face. Secondly, boundary growth directions may be
general curves on model surfaces preventing a direct application of the Laplacian smoothing technique. The shrinking
procedure ia based on the principle that crossover often occurs because the thickness of the boundary layer ia high
relative to the local curvature of the model face or the acuteness of the angle between model/mesh faces. Therefore,
the shrinking process locally reduces the thklmess of the boundary layers if it will make the affected elements valid.
Shrinking of growth curves is followed by recursive adjustment of neighboring growth curve heights to ensure a smooth
gradation of boundary layer thickness.

In some severe or degenerate case, neither smoothing nor shrinking can fix the intild elements. In such a case the
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Abstract polygonal and polyhedral constructs in the boundary layer mesh.

growth cumes of affected elements are pruned, i.e., some of their nodes are deleted, so that only dld elements are
remaining. Pruning of growth curves is also accompanied by recursive pruning of adjacent growth curves to avoid
sudden variations in the node distribution. When a simple prism is pruned, some of its high aspect ratio faces get
exposed to the volume mesher whkh is not designed to properly deal with them. Therefore, transition elements are
constructed on the top of prisms having a level difference with adjacent prisms. F@re 5 illustrates the three methods
for fixing growth curve crossover in a 2D boundary layer mesh.

5 Boundary Layer Element Creation

Of the different constructs used to create anisotropic elements, the boundary layer quads and prism contribute the
most elements, being grown on surface mesh edges and mesh faces respectively. The other constructs only serve to
shield the isotropic mesher from the stretched mesh faces on the sides of prisms. The presence of multiple growth
curves will yield adjacent prisms which are separated by gaps. The walls of these gaps are formed by the highly
stretched faces of the anisotropic mesh which must be shielded from the isotropic mesh generator. These gaps are
filled by boundary layer blends (Figure 6). In principle, boundary layer blends mayor may not have fixed number of
elements along the edges. Variable blend constructs typically occur at model edges where the dihedral angle between
the connected mesh faces is varying along the edge. While boundary layer blends at mesh edges are easy to mesh
using templates, boundary layer blends at mesh vertices are harder since an arbitrarily number of prisms and blends
may be incident on the mesh vertex.

The last boundary layer construct used is the transition tetrahedron. When the growth curves of a mesh face forming
a prism have different number of nodes, a step is formed in the boundary layer. To avoid leaving the highly stretched
faces exposed, tetrahedral are created transitioning from the growth curves with larger number of nodes to those with
smaller number of nodes (See Figure 7). Transition tetrahedral can span more than one layer (.4 similar concept has
also been introduced by Connell and Braaten[l] for deahng with one layer difference).
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(a) Single growth curve along edge E (b)Multiplegrowth curve. along edge E

Figure 4: N-eed for multiple growth curves at non-manifold boundaries. In (a) a single set of growth curves originate
from nodes on model vertex V and model edge E. Edges connecting the shaded and solid nodes then intersect model
edge E. In (b) Multiple growth curves from nodes on vertex V and edge E result in Wld connections of the nodes.

5.1 Model Edge Retriangulation

The insertion of boundary layer mesh edges and vertices classified on model edges is carried out through local mesh
modification operators [20]. Given an edge to be inserted into the discretization of a model edge, existing mesh edges
overlapping the edge to be inserted are identified by examiniig the one-dimensional parametric space of the model
edge. The end vertices of the edge to be inserted are introduced into the model edge dkcretization by an edge split if
coincident vertices do not already exist in the mesh. Then all edges overlapping the edge to be inserted are deleted.

5.2 Triangulation of Boundary Layer Quads and Blend Triangles

Triangulation of boundary layer quads is done by connecting nodes of adjacent growth curves not originating from the
same mesh vertex. In converting these boundary layer quads to triangles the choice of the diagonal is dictated by the
valklity of the connected prisms. For reasons explained in the section describing prism tetrahedronization (Section 5.4
below), the diagonal is made by connecting lower node of the growth curve at the mesh vertex with a lower identifying
nurpber (vertex id) to the next higher node of the growth curve at the other vertex. Creation of boundary layer blend
triangles is similar to the creation of boundary layer quads except that they establish connections between nodes of
two growth curves originating from the same mesh vertex.

5.3 Model Face Retriangulation

Mesh entities classified on model faces are incorporated into the surface mesh by using local mesh modifications
[20]. This method is chosen to avoid the use of the parametric space provided by the geometric modeler which can
sometimes be highly distorted. This appears to be a particularly severe problem for surfaces formed by concatenation
of triangular facets. The model face retriangulation procedure is done for each model face that the growth curves of
a model edge affect. Given a model edge sad a model face on whkh growth curves lie, the following steps are carried
out to create and incorporate the boundary layer mesh into the surface mesh triangulation:

1.

2.

3.

Boundary layer quads classified on the the model face are created as described above.

Each boundary layer mesh entity that forms the outer boundary of the set of boundary layer mesh faces classified
on the model face is incorporated into the surface mesh by the edge recovery procedure briefly described below
and discussed in full detail in [20]. Once all the necessary edges have been recovered, the outer boundary of the
set of faces to be inserted into the mesh exactly matches the outer boundary of a set of faces in the underlying
surface mesh.

Mesh frwes of the existing surface triangulation overlapping the boundary layer mesh faces are deleted and the
boundary layer faces incorporated into the mesh instead.
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Figure 5: Fixing growth curve crossover in 2D (a) Mesh with crossover at comer (b) Mesh with crossover fixed by
smoothing (c) Mesh with crossover fixed by shrinking (d) Mesh with crossover fixed by deletion

The edge recovery procedure inserts the vertices of the edge to be recovered into the existing surface mesh using
projection along mesh face normals. A local mesh optimization is performed to eliminate any other poorly shaped
faces created during the vertex insertion process. Next, a path of edge connected mesh faces is found from one vertex
to another, again by projection of the edge to be recovered onto planes of the mesh faces. Mesh edges that cross the
projected edge are successively swapped to recover the edge. After recovering the edges on the outer boundary of the
set of quads to be introduced into the mesh, the mesh faces overlapping the boundary layer mesh faces are deleted
and the boundary layer quads put in their place. The mesh resulting from face retriangulation is subjected to checks
and remedies to ensure that it is not self intersecting [21].

5.4 Prisms, blends and transition elements

The bulk of the elements in the boundary layer are from the boundary layer prisms. Boundary layer prisms are
grown on mesh face uses by comecting the three growth curves at the face vertices which share each mesh face use.
The tetrahedronization of each boundary layer prism gives rise to three tetrahedral. Boundary layer prisms can be
thought of as being formed by three quads that are grown from the edges of the triangular mesh face. There are
eight possible combinations of diagonals for the quads of a prism. Of these only six are configurations whkh can be
tetrahedronized without the inaetilon of any new points inside the prism. Therefore, in assigning directions for the
diagonals of the quads in the boundary layer mesh, care must be taken not to assign directions such that some prisms
cannot be tetrahedronized. This is done by a very simple algorithm baaed on numbering of the surface mesh vertices.
Given a surface mesh with any arbitrazy assignment of unique numbers (ids) for the mesh vertices, the ids of vertices
of a face in either clockwise or counterclockwise dwection cannot be strictly increasing or strictly decreasing. Using
this notion, the diagonals of boundary layer quads are constrained to go from the lower node of the growth curves of
vertices with a lower id to the upper node of growth curves of vertices with a higher id ensuring the va.Mty of all
prism tetrahedronizations. The tetrahedronization of boundary layer prisms is done using two templates.

Boundary layer blend polyhedra are created between the exposed sides of two prisms from adjacent faces. Only
simple blends, in which the gap between the two quads is filled by elements without the creation of new points, are
considered here. Two quads originating from the same edge may have separate growth curves at each end or share
a common growth curve at one end giving rise to a total of three types of blend polyhedra [15]. In the more general
situation, it is proposed that if the gap to be filled between two quads is too large then addkional growth curves be
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F@re 6: Blend elements Figure 7: Transition elements

introduce to produce a blend mesh as shown in Figure 6.

Since boundary prisms can be made only by connecting corresponding nodes on the component growth cuNes, faces
from boundary layer quads with more nod~ than the others remain exposed. These stretched faces are closed off
from the isotropic mesh generator meshing the rest of the volume by transition triangles for boundary layer quads
and transition tetrahedral for boundary layer prisms. Transition triangles are formed atop boundary layer quads with
a level difference between the two growth curves by connecting the top nodes of the two growth curves and forming
an element similar to the lower triangle of a boundary layer quad. Atop a prism with one level difference between its
component growth curves, there may be one or two transition tetrahedral depending on whether one or two growth
curves have fewer nodes than the others (Figure 7). If the level difference is more thaa one then transition tetrahedra
are stacked on top of each other.

6 Fixing Boundary Layer Intersections

When boundary layer elements are generated on model faces that are too close to each other the layers may run into
each other in which case the polyhedral cavity that is presented to the isotropic mesher is self-intersecting. Since the
isotropic mesher expects a polyhedral cavity with no self-intersections, this situation must rectified. Boundary layer
intersection is fixed by local shrinking of layers and/or local pruning of growth curves leading to deletion of elements.
Correction of self intersections are done after element creation as it is simpler to find the mesh faces forming the
polyhedral cavity left to be meshed and the neighborhood used for intersection checks can be more localized.

The ttilque used to detect self intersections looks at mesh faces that have fewer regions connected to them than
they should in a completed mesh ( ezposed faces). These faces may be classified on model faces with no boundary
layer, and top and side faces of the boundary layer prisms, blends and transition polyhedra. An octree is built in the
domain and the exposed fazes attached to the terminal octants. The octree serves as a localization structure for the
intersection checks. Each exposed face is intersected with the set of faces in its neighborhood. If an intersection is
detected, ehmination of the intersection is attempted by local shrird&g of the prism connected to the face while being
constrained to keep connected elements valid. Since the algorithm only checks and fixes the intersection between
ezposed faces and not of entire prisms, blends or transition polyhedra, shrinking of two boundary layer constructs
to correct interference may result in new intersections of other faces in the neighborhood. Therefore, the algorithm
is iterative and continues until all intersections are fixed. The algorithm is made more efficient by recognizing
that if an intersection between two faces has been detected and fixed there is a good possibility that the fix has
caused new intersections or that there are already more intersections in the neighborhood. Therefore, the algorithm
employs locsly recursive intersection detection and correction in the neighborhood of a located intersection. If all
the intersections between front faces cannot be fixed by shrinking prisms, then the growth curves are pruned using
the same algorithm as described in Section 4.2. As in the case of deletion of elements to fix growth curve crossover,
transition elements are introduced if adj~ent prisms have differing number of layers.
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7 Results and Discussion

Figure 8 shows the boundary layer mesh for capturing the flow in an expanding pipe. boundary layers are generated
on the walls of both pipe sections and also on both sides of a surface introduced in the geometry to capture the
free shear layer. The boundary layer mesh thickness on all the surfaces increases in thickness from the inflow to the
outflow surface. In addition the number of nodes in the boundary layer mesh are different on each surface.

Figure 8: .4uisotropic mesh for capturing flow in an expanding pipe including the free shear layers. The variation in
the boundary layer thickness is clearly seen in the picture.

Figure 7 shows a cutaway of the boundary layer mesh for the space shuttle while Figure 10 shows the boundary layer
mesh (in lighter shades) for the underbody of an automobile. The boundary layer mesh in these example was chosen
to be thicker than normal for clarity of illustration. The mesh shown is v~ld, non-self intersecting and suitable for
input to the isotropic mesh generator for completion of the mesh generation task. U-sing smoothing and compression
of growth curves, the method has successfully resolved crossover of growth curves in areas of high curvature and
interpenetration of the boundary layers in very confined spaces except in very few Iocaliied areas where elements had
to be deleted.

Figure 9: Cut-away of boundary layer mesh for a model of the space shuttle with center tank and booster rockets.
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~xgure 10: U-nderbody of a car showing cut-away of boundary layer mesh with zoomed-in views of the front and rear
of the car.

The boundary layer meshes from the Generalized Advancing Layers procedure have been used for calculation of heat
transfer coefficients for automobile configurations as well as for simulation of the Czochralski process of bulk crystal
growth [22] (Pigure 11).
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Abstract

This paper is a follow-up to a previous one [7] in which an algorithm to eliminate the adverse
effects of small model features at the mesh level was presented. The present paper provides
three additions to the original procedure. They are (i) a more efficient implementation in
which those features that can be eliminated after surface mesh generation are eliminated
before volume meshing, (ii) a method to define an up-dated model topology based on the
results of the mesh modifications, and (iii) a demonstration of how this procedure can be used
to perform substantial geometric model feature elimination.

1. Introduction

Automatic mesh generation procedures must interact directly with the geometric model as
housed within a computer aided design system. In many cases, a number of the geometric .
details in the model are not important for the purpose of performing a specific analysis. Since
the inclusion of these details can dictate the number and/or quality of elements in the mesh, it
is desirable that these features not be present in the mesh sent to the analysis. An earlier paper
[7] presented an algorithm for the automatic elimination of the influence of small geometric
model features on the resulting mesh. In the current paper, consideration is given to improving
the efficiency of the procedure, accounting for the changes to the model topology to account
for the modifications made, and demonstrating the ability of the procedure to eliminate a siz-
able number of local geometric features from a model.

A key deterrent to the effective use of automatic mesh generation procedures is the time and
effort required to provide the automatic mesh generator with the geometry required for the
analysis at hand. The source of geometric complications includes [4,9,16,17]:

1. Combining geometry from different sources that do not properly match each other so that
small gaps and overlaps exist.

2. Employing a method of geometry data transfer that loses topological adjacencies and does
not include the geometric tolerance information needed to ensure that they can be recon-
structed to be the same as in the original model.

3. The geometric model is valid; however, geometric features present will force the creation
of many more elements than desired ardor the shape of these elements will not be satisfac-
tory.

The first two situations are characterized by ambiguities in the model which require interpre-
tation, thus, these situations can not automatically be resolved. On the other hand, since the
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geometric model in the third is valid, it should be possible to devise algorithmic procedures
which can automatically generate a mesh with the desired element sizes and gradations.

The starting point for the mesh generation process, including the elimination of the influence
of small geometric features, is a valid geometric model for which there is a complete bound-
ary representation. For purposes of the current discussion, a small geometric feature is one
that has a chmacteristic dimension which is substantially smaller than that requested for the
element sizes in that region of the domain. The next section outlines the original algorithm [7]
developed to eliminate the influence of these features on a mesh. Section 3 introduces the key
concept of the classification of mesh entities against the geometric model entities. Section 4
introduces a change to the original algorithm in which a pass of small feature removal is per-
formed after surface mesh generation. Since most of these small features can be detected after
surface meshing, eliminating them prior to volume mesh generation will improve the effi-
ciency of the remaining meshing process. Section 5 addresses a more fundamental difficulty
with respect to tracking the relationship between the model and mesh entities. Section 6 dem-
onstrates the application of the procedure for the elimination of small, and not so small, model
features.

2. Approach to Eliminate the Influence alfSmall Geometric Model Features

Two basic approaches to eliminate the adverse influence of small geometric model features on
the quality of automatically generated meshes are to (i) modify the geometric model before
providing it to the mesh generator, or (ii) automatically mesh the original model and perform
local mesh modification in those portions of the model where small model features have pro-
duced poorly shaped elements when the element sizes are maintained at those specified by the
user. Automatic geometric simplifications procedures have been development for specific situ-
ations [16,17,19]. However, it is not obvious that an automated set can be developed for all sit-
uations of interest. In addition, one would want be sure decisions to eliminate geometric detail
are coordinated with the local information on element sizes which becomes quite straightfor-
ward in the second approach.

The second approach of modifying the mesh in the vicinity of the small geometric model fea-
tires has the advantages of directly addressing the needs of a given mesh, and can be per-
formed using a set of mesh modification operations [3,6,10,13]. Since the topology and
geometry of the individual mesh regions is simpler than that of the geometric model regions, it
is also more straightforward to evaluate the consequences of performing local modification.

The basic steps in this approach to the elimination of the adverse influence of small geometric
model features are:

1. Generate a mesh employing the user specified mesh entity size distributions, and prevent
the mesh generator from introducing smooth mesh gradations when disproportionately
small mesh entities are caused by a small model feature. Allowing the mesh generator to
automatically grade the mesh from disproportionately small model features greatly
increases the number of elements created. An example of a turbine blade platform given in
reference [7] shows the number of elements generated increased from 9767 to 12950 when
smooth gradations were enforced from just two small model edges in a model that con-
tained well over 100 model edges.
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2.

3.

4.

Identify and flag mesh entities that need to be deleted in order to eliminate the mesh entities
with poor quality metrics.

Ensure that deletion of the flagged mesh entities results in geometrically valid mesh entities
and their elimination does not introduce undesired dimensional reductions.

Apply the mesh modification operator(s) to delete the desired mesh entity and update clas-
sification and pointwise geometric information as required to ensure mesh validity.

Although the basic steps to eliminate the adverse influence of small geometric model features
on the mesh are reasonably straightforward, there are a number of key technical issues that
must be addressed in the successful implementation of a procedure. These include [7]:

1.

2.

3.

4.

Deciding which measures of element quality should drive the procedure. For example, a
measure which is concerned with small dihedral angles is appropriate since geometric fea-
tures that are small compared to the requested element sizes will always cause small angles
when the mesh generator is constrained from introducing substantial mesh refinement as
caused by the small model feature. Note that the use of small dihedral angles as the element
quality measure does assume that the mesh optimization procedure within the mesh gener-
ator is allowed to split mesh entities opposite large dihedral angles in the original mesh.
(Such split operations introduce only a local halving of the opposite mesh entities.) If such
splitting operations are constrained, then element quality measures that capture both large
and small dihedral angles must be employed.

Determining if the mesh modifications required to eliminate the adverse influence of small
model features will introduce an invalidity (such as a dimensional reduction [7]) into the
resulting mesh.

Applying the mesh modification operators needed to eliminate the adverse influence of the
small model feature.

Maintaining the relationships between the mesh and the model as needed to ensure the
validity of the mesh and to properly support future mesh modifications, such as adaptive
refinement where some of the new nodes need to be placed on the model geometry and
eliminated geometric model features may reappear due to the element sizes decreasing.

The original procedure given in reference [7] presented a set of procedures to deal with these
four issues. Sections 4 and 5 introduce modifications to issues 3 and 4 aimed at improving the
efficiency of the procedure, and making it a more flexible process with respect to its applica-
tion as part of a general mesh generation and enrichment environment.

3. Relationship of the Mesh to the Model

A key component of automatic mesh generation directly from a solid model representation is
ensuring the validity of the mesh with respect to the geometric model. The procedures that
have been devised to address this issue focus their attention on understanding the association
of the mesh to the geometric model [14,15]. The structure of the topological entities defining
the model and the mesh provides the basic tool for understanding this relationship.

Topology provides an unambiguous, shape independent abstraction of the model and mesh.
Maintaining the relation between the domain and the mesh is simplified, and many operations
can be performed more naturally through the application of topological adjacencies. The rep-
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resentation of general geometric domains typically include loop and shell topological .entities,
and, in the case of non-manifold models, entity uses for the vertices, edges, loops, and faces
[23]. Focusing on the topological representation of the mesh, with the specific topological
assumptions given below, each topological mesh entity of dimension d, M?, is bounded by a
set of topological mesh entities of dimension d – 1, M:{ h4d- 1}. A region is a 3-d entity
with a set of faces bounding it. A face is a 2-d entity with a set of edges that bound it. An edge
is a l-d entity with two vertices bounding it. In three dimensions (d=3) the full set of mesh
topological entities are:

TM = {i14{M0}, M{M1}, M{M2J, M{M3}}

where M{Md}, d = O, 1,2,3 are respectively the set of vertices, edges, faces and regions
which define the primary topological elements of the mesh domain.

Critical to the understanding of the relationship of the mesh with the geometric domain is the
concept of classification of a mesh with respect to its geometric model.

Dejini$wn: Mesh Classification Against the Geometric Model [5,14,15J - The unique associa-
tion of a topological mesh entity of dimension di, M? to a topological geometric model enti~
of dimension d j, G? where di S dj, is termed classification and is denoted M? ~ G? where
the classification symbol, ~ , indicates that the le$t hund entity, or set, is classified on the
right hand entity.

Multiple M? can be classified on a G?. A mesh region, M;, is classified in the domain
region, G], in which it lies. A mesh face, M;, is classified in a domain region, G;, or on the
domain face, G?, on which it lies. A mesh edge, M}, is classified in a domain re~on, G; , on
the domain face, G?, or on the domain edge, G~, on which it lies. Finally, a mesh vertex, My,
is classified in a domain region, G;, on the domain face, G;, on the domain edge, G~, or on
the domain vertex, G$, on which lt lies. Mesh entities are always classified with respect to the
lowest order object entity possible.

Restrictions on the topology of a mesh which allow the use of only the primary topological
entities are [5]:

1.

2.

3.

Regions and faces have no interior holes.

Each entity of order di in a mesh, ik?d’, may use a particular entity of lower order,
Mdj, dj < di, at most once.

For any entity M$ there is a unique set of entities of order di – 1, M$ (M~i-’) that are on
the boundary of ‘A4$ if at least one member of M? (Mdi- ~) is clm”sifiedon G$ where
dj>di.

The first restriction means that regions may be directly represented by the faces that bound
them, and faces may be represented by the edges that bound them. The second restriction
allows the orientation of an entity to be defined in terms of its boundary entities (without the
introduction of entity uses). For example, the orientation of an edge, M) bounded by vertices
M! and M: is uniquely defined as going from M$ to M! only if j # k.

The third restriction means that an interior entity (defined as ikf~ C G~j where, dj > di and at
least one of ~(ikf$) C Gfj ) is uniquely specified by its bounding entities. This condition only
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applies to interior entities; entities on the boundary of the model may have a non-unique set of
boundary entities as illustrated with a model and a coarse mesh of a plate with a hole in
Figure 1. Here, the mesh is sufficiently coarse yielding the mesh and model topology identical
on the hole boundary. The two mesh edges, M{
set of vertices. M! and M!.1 L

(a) Geometric Model

and Ml, on the hole boundary have the same

(b) Mesh

Figure 1. Example of mesh entities on the boundary having non-unique boundary entities.

4. Performing Small Feature Removal After Surface Mesh Generation

The original version of the algorithm performed the small feature removal process after a vol-
ume mesh of the original model was generated. The advantage of this approach is that it iden-
tifies all classes of small geometric model features, ranging from the simple case of a short
model edge, to the case of two model faces that come much closer together than the basic ele-
ment size requested in that vicinity. The disadvantages are that the generation of the initial
volume mesh with all small geometric model features still present is complex and computa-
tionally expensive, and the mesh modification needed does introduce a reasonable computa-
tional cost. Since most of the small features introduce undesirable elements at the surface
mesh level, eliminating these elements prior to volume meshing will be computationally
cheep and will simplify the volume meshing process.

A careful examination of the mesh validity checks and the dimensional reduction determina-
tion checks indicates that, with slight modification, the original set of checks used at the vol-
ume mesh level can be used when applying mesh modifications on a surface mesh only. The
basic reason that the checks can be performed given only a valid surface mesh is that the sur-
face mesh explicitly separates the various material regions. It therefore provides the informa-
tion needed to determine local dimensional reductions caused by surface mesh modifications,
even in the case of non-manifold “geometricmodels.

.An examination of a typical set of solid models with small geometric model features indicated
that a majority of the small geometric model features that adversely affect the mesh can be
determined from the surface mesh. Mesh modifications can be applied at the surface mesh
level to eliminate the influence of these features providing a good surface triangulation to be
used by the volume meshing procedure.

There are some small model features that can not be easily detected from the surface mesh.
These situations are limited to cases when the distance between non-adjacent portions of the
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surface mesh are much smaller than the requested element size. After the volume mesh is gen-
erated, the existence of these situations can be determined.

The strategy that has been devised to be a more efficient method to eliminate the influence of
small model features from a model is:

1. Generate a valid surface mesh for the original geometric model not allowing added grada-
tion to control element shapes due to the existence of small model features.

2. Eliminate disproportionately small mesh edges in the surface mesh using surface mesh
level modification operations, thus providing a good surface mesh for volume meshing.

3. Generate the volume mesh from the resulting surface triangulation.

4. Use mesh modification procedures to eliminate disproportionately small mesh edges in the
volume mesh using modification operations.

The above strategy assumes that the mesh optimization procedures include split operations
that are applied to the surface and volume meshes before attempting to eliminate the influence
of small model features. If this is not the case the procedure must employ a general element
shape measurement capturing both small and large angles.

Since the adverse influence of most of the small geometric model features are eliminated at
the surface mesh level, and providing the volume meshing procedure a good surface mesh
everywhere improves the efficiency of the volume meshing process, this approach introduces
substantial computational efficiencies.

5. Accounting for Small Feature Removal at the Geometric Model Level

The process of eliminating the influence of a small geometric, model feature on a mesh will
yield mesh entities which span at least part of multiple geometric model entities. Therefore,
they can no longer be classified against the original geometric model. The first approach to
address this issue introduced the concept of multiple classification in which the mesh entities
are classified against the model entities that they span [7]. Figure 2(a)-(c) demonstrates this
process for a simple two-dimensional example. Figure 2(a) shows the geometric model enti-
ties while Figure 2(b) shows the mesh generated for that model and indicates the mesh entity
classifications. Figure 2(c) shows the mesh after elimination of the small model features and
indicates the multiple classifications of the appropriate mesh entities. Although the multiple
classification approach does provide the information needed to support operations like adap-
tive mesh refinement, etc., the multiple classifications approach has two disadvantages. The
first is the complication introduced into the data structures and data operators needed to sup-
port the multiple classifications. The second is the need to support the multiple classification
concepts in all the mesh generation and modification procedures.

The alternative to the multiple classification approach is depicted in Figure 2(d) which shows
the final mesh now classified against the modified model representation (the model entities are
indicated with the circles around them). The advantage of this approach is that the mesh has a
simple classification against a model which avoicls complications in the basic mesh generation
and modification procedures. It has the second advantage in that it has the potential of sup-
porting geometric modifications as performed by a variety of idealization processes that
induce geometric simplifications and/or dimensional reductions [1,2,8,12,20,21,22]. The
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(c) final mesh with multiple classification

Figure 2. Association of the mesh and model.

approach presented here focuses its attention on tracking of modifications with respect to the
topological representation, which is similar to the virtual topology used in references [16,17,
18,19].

To be an effective tool, a mechanism needs to be defined that can track the modifications so
that it is possible during adaptive analysis processes to recover the original model information
when needed. Figure 3 depicts a basic approach to addressing this issue. The central idea is a
straightforward one in which the topological representation of the original model (linked back
to the solid modeler) is maintained, as well as copies of each of the idealized model topologies
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for which an independent analysis is performed (that is, a point in the process for which one
wants knowledge of the current model representation). Since the size of the topological repre-
sentation is small compared to the mesh or the shape information in the model, this approach
does not dramatically increase the storage requirements.

Original Problem
Definition Level 1

Attributes *

● **
Model Model
Topology + Topology 4 [ 4

I I

Solid Mesh 1
Model

Level n”

bModel
Topology

1

dMesh n

Figure 3. Basic structures for analysis idealization.

In addition to the model topologies, Figure 3 also depicts an attribute structure. This structure
is needed to store the idealization process information used to map between the models. For
example, in the case of a dimensional reduction it may require storage of a functional form for
the “thickness” of the portion of the model that has been reduced. The requirements to support
the information needed for a full set of idealization processes has not yet been worked out.
The subset that is presented here will support the geometric simplification processes caused
by the mesh modification processes needed to eliminate the influence of small model features
addressed in the present work where dimensional reductions are not allowed.

The model topology up dates caused by performing mesh modifications employ the current
mesh classification information, and knowledge of the base topological modification driving
the mesh modification, to key the model topological operators given next.

5.1 Operators to Support the Evolution of the Model and Attribute Structures

The idealization process affects both the model ,and the attributes defining the next idealiza-
tion level. To maintain a consistency and understanding between two model levels, the appli-
cation of the idealization rules must result in a valid boundary representation of the model. In
addition, the idealized components of the model must be linked to their original representation
in order to be able to reverse the process.

Reduction Operators. A set of operations can be defined to perform simplifications of the

model topology. Each of these replaces entities of higher dimension by an entity of lower
dimension. The entity that remains in the model stores a reference to the original higher order
entity that it replaces. The operators are:
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1. Collapse edge: Given medgemd oneofit's vefices, coUapse tieedge sotiatitisrepre-
sented by the given vertex.

2. Collapse degenerate face: Given a degenerate face, which is one with just two edges, and
one of its edges, collapse the face so that it is represented by the given edge. A reference to
the original face and deleted edge is retained by the surviving edge. Any non-manifold ver-
tices interior to the face are collapsed to one of the vertices of the surviving edge.

3. Collapse single edge face to vertex: Given a face that is comprised of one loop with a sin-
gle edge, collapse the face so that it is represented by a vertex. A reference to the original
face is retained by the vertex.

4. Collapse degenerate region: Given a degenerate region, which is one with only two faces
remaining, and one of it’s faces, collapse the region into the given face, deleting the region
and its other face. Any non-manifold vertices interior to the region are collapsed to one of
the vertices of the surviving face.

5. Collapsesinglefaceregiontovertex: Given a region that is comprised of a single shell
consisting of one face, collapse the region to a vertex. A reference to the original region is
maintained by the vertex.

Although possible to state the above operators in terms of a set of more basic Euler operations,
the above set provides a more convenient means for tracking the model changes.

Careful application of the above set of reduction operators can be used to topologically reduce
any model entity to a vertex in the model. Note that in the current case where we need to trace
back to the original model entities during adaptive mesh refinement, a vertex is the minimum
representation that is possible. If the resulting vertex was allowed to be deleted, there would
be no connection back to the original representation of the entities and restoration of the orig-
inal topology would not be possible.

It is possible to use the reduction operators to eliminate voids in the model by first defining
model entities that topologically fill the void and then collapsing those entities.

The history information about each operation is stored on the surviving entity in the model.
This history information consists of the operation performed and a list of the entities that were “
deleted as a result of the operation. If this surviving entity is eliminated in a subsequent opera-
tion, the surviving entity from the subsequent operation will refer to it as a part of it’s history.
Thus, in the process of a series of reductions, the history of the operations form a tree structure
that stores all of the information about the deleted entities.

6. Application of Small Feature Removal Procedure

Some geometric modeling systems provide functionalities to automatically stitch small mis-
alignments and gaps that may arise during model construction. Depending on the modeler and
how the user performs the modeling operations, these operations will introduce a number of
very short model edges and thin model faces. The original implementation of the small feature
elimination procedure was focused on these situations [7]. Figure 4 demonstrates atypical sit-
uation where the application of the procedure eliminated elements with extremely small
angles caused by the small model edges used to stitch the model, increasing the value of the
worst angle by over an order of magnitude.
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Figure 4. Mesh improvement due to elimination of small model features.

Although originally designed for the elimination of small geometric model features, geomet-
ric simplification through mesh modification can be used to perform much more dramatic
alterations to a model, thus allowing the mesh to be analyzed to be much coarser than one that
explicitly represents all the model features. An example of this usage of the procedure is
shown in Figure 5. Figure 5(a) shows a close-up of a portion of a geometric model with a large
number of geometric features, while Figure 5(b) shows a mesh generated that explicitly repre-
sents all the model features. Figure 5(c) shows a coarser mesh created which includes the
application of mesh modifications to eliminate the explicit representation of the smaller model
features. A still coarser mesh in which nearly all the local model features are eliminated is
shown in Figure 5(d).

7. Closing Remark

This paper has presented improvements to a procedure that can eliminate the influence of
small geometric model features on a mesh using mesh modification. Applying the procedure
to the surface mesh before the volume mesh is generated improves the efficiency of the proce-
dure. The introduction of the modified topological model representations, replacing the previ-
ous multiple classification method, (i) allows the procedure to be used in conjunction with
more standard mesh generation procedures and (ii) will allow the integration with a complete
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(a) geometric model (b) mesh with model features represented

(c) coarse mesh after mesh modification (d) coarser mesh after mesh modification

Figure 5. Mesh coarsening by the mesh modification with model modification tracking.

set of model modification procedures, some of which may be applied to the geometric model
before the mesh is generated.

When used in conjunction with robust mesh generation procedures that can deal with very
small model features, the current procedure is effective at automatically eliminating the influ-
ence of features that are very difficult to interactively eliminate at the model level and that, is
some cases, do not have known algorithms for their automatic elimination at the model level.

The procedures is also quite effective in eliminating large numbers of model features when
even those model features and smaller than the requested local element size. This ability pro-
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vides an effective means for the generation of coarse meshes on highly detailed geometric
models. Of course, the analysis results on such meshes can, at best, provide only overall sohl-
tion information. Useful information on the influence of the local geometric features requires
their explicit geometric representation in the mesh that is analyzed.
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Abstract. An algorithm for instructing almost regular triangulations (ARTs) for three-dimensional polygonal
domains is desctibed. Idenlly such tn”angulationswnsist entirely of wrwruent tetmhedm with nenrlu eaual edoes.
The new feature of this method is that‘the position of the vert%& is ;djusted, before an~ wnnec&g” edges-are
assigned. This leads to grids with very few irregularvertices, i.e. most interz”orvertices are shared by 24 tetmhedm
as for regular tessellations of R3 with wngruent tetrahedm.

keywords. delaunay tetrahedral, tessellation of R3, almost regularity

1 Introduction

Grid generation algorithms are essential tools in many areas of modern applied mathematics. Typical examples are
filte element methods (FEM, [2]) and geometric modelling (CAGD, [4]). In both applications the quaIity of the
grids strongly influences the accuracy of numerical computations. For example, irregularly shaped tetrahedral result
in large condition numbers of the stiffness matrices for Galerkm methods. Shnilarly, spline approximation on irregular
partitions requires non standard smoothness conditions. [18, 15, 14, 5].

Ideally, a triangulation should consist entirely of equilateral tetrahedral. Unfortunately, this is not possible. However,
as will be shown in section 2, there exist congruent tetrahedral having nearly equal edges. These tessellations have a
regular lattice structure, i.e. every vertex has 14 neighbors and is shared by 24 tetrahedral.

WIdle such regularity can seldom be tileved it is natural to insiit on ‘almost regularity”. An almost regular
triangulation (ART) should have only few irregular vertic&, i.e. most of the interior vertices are shared by exactly 24
tetrahedral. Such combinatorial optimization also leads to good geometric properties. Clearly for an ART smoothing
of the vertices usually results in very small deviations of the angles from the optimal value. F@re 1 shows an
example. The triangulation consists of 860 vertices and has just 183 irreguk vertices. The percentage of angles less
than 12.0° is lower than 0.12% and the maximum angle is 168.2°.

Ofl%and the construction of ARTs seems rather difficult since the combinatorial requirements may result in global
constraints on the tetrahedral. We therefore employ an indirect approach, and extend our 2D-algorithm (see [10]) to
3D. We fist construct a set of inner vertices according to a density iimction e. ThE function is defined over the entire
domain and describes the edgelength of the triangulation. In the second step we optimiie the position of the vertices
without assigning any connecting edges. Then, we form a Delaunay triangulation. More precisely, our algorithm for
constructing an ART of a polygonal domain consists of three steps

(ART1) construct an initial configuration and scale the density function,

(ART2) adjust the position of the vertices by minimizing a penalty functional,

(ART3) forma Delaunay triangulation.

As usual, the density function controls the size of the tetrahedral which may vary throughout the domain. We do
not d~cuss its construction here, which may depend on the geometry as well as on the local error of finite element
calculations. The functional in the second step is miniial for regular triangulations. The optimization will therefore
yield an almost regular configuration of the vertices. After these preprocessing steps the Delaunay trian~ation gives
excellent results, although the geometric advantages of two-dimensional Delaunay ([19], [17]) do not hold for three
dimensions.

‘supported by SFB 404, Universityof Stuttgart
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Figure 1: Example of an ART

In sections 3-5 the steps of the ART-Algorithm and the underlying theory will be described in detail. In section 6
we discuss a number of examples illustrating the performance of our method. We conclude with some remarks on
possible extensions.

2 Regular Tessellations with Tetrahedral

A regular triangulation is a partition of R3 into congruent tetrahedral Ti, so that their intersection is either empty
or a vertex, edge or face. Unlike in two dimensions, there exists no canonical regular triangulation since one cannot
partition R3 with equilateral tetrahedral. Of course for applications in iinke element methods and geometric modelling,
the tetrahedral should be nearly equilateral. Another natural requirement is invariance under subdivtilon. If a
tetrahedron T is split into 8 tetrahedra bylhalving the edges as is indicated in Figure 2, the small tetrahedral should
by congruent to T scaled by the factor ~. SubdivMon invariance is particularly important for grid refinement.

Moreover, it is easy to show that a subdi&lon invariant tetrahechon generates a regdar triangulation of R3. one
should note, however, that neither an equilateral tetrahedron nor the one produced by the tessellation of the standard
cube (comers (0,0,0),(1,0,0), (1,1,0) and (1,1,1)) are subdivision invariant.

P4

T1 :
T2 :
T3 :
T4 :
T5 :
T6 :
T7 :
Ts :

P1,91> !?3, !74
p2,91, q2>!15
p3, q2>!?3>!?6
p4, q4>f?5>q6
!?l, !?2>!?4>!?5
ql>flz>fl’l>qs
q2, q4, !16,q5

!?2, !.?4>q6>!?3

pl p2

Figure 2: SubdivKIon of a tetrahedron T.
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W:th the following theorem we characterize all subdivision invaxiant tetrahedral.

Theorem 1 A tetrahedron in standard coordinates with vertices

“=’p’=v’=(o>p’=v’=(oandp’=v’=(:)
having XI, X2, yz ~ O and yl, z >0 (cf. Figure 2), is subdivision invariant, iff one of the follom”ng 4 conditions is
fulfilled:

Condition 1: ‘<xl<;
x’ = 2X1 Y? =1–X;

(1 +X,)(l – 2X,)2 ~’= (1+X,)(I – 2X,)
?/: = l–xl l–xl

Condition 2: 112>o-—
xl=+ x’=~
yl $= 2y2 Z = 3yz

Condition 3: O<xl<;
z’ =1–X1 ?/: =1–Z;

2_ Z;(I +Zl) ;2 = (1 +;1)(1 – 2Z1)

‘2– l–fq l–xl
Condition ~: 0< XI<3

x;= @3+ 1) y?= $1(3 – $1)

Y2 = -Zl) 22 = +(3–X1)

Proof. It is easy to show that tetrahedral TI, T’, T3 and Td are congruent to ~T. In the interior of T there are 2
different tetrahedral which have to be mapped to the tetrahedron TI by suitable Euclidean movements. ThE results
in the conditions 1 to 4. The explicit computation of the congruence mappings is straightforwaxd but rather tedious.
Since the arguments are not crucial for the subsequent development of the grid generation algorithm we refer to [9].

Figure 3: Tetrahedral forming a parallelepipeds. F@ure 4: Tetrahedron T..

Any of the tetrahedral defied by Theorem 1 gives rise to a regular triangulation. Analyzing the structure of such
triangulations in more detail, we &at notice that 6 tetrahedral forma parallelepipeds as shown in F@me 3. The labels
at the vertices in Figure 3 refer to the number of tetrahedral sharing this vertex. Moreover, we see that 24 tetrahedral
meet in a regular vertex of a partition with parallelepipeds and each regular vertex has 14 neighbors.

As a prototype for our grid generation algorithm we choose a subdivision invariant tetrahedron which difkrs from
an equilateral tetrahedron as little as possible. F@ne 5 shows the standazd deviation of the dihedral angles of the
tetrahedral satisfying the conditions of Theorem 1 as a function of the free parameters. We select a tetrahedron T.
satis&hg condition 1 with Z1 = 1/3 (see F@ure 5).



Conuition 1
30

28-

26-

24-

22-

20-

18-

16-

14-

12-

,oo~,
xl

COncGdOn3
30

28-

26-

24-

22-

20-

18-

16-

14-

i—————J
o 0.05 0.1 0.15 02 025 0.3 0.35 0.4 0.45 0.5

xl

Condition 4

30~

L_--_JlJ ,. ; ,. , A !
o 0.5 1 1.6 2 2.5 30

xl

Figure 5: Standard deviation of dihedral angles

T. has 3 congruent faces with angles 54.74°, 54.74°3 70.52° and the standard deviation to 60° is s 7.44°. The
lengths of the edges of the tetrahedron T. are 1, 1, 1, 1, 2/4 z 1.15, 2/4 with a standard deviation of

(2 – fi)/3 s 0.089 horn the equilateral case, and the dihedral angles are 60°, 60°, 60°, 60°, 90°, 90°, having a
standard deviation of 14.15° horn 70.53°, the dihedral angle for the equilateral tetrahedron.

3 Construction of an initial Configuration

We can obtain an initial configuration with the following simple algorithm. We choose an approximate centre CO
of the domain and construct the polyhedron formed by the 24 tetrahedra sharing Co (see Figure 6). Now we scale
the polyhedron, until it covers the entire domain $2. Then we divide the tetrahedra which, according to the density
function, are too large and repeat this, until all tetrahedral are small enough. For a constant density function, we
get a fully regular triangulation. Finally we project points outside the domain, which have connection to an inner
point, on the boundary of fd. All points within and on the boundary of the domain are then used as an initial set of
vertices. At this point the exact position of the points on the boundary is not crucial, since no connecting edges are
assigned in the subsequent optimization procedure.

The number of vertices obtained in thw way will, in general, not exactly match the density function. Since the density
function plays an important role in the following optimization process (cf. Section 4), we have to rescale the density
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Figure 6: Polyhedron, formed by 24 tetrahedral (solid and upper half transparent)

function Q+ s . Q (s = 1) with an appropriate scaliig factor s, in order to match the number of the constructed
vertices best. Therefore, we have to aualyse the relation between the density iinction and the number of vertices.
The polygonal domain Q to be triangulated can be multiply connected and is specified by the edges and vertices
makiig up the boundary polygons. For example the domain in F@re 7 has 2 boundary polyhedrons with a total of
24 edges and 16 vertices.
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Figure Z Polygonal Domain

To estimate the number of interior vertices Xj, j = 1,... , ni in terms of the density function e, we assume that
the triangulation is regular, i.e. that 24 tetrahedral shine an interior aad 12 tetrahedral share a flat boundary vertex.
The number of tetrahedral sharing a vertex on a boundary edge varies as can be seen in Figure 3. But in general
all ‘typed of edge vertices occur with the same frequency, so we assume that 6 tetrahedral share an edge vertex.
Denoting by ni, nb and n= the number of interior, boundary and edge vertices of the triangulation, it follows that
the total number of tetrahedral is

n,= (24ni + 12nb + 6ne)/4. (1)

l%om F@re 3 it can be seen that 6 triangles share a boundary vertex and an edge vertex. It follows that the number
of triangles on the boundary of the domain is

nf = (67?b+ 6n.)/3. (2)

Hence we obtain for the number of vertices n = ni + nb + n= the formula

111
n = -n~ + –nf + –n~.

644
(3)



Now we relate nt and nf to the density function e, dropping our assumption that the triangulation is regular. The
length of the edges should be approximately equal to the value of e at their midpoints. If we denote by V. the volume
of the tetrahedron T. (cf. Section 2), a regular triangulation with constant density function yields

nt . Vo . @3= Vol(fl),

and we can compute nt in terms of the volume of the domain. For non constant p we use the approximation

[~ x
1
3

= VOI(.)+ s~l% =%.t,

7 & ~
(4)

where the sums are taken over all tetrahedral T of the triangulation and QI denotes the average value of e on T.
In order to relate n~ to the density function, we note that there may exist boundary triangles with different areas,
depending on the tetrahedron T. chosen (for our choice all boundary triangles have the same area). Since in general
all triangles should occur with roughly the same frequency we have

11
— x Fonf ,
e2

an

where F. is the average mea of the boundary triangles. Sirahly we estimate the number of edge vertices by

I1
- z Eone,
e

oan

denoting by EO the average edge length of the tetrahedron T..

Combining equationa (3), (4), (5) and (6) we obtain for the number of vertices

(5)

(6)

(7)

We can now use equation (7) to scale the density function, Q ~ s . e, so that equation (7) is maintained for the
number of vertices constructed with our algorithm.

Ths estimate was derived for regular triangulations only. However, it remains fairly accurate for an ART, in particular
when the number of irregul~ vertices is small. In any case, a slight deviation from the odirnal number of noints
has no major impact on ~he qualky of the triangulati& as ~1 be~ome apparent from the ~ext section. Merely the
length of the edges will not correspond exactly to the density zmd
boundary.

4 Adjusting the Vertices

Adjusting the vertices to improve the geometric characteristics
Unlike to smoothing in previous work (cf. e.g. [7, 8, 16]), the new featur~ of our approach is to-we optimi~e’ tie
position of the vertices, before assigning any connections to them. There associated Delaunay triangulation should be
ahnost regular. This can be achieved by minimizing a fictional f which penaKzes configurations producing irregular
vertices. The choice of our fictional is baaed on the following conjecture.

the triangulation might be slightly distorted at the

of a triangulation is a standard rxocedure (1. 61.

A vector H is a per-mutation of D (H, D G R“) if the equations

(h, +... + h#l = (d, +..- + dn)lll

(h~+--- + h;)l/z = (d:+. -. +d:)’/2

(8)

hold.

A proof for this assumption has yet not been found, but we can prove the following stronger theorem.
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Theorem 2 A vector H is a permutation of 4 vector D iff the equations

(h, +... + hn)l/l = (d, +... + dn)lfl

(h; +... + h;)l/z = (d:+ ... +d;)’/2

(h~+.-. + h$)l/(zn) = (dp + ... +dy)’/(2n)

(9)

hold.

To proof this, we need the following lemma.

Lemma 1 Equations (9) imply for evey polynom p(x) of degree 2n

p(hl) +p(hz) + . ..+p(hn) =p(~l) +p(d2) + ‘.. +fJ(dn) . (lo)

Proof. Let p(z) = aznx2n +az~-1z2”-1 +... +ao be the monomial representation of the polynom, then the following
holds

p(hl) + . . . +p(hn)

azn (h~n +... +h#n)+a~-l(hY-l +... +hl)+)+n.. +n. ao

(

2n
az~ (h~n +... + h~)l’(2n)

) (

2n-1
+ an-l (h?-l + --- + h2-1)1’(2n-1)

)
+

(because of (9))

(

2n
azn (c&’ +... + d~)l’(2”)

) (

2n-1
+ an-l (dP-l +.. -+ d2-1)1’(2n-1) )

+

azn (& +... +d7)+a.-l(dP-1 +... +1)+1 ”+n. aOn. a0
p(dl) + -.. +p(dn)

and thus (10) holds. ~

Having this lemma, the proof of Theorem 2 is quite simple.

Proof of Theorem 2.

“+” : If H is a permutation of D, then the equations (9) are trivially Mfilled.

“*” : (comdete induction)
For n = 1 ;e h&e hl = dl, and thus H a permutation of D.
Now use Lemma 1 with the polynom p(z) := (z–dl)2. (z – dZ)2... (z – dn)2 . Then for a solution of equations (9) we
have p(hl) +... +p(h~) = p(dl) +... +p(dn) = 0. Because P(Z) z Oit h= to be P(hi) = O and th~ Vhi3dj : hi = dj.
Wkhout loss of generfllty let now be h. = d., then we can reduce the dimension of (9) by one. 1

Now we can detine a functional, which penalizes the error of equations (8). We denote by dl ~ dz <.. - the distances
of the vertices of a regular triangulation to a fixed vertex. For an ahnost regular triam@atlon, the corresponding
dist~c~ [lXi _ X~ll, k = 1,2,... , n should be close to a permutation of D. This means that

($’’xi-xk’’j($d’-($j’)l’j

is small for each i and j. ThB motivates the following definition of our penalty functional f.



We have replaced llX~ – &ll by the normalized distance hi,k which is a good approximation to the corresponding
component of D for neighboring points since (e(Xi ) + Q(xj ))/2 describes the average side length; hi,~ is wprofi-
mately equal to the number of tetrahedral between the i-th and k-th vertex. For a constant density e, which results
in an uniformal spacing of the vertices, this replacement is just a normahzation of the distances. If we have a non
constant density function, whkh results in a non-uniformal spacing of the vertices, then hi,k normalizes the distances
of neighboring vertices in the lattice. Of course, small distances are most relevant. Therefore, we introduce a cut-off
function p which vanishes for arguments larger than dl.

dl+l -

A
I

d[ dl+l
I d, dl;l

Figure 8: Obvious but poor choice of p. Figure 9: Good choice of p.

The obvious choice of p is shown in F@we 8. The drawback of this choice is, that we cannot distinguish a distance
in the interval [dl CZl+l]and [dl O]. Therefore we prefer another (monotone) choice of yJas shown in Figure 9. We
notice that we only have to compute 1 + 1 distances in vector D, because ~(z) = O for z ~ dl+l. In practice
it suffices to take one layer of neighboring vertices, so that 1 = 14. For our choice of tetrahedron T. we have
D’=[dl, --- >dw] = [1 111111 14/3 4/3 4/3 4/3 4/3 4/3 8/3].

Because of the cut-off function q(.) most of the terms in equations (8) are zero. Therefore it makes sense not to take
thesumoverj= l,--- , n and to introduce a cut-off parameter m, having 1 ~ m ~ n. In practice we get good results
form= 2-1.

One notices that, because of the local character of the ‘cut-off’ function p, the sum over k will contain only few
nonzero terms. Therefore, with an appropriate data structure, the function ~ can be computed in O(n) operations.
One also has to take into account, that the vector D differs for vertices inside and at the bound~y of Q, thus the
vertices Xi have to be split into 2 sets.

Of course there is great deal of heuristic in our choice of the penalty functional ~. Strictly spealdig, our analysis is
Wld only for a regular grid which is compatible with the boundary. However, because of the local character of V,
one can expect that ~ will be nearly minimal for ARTs if the density function is smooth. In fact, in all numerical
tests (cf. Section 6) we have obtained very good results.

The numerical implementation of the minimization procedure is straightforward horn a mathematical point of view.
We employ a conjugate gradient method, and project the “search-direction” for vertices on dfl on the boundary. The
actual C++-Code (~ 35000 lines) is rather complex. More generally than described in this paper, the algorithm can
handle free an fixed vertices on the boundary as well as internal constraints. A number of additional strategies are
employed to improve the efficiency of the progyam. To speecl up the convergence of the iteration we can compute
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tirst a coarse triangulation and obtain improved start configurations via subdivtilon. Also, we can parallelize most
of the computations. Figure 10 shows a few typical steps of the smoothmg process.

Start configuration

r

5 steps of CG

Point configuration after one step of CG

10 steps of CG

F@.re 10: Smoothing Process

5 ‘lkiangulation

A Delaunay tessellation can be obtained as dual graph of the Voronoi-diagram, which consists of the sets of closest
points to a given set of vertices [19]. To determine the Delaunay tetrahedral we use the following criterion.

Definition 1 (Delaunay Tetrahedron) The vertices P, Q,R,S form a Delaunay tetrahedron, if there is no further
vertex in its circumscribed ball.

Methods for a sequential construction of the Delaunay tetrahedral sequentially are well known (cf. e.g. [19]). Since
our vertices are constructed with respect to a density function, we can implement an efficient parallel algorithm. ThB
algorithm will be described in detail in [11]. In order to keep the resulting triangulation conform to the boundary,
we use a constrained Delaunay triangulation (cf. e.g. [3]). Of course, the placement of the edges is not essential on
smooth parts of the boundary, where any polygon is just an approximation.

For the example considered in the previous section, Figures 11 and 12 show the resulting Delaunay triangulation.

For complex domains or domains with a lot of interior faces we can construct a density function, which ‘recognizes”
the local complexity of the domain, and adapts the density. This has already been done for two dimensions (cf.
F&ure 13) and will be described for three dimensions in a forthcoming paper.
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F@ure 11: View horn above

2d-net

Figure 12: Cut through the domain

zoomed net

F@re 13: Two dimensional net with interior edges and automatically adapted density

6 Exampk?s

In the following we discuss various examples, illustrating the performance of our algorithm. For evaluating the quality
of the results we use the following criteria which compaxe the ARTs with regular triangulations.

●

●

Irregular vertices
By n~,r we denote the number of interior vertices which do not have 14 neighbors. For an ART, n;,, should
be small compaxed to m, the total number of interior vertices.

Dihedral angl~
To emphasize the distribution of the dihedral angles, we give the minimum (~min) and maximum (a~.z) angle,
as well as the percentage of angles lower than 6°, 12° and bigger than 168°,174°.
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● Condition of FEM matrices
We denote by C the condition number of the stiflhess matrix for the Galerkin approximation of the Poisson
problem using piecewise linear basis functions. ThB condition number is compared with the corresponding
condition numbers Co and C~ for regular triangulations of a subset of a bounding domain. More precisely,
we choose for Co the tetrahedral which have an intersection with the domain (cf. Figure 14) and for Ci those
which lie filly inside the domain (cf. Figure 15). The edge length is chosen as the average edge length of the
triangulation.

Figure 14 Outbounding Net FQ-ure 15: Inbounding Net

Fiemre 16 shows the trianm.dation of a cube with a hole. Since for this =anmle the ~ercentas!e of boundaxv vertices
is ~ather high, there is no~much flexibility to position the interior vertices. Hence, t&re are &any irregulw- vertices.
Nevertheless, the minimum and maximum angle is very good (~min = 7.6°, ~maz = 168.20)- AISO the condition
number for the FEmatrix is comparable to the one for regular meshes.

I

Vertices Angle YO Dihedral angles Condition
Total I Inner I Boundary I Irreg. amin amaz <6° I <12° I >168° [ >174° CICOICj

860 353 I 507 I 183 7.6° I 168.2° 0.00 0.12 I 0.02 I 0.00 12.69 I 23.49 I 3.66

Figure 16: Cube with a Hole

143



F@ure 17 shows the trian@ation of a bail. Surprisingly the triangulation consists entirely of regular vertices.

Vertices Angle VO Dihedral angles Condition
Total I Inner I Boundimy I Irreg. amin am== <6° I <12° >168° >174° c co ] G
369 175 194 0 21.4° I 148.1° 0.00 0.00 0.00 0.00 15.10 I 16.43 I 8.08

F@re lfi Triangulation of a ball with cross section

In F@me 19 we show a constraint triangulation. Since for this case most of the interior vertices have to be positioned
on the inner plane, the number of irregular vertices is rather high. Nevertheless, the minimum (~~i~ = 6.9°) and
maximum (a~== = 169.3° ) dihedral angle is acceptable and Figure 18 shows the distribution of the inner vertices
and angles for th~ triangulation.

o
Ww,

3203,

L?Lwl.

2SM.

m.
24W.
m
anlo.
1s03.
1600.
140)
lZCO.
1003.
sol.
6C0.
40,
zoo.

4
inner vertices angles

Figure 18: Distribution of inner vertices and angles.
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Vertices Angle 70 Dihedral angles Condition
Total I Inner I Boundary I Irreg. ~~in area= <6° I <12° I >168° I >174° CIC*l C’i

457 I 178 279 I 96 6.9° I 169.3° 0.00 0.13 I 0.04 I 0.00 18.21 I 14.13 I 6.61

Figure 19: Cube with an inner plane



The last example (Figure 20) shows a graded triangulation.

Vertices Angle YODihedral angles Condition
Total I Inner I Boundary I Irreg. amin a’*az <6° I <12° >168° I >174° c CO I Ci
468 146 I 322 94 5.9° I 174.3° 0.05 0.12 I 0.09 0.02 29.89 I 16.51 I 8.94

Figure 20: Graded Triangulation

7 Conclusion

We have presented a method for constmcting almost regular triangulations (ARTs). The key idea is to adjust the
vertices of Delaunay triangulations using a functional whkh penalizes irregular vertices. Our actual implementation of
the triangulation algorithm is slightly more flexible than described in this paper. For example, one may choose features
like interior faces and one has a number of options to control the opttilzation process. For such details we refer to [12]
and the online description of our program which is available via anonymous ftp from ftp.mathematik. uni-stutigart. de
or via WWW from http:iiwww.mathematik. uni-stuttgati. dejmathe\preprints. html. A corresponding algorithm for
2-dimensional problems is described in [10].

An advantage of our method compared to many existing algorithms is, that the smoothing and optimization of the
point configuration is done before any connections are assigned. This provides greater flexibility, in particular when
propagating irregularities of the boundary towards the interior of the domain. We intend to generfllze our algorithm
to NURBS solids and trimmed surfaces.
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Abstract. Thisk a report of the current status of the Hex-Tet algorithm as implemented in the CUBIT
toolset. The Hex-Tet algorithm begins by generating a partial hex mesh using an advancing ffont
“plastering” algorithm. The boundary of any remaining void is optionally “cleaned-up” to improve its
shape ancVorother properties. The quad boundary is then converted to a triangular boundary by one of
three available methods. Finally, the triangle-bounded void is tilled with tetrahedral using the tet-generation
capabilities within CUBIT. The result is a mixed-element mesh containing hexah~ tetrahecha and
optionally pyramids. A set of test problems is described which is used to generate data concerning the
robusmess and speed of the algorithm, as well as properties of the xesulting meshes.

Keywords: Hexahedral Meshing, mixed-element mesh, hexdominant meshing, unstructured mesh generation,
plastering.

Introduction

The desire within the finite element analysis community for an automated all-hexahedral mesh generation
algorithm is well documented. At Sandia National Laboratories, one effort to provide this capability is the
plastering algorithm (Stephensom1990, Canamx1992, Blacke~1993, Hipp:1994, Hipp:1995), a 3D extension of
the very successful Paving algorithm for allquadrilateral surface meshes. To date, the ail-hexahedral algorithm
has proved intractable. In recent years, attention was shifted to the “hex-tet” algorithm, which focuses on
creating a hexdominant mesh by filling the volume with as many hexes as possible, and then filling the
remainder with tetrahedm (DewhirsE1995). Tuchins@ and Clark (.Tuchinsky:1997) give an excellent paper on
pastadvancements on this algorithm at Sandia. Our report documents very recent developments with the Hex-
Tet algorithu concentrating on the commercialization of the algorithm for use within CUBIT, and on
documenting the current robusmess of the algorithm and the properties of resulting hexdorninant meshes. The
following portions of the paper will document nxent additions to the algorithm to enhance robusmess, and
describe a test suite of non-trivial problems used to evaluate the algorithm and the results obtained.

Adapting the Hex-Tet algorithm for CUBIT

Much recent work done on the Sandia Hex-Tet algorithm was conducted at Ford Motor Company
wuchinsky:1997) using Ford software, including the Ford tet-generator. This latest plastering algorithm was
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adapted for inclusion in the CUBIT system. A quality tet-generation algorithm has been recently incorporated in
CUBIT, and these two were combined to provide an automated Hex-Tet algorithm.

To provide a transition from the quad-bounded void left by the hex-generator and the tri-bounded void needed
by the tet-generator, three options were provided. The first option, labeled “Two” in the test data below, simply
splits the quads into two rriangles along the shortest diagonal. The second, labeled “Four” below, creates a
center point for each quad and divides the quad into four triangles. The las~ called “Pyramid”, inserts pyramid
elements between the hexes and tets, resulting in a fully conformal mesh containing three element types.

The pyramid generation algorithm used is essentially that described by Owen, Canann, and Saigal (Owen:1997),
with a few additions to handle the very complex void geometries created by the HexToVoid algorithm. The
most significant of these additions involved the potential for warpage on the quad faces of the void boundary.
When a warped quad is divided into two triangles along the diagonal and the resultant triangle boundary is
tetrized, it is possible that both of the triangles of the original face maybe owned by a single tetrahedron. In this
case, we must tind the edge of the tetrahedron which is not part of the original two triangles, and split all tets in
the model which share this edge. We can then proceed with pyramid consauction as normal.

For most analyses, an ideal mixed-element mesh would contain several layers of all-hex mesh near the boundary,
with the tets (and possible pyramids) isolated to relatively small areas in the interior. To that end special
attention was given to the hex generation algorithm to attempt to maximize the percent volume occupied by
hexes in the model, and to minimhe the number of faces on the original meshing boundaxy which remain after
hex generation.

Void Cleanup

Some additional work was required to allow the Hex and Tet portions of the algorithm to work well together. In
complex geometries, the void left by the Hex generator is often very complex, with a very high surface to volume
ratio, especially for relatively thin-section models (F@re 1).

i-
— I

F@re 1: Wkbloek Model and Void Remaining after Hex Generation

The term “pancakevoid” was coined to describe the shaue of void often seen when two advancing hex fronts.
would coil.&. Because of the fixed point density on the surface in addition to the complex geometry, these
voids are very difficult for an automated tet-generator to till with quality elements. To improve both robustness
and tet quality, avoid cleanup algorithm was devised to condition the void before tet generation.

The void cleanup algorithm attempts to improve the void by removing selected hex elements in such away that
the resulting void has improved properties for mesh generation. A distance tolerance was used to guarantee that
any two non-adjacent quads on the void boundary would be separated by at least d, where d is some user-
settatde distance. This provides sufficient space for the tet generator to insert better elements. A&Mional Hex
removal may also be performed given any of the following

1. More than three faces of a single hex are on the void boundary.
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2. An edge on the void boundary is connected to mo~ than two faces on the void boundary.
3. The dihedral angle between any two faces on the void boundary is less than some

minimum threshold value (typically about 45 degrees) or gmter than some maximum
value (typically about 315 degrees).

4. One of the interior angles of a boundary face is less than some minimum value (typically
45 degrees) or greater than some maximum value (typically 135 degrees).

Other criteria could also be used depending on the properties of the tet generation algorithm and on the desired
results.

Testing the Hex-Tet Algorithm

Although some testing had been conducted on both the hex generator and the tet generator, a quantitive measure
of the robustness of the combined algorithm was needed. To this end a test suite of non-trivial problems was
assembled for testing and evaluation. In all, seven models were chosen (see figures 2,3,8-11):

●

●

●

●

●

●

●

Hook ‘Ilk is a model of a real p~, named for its general hook shaped appearance. The model contains several
small and irregular facets.
Ugly: Named either for its appearance or its behavior during meshing, this is actually a subset of the Hook
model.
Wlnblock A blocky but difficult part with many through holes of widely varying diameter.
TDDH: This model is best described as a soccer-ball shape with flat panels. It contains many angles between
120 and 150 degrees, which are very difficult for hexing ~gorithms to handle.
Knee: A model of an artificial knee joint.
Throw: A complex machined pm apparently part of a crankshaft assembly.

Enteqxise: A model of the well-known Starship, circa 1964.

Figure 2: Hook Model, Low and High Resolutions

The models were chosen as examples of complex volumes for which current all-hex algorithms do not work well.
Each model was tested over as wi-& a range ;f interval sizes as possible (from a maximum of11 sizes for the Ugly
model, to only two for the Enterprise). In general, the coarse mesh limit was governed by the coarsest mesh the
current cubit surface meshing algorithms could produce for a given model with little or no human intervention. In
general, the coarse meshes were too coarse to capture all of the detail in the model. The fine mesh limit was
generally determined by the available dynamic memory limits of the computer used for these tests. Finer tests could
be run on larger machines, but the range of intervals used for the models seems sufficient to draw meaningful
conclusions on the capabilities of the Hex-Tet algorithm.
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Figure 3: The Enterprise Model

Tests were performed for a total of 43 modelhnterval corntinations with three transition methods for each. The table
below summarizes the results for the test suite.

Hook ugly
Surfiice Mesh
Succes 9/9 11/11
Hexing
success 919 11/11

Tet Success
trans: Two 919 11/11
Tet Succ~
trans: Four 819 10/1 1
Tet Success
trans: 919 11/11
Pyramid

WmbIock Enterprise Knee TDDH Throw Totals

2/5 2/2 516 6/6 4/4 39/43

2/2 2J2 215 616 3/4 35/39

12 Y2 212 6/6 213 34/35

0/2 0/2 012 5/6 213 25/36

2/2 2J2 2/2 616 2/3 34/35

Figure 4: Results of Test Runs

Robustness

The success rate of the HexToVoid algorithm on a wide mnge of difficult models was surprising. For the Hex
generation portion of the algorim the success rate was 35/39, or 90%. The failures were breakout problems,
which showed up three times on the Knee problem and once on the Throw model.

The success me for tetrizing the remaining voids was dependent on the transition method used. The success rate
using the two-triangle transition was a very respectable 34/35 or 97%. This is excellent considering the very difficult
voids the tet generator is asked to fill. Using the four-triangle transition, the rate was 25/36, or 70%. The large
difference in success is probably due to the fact two good tiangles can be formed from a skewed quad, whereas the
four triangle transition on the same quad results in very thin triangles. The pyramid transition actually uses the two-
triangle transition and tet generation, and then inserts the pyramid transition layer as a post-processing step. The
success rate for the pyramid transition was identical to the two-transition at 97%.
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For the models shown, the overall success rate for the Hex-Tet algorithm using the two-triangle or pyramid
transition is 87%, whale using the four-triangle transition results in 64% success for the tests performed.
Interestingly, the HexToVoid algorithm performed remarkably well for large interval sizes (very coarse meshes).

Algorithm Effectiveness and PrWIctability

In addition to robustness, the testing included metrics which might indicate whether the algorithm is behaving
sensibly. For example, we would expect that as resolution is increased, the percentage of the volume filled with
hexes should increase, and the percentage of original boundary quads remaining after hex generation should
decrease. Three of the models (Hook, Ugly, and TDDH) had enough data points for meaningful graphs. The graph
for the Ugly model is shown below. The summary indication is that for vew coarse models, the graphs jump around
somewhat randomly. When the resolution becomes sufficient to accurately capture the details of the model, the
behaviors then become monotonic and predictable. From this viewpoin~ it appears that the hex generation portion of
the algorithm behaves correctly and predictably as mesh size is scaled

100 ~% Volumein Hexes

E . . ● - -% Original Faces
Remaining

n 20 —+— % Hexes in Model
o

1

Ou)coh come coo l-q
o

Mesh Size

Figure 5: Algorithm Effectiveness For The Ugly Model

Algorithm Speed

Currently, the Hex-Tet algorithm is still very S1.OW.The Hex generator, which takes most of the time, has been
constructed for robustness, but as yet never modified for efficiency. The table below summarizes the average speed
of the Hex and Tet generation portions of the algonm as well as overall s~d.

Algorithm Elements per Second
Hex Generation 9.84
Tet Generation 221.84

Overall 61.40

Figure 6: Average Timing Statistics for 43 Test Models

Element Quality

Idea of what constitutes a model of acceptable quality varies greatly horn discipline to discipline and from individual
to individual. For the purposes of this study, we chose to use a normalized average element jacobian as a reasonable
indication of the quality of elements created. Of course, this does not mean the mcdels would be acceptable for any
given analysis problem. The jacobhn was calculated as an average of the jacobian at each node, and was then
normalized by dividing by the cube of the average edge length to give a normalized range of

-1.0 <= jacobian c= 1.0

As a computational minimum all elements should have a jacobkm greater than zero.
currently prevent any element fkombekg created which has a non-positive jacoblan.
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which in general will improve the quality of elements, can sometimes also create negative jacobians. The table
below shows the ranges of jacobians found for the test suite. The absolute minimum and maximum reflec~
respectively, the lowest minimum and highest maximum found over all 43 models.

Parameter Hex Elements Tet Elements
Average Minimum Jacobian 0.306 0.062
Average Maximum Jacobian 0.983 0.655

Average Jacobian 0.843 0.330

Absolute Minimum Jacobian 0.007 0.001

Absolute Maximum Jacobian 1.000 0.710

Figure 7: Quality Metrics for Thle 43 Model Test Suite

The quality of hex elements generated ovemll was excellen~ although there were isolated hexes in some models
which would not be acceptable. The quality of the tet elements generated was not as good This is partly attributable
to the fact that the tet improvement algorithms planned for CUBIT (Joe: 1995) have not yet been implemented.

Conclusions

The Hex-Tet algorithm implemented in CUBIT appears to be a useful addition to the CUBIT toolset. The
algorithm handled a wide range of non-trivial models with robustness, producing meshes of acceptable quality in
most cases.

Although many of the models used to test the algorithm are large and complex, we do not recommend using the
Hex-Tet algorithm as a silver bullet to mesh an entire assembly with the push of a button. Rather, it is a useful
tool to be used in the overall context of the CUBIT package, wke models carI be easily decomposed as
necessary, and the best algorithm for each volume or sub-volume carIbe invoked as necessary. We do see it as
highly usefid, however, for those geometries which cannot be decomposed or meshed using other current
algorithms, provided the intented solver c~ handle the resultant mixed element mesh.

Further work still needs to be done to improve the speed and efficiency of the hex generation portion of Hex-Tet

i L.

to make it a faster and easier tool to use.

Figure 8: Ugly Model, Low and High Resolutions
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Figure 9: Winblock Model, Low and High Resolutions

Figure 10: Knee Mode~ Low and H@ Resolutions

J_

F~e 11: TDDH Mode~ Low and High Resolutions
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ABSTRACT

We present a hybrid mesh generation algorithm, which has been developed for semiconductor process and
device simulation. The method uses Cartesian elements (bricks or hexahedra in 3D and rectangles in 2D)
whenever possible and non-Cartesian elements (prisms and tetrahedral in 3D and triangles in 2D) are only
introduced when necessary to resolve material boundties or other features of interest. Our approach
utilizes a quadtree-octree data structure with a level set representation of material boundaries. This
combination allows for an efficient and robust tracking of complex moving boundaries. Efilciency is
obtained by localizing non-Cartesian grid generation and by obtaining fast connectivity information from
the quadtree-octree data structure. Robustness is provided by the level set formulation, which easily
handles topologically dit%cult interfaces, such as regions which begin simply connected but lose this
connectivity after boundaries merge. Following a discussion of the method, results are presented.

INTRODUCTION

Semiconductor process and device simulations
impose a number of unique requirements on the
grid structure. Firstly, variations in mesh density
are required to accurately capture the abrupt
variations in the solutions that occur at junctions
and at boundaries. Secondly, different features
often have disparate length scales. In device
simulation, conducting channels often are much
smaller than other features of the device. In
process simulation, surface layers, which need to
be resolved, are often orders of magnitude smaller
than the bulk substrates on which they are
deposited. Utilizing a fine mesh throughout the
device would be prohibitively expensive. This
argues for a local refinement capability. The
resolution is typically required normal but not
tangential to the surface, so the refinement must
be anisotropic as well. Thirdly, though many
devices are essentially planar, important features
are not Cartesian and we want to include them
without introducing an unstructured grid
throughout the solution domain. As the

simulation of complex structures can be quite
simulation of electrical characteristics subsequent
to a simulation of the processing which generated
the device. These two simulations have different
mesh requirements, which calls for an
unrefinement capability in addition to a
refinement capability. expensive, keeping high-
accuracy Cartesian elements in as much of the
domain as possible is crucial. Lastly, it is
desirable to perform a

These requirements for semiconductor simulation
favor the quadtree-octree mesh generation method
[1], in which the mesh is created by successive
subdivision of rectangles/bricks. These types of
meshes allow for a very easy and natural
anisotropic refinement and unrefinement, and any
type of search in the mesh is fast. For example,
the complete refinement of an N element
quadtree-octree mesh takes (on average)
O@logN) operations [10]. The quadtree-octree
mesh generation method has been applied
successfully to fixed grid problems in both device
simulation and diffusion simulation [2,3]. In thk
work we show how it can be used efficiently for



problems involving moving boundaries and
adaptive meshing.

When applying the octree method to non-planar
geometries the basic algorithm must be extended.
In the modified quadtree-octree method [1] this is
done by the introduction of new nodes at the
intersection points of the geometrical boundary
with the quadtree-octree elements. The intersected
elements are then tessellated into
triangles/tetrahedra, respecting the geometrical
boundary. Variants of this method have been
applied to the simulation of semiconductors
[2][3]. The method appears to have some inherent
shortcomings, though, as was pointed out in [4].

Moving boundary problems (oxidation,
silicidation, deposition and etching are examples
from the semiconductor industry) pose additional
problems for the mesh generation. For 2D
problems moving boundaries have traditionally
been handled by the string algorithm, and 3D
extensions to thh algorithm have been presented
[5]. However, for problems which need a
boundary conforming mesh, the string algorithm
requires the mesh to be unstructured. The use of
an unstructured mesh severely complicates
unrefinement and anisotropic refinement. In
addition the problem of “collapsing elements”
(de-looping) in the 2D string algorithm is
considerably harder in 3D.

An attractive alternative to the string method for
moving boundary problems is the level set
method [6]. In this method the boundruy is
represented by the N-1 dimensional subspace of
an N dimensional space in which the level set
function is zero. The grid is not required to be
boundary conforming in principle. The method
offers elegant and stable boundary tracking,
which naturally handles breaking and merging
regions - problems that are hard to handle for any
string algorithm. As will be discussed below the
level set representation of the geometry rdso
opens new possibilities for the use of a quadtree-
octree mesh in complex geometries and for
moving boundaries.

QUADTREE-OCTREE ALGORITHM

The basic quadtree-octree algorithm successively
subdivides rectangles or bricks into smaller
elements. The version we have chosen subdivides
an element into two identical elements along a
plane given by the refinement criteria. These
subdivisions introduce unconnected (“green”)

nodes at the edges of adjacent elements, which
are resolved by subdividing these elements into
triangles or tetrahedral, pyramids, and prisms. The
basic algorithm works if any edge has a
maximum of one unconnected node (1-irregular
mesh). Fortunately, by balancing the mesh tree
during construction [7], it can be ensured that
only l-irregular mesh trees are constructed, and
the time consuming task of converting a mesh to
be l-irregular can be avoided.

The advantage of a mesh tree, over an
unstructured grid, for refinement and
unrefinement purposes is apparent. The tree
structure allows us to easily remove or add leaves
for appropriate unrefinement or refinement.

BOUNDARY TRANSFORMATION

One of the problems with the modified quadtree-
octree method used to handle non-planar
geometries in [1][2][3] is that it introduces new
nodes at irregular positions in the grid. The
tessellation patterns of the elements intersected by
a boundary can become very complicated and the
tessellation needs to be redone every time further
refinemen~ unrefinement, or boundary movement
is performed. Problems also occur when the
intersection points are close to a node in the tree,
which can lead to reduced mesh quality. Instead
of adding new nodes, we have chosen to
transform the mesh by moving the nodes to new
positions.

The algorithm we use to transform the grid uses a
level set representation of the boundary. A”
boundary (T) is represented by the zero level set
of a function $(x). $(x) maps the coordinate x to a
real number, d, representing the signed distance to
the surface in question. $(x) = d if the point is
inside of T, and $(x) = -d if the point is outside of
T. TMs boundary description also allows for
refinement of the geometry based on the level set
function, and can allow for boundary movement
through the grid (below).

Level set methods allow us to solve our equations
on an Eulerian grid yet retain accurate boundary
tracking. We have chosen to perform a local
geometrical transformation of the mesh to make it
conform to the boundary. Figure 1 gives a simple
illustration of the procedure - the positions of the
octree nodes are transformed to make the mesh
conform to the boundary. This geometrical
transformation allows us to handle topological
changes, maintains proper element shapes and
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mesh density, and is local, i.e., only the mesh in
the vicinity of the surface is affected.

H“liiililla
A) B) Q

Figure 1. When boundary crosses the regular
quadtree mesh (A), nodes can be added (B), or the
mesh can be transformed (C). The thicker edges
are the newly introduced ones.

The basic steps required to create a boundmy
conforming mesh via a local geometrical
transformation are straightforward:

a) Identify edges intersected by the
boundary

b) Move the nodes closest to the boundary
to a location on the boundary

c) Tessellate all elements affected by the
above operations, while respecting the region
boundaries

Note that in c) the tessellation patterns required
are the same ones as for the regular quadtree-
octree, except that any diagonal edges along the
geometrical boundary must be maintained.

The most difficult part of the algorithm is a
consistent implementation of steps b) and c)
together. The movement of nodes to the
boundary must not result in highly distorted
elements or interfere with other boundaries. The
tessellation in c) must similarly produce
acceptable non-cartesian elements. Our rule-
based algorithm has proven successful in
satisfying these requirements for all cases to date.

MOVING BOUNDARY

Using the level set formalism, we advance a
material boundary through a structure by solving
the level set equation:

a’+qvqt=()
at

(1)

or

where F is the normal surface speed, and v the
vector speed of the surface movement.
Additionally we introduce an artificial diffusivity
term

EALv2(p
where epsilon is a difision parameter and AL is
the characteristic element size. This p~ial
differential equation solution utilizes a finite
volume discretization in space and an implicit
time integration. The non-linear system is then
solved with Newton iteration. Several other non-
trivial issues are involved in moving the boundary
using the level set equation (such as the handling
of triple lines and points), but they are beyond the
scope of thk paper.

REFINEMENT AND UNREFINEMENT

The quadtree-octree data structure allows for
efilcient local grid refinement and unrefinement
[1,2,3,10]. While both are important for fast and
accurate simulations, the need for an
unrefinement capability is especially important
for semiconductor simulation. It is desirable to
model the fabrication process and subsequently
characterize the same device electrically. Each of
these simulations requires high mesh density in
different parts of the device. Also, device
simulation can be very computationally intensive
and it is therefore important to remove uneeded
mesh. The quadtree-octree data structure is key
to the refinement and unrefinement capability.

Figure 2 shows an example of the unrefinement
capability. First an initial grid is generated
consisting of a thh oxide layer on top of a silicon
trench. An oxidation simulation is conducted,
resulting in a thick oxide layer on top of the
substrate. Note the large number of elements
now in the oxide region. The mesh is then
unrefined to a more suitable mesh density. The
initial grid uses 5,170 elements and this grows to
15,114 elements after the oxidation. The
unrefined mesh has 4,719 elements, less than the
original mesh.



A)

B)

c)

Figure 2. Mesh at different stages of oxidation
simulation. (A) Initial mesh with thin oxide layer
on top of silicon. (B) Mesh after oxidation. (C)
Mesh after unrefinement.

BOUNDARY DESCRIPTION

The level set method imposes additional
requirements on the boundary description that are
unique to the method. While our boundaries are
simply the zeroes of a level set fimction, we must
define the level set fimction throughout the
domain. The most straightforward method for
initializing the level set function at a point is to
use the signed distance from the boundary surface
in question. The sign is determined by whether a
point is inside or outside of the body.

Our approach to this initialization problem is to
define our boundary in terms of a union of
geometric primitives. For any point in space, we
can calculate a signed distance from each of these
primitive components describing the structure.
Taking the minimum over the collection gives us
the distance to the surface. Figure 3 shows a
more complex trench structure which is defined
using polygons (the top surface, the trench walls
and the trench bottom) and cylinders (for the
rounded edges). This modular approach allows
flexibility in defining many different structures of
interest.

Figure 3. Silicon trench with rounded edges
generated using a union of geometric primitives.

In Figure 4, we show how we may render curved
objects within the quadtree-octree framework. A
silicon hemisphere lies atop a silicon slab, both of
which are covered with a thin oxide layer.
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Figure 4. Half sphere of silicon with oxide layer.

Like most of the grid generation community, we
are interested in the automation of grid generation
and interfacing with other design tools (CAD,
GUI’s, etc). To this end, we utilize TmaLayout
[9], a graphical editor for semiconductor layout
definition. This editor is intended for the creation
of ID and 2D masks for etch simulation. We
have used it to simulation etching of 2D and 3D
structures.

SOFTWARE IMPLEMENTATION

The mesh generation algorithm has been
incorporated into our semiconductor process and
device modeling program Taurus [8]. Taurus is
an object oriented C++ code that uses the finite
volume method to solve the partial differential
equations that govern the simulation. This
method lends itself naturally to these mixed
element meshes. The level set equation is solved
along with the other equations in the simulation
and does not significantly affect performance.
Taurus also has an unstructured tetrahedral mesh
generation capability provided by SCOREC
(Scientific Computation Research Center) at
Rensselaer Polytechnic Insitute [11], which is not
discussed here.

RESULTS

We present a few typical application examples
from semiconductor process simulation. The
largest meshes we have generated using this
algorithm are about 100,000 elements. All of the
grids shown in these examples were generated
quickly, usually in a few minutes on a Sun
workstation. The most computationally intensive

case,. the three dimensional MOSF’J3T,runs over
night (and includes implantation, diffusion,
deposition and etch simulation in addition to grid
generation).

Trench Corners

STI (Shallow Trench Isolation) technology is
widely used for semiconductor devices from
memory to power devices. The presented mesh
generation can be used to study the effect of
different rounding radii on the structural and
thermal stresses generated during processing, as
well as electrical effects in device operation.
Such a trench structure is shown in Figure 5 and
the localized stresses calculated from the
simulation are shown in Figure 6.

Figure 5. Trench structure. Oxide layer on top of
a silicon trench with rounded comers.

Figure 6. Mesh detail for the trench structure. The
total mesh has 4310 nodes. The field shown in the
figure is the dilatational component of the



mechanical stress generated by a thermal ramping
process. The maximum tensile stress for the
rounded comers is 455Mpa, to compare with
537Mpa for sharp (on the scale of this mesh)
comers.

LOCOS Oxidation

Figures 7 and 8 show the mesh for LOCOS
(Local Oxidation of Silicon) simulation. The
initial thin oxide layer shown in Figure 7 grows

Figure 9 shows a simple 3D MOSFET (Metal
Oxide Semiconductor Field Effect Transistor)
useful for studies of channel length and width
effects. Refinement based on the source and
drain-doping profiles has been performed. The
mesh contains 2870 mesh nodes. Figure 10
shows a more realistic MOSFET. A process
simulation was performed and the device shown
in the figure is the result. Subsequently, the
model was used for device simulation. This mesh
contains 99,404 elements and 41,114 nodes.

into the silicon and expands, deforming
nitride mask on top, as is shown in Figure 8.

the

Figure 9. Simple 3D MOSFET structure for
device simulation.

o~dation (1640 nodes).

Figure 8. LOCOS mesh. Mesh after 10COS
oxidation (2320 nodes).

Figure 10. Realistic 3D MOSFET generated
chuing process simulation and characterized using
clevice simulation.

Three Dimensional MOSFET Mesh Generation using Etching and
Deposition
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[1]

Using etch and deposition steps, complicated
structures can be generated and simulated. The
deposition and etch steps manipulate the level set
geometry description and, as described above, the
mesh is generated to conform to this geometric
description. This is shown in Figure 11 for a gear
structure.

Figure 11. “Gear” structure generated via
deposition and etch steps.

CONCLUSION

We have described a hybrid mesh generation
method, which combines two powerful
techniques: a quadtree-octree data structure for
efilcient access to mesh connectivity information
and a level set representation of material
boundaries for robust tracking of moving
boundaries. The algorithm is well suited for both
process and device simulation of semiconductor
devices. The algorithm has been implemented in
the commercially available program Taurus [8]
and results generated with the code have been
presented.
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Abstract

An adaptive hybrid prismatic/tetrahedral grid generation method is described and applied to

complex geometries for diverse industrial applications. The method consists of using a surface

mesh generator to triangulate the geometry to be modeled. The volume mesh is then created

using prismatic and tetrahedral elements. The prisms cover the region close to each body’s sur-

face for better resolution of viscous gradients, while tetrahedral are created in the remainder of

the domain. An adaptive redistribution scheme is used to better resolve boundary layers. The

grid generator is tested with various complex geometries and the resulting hybrid meshes are

presented. The applicability of the adaptive hybrid grid generator over a wide range of geome-

tries with minimal user interaction demonstrates the robustness and universality of the method.

1 Introduction

There is an ever increasing demand to perform flow simulations that incorporate the complete details of

geometry as well as sophisticated flow physics. This has led to the development of numerical algorithms that

can simulate the actual flow phenomena with greater fidelity. However, the success of these algorithms hinges on

the grid that models the geometry. Grid generation methods for 2-D models have long existed and the general

lack of complexity of these models has not quite challenged the efforts of mesh generation. However, demands

for generating better 3-D geometric models for flow simulations involving complex geometries have completely

changed the perspective of grid generation strategies. As a consequence, grid generation efforts have gained

significance equal to that of numerical solver efforts.

Structured meshes consisting of blocks of hexahedra and unstructured grids consisting of tetrahedral have

been the traditional means of discretizing 3-D flow domains [1, 2, 3, 4]. An emerging technique is that of
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using semi-structured prisms to discretize the viscous region near the surface of the geometry [5, 6, 7, 8, 9]. The

prismatic elements are well suited to capture thin boundary layers. The quadrilateral faces normal to the surface

provide good orthogonality and grid clustering capabilities, whereas the triangulation in the lateral direction

allows flexibility in surface modeling. The structured prism layers allow implementation of directional multigrid

acceleration schemes [10, 11]. The structure is also exploited when using algebraic turbulence models [12, 13].

Furthermore, numerical schemes that are semi-implicit in the normal direction can be easily used to alleviate

stifiess of viscous flow computations. Finally, the structured nature leads to reduced memory requirements on

the solver [7, 11]. .

Strongly directional viscous stresses exist in a relatively small region of the flow domain, primarily close to

the geometric surface. In regions away horn the surface, prismatic elements do not offer any particular advantage

over other types of elements. .41s0, prismatic grids alone cannot cover multi-body domains. On the other hand,

tetrahedral have the capability to fill any given volume of arbitrary shape. Hence, an effective strategy for grid

generation would be to use both, the prisms and tetrahedral, by generating a hybrid grid [6, 7, 8]. The prisms

cover the regions close to each of the bodies, while tetrahedral fill in the irregular gaps in between the prismatic

layers. The tetrahedral elements may also be used to capture the viscous wakes that extend beyond the thin

prismatic layers around the surface.

This paper presents an adaptive hybrid grid generation method and demonstrates the robustness of the

generator by applying it to complex geometries for diverse industrial applications. A brief overview of the

surface, prismatic and tetrahedral mesh generation procedures is given, along with a grid redistribution scheme.

Resulting hybrid meshes for geometries from various fields such as the aerospace, turbomachinery and offshore

industries are presented and discussed. $iscous flow simulations on adapted grids axe also presented for a NACA

0012 wing and an offshore structure.

2 Surface Mesh Generation

Surface meshes are generated using a modified version of the advancing front method [14, 15]. The modified

version uses an octree to control the spacing and stretching of points on the surface. The octree is created by

starting with a master hexahedron that contains the entire domain. Thk hexahedron is recursively subdivided

into eight smaller hexahedra called octants. This process is repeated until the octants match the local length

scale of the body. U-sing this octree during mesh generation, the local element size is calculated using the size

of the octants in that area.

2.1 Disparate Length Scales

The length scales of the surface triangles are governed by several factors. First, the local curvature is

approximated by calculating dihedral angles on an isotropic initial mesh. The curvature based length scale is

such that the triangulation is fine in Klghly curved areas (like trailing edges of blades) and relatively coarse in

flat regions. The distance between surfaces is another length scale used for surface mesh generation. Here, the

local length scale is small in regions where surfaces are in close proximity, thus allowing automatic clustering in

such areas. Finally, the surface mesh generator also clusters points based on small length scales dictated by the
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CAD definition of the model. In complex geometries, the size difference between small and large scale features is

several orders of magnitude, and CAD feature based clustering allows proper refinement on tiny features while

still maintaining large triangles elsewhere.

An example of a surface triangulation for a complex geometry with disparate length scales is shown in

Figure 1. This case represents flow through a burner, complete with an annulus WYuser, swirl producer and a

combustion chamber. The geometry has various complexities such as the fuel injection holes, severe cavities and

twisted blades which produce the swirl. The geometry has periodic boundaries, and only one burner is being

modeled along with periodic boundary conditions. The surface mesh has been omitted in thk view to maintain

clarity of the figure. Figure 2 shows a close-up of the surface triangulation for the swirl producing section. The

surface consists of approximately 75,000 triangles. The disparate length scales impose a challenge for surface

mesh generation. However, a combination of the curvature, proximity and CAD feature based clustering pro-

vides a good triangulation for the geometry. Views of the resulting hybrid mesh for this geometry can be found

in Section 6.1.

3 Prismatic Mesh Generation

The surface mesh generated by the above described procedure is the starting point for the prismatic mesh

generation. The method basically involves marchmg the surface triangulation away from the body in distinct

steps, resulting in the generation of semistructured prismatic layers in the marching direction. The process can

be visualized as a gradual inflation of the body’s volume. Details on the procedure can be found in [5, 6,7, 8].

A brief description is presented here.

3.1 Overview of Marching Procedure

There are three main aspects of the algebraic grid generation process: (i) determination of the directions

along which the nodes will march (martilng vectors), (ii) determination of the distance by whkh the nodes

will march along the marching vectors, and (iii) smoothing operations on positioning of the nodes on the new

layer. The marching direction is based on the node-man@ld, which consists of the group of faces surrounding

the node to be marched. The primary criterion to be satisfied when marching is that the new node should be

visible from all the faces on the manifold (visibility cm”terion) [5]. The marchbg distances are proportional to

the characteristic angle of the manifold of each node to be marched. This angle is computed using the average

dot product between the pairs of faces forming the manifold. The relationship between the angles amd the actual

marching distance is such that the local curvature of the surface is reduced with each successive layer. After the

initial directions and magnitudes are determined for each node, a number of Laplacian smoothing operations

are performed on the final position of the node on the new layer, along with constraints to improve the overall

quality of the generated mesh.

Another feature of the prismatic grid generator is that it allows boundary nodes to march along mbitrarily

splined surfaces. The lack of being able to follow specified boundaries has been a key issue for most structured

grid methods. The prisms march along the boundaries in the parametric domain and are then transformed back

into real space, thus matching the exact geometry. The addition of this feature provides tremendous flexibility
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to the grid generator.

3.2 Prismatic Mesh Generation in Narrow Gaps and Cavities

Treatment of narrow gaps and cavities between the surfaces to be modeled has been a major concern for

structured and sem-istructured mesh generators. The current prismatic mesh generator is capable of auto-

matically handling such cases using the Automatic Recedhg Method (ARM) [8]. The basic procedure here is

to reduce the marching steps in cavities which are automatically detected by the generator. The amount of

reduction depends on the size of the local cavity. Once the marching steps in the cavity regions have been

reduced, a smooth transition to the regions outside the cavity is obtained by also reducing the marching steps

of nodes in the immediate vicinky of the cavity to a certain extent.

4 Tetrahedral Mesh Generation

Tetrahedral meshes are.generated using the same octree-advancing front method described for surface mesh

generation [14]. The only difference between the surface and tetrahedral generation is the length scale used to

create the octree. For hybrid prismatic/tetrahedral mesh generation, the local length scale is simply the local

thickness of the last prismatic layer. This will ensure that the size of the tetrahedral in the direction normal to

the outer prismatic surface is the same as the height of the neighboring prisms. This smooth transition in size

horn the prisms to the tetrahedral is important for accuracy of the numerical method. For an ail tetrahedral

mesh, the local length scale is the local edge length of the original triangulated surface.

Grids generated using an advancing front type scheme can contain regions of low quality within the mesh

domain. These low quaMy regions must be altered before the mesh can be used with a flow solver. A method

for improving low quality regions has been developed. This method removes low quaMy regions from the mesh

and fills the resulting cavities using the same advancing front generator on the new front defined by the surface

of these holes. The quaMy measure used in the present work is the volume ratio of the two tetrahedral sharing

each face.

5 Adaptive Redistribution

Adaptive algorithms have been developed for hybrid grids which couple tetrahedral and prismatic local grid

refinement strategies [11]. The present work introduces an ei%cient redistribution scheme to increase resolution

of the boundary layers and wakes. The redistribution algorithm increases local grid resolution by clustering

existing grid points in regions of interest. Since the number of grid points is fixed, rr+clustering in one region

may result in less resolution elsewhere when the initial grid does not include a sufficient number of points.

Nevertheless, redistribution can be advantageous when the number of nodes is sufficient.

A measure of the grid resolution required normal to the no-slip wall is the value of y+ = ~, with UT =

r
w being the wall tilction velocity [16]. A criterion based on the values of y+ at the wall is employed to

attract nodes towards the wall so that an upper bound of y+ is maintained at all the wall nodes. This procedure

in essence determines a new value for the spacing of the fist node off the wall at all locations on the wall
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surface. The nodes in the prismatic region are then reclustered along the marching lines emanating horn the

corresponding wall node.

.4 NACA 0012 type of wing is considered to demonstrate the effectiveness of the developed redistribution

scheme. Figure 3 shows the leadlng edge of the blade before and after prismatic grid redistribution. The re-

distributed figure clearly indicates the reclustering of the prismatic nodes toward the blade surface. Figure 4

shows the @ distribution along the blade before and after redistribution. The reduced y+ after redktribution

enables better results with numerical simulations. A comparison of the pressure coefficient along the blade is

shown in Figure 5. The numerical results match well with the experiments.

6 Resulting Hybrid Meshes

Hybrid grids were generated for a variety of geometries from the aerospace, turbomatilnery and offshore

industries to demonstrate the effectiveness of the developed grid generator. The particular cases discussed

here include a burner, a torus, a High Speed Civil Transport (HSCT) aircraft configuration with flow-through

engines, and a helical strake. The geometries present a wide variety of features of the grid generator such

as periodicity, marching along arbitrary splined surfaces, symmetry planes and treatment of disparate length

scales.

It should be noted that although the geometries presented here could be meshed via approaches other than

the hybrid methodology applied, the generation procedure would not be as automatic and efficient. For ex-

ample, structured approaches that require blocking would be extremely user intensive and time consuming.

Also, all tetrahedral meshes would require substantially more elements for the same resolution in the boundary

layers (typically each prismatic cell can be broken down into three tetrahedral cells). Another problem with all

tetrahedral meshes is that the generation of viscous (anisotropic) elements is difficult and inefficient. Hence, the

hybrid strategy chosen better addresses the demands of such complex geometries. The prismatic generator au-

tomatically creates high aspect ratio elements and the tetrahedral generator closes the remainder of the domain.

6.1 Burner Geometry

Views of the geometry were presented in Figures 1 and 2 (refer to description in Section 2.1). The surface

consists of approximately 75,000 triangles. Since the case is periodic in nature, care needs to be taken to match

the point placement from one periodic boundary to the other. Also, the. periodic, inlet and outlet surfaces are

arbitrary splined surfaces and have prismatic elements grown along them.

A hybrid mesh of the burner is seen in F&me 6, which is a cut along the axis. The view shows that

the hybrid grid generator was capable of capturing all the fine features of the geometry, and also clustered

points downstream of the swirl producing section. The mesh consists of 415,000 nodes, 521,000 prisms, and

748,000 tetrahedral. .4 cut across the swirl producing blades is shown in F@.re 7. The view shows the hy-

brid nature of the mesh, and demonstrates the smooth transition in cell sizes even across different element types.
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6.2 Combined Inlet Torus and Nozzle Rkg for a Steam Turbine

This geometry consists of several small blades equally spaced circumferentially inside a toroidal housing. The

case presents a challenge in grid generation efforts as there are very disparate length scales. F@ure 8 shows views

of the hybrid grid, which consists of approximately 350,000 prisms 30,000 pyramids, and 1,680,000 tetrahedral.

The top portion of the figure shows the housing, whereas the bottom portions show close-ups of the blades. Fluid

flows in through both ends of the housing and out through a right-angled bend past the blades. The surface mesh

generator automatically clusters points in the vicinity of the blades due to proximity, small CAD features and

high curvature. The figures indicate that the prisms have grown substantially around the housing (where there

are no small scale features), and have automatically reduced the marching thicknesses around the blades. The

tetrahedral match the thickness of the final layer of prisms to provide a smooth transition between element types.

6.3 High Speed Civil Transport (HSCT) Aircraft Configuration

The High Speed Civil Transport (HSCT) Aircraft is a next generation aircraft being designed to travel at

supersonic speeds. It has a double-delta wing configuration emerging from the nose. This particular version

consists of the conventional wing-body configuration along with a flow-through engine. A symmetry plane is

used to enable modeling of only one half of the domain. Views of the surface of the HSCT aircraft are shown

in Figure 9. The surface grid consists of 26,000 triangles. The top portion shows the entire aircraft without

the triangulation. The flow-through engines are clearly visible. The bottom portion shows a close-up of the

triangulation for the engine region. The inlet of the engine forms a 0.4° wedge and so points are clustered

around it to capture the shock formation due to supersonic flow. The cavities inside the engine and in between

the engine and the wing impose several length scales on the grid generator.

Views of the hybrid mesh for the geometry are shown in Figure 10. The bottom portion shows a close-up of

the engine region. The grid consists of 190,000 prisms, 4,000 pyramids and 740,000 tetrahedral. It is observed

that the element sizes are automatically reduced in the vicinity of the engine due to the cavity. F&ure 11 shows

a view of the aircraft with two perpendicular cuts. The clustering of the prismatic and tetrahedral elements in

the vicinity of the engine inlet is evident.

6.4 Helical Stralce Geometry

The fkal case considered to demonstrate the robustness of the developed grid generator is that of a helical

strake geometry which is used to suppress vortex-induced vibrations (VIV) in offshore structures such as risers

and spars. Of particular interest here is how incompressible fluids interact with the structures they surround,

and in turn, how these structures respond to the external fluid forces. In some instances, this fluid-structure

coupling can result in a resonant structural condition yielding severe structural displacements which can lead to

failure of the structure. The helical strakes that are added to the cylindrical geometries disrupt the coherence

of the vortex shedding, thereby substantially reducing the displacements [18].

A view of the hybrid grid for the geometry is shown in Figure 12. The grid consists of approximately

4,000 surface triangles, ad 60,000 total cells. The figure shows the helical strakes attached at one end to

the symmetry plane. A field cut of the hybrid mesh showing the signature of the prismatic and tetrahedral
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elements is also shown. .4n incompressible, finite-volume solver with a pressure correction method was used to

simulate low Reynold’s number flow. The simulations were time accurate and were coupled with a rigid body

structural response to obtain flow-structure solutions. A view of the streamlines over the geometry is shown in

Figure 13. The streamlines clearly indicate the 3-D nature of the vortex structure. .4s mentioned above, the

helical strakes are added to reduce the VIV and thus the displacements of the geometry. Figure 14 shows plots

of the transverse displacement over time of cylinders with and without the strakes. It is seen that the amplitude

of the displacement without the strakes was on the order of 0.35 (norms.hzed with the diameter), whereas that

with the strakes was under 0.03.

7 Concluding Remarks

An adaptive hybrid prismatic/tetrahedral mesh generator has been developed for use in modeling arbitrary

3-D geometries. The applicability, universdlty, and robustness of the grid generator are clearly demonstrated

through complex geometries from various fields such as the aerospace, turbomachinery and offshore industries.

The hybrid mesh generator was very successful in handling severe cavities and capturing widely varying length

scales. The mesh generator allowed for marching along arbkmry parametric surfaces, and was also capable of

generating periodic meshes. The adaptive redistibution scheme proved effective in better resolving boundary

layers.
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Figure 1: An isometric view of the surface of the burner geometry.

clarity. The geometry consists of the annulus casing, the diffuser,
chamber.

The triangulation has been omitted for
the swirl producer and the combustion

Figure 2: A close-up view of the swirl producing section of the burner geometry. The surface is made up of
75,000 triangles.



Figure 3: Close-up view of the prismatic layers at the leadlng edge of the NACA 0012 hybrid grid. The top
portion shows the prisms before redistribution whereas the bottom portion shows the prisms after redistribution.
Note that the redistributed grid clusters the grid closer to the wall surface to better resolve the boundary layer.
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F@ure 4: Comparison of the g+ values before and after redistribution of the prism layers for the top and bottom
surfaces of the N.ACA 0012 airfoil.
o Before redistribution

+ After redistribution
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Figure 5: Comparison of pressure coefficient distributions with experiments [17]. Case of flow over the NACA-

0012 wing with Re = 2.91 x 106, Mm = 0.5, and a = 1.77°.
❑ Experimental results

- Numerical results

Figure 6: .4 close-up view of the hybrid cut along the axis of the burner geometry. The grid generator was
capable of automatically handling the small length scales and the severe cavities.



Figure 7: A cut across the swirl producing blades of the burner geometry. The hybrid nature of the mesh and
the smooth transition in cell sizes is clearly visible.
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Figure 8: Views of the hybrid grid for the torus geometry. The case consists of several blades imposing vastly

varying length scales. The top figure shows the housing and the bottom figures show closeups of the blades.
The grid generator automatically treated the disparate length scales.
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Figure !3: Views of the surface for the HSCT aircraft configuration with flow-through engines. The top portion
shows the entire aircraft without the triangulation and the bottom portion shows a close-up of the engine inlet.
The surface consists of 26,000 triangles.
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Figure 10: Plane-cuts of the hybrid mesh for the HSCT aircraft. The grid consists of 934,000 elements. The
bottom portion shows a close-up of the grid around the engine cavity. The element sizes have automatically

been reduced due to the cavity. A smooth transition in cell sizes is observed elsewhere.
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Figure 11: View of the HSCT grid with two perpendicular cuts. The view shows the clustering of elements at
the engine inlet and the gradual increase in cell sizes away from it.
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Figure 12: Hybrid grid for helical strakes geometry, The grid consists of 4,000 surface triangles and 60,000

total cells. The figure shows one end of the strakes attached to a symmetry plane, and also show a field cut of
the hybrid mesh.

AL’l/L
Figure 13: Streamlines over the helical strake geometry. The figure shows the 3-D nature of the vortex structure
formation behind the geometry.
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figure represents a cylinder without strakes and the bottom figure represents the helical strakes geometry. It is

seen that the strakes substantially reduce the transverse dkplacement.
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Space-Time Meshing for Two-Dimensional Moving Boundary Problems
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Abstract. A newmeshing strategy fortwo-dimensional space-time moving boundary methods ispre-

sented. Themethod breaks thespace-iime domain into time slabs, and tesselates each sequentially. Within

each time slab, the mesh is generated by extruding the lower time plane, moving the boundary, adding

and removing vertices near the boundary, and smoothing. Unlike other strategies, topological changes to
themesh are restricted to athinlayer near the boundary, thereby avoiding theneed jorglobalremeshing

of the domain.

Keywords: space-time, time slab, mesh generation, moving boundary

1 Introduction

The use of the finite volume method for applications in fluid mechanics and heat transfer is well-established.
Its popularity stems from the direct manner in which it translates the underlying conservation principles into
a practical numerical technique. ‘lladltionally, the finite volume method has been used only to dkcretize
the spatial domain; a finite difference method is used for time. Conservation principles, however, apply not
only in space, but also in time. It makes sense to extend the finite volume principle to both space and time.
We call this approach the integrated space-time (1ST) finite volume method. It has already been developed
for one-dimensional problems [12], and is currently being extended to two-dimensional cases.

Space-time methods have existed for some time in the finite element community, where they are typically
used in conjunction with the discontinuous Galerkin method [6]. Among the spac&ime finite element
methods which have been applied to moving-boundary problems are the characteristic streamline dlfision
method [4, 5] and the Galerkin least squares / space-time method [8,9].

Space-time methods have proven particulzwly popular for solving problems with moving boundmies, because
they naturally incorporate terms arising from mesh motion. For instance, the Geometrical Conservation

Law [1, 10, 11], which is particularly important for mass conservation, is identically satisfied if the space-time
mesh completely fills the space-time domain. Spacetime methods have also been applied to cases involving
internal mesh motion, in order to achieve a conservative mesh adaptation algorithm [3].

The purpose of this paper is to present a space-time meshing procedure for two-dimensional moving boundary
problems. Just as conventional dlscretization methods fill the spatial domain with a spatial mesh, so also
space-time methods fill the space-time domain with a space-time mesh. Thus the mesh has an increased
dimensionality — for two-dimensional problems, a mesh having two spatial dmensions plus a time dimension
is required. Most often, the space-time mesh is split into time slabs, in order to decouple the discretization
at a particular time from solutions at later times. There have been various approaches to meshing individual
time slabs. Many of them use Lagrangian methods in which the space-time elements follow the flow, as in
Hansbo [4,5]. In order to avoid mesh distortion and tangliig, these methods may require a remeshing of
the spatial domain and a nonconservative solution projection step every few time slabs. Another approach
has been to remesh the spatial domain every time slab and tesselate the time slab with simplex spac=time
elements [3]. Such an approach seems expensive for higher-dimensional problems.

lPh. D. student
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Figure 1: Division of space-time domain into time slabs.

algorithm presented here avoids global remeshkg entirely. Instead, it uses local
mesh modifications near moving boundaries. We will first present the basic ideas behind the algorithm
for one-dimensional moving boundary problems; then a more involved explanation of the method for two-
dmensional problems will be presented. The solutions to some validation problems will also be provided.

2 One-dimensional problems

In this section we describe the space-time meshing algorithm for one-dmensional moving boundary problems.

Space-time meshing involves filling the space-time domain with nonoverlapping cells, which in finite element
methods are referred to as elements. To do so, we first subdivide the domain into time slabs, as shown in
Figure 1. A time slab is bounded by spatial meshes on time planes at times t“ and tn+l.Time slabs allow
for causal solution algorithms; i.e., the solution in a particular time slab is decoupled from the solutions in
later time slabs. Note that the space-time domain boundaries may be curved, reflecting the fact that the
boundary positions may change with time..

In principle, the mesh within a time slab may be quite general. For simplicity, we require all cells to span
the distance between times t“ and tn+l. The cells have a dimensionality of one larger than the spatial
dlmensiona.lky, so one-dimensional problems have two-dimensional cells. The cell boundaries are called
faces, even though geometrically they are edges. This terminology has developed to emphasize the fact that
the finite volume method represents a balance of discrete fluxes through the faces of a control volume. It
is clear that space-time cells are bounded by two distinctly different types of faces: those which lie on a
time plane, which we call time faces, and those which span the distance between time planes, which we call
space-time faces.

When tesselating a time slab, we use an existing spatial mesh on the lower time plane t“, to simultaneously
generate the spatial mesh on tn+land the space-time mesh between the time planes. For the first time slab,
the spatial mesh at time tomust be given. For one-dimensional problems, this initial mesh consists simply
of a predefined number of vertices evenly spaced over the length of the spatial domain, as well as the time
faces of length ~ which which join the vertices.

The time slab meshing algorithm uses a four step-process, as illustrated in Figure 2. In step (a), the lower
spatial mesh is extruded in time to generate a space-time face from each vertex and a quadrilateral cell from
each time face. In step (b), the boundary vertices on the new time plane are moved to their new prescribed
locations. This step may produce time faces which are too long or too short or even tangled. Step (c)
therefore modifies the mesh topology next to the boundary by addkg or removing vertices. A vertex is
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Figure 2: Generating” a mesh for a time slab: (a) extrude in time; (b) move boundaries; (c) add/remove

vertices; (d) smooth.

added next to the boundary if the-time face length is too long,

L > ~max~,

which generates a triangular cell having a vertex on the lower
plane. A vertex is removed if the time face length is too short,

L < &i.~l

(1)

time plane and an edge on the upper time

(2)

which generates a triangular cell having an edge on the lower time plane and a vertex on the upper time -
plane. ~m= and ~~i. are defined parameters. Fhmlly, in step (d) the vertex locations on the new time plame
are smoothed.

The algorithm as described places a restriction on the allowable time step no more than one vertex maybe
added or removed next to a boundary in a time step. However, for one-dimensional problems, it is not hard
to modi~ the algorithm to allow additional vertices to be added or removed. An example of a space-time
mesh generated with this algorithm is shown in Fig&e 3, where a domain has its left boundary tied at
x = O and its right boundary vary according to z = .5 sin(mt). The space-time mesh is shown for O < t.< 3
using time steps of At = 0.1 and ten cells on the initial time plane.

3 Two-dimensional problems

3.1 Overview

Space-time meshing for two-dimensional problems follows the same general approach as with one dimension,
but the steps are more involved. As in the one-dmensional case, time slabs are used, with space-time cells
spanning the distance between the time planes. Generating the space-time mesh requires tracking two types
of topologies: the two-dimensional spatial mesh on each time plane and the spac~time mesh whkh joins
the time planes. A good space-time mesh requires having qutilty meshes for both of these. The initial
spatial mesh for the totime plane is generated by a publicly-available triangulator called EasyMesh [7]. For
simplicity, we require time faces to be triangular.

For one-dimensional problems, we outlined a four-step process to tesselate a time slab. In two dmensions,
three of these four steps are relatively straightforward. First, the spatial mesh on the lower time plane is
extruded. In so doing, the edges generate quadrilateral space-time faces, whale the triangular time faces
generate triangular prisms. Next, vertices which lie on moving boundaries are moved to their new locations.
Third, the mesh next to the boundary is modtied as required. This third step is the most involved, and is



Figure 3: Spac&time mesh for a one-dimensional problem having a fixed left boundary and oscillating right
boundary.

EDGE-EDGE EDGEVERT VERT-EDGE

Figure 4 Space-time face topologies for two-dimensional problems.

discussed in further detail below. The fourth step is a smoothing step, where one or two layers of vertices
next to moving boundaries are smoothed.

Modi&iig the extruded mesh may change the topologies of space-time faces and cells. For the space-time
faces, there are three possible topologies, shown in Figure 4. The unmodified topology is a quadrilateral,
having an edge on both the lower and upper time planes. In the course of the modifications, two triangular
topologies, having an edge on one time plane and a vertex on the other, maybe encountered. The face types
are labelled according to how they appear on the lower and upper time plane eg., a VERT-EDGE face has
a vertex on the lower time plane and an edge on the upper time plane.

For the cells, there are six possible topologies, shown in Figure 5. The unmodified topology is a triangular
prism, having a triangular time face on both the lower and upper time planes. In the course of the modifi-

cations, two pyramid topologies may be encountered, having a triangular time face on one time plane and
an edge on the other. Three tetrahedral topologies are also possible: two have a triangular time face on one
time plane and a vertex on the other, and the third has am edge on both time planes.
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(a) TRI-TRI (b) EDGETRI (c) TN-EDGE

(d) VERT-TRI (e) TRI-VERT (f) EDGEEDGE

Figure 5: Cell topologies for twcAimensional problems.



///////////////////////// A ~////////////////////////////

(a) Face vertex (b) Edge vertex

Figure 6: Types of vertices which may be connected to a moving boundary. The mesh lies on a time plane.

Deciding where to add and remove vertices in two dimensions follows the method for one-dimensional prob-
lems. Define ~ to be the average edge length on the initial time plane. Suppose the distance of a vertex
connected to a moving boundary to that boundary is L. Another vertex must be added if the distance is
too long,

(3)

and the vertex must be removed if the distance is too short,

In order to maintain an acceptable mesh quality when these operations are carried out, it is essential that
the spatial mesh on the new time plane retain its origiml structure. We therefore dktinguish two types
of vertices which may be connected to the boundary, as illustrated in Figure 6. The first, labelled a face
vertex, is connected to the boundary by two edges, whereas an edge vertex is connected by a single edge.
Removing these vertices results in different topological changes, as does adding new vertices when they are
too far from the boundary. Vertices may also be added to the boundary itself, for cases where the boundary
stretches or shrii. These operations are similar to adding and removing face and edge vertices and will
not be discussed in detail.

3.2 Adding a vertex

When a vertex is added, the topology both of the spatial mesh on the new time plane and of the space-time
mesh below it are modified. The effect on the new time plane is relatively straightforward, as shown in
Figure 7.

Consider now the effect of these operations on the topology of the space-time mesh, as shown in Figure 8.
When addkg an edge vertex, the topological changes can be separated into a left and a right section, each
consisting of a TRI-VERT cell and two EDGETRI cells. When adding a face vertex, the left and right
sections again consist of a TRI-VERT cell and two EDGE-TRI cells, but they no longer meet at a common
plane. Instead, a central piece consisting of a TIWVERT cell and an EDGETRI cell is introduced.

These operations have assumed that only a single vertex is added in isolation. In some cases, however, two
adjacent vertices must be added together. For instance, suppose two adjacent time faces must be split, as
shown in Figure 9. Notice the appearance of the shaded quadrilateral shape joining the two new vertices
and the two old face vertices. This quadrilateral must be split in order to retain a triangulation on the new
time plane. One consequence of this is that if the mesh on the old time plane is composed of equilateral
triangles, the mesh on the new time plane will take on a squarish look as one of the boundaries moves out.
The spacetime mesh for the same operation has been split into six sections. The left and right sections of
Figure 8 reappear, and the central section reappears twice. In the very center, two additional pieces appear,
which arise from the interaction between the two vertices. The front piece is composed of a TFU-VERT cell
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(a) Adding a face vertex

/////////////////////////////// /A

(b) Adding an edge vertex

Figure 7: Topological changes to time plane when a vertex is added.
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The dotted lines illustrate how the



7/////////////////////////////////////// A /////////3= //////////

(a) Changes to time plane. The shaded quadrilateral illustrates how the mesh takes on a
squarish look.

e\\\\\\\\\\\----
(b) Structure of time slab

Figure 9: Topological changes when two vertices are added.

on the left and an EDGETRI cell on the right. The back piece has an EDGEEDGE cell sandwiched by
two VERT-TRI cells.,

3.3 Removing a vertex

Removing a vertex is roughly the reverse procedure of adding a vertex. The topological changes to the time
plane are shown in Figure 10. The operation consists of removing all edges on the time plane which touch
the vertex and then retriangulating the resulting polygon. The examples shown are unamb&uous, but in
other cases, where the vertex to be removed has more neighbors, the retriangulation must be done in such
a way that the mesh quality does not deteriorate.

The topological effects of removing a vertex are illustrated in Figure 11. The space-time cells are inverted
versions of those which appear when a vertex is added (F@me 8). For every time face which shares the
vertex on the old time plane, a TRI-EDGE cell appears which causes the time face to collapse into the edge
opposite the vertex. In addition, for each new time face which appears on the new time plane, a VERT-TRI
cell appears. When the vertex being removed has more neighbors than the examples shown here, the central
section becomes more complex. Removing adjacent vertices is also more involved than removing a single
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(a) Removing a face vertex

(b) Removing an edge vertex

Figure 10: Topological changes to time plane when a vertex is removed.

vertex; however, the situation is quite similar to adding adjacent vertices, and the time slab again features
the EDGEEDGE cell.

3.4 Geometry Calculations

The cell-centered flow solver requires the calculation of several geometrical entities. Areas and centroids are
required for time faces; areas, centroids, and normal vectors for space-time faces; and volumes and centroids
for cells.

The faces and cells through most of the time slab are extruded from the lower time plane, and their geometries
are easily calculated. Only near moving boundaries, where vertices have been added, removed, or moved are
more extensive calculations required. These calculations are explained below.

The geometries of time faces, EDGEVERT faces, and VERT-EDGE faces are straightforward, as they tie
triangular. The geometries of EDGEEDGE faces are calculated by introducing an auxiliary point as the
average of the four bounding vertices. The auxiliary point is used to decompose the face into four triangles,
whose areas are summed to obtain the face area and whose centroids are weighted by area and averaged to
obtain the face centroid.

A similar process is used for the cell calculations. The geometries of VERT-TRI, TRI-VERT, and EDGE
EDGE cells are easily calculated, as they are tetrahedral. For the remaining cell types, an auxihary point
is used to decompose the cell into tetrahedral 14 for TRI-TRI cells and 8 for EDGETRI and TRI-EDGE
cells. Cell volumes are obtained by summing the tetrahedral volumes, and cell centroids are obtained from
the volume-weighted average of the tetrahedral centroids.

It should be noted that, although a Green-Gauss theorem could be used to calculate cell volumes, it is still
necessary to decompose the cell into tetrahedral for the centroid calculation. This is because the Green-Gauss
surface integral the centroid position has quadratic terms, which cannot be solved exactly using a single-point
quadrature.
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(a) Removing a face vertex

F@re 11: Topological changes

3.5 Test Cases

(b) Removing an edge vertex

to time plane when a vertex is removed.

Too illustrate how the algorithm works in practice, two problems are considered. The fist consists of an
initially-square cavity ha~g a dimension L. The right boundary of the square moves back and forth in a
sinusoidal manner. The amplitude of the oscillation is 0.75L and the period of oscillation is T. The initial
geometry is meshed using 670 triangles and 80 time slabs are used per period. Figure 12 shows the resulting
mesh on time planes O < t < 1.125T in intervals of 0.125T. The results clearly show that good mesh quality
is maintained throughout the period.

The second test case involves fluid flow in a channel. A portion of the channel’s lower boundarv moves into
the channel in a periodic manner. DemirdZR and Perib [2] have solved the same problem using a conventional

“

finite volume method. The geometry is shown in F@ure 13. Defining T to be the oscillation
normaEzed time is t*= t/T. The height of the indentation at a particular time is defined by

h = .19(1 – cos(2nt*))

and the curved portion of the lower wall is defined by

{

0.5h(l – tanh(4.14(z – 5.25))) if 4b < z < 6.5b,

y = 0.5h(l + tanh(4.14(z + 5.25))) if – 6.5b < z < –4b.

period, the

(5)

(6)

The meshing algorithm performs well on this mesh. The spatiaJ mesh at several time levels for the region

around the indentation’s downstream end is shown in Figure 14.

3.6 Discussion

The results for this test case and others indicates that the method works well on a variety of problems.
There are some limitations, however. First, unliie the one-dimensional case, there is a CFL-type restriction
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Figure 12: Spatial mesh of cavity test case on time planes O < t < 1.125T in interwds of 0.125T. The
sequence runs by column.
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Figure 14: Spatial mesh in the downstream vicinity

The sequence runs by column.
of the indentation on time planes t“ = 0.1,0.2, . . ..,1.0.
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on the thickness of the time slab. This is due to the excessive complexity which would be required to allow
multiple layers of vertices to be added or removed in a time slab. A second limitation is that the method
degenerates when the boundary vertices move in a dwection significantly different than the normal vectors
to the boundary time edges. Empirical observations suggest a maximum difference of about 45°. A further
limitation is the assumption of a uniform isotropic spatial mesh on the time planes; if necessary, however,
it should be possible to extend the algorithm to other cases as well. In addition to these limitations, the
algorithm is relatively complex to code: there are several special cases, particularly near corners, whkh must
be explicitly considered.

Despite these limitations, the method has some significant advantages. The main advantage is its computa-
tional efficiency. By using a four-step procedure of extruding the mesh on the old time plane, moving the
boundary vertices, adding and removing vertices near the boundary, and smoothing on the new time plane,
mesh quality is maintained while avoiding global remeshes. Future work will involve coupling the algorithm
with a free-surface flow solver.
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Simultaneous Refinement and Coarsening:
Adaptive Meshing with Moving Boundaries -

xiang-Yang Li Shang-Hua Teng Alper ting~r

Abstract. In the numen”cal simulation of the combu~tion prvcew and microstructurnl evolution, we need to
consider the adaptive meshing problem for a domain with a moving boundary, in which, the submesh in the region
behind the moving boundary needs to be coarsened while the submeah in the region ahead of the moving boundary
needs to be rejined. In this paper, we present a unijied scheme jor simultaneously r-ejining and coamening a mesh.
Our method guarantees that the remdting mesh is well-shaped and is of a size that is within a constant factor of
the optimal possible. We also present s;eral pmctical variations oj our provably good algorithm.

keywords. adaptive meshing, coarsening, refinement, mesh generation, moving boundary, sphere-packing,
triangulation.

1 Introduction

Delaunay

In the numerical simulation of many problems, we need to handle evolving meshes which change as a function of time
or the number of iterations of a numerical procedure. There are two basic scenarios where we need to adaptively and
dynamically generate proper evolving meshes:

● Adaptive refinement based on posterior error analysis: In the numerical simulation of time-independent
problems, we apply an iterative procedure which first generates a mesh based on a priori estimates of the local
mesh density, solves the numerical system defined on the initial mesh, and then based on the posterior error
analysis, adaptively refines the mesh and repeats the steps for the numerical solution and adaptive refinement.

● Dynamic meshing with a moving boundary: In the numerical simulation of time-dependent problems such
as the combustion process and microstructural evolution, we need to consider the adaptive meshing problem for
a domain with a moving boundary, in which, as a function of time, the mesh need to be dynamically changed
to be effective for the next step simulation.

In both cases, submeshes in some parts of the domain need to be refined, while submeshes in some other parts need
to be coarsened. For example, the moving boundary of a time-dependent problem could divide the domain into two
regions: the front region and the back region. See Figure 1. During the simulation, numerical conditions in the front
region become stronger, requiring the submesh in the ilont region to be refined. In contrast, the submesh in the back
region needs to be coarsened. Therefore, we need to develop a unified ihrnework for simultaneous mesh refinement
and coarsening.

In this paper, we present a sphere-packing based scheme that simultaneously refines and coarsens a mesh M. It
constructs the new mesh M’ as the following.

1.

2.

3.

4.
5.

Based on a dynamic mesh. density estimation procedure, compute the new spacing at each mesh point in ~
Determine the coarsening factor of each mesh point referred as a C-point whose new spacing is larger than the
previous one (such as for mesh points in the back region), and the refining factor of each mesh point referred
as an R-point whose new spacing is smaller than the previous one (such as for mesh points in the front region);

Properly scale up the spheres of all Gpoints and scale down the spheres of all R-points, and fill the gaps among
the shrunk spheres with new spheres of proper sizes;

From the sphere system, construct the point set of the new meslq
Use Delaunay triangulation to generate the new mesh M’.

We will show that our method guarantees that the resulting mesh is well-shaped and is of a size that is within a
constant factor of the optimal possible. We also present sore= practical variatio-m of the algorithms in section S.

●Department of Computer Science, University of Illinois at Urbana-Chsmpsign, Urban+ IL 61801. Supported in part by sn NSF
CAREER award (CCR-9502540), an Alfred P. Sloan Research Fellowship, and the U.S. Depsrtrnent of Energy through the University
of California under Subcontract number B341494 (DOE ASCI).
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Figure 1: Domain with a moving boundary.

2 The Evolving Mesh Problem

In this section, we define the Evolving Meshing Problem which is more general than the dynamic meshing problem
with a moving boundary. We will also introduce notion that will be needed in this paper.

A mesh M k a discretization of a domain Q into a collection of simple elements. We consider unstructured triangular
meshes which have varying local topology and spacing, and in which each element is a simplex, i.e., a triangle in ZD
or a tetrahedron in 3D. The use of unstructured meshes is necessary for simulating irregular engineering problems,
such as the problems that are considered in this proposed project, with fewer mesh elements [2, 9, 11].

Numerical approximation errors depend on the quality of the mesh, while the time and the space requirements of
numerical algorithms are a function of the number of mesh elements. To properly approximate a continuous function,
in addition to the conditions that a mesh must conform to the boundaries of the region and be fine enough, each
individual element of the mesh must be well-shaped. A common shape criterion for elements is the condition that
the angles of each element are not too small, or the aspect ratio of each element is bounded [1, 2, 14]. In this paper,
we measure the quality of a triangular mesh by the radius-edge aspect ratio defined by Miller, Tahnor, Teng, and
Walkington [9, 10]. The radius-edge sspect-ratio of a simplex is the ratio of the &cum-radius to the length of” the
shortest edge to of the simplex. A mesh M k u-wekhuped for a constant a > 1 if the radius-edge aspect-ratio
is bounded from above by a. In two dimensions, these definitions are equivalent in the sense that if a triangle is
bounded away from being an ill-shaped triangle under one aspect-ratio, it is bounded away under the others as well.

A spacing fi.mction specifies how fine a mesh should be at a particular region. Given a well-shaped mesh M over a
domain Q there are several ways to describe its spacing function:

● ~dge-length function, el~] for each point z c Sl, el~(z) is equal to the length of the longest edges of
all mesh simplex elements that contain z (note that points on the lower dimensional faces of a simplex are
cent ained in more than one element).

● [Nearest-neighbor function, ma~] Let z be a point in $2, there are two cases. (1) if z is a mesh point, then
ran~(z) is equal to the distance of z to the nearest mesh point in M. (2) if z is not a mesh point, then nn~(z)
is equal to the distance to the second closest mesh point in M.

Lemma 1 ([9]) If M is an a-well-shaped, then there ezists constants c1 and C2 depending only on a such that for
all point x C fl,

clel~(a) < rm~(z) < czel~(z).

As shown in [9, 12], the spacing function for a well-shaped mesh should be smooth in the sense that it changes slowly
as a function of distance. Formally, a function ~ is Lipschitz with a constant a if for any two points z, y in the domain,

Ii(z) - i(Y)l s ~llz - Y1l.
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We now define the Evolving Mesh Problem.

Definition 1 (The Evolving Mesh Problem (EMP)) !?’he input to the problem has two parts: (1) a well-shaped
mesh M and (2) a list of positive reals 6, one for each mesh point, i.e., associated with each mesh point.p is a real
number J(p), such that 1 ~ J(p) ~ L for constants O <1<1 and L >1. 1

We would like to construct a new mesh M’ with the following properties:

● For each mesh point p in M, nnMJ(p) < @)nnM(P)i

● M! is well-shaped; and

● the size oj M’ is as small as possible.

For each mesh point p c M, if 6(P) >1, then it is a C-point (where C stands for coarsening); if 6(P) <1, then it is a
R-point (where 1? stands for refinement). Our definition of the Evolving Mesh Problem allows some part of the mesh
to be coarsened while some other part to be refined.

To model the dynamic meshing problem with a moving boundary by EMP, we can define 6 as a function of the moving
boundary. For example, we can deflm+ the new spacing of a mesh point by applying a proper monotonic function to
the distance from it to the closest point on the moving boundary. EMP is more general in the sense that it does not
require any correlation in the change of J among mesh points.

EMP is very closely related with adaptive mesh generation. b the literature, adaptive mesh generation is rather a
general term. It has been used as adapting the mesh to the domain geometry or to the error analysis in the mesh
generation. Most often, it has been used to refer the problem for adaptive refinement based on new error bound.
While we would like to use EMP to emphasize the problem of simultaneously refinement and coarsening of a mesh.
The importance of our scheme is being able to handle these both cases that the domain geometry or the dynamic
error analysis might bring up.

3 An Adaptive Scheme for Evolving Meshes

The objective of our algorithm for the Evolving Mesh Problem is to use the structure of the curremt mesh M as
much as possible and as efficient as possible. Firat, for each mesh point p in M, we compute the value of ran~(p).
Because M is well-shaped, it has a linear number of elements and edges in terms of the number of mesh points IM]
[9]. Therefore, nnM can be evaluated in O(IMI) time. “

We now extend the spacing-function-based coarsening technique of Miller, Tahnor, and Teng [7] to simultsmeously
refine and coarsen a mesh. The algorithm of [7] does not directly apply to EMP. See the end of Section 4 for a
detailed discussion.

For each mesh point pin M, we define a local spacing function ~P(z) as

This spacing function increases with the distance, and has Lipscbitz constant 1. The global spacing ~(z) is then given
as

In other worda, f is the lower envelope of all local spacing functions. It is e~y to show that ~ is l-Lipschitz [7].

Lemma 2 For any mesh point P, if 6(P) S 1, then f(p) = 6(P)nnM(P); if d(p) ~ 1, *en nnrd(p) < f(p) ~
6(p)nn~(p).

Proof. By definition, ~(p) = min(rning#pfq@), fp(p)), and fp(p) = C$(P)WJM(P).It fices to ~ow ~%#pfdP) ~
n~&f(p). For all q # p, fq(p) = ~(g)n~M(~)+ Ilg- PII z Ilq —P]] z IW3M(P). The lat iIKWdkY comes from the
definition of nn&f. Hence, rrzinq~,~g(p) ~ nn&&). E c$(p) <1, then ~(p)= min(ming~p~q(p), ~p(p)) = d(p)nn~(p).
Otherwise, f(p) ~ fP(p) = d(p)nnM(p), and ~(p) xnnM(p) ~ rm~(p) imphes f(p) ~ nnM(p). B

So for both cases, we have f(p) ~ 1* rmM(p), and hence TznM(p) < ~(p)/L

1The constant 1 defines the maximum degree of the refinement. The smaller the value [, the more a certain region of the mesh can
be refined. In practice, 1 is a reasonably large constant, such as 1/4.
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Figure 2: The distance ratio IIp – ~11/minl<;<3 IIp – q~[I is at least tan(t?), where 0 is the lower bound on the angle--
of mesh elements.

Lemma 3 (Local Similarity) For each edge (p, q) G M, there ezists a constant c~ which depends only on the aspect
ratio a of M and the lower bound 1 of 6, such that

f(p) s C3* f(d

Proof. f(p) < f(q) + lip – gll ~ f(q) + l/cI * rmM(q) ~ ~(q) + f(q)/(1 * cl) = f(q) * (1 + 1/(1 x cl)). The second
inequality follows from Lemma 1 that Ilp- qll ~ cl(q) ~ nn~(g)/cl. Hence ~(p) < C3* f(q), where C3= 1 + 1/(1x c1).

Similarly, for any point z in a triangle element qlqzqs, we have ~(z) < csf(qi), for i = 1,2,3.

Lemma 4 Let qlqzqs be a triangle element of M. Let p be a mesh point other than ql, qz, q3. Let x be a point inside
the tiangle. Then there em”sts a constant Ca, depending only on the smalleat angle 8 of M, such that

11P– ~11/~hg~311p – qill 2 c4.

Proof. There =e two cases for the nearest point in the triangle top.

●

●

one of {ql, q2, qs}; In this case, we have ]IP – zl@irzl<i<311p- qill z 1.

a boundary point other than ql, qz or 93. W.1.o.g., assume mm separates P from m. Let ZO be the closest
point on the segment qlqz to-p. ‘See figure 2. ‘E” p is dire~tfy co-mected-to ql &d qZ in the mesh, then
11P – zoll/]lP – qill > tan(o), where i = 1,2, and O is the lower bound on the element angle. Otherwise,
assume pO is the mesh point other than q3 directly connected to ql and ~ in the mesh. Either p. ql separates
p from qZ or pOq2 separates p from ql or both. W.1.o.g., assume pow separates p from ql. Then we have
11P– ~O1l/llP– %!I Z tan(o), wbi~ imPlies that lip – zoll/rninl~;gs lip – qill is at least tan(fl). The lemma
follows from the fact that 11P– z]! z Ilp– ZOII.

In both cases, we have

llP- ~11/ll~;mgs311p - !?ill ~ 7nin(l,tan(0)).
H

Lemma 5 Let x be a point in a triangle element q1q2q3 of a well-shaped M. The following is true for the global
spacing function: there etists a constant CE,,depending only 071the smallest angle O of M, and the lower bound 1 on
d, such that

f(~)/~k<ic3f(!K) 2 cs.—-
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Proof. lkom the definition of ~, there exists a mesh point p such that f(z) = 6(p) * rzn~(p) + ]Iz – pi]. Ifp is one
of ql, q2, q3, then

f(z) = J(p)nnaf(p) + Ilz –pll ~ I$(p)mzaf(p) ~ ?nAl,<i<,f(qi).
Otherwise, let q be the q; with the minimum distance to? We have j(q)< ~(p)*~&@)+l]~–P]l. ~llz–Pll ~ I!9–PII,

then
f(z) = d(p)* T273M(P)+ Ilz -pll ~ f(q).

Othtise, f(z)/f(q) > (J(P) * nwr(p) + Ilz – Pll)/(c$(p) * nnaz(p) + Ilq – PII) 2 Ilz – p[l/llq – P]I ~ CA. The
last inequality is given in Lemma 4. In both cases, we have f(z)/f(q) ~ wzin(l,CA). From Lemma 3, we have
~(q)l~~~l<i<3i(qi) ~ l/c3. Hence

~(Z)/m’in~<i<s~(gi) > WL’in(l,C4)/C3= ?72iY3(l,tZUl(@))/C3.--

B

Let B(c, r) be the sphere of radius r centered at point Z. We will use the following notion of sphere packing [7, 15]
in our algorithm.

Definition 2 (&Packhg) Let/3 a positive real constant. A set S of spheres is u ~-packing with centers P of 0
with respect to a spacing finction f if

● For each point p of P, B(p, f(p)/2) E S;

● The inten”ors of any two spheres S1 and 32 in S do not overlap; and

. For each point q G Cl, there is a sphere in S that overlaps with B(q, fl * j(q)/2).

To construct the mesh points for M’, we first use the following procedures to generate a /3-packing of SI with respect
to ~ by using as many mesh points horn M as possible. Here ~ is a constant to be given later. The mesh M’ is the
Delaunay triangulation of the centers of the resulting @packing.

Algorithm Functional-Refining-Functional-Coarsening

1.

2.

3.

4.

5.

6.

Let S1 = {B(p, f(p)/2)lp G M};

For each triangle element t= (qlq~qs) in M, let q be the mesh point qi with the smallest ~(qi). Let
b~ be the smallest box that contains t.We divide b, into a set of uniform cells with the side length
C5* f(q)/(2@), where C5is a constant given in Lemma 5. See Figure 3. Choose a random point in
every cell that intersects t for a nonempty area, and for each such a point Z, define a sphere with
center z and radius ~(z)/2. 2 Let SZ be the set of these spheres;

Let S’ = SI USZ;

Order the sphere in S’ as the following all spheres whose centers are on the boundary come first,
followed by all other spheres in S1 in the order of increasing radii, followed by all spheres in S2 in
the order of increasing radii;

We say two spheres sl and sz in S’ are conflicting if their interio~ overlap. The conflicting relation
defines a Confiict Graph (CG) over S’. Let S be the set of spheres which form the LezicaLFirst
Maximal Independent Set (MIS) of c7Q

Let M’ be the mesh defined by the constraint Delaunay Triangulation of centers of S.

The lexical-first MIS is defined as the following. The initial MIS is empty. Then we add a sphere with the smallest
index that does not conflict with any spheres of the existed MIS until no sphere can be added. The intuition is that
we try to conform the boundary, and use as many spheres as possible. In addition the smaller sphere has higher
priority to be chosen.

The basic idea of Functional-Refining-Functional-Coarsening FRFC is to first compute a maximum spacing
function that satisfies the new spacing requirement of the Evoking Mesh Problem. We then make use of the point
set of M to construct a sphere packing with respect to the spacing function, and hence the point set of the new mesh.
Then the new mesh is obtained by using Delaunay triangulation. The maximality of the spacing function ~ is given
in the following lemma.

‘In practice, we can use (f(g)+ Ilz – qjl)/2 to approximatethe radhxsf(z)/2. Note that csf(q) < J(z) < f(q)+ ]Iz – qll < csf(q) <
csic5f(z). h other words, (f(q) + Ilz – q]l)/f(~) h= constant lower and upper bound. Hence, it% reasonable to use ~(q) + Ilz - q~
to approximate f(z).
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F@we 3: Sampling points in a triangle element.

Lemma 6 (Maximalky) Let g be any spacing function of Lipschitz constant 1 over the domain fl that satisfies the
condition g(p) < 6~)nnM (p) for ail mesh point p in M. Then jor any point q in fl, not necessarily a mesh point oj
M, g(q) < f(q).

Proof. Let gP(z) = g(p)+ IIz –p[l,g’(z) = nzin(gP(z)). Then g’(z) s f(z), for all z. Now assume P= is the point that
drives z to get the smakst value for g’, i.e., g’(z)= g~=(z) = g(F’=) + IIP=– zII. Note that g(~) ~ 9(P.) + 11P.– zll
because g is l-Lipscbitz function. Then we have VZ, g(z) ~ g’(z) s ~(z). I

Therefore, let M“ be any mesh that satisfies the condition of the Evolving Mesh Problem. We have for any point q
in ~, n~Ml~ (q) < ~(q), because nn~,t k l-LipSCbitZ fUnCtiOn, and nnJ@l (p) ~ ~(p)nn~(p).

Lemma 7 (Number of Sample Points) The number of sampled points in a triangle element qlq~qs is bounded by

2@(c5 *2).

Proof. Note that the number of cells generated in the triangle element is no more than nnM(q;) x 2fi/(c. x f(qi)).
The lemma follows from Lemma 2.

Lemma 8 (Dense Sample) For any point z in the domain, the sphere B(z, f(z)/2) contains at least one point
jrom S, U SZ.

Proof. It is sut?icient to show a stronger statement that is B(z, ~(z)/2) contains at least one cell generated during
the sampling procedure. Let t= ql~qs be the triangle elememt that contains z. Let q be a mesh point qi with the
smallest ~(qi), i = 1,2,3. The side length of the cell generated during the sampling procedure is cs * f(q)/(2fi),
where C5is given in Lemma 5. If the radius of the sphere is at least the diagonal of the cell, i.e., ~(z)/2 ~ cs x f(q)/2,
then the sphere will contain a cell. This is true by Lemma 5 that ~(z) z C5* f(q). n

The following lemma is from Miller et al [5].

Lemma 9 Let P be a set of points in domain (I. Let g be an cs-Lipschitz junction dejined on S1. Let S =
{B(p, g(p))lp G P}. If for any point z G S2, B(z,g(z)) contains at least one point jrom P, then the mozimal-
independent-set of the conflict graph of S is (3 + a)/(1 —a) -packing.

Theorem 1 The S returned by the FRFC algorithm is a 7-packing.
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Proof. Note that the spacing function ~/2 used for spheres is l/2-Lipschitz. The lemma follows from Lemma 9. 1

Let 1?be a collection of spheres. The ply of a point z, denoted by ply(z, r), is the number of the spheres in r that
contains z.

Lemma 10 (Constant Ply) For S’ = SI U S2, i?here ezish a constant c6 such that for any point z c Cl,

Proof. Let C(Z) be the set of the centers of the spheres in S’ that contain z. For any point c c C(Z), we have
211z– cll $ f(c). Note that ~(c) ~ ~(z) + ]Iz - cII because ~ is l-Llpschitz function. Hence Ilz – cII ~ ~(z), i.e.,
point c is m 13(z, ~(z)). Let t = (qlqzq~) be a triangle element that contains z. Consider the set of triangles, N(t)
(stands for neighbors), that are incident tot. The size of N(t) is at most 4n/0, where t?is the minimum angle of the
mesh. Let E(t) (stands for exteriors) be {t’It’n B(z, f(z)) # 0 and t’ ~ N(t) U {t}}.It is sutlicient to show that
the size of E(t)is bounded by a constant. Let plp2p3 be a triangle in E(t)that contains a point c c C(Z). We have
C3 * ~(pi) ~ ~(c) ~ 2 * IIz – c1l. The first inequality is horn Lemma 3. Note that Lnn~(pi) .~.d~i) * nn~(pi). ~ ~(pi).
From Lemma 4, we have IIcc– cII > CA* min~~(I]c – qjll). Let q be the point with the muumum ~n~(qj), J=1,2,3.
Hence, llz – cII ~ CA* nn~(q). So tmag(pi) ~ f@i)/L ~ f(c)/(L * c3) ~ (2cA/(L * c3)) * nnM(q). By a vohunn
argument, ~(z) < C3x f(q) < c.3* L * nn~(q) implies that the number of triangles in E(t) is bounded by a constant.
Lemma follows from the fact that the number of po-mts in each triangle is bounded by a constant. u

We now analyze the time complexity of the algorithm. The time to compute the global spacing function ~ is
O(l&fl log(l~l)). Notice that the mesh point Pj that defines f(p) has the property that for all mesh point pk c M:

J(%) *nwf(Pi) + llPj –Pll S @k)* nmdm) + IIPk–p[l.

That is, pi is contained in the additively weighted Voronoi cell of pj. Fortune [3] shows how to apply the sweep-line
technique to compute the additively weighted Voronoi diagram in O(IMI log(lllfl)) time.

The time complexity of step 1 of the algorithm FRFCis O(lhfl log(lMl)). During step 2, the number of the points

sampled at any triangle element qlqzqs is bounded by nn~(gi) x 2fi/(cs * ~(q~)). Lemma 2 implies that the number

of sampled points is at most 2fi/(c5 x 1). Hence, the time complexity of step 2 is also O(IMI log(liWl)). Note that
the time complexity is O(llfl), if we use (~(q) + IIZ – ql1)/2 to approximate ~(z). The time to sort all the spheres
during step 4 is O(lMl log(liWl)). Because the maximum ply of any point in 0 with respect to SI U S2 is bounded
by a constant (Lemma 10), we can apply the sphere-separator based divide-and-conquer algorithm [6] to constmct
the conflict graph in O(likfl log Ikfl) time. In addition, we know that the conflict graph has at most O(IMI) number
of edges. Computing the maximal-independent-set of the conflict graph then takes $2(IMI) time. The Delaunay
triangulation takes O(IM’I log(lilf’1)) time, where Ilkf’1 is linear in Ikfl, because the total number of the sampled
points is linear in IMI. Therefore, the time complexity of FRFC is O(lkfl Iog(llfl)).

4 Size and Quality

We now show that FRFCreturns a mesh M’ that is well-shaped, and is of a size that & within a constaut factor of
the optimal possible. We will use the following structure theorem of Miller, Tahnor, and Teng [7] which states an
equivalent relationship between fl-sphere packing and well-shaped meshes.

Theorem 2 (Sphere Packing and Well-Shaped Meshes) 1. For any positive constantfl, there em.sts a con-
stant u depending only on ~ such that ijf is a spacing fimction of Lipschitz constant 1 over a domain SI and S is
a /l-sphere packing with respect to f, then the Delaunay triangulation M of the centers of S is an CYwell-shaped
mesh; in addition, for each point p in fl, nnM(p) = @(f(p)), where the constant in ~ depends only on ~.

2. For any positive constant a, there ezists a constant P depending only on CYsuch that if M is an a well-shaped
mesh, then the set of spheres

s = {B(p, nnM@)/2) : for all mesh point p G &f},

is a fl-packing with respect to nnM/2.



Therefore, there exists a constant a such that the mesh M returned by the algorithm is a-well-shaped. Note that
the point set S returned by the algorithm is 7-packing with respect to ~/2. The size optimality follows from the fact
that f is a maximum spacing function that satisfies the condition of the Evolving Mesh Problem, (see Lemma 6),
and the following lemma of [7].

Lemma 11 (Size of a Well-shaped Mesh) If M is an a-well-shaped mesh of n elements, then

F=t, notice the number of the spheres in S is bounded by

by a simple volume argument. Because ~ is point-wise larger than the nn fimction of any well-shaped mesh that
satisfies the Evolving Mesh Problem. It follows that size M is witbin a constant factor from the best possible.
Therefore,

Theorem 3 (Main) FRFC constructs a well-shaped mesh that satisfies the ~pacing condition given by 8. In addition,
its size is optimal within a constant factor.

The key to our algorithms in maintaining the welLshaped condition is to make sure that the shape condition does not
deteriorate from M to M’. This is why we add new sampling points to regions near C-points to ensure the constant
~ in @-packing is maintained. Miller et al [7, 8] showed that in their coarsening algorithm that no new point is needed
for coarsening. However, to do so, they need to use the original finest mesh directly to generate the coarsening mesh
at each level. In other words, if the origjnal mesh is klo, then mesh point of IWOare used to build the conilict graph
to generate the mesh points for &fi. If they simply use mesh points of M;–l, then mathematically, they can not
guarantee the mesh points of Mi-l are dense enough for the well-shaped condition through the quality of the packing
for Mi. For EMP, because of the mixed rei5nement, the original mesh does no longer provide fine enough sample
points to guarantee the packing condition. Hence, new points has to be added. Our objective here is to add as small
number of new points as possible, and meanwhile, by using as simple procedures as possible. In practice, for the
moving boundary problem, there is no need to add new sample points to the back region of the moving boundary.
We can use the algorithm of Miller et al [7, 8] to coarsen the back region.

5 Practical Variations

The J values decompose the mesh M into a collection of components of maximal submeshes where the J values of all
mesh points in each submesh are either larger than 1 (type Csubmeshes), of smaller than 1 (type R-submeshes). In
practice the number of such submeshes is bounded by a small constant. For example, this number in most problems
with a moving boundary is 2 (one for the front-end of the moving boundary, one for the back-end). As observed in
Section 3, we need to insert Steiner points in the submeshes that are required for refinement. 11-om submeshes to be
coarsened, we often need to remove some original mesh points. A practical variation of our scheme is to first refine the
R-submesh by any adaptive refinement algorithm, such as quad/octree refinement and Delaunay refinement. Then
we apply the one-level coarsening algorithm of Miller, Tahnor, and Teng [7]. We now present a detailed procedure
for the case where Delaunay refinement is used. Recall that the standard Delaunay refinement procedure contains
three rules [12, 13]:

1.

2.

3.

splitting boundary subsegment whose diametral sphere cent ains a mesh point other than its end-points in its
interior by adding a Steiner point at its midpoint;

splitting a boundary subfacet whose equatorial sphere cent ains a non-coplanar mesh point by adding a Steiner
point at its circum-center. However, if the new point would cause any subsegment of the subfacets to split,
apply rule one to these subsegments instead.

splitting any simplex that does not satisfies the well-shape condition by adding a Steiner point at its circum-
venter. However, if the addition of this circum-center would cause any subsegment or subfacet to split, then
apply rules 1 and/or 2 instead.
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We add a fourth rule, which states as: splitting any simplex in which the nn-spacing of any one of its mesh points is
more than its delta-value times its rm-spacing by adding a Steiner point at its circum-center. However, if the addition
of this circum-center would cause any subsegment or subfacet to split, then apply rules 1 and/or 2 instcad.

Algorithm Delaunay-Ref ining-Functional-Coarsening
Input: A well-shaped mesh M and a list of positive reals 6.

1. Apply rules 1, 2, 3, 4 until all constraints on the spacing and shape at each mesh point are satisfied.
Call the resulting mesh MI.

2. Apply the one-level coarsening method of Miller, Tahnor, and Teng [7] to MI with coarsening factors
given in 8 to MI to constmct M’.

The following theorem follows directly from the main theorem of Ruppert [12] for 2D and of Shewchuk [13] for 3D
and the coarsening result of Miller et al [7].

Theorem 4 Delaunay-Refining-Function-Coarsening (DRFC) constructs a well-shaped mesh that satisjies the
spacing condition given by 6.

One of the shortcomings of DRFCis that it may construct a mesh that is larger than necessary. The reason is that in
the refinement, we did not remove any original mesh point. In FRFC,we may replace some original mesh points in
the R-submeshes by new Steiner points, which potentially reduce the mesh size. However, DRFCis in general more
efficient.

When the lower bound 1 on 6 is very small, the number of points introduced in each triangle could be very large,
although it is a constant. Especially for the coarsening regions, (e.g., backend of a moving boundary), this is
undesirable. In practice, we have a few alternatives:

● Do not add any points to triangles all of whose mesh points are C-points.

● Add only the barrycenter and/or midpoints of the edges rather than generating random quasi-uniform points
based on the local grid.

Talmor [15]showed in her thesis that in practice no new point is needed for the region to be coarsened repeatly. We
will conduct more experiments to verify this point in the context of EMP.

6 Conclusion

In this paper, we present a unified approach for coarsening and refining evolving meshes. One application and
motivation of our work is for solving time-dependent problems with a moving boundary. In our future work, we will
explore the structure of the moving boundary and level sets to speed up the coarsening and r&nement procedure.
We will also work on incorporate our algorithm into some standard mesh generation software. We will present some
experimental results during the conference to show the e.Kectiveness of our algorithm and its practical variations. In
addition, all of the lemmas and theorems =e applied to three dimensions if the aspect-ratio is used as shape criterion
of the well-shaped mesh. However, this does not prohilit the existence of slivers.

In the context of parallel implementation of the Evolving Mesh Problem, the need of mesh evolution could introduce
load imbalance among processors, where the load measures the amount of work required by solving the Evolving Mesh
Problem itself as well as by numerical calculations thereafter. We need to develop a mesh distribution estimation
algorithm to incorporate with the dynamic load balancing scheme developed in [4].
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Fast Adaptive Quadtree Mesh Generation
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Abstract. A size-governed quadtree mesh generation method is presented in this paper to deal with planar
domains of arbitrary shape. The tree dewmposition prouides a convenient control space, which can be used
to determine the element sizes, as well as a neighboring space, which allows for the quick searching of mesh
items. The sizes of the tree cells are adjusted to match the size specifications (defined as a continuous
element-size distribution function in @). Hence, the proposed method can be used in the contezt of mesh
adaption in numerical simulations based on the jinite element method. Seueral application examples are
prouided to emphasize the main features of this approach.

Keywords. Quadtree, Spatial decomposition, Mesh generation, Mesh adaption.

Introduction

The application of spatial decomposition methods (so-called because they combine quadtree decomposition techniques
with quadrant-level meshing procedures) to finite element mesh generation have been pioneered about two decades
ago. A survey of the literature devoted to spatial decomposition methods for mesh generation purposes can be fo~d in
[Thacker-1980] and [Shephard-1988]. Some of these approaches have yet proved to be robust and reliable and are stilll
commonly used in a wide range of engineering applications and even in some commercial packages. One of the main
feature of such an approach is its ability to deal with a domain represented by a boundary discretization or to interact
directly with a CAD modelling system (to generate both the boundary discretization and the mesh of the domain).
In some sense, this type of method have contributed to the avent of generic mesh generation techniques (capable of
handling arbitrarily shaped domains), in the same way as advancing-front or Delaunay-based methods [George-1991].

The classical approach consists of two main stages, the domain ~ c ZR2is first recursively decomposed into a set of
variably sized disjoint cells (i.e., the quadrants) representing a partition of a bounding box L?(Q) of Q (cf. F@re l.(ii)).
A second stage consists in subdividing each terminal cell into fide elements (triangles and/or quadrilaterals) so as
to complete the mesh of the domain. The elements esternal to the domain are then discarded from the resulting
mesh. Usually an optimization stage based on node smoothing and mesh modifications (by means of geometric or
topological operations) is used to improve the shape quality of the mesh elements.

Related work. The use of a quadtree decomposition for meshing purposes was pioneered fifteen years
ago by [Yemy$hephard- 19831 and several v~ants have been proposed (see for instance Kela et al- 19861 Or
~erucchio et al. 1989]). The element creation stage commonly involves pr~defined patterns (the so-called tem-
plates) to meet the requirements of conformity (between adjacent quadrants) as well as of efficiency. On the other
hand, during the spatial decomposition stage, a filtering operation can be introduced to control the element shape
quality and to avoid creating badly-shaped elements. Recent papers have investigated this a priori evaluation of the
mesh element quality, an upper bound for the angles being eventually exhibited ~ltchell,Vavasis-1992].

To our knowledge, in most of the publications related to quadtree mesh generation, the hierarchical structure is
mainly used as a neighboring space (used to locate the cells adjacent to a given cell). However, the possibility of using
the tree as a controf space (used to prescribe the desired elements sizes) has not been clearly devised so far (except
perhaps for specific Euler computations in CFD [Shephard et al. 1988]). If size specificatio~s are supplied, the tree
decomposition can be adjusted so that the cell sizes locally match the desired element sizes . In the context of mesh
adaption (in which the size specification is usually provided by an error estimate), this feature allows to increase the
convergence of the computational scheme and the accuracy of the numerical results [Ciarlet-1978].

‘ as the length of the mesh edges are closely related to the cell sizes.
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(i)

(iii)

(ii)

(iv)

Figure 1: Two dimensional domain Q, a rotor : domain boundaries (polygonal contour r(Q)) (i), spatial decomposition
of a bounding box B( f2) (ii), resulting raw mesh before optimization (no filtering) (iii) and final mesh of $2 after
optimization (iv).
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Scope. In this paper, we would like to discuss the tree decomposition stage and propose some improvements of the
classical scheme to cope with a given size map. The motivation of this work has been the will to design a robust and
efficient algorithm capable of handling two-dimensional domains of a;bitrary shape (e.g. non-manifold models as well
as domains with features of widely diflerent scales).

A common idea relates the efficiency of the tree decomposition meshing algorithm to the data stmctures used to
represent the tree and. to store the mesh. Although these structures contribute obviously to the overall performance

“ of the meshing algorithm (for instance by allowing to reduce the number of tree searching and traversal operations),
the most time consuming operation is the filtering step. This treatment attempts to remove closely spaced entities
in a terminal qua&-ant and therefore involves extensive topological checks to maintain the topological consistency of
the decomposition. Thus, for efficiency purposes, the proposed approach does not include a filtering stage, which is
then replaced by an adequate mesh optimization procedure.

Out line. This paper is divided into five sections. Section 1 recalls the terminology used with quadtree decomposi-
tions and summarizes the general scheme of the classical quadtree mesh generation. Section 2 proposes a governed
quadtree mesh generation algorithm and eventually discusses the boundary discretization problem. Section 3 presents
the extension of the general scheme of the size-governed quadtree algorithm in the context of mesh adaption. Several
application examples are proposed Section 4 to emphasize the main features of the proposed approach. .4 brief section
concludes the paper by mentioning the possible extensions of this work.

1 Quadtree decomposition

In this section, we recall some terminology and the basic definitions of the spatial decomposition structures in two
dimensions [Samet-1984]. The input of the problem is an arbitrarily shaped domain O c R2, represented by a
boundary representation (i.e., a polygonal contour I’(O) described by a set of vertices V and a list of edges S).

Some terminology. The basic concept of any spatial representation consists of enclosing the domain Q into a
bounding box (usually a square), denoted B($2), corresponding to the root of the spatial decomposition tree. This
box is subdivided into four equally-sized cells (the size of a cell c is the length of a side of c), each of which being
recursively subdivided several times. The stopping criterion used to subdivide a cell can be based on the local
geometry of the domain (e.g., the local curvature of the boundary) or user-defied (e.g., the maximum level of
refinement ).

The four vertices at the corners of a ceU are called corners. The edges connecting each consecutive corners are the
sides of the cell. The edges of the decomposition that belong to the boundary of the cell are called the edges of the
cell. Hence, each side of a cell contains at least one edge. Two cells are adjacent if they share art edge. Neighbors are
identified by the four cardinal directions, {N, S, E, W] and the quadrants obtained by subdividing a cell are identified
by their relative position within the parent cell : {NW, NE, SW, SE}. The level of a cell corresponds to its depth
in the related tree, i.e., the number of subdivisions required to obtain the cell. The bounding box is at level O. The
depth of the tree corresponds the maximum level of subdivision. Any cell that is not subdivided is a terminal cell or
a leaf.

At each stage, any cell can be subdivided into four sub-ceUs or not. Hence, the resulting decomposition tree may be
quite unbalanced (the number of subdivision levels being not constant in each cell). Thk remark leads to introduce
the following rulez : any side of a terminal cell must contain at most one corrter3 This condition is known as the [2:1]
rule that was first suggested by [Yerry,Shephard- 1983].

Operations on quadtrees. Two types of operatitms are frequently applied with trees : topological operations
(e.g. quadrant creation, finding the cells adjacent to a given cell in a given direction) and geometric operations (e.g.
finding the cell that contains a given point, finding the intersections between an edge and the current cell). These
operations have not all the same frequency and not the same computational cost. The neighbor finding operation
concerns the search of the cells adjacent to a given cell and is frequently called during the quadtree decomposition,
for instance by a post-processing algorithm used to enforce the [2:1] rule.

2which is also used to control the mesh grzdation (I. e., the size variation between neighboring elements.)
3This condition is equivalent of writing that the sizes of any two adjacent cells differ by at most a factor two.
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Data structures. Three approaches are possible to represent trees [Knuth-1975] :

● A tree structure using pointers. In thk obvious approach, each internal cell requires four pointers, one for each
of the sub trees and a bit of information to indicate the cell classification (internal or terminal). In addition,
extra pointers can be added to improve the efficiency, such as links to parent cell, links to neighboring cells, ...

● .4 list of the nodes encountered by a traversal of the structure. With this implementation, intersection algorithms
can be efficiently performed, although other algorithms may be less efficient. For instance, visiting the second
subtree of a cell requires to visit each node of the initial tree to locate the root of the subtree.

● A system of locational codes (e.g. bhary encoding), for instance with a linear guacltree.

The information requirements almost dictate the choice of a representation : for instance the need to quickly identify
neighbors leads to favor a linear structure or a pointer-based structure containing pointers to the parent cell and
to the adjacent cells. We have retained this last representation as most of the treatments are localized and involve
mainly the adjacent cells of a given cell (for instance the balance condition).

General scheme. The aim of the quadtree-based mesh generation approach is to obtain a valid and accurate
representation of a planar domain by a set of triangles suitable for filte element analysis. More specifically, the
domain is decomposed into a set of cells that have a size distribution compatible with the desired mesh gradation
and store all the information required by the meshkg step to generate a finite element mesh of the domain. Several
features of the method are common to all quadtree-based meshing techniques :

● the data structure is used for localization and searching purposes,

● the mesh generation is twofold, first the tree is generated, then the mesh is created,

● the cell entities (comers, edges) are mesh entities (vertices, edges),

● the mesh gradation is controlled by the level of refinement of the cells (for instance, using the [2:1] rule).

Schematically, the classical quadtree-based meshing approach consists of three successive steps and can be summarized
as follows :

1. the quadtree construction: decomposition (insertion of the entities of Y and &, balance enforcement ([2:1] ride),
filtering and warping of the quadrant entities,

2. the mesh generation : point and element creation (based on templates),

3. the mesh optimization : node smoothing, topological and geometric mesh modifications.

The next section explains how this approach differs from this general scheme to account for a specified size map.

2 Governed quadtree mesh generation

Let consider a planar domain fl c @ represented by a polygonal contour r(CZ) described by a list V of points and a
list & of edges (curved sections in the boundary description are allowed). In addition to this input data, a size map
can be supplied to prescribe the sizes of the mesh elements. In thk section, we will explain how the size specifications
can be taken into account during the tree construction stage.

2.1 Control space

To govern the internal point and element creation, it is convenient to use a control space. Formally speaking, this
control space is defined as follows [George-1991]:

Definition 2.1 (A, H) is a control space associated with a mesh T of a domain Cl if

● Q ~ A where A is a covering up of !2,

●VPEA, 3H(P, ~), where ~ is a direction of the disk S’ : H(P, ~) : A x S’ ~ LR
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From the geometric point of view, it is obviously convenient to consider the tree decomposition as the desired covering
Up A. To construct the function H, we wiU use a Ql interpolation, from the sizes hpi associated with the vertices of
the tree cells. If no size map is provided, an intrinsic size map is computed. A dkcrete sizing function is obtained
from the tree decomposition, at each quadrant vertex P the size hp can be defined by averaging the Euclidean lengths
of the ceU sides incident to this vertex. Using a generalized interpolation scheme, a continuous size function H can be
defined at any point of the computational domain fl. Note that this sizing function accounts for the mesh gradation
as controlled by the [2:I] rule.

On the other hand, if a size function is supplied, it can be used to govern the tree decomposition.
are commonly specified by :

● parameters associated with domain entities,

● values associated with the vertices of the previous mesh (in an adaption scheme),

● parameters related to the domain geometry (e.g. the local curvature).

The element sizes

As the elements created in a quadrant almost span the cell, the length of a mesh edge is then approximately equal
to the cell size containing it. Let consider a point P in a tree cell c. If the desired size h% differs from the intrinsic

size h p at P (based on the current decomposition) and is such that ~ > W, the cell is refined into four sub cells

and the new cell containing P is recursively analyzed. At the same ti~e the cell is divided into four sub-cells, the
intrinsic sizes are updated at the tree vertices and the tree is balanced. At completion of this procedure, the intrinsic
size function and the specified size function are close (the ratio between h P and h~ is bounded by the value W).

2.2 Boundary discretization

The quadtree method can either generate the boundary representation of the domain along with the domain covering-
UP or start, fom a given polygonal representation and create internal elements only. The first approach has been
commonly adopted by several authors (the mesh generation algorithm being interfaced with a geometric modelling
system [Grice et a[. 1988], [Shephard-19&3]). In the proposed approach, the boundary discretization is clearly dis-
connected from the tree decomposition stage. This choice is performed to disconnect the quadtree approach from
any modelling system and to allow a better control on the geometric approximation of the domain boundaries.

Curvature-based refinement (i.e., finer meshes in highly curved regions and coarser meshes in regions of low curvature)
provides a convenient means of controlling the geometric approximation of the mesh elements. Basically, the goal is
to obtain a polygonal approximation of the curve l_’(i2) that deviates from the underlying true geometry by no more
than a (user) given tolerance value e.

Geometric support construction. The set of polygonal segments of I’(Q) is a best approximation of the underlying
continuous curve r and thus represents a geometric support of the curve. The construction of the polygonal support
is such that the distance between any segment and the portion of the curve it represents must be bounded. Hence,
refinement will be more important in highly curved regions.

Let h be the distance between a point and the supporting edge, let c1be the length of the edge, we like to have
h/d < e, e being the desired tolerance. If the tolerance is not exceeded, the segment is correct. Otherwise, the
segment is subdivided into two sub-segments, each of them being recursively analyzed. The resulting set of segments
represents the geometric support of the curve (cf. Figure 2, right).

Figure 2: Approximation using a polygonal segment with respect to a user-specified
e = 0.01 (right).
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Geometric approximation. Curvature-based mesh generation requires the abifity to evaluate the local curvature
of a curve or a surfaceq. In our approach, the geometric support is constructed using a third order polynomial
approximation (Hermite function) from the dkcrete tangents. Givefi a polygonal segment Pi Pi+l, the direction of

the tangent ~p, at Pi is parallel to the line Pi-l Pi+ 1, its module is given by II~]1. The desired element size
h P at. P must then be proportional to the radius of curvature rp at P, h p = cmp. The control of the geometric
approximation consists in defining a so that, for a given deviation value e, we have : J/rp ~ e (the osculating circle
of radius rp being a second order approximate of the curve at P). Having two parameters e and a, for the desired

size, their relation is : a s 2~-” [Frey,Borouchaki- 1998].

Boundary discretization. The boundary discretization aims at defining a polygonal approximation of the bound-
aries curves that conforms to a given tolerance value. To this end, once the geometric support is constructed, the
initial polygonal discretization is analyzed, based on the edge lengths computation. The size map proportional to
the radii of curvature provides a size function that will enable us to compute the length tA~ of any segment A B as :

1

lAB = (SB – SA)
/

~dS ,
H(s)

o

(1)

where s A, s ~ are the curvilinear abcissa and H(S) represents an interpolation function of the size function h(s) along
the segment [s~, s~], S = (s – s~ )/(sB – sA) c [0, I]. The problem is then to split the segment AB into n equally
sized unit sub-segments (i. e. having a length close to 1) with respect to the given size map [Laug et al. 1996].The
resulting polygonal segment will serve as input for the quadtree decomposition.

2.3 Quadtree decomposition

The objective of the tree decomposition stage is to relate the desired elements sizes to the depth of the tree. This can
be achieved by mesh parameters specifications. The quadtree representation of a domain Q is defined from a square
(the bounding box B(f2)) that fully encloses the points of Y. This box is then subdivided into four quadrants, each
of them being then tested recursively to decide whether it needs further refinement. The process stops when each
quadrant contains less than two points and when the domain is resolved to a satisfactory resolution.

Quad tree construction. The depth p of the tree can be related to the length h of a mesh edge and the size b of
the bounding box B(s2) as : p = log2 (b/h). As the size h is proportional to the minimal of the principal radii of
curvature (in the intrinsic size map), we obtain ,a lower bound for the depth of the tree : p z log2 (b/(rcr) ), where a
is the coefficient introduced before. This result can be used to define a stopping criterion in the tree decomposition
stage.

F@re 3: Tree dewmposition using a prescribed size. The size at point A forces the initial tree box containing A
(left hand-side) instructed without explicit sizing prescription to be decomposed two levels deeper (right hand-side)
to adjust to the size hA represented by the dashed circle.

Stopping criteria. Since the domain is described as a list of points and a list of edges, the stopping criterion must
account for both types of entities : each leaf contains at most one connected component of r(fl ). If a leaf contains
no point of V, then it contains at most one edge or portion of an edge of t. An additional criterion is introduced,
each quadrant side must contain at most one boundary intersection point, except if the quadrant contains a point of

4This measure can be easily computed from the derivative information or returned by a modelling system [doCarmo-1 976]
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V. Notice that special attention must then be paid to corners (vertices where two edges form an accute angle) and
non-manifold points (points having more than two incident edges). The cell containing such points is not subdivided,
thus violating deliberately the [2:1] rule. This will prevent the tree from degenerating when trying to separate closely
spaced edges sharing a common vertex.

The tree construction consists of introducing successively all entities of V and all entities of& (cf. F@re .4). Notice
that the tree decomposition may change dramatically the initial discretization as it always attempt to separate closely
spaced entities that belong to different connected components (cf. Figure 9, enlargement).

Remark 2.1 To avoid numerical roundoff problems, the vertices of Y that coincide with a quadmnt corner or lie
on a quudrant side have their coordinates slightly changed. The on-ginal coordinates will be restored after the raw is
created.

BM
F@re 4: Quudtree decomposition : ajter the insertion of the points of V (left) and after the insertion of the segments
of& (right).

Balance condition. Partly to control the mesh gradation and also to simplify the element creation step (i.e., to
reduce the number of templates), the levels of adjacent quadrants are checked to see if two neighboring cells differ by
more than a factor two in size (according to the [2:1] rule). “This procedure results in more quadrant splits to propagate
accross the structure, thus increasing the total number of terminal cells. The procedure is carried out during the
construc~ion stage (without first constmcting the unbalanced quadtree). At the same time a cell is subdivided, the
sizes associated with the mesh vertices are updated to preserve the underlying continuous size map.

Remark 2.2 As no check on the edge-quadrant intersections is performed, newly created vertices may be close to
quadrant entities (wrners or sides), thus leading to poorly-shaped elements. However, the extensive amount of topo-
logical checks required to preserve the integrity and the conformity of the domain does not seem justified, especially
as a clever mesh optimization is able to remove this undesirable elements.

2.4 Mesh generation

The sequence of operations has concerned so far the quadtree structure. The topology of the final mesh is constructed
based on the quadrant classification : all terminal cells are visited by a tree traversal procedure and the cells are
triangulated accordingly. The final mesh is the union of all the quadrants triangulations. The balance procedure
leads to a substantial reduction of the number of possible transition cases and allows the introduction of predefine
basic patterns (the s~called templates). Hence, the generation of triangles in quadrants is really straightforward.

Actually, an internal quadrant can have any combination of the four neighboring quadrants, thus corresponding to
24 = 16 possible triangulations (that can be reduced to only six templates using the various symmetry properties).
Practically, a four bit index is created to serve as a pointer into a table that gives all quadrant triangles corresponding
to a given quadrant configuration.



However, if a box contains a vertex of the boundary discretization, the treatment is slightly different. This point is
star-shaped with respect to the other quadrant entities (cornets or additional intersection points along the sides).
Thus, this point is simply connected to all quadrants vertices so as to create a triangulation of the quadrant. On
the other hand, if the quadrant contains intersection points, an element edge must connect two intersection points
(or two corners) so as to result in a valid triangulation of the portion of the domain enclosed between the boundary
r(~) and the boundary of the internal mesh (cf. Figure 5).

“B-----EJ/
F@-n-e 5: Triangulation of the boundary quadrant: for a vertex of the boundary discretization (left) and for intersection
points (right).

Remark 2.3 This meshing technique is intrinsically very simple to implement. However, one hus to notice that the
resulting mesh is a mesh of the bounding box f3(Q) rather than a mesh of Cl only. In other words, many elements
ezternal to the domain have been created that need to be removed at this stage. Therefore, a simple colom.ng scheme is
applied to identify the possible sub-domains and to remove the external tn”angles. This procedure retrieve the different
connected wmponents of the domain using adjacency relationships between the triangles.

2.5 Mesh optimization

As no filtering stage is applied on the terminal quadrants, a (small) number of poorly-shaped elements can be created
in the raw mesh. The first step in mesh optimization consists in removing these elements using a specific procedure.
A basic observation shows that two types of porrly-shaped elements can occur, depending on whether a vertex is too
close from a quadrant comer (Figure 6, left) or from a quadrant side (Figure 6, right). Any combination of these
elements can potentially be created in the boundary quadrants (cf. F@.u-e 7).

Figure 6 Poorly-shaped element due to quadrant-model interactions, a needle (left) and a J7atelement (right).

During the tree decomposition stage, the points that may cause the creation of bad elements are tagged as well
as the elements having these points as vertices. Then an edge collapsing technique is iteratively applied to remove
the badly-shaped elements, in combination with edge swapping operations to locaIly improve the mesh quality. The
identification of the edges too small is made possible by use of the normalized edge length with respect to the current
size map. At completion of the process, no unacceptable element remains left in the mesh.

Remark 2.4 The use of the normalized edge lengths preserve the small features in the mesh, for instance in highly
curved regions.

The next step consists of pulhng the newly created nodes on the boundary using the geometric support. As the
geometric approximation has been controlled, this operation does not result in invalid or overlapping elements.

The tnan~ation of internal quadrants leads to well-shaped elements, for which the aspect-ratio is bounded a priori.
However, the aspect ratio of triangles created in boundary quadrants can be significantly degraded as the triangulation
of such quadrant is arbitrary and is, for instance, related to the relative position of the point of V contained in this
quadrant with respect to the quadrant sides. Therefore, the resulting mesh requires some amount of mesh quality
improvement.
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Aspect ratio. The aspect ratio of a triangle K is detined as :

(2)

where hmoz is the diameter of K, (i.e., its longest edge), PI{ is the in-radius of 1(, PI; is the half-perimeter of K and

S;( is the surface of K. The coefficient a = ~/6 is a normalization coefficient such that the aspect ratio value of a
regular triangle is equal to 1. The aspect ratio measures the degradation of the element shape quafity and is a value
ranging from 1 to co.

The objective of the mesh optimization procedure is to improve the overall shape quality of the mesh (i.e., to skew
the histogram of shape quality towards the left). In addition of improving the shape quality, this procedure also
accounts for the size quality of the mesh. The size quality is measured by means of the normalized lengths of the
element edges. The optimal size quality is 1.

The tools used to perform mesh optimization are twofold, geometric mesh modifications (node relocation) and topo-
logical modifications (edge collapsing, edge swapping).

Remark 2.5 As the quadtree decomposition provides a good distribution of internal mesh vertices, there is non need
to introduce new nodes by means of edge splitting.

F@re 7: Curved domain boundary, different combinations of poorly-shaped elements in the vicinity of the boundary.

These operations are performed sequentially provided the element shape quality improves. The point relocation
procedure is based on a weighted barycentrage technique that accounts for optimal edge lengths, the computation of
the optimal points is based on the unit length, In the isotropic case, a simple Laplacian smoothing ~reitag-1997] or
a Lagrangian relaxation procedure [George-Borouchaki-1997] can also be applied. Figure 8 shows the result of mesh
optimization on a computational CFD domain.

3 Mesh adaption

The main purpose of a computational adaption scheme is to ensure the reliability of the finhe element solutions. In
this respect, a complete adaptive scheme usually includes a solver, an error estimate and a mesh adaption procedure.
The result of the error estimation is translated in terms of sizes specifications. This sizing requirement is used to
obtain a new tree decomposition and consequently a new mesh that conforms better to the desired sizes than the
previous decomposition. The generaf scheme can be summarized as follows :

1. construction of an initial mesh ‘ko,

2. computation of the solution on the current mesh,

3. solution analysis using an a posterior error estimate,
- if the solution is converged, end.
- else

● construction of a discrete size map,

● construction of a mesh %+ I governed by the above size map,

● back in step 2.
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(i) (ii)

(iv) (v)

F@u-e 8: Computational CFD mesh around a .VacaO12 airfoil : initial quudtree mesh (i) vs. jinal optimized mesh
(ii). Local enlargements around the airfoil, original mesh (iii) and optimized mesh (iv).
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The size specifications are associated with the vertices of the current mesh and define a so-called discrete size map.
This discrete map can be used to define a control space (cf. Section 2.1) and to govern the tree decomposition
procedure.

In the adaptive context, the tree is constructed based on the boundary discretization of the domain and the specified
sizing function. Usually, the current mesh is used as the covering-up A in the control space and the discrete size map
is the function H. In our approach, there is no need of using the current mesh as control space as the tree can be
used to serve this purpose. As explained previously, the tree is refined according to the desired size specified at the
boundary entities. Then, the insertion of each vertex of the current mesh is simulated to see whether or not the cell
containing it has the desired size. More precisely, the desired size h’ at the vertex is compared with the size h obtained
by a bilinear interpolation in the cell. If the ratio h/h’ > W then the cell is refined. It is then straightforward to
create a size conforming quadtree decomposition.

The element creation is exactly the same as that of the classical scheme. The mesh optimization procedure remains
also unchanged as care has been taken to preserve the size of the element during the mesh modifications. The use of
normalized edge lengths with respect to the metric map prevent the small elements to be removed. The aim of the
optimization stages is to provide a unit mesh (i. e., a mesh having all its edges of unit length w/r size map). In this
context, the node smoothing procedure (moving a vertex P) is equivalent of finding an optimal point Oj such that
each edge P, P incident to P is of unit length :

Oj=Pj+
Q

~M(Pj, P) ‘
(3)

where /p, ,P is the length of edge Pj P with respect to the size variation function associated \vith the edge.

A length efficiency index is used to measure the mesh quality with respect to the metric map. Let ~A~ be the length
of the edge AB with respect to the given size map. The ejjiciency index, denoted ~, of a mesh T can be defined as
the average value of the squares of the differences to 1 of all mesh edge lengths (let na be the number of mesh edges),
hence :

na

~=l—xz C&,
na

i= 1

(4)

with eA~ = 1 —~AB if LAB < 1 or eAE = 1 —~~~ if ~AB > 1. This coefficient seems adequate to quickly estimate the
mesh quality with respect to a given metric map. In particular, it indicates that the edge lengths are 1 times too long
or too short (a value t = 5 or t = 0.2 means that all edges are 5 times too long or 5 times too short) as compared
with the desired sizes. The optimal value being t?= 1, any value 1> 0.91 ensures a reasonable mesh quality with
respect to the given metric map.

4 Application examples

Several application examples are provided to illustrate the main features of the proposed algorithm. These examples
concern realistic objects as frequently encountered in numerical simulations using the finite element method. Table 1
reports statistics for the quadtree meshes. In this table, NP, N~ represent the number of vertices and elements, Q~in
and Q~vg are the worst and the average shape quality values of T, ~min, ~maz and L9, ei correspond to the minimum,
maximum, average edge lengths and efficiency index values. The mesh elements generated using this method are

mesh Ivp
nacaO12 683

, ;; Q% ~;: :mg f-y :;: o; ~we

multinaca 1,434 2:;5(3” 2.6 1.29 o.~4 3.12 ()-75 0.92 10

cooler 2,~04 3,794 2.9 1.29 0-25 1.92 0.75 0.91 9
rotor8 2,319 3,864 3.18 1.3 0.29 2.32 0.76 0.92 1
fourche 49,771 86,092 4.0 1.25 ().28 2.4 0.75 0.91

Table 1: Statistics relative to the numerical evaluation of the guadtree meshes.

globally well-shaped and conform to the desired sizes. However, the average edge length is closer to W than to the
unit length (this is most likely due to the discrete [2:1] transition introduced during the tree decomposition). The
efficiency index confirms that the elements sizes are compatible with the desired sizes. So far, the results confirm the
etliciency of the algorithm, between 1.5 and 2.5 millions elements per minute are generated on a HP 9000 PA8200,



200Mhz workstation. This cpu time correspond to the tree decomposition
neglecting the external elements5.

and the generation of the final mesh,

Figure 10:

Figure 9: Final optimized mesh oj ‘cooler’ (left) and local enlargement (right).

(ii)

(iii)

(i)

Computational CFD mesh around a multi airfoil (i) and local enlargements around the airfoil (ii) and (iii).

In the next example, the size map has been analytically defined. Two metric fields are specified inside the computa-
tional domain. The size functions have been defied at any point P(z, g) as follows :

hl(z, g) = 41rl – llnlll +0.05 and h2(x, g) = 21rZ– Ilolll + .02,

where Cl = (—3,5) and Cz = (10, —5) are the centers of two disks of radius rI = 7 and rz = 13 respectively. Ten
iterations of tree and mesh adaption haven been necessary to capture the size fields. Table 2 and Figure 11 illustrate
the result of quadtree adaption for thki analytical example. Notice that the tree decomposition favors the creation of
small edges, and more especially with this analytical function as the mesh gradation given by the sizing function is
not compatible with the (almost) discrete gradation introduced by the [2:1] rule. Nevertheless, the tree decomposition
is able to capture the behavior of the function.

5Note : in most cases, aImost half the number of elements are outside the computational domain.
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iteration 1 iteration 2

iteration 4 iteration 10

Figure 11: Example of mesh adaption where two metric fields have been specijied. The meshes illustrate iterations 1
(initial mesh), 2, J and 10 respectitlely. .

mesh - iter NP
cooler - 1 ~,~(34 3:: ‘% ?% 0%$ % $% 0.$
cooler - 2 2,808 4:975 2.9 1.28 04)03 21.13 0.25 0.32

cooler -4 5,090 9,502 3.04 1.27 0JJ03 19.9 0.27 0.41
cooler -10 7,772 14,847 2.9 1.27 (3.003 1.73 0.29 0.47

Table 2: Statistics relative to the numerical evaluation of the adapted quadtree meshes.

5 Conclusions

After a brief review of some elementary definitions related to quadtree-based mesh generation, we have introduced a
method suitable to create meshes conforming a prescribed size map (or an intrinsic size map if no specific map was
specified). The proposed method attempts to adapt the tree decomposition so that the cell sizes match the required
local sizes. No filtering stage is required to remove closely spaced quadrant entities as a specific mesh optimization
procedure has been designed to take care of these small features. The mesh optimization procedure is based on the
normalized lengths of the mesh edges and aims at providing an optimal, unit size, mesh with respect to the given
metric map. This approach can be used in an adaption scheme were the size map is provided by an a posterior
error estimate after the analysis of the numerical solution. Several application examples of planar meshes have been
provided to illustrate the main features and the efficiency of the approach. The approach needs yet to be validated in
the context of realistic numerical simulation examples (for instance in CFD Euler and Navier-Stokes computations).

This work can be considered as a preliminary stage toward the comprehension of tre~based decomposition methods,
prior to investigate an algorithm in three dimensions.
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Computational Geometry for Mesh Generation ~

Marshall Bern
Xerox Palo Alto Research Center

333 Coyote Hill Road
Palo Alto, CA 94304

bem@parc.xerox.com

Abstract

This mini-tutorial will give an overview of the computational geometry relevant to mesh genera-
tion. Topics will include Delaunay triangulation, constrained Delaunay triangulation, surface
interpolation, numerical conformal mapping, nonobtuse triangulation, minrnax angle triangula-
tion, and optimal smoothing.

The tutorial will be most relevant to unstructured triangular and tetrahedral meshing, somewhat
relevant to unstructured quad and hexahedral meshing, and largely irrelevant (but still pretty
geometry!) to structured meshing. The tutorial will concentrate on recent work that has not yet
found its way into computational geometry books.
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Mesh Quality: A Function of Geometry, Error Estimates or Both?

M. Berzins*

Abstract. The issue of mesh quality for unstructured triangular and tetrahedral meshes is considered. The

theoretical background to finite element methods is used to understand the basis of present-day geometrical mesh

quality indicators. A survey of more recent work in the development of jinite element methods reveals woTk on
anisotTopic meshing algorithms and on providing good erroT estimates that reveal the Te!ationship between the

error and both the mesh and the solution gradients. The realities of solving complex thTee dimensional problems is
that such indicatom arc presently not available for many pToblcms of interest. A simple tetrahedral mesh quality

measure using both geometrical and solution information will be descTibed. Some of the issues in mesh quality for

unstructured tetrahedTa! meshes will be i~~ustrated by means of a simple examp!e.

keywords. Mesh quality, unstructured meshes, error estimates, mesh generation.

1 Introduction

The range of problems solved by finite element and finite volume p.d.e. solvers based on triangular and tetrahedral
meshes e.g [7] [44] is rapidly increasing. The original applications problem class for many such solvers was in the
area of solid mechanics and elasticity in particular. These methods are being applied at present to a wide range of
problems in solid and fluid mechanics ranging from linear elasticity to turbulent flows, [23]. This very broad spectrum
of applications naturally raises the issue of whether or not the meshes being used are appropriate for the applications
being considered.

The issue of whether the mesh is appropriate to represent the solution has been investigated almost as long as finite
elements have been used. In order. to state the important finite element results that formed a basis for existing
mesh quality me~ures it is necessary to introduce some notation. Without loss of generality the case of linear finite
elements on triangular or tetrahedral meshes will be considered. Define the error as being the difference between the
linear approximation, win and the true solution u i.e. e~i~(z, g) = uli~(z, g) – U(Z, y) . The -L2error norm is defined
by lle~in(~, V)IILZ where .

JT

The HI error norm is defined by lleti~(~, Y)IIHI where

llt?lin(~,~)11~1=
/

(f2i73(~, ?J))2+ (Qin,z(~, ?/))2+ (eh,y(z,u))2dzdg .
T

The seminorm of the H2 space is defined by Iulz where

( )

1f 2

14* = ~ &ll(a=)’’@,)’W~2
161=2 . .

(1)

(2)

(3)

Aside from the notion that meshes with regular or smoothly varying element sizes are more aesthetically pleasing, the
starting point for the notion of mesh quality would appear to be the analysis leading to the minimum angle condition
that the smallest angle should be bounded away from zero. Thw perhaps originated with Zlamal [45] and is quoted
by Strang and Flx [38] together with a statement regarding how “poorly shaped” triangles may have an effect on the
condition number of the linear algebra problem that must be solved. The correct version of this result came with the
analysis of Babuska and Aziz [5], who showed that the requirement for triangles was that there should be no large
angles. The general results of both Zlamal and Babuska and Aziz are of the form

“Computational PDEs Unit, School of Computer Studies, The University, Leeds LS2 9JT.
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where Zlama,l [4s] showed that I’(O) = h/sin (@rein) for the minimum angle Omin = nzin(OI, 82,03), see J%ure 1. In
contr~t Babuska and Aziz showed that I’(O) = h/Q(0) where W(O) is a positive continuous and finite function and
for 0 ~ T < z, V(O) ~ Q(7) where 7 is a bound on the maximum interior angle of the triangle in Figure 1. This work
was extended, much later, to tetrahedral elements by Krizek [24] in a similar spirit.

The precise way that these results influenced mesh generation code writers is unclear. Early mesh generation papers
are covered by the surveys of Shephard [36] and Thacker [39]. In these surveys there is little explicit reference to how
the theoretical work has been adopted, though Thacker does say that elements should be nearly equilateral otherwise
instability may result. More recent surveys by Bern and Epstein [12] and Nielson [31], do mention the theoretical
results and the monographs of Carey [16] and George and Borouchaki [19] treat the subject in more detail. The
perceived meshing wisdom has thus been that if possible elements should have no small or large angles. In the case
of tetrahedral meshes this has has led to geometric mesh quality indicators as described in LIU and Joe [26]. One
example being Weatherill’s edge quality estimator for tetrahedral of volume V and edge lengths hi:

Qw= ~48;28V[(+3] (5)

Such indicators do a good job of identifying geometric imperfections in the mesh -an important task before any
solution is computed on the mesh. The difficulty is that it is unclear that such indicators are valid for every solution
on every mesh. The ideal solution is thus to understand the relationship between the error and the mesh. Recently
there have been many attempts to dynamically modify triangular meshes so as to fit the solution better. Some of
these methods will be described below - most of them lead to stretched meshes for anisotropic solutions. The main
requirement is thus for error estimators that include both solution and geometry information. Such estimators are
still in their infancy especially in 3D but it will be shown that it is possible to use interpolation errors, [13] and
through a simple example on a tetrahedral mesh that the accuracy in the solution can depend critically on the mesh.

2 A Qufllty In&lcator Based upon Finite Element Interpolation Theory

The decision as to whether or not (and how) a mesh should be refined should be based on an error estimate that
reflects not only the interpolation error caused by approximating the solution by a finite element space on a given
mesh but also the discretization error of the numerical method used to approximate the p.d.e. and the choice of norm
used to measure the error. Rippa [34] makes a convincing case based on interpolation errors that long thin triangles
do indeed form part of a good mesh for strongly anisotropic solutions. A good discussion of thw topic also occurs in
Nielson [31].

Berzins [13]derives a new mesh quality indicator from the work of Nadler [29] which gives a particularly appropriate
expression for the interpolation error when a quadratic function is approximated by a piecewise linear function on a
triangle. Consider the triangle T defined by the vertices VI, V2 and ZJ3as shown in Figure 1. Let hi be the length of
the edge connecting vi and Vi+l where V4 = ZIl.. Nadler [29] considers the case in which a quadratic function

where H is a constant 2x2 real matrix, is approximated by a linear function ulin (x, y) , as defined by linear interpo-
lation based on the values of u at the vertices and shows that the error denoted by equation (1) above satisfies .

(7)

where A is the area of the triangle and di = ~(~i+l – ~i)T H (~i+l – vi) is the edge derivative along the vi and ~i+l

edge. Berzins [12] uses this result as the basis for an indicator that takes into account both the geometry and the

solution behaviour by defining scaled edge derivatives by ii = Idi I/dm== where d-.= = maz []dl 1,ld21,ld31] . For

notational convenience define ~ = [~1, ~’, ~3]T and

A measure of the anisotropy in the derivative contributions to the error is then provided by

(8)

(9)!laniso = 1(4/12 .
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The relationship between qani.o and the linear interpolation error is that in the case when the matrix H is positive
definite, i.e. di >0, then the indicator gani,o is a scaled form of the interpolation error, [13], in th~ special case.

A consistent and related but geometry-only based indicator is then defined by:

q~(~) = ~(~/(16 W A), where ~ = [hi, h2, h3]T, (lo)

has value 1 for an equilateral triangle and tends to the value infinity as the area of a triangle tends to zero but at
least one of its sides is constant. Bank [7] and Weatherill’s [44] indicators are denoted by gb and qw and defined by

1
- = *[(h? +h; +h:], ,. = qzl+h2+h3)2]
qb 3A

respectively. Hence, from equations (8) and (9) the connection between these indicators is that

g.(n) = J-
4 qb

+,.:.

(11)

(12)

The choice of norm is not often considered but may be critical in deciding what is the best mesh. Given the linear
interpolation error defined by equation (2), Berzins [12] considers the example of Babuska and Aziz [5] in which
triangles of the form of that in Figure 1 are used to interpolate the function z’ with z horizontal. Berzins [14] shows
that in the L’ norm the isosceles triangle is more accurate whereas in the H1 norm right triangles are more accurate
and the isosceles triangle is the worst choice as a J Oin Figure 1. Hence a good mesh in one norm is not a good mesh
in another norm.

The extension to the case of non-quadratic functions maybe considered by assuming that the exact solution is locally
quadratic. Bank [7] uses such an approach inside the code PLTMG and calculates estimates of second derivatives.
Adjerid, Babuska and Flaherty [1] use a similar approach based on derivative jumps across edges to estimate the
error. An alternative approach is to use the ideas of Hlavacek et al. [20] to estimate nodal derivatives and hence
second derivatives.

3 Mesh Movement Redktribution in 2/3D

The idea that it is important for the the shape of the elements to reflect local solution behaviour, particularly for
highly directional flow problems, is well-known [15,9, 25]. One of the significant steps in realising th~ understanding
was the Moving Finite Element method of Keith Miller, see Baines [6], which continuously moves the mesh for
transient problems. Some of the meshes shown by Baines are highly d~torted. A similar approach, but rather
simpler, was derived by Peraire et al. [32], who applied a simple local iterative procedure based on quantities such as
pressure gradients to produce stretched meshes for highly-directional Euler equations flow problems. A key part of
their algorithm is a simple Laplacian smoothing approach that has also been used by many others, e.g. Barth [9, 10].

A slightly different approach still is employed by Tourigny and Baines [40], who investigate the construction of locally
optimal piecewise polynomial fits to data and produce meshes which vary from smooth to skewed, depending on the
solution. The idea is further extended by Tourigny and Hulseman [41], who minimise an energy functional using a
Gauss-Siedel method locally to get similarly skewed meshes.

Beinert and Kroner [11] move edges so that they are aligned with shock waves and also define a Blue directional
refinement approach. For example in the right side of Figure 1 if the edges eT1, eT’ are parallel and aligned with the
flow direction then the pairs of triangles is replaced by four anisotropic triangles. Although the indicator used to guide
refinement is the gradient of the Mach number rather than an explicit error estimator, the results are nevertheless
impressive.

The relative size of the edge indicators, di defined by equation(7) in the previous section gives a means of indicating
which edges should be refined to reduce the error. One recent method to take advantage of such local gradients is
the modified Delaunay approach of Borouchaki et al. [15] in which the local gradient information, of the form of di
values, is used in conjunction with the Delaunay mesh generator to compute highly stretched grids for anisotropic
flows in two space dimensions. The results presented by Borouchaki et al. show that th~ approach can give good
results on problems with highly directional flows.

Other methods using the gradient quantities d~ defined in the previous section are the mesh generation procedure
of Simpson [35] and the mesh modification procedure of Ait-Ali-Yahia et al.[2]. In the latter case the H matrix is
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Figure 1: Babuska and Aziz Example Triangle and Blue Refinement of Two Triangles into Four.

modified to be positive definite and edge indicators, defined in the notation used here by di/~-, are used

to move the mesh. ThE approach thus scales the edge error component by the edge length. Ait-Ali-Yahia et al. [2]
interpret d, as the edge length in the H norm.

Mesh red~tribution in 3D is less common but Freitag and Ollivier-Gooch [18] and Riescu [22] give interesting algo-
rithms for splitting tetrahedra. In Iliescu’s approach pairs of tetrahedral satisfying convexity and angle conditions
related to the flow dmection are split into three tetrahedral so as to be aligned with the flow direction, see Fig-
ure (2). Freitag and Ollivier-Gooch [18] also provide convincing evidence that mesh smoothing can have beneficial
consequences for the rate of convergence of the iterative solver.

A common feature of all the methods listed in this section is that although the mesh is improved in some sense, the
criterion used is only indirectly related to the error.

4 Error estimators with Geometry effects

Recent work in error estimates is starting to reveal the explicit dependence of the error on both solution derivatives
and on the mesh. An important stepping stone in this process was the work of Appel, [3, 4], which proved that one
can benefit from the presence of small and even large angles of the elements. Appel also shows for bilinear elements
that the interpolation and finite element errors coincide. Tsukerman [42, 43] derives a maximal eigenvalue condition
which shows that it is the maximum eigenvalue of the element stiff matrix that characterises the impact of the shape
of the element on the energy norm of the error of the finite element approximation.

Bank and Smith [7], in error analysis for the method used in the PLTMG code shows how the error can be written
using d~ and qb from Section 2 as a quotient of solution and geometry information:

(13)

This somewhat simpler form than the expressions in equation(7) and [14] comes about because Bank and Smith
consider only the diagonal terms in a matrix to arrive at their approximation. While this error estimator only
applies to steady problems Lang [25] considers transient problems and explicitly includes both solution derivative and
geometry information in the error estimates he derives. For 2D reaction-diffusion p.d.e.s modelling highly-directional
phenomena such as fl~e propagation, Lang proves the error estimate

]]elin(z,y)ll~,

where the local error estimator q; = C2 (r, J, T), D~U
equation (3). The constant C(r, A, T) is defined by

(14)

and D$U is a computed approximation to [U12as defined by

C(T, A,T) = (1 + 1~1+ A2)2h2(0.2587(1+ ;)h2 + ;(1 + IA!+ A2)) (15)

and where with reference to Figure 1, A = tan(rj) , h is the longest edge and r is the timestep. This estimate thus
precisely describes the effect of both the geometry and the solution on the error and enables dec~lons regarding
directional refinement to be taken.
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Figure 2: Example Tetrahedron and Riescu’s Directional Refinement Procedure.

5 Ulnear Tetrahedral Approximation of a Quadratic Function

Although there are now data-dependent tetrahedralisations, see Nielson [31], there are unfortunately very few error
estimates for tetrahedral meshes that show the explicit dependence of the error on the mesh and the solution. The
natural starting point is perhaps to try and use the interpolation error to assess how appropriate the mesh is for
the computed solution. The simple mesh quality indicator of Berzins [13, 14] is based on linear interpolation error
estimates and is derived by extending Nadler7s [29] approach to tetrahedral by considering the case in which a quadratic
function

is approximated by a linear function ul~”(z, y, z) defined by linear interpolation based on the values of u at the vertices
of a tetrahedron T defined by the vertices VI, V2 , V3 and V4 as shown in Figure 2.

Let hi be the length of the edge connecting vi and vi+l where V5= vi . With reference to Figure 2 define the vectors
i% ~, ~ & ~and&byvz=vl+4 vs=vz+?i, V1=V3+~V4=V1–~ v4=v2+& v4=v3+&. Berzins

[13]defines the vector of second directional denvati=s along edges by

and shows that the error may written in terms of the six directional derivatives along the edges di as

It is then possible to define the mesh quality indicator in the same way as in Section 2 in that the error is scaled by
the maximum dkectional derivative d~=z, the integral is scaled by the volume before taking the square root. In a
similar way to as in Section 2 define

A measure of the anisotropy in the derivative contributions to the error is then provided by Qa.;~O and a related
geometry based indicator by Q~ where

Q..i.o = Q(d)/w-f Qm(L) = ~ [Q(E)]% (19)

where C is a scaling factor to ensure that the indicator has value one when hi = h . A comparison between thk
geometry indicator, Qm (~, with that of Weatherill Q~ as defined by equation(5) was done by Berzins [13] who showed
that the values of the two indicators are very similar. The anisotropic interpolation example used by Berzins, [14],
shows that in such circumstances it is important to use indicators such as Q.niso which involve solution information.
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Figure 3: Example Mesh of Four Tetrahedrx ABCE,ABED,ACED and BCED
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6 Example Laplace’s Equation with Anisotropic Tetrahedral and Fhite Element/Volume Schemes

The issue of mesh suitabtity for a given solution and numerical solver is recognised as a complex one with no easy
answers. There are a variety of views concerning the sensitivity of numerical schemes to distorted meshes. Shephard
[37] states that the stabtized FEM for example, appear to have no real problem with elements with angles of 179
degrees and 1,000,000 to 1 aspect ratios and that tetrahedral with small angles are well-understood to be needed for
boundary layer calculations. In contrast, Millar [27, 28], et al. state that for Laplace’s equation, finite volume schemes
are less sensitive than finite element schemes to sliver-type tetrahedral in meshes. Given the similarity between the
finite volume and element schemes in this case, see [9] the difference may be due to implementation issues such as
those discussed by Putti and Cordes [33].

In order to understand better the dependency between the mesh and the error, the Laplaces equation, V2 U = O, in
three space dmensions of [27] will be used. The mesh of five points consists of a single tetrahedron sub-divided into
four by the addition of an internal point and is shown in Figure 3. The analytic solution given by

u(z, y, z) = ezzcos(rg/fi)sin( ir(z + 0.5)/fi) (20)

O = [0,O,0]= , A = [–0.5, –0.5, 0]=, B = [0.5,–0.5, O]T C’= [0,1,O]T , D = [O,O,I]T, a~d E = [o,o,~]T

where c is a parameter that will be varied to test the sensitivity of the numerical solution to the mesh and in particular
to d~torted elements. The values at A, B, C, D are given by the exact solution and denoted by UA, UB, Uc, UD. The
scheme used to approximate the Laplacian is Barth’s cell-vertex scheme [9, 10]. This gives a challenging situation for
mesh quality indicators as the region associated with each node is composed of parts of all neighboring tetrahedral.
At point E the Laplacian is approximated by

V2U = WEA(UA – UE) + WEB(UB – UE) + WED(UA – uE) + WED(UD – UE) (21)

where uE is the numerical approximation to the exact value UE and is explicitly defined by the equation

UE = ( WEAUA + WEBIYB + WECUC + WEDUD )/(wEA + WEB + WEC + WED) (22)

In order that the solution satisfies a maximum principle all the weights W.. must be positive. [9, 10]. Barth also
shows how th~ condition may not be met on a d~torted mesh, but Putti and Cordes [33] show how to modify the
method to avoid this and that this also improves the accuracy.

Denote the exact solution of the problem at node E by UE then the p.d.e. truncation error, T. Error, is defined by

TError = WEA(UA - UE) + WEB(UB – UE) + WED(UA – UE) + WED(UD – UE) (23)

and the relationship between the truncation error and the error is

Error = UE – UE = -TError/(W~A + WEB+ WEC + WED) (24)

Table 1 shows the different mesh quality indicators and the interpolation error as the value of c changes for two
tetrahedral given by the points ABCE and ACED. The values for the tetrahedral ABED and BCED being similar to
those of ACED. With reference to Table 1 Interp is the square of the interpolation error based on the exact solution.
Error and T. Error are the error and truncation error defined by equations (23) and (24) respectively. The results
in Table 1 show that the anisotropy indicator follows ( not surprisingly) the trend of the interpolation error, but
that the pointwise d~cretization error behaves very dWerently, especially for small values of c. The low values of
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Table 1: Qani$o , Standard Mesh Quality Q~ and Error Values

I I Tet. ABCE I Tet. ACED I Numerical Errar
e eniso IQ II nterp I Q.~,=O IQ II nterp c1 I Errar ITE rror

0.001 I 0.35 62: 3.4e-6 I 0.15 2;2W 1.oe-3 -2.6E&2I 0.42 ‘640.
0.01 0.35 62 3.+-5 0.15 2.2 1.oe-3 -1.1+2 0.41 65.5
0.1 0.38 6.2 3.4e-4 0.15 2.3 9.5e-4 1.4e-l 0.03 7.45
0.5 0.38 1.5 1.6e-3 0.17 3.9 6.2e-4 6.7*1 -0.02
0.9

-0.45
0.23 1.1 3.le-3 0.21 20 1.8e-4 1.015 -3.7e-2

0.99
-4.843

0.21 1.1 3.6e-3 0.22 211 2.Oe-5 1.075 -4.4e-3 -5.9
0.999 I 0.20 I 1.1 3.6e-3 I 0.23 211 I 2.le-6 I 1.08 I -4.4*4 I -6.05

Table 2: Values of the coefficients W,., Web, We., Wed

~

the anisotropy indicator Qani.o indicate potential problems. The geometry indicator does a good job of picking up
the very large error for small c but also erroneously identifies a problem with c close to one, when the error is small.
The change in sign of the error makes it possible to identify the optimal value of q and hence the optimal mesh.
Experimentation shows that when c = 0.45819234130 the error is zero to roundoff error level.

The interesting result is that both mesh quality indicators do not really identify the relationship between the mesh
and the error in the numerical solution. It is the differing size of the truncation error as caused by the method
coefficients that has a dramatic effect on the error. In the case when c = 0.001 the large size of the three coefficients
W.a, W.b, W,. arises because the face angle between faces such as EBC and ABC is very close to ~ . Hence in this
case the value VDplay little part in determining UB. In contrast when c is close to one only one coefficient is large
and UE is determined almost solely by UD its closest neighbour. The values of these coefficients are shown in Table 2,
the negative values indicating that the mesh is not a good one from the point of view of approximating the diffusion
operator, [9].

7 Conclusions

The overall conclusion is that the only really satisfactory approach would seem to be to have an error estimator based
on both solution and geometry information This would appear to be true for strongly directional fluid flows for which
highly distorted meshes appear to be very effective. One approach to resolving this issue is to have computable error
estimates for each solution component. At present, it is still often the case that such estimates may not be available
or may not be reliable. It is also the case that the availabfity of such error estimates will always lag behind the
problems being solved by practitioners. Hence the requirement must be to allow the user to supply mesh quality
measures and to choose anisotropic remeshing options. There are, of course, many applications areas in which it
is still rather difficult to even understand what constitutes a good mesh. One such area is turbulent combustion
which may involve the interaction bet ween many chemical species and complex fluid flows. Such problems are like to
provide interesting challenges to the meshing community for some time to come.
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Abstract

A brief survey of some of the fundamental algorithms in unstructured mesh generation is presented.
Included is a discussion and categorization of triangle, tetrahedral, quadrilateral and hexahedral mesh
generation methods currently in use in academia and industry. Also included is a brief discussion of
smoothing, cleanup and refinement algorithms. An informal survey.of currently available mesh generation
software is also provided comparing some of their main features.

1. Introduction

Automatic unstructured mesh generation is a relatively new field. With its short life span we have seen
tremendous advances in many diverse fields. Once in a while, it is usefid to step back tlom our own
expertise and look at the entire picture of what is going on in the field. The purpose of this survey is to
give some perspective to what the current trends are in mesh generation and outline some of the major
technology areas, who is working in these fields and what software is available.

Probably the simplest approach is to fwst break down the technology based on the shape of element
generated. We will consider triangle and quad generation methods in 2D and tetrahedral aad hexahedral
methods in 3D. Straddled between 2D and 3D, we have surface-meshing, which has it’s own set of issues.
In addition we have another set of issues deahng with postprocessing of the mesh including smoothing, .
cleanup and refinement. Wit.hh each of these issues, have emerged a few clear categories of algorithms,
which tend to dominate much of the literature and software. Not included in this survey area wide variety
of equally important related topics such as adaptive, anisotropic and parallel mesh generation as well as
data structure and geometry management issues. Because of the immense scope of the field of unstructured
mesh generation, I have limited this survey to include what I consider the more fundamental aspects of the
field. Since I do not purport to be an expert in all fields of mesh generation, this will be at bes~ a cursory
look at the main issues in each category.

1.1 Sofware Survey

As part of this paper, I conducted an informal survey of software vendors, research labs and educational
institutions that develop mesh and grid generation software. The purpose was to get a broad picture of who
was currently involved in developing software and what common algorithms were employed. The results
of the survey are included as an appendix to thk paper. They are also posted on the World Wide Webl.
From the over 100 surveys mailed, approximately 80 responded. While the emphasis of the survey was
unstructure~ many unstructured codes are also included.

The survey is certainly not a complete list of all those developing software, but it does illustrate the wide
range of mash generation technology currently available. Included are simple research codes used by only
a few people, to commercial codes integrated within complex analysis packages.



1.2 Structured vs. Unstructured

This survey paper focuses on unstructured meshing technology. There is a large group of literaturez3 and
software4 that deals with structured meshing commonly referred to as “grid generation”. Strictly speaking,
a structured mesh can be recognized by all interior nodes of the mesh having an equal number of adjacent
elements. For our purposes, the mesh generated by a structured grid generator is typically all quad or
hexahedral. Algorithms employed generally involve complex iterative smoothing techniques that attempt to
align elements with boundaries or physical domains. Where non-trivial boundaries are required, “block-
structured” techniques can be employed which allow the user to break the domain up into topological
blocks. Structured grid generators are most commonly used within the CFD fielt where strict alignment of
elements can be required by the analysis code or necessary to capture physical phenomenon.

Unstmcturcd mesh generation, on the other hand relaxes the node valence requirement, allowing any
number of elements to meet at a single node. Triangle and Tetrahedral meshes are most commonly thought
of when referring to unstructured meshing, although quadrilateral and hexahedral meshes can also be
unstmctured. While there is certainly some overlap between structured and unstructured mesh generation
technologies, the main feature which distinguish the two fields are the unique iterative smoothing
algorithms employed by structured grid generators.

2.0 Tri/Tetrahedral Meshing

Triangle and tetrahedral meshing are by far the most commou forms of unstructured mesh generation.
Most techniques currently in use can fit into one of three main categories:

1. Octree
2. Delaunay
3. Advancing Front

Although there is certainly a difference in complexity when moving from 2D to 3D, the algorithms
discussed are for the most part applicable for both triangle and tetrahedral mesh generation.

2.1 Octree

The Octree technique was primarily developed in the 1980s by Mark Shephard’s5’6group at Rensselaer.
With this metho~ cubes containing the geometric model are recursively subdivided until the desired
resolution is reached. F@re 1 shows the equivalent two-dimensional quadtree decomposition of a model.
Irregular cells are then created where cubes intersect the surface, often requiring a significant number of
surface intersection calculations. Tetrahedral are generated from both the irregular cells on the boundary and
the internal regular cells. The Octree technique does not match a predefine surface mesh, as an
advancing front or Delaunay mesh migh~ rather surface facets are formed wherever the internal octree
structure intersects the boundary. The resulting mesh also wiI1change as the orientation of the cubes in the
octree structure is changed and can also require. To ensure element sizes do not change too dramatically, a
maximum difference in octree subdivision level between adjacent cubes can be limited to one. SmootMg
and cleanup operations can also be employed to improve element shapes.

Figure 1. Quadtree decomposition of a simple 2D object

From the survey, only four of the 38 codes generating tetrahedd meshes reported using some form of
octree tectilque. SCOREC7 at Rensselaer develops a set of mesh generation tools called MEGA that

240



utilizes the Octree technique that is available through their partners program. A public domain octree mesh
generator called QMG8 is available from Steve Vivasis at ComelL

2.2 Delaunay

By far the most popular of the triangle and tetrahedral meshing techniques are those utilizing the Delauna~
criterion. The Delaunay criterion, sometimes called the “empty sphere” property simply statw says that
any node must not be contained within tie circumsphere of any tetrahedral within the mesh. A circumsphere
can be defined as the sphere passing through all four vertices of a tetrahedron. Figure 2 is a simple two-
dimensional illustration of the criterion. Since the circumcircles of the triangles in (a) do not contain the
other triangle’s nodes, the empty circle property is maintained. Although the Delaunay criterion has been
known for many years, it was not until the work of Charles Lawson1° and Dave Watsonll that the criterion
was utilized for developing algorithms to triangulate a set of vertices. A simple public domain 3D
Delaunay triangulation program called Qhull is available horn the University of Mimeapolis. The criterion
was later used in developing meshing algorithms by Timothy Bakerlz at Princeton, Nigel Wcatherill*3 at
Swanse& Paul-Louis George14 at INRIA among others.
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Figure 2. Example of Delaunay criterion. (a) maintains the criterion while (b) does not.

The Delaunay criterion in itself, is not an algorithm for generating a mesh. It merely provides the criteria
for which to connect a set of existing points in space. As such it is necessary to provide a method for
generating node locations within the geometry. A typical approach is to first mesh the boundary of the
geometry to provide an initial set of nodes. The boundary nodes are then triangulated according to the
Delaunay criterion. Nodes are then inserted incrementally into the existing mesh, redefining the triangles
or tetrahedral locally as each new node is inserted to maintain the Delaunay criterion. It is the method that
is chosen for defining whereto locate the interior nodes that distinguishes one Delaunay algorithm from
another.

2.2.1 Point insertion

The simplest point insertion approach is to define nodes from a regular grid of points covering the domain
at a specified nodal density. In order to provide for varying element sizes, a user specified sizing function
can also be defined and nodes inserted until the underlying sizing function is satisfied. Another approach is
for nodes to be recursively inserted at triangle or tetrahedral centroids. Weatherill and Hassan13propose a
tetrahedral mesh generation scheme where nodes are inserted at a tetrahedron’s centroid provided the
underlying sizing function is not violated.

An alternate approach is to define new nodes at element circumcircle/sphere centers as proposed by Chew15
and Ruppert16. When a specific order of insertion is followed, this techrdque is often referred to as
“Guaranteed Quality” as triangles can be generated with a minimum bound on any angle in the mesh.
Jonathon Shewchuk17 at CMU has developed a 2D version of tids algorithm and makes it available free of
charge for research purposes.

Similar to the circumcircle point insertion metho~ another tecludque introduced by Rebay]8 is the so-
call~ Voronoi-segment point insertion method. A Voronoi segment can be defined as the line segment
between the circumcircle centers of two adjacent triangles or tetmhedra The new node is introduced at a
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point along the Voronoi segment in order to satisfy the best local size criteria. This method tends to
generate very structured looking meshes with six triangles at every internal node.

Another method introduced by Marcum19is an advancing front approach to node insertion. Nodes are
inserted incrementally, but added from the boundary towads the interior. Each facet is examined to
determine the ideal location for anew fourth node on the interior of the existing Delaunay mesh. The node
is then inserted and local reconnection is performed. This method tends to generate elemenLs well aligned
with the boundary with a very structured appearance to the mesh. Dave Marcum provides both a 2D and
3D version of his mesh generators through the ERC20at Mississippi State.

One straightforward method used by INRIA21 in their mesh generator GSH3DZ, is point insertion along
edges. A set of candidate vertices is generated by marching along the existing internal edges of the
triangulation at a given spacing ratio. Nodes are then inserted incrementally, discarding nodes that would
be too close to an existing neighbor. This process is continued recursively until a background sizing
function is satisfied.

A variety of other methods for point insertion have also been propose4 but most have a similar flavor to
those discussed above

2.2.2 Boundary Constrained Triangulation

In many finite element applications, there is a requirement that an existing surface triangulation be
maintained. In most Delaunay approaches, before internal nodes are generat@ a three dimensional
tessellation of the nodes on the geometry surface is produced. In this process, there is no guarantee that the
surface triangulation will be satisfied. In many implementations, the approach is to tessellate the boundary
nodes using a standard Delaunay algorithm without regard for the surface facets. A second step is then
employed to force or recover the surface triangulation. Of course by doing so, the triangulation may no
longer be strictly “Delaunay”, hence the term “Boundary Constrained Delaunay Triangulation”.

In two dimensions the edge recovery is relatively straightforward. George= describes how the edges of a
triangulation may be recovered by iteratively swapping triangle edges. The process is considerably more
complex in three dimensions, since after recovering all edges in the surface triangulation, there is no
guarantee that the surface facets themselves will be recovered. Additional facet recovery operations can be
required to maintain the surface triangulation. While the two dimensional recovery process is guaranteed
to produce a boundary conforming triangulation, there are cases24in three dimensions where a valid
triangulation can not be defined without first inserting additional vertices. This fact increases the
complexity of any three dimensional boundary recovery procedure. Two different methods presented in the
literature for recovery of the boundary include George14and Weatheril113.

In the fmt approach defined by George14and implemented in INRIA’s GSH3DZ software, edges are .
recovered by performing a series of tetrahedral transformations by swapping two adjacent tetrahedral for
three, as shown in figure 3. Where a swap cannot resolve the edge, nodes must sometimes be inserted.
After edges have been recovere~ in order to recover the face, additional transformations are performed,
mostly chmacterized by swapping three adjacent tetrahe&a at an edge for two. More complex
transformations or additional nodes can be inserted during the face recovery phase if the transformations do
not resolve the surface facet.

E
@~ D

E

Figure 3. Tetrahedral transformation where two tets are swapped for three.
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The second approach defined by Weatherill also involves an edge recovery phase and a face recovery
phase. The main difference with this approach is that rather than attempting to transform the tetrahedral to
recover edges and faces, nodes are inserted dhtctly into the triangulation wherever the surface edge or facet
cut.. non-conforming tetrahedral. This process temporarily adds additional nodes to the surface. Once the
surface facets have been recoverd addhional nodtw that were inserted to facilitate the boundary recovery
are deleted and the resulting local void retriangulated.

Another approach presented by Barry Joe”, is able to avoid the boundary recovery problem altogether.
Provided the geometry is convex, Joe is able to define a boundary conforming tetrahedral mesh. The
emphasis in this metho~ rather than attempting to repair the boundary of an arbhrary non-convex surface
trkmgulation, is to decompose the geometry into convex regions that can be separately processed. An older
unsupported public domain version of Barry Joe’s code, Geompac~ is available from the University of
AlbertaX via anonymous ftp.

2.3 Advancing Front

Another very popular family of triangle and tetrahedral mesh generation algorithms is the advancing fron~
or moving front method. Two of the main contributors to tlis method are Rainald Lohnerm’28at George
Mason University and S. H. Lo29’Wat the University of Hong Kong. In this metho~ the tetrahedral are built
progressively inward from the triangulated surface. An active front is maintained where new tetrahedral are
formed. Figure 4 is a simple two-dimensional example of the advancing fron~ where triangles have been
formed at the boundary. As the algorithm progresses, the front will advance to.fill the remainder of the
area with triangles. In three-dimensions, for each triangular facet on the fion~ an ideal location for a new
fourth node is computed. Also determined are any existing nodes on the front that may forma well-shaped
tetrahedron with the facet. The algorithm selects either the new fourth node or an existing node to form the
new tetrahedron based on which will form the best tetrahedron. Also required are intersection checks to
ensure that tetrahedron do not overlap as opposing fronts advance towards each other. A sizing function
can also be defined in this method to control element sizes. Lohne#8 proposed using a course Delaunay
mesh of selected boundary nodes over which the sizing function could be quickly interpolated. Aversion
of S. H. Lo’s advancing front mesh generator is available with the ANSYS31 suite of mesh generation tools.

Figure 4. Example of advancing front where one layer of triangles has been placed

A form of the advancing front method sometimes called “advancing layers”, is also used for generating
boundary layers for CFD, Navier-Stokes applications. This method lends itself well to control of element
sizes near the boundary. Pkzadeh32 presents a method where the elements are stretched in the direction of
the boundary, the expected direction of fluid flow. A public domain version of Pirzadeh’s code, VGRID33
is available from NASL Langley.

3. QumVHexahedral Meshing

Automatic unstructured mesh generation algorithms have lent themselves more readily to triangle and
tetrahedral meshing. As a resul$ most of the literature and software are triangle and tetrahedral. In spite of
this, there is a significant group of literature that focuses on unstructured quad and hexahedral methods.
Unstructured quad~ and hex3s meshing software have also become widely available in recent years. Unlike
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triangle and tetrahedral methods, extension horn a 2D quadrilateral algorithm to a 3D hexahedral method is
not generally straightforward.

3.1 Mapped Meshing

When the geometry of the domain is applicable, quad or hex mapped meshing36will generally produce the
most desirable rcmdt. Although mapped meshing is considered a structured method, it is quite common for
unstructured codes to provide a mapped meshing option. For mapped meshing to be applicable, opposite
edges of the area to be meshed must have equal numbers of divisions. In 3D, each opposing face of a
topological cube must have the same surface mesh. This can often be impossible for an arbitrary geometric
configuration or can involve considerable user interaction to decompose geometry into mapped meshable
regions and assign boundary intervals. In order to reduce human interaction, research has be done in recent
years through the CUB@7 project at Sandia National Labs to automatically recognize features38and
decompose geometry39 into separate mapped meshable areas and volumes. Work has also been done to
automate interval assignments.

Another category of mapped meshing, also developed as part of the CUBI~7 project is referred to as sub-
mapping41.This method, rather than decomposing the geometry dwectly, determines an appropriate virtual
decomposition based on comer angles and edge directions. The separate map-meshable regions are then
meshed separately. This method is suitable for blocky shapes and volumes that have well defined comers
and cube-like regions.

Sweeping, sometimes referred to as 2 %-D meshing, is another class of mapped hexahedral meshing. A
quadrilateral mesh can be swept through space along a curve. Regular layers of hexahedra are formed at
specified intervals using the same topology as the quadrilateral mesh. This tectilque can be generalized to
mesh certain classes of volumes by defining so-called source and target surfaces. Provided the source and
target surface have similar topology and the surfaces are connected by a set of map-meshable surfaces, the
quad elements of the source area can be swept through the volume to generate hexahedra as shown in
Figure 5. Care must be taken in locating internal nodes during the sweeping process and several papers4z43
have been presented addressing thk issue.

Figure 5. Hex elements generated by sweeping

Blacker~ generalizes and extends the applicability of sweeping when he introduces the Cooper Tool. The
Cooper tool allows for multiple source and target surfaces while still requiring a single sweep direction.
With this tool, the topology is allowed to branch or split along the sweep drection. In addition, the
topology of source and target surfaces are not required to be similar. With these requirements relaxed, a
greater subset of geometry maybe meshed with generally very high quality elements. The cooper tool is
provided as part of the Fluent pre-processor, Gambit4s.

3.2 Unstructured Quad Meshing

Unstructured quadrilateral meshing algorithms can, in general, be grouped into two main categories: direct
and indirect approaches. With an indirect approach, the domain is f~st meshed with triangles. Various
algorithms are then employed to convert the triangles into quadrilaterals. With a direct approach,
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quadrilaterals are placed on the surface directly, without first going through the process of triangle
mrxhing.

3.2.1 Indirect Methoak

One of the simplest methods for ind~ect quadrilateral mesh generation includes dividing all triangles into
three quadrilaterals, as shown in Figure 6. This method guarantees an all-quadrilateral mesh, but a high
number of irregular nodes are introduced into the mesh resulting in poor element quality. An alternate
algorithm is to combine adjacent pairs of triangles to forma single quadrilateral as shown in Figure 7.
While the element quality increases using this metho~ a large number of triangles maybe left.

Figure 6. Quad mesh generated by splitting each triangle into three quads

Figure 7. Quaddominant mesh generated by combining triangles.

The triangle combining method can be improv@ if some care is taken in the order in which triangles are
combined. In an effort to maximix the number of quadrilaterals, Loti defined an algorithm that suggested
several heuristic procedures for the order in which triangles could be combined. The result is a quad-
dominant mesh containing a minimal number of triangles. Johnston47 proposes additional local element
splitting and swapping strategies to increase the number and quality of quads.

Lee48later enhances Lo’s a strategy by including local triangle splitting. In addition, an advancing front
approach is used over the initial triangles. An initial set of fronts is defined consisting of the edges of
triangles at the boundary of the domain. Triangles are systematically combined at the fron~ advancing
towards the interior of the area. Each time a set of triangles is combined the front advances. The front
always defines the division between quadrilaterals already formed and triangles yet to be combined. With
this technique, Lee is able to guarantee an allquadrilateral mesh, provided the initial number of edges on
the boundary is even,

Since all operations are local, indirect methods have the advantage of being very fasL Global intersection
checks are not necessary as is required with some forms of direct methods. The drawback to indirect
methods is that there are typically many irregular nodes left in the mesh. Even if few irregular nodes exis~
there is no guarantee that the elements will align with the boundary, a desirable property for some
applications. Some of the irregular nodes can be reduc~ and hence element qualhy increased by
performing topological clean-up operations (discussed later).

Another method recently introduced by the author, known as Quad Morphing49 also utilizes an advancing
fkont approach to convert triangles to quads, but is able to significantly reduce the number of irregular
nodes in the mesh. With tils approach, local edge swaps are performed and additional nodes introduced in
order to ensure boundary alignment and orthogonrdity. Any number of triangles maybe deleted to create a
single quad.



3.2.2 Direct Methods

Many methods for direct generation of quad meshes have been proposed. Among these methods, there
appears to be two main categories. The first are methods that rely on some form of decomposition of the
domain into simpler regions than can be resolved by one of a series of templates. The seeond category are
those that utilize a moving front method for direct placement of nodes and element%

3.2.2.1 Quad Meshing by Decomposition

The quad-tree decomposition technique proposed by Baehmannw is among the fmt methods utilizing
decomposition of the area for quadrilateral meshing. After an initial decomposition of the 2D space into a
quad-tree based on local feature sizes, quadrilateral elements are fitted into the quad-tree leaves, adjusting
nodes in order to conform to the boundary.

Talbert? later introduces another decomposition technique. With this approach, the domain is recursively
subdivided into simple polygonal shapes. The resulting polygons satisfy a limited number of templates into
which quadrilateral elements are inserted. Chae52has recently proposed enhancements to Talbert’s
algorithm with similar work presented by Nowottnfl.

Quadrilateral meshing utilizing a medial axis decomposition of the domain was first introduced by Tam%.
The medial axis can be thought of as a series of lines and curves generated ffom the midpoint of a maximal
circle as it is rolled through the area (Figure 8). Having decomposed the area into simpler regions, sets of
templates are then employed to insert quadrilaterals into the domain. Linear programming techniques are
used in order to maintain compatibility of element divisions between adjoining regions of the domain.

axis

13gure 8. Decomposition of an area using the medial axis

Joe55also utilizes decomposition algorithms to decompose the area into convex polygons. Using
techniques previously developed for triangle mesh generation%, Joe constructs a boundary constrained
quadrilateral mesh within each convex sub-domain of the area.

3.2.2.2 Advancing Front Quad Meshing

Zhuw is among the first to propose a quadrilateral meshing algorithm using an advancing front approach.
Starting with an initial placement of nodes on the boundary, individual elemen~s are formed by projecting
edges towards the interior. Two triangh% are formed using traditional triangle advancing front methods
and then combined to forma single quadrilateral.

The paving algorithm introduced by Blacker and Stephenson5s, presents a method for forming complete
rows of elements starting from the boundary and working in. Methods for projection of nodes, handling of
special geometric situations and intersection of opposing fronts are discussed. Cass59further developed
paving, by generalhing the method for three-dimensional surfaces. WhiteGorecently proposed
enhancements to the paving algorithm suggesting individual placement of elements rather than complete
rows. The paving algorithm is currently implemented as part of the CUB~7 software as well as several
commercial packages including MSC PatranGland Fluent’s Gamb@5 software.
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3.3 Unstructured Hex Meshing

Similar to quadrilateral meshing, there are both direct and indweet methods for unstructured hex meshing.

3.3.1 Indirect Methods

Indirect methods, although not in wide use have been proposed for some applicationss2. Provided a solid
can be tet m~hed, each tetrahedron can be subdivided into four hexahedra as shown in F@re 9. Most
finite element analysts, because of the poor element quality that will in general resul~ have rejected this
solution.

Figure 9. Decomposition of a tetrahedron into four hexahedra

An equivalent induect hexahedral mesh generation scheme that will combine tetrahm similar to
combining triangles to form quadrilaterals has not been presented in the literature. The simplest
tetrahedralization of a cube will contain five tetrahedral. An indirect method that combines tets to form
hexes would therefore need to look for combinations of five or more tetrahedral to form a single hexahedra
This problem to date has not proved a reasonable nor tractable method for mesh generation.

3.3.2 Direct Methods

There are currently four distinct strategies proposed for unstructured all-hex mesh generation that are
predominant in the literature

1. grid-based
2. medal surface
3. plastering
4. whisker weaving

3.3.2.1 Grid-Based

The grid-based approach, proposed by SchneidersG3involves generating ajiued three dimensional grid of
hex elements on the interior of the volume. Hex elements are added at the boundaries to fill gaps where the
regular grid of hexes does not meet flush with the surface. This methti while robus~ tends to generate

“ poor quality elements at the boundary of the volume. Hex elements will in general not be aligned with the
boundary. The resulting mesh generated from the grid-based approach is also highly dependent upon the
orientation of the interior grid of hex elemenk. In addition, element sizes must be approximately all the
same. In recent work Weilera and SchneidersGshave introduced modifications that allow for significant
transition in element sizes utilizing an octree decomposition of the domain. Mesh generators based on the
grid-bawd approach are available in the HexarGGsoftware from Cray Research and in MARC’s Mentats7
software.
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3.3.2.2 Medial Su$ace

Medal surface methodsc8’G9’70involve an initial decomposition of the volume. As a dwect extension of the
medial axis method for quad meshing, the domain is subdivided by a set of medial surfaces, which can be
thought of as the surfaces generated from the midpoint of a maximal sphere as it is rolled through the
volume. The decomposition of the volume by medhl surfaces is said to generate map meshable regions. A
series of templates for the expected topology of the regions formed by the medial surfaces are utilized to
fill the volume with hexahedra. Lhmar programming is used to ensure element divisions match from one
region to another. This method, while proving useful for some geometry, has been less than reliable for
general geometry. Robusmess issues in generating the medkl surfaces as well as providing for all castx of
regions defined by the medkd surfaces has proved to be a difficult problem. Medial surface methods are
incorporated into the FEGS’ CADFix71 hexahedral mesh generator and within Solidpoint’s Turbomesh72
software.

3.3.2.3 Plastering

Plastering73’74is an attempt to extend the paving algorithm to three dimensions. With this method, elements
are fmt placed starting with the boundaries and advancing towards the center of the volume as shown in
Figure 10. A heuristic set of procedures for determining the order of element formation is defined. Similar
to other advancing front algorithms, a current front is defined consisting of all quadrilaterals. IndNidual
quads are projected towards the interior of the volume to form hexahedra. In addition, plastering must
detect intersecting faces and determine when and how to connect to pre-existing nodes or to seam faces.
As the algorithm advances, complex interior voids may resulg which in some cases are impossible to fill
with all-hex elements. Existing elements, already placed by the plastering algorithm must sometimes be
modhled in order to facilitate placement of hexes towards the interior.

Figure 10. Plastering process forming elements at the boundary.

Currently, the plastering algorithm has not been proven to be reliable on a large class of problems.
Although in many cases, several layers of hex elements maybe successfully placed on the boundary of the
volume, intersection and closure procedures are less than reliable. Sandla’s CUBIT37project is continuing
research on plastering and makes it available in their software.

3.3.2.4 Whisker Weaving

Whisker weaving, f~st introduced by Tautges and B1acker75,is based on the concept of fhe spatial w.sf
confinuwn (STC)76. Tautges describes the STC as the dual of the hexahedral me-sh,represented by an
arrangement of intersecting surfaces which bisect hexahedral elements in each direction. Figure 11 shows a
simple representation of the twist planes of the STC defined for a volume composed of only two hexahedra.

The principal behind whisker weaving is to f~st construct the STC or dual of the hex mesh. With a
complete STC, the hex elements can then be fitted into the volume using the STC as a guide. This is done
by beginning with a topological representation of the loops formed by the intersection of the twist planes
with the surface. The loops can be easily determined from an initial quad mesh of the surface. The
objeetive of the whisker weaving algorithm is to determine where the intersections of the twist planes will
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occur witldn the volume. Since this is done topologically, there are no actual intersection calculations
performed. Once a valid topological representation of the twist planes has been achieved, hexes are then
formed inside the volume. One hex is formed wherever three twist planes converge.

The whisker weaving algorithm has achieved some success, but has yet to prove itself as robust and reliable
for a wide variety of problems.

Figure 11. The STC composed of four twist planes, for a solid composed of two hexahedra

3.4 Hex-Dominant Methods

Since most methods for all-hex meshing appear to be less than robus~ some researchers have proposed
using a mixed hexahedra/tetrahedra mesh. A hex-dominant approach appears to be satisfactory in many
cases. One simple approach introduced by the authorm is to manually subdivide the geometry into regions
that will readily accept a mapped mesh and those that are more geometrically complex. Withh the
complex regions a tet mesh is defined. Wherever the tet elements interface directly with hex elements, a
pyramid shaped element may be formed. This option is provided with the ANSYS31 mesh generation
software.

Tuchinsky78recently proposed an algorithm for combining both plastering and tetrahedral meshmg
technologies. Using the plastering algorithu hex elements are advanced as far as possible into the volume.
The remaining voids within the volume are then filled with tetrahedral.The user also has the o tion of
forming pyramid shaped elements at the interface between hex and tet elements. The CUBd software
now provides an option to allow a hex-dominant mesh.

Min79also presents a similar method for hexdominant meshing, utilizing offset geometry f.iom the
boundaries in order to form layers of hexes. After a series of shrunken shells have been advanced towards
the interior of the volume, the remainder of the volume is filled with tetrahedral. In addition to tets and
hexes, Min introduces pyramid and wedge shaped elements where applicable.

4. Surface Meshing

Many of today’s mesh generation problems involve the formation of elements on arbitrary three-
dimensionrd surfaces. These surfaces are typically represented by NURBS, which have been generated
within a commercial CAD package. The resulting surface elements can either be used directly as structural
shell elements, or used as input to a volumetic mesh generator. In either case, the algorithms used for two-
dimensional mesh generation require some modification in order to generalize them for use on three-
dimensional surfaces. Surface mesh generation algorithms can be classified as either parametric space or
dwect 3D.
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4.1 Parametric Space

Parametric space algorithms will form elements in the two-dimensional parametric space of the surface.
Since all NURBS surfaces have an underlying u-v representation, it can often be efficient to mesh in two
dimensions and as a final step, map the u-v coordinates back to world space, x-y-z coordinates. The
drawback to tlis method is that the elements formed in parametic space may not always form well-shaped
elements in three dimensions once mapped back to the surface. To resolve thk, parametric surface meshers
can do one of hvo things: 1) modify or reparamaterize the underlying parametric representation so there is a
reasonable mapping from parametric space to world spac~ or 2) modify the mesh generation algorithm so
that stretched or anisotropic elements meshed in 2D will map back to well-shaped, isotropic elements in
3D.

The fmt method requires that in order to have a good paramaterization, the surface derivative.., (Au,Av),
shouldnotvarywidelyoverthedomain.Someexactarc-lengthrepararnaterizationshavebeendefinedin
theliterature, butcanbeexcessivelycostly.An approximatearc-length paramaterization or “wmped
parametric space” can be defined by selectively evaluating surface derivatives over the domain and
adjusting local u-v values to hold the magnitude of Au, Av roughly constant. For many cases, a warped
parametric space can generate reasonable surface meshes, but there are many problems that the
reparamaterization cannot adequately resolve. For this reason, much of the literature on surface meshing
foeuscs on the seeond option of forming anisotropic elements in 2D that will map back to isotropic
elements in 3D.

A common method used in practice is to take advantage of surface derivatives, Am Av, easily computed
from a NURBS surface. George and Borouchakisl propose the use of a metric derived from the fmt
fundamental form of the surface. The metric is in the fo]m of a 2X2 matrix and is used to transform
vectors and distances in parametric space. With their Delaunay approach, the “empty circle” property,
effectively becomes an “empty ellipse” prope~. Also included with the metric is the option to incorporate
element sizing and stretching properties. A similar approach to parametric Delaunay surface meshing is
presented by Chen and Bishopm and available in MARC’s MentatG7software. Equivalent advancing front
surface mesh generation algorithms, which utilize a metric derived from the first fundamental form of the
surface are presented independently by Cuilliere83 and Tristanow. Tristano’s implementation is available in
a recent release of the ANSYS31 mesh generation tools.

4.2 Direct 3D

D~ect 3D surface mesh generators form elements directly on the geometry without regard to the parametic
representation of the underlying geometry. In some cases where a parametric representation is not
available or where the surface paramaterization is very poor, direct 3D surface mesh generators can be
useful. J-au and L085’8Gpresent an advancing front approach for arbitrary 3D surfaces. In tils method
surface normals and tangents must be computed in order to compute the direction of the advancing front.
In addition, a significant number of surface projections are required to ensure that new nodes remain on the
surface. Also of significance is the increased complexity of the intersection calculations required to ensure
that triangles on the surface do not overlap.

A direct 3D implementation59 of the pavinga algorithm is also available in the CUB@7 software. Similar
issues regarding additional projection and evaluations are also of significance to 3D paving. Cass59defines
a heuristic “sticky space” in order to detect intersecting or overlapping quadrilaterals.

5. Mesh Post-processing

It is rare that any mesh generation algorithm will be able to define a mesh that is optimal without some
form of post-processing to improve the overall quality of the elements. The two main categories of mesh
improvement include smooti]ng and clean-up. Smoothing includes any method that adjusts node locations
wh]le maintaining the element connectivity. Clean-up generally refers to any process that changes the
element connectivity.
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5.1 Smoothing

Most smoothing procedures involve some form of iterative process that repositions individual nodes to
improve the local quality of the elements. A wide variety of smoothing techniques have been proposed.
These methods can generally be classified as follows

1. Averaging methods
2. Optimization-bamd methods
3. Physically-based methods
4. Mid-node placement

5.1.1 Averaging Methods

Of the wide variety of smoothing algorithms, the simplest and most straight forward is Laplacian
smoothing. With this method an internal node in the mesh is placed at the average location of any node
connected to it by an edge. With little modification, this technique can be applicable for any element shape.
Most smoothing procedures will iterate through all the internal nodes in the mesh several times until any
individual node has not moved more than a specified tolerance. Although it has its problems, it is simple to
implement and is in ‘wide use. Similar to Laplacian, there area variety of other smoothing techniques,
which iteratively reposition nodes based on a weighted average of the geometric properties of the
surrounding nodes and elements. Canann88provides an overview of some of the common methods in use.

Averaging methods quite often also employ some form of additional constraint on the movement of a node.
For example, because Laplacian smoothing alone sometimes has the tendency to invert or degrade the local
element quality, a comparison of local element quality is made before and after the proposed move and the
node moved oxdy if element quality is improved. This is often referred to as constrained L.aplacr”an
smoothing. Canann88presents criteria for the movement of the node with this method.

5.1.2 Optimization-Based Methods

Rather than relying on heuristic averaging methods, some codes use optimization tectilques to improve
element quality. Optimization-based smoothing techniques measure the quality of the sumounding
elements to a node and attempt to optimize by computing the local gradient of the element qualhy with
respect to the node location. The node is moved in the direction of the increasing gradient until an
optimum is reached. Canann88 and Freitagw both present optimization-based smoothing algorithms.

While maintaining that optimization-based smoothing techniques provide superior mesh quality, the “
computational time involved is generally too excessive to use in standard practice. Canann88and Freitagw
both recommend a combined Laplacian/optimzation-based approach. What is generally advocated is that
Laplacian smoothing is done for the majority of the time, reverting to optimization based srnootting only
when local element shape metrics drop below a certain threshold. “

5.1.3 Physically-Based Methoa%

Another important area of mesh improvement includes methods that reposition nodes based on a simulated
physically based attraction or repulsion force. Lohne#l simulates the force between neighboring nodes as a
system of springs interacting with each other. Shlmadaw and Bossen93view the nodes as the center of
bubbles that are repositioned to attain equilibrium. With changes in the magnitude and direction of inter-
particle forces, different anisotropic characteristics and element sizes can be achieved.

5.1.4 Mid-node Placement

While most smoothing methods focus on repositioning comer nodes, Salem% recently introduced a method
providing criteria for repositioning mid-nodes on quadratic elements to improve element quality. This



method computes a region surrounding the mid-node known as the mid-node admissible space (MAS),
shown in Figure 12, where the mid-node can safely be moved and maintain or improve element quality.

Figure 12. Mid-node admissible space for node at A

5.2 Cleanup

Like smootilng, there area wide variety of methods currently employed to improve the quality of the mesh
by making local changes to the element connectivities. Cleanup methods generally apply some criteria that
must be met in order to perform a local operation. The criteria in general can be defined ~ 1) shape
improvement or 2) topological improvement

In addition, cleanup operations are generally not done aJone, but are used in conjunction with smoothing.
Freitag95 describes how smoothing and cleanup maybe combined to efficiently improve overall element
quality.

5.2.1 Shape improvement

For triangle meshes, simple diagonal swaps are often performed. For each interior edge in the triangulation
a check can be made to determine at what position the edge would effectively improve the overall or
minimum shape metric of its tsvo adjacent triangles. The Delaunay criteria can also be used to determine
the position of an edge. For Tetrahedral meshes, Barry Joe% presents a series of local transformations that
are designed to improve the element quality. These include swapping two adjacent interior tets sharing the
same face for three tets (see Figure 3). Likewise, three tets can be replaced with two. Other more complex
transformations are also defined.

In some applications where mixed element meshes are support~ the element quality of two adjacent
triangles may be preferable to a single poor quality quadrilateral. When this is the case, selected
quadrilaterals may be split.

In some cases, particularly with curved surfaces, the elements resulting from the mesh generator may
deviate significantly from the underlying geometry. For a triangle mesh, edge swaps can be performed
based on which local position of the edge will deviate least from the surface. Although not strictly a
cleanup operation, local refinement of the mesh may also be considered to capture surface features.

5.2.2 Topological Improvement

A common method for improving meshes is to attempt to optimize the number of edges sharing a single
node. This is sometimes referred to as node valence or degree. In doing so, it is assumed that the local
element shapes will improve. For a triangle mesh there should optimally be 6 edges at a node and four
edges at a node surrounded by quads. Whenever there is a node that does not have an ideal valence, the
quality of the elements surrounding it will also be less than optimal. Performing local transformations to
the eIements can improve topology and hence element quality. Several methods have been proposed for
improving node valence for both trianglem and quadrilatera198’wmeshes.
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For volumetric meshes, valence optimization becomes more complex. In addition to optimizing the
number of edges at a node, the number of faces at an edge can also be considered. For tetrahedral meshes
this can involve a complex series of local transformations. For hexahedral elements, valence optimization
is generally not considered tractable. The reason for this is that local modifications to a hex mesh will
typically propagate themselvestomorethantheimmediatevicinity.Onespecialcaseof cleanupinhex
mashes used in conjunction with the whisker weaving algorithm is presented by Mitchelllm.

5.3 Refinement

Element refinement procedures are numerous. For our purposes, refinement is defined as any operation
performed on the mesh that effectively reduces the local element size. The reduction in size maybe
required in order to capture a local physical phenomenon, or it may be done simply to improve the local
element quality. Some refinement methods in themselves can be considered mesh generation algorithms.
Starting with a coarse mesh, a refinement procedure can be applied until the desired nodal density has been
achieved. Quite frequently, refinement algorithms are used as part of an adaptive solution process, where
the results from a previous solution provide criteria for mesh refinement. Methods have been proposed for
triangle and tet refinement as well as quad and hex.

5.3.1 Triangle/Tetrahedral Refinement

Although there are certainly more methods defin@ three of the principal methods for triangle and
tetrahedral refinement include:

1. Edge bisection
2. Point insertion
3. Templates

5.3.1.1 Edge Bisection.

Edge bisection involves splitting individual edges in the triangulation. As a resul~ the two triangles
adjacent the edge are split into two. Extended to volumetric meshing, any tetrahedron sharing the edge to
be split must also be split as illustrated in Figure 13. RivaralO1proposes criteria for the splitting of edges
based on the longest edge of a triangle or tetrahedron.

Figure 13. Edge bisection in a tetrahedral mesh. Edge A-B is split at point C, also splitting its surrounding
tetrahedral.

5.3.1.2 Point Insertion

A simple approach to refinement is to insert a single node at the centroid of an existing elemeng dividing
the triangle into three or tetrahedron into four. This method does not generally provide good quality
elemen@ particularly after several iterations of the scheme. To improve upon the scheme, a Delaunay
approach can be used that will delete the local triangles or tetrahedral and connect the node to the

253



trianfmlation maintaining the Delaunay criterion. Any of the Delaunay point insertion methods discussed
previously could effectively be used f~r refinement. -

Figure 14. Example of Delaunay refinement, where point A is inserted.

5.3.1.3 Templates

A template refers to a specific decomposition of the triangle. One example is to decompose a single
triangle into four similar triangles by inserting a new node at each of its edges as show in Figure 15. The
equivalent tetrahedron template would decompose it into eight tetrahedral where each face of the tet has
been decomposed into 4 similar triangles. To maintain a conforming mesh, additional templates can also
be defined based on the number of edges that have been split. Statenlw outlines the various templates
needed to locally refine tetrahedral while maintaining a conforming mesh.

&“@
Rgure 15. Example of local triangle refinement using a template where elements at A and B are refined

5.3.2 QuaaYHexRefinement

Because of the structured nature of quad and hex meshes, the point insertion and edge biswtion methods
are generally not applicable. The main methods used for quad and hex refinement involve decomposing
the elements based on a set of predefine templates. Both Schneiders1°3 and Staten98propose algorithms
and a series of templates for element decomposition. An example of local quad refinement is shown in
Figure 16. In order to maintain a conforming mesh, some quad and hex refinement schemas will often
necessarily introduce triangle or alternate shaped elements including tetrahedral and pentahedra.

EIlzl”AB

figure 16. Example of local quad refinement where elements at A and B are refined by one half.
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6. Conclusion

This survey has touched only briefly on some of the main issues and algorithms used in unstructured mesh
generation. There are many more important aspects of unstructured mesh generation that were not
addressed. Due to time and space constraints, it was not intended to be a comprehensive overview of the
subject. InsteaA it was the intent to focus on some of the more fundamental algorithms and procedures.
Often times in the research and development of software, we tend to forget what has gone before us, or fail
to look at what is already readily available. The most efficient way to provide new and innovative
technology is to build on the accomplishments of others. We should recognize the innovations and
creativity of others in the field and try to improve upon what has gone before.
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Appendix

Meshing Software Survey

A survey was conducted during September 1998 of current mesh and grid generation software. Over 100
surveys were mailed to software vendors, research labs and educational institutions. This list is definitely
not all-inclusive, but I believe is fairly representative of what is currently available, as well as what is state-
of-the-art. Only those responding to the survey are included here. While the emphasis of the survey is
unstructured codes, there are also a considerable number of structured codes included. The codes range
from simple research codes that are used only by a few people, to commercial products incorporated into
sophisticated analysis packages. An online and up-to-date copy of this survey is available on the web as
part of the Meshing Research Corner web site maintained at Carnegie Mellon University by the author at
the following URE http://wwnv.an&ew.cmu.edu/user/sowenAoftsurv.html

Survey Statistics

Total number of software products in survey

Element Shapes

Number of products that generate triangles

Number of products that generate quadrilaterals (non-structured codes)

Number of products that generate tetrahedral

Number of products that generate hexahedra (non-structured codes)

Number of products that generate structured quads or hexes

, Availabfity

Number of Public Domain Codes

Number of Research Codes

Number of Commercial Products

Number of Products Available as Stand-Alone Meshing Generator

81

52

25

39

20

21

34

24

33

40



Number of Products providing Source Code

Engineering Discipline

Number of Products used for Structural Applications

Number of Products used for CFD (Phdds) Applications

Number of Products used for EMAG (Electro-magnetic) Applications

Number of Producw used for Thermal Applications

Number of Products used for Environmental Applications

Tri/Tet Meshing Algorithm

Number of tri/tet codes using some form of Delaunay Algorithm

Number of triltet codes using some form of Advancing Front Algorithm

Number of tri/tet codes using an Octree Algorithm

Quad/Hex Meshing Algorithm

Number of quad/hex codes using an Advancing_Front Algorithm

Number of quadhex codes using a Medial Axis/Surface Algorithm

Number of quad/hex codes using an indirect Algorithm (combine triangles)

Number of quad/hex codes using a Sweeping or Extrusion Algorithm

Number of quacihex codes using a Mapped Meshing Algorithm

Other Features

Number of Products providing Boundary Layer definition

Number of Products providing Adaptivity

Number of Products providing Anisotropy (stretched elements)

Number of Products providing Refinement

Number of Products providing Mesh Improvement

21

23

47

23

9

12

37

23

4

9

2

5

8

11

17

18

16

27

8

Sojtware Products

The following is the complete list of software included in the survey ordered alphabetically by product
name. Also included is a contact indvidual and web site. A separate web page for each product listing
basic features and comments provided by the contact is also provided on-line.

2-D GWADAPT,Universityof NevadaLasVegas/NevadaCenter for Advanced Computational Methods (NCACM), Dr. Yitung
Chen or M. bxmi Gewah, nccm_www@aurora.nscee.edu, htt@fwww.unlv.edu/Research_CentersJNCACiW

3DMAGGS (Three-Dlmensionat Multi-block Advanced tid Generation System ), NASA Langley Research CentcrAmckhced Martin
Engineering & Sciences, Stephen J. Alter, Charles G. Miller, s.j.atter@lmc.nasa.gov,
h~J/*M.lw.nmagovf-sd@rGD~=S.htd

ADMesh, Varlog, Anthony D. Martin, arnartin@Warlog.tom,httpi/www.varlog.cotdproduc&kutmesh

AFLR2, Engineering Research Center for Computational Field Simulation, Mississippi State University, David L Manure,
marcum@erc.rnsstate.eduj

AFLR3, Engineering Research Center for computational Field Simulation, Mksissippi State University, David L Marcum,
marcum@erc.msstate.edu,httpWwww.crc.msstate.edukhrosts/grid/solid_mcsh
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Algor Finite Element and Event Simulation Software, Algor, Inc., Julie Halapchok, Marketing Communications, info@algor.tom,
http//www.algor.com

Akair Hypermcsh, Akair Computing, Inc., George Chri% ~c@altair.tom, htt@vww.altair.comfPmducts/HypcrMesh.html

AMESH - Multi-Region finite Element Meshing for Casting.Processes, EKIC Tssc,shawnekk@mail.ic.net, ekk@mail.ic.ne4
ht.t@/ic.netf-ekk/amesh.htm

ANSYS, ANSYS, Inc., Local ANSYS Support Distributor,, httpJAvww.ansys.com

Argus ONE (Argus Open Numerical Environments), Argus Intcrware, Jnc., Joshua Margolin, margo]inj@argusinLcom,
http#/www.argusint.com httpY/www.argusint.contMeshGencration.html

AVL FAM~ AVL LISTGmbH, Anton Plimon, Robert Schnsitz (North America), ap@avLcom schmitz@avlna.co~
httpY/www.avl.com/btrnV69.htm

BAMG, INR~ FrEd6ricHech~ Frederic.Hecht@imidr, htt@/www-tocq.inria.fi/gamrssdcdrorsrAvww/lxarn~eng.htrn

BL2D, INRL4 RocquencorsrtjB.P. 105,78153 I-e Chesnay Cedex (Fhnce), Patrick Laug, Hournan Borouchaki, Patrick.Laug@inria.fr
Houman.Borouchaki@sniv-troyes.fr, httpJ/www-rocq.inria.fi/gamrnakxironrAvww/bl2dleng.htm

CADtix, PEGS Ud., John Rawlinson, john.rawlinson@ fegs.co.W htt@www.fegs.co.uk/index.htrttl httpilfegs.co.uk

CAF2D / GENMESH, Yeungnmn Univ., DePL of Mechanical Engineering, CAP Lab or OnDcmand Soft (venture company),
Professor Jong-Youb Sah, jysab@smcc.yeungnam.ac.kr, http~kaflab.yesmgnam.ac.kdgenmcsh.htrrd

CAGI, ERC, Mississippi State University, Bharat Soni, bsoni@erc.msstate.edu,
httpWwww.crc.msstate.edu/tbrusts@kVcagUkdex.htrnl

Cmi3D, NASA Ames Research Center, Michael J. Aftosmis, Cathy Pochel (licensing), aftosrnis@nas.nasa.gov
cpmhel@mail.arc.nasa.gov, httpWgeorge.arc.nasa.gov/-aftosmis/cast3cV

CPD-GEOM, CFD Reseamh Corporation, John Whitrnire, jbw@cfdrc.tom, httpJfwww.cfdtc.com
httpWwww.cfdrc.coMlatab/SoftwarcJgeomlcfdgeom.htrnl

Chalmesh, Chalmers University of Technology, Dept. of Naval Arch. & Ocean Eng., Asders Petcrsson, andersp@na.chrdmers.se,
htt@www.na.chaJmcrs.s4-ander@chidmesh.hti

COG, WIAS Berlin, Rja Schmelzer, schmelzer@wias-berlin.d% ftpWftp.wias-berlin.de/pub/cog/index.html

CSCMDO, Computer Sciences Corporation/NASA LaRC GEOLAB, William T. Jones, w.Ljones@LaRC.nasa.gov,
httpJ/geolab.larc.nasa-gov/CSCMDO

CUBIT Mesh Generation Toolkit SandiaNational Laboratories, David R. Whhei drwhitc62sandia.gov,
httpWendo.sarrdia.gov/SEACAS/CUBIT/Cubit.htrnl

delaundo, ipol, Von Karman Institute, Brussels, Belgium Jens-Dorninik Mullet-,mullerffhmnlab.ox.ac.~
httpWwww.wrfacs.&/-muller/gsids.htrol httpJ/www.condab.ox. ac.uWoucUpcopldjens-dontinik.muller.html

DesignSpace, ANSYS Inc., Local ANSYS Support Dktributor,, htr@/www.designspacc.corn/

EasyMesh, University of Trieste, D.LN.M.A, Bojan Nlceno, sriceno@Xvt.tn.tudelftml,httpJ/www-
dinma.univ.triestc.itl-nirftclrmearclrksymesisf

EMC2, INRIA, Ftid6ric Hecht and Eric Sahel, l%dcric.Hccht@inria.fr, httpWwww-rocq.inria.fr/g_cdromAvww/emc2/eng.htm

PELIS& NASA and MIT, Karen Bibb, NASA Langley Research Center, k.1.bibb@%rc.srasa.gov,
htt#/abOO.larc.nasa.gov/-kbibb/felisa.hti

FEMGV (version 5.1-01),Fernsys I-l&, Steve Attwocxi,Derek Styles, info@femsys.co.uk s.attwood@femsys.co.uk
d.styles@femsys.co.uki httpWwww.femsys.rxmk/

GENIBt+, ERC, Mississippi State University, Professor Bhant K SoN, bsoni@rc.msstate.edu,
htt@/www.erc.msstate. cduhhms@@genidhrdex.html

GmCad,Industrial Research Ud. @Z) /Geothermal Energy Reseaxchand Development (Japan), Dr Stephen P Whitej
s.wbite@irLcn.nz, httpWtui.grace.cri.nti-steve/

geomagic Wrap, Raindrop Geomagic, Inc., Ping Fu, Chantelle Hougland, inquiry@geomagic.tom, htt@vww.geomagic.cord

Geompac~ University of Alber@ Computer Science, Barry Jce, bjoe@netcom.c4 ft@ftp.cs.rsaIberta.caipub/gcompack/

GMS (Groundwater Modeling System), Environmental Modeling Research Laboratory (formerly the ECGL), Norm Jones,
njonesk%t.byu.edu, httpWwww.emrl.byu.cdti
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GMSH, Eeole Polytechnique de Montreal & University of Liege, Jean-Ran~ois Remacle, rcmacle@meca.polymtLc&
htqxJlwww.mcca.polymtl.ci%remacl~esh.hml

Gridgen, Pointwise, Irrc, Rick Matus, gridgen@pointwise.tom, htqxJlwww.pointwise.coti

Gridomatic,Vu UCDavis,CishtnarAerospace,DaveBanks,dbanks@eishmar.tom,
httpJlmae.engr.uedavis.edo/CFD/db_ybriti@domtic.h~l

grid~ Rutgers University, Kate HeMrom, kate@4tabntgers.cdu, htipJ/tine.mtgem.dti~/@d@hti

GridProiAZManagcr 3000, CIJ3 GmbH and PDC, New York Dr. Joebem Hauscr (CLE), Dr. Peter Eisemasr (PDC), jh@cle.de,
httpi/www.cle.ddcfd/pmductsKhidHlndex.hti

GridTool, GEOLAB at NASA Langley Reseach center, Pat Kerr, P.A.lZXIR@IdlC.NASA.GOV,
httpWgeolab.larc.nas&gov/GridTooU

GRWP, University of British CohsmbiACad OllivieKooch, cfog@mech.ubc.ca, httpJ/tetra.mech.ubc.calGRIJMMP

GUM-B, Engineering Research Center, Miss. State, Mike Remotigue, remo@rc.msstatc.edu,
htt@www.erc.msstate.eduhhrrts@’iWhrdex.hti

ICEM CFD, ICEM CFD Engineering, I@tian Debus, Sopport and Releases, debus@iccmcfd.cormhttpJlwww.icemcfd.cotd

Javarnesh, University of Pittsburgh, Steven Lin, steven@leetide.neL htqxJAvww.steven.pop.net.tw~avatnesM

LaGriT (Los AkursosGridding Toolbox), Los Alarnos National Laboratory, Cad Gable or Denise George, gable@kinl.gov,
dgcorge@lanl.gov, htt@lwww.t12.lanl.govk-lagriti

MAFIA-M, CST, Marko Waker, info@cst.de, htt@www.cst.deJ

MEGA (Meshing Environment for Geometry-based Analysis), Scientific Computation Research Center, Rensselaer Polytechnic
Institute, Mak Shephar~ Shephard@scorec.rpi.cdu, httpWwww.scorcc.rpi.edrr/

McgaCads (Multiblock-Elliptic-Gr'id-genation-And-CAD-Sys@m), DLR, Institute of Design Aerodynamics and MEGAFLOW
project, Olaf Brodersen and Prof. Dr. Horst Komer, megacads@dlr.de Olaf.Brodcrsen@dlr.dG
htt@lwww.bs.dlr.dckmkalProj_MEGApLOWfMega&dsovwiew.httnl

Mentat, MARC Analysis Research Corporation, Jon Bishop (Mentat Manager), jon@marc.tom, htt@/toto.mare.cortt/

MESH, ISE Integrated Systems Engineering AG, Zmich, ISE support, support@ise.ch, htt@/www.ise.clr/mesh.htm

Mcshi+, Center for Advanced Studies, Research and Development in Sardinia (CRS4), Gkuduigi Zanetti, zag@rs4.iL
htt@/www.crs4.itlAreasfcfcVGRID_GENERA'IlONhitrkl .htrsd

Mesh-Maker, Environment Centrc, University of Leeds, Jason Lander, jason@lec.lecds.ac.~
htt@/www.lec.leeds.ac.oW%7EjasonlMesh-MAer/

mesh2d, Scientific Compuattional Research Center, SCOREC, B. KaarrKaramete, kaan@scorec.rpi.cdu, httptik=ec.rpi.edti-=

MG (Mesh Generator),TcCGraf- TheComputerGraphicsTeenolcgyGroupof PUC-Rio,LuizCristovZoGomesCoclho,
lula@.ecgraf.puc-rio.br,htqxJlwww.tecgraf.puc-rio.brL-lultim#mg.htnd

MTC, SCC/ CEMEF, Philippe DAVID, phdavid@scconsultants.coq httpJ/www.scconsukasrts.coti

N~GEN, Institutof Analysis and Numerical Mathematics, Johannes Kepler University, Linq Austria, Joachim Sch6berl,
joachimr%ruma.uni-linzac.at, httpWnathan.nurna-uni-linzac.atinetgefisenetgen.btd

OVERGRID, MCAT, Inc. at NASA Ames Research Center, W]lliam M. Chan, wchan@hsas.nasa-gov,
htt@/halfdome.arc.nasa.gov/cf&CFD4/og_tnan.hti

overture, Centre for Applied Scientific Computing, Lawrence Iiverrrmrc National Laboratory., Bill Henshaw, ovetture-
support@c3serve.c3.lanl.gov, httpWwww.c3.lanl.gov/Overture

Preprcc,Numerical Methods IAoratory, “POLITEHNICA” University of Buchwest, Tiberirr Chelc% tihi@htm.pub.ro,
htt@www.lrnn.pub.rd-tibtimesh_genfmesh_gen.htnd

PRISM, NASA Ames Reseaxch Center, Shishir Parrdy%pandya@nas.nasa.gov, httpJ/www.engr.ucdavis. eduk-spandytiprism.html

Qhull, The Geometry Center, University of Minneapolis, Brad Barber, bradb@geom.mun.edu, httpWwww.geom.umn.cdticwatdqhull

QMG, Cornell University, Stephen A. Vavasis, vavasis@cs.cornell.edu, httpti/simon.cs.comell.eh/Infe/Pcoplehavasis./qmg-
home.html

QUAD - GEN, Computational Mechanics Australia Pty. Ltd, Dr. Alexander Tsvelikh, Director, comccau@bigpond.com
sashat@ozemail.com.au, httpWwww.ozcmail.com.att/-sashati httpJAvww.ozemail.com.arr/-sashtiquadgen.htm
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QuikGrid, Perspective Edge Software, John Coukhad, w.j.coulthud@ubc.~L htt@www.interchg.ubc.ca/coulthrdfpcs.html

sarnm,adapco,WayneR. Oaks, wayne@adapco.tom, httpWwww.adapco.car@mrn.html

SCP Grid Library,Scalable Concurrent Rograrnndng Laboratory, Syracuse University, Marc Rieffel, marc@scp.syr.edu,
htqxJ/wwwscp.syr.eduL-marc@id

SD (SuperDelaunay)librarySDI(SuperDelaunayIndexed)library,DavidKommann,DavidKommann,david@iki.fi,
httpJ/www.iki.fi/-david

SKY/Mesh2, Skyblue Systems, James Joseph, sales@skybluesystems.cou httpWskybhresystems.com/mesh2.htm

SolidMesh, Engineering Research Center for Computational Pield Simulation, Mississippi State University, David L. MarCum,
marcum@erc.msstatc.cd~ httpY/www.crc,msstate.cduAhrusts@Vsolid_mmh

TetMesh GHS3D, SIMULOG, Mark Lciiot, loriot@simulog.tl, httpY/www.simulog.ti/tetmesh/

TIGER-II Turbomachinery Grid Generation System, Version 2.01, Catalpa Research, Inc., Dr. Alan M. Shib, shih@catalpa.neL
httpJ/www.catalpa.net/

TMG (triangubumesh generator), Istituto di Analisi Numerics (CNR) of PaviA D@u-timentodi Maternati% University of Milano,
Maurizio Paolini, m.paoIini@drnf.bs.unicatt.ih httpJfwww.dsnf.bs.unicatt.itL-paolini/tm#

TOAST, University College London, DrMaxtinSchweiger,Dr.SimonArridge,ma?ins@medphys.ucLac.ukS.hidge@cs.ucbc.uk,
htt@/www.medphys.ucl.ac.ukAoastindex.htsn

Triangle ATwo-Dimensional Quality Mesh Generator and Delaunay Triangulator., Carnegie Mellon University, Jonathan Richard
Shewchu~ jrs@cs.crnu.cdu, httpti/www.cs.cmu.edu@mkeAriangle.htsnl

TriGrid, Channel Consulting Ltd, Adrian Dolling, adolling@channeLbc.% htt@/www.channeLbc.ca

TrueGrid, XYZ Scientific Applications, Irrc., Matthew Koebbe, Ph.D., xyz@netcom.cosmhtt@/www.tmegrid.coti

TRUMPET, NASA Lewis Research center, Philip C. E. Jorgenson, jorgenson@lerc.nasa.gov,
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Abstract

An overview of the current state-of-the-art and state-of-the-practice of the structured grid genera-
tion technology wiIl be provided. The structured grid strategies including attached and overlap-
ping(Chimera) grids will be discussed with generation and adaptation methodologies and
softwares. In particular, algebraic, elliptic and hyperbolic generation schemes will be described
with grid quality and response time issues. The utilization of Computer Aided Geometry Design
(CAGD) techniques in structured grid generation and in interfacing CAD systems will be
described.CAGD and grid generation softwares available in public domain and offered by com-
mercial vendors will be presented. Current research efforts in autoblocking and parallel adaptive/
moving grid techniques will be summarized.
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Generation of Tetrahedral Finite Element
Variational Delaunay Approach

Petr Krysl” Michael Ortizt

Meshes:

Abstract. The goal is to generate tetrahedral dewmposition of a geneml solid body, whose surface is given as
a wllection ojtn”angular facets. The pn”nciple idea is that a vertez set in geneml positions guamntees m“stence
of a unique trian@ation which satisjies the Delaunay empty-sphere property. (Algorithms for robust, pamllel
wnstmction of such triangulations are available.) However, all of the input surface facets do not necessarily
appear in such a triangulation. In order to represent the boundary of the solid, we iterate two opemtions, edge
flip and edge split with the insertion of additional vertex, until all of the boundary facets are present in the
tetrahedral mesh. The outwme of the vertez insertion is another triangulation of the input surfaces, but one
which is represented as a subset of the tetmhedral faces.

Keywords: Finite element method, tetrahedral mesh, boundary constraints, variational Delaunay

Introduction

We deal with a tetrahedral decomposition of arbitrarily complex solids for the purposes of finite element analysis.
The volume triangulation is expected to respect all the constraining surfaces in the sense that they must be geomet-
rically and topologically similar to collections of tetrahedron faces [1]. If the input surfaces themselves are given by
triangulations, it may come natural to think of the initial trkmgulation of the surfaces as a mere hint to the volume
mesher on how to triangulate the solid in order to approximate the bounding surfaces well. For example, consider
the tetrahedral mesh of Figure 1. The bounding or interface surfaces were in this case defined by triangulations, but
they represent more or less smooth surfaces of bones and soft tissues. In this case, there is no compelling reason to
preserve the input triangulations in the tetrahedral finite element mesh, especially with respect to the poor qualky of
the input surface meshes. (The situation may be different in cases where the surface triangulation has been designed
to preserve certain characteristics of the original surface, for example convexity in fluid dynamics meshes. Section 4
deals with this issue in more detail.)

F@re 1: Mesh of cranium, cerebrospinal fluid and brain.

The principal idea of thw work is actually quite well-aged. Hermeline seems to have been the first to propose
incorporating boundaries of 3-D objects into unconstrained Delaunay triangulations [2]: Instead of trying to extract

“Staff scientist,Califamia Instituteof Technology,pkryslOatlautis.caltech. edu
tprofessorof Aeronauticsad APP~edMe~hani~, Cdi fomia Instituteof Technology,ortizaatlentia .caltech. edu
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the misshg constraining facets a posteriori from a convex hull mesh, the input entities are complemented by additional
vertices and facets which make an approximation (tesselation) of the constraining surfaces appear in the mesh ab
initio. It is then easy matter either to construct only those tetrahedral which are in the region of interest, or to
collect those tetrahedral from the convex hull mesh. Since then the idea re-surfaced in a number of papers; consult
References [3, 4, 5, 6, 7]. Our approach differs from the preceding work in that we use the variational framework
developed by Rajan [8] to determine if a facet of a constraining surface appears in the unconstrained Delaunay
triangulation of the current set of vertices. If the facet is missing, we apply two local modification operations with
the goal of improving sampling of the constraining surfaces. Decreased distances between surface vertices lead to the
appearance of edges and facets. In difference to previous work we do not restrict the constraining surfaces in any
way, in particular they may be non-planar, with multiple handles, and small input angles are allowed. However, this
lack of restraint means that the technique currently comes without theoretical guarantees of termination.

1 Algorithm Overview

The main algorithmic steps are:

1. Read input and generate internal vertices. Randomly joggle vertex positions.

2. Determine if all constraining surface facets are represented by tetrahedron faces.

3. If there are any non-Delaunay facets, apply surface Delaunayzation algorithm.

4. Insert boundary facets into the advancing front and generate tetrahedral.

5. Remove slivers.

The input to the volume mesher consists of a list of vertices and a list of surface facets. Vertex data comprisesa
unique integer identifier, coordinates, and optionally mesh size at the vertex. Surface facets represent boundary or
interface surfaces, and are specified by listing the three identifiers of its vertices given counterclockwise when looking
against the “outer” normal of the surface. Each facet is associated with a unique surface. Furthermore, regions on
each side of the facet axe specified: The normal of the facet points into region T1; region To is on the other side. If the
facet bounds just a single region (region n is the semi-infinite space representing the “outside”), the facet is oriented
such that its normal points out of the solid.

The locations of the input vertices are perturbed by a small random shift. By default the magnitude of the shift is
10-4 of the edge length (mesh size) at the vertex. For very closely spaced surfaces this could lead to (self) intersections,
but such situations can be avoided by shifting the vertices in tangent planes only. The random perturbations yield
vertex sets with a high probability of general vertex positions; see Reference [9] for a dk.cussion.

2 Generation of Internal Vertices

The mesher has the ability to generate additional vertices “in the volume” of the solid. We adopt a simple two-stage
technique. First, we generate vertices offset appropriately from the barycenters of boundary facets in an effort to
generate good tetrahedral near the surfaces. Next, an octree is constructed which bounds the solid so that its leaves
are of size proportional to the desired edge length at the centroid of the leaf, and the vertices are generated at the
center and at the mid-points of the edges of the leaves so that for a uniform edge length specification one obtains
arrangement in the form of an face-centered cubic crystal lattice [10]. The vertices are in both stages generated only
if they do not fall too close to another verte”x (which could have been given as input), and if they do not come too
close to the surfaces of the solid. Note that it is not necessary to perform any expensive in/out tests to determine
if the vertex is actually inside the solid, because the advancing front technique used to mesh the interior simply
disregimls vertices outside. The position of the generated vertices is randomly perturbed by a vector of magnitude
of approximately 1~0 of the edge length.

3 Delaunayhood of Boundary Facets

How to determine if a boundary facet is repr=ented in the (unconstrained) Delaunay mesh is crucial to our approach.
The empty equatorial sphere criterion used by Miller et al [5] and Shewchuk [7] is a sticient, but not a necessary
condition. Hence, one can hope to introduce less Steiner vertices with a less restrictive criterion. Our approach is
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based on the optimality results for Delaunay triangulations advanced by Rajan [8]. Minimize function F defined on
the convex hull of vertices Pi, Conv(Pi) c Rn (in our case n =3)

F’(X, A) = ~ Ai(.Pi– X)2 (1)
iCSm

subject to the constraints

(2)

The coefficients ~i are recognized as the barycentric coordinates of the point X within the enclosing tetrahedron.
The set S~ comprises all vertices in general. However, in order to make the tectilque computationally efficient, we
build the set S~ adaptively as described below.

For the sake of brevity, we will denote facets represented by a tetrahedron face as Delaunay facets, and those that do
not coincide with any face, non-Delaunay facets. In order to determine Delaunayhood of facet b we solve the linear
programming problem (1) for a certain vertex set, Sm, at a point sli htly oilket against the direction of the facet

5normal (ie. into the solid). The distance is arbitrarily set at lY = 10- d, where d is the characteristic dimension of
the facet b. The vertex set Sm is initially chosen to include probable candidates for optimal solution of (l). Later, the
set Sm is adjusted depending on the outcome of the solution of (l); see algorithm TET.ONYACET. (The following

notation is used in the psedo-code in this paper: Pi(b) are the vertices of the facet b, @) is the fourth vertex of the
tetrahedron T(b) piled up on a Delaunay facet b, ClrcSIZ’] is the circumsphere of tetrahedron T. The smallest, or
equatorial, circumsphere of facet b is meant by ClrcS[b].)

The solution of (1) may be unbounded, in which case we assume there is no tetrahedron whose face represents the
facet b. Another possibility is an infeasible solution (such as when the number of vertices is insufficient, or the vertices
are all co-linear or co-planar). In that case the search region is inflated and the solution is re-tried. One cam also
arrive at a lower-dimensional solution, which happens when the sampling point X lies on an edge or on a face. In
that case we remove the sampling point further from the facet and retry. Finally, the solution may give four non-zero
lambdas in which case the circumsphere of the tetrahedron is checked if it is really empty as it should be (note that
the vertex set used in the linear programming problem was not necessarily complete). If there is any vertex tilde
CircS[T(b)], it is an indication that the solution of (1) should be re-tried with an expanded vertex set Sm.

Algorithm: TET.ONIACET (Facet b): returns Tetrahedron
Compute facet barycenter C and normal n
Sampling point X ~ C’ - Kn;
Estimate CircS[T(b)];
B K box enclosing CircS[T(b)];
while (TRUE) do

Solve (1) for S-m = vertices inside B
case solution type do
UNBOUNDED:

ret urn NULL
INFEASIBLE

Increase B and continue
LOWERDIM:

X+c – Krq recompute B and continue;
OPTIMAL:

T(b) + tetrahedron from non-zero Ai;
if (Is CircS[T(b)] empty?) then

return T
else

if (Solution of (1) yielded T for the second time) then return NULL;
else Increase B to cover ClrcSIT(b)] and continue; en~lf

endif
done

done

To speed up the computations we use not only the liiear programming formulation (1) (which in itself yields all the
information one needs, but at a relatively high cost), but we also perform some less expensive circumsphere tests
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first, which can save computational effort by enabling early deckionz. In order to be able to use the circumsphere
tests, we save for Delaunay facets the vertex which belongs to the tetrahedron whose face coincides with the facet.
The a3gorithm ISDELA UIVAY? used to decide Delaunayhood of a facet is described next. Note that the algorithm
attempts to figure out status of a facet either after the facet has been created, in which case it does not know the
status of the facet, or after some vertex has been added to the domain, in which case it needs to check whether the
status of a previously Delaunay facet has changed or not.

Algorithm: IS_DELA UNAY?(Facet b): returns TRUE or FALSE
if (Was b previously Delaunay?)

if (Is CircS[2’(b)] empty?) then return TRUE endlf
endif
if (Is CircS[b] empty?) then return TRUE
else

foreach vertex P found in CircS[6] do

f(b) + P;
if (Is CircS[T’(b)] empty?) then return TRUE endif

done
Solve linear programing problem of Equation (1) ~ tetrahedron t
if (Does b coincide with one face of tetrahedron t?) then

ret urn TRU-E;
endif

endif
return F.4LSE

4 Surface Delaunayzation

If there are any non-Delaunay facets in the constraining surfaces, the algorithm DELA UNAYZATION attempts to
modify the surface meshes. There are two, to a certain measure contracting, goals: (i) Make the surface mesh as
well-shaped as possible, or at least do not cause its qufllty to deteriorate and (ii) Introduce as few additional boundary
facets (and vertices) as possible. Introduction of additional vertices into the surface mesh in order to make all facets
Delaunay is in general unavoidable. Unfortunately, additional vertex can not only make some facet(s) Delaunay, it
may also make others non-Delaunay. Hence, it is quite difficult to devise an algorithm provably terminating for all
possible inputs. For smooth surfaces, Amenta and Bern [11] have shown that sufficiently dense sampling (as measured
by the local feature size) makes the surface to appear in the unconstrained Delaunay tetrahedral mesh constructed
with the input vertices and the Voronoi poles. The idea is to atileve “tangency” of the tetrahedron circumsphere to
the constraining surface at surface vertices. Related ideas applied to the construction of shape skeletons have been
advanced by Turkiyyah et al. [12].

For non-smooth surfaces, namely piecewise linear complexes (all constraining polytopes – edges and facets, have linear
geometry), sphere packing algorithm of Miller et al. [5] provably yields a boundary conforming Delaunay triangulation.
The input angles between any two boundary polytopes are restricted to 90°. A variation of this algorithm has re-
appeared in the thesis of Shewchuk [7] in the framework of a Delaunay refinement algorithm. The principal idea
is to make the constraining polytopes appear by enforcing their minimal circumspheres empty of vertices starting
with vertices (trivial), edges, and tinally proceeding to enforce facets. Empty minimal circurnsphere is a sufficient
condition for an edge or a face to be present in the Delaunay triangulation, but it is not a necessary one.

Two prtiltive surface modification operations are adopted here jlip of diagonal in a quadrilaterzd represented by
two adjacent triangles: and split of a common edge by insertion of a new vertex. The first operation is inspired
by the diagonal-swapping 2-D triangulation algorithm, the second is an attempt to maintain surface triangulation
quality while introducing a Steiner point. The flip does not create any new vertex which could make other facets
non-Delaunay, and is therefore preferable to split. On the other hand, in certain situations surface triangulations have
been designed to possess some desirable properties such as convexity. Consider for example a coarsely discretized,
very strongly curved leading edge of an airfoil. Concavities introduced by flips would unacceptably distort the air
flow. In this case we could prohibit flips and use ordy splits which gusmmtee preservation of shape.

The DELA UNA YZATION algorithm is described next. While there are any non-Delaunay facets, a pass over all the
facets is made, flipping as many “diagonals” as possible. Next, each still non-Delaunay facet is split along its longest
edge.
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Algorithm: DELA UNAYZATION
while (Is there a non-Delaunay boundary facet?) do

perform FLIPS (NULL)
perform SPLITS

done

The FLIPS algorithm works on a list of non-Delaunay facet, which can consist either of facets connected to a newly
introduced vertex, or of all facets in the surface meshes. The procedure tries to find an adjacent facet with which fip
can be accomplished using the algorithm FLIPPABLE_NEIGHBOR.

Algorithm: FLIPS (Vertex V)
if (Is V NULL?) then L~t L + all facets in mesh
else L~t L + all facets connected to V
endif
foreach non-Delaunay b c L do

Facet b’ i- FLIPPABLE.-NEIGHBOR (b)
Flip diagonal in quadrilateral b + b’

done

Figure 2: Prohibited flip leading to a sharp subtended angle. Left-hand side initial coni@ratio~ right-hand side
situation resulting from flip.

The algorithm FLIPPABLE_iVEIGHBOR assesses suitability of a facet adjacent to the facet b for flipping by ch~ng
(i) “convexity” of the quadrilateral composed of the two facets (convexity is judged in projection to an average plane
using an area-based measure), (ii) angle subtended by the facets in their fipped comectivity (see Figure 2, where .
the flipped facets on the right-hand side subtend angle close to 7r/2), and @ii) result of the flip in terms of facet
Delaunayhood and triangle quality measures (fiip is rejected if no improvement is achieved).

Algorithm: FLIPPABLEAEIGHBOR (Facet b): returns Facet
L +- Order edges of b longest to shortest;
foreach edge E ~ L do

Facet b’ i- neighbor across E
if ( Is quadrilateral b + b’ convex?

and Do triangles after Klp subtend reasonable angle?
and (Does flip make b and b’ Delaunay?

or Are facets after fllp of better trimgle qua.lky?)
) then return b’; endif

done
return NULL

The algorithm for faxet splitting, SPLITS, introduces a new vertex at the mid-point of the longest edge. For acute
triangles this means increase in the minimal circumradius, but th~ is most probably corrected immediately by flips
attempted with all triangles connected to the new vertex.



Algorithm: SPLITS
L=t L - all non-Delaunay facets
foreach b c L do

List L’ - all facets across the longest edge of b
perform SPLIT.FACETS (L’)
update Delaunayhood of all facets affected by the new vertex V
perform FLIPS (V)

done

The procedure SPLIT-FACETS is rather straightforward, the only complication being that non-manifold situations
need to be handled as illustrated in Figure 3.

Algorithm: SPLIT_FACETS (LutL’)
Insert new vertex V at the mid-point of edge common to facets in L’
foreach b c L’ do

replace b with new facets b’ and b“ connected to V
done

F@re 3 Splitting of facets sharing an edge.

5 Volume triangulation

Once the constraining facets are all made Delaunay, the tetrahedral can be generated by rmy unconstrained triangula-
tion algorithm. We have chosen the advancing-front Delaunay [13, 14, 15, 10]. This technique is closely related to the
original gift-wrapping algorithm [16] (also called incremental construction). Contrary to the classical advancing front
algorithm [17], which generates nodes at the same time as tetrahedral, uses heuristics to compute the connectivity,
and relies on intersection tests to ensure validity of the mesh, our implementation of the advancing front is based on
the empty circurnsphere property combined with the assumption of general vertex positions. The advancing-front
Delaunay may not be the fastest serial algorithm, but it parallelizes easily [18].

6 Mesh Improvement

As is well known, creation of slivers (kites) cannot be avoided in Delaunay meshes constructed from pre-existing
vertex sets in three dimensions. Since we use random perturbation of the vertex positions, the creation of slivers in
the interior is unavoidable, and slivers also appear near the prescribed surfaces quite naturally. In order to reduce the
number of slivers in the mesh, we modify the topology and geometry of the mesh in a post-processing step. Figure 4
shows three configurations of slivers with the adjacent tetrahedral. Slivers on the boundary can be deleted without
difficulty (csse A). Slivers in the interior can be deleted by swapping face Adbe (case B), but are not removable
in the case C (no two adjacent tetrahedral share a face). The non-removable slivers are opened up (expanded) by
shifting slightly one of their vertices (the shift producing the largest minimal dihedral angle among all the connected
tetrahedral is chosen). Further increase of the smallest dihedral angle can be achieved by insertion of additional
vertices and local remeshing. (Not yet implemented.)
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Pigure 4: Removal of slivers.

(a) Input mesh (b) Output mesh

FQure 5: Mesh of a bracket.

7 Examples

7.1 Mesh of Bracket

The first example illustrates the ability of the mesher to enforce the boundary constraint for a surface mesh consistin
#of very badly-shaped facets (Figure 5). The facets have been produced from a CSG model generated by the .4CIS

geometry engine for the purpose of rendering with the default refinement settings. Hence the presence of needle-like
and obtuse triangles. The input consisted of 180 vertices and 364 boundary facets (no vertices have been generated
in the interior). The me.sher inserted additional 55 verticw, increased the number of boundary facets to 474, and
produced 460 tetrahedral in approximately 6.7 CPU seconds.z

7.2 Mesh of Wheel

In this example we illustrate the effect of turning off the check relying on the solution of (1) (F@me 6). In other
words, Delaunayhood of a facet is checked simply by the empty minimal circurnsphere criterion. The input consisted
of 624 points and 1248 boundary facets (no internal vertices have been generated). When the full check includlng

‘Trademarkof SpatialTechnologyInc.
2Thc mcshcr h.nsbeen run on an SGI Octane, with 195MHz R1OK CPU. .411timings in this section are given for this platform.
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(a) Input mesh (b) Output mesh

Figure 6: Mesh of a wheel.

(c) Output mesh for (1) turned off

(a) Input mesh (b) Detail

Figure z Mesh of a hub.

the linear programming problem of (1) was used, no adtiltional vertices have been inserted, and the mesher produced “
1378 tetrahedral (2.8 CPU seconds). When the check via (1) was turned off, the mesher added 219 surface vertices,
438 boundary facets, and produced 1810 tetrahedra (0.5 CPU seconds). The surface meshes are shown in Figure 6.

7.3 NIesh of Hub

In the next example we present timings for a series of uniform meshes for a mechanical part. The surface meshes have
been again produced for rendering purposes and hence are not quite as good as can be expected from current finite
element surface triangulation packages. Figure 7 shows the solid for the coarsest dlscretization (26722 elements);
detail of the fan-like, acute triangles near the small holes is also included. The timings are given in Figure 8 with a
breakdown into major steps: reading of input, generation of internal verticti, initi~ e~uation of Delaunayhood Of
boundary facets, Delaunayzation procedure, generation of tetrahe~a by the advmcing front, ad fiRallY, remov~ of
slivers. The large amount of time spent in the generation of internal points is noteworthy (about 25% of total time).
This step is costly mainly because of the need to verify that vertices are not generated too close to each other and to
the constraining surfaces. In order to speed up this step in adaptive analyses with many remeshings, we have devised
a technique that avoids any searches and checks by generating internal vertices inside existing elements.

Figure 9 summarizes quality indexes for one particular mesh which seems to be sufficiently fine for strength analysis
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F@re 9: Mesh of a hub. Qua.My distribution for mesh with 169610 elements.

purposes (with 169610 tetrahedral). The graph on the left shows the distribution of the radius ratio (inscribed sphere
rachue over circurnsphere radius scaled by ~ ideal ratio is one); the graph on the right documents the dwtribution of
the dihedral angle. The minimum radhrs ratio qualky was 0.053, the minimal dihedral angle was 2.94 degrees, and
the maximum dihedral angle was 173 degrees.

7.4 Mesh of Airfoil

In the next example we present mesh of an airfoil3. The topology and geometry of the object is rather complex.
The input to the mesher consisted of 20909 vertices and 41866 boundary facets (see Figure 10(a)). The surface
triangulation was of relatively good quality. Nevertheless, the mesher had to introduce a number of additional
vertices (508) and facets (1016) during the Delaunayzation procedure because of the large ratio of the mesh size and
the local feature size (especially near intersections of thin walls). F@re 10(b) shows the additional vertices es dots
on the background of topological edges. The tetrahedral mesh of 72881 elements was generated in 59.9 seconds of
which 62% were spent in the Delaunayzation algorithm. As documented in Figure 1O(C), the presence of thh walls
caused a number of slivers to appear (minimal dihedral angle 0.42 degrees, maximal dihedral angle 179.21 degrees).
The reason was that our present mesh optimization technique does not handle slivers with all four vertices bound to

3Prototypo airfoil geometry courtesy of Howmet Research Corporation.



(a) Input mesh (b) Additional vertices (c) Slivers

Figure 10: Mesh of a prototype airfoil.

two or more constraining surfaces. One possible cure could be introduction of an additional point at the barycenter
of the sliver followed by Delaunay remeshing of the cavity remaining after the broken tetrahedral.

Mesh has also been produced with the Delaunayzation procedure based on empty minimal circumspheres (decisions
based on Equation (1) were disabled). As expected, the mesher needed more additional vertices (544), and more
boundary facets (1088) to arrive at a fully Delaunay surface.

7.5 Mesh of Cranium and Brain

The approach presented above is applicable not only to externaJ surfaces, but works equally well for internal surfaces,
such as material interfaces or mathematically-sharp cracks. The only difference is that (in our implementation) the
facets on these surfaces are not added to the initial advancing front.

One example of a mesh with material interfaces was presented in Figure 1 (exploded view of the mesh separated into
regions). The surface triangulations are polygonal models of simplified skull sad brain (11158 vertices and 22322
boundary facets). There are three regions representing the skull, the cerebrospinal fluid with the meninges, and the
brain. The surface mesh required relatively minor stitchhg -36 additional vertices and 72 facets. The finished mesh
consisted of 15398 vertices and 82126 tetrahedral, and took 40 seconds to generate.

7.6 Mesh of Pyramids

One of the open problems is the lirrited ability of the algorithm to handle surfaces which are almost touchhg (this is
actually common to all unconstrained Delaunay meshers). Consider two bodies very closely spaced. In applications
to mechanics, unless the bodies touch there is no reason to take their proximity into account by refining the mesh.
However: Delaunay mesh constructed for the ensemble of the two bodies will refine the neighborhood of the “almost
in contact” region as shown in Figure 11, which depicts two pyramids arbitrarily offset so that the vertex of one is
very close to the base of the other (base dimensions 1 x 1 unit, height 1 unit, offset of the tip of the second pyramid
with respect to the center of the bottom one {0.1454, 0.3569, 0.0019}). The DELA UNAY2ATION algorithm enhanced
the input mesh consisting of 10 points and 12 facets by additional 14 points and 28 facets. If the two bodies were
meshed separately, this problem would not arise, but frequently bodies in self-contact or solids with cracks lead to
these situations. One possible way of attack is constrained Delaunay triangulation. While constrained Delaunay
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(a) Input mesh (b) Output mesh

,.
1

(c) Detail

Figure 11: Mesh of two almost touching bodies.

triangulations are in general known not to exist in 3-D, Shewchuk demonstrates existence of conditions under which
so-called conforming constrained Delaunay triangulation may be constructed [19].
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Abstracti A new technique for coupling one dimensional beam elements to three dimensional bodies is
described. The essence of the problem is to ensure compatibility of the displacements at the interface.
This is achieved by equating the work done at the dimensional interface by the 3D nodes with the work
done at the ID node. This is carried out in a manner similar to that used in the development of Reissner
plate theory and leads to 6 multipoint constraint equations, one for each degree of freedom of the node in
the lD element. The methods used to achieve the coupling for axial force, bending moment, shear force
and torsion are discussed and it is shown that the proposed technique does not introduce any spurious
stresses at the dimensional interface. “

Keywords: Idealisation, Dimensional reduction, Multi-dimensional coupling, 3D - ID.

1. Introduction

Efficient finite element modelling requires an appropriately idealised representation of 3D design geometry. The
most recent contributions to this goal are in the mess of detail suppression [1],[2],[3], dimensional reduction [4], and
multi-dimensional coupling [5], [6]. “

McCune [5],[6], concentrated on 3D-2D and 2D-ID coupling. The logical next step in the process is to reduce
regions of constant cross-section in 3D solids to their lD equivalent beam element. In order to analyse stress
concentrations round discontinuities in geometry and loading, the ends of this lD beam must then be coupled, to the
new surfaces created by the dimensional reduction process, Figure 1. By doing so, a marked reduction in the number
of DOF required to analyse the model can be achieved without any loss of accuracy.

[n this paper the coupling of a ID beam element to a 3D continuum is described. Though the procedure has only
been implemented for linear elements, it illustrates the concept and may be further developed into a general and
robust process. The reader is introduced to the area by firstly dealing with the simple case for axial force in section
3. This will be followed by the bending moment and torsion cases in sections 4 & 5 respectively. In section 6 the
shear force case will be discussed, and section 7 provides some model examples and results. Finally sections 8 and 9
conclude the work presented and indicate the plans for further development.



2. Notation

Beam Cross-Sectional Area

Beam Displacements

Beam Forces

Beam Rotations

Bending moments

Centroid of element face

Continuum Displacements

Moment of Inertia

Poisson’s Ratio

Shape functions

Shear Modulus

Stress (direct)

Stress (shear)

Stress function

Young’s Modulus

3. Axial Force

The following derivation is based on an outcome of Reissner’s @nsverse plate bendkg theory [7] by which simple
relationships are shown to be obtainable between the translational and rotational degrees of freedom in a plate and
the disriacements in the 3D continuum. To couple a beam and a solid, the first step is to equate the work done on
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either side of the interface between dimensions.

Equating the work done by the axial force acting on
beam with the work done by the surface stresses of
body at the interface, the following equation results:

F,w = jOzWcM ... [3-1]
A

the ID
the 3D

If the 3D region is long and slender, then the axial stress is
uniform over the cross-section and is given by:

c,= + ... [3-2]

Figure 1

In the 3D model, the axial dkplacement at any point, in terms of the nodal displacements {W} and shape functions
[N], is:

W=[N]{W} ..- [3-3]
This implies:

Since this must be true for any axial force, the beam displacement w and the displacements of the 3D continuum
nodes on the interface {W}must be related by:

Aw = “e’~~~ [N]cL4{W} = [B]{w} ... [3-51
i=l

For linear elements such as the 4-noded tetrahedron or the 6-noded wedge, the integral of the shape functions over
the area of the element face on the interface betsveendimensions is:
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JINIA=+ ... [3-6]
4

Each term Bi is the sum of the areas of all the elements faces on the interface attached to node i, divided by 3.

“ Displacement compatibility between the ID beam element and the adjacent 3D continuum elements can therefore be
enforced as a multipoint constraint equation of the form

–aOw + B1WI + Bz Wz + B~W~+...= O ... [3-7]

Ilk canbe applied in the ABAQUS” commercial finite element package as a *EQUATION command [8].

4. Bending Moment Y

Again Reissner’s relationships can be used to equate the
work done on either side of the coupling interface.
Considering the moment about the x-axis and equating the
work done at the interface gives the following equation:

Mxex = j GZWIM ... [4-1]
A

From simple beam theory, assuming for simplicity that the
co-ordinate system is ali~medwith the principal axes of the

Figure 2

cross section,
_ A4xy

0’,
In

... [4-2]

Substituting also for the dkplacements in the z-direction in the 3D finite element model,
W=[N]{W} ... [4-31

On substitution, the beam rotation 0. is related to the axial displacements of continuum nodes on the interface {W}
by the equation:

d, =+”e~~ y[N]dA{W} =[B]{W} ... [4-41
.u id &

This is the general solution for any type of element.

Consideration of the bending moment acting about the y-axis gives a similar equation:

8, =~Ne~~x[N]dA{W} = [C]{W} ... {4-51
YY i=l4

Assuming that linear elements are to be used to implement the coupling procedure, then:

Jy[N]dA = + /+yC ... [4-6] ; ~x[N]dA=~AixC ... [4-7]
4 4

where (A, yC)are the co-ordhates of the centroid of the element face Ai of the cross section.

5. Torsion

The distribution of shear stress on the cross-section of a beam subjected to a torsional moment is commonly solved
by introducing a stress function. If a function $(x,y), the Prandtl stress function, is assumed to exist such thafi

+y

4’
... [5-1];

then the stress function must satis~ the differential equation:

TX=-$ ... [5-2]
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J24+J24+2G*=()—— ... [5-3]
&2 $2

where (3 is the twist per unit length of the beam and G is the shear modulus. The stress function therefore must

satisfy Poisson’s equation [9]. A conductive heat transfer case also may be represented as a form of Poisson’s
equation.

Therefore, the variation of the Prandtl stress function over any cross-section can be found using the facilities
available in standard finite element packages for conductive heiit transfer. The shear stress on the cross-section can
be inferred from the resulting temperature gradients. The cost of a 2 dimensional heat transfer analysis of the cross-
section is much less than that of a 3D analysis of the stress.

The total torque generated by a given twist can be found from the torsion analysis [9] as:

M:= 2@i ... [5-4]
A

The coupling equation is again formed by equating the work done at the interface.

On the 3D side of the interface, the work done is:

rI =+JA(w +Zxv)m ... [5-51

On the ID side, the work done is:

~ = $8ZMZ ... [5-61

Therefore,

OZMZ= JA(T=U+ rXv)dA ... [5-71

Replacing the integral over the whole cross-section with the Figure 3
sum of the integrals over the element faces lying on the
interface and the continuum dkplacements with the 3D finite
element dkplacements:

q Mz = “’~~~=[jv]dA{u}+N’f~~rX[N]dA{V} = [C]{U} + [DI{V} ... [5-81
;=l4 i=l4

The total torque Mz in response to any arbitmuy twist can be found from Equation [5-4], as can the shear stresses%,
and ~z on each element face. Evaluating the [C] and [D] matrices reduces to summing integrals of the form

JZ=[AIIUM ... [5-9]
4

The shear stress & can be written in terms of shape functions [N] and nodal values of the stress function {$} from
the 2D analysis of the cross-section as:

‘0 +]z~{o) = {@}r[~l;D
‘“’F=*

.. . [5-10]

so that the integral over an element face becomes:

JZ=[NI,.M={p}TJ[#I;,, [NIS.~ -.i5-~11
4 4

where{@)arethenodaltemperaturesfoundin theheattransferanalysis.Thecompletemultipointconstraint
equationcanthenbewrittenin theform

-MZOZ+CIUI+@2+ C3U3+.... Dlvl+ D2V2+D3v3....=O ... [5-121
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This equation can also be applied as a linear constraint equation in the finite element model (e.g. applied in
ABAQUS” as a *EQUATION command). The effect of this equation is to couple the displacements of the 3D
continuum nodes on the interface to the twisting rotation of the beam node such that the distribution of shear stress
on the interface is the same as that given by the St. Venant torsion analysis of the beam cross-section.

6. Shear Force

The shearing stresses, which arise from the action of shear force on the cross-section of the beam, are smaller than
the bending stresses by a factor proportional to the slenderness ratio of the beam and so have been neglected here.
The approach in sections 3-5 maybe extended to ensure the proper distribution of shear stress in response to a given
shear force using an analysis of the cross-section similar to that for torsion [10].

Figure 4 Figure 5: Shear stresses on rectangular section
resulting from a shear force

The stresses on the cross-section at any point (x,y) due to a shear force F=on the cross-section are given in terms of a
stress function @as:

@ FXX2 . V ‘xY2 --- [(j 1].
‘= =~-q+ 2(1+V) Zv - ‘ TX=-~ ... [6-2]

where @must obey the governing equation

$@+#q’)
—= O “...[6-31&2 $2

with the boundary condhion on the boundmy of the section

— X2 3

~= lFg JYdY - 2(1{v) $;
—— + const. ... [64]

Figure 5 illustrates the shear stress GZderived from the results of a 2D thermal analysis of the cross-section. Given
the shear stresses on the cross-section, the appropriate multipoint constraint equation can be generated as before by
equating the work done on both sides of the interface. This yields:

FXU= J(T=U+rVV)d4 ... [6-5]

‘Ilk procedure has been demonstrated successfi~ly for 2D - lD coupling of beams and plates [6].

7. Results

Sample results for the cases considered are given in their respective sections below. They demonstrate the concept
graphically and give an indication of the possible benefits of mixed dimensional modelling.



a) Axial force

The stress plot of the coupling for the Axial force case is shown in
Figure 6 on the right. The stress is constant across the section as
expected, and is the same as the analytical result.

.,

Figure 6: Coupling for axial force

b) Bending Moment

The stress plots of the coupling for the bending moment cases are shown in Figure 7 and Figure 8 below. Again the
results compare favorably with analytical calculations. Note that there is no dkturbance to the stress contours at the
interface between the lD beam and the 3D solid elements. The slight discontinuity of the neutral axis is due to the
linear interpolation and stress smoothing on the four noded tetrahedron elements used.

I
Fi~ure 7: Coupling for moment about x-axis (von h4ises

stress)

= ,.Wn :.CSW
: O.%,x

Figure 8: Coupling for moment about y-axis (von
Mises stress)

c) Torsion

The stress function obtained tlom St. Venant torsion analysis of a square cross section is shown in F&ure 9. From
equations {5-1) and [5-2), shear stresses are obtained from the derivatives of the stress function. The contour plot of
the derivatives of the stress function is shown in Figure 10. These contour lines of stress, obtained from the 2D
analysis, correspond with values obtained from a 3D analysis, F&gre 11.
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Figure 9: Stress jimction obtained Figure 10: Plot showing slope of Figure 11: Section of 3D model

from St. Venant torsion analysis of stress finction in Figure 9 shows von A4ises stress for torsion of

the cross section a square bar
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Figure 12 and Figure 13 show the von Mkes stress obtained for coupling a square bar to a beam element of
equivalent properties. Again there is no disturb~ce to the stress ~ontour~ at the dimension~ interface ~d the

stresses on the interface are effectively identical to those obtained by the St. Venant torsion analysis, Figure 10, or at
sections in the interior of the 3D model Figure 11. There is some disturbance at the rigidly fixed end due to the
method by which the fixing was defined.
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Figure 12: Torsional load (Max shear stress) Figure 13: Torsion on block

As can be seen from the contours of maximum shear stress in Figure 14 and Figure 15 the coupling equations
produce stress contours which are axisymmetric and as close to the analytic solution for a thin walled tube as can be
obtained with constant stress elements and nodal averaging.
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Figure 14: Coupling for Torsion of tubular section (max. Figure 15: Torsion (ma.z shear stress)
shear stress)

8. Discussion .

Using the procedure described here, the analysis of a slender region within a 3D solid can be reduced to a ID
analysis plus 6 simple analyses of the cross-section. These determine the stress dM.ribution on the cross-section in
response to each component of force and moment.

The cross-sectional analyses can also be used to generate 6 multipoint constraint equations linking the displacements
and rotations of the beam element to the nodal dkplacernents of the 3D continuum elements representing the material
adjacent to the slender area of the model represented by the beam element. This greatly facilitates rnixed-
dimensional modelling, where 3D details such as joints, changes in section or loading are properly represented, but
dimensionally-reduced beam elements are used to model slender parts (economically and accurately), where 3D
elements are expensive and potentially ill-conditioned.



The coupling does not introduce spurious stresses at the interface, so that measures based on the implied stress jumps
between the 3D and the reduced dimensional models can be used as an a posferioti estimate of the idealkation error
introduced by dimensional reduction [5],[6]. The cross-sectional analyses can also be used to determine section
properties for beam elements and to transfer beam force and moment results to stresses on the cross-section for
visualization.

The ideas presented here have already been applied to beam-plate-solid coupling [5] and should be extensible to the
coupling of arbitrary combinations of beam, plate, shell and solid elements of any formulation.

9. Conclusions

● A general technique for coupling ID beams to 3D continuum elements has been developed.

. Only 6 multipoint constraint equations are required to couple the ID and 3D elements at the interface between
dimensions.

. The coupling does not introduce any errors at the interface between dimensions.

. The technique should greatly facilitate appropriate mixed-dimensional modelling of structures containing
slender parts and 3D details.
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The All-Hex Geode-Template

for Conforming a Diced Tetrahedral Mesh

to any Diced Hexahedral Mesh

Scott A. Mitchell*

Abstract. Takea hexahedralmesh and an adjoining tetrahedral mesh thatsplits each bounda~ quadrilateral into
two tn”angles.Separate the meshes witha buffer layer of hexes. Dice the original hexes into eight, and the tetrahedral
intofour hexahedra. Then I show that the buffer layer hexes can bejilled with the geode-template, creating a
conforming all-hex mesh of the entire model. Thegeode-template is composed of 26 hexahedra. The h-hedra have
acceptable quality, depending on the geomet~ of the buffer layer. Themethod used to generate the geode-template
is general, based on interleaving completed dual su~aces, and might be extended to other transitionproblems.

Figure 1. The all-hex geode-template: Left, thediced tetand hex interfacq middle, the heartof the geodq right, theboundary. .
of the template.

keywords. mesh generation, hexahedra, tetrahedral, conforming, transition

1. Introduction

For some FEM calculations, hexahedral meshes are preferred to tetrahedral meshes. However, for a geometrically
complicated domain, automatically generating a hexahedral mesh is much more difllcult than generating a tetrahedral
mesh. A hexahedral mesh can always be obtained from a tetrahedral mesh by dicing, dividing each tetrahedralinto four
hexahedra, but the resultant mesh quality is relatively poor.

At Sandia National Laboratories, SNL, we often want to analyze models composed of hundreds of simple parts,
arranged together in a complicated way. In many models, there is a potting material surrounding these parts whose
geometry is the complement of the union of the other parts. This potting material is often the most dil%cult to mesh,
but the least interesting to the analyst. Also, at SNL and in industry, we commonly have a complicated part that may
be mostly decomposed into simple pieces, with one or two difficult nuggets remaining. The mesh of the entire model
should be conforming, that is, the mesh should be a simplicial complex, with elements meeting face-to-face, edge-to-
edge, and node-to-node.

For these scenarios, a reasonable solution is to first (automatically) mesh the simple or important parts with high-
quality hexahedra, then automatically mesh the complicated or unimportant parts with tetrahedral. On the surfaces
between hex-parts and tet-parts the quads can be divided into two triangles; many Delaunay-brtsed tetrahedral meshers
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can generate a tet mesh that conforms to these triangles. Hence the tetrahedral and hexahedral meshes will conform

node-wise, but each quadrilateral will have a diagonal edge cutting it into two triangles.

The problem is what to do with this non-conforming interface. One solution is tied contacts, modifying the analysis
software to handle a non-conforming mesh by interpolating between intermediate FEM solutions along the interface.
Besides complicating the software, in some situations the running time and analysis errors are unacceptably high.
Another solution is to introduce square pyramid elements. The interface is now conforming, but again the analysis code
must be modified, this time to handle square pyramid elements; many SNL analysis codes do not even support the
more common tetrahedral elements.

In this paper I propose a new solution which generates a conforming mesh for the entire model composed entirely of

hexahedra. FirsL the tetrahedral mesh is geometrically shrunk away from its interface with the hex mesh, creating a

boundary layer of hexahedra. (The boundary layer could be created before the tet-mesh. Note that for some interface

geometries, e.g. Figure 9 right, shrinking is impossible.) Each hex of the boundary layer has the same structure: the
top quadrilateral face is shared with the tet mesh and divided into two triangles, the opposite bottom face is shared with

the hex mesh, and the remaining four side faces are shared with other hexes of the boundary layer.

Second, the hexahedral mesh outside the boundary layer is diceclby dividing each hex into 8, and the tetrahedral mesh
inside the layer is diced into hexes. Boundary layer “hexes” now have six quads on the diced-tet-mesh interface and
four quads on the diced-hex-mesh interface. Third, each boundary layer hex is filled in with the geode-template, which
is composed of 26 hexahedra and conforms to the diced meshes. Each of the four side faces have the same quad mesh,
so templates match up and the entire mesh is conforming.

There are several options and applications: The entirety of a solid-model part need not be meshed with tetrahedral. For
example, Plastering could fill much of the volume, and tet-meshing fill only the remaining voids; see Meyers[4] and
Tuchinsky[l 1].There area number of issues related to tool infrastructure and finding good geometric positions for the
boundary layer as well.[10] Finding a hex-template for slightly different situations has been studied for sometime. The
most famous instance is Schneiders’s open problem, which has an interesting history and is accessible from the web.[9]
Two template problems with similar structure arise in Eppstein’s hex-mesh existence proof. [1]

The method of generating the geode-template is general and could be extended to other transition problems. The
method is based on the Spatial Twist Continuum, STC [6][7], the surface arrangement dual to a hex mesh. In particular,
it is based on a new form of Whisker Weaving’s sheet (surface) moving[2]: First I create a completion of the STC of
the diced tet mesh, then a separate completion of the STC of the diced hex mesh. I then push these two arrangements
together so that they intersect, combining the STCS. Dualize the combined STC creates the hexes of the geode-
template.

The advantage of the geode-template is that all-hex meshing is automated and analysis codes do not need to be
modified. One drawback is that the element count is high because of the dicing step. Also, the quality of the worst-
element is probably worse than in a diced-tet-mesh of the entire model. This is offset by the geode-template allowing
excellent-quality structured meshes in areas of interest.

The remainder of this paper is organized as follows. Section 2 describes the general transition method used to create
geode-templates. Section 3 describes the hexes of the geode-template and comments on mesh quality. Section 4
presents some preliminary examples of models meshed with the geode algorithm. I discuss in section 5 extending the
geode-template construction method, and conjecture why filling certain other hex-templates is difficult. Section 6
presents conclusions. Appendix A summarizes node-position and hex-connectivi~ for those wishing to reconstruct the
geode-template.
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2. GeneraI Transition Method

In this section I describe a general method for making two adjacent meshes conform by dicing them and inserting a
transition layer. First, in section 2.1, I illustrate the process when the two adjacent meshes arise from a triangular mesh
adjacent to a quadrilateral mesh, the two-dimensional geode-template. In section 2.2 I describe the construction of the
three-dimensional geode-template.

2.1 Two-dimensional Geode-Template Construction

The two dimensional version of the conforming transition problem is trivial: The l-dimensional elements, edges, are
the same in triangular and quadrilateral meshes, so they already conform. In three-dimensions, the interface is non-
conforming: Each interface-quad is subdivided into two mangles. Carrying out the geode-formation process in two-
dimensions aids in understanding the three-dimensional case.

First, I separate the interface between the triangular and quad mesh. This means topologically splitting the shared
nodes and edges into two, and geometrically shrinking the triangular mesh away from the quad mes~ see Figure 2.
(Alternatively, the interface could be separated before the triangular mesh is generated.)

m’
Figure 2. First, the interface is separated.In these picturesthemeshes are structured,but both meshes can be unstructured.

Second, I dice the meshes, then complete the dual curves for each diced mesh separately; see Figure 3. Dicing the
triangular mesh is necessary in order to convert triangles into quads. More subtly, dicing both meshes ensures that the
dual curves can be completed in pairs. I join the two curves that arise from dicing an interface quad. Note that the dual
of a diced triangular mesh is composed of circular curves, except where the interface intemupts it. For the triangular
mesh I join curves to complete these circles: For a node N of the original triangular mesh on the interface, it has two
original interface edges, El and Ez Each interface edge gets diced in two, creating El 1, E12, E21, and Ez in order. I

join the ends of the curves dual to El 1 and E22, the diced edges not containing N, as in Figure 3.

Figure 3. Second, left, the triangularand quadrilateralmeshes are diced and the dual curves constructed. Right, the STCSare
thencompleted for each mesh separately.
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Third, I push the completed duals together so that they overlap; see Figure 4. Dualizing creates the primal mesh.

Figure 4. Left, the completed duals are pushed togetherso thatthey overlap. Right shows the resulting primal mesh.

2.2 Three-dimensional Geode-Template Construction

The same principles used in constructing the two-dimensional geode-template apply to the three-dimensional case.
The main difference is the structure of the completed STCS. Instead of just completing curves, I must complete
surfaces. For the hexahedral mesh, its interface mesh is composed of quads. The dual curves of the interface mesh are
closed curves. Dicing converts each curve into two identical, parallel copies. I complete the diced hex mesh dual by
making a tunnel surface for each parallel pair. Note that at each pre-diced quad, two tunnels pass through each othev
see Figure 5. Since the arrangement must be in general position in order to dualize to a hexahedral mesh[5], I must
chose which tunnel’s roof is higher than the other. The choice is arbitraxy; there does not need to be any consistency
between neighboring pre-diced quads. But this does introduce an asymmetry within the template.

Figure 5. A local view of the completed dual surfaces for the diced hexahedralmesh. R@t and left, the bottom four quadri-
lateralsare thediced hex interface mesh. Center, the quads have been removed and the tumels turnedupside-down. I use cyl-
inders of different radii only to illustrate that one tunnel locally passes below the other topologicrdly, the tunnels always
match up exactly with tunnelsof neighboring templates.

For the tetrahedral mesh, its interface mesh is composed of triangles. Dicing produces circle-curves on the interface[6],
see Flgtie 3. I complete these circles into spheres; see Figure 6. Considering a section of the surfaces above a pre-diced
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quad, note that two of the completed circles intersect in a curve that starts and ends on two quads of the diced triangular
mesh.

remove
surfacemesh
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Figure 6. The completed dual surfaces for the diced tetrahedralmesh.

I now push the completed duals together. I can choose how far to overlap the duals. There are two key features of my
choice: Firs4 the two points where three diced-tet surfaces intersect, as in Figure 6 bottom Iefi lie inside both tunnels,
the pocket in Figure 5 center. Second, each of the curves of intersection between two diced-tet surfaces, except the
curve that starts and ends on the interface mesh, exit the side of the template inside one of the arch-like tunnel
entrances, so that the side of the three-dlmensionrd template looks like the two-dimensional template as in Figure 4 or

Figure 1 center. See Figure 7 for views of the entire arrangement.

I am fortunate that the arrangement dualizes to a well-defined hexahedral mesh, with no degenerate elements, without
any fix-ups[5][2] needed. The next section discusses the geode-templates hex structure and quali~.
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Figure 7. The total arrangementof the pushed-togetherdiced-tet and diced-hex completed duals. Note that looking into the
entranceof the higher tumel is different thanlooking into the entranceof the lower tunnel; compare the lower left of the fig-
ure with the lower right.

3. Geode-Template Hexes

3.1 Hex Structure

Since the mesh is highly-unstructured, the traditional views of layers through z-planes are not very informative.
Removing hexes from the outside-in is slightly. better, such as Figure 1 center. The most useful static views I have
found are hex layers dual to each surface of the STC. Note that the layers from the diced-hex-mesh and the diced-tet-
mesh intersecq but the layers are separate. Each tunnel is radkdly symmetric about a vertical line through the center
of the template. To truly understand the hexes of the template, I suggest creating a computer model, or even better a
physical toothpick or pipe-cleaner model, based on Appendix A. An interesting feature is that in these models the
hexes appear to rotate by 45 degrees when traveling from the diced-triangle top to the diced-quad bottom.

3.2 Mesh Quality

The quality of the geode-template obviously depends on the shape of the buffer layer. The best-quality hexes appear
to be achieved with a short geode template. This is serendipitous, since it means that the buffer layer can be thin. Let
the scaledjacobian at a node of a hex be defined as the triple product of the vectors along the three edges of the node,
divided by the product of the lengths of the.vectors. The scaled jacobian for a hex is the minimum scaled jacobian
among its nodes. For a geode-template inside a rectangular parallelepipeds with a square base of length 24 and height
14, and nodes positioned with optimized-jacobian based smoothing[3], the scaled jacobian ranges from 0.26 to 0.53.
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A complete quality summary follows in Table 1, “CUBIT quality report for a 24 x 14 x 24 geode-template.” Quality
measures are defined in Robinson. [8]

Table 1: CUBIT quality report for a 24 x 14 x 24 geode-template.

Quality Measure I Average I Std. Dev. I Minimum I Maximum

Aspect Ratio I 1.75 I 0.55 I 1.07 I 3.07

Skew I 0.54 I 0.16 I 0.17 ] 0.76

Taper I “0.30 I 0.13 I 0.038 I 0.76
, , 1

ElementVolume 300 223 97 786
, r

Stretch 0.41 0.13 0.25 0.63

Diagonal Ratio I 0.53 I 0.09 I 0.38 I 0.74
, t ,

Dimension 3.19 0.94 1.97 5.00

Jacobian I 6.99 I 4 I 26 I la

ScaledJacobian I 0.34 I 0.09 I 0.26 I 0.53

4. Examples

This section gives some preliminary examples of meshes created in CUBIT with the geode-algorithm. [lO] This
algorithm blends the geode-template with MSC’S AIUJ3S tet mesher and CUBITs Plastering[4] hex-dominant mesher.
As algorithms for positioning nodes mature I expect mesh-quality to increase.

The first example is from Clay Fulcheq see Figure 8. It consists of a simple geometry, a cube, but with imprinted
circles of different sizes on three sides that prevent 2.5-dimensional meshing and make it dil%cult to decompose. This
nugget is surrounded by large, sweepable parts. The geode algorithm successfully produces an’all-hex mesh.

In Fulcher’s example I place the transition layer directly on the geometry, without Plastering any of the volume. This

produces 6864 geode-template hexes, with worst scaled-jacobian 0.017 and worst aspect ratio 11. There are 6140
diced-tet hexes, with worst scaled-jacobian 0.038 and worst aspect ratio 10.

F@re 8. The frontal (left) and cut-away (right) view of Clay Fulcher’s problem afterdicing. Despite the simple geometry, a
highly-unstructuredhex-mesh is neeessary.
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The next example is the square pyramid of Schneiders’s open problem; see Figure 11. There are 512 hexes, with worst
scaled-jacobian 0.033 and worst aspect ratio 9.4. I chose this example to be cute; I’m filling the pyramid transition
element with the geode transition template. The geode-template solution probably does not have any practical value
and does not solve the open problem because dicing is required.

Another type of example that would demonstrate the geode-template’s utility is the cube-complement of a collection
of simple parts. I could also allow Plastering to fill part of Fulcher’s model. At the time of this writing I can reliably
generate “meshes” for examples such as these, but I can not automatically get good-quality nodal positions. In many
cases I have been able to get good quality meshes by positioning nodes by hand, so I do not think the connectivity is
fundamentally bad.

5. Extensions and Non-template methods

There are several natural variations on the construction to explore. The first variation is that the surfaces could be
completed in a different way. In particular, perhaps Whisker Weaving or another algorithm could complete the STC
of the diced hex mesh in another way, so that the surfaces do not need to curve so sharply.

A second variation is that the duals could be pushed farther together. In particular, currently every quad face on the
interface gets split into a geode-template. Quality is less than ideal where two interface quads have a small or large
dihedral angle. This can occur even when the meshes are relatively structured; see Figure 9. It would be nice to “round
off” these comers by pushing a dual surface into the opposite dual, so that the dual surface curves less. This method
no longer produces pure templates. Figure 10 shows a two dimensional example of this.

Figure 9. Interface angles affect the quality of thegeode-templates. Righ~ in three-dimensionsit may be impossible to create
a buffer Iayec Suppose interface node V has six attachedinterface faces as in the figure. Since no point can see both of S, and
S2, one of thegeode-templates attachedto S1 or to S2 must have a non-positive jacobian at V

Figure 10. Pushing the arrangementsso thatthey overlap furthercan improve quality, but modifies the pure templates. Left
shows thepure templates. Right shows the resultof puffing out two curves so thatthey aremore round. Top shows the primal
mesh, bottom shows the dust curves.
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A third variation is to change the interface mesh: Split each interface quad into four triangles instead of two. The dual
of the triangular mesh is still composed of circles and may be completed into spheres. I speculate that it is
straightforward to carry out the geode-template construction steps. The biggest unknown is whether the resulting
arrangement will dualize to a well-defined hex mesh. If not then Mitchell[5] and Folwell[2] show how to fix-up the
arrangement, but mesh quality will be poorer.

A fourth variation is to try to transition between two wildly different meshes, say two hex meshes with different
element sizes that do not even conform node-wise. Completing the duals is the same as before. However, I would need
to develop a new algorithm for pushing the duals together in a general way, and in many cases mesh fix-up as in
Mitchell[5] and Folwell[2] would be required.

5.1 Why are Other Templates Hard?

In short, I designed the geode-template to be easy to mesh by keeping the dual curves of the boundary-mesh separate,
so that no curve passes through a quad of both a diced-tri and a diced-quad. I also kept each dual curve simple (non-
self-intersecting). In contrast, consider filling Schneiders’s open problem, [9] Figure 11, with hexahedra. The surface
mesh is identical to the variation of the geode-template with a pre-diced quad divided into four triangles, but without
any sides. This problem, publicized several years ago, was dit%cult to fill at all, and no good-quality all-hex mesh is
known. Figure 11 right shows the dual curves, one of which self-intersects eight times and passes through every quad
of the boundary mesh. The octahedron has a boundary-mesh whose dual is just that curve. [1]

Figure 11. Schneiders’s open problem.[9] No good all-hex mesh for the left figure is known. Center shows the two dual
curves of the surface mesh laid flat. Right shows an underside-view of the problem after dicing the surface mesh, thk version
was meshed with the geode-algorithm.

On the CUBIT project, we have tried several pyramid-like templates. In these examples, unless sides like the geode-
template’s are introduced, the dual curves have a complicated self-intersection structure.

6. Conclusions

I have shown how to topologically conform a diced hexahedral mesh to a diced tetrahedral mesh by inserting an all-

hex transition layer. The general method may be extensible to other transition problems. My results are practical, in
that the algorithm is simple and the template can have good-quality hexes; at SNL, we are currently working on
creating a geometrically-good transition layer for general boundaries.

Some interesting open problems remain. The geode-template indicates tha~ given the freedom to modify the surface
mesh by dicing and the existence of a buffer layer, most surface meshes admit a well-shaped compatible hexahedral
mesh. What if the surface mesh can not be diced or modified? Note that dicing gives a surface mesh whose node-edge
graph is bipartite, which is sufficient to prove that a conforming hexahedral mesh exists, see Eppstein[l], but there is
no guarantee that a good-quality mesh exists. Without dicing, the interface mesh maybe composed of an odd number
of quadrilaterals, which is impossible to fill with hexahedra.[5] Can the extent of dicing or modi@ing the surface mesh
be limited in practical settings?

The buffer layer arises naturally as the dual of the intersection of the completed STC of the diced-tet-mesh with the
completed STC of the diced-hex-mesh. Certain interface geometries do not admit a well-shaped buffer layer. One
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interpretation of this is that the completed STC surfaces must curve too much. Could the STCS be pushed so that they

overlap more, allowing more slowly curving surfaces?
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Appendix A. Mesh Connectivity and Positions

This section describes how to reconstruct the geode-template. The following tables list the node positions and hex
connectivity of a 24 x 14x 24 geode-template centered at the origin.
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Table 2: Node positions for a 24 x 14 x 24 geode-template centered at the origin.
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Table 3: Connectivity of a geode-template: Nodes in hexes.
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Strategies for Nonobtuse Boundary Delaunay Triangulations

Michael Murphy* Carl W. Gablet

Abstract. Delaunay !l+iangulations w“th nonobtuse triangles at the boundaries satisfi a minimat re-

quirement for Control Volume meshes. We motivate this quality requirement discuss it in wntezt m“th
others that have been proposed, and give point placement strategies that generate the fewest or close to

the fewest number of Steiner points needed to satisfy it for a particular problem instance. The advantage

ia that this strategy places a number of Steiner points proportional to the combinatotiat size of the input

rather than the local feature size, resulting in far fewer points in many cases.

1 Introduction

Techniques for numerically approximating the solution to partial differential equations typically have at
least three distinct phases: mesh generation, where the domain is partitioned into a finite number of pieces;
discretization, which takes the mesh and derives a system of linear equations, AX = b, whose solution can
be used to obtain an approximation to a PDE over the doma@ and the solution phase, where the system of
linear equations is solvedl. The requirements of one phase can place constraints on the output of another.
A frequent requirement of the solution phase is to restrict the matrix A to a class of matrices so that
linear solution techniques which exploit special properties of this class to obtain fast, accurate, and stable
performance can be employed. To satis~ this requirement, the discretization phase, which generates the
matrix, often must impose geometric restrictions on the mesh. In this paper, we study the requirements of
the Control Volume discretization technique. Our goal is to obtain algorithms that satis~ such geometric
restrictions in the mesh generation phase.

We first give a geometric interpretation of the Control Volume Method, which will help motivate the need for
mesh quality at some minimal level. We then argue why satis&ing these minimal quality requirements alone
can in some real world settings be more useful than satisfying them in conjunction with stricter quality
requirements that have been proposed in the literature. Finally, we present algorithms to guarantee the
miniial level of mesh quality necessary to perform computations on Delaunay triangulations of polygonal
domains by adding either the fewest or close to the fewest number of Steiner points (i.e., nodes placed to
obtain quality triangles) necessary for a particular problem instance; we also address the difficulties that
arise in more complicated geometric settings such as Planar Straight Line Graphs (PSLGS) (see [BE92] for
a definition) and PieceWise Linear Complexes (PLCS) (see [MTT+96] for a definition) in higher dimensions.

2 The Control Volume Method

2.1 Overview

The Control Volume Method, also known as the “Control Volume Finite Element Method,” [For91], “Box
Method~ [BR87]) “Finite Vohune~ and “Integrated Finite Difkrencesflusing “PEBI grids” [HBMC91], is a
dkcretization technique for Delaunay meshesz. Regardless of the dimension, it discretizes a Delaunay mesh
with respect to its edges. For each edge e = (i, ~) in the mesh, the Control Volume method creates an

“Department of Computer Science, Universi& of Maryland-College Park and Los Alamos National Laboratory. Emaik
murphyilml. gov

tGeom~Y~i~ Group, E~h ~d Envir~nment~ ,$Uace Diti,on, LOSAlamos National Laboratory. Emrdk gableOlanl..goV
*This is a simplification. Indeed, many variations exist deperrding on the application. For —pie, for time dependent

applications thk can be an iterative process-the output born the solver may induce changes in the mesh forcing a new
discretiz.ation and thus a new system of equations to be solved. However, for our purposes, this view is complete.

2Control Volume ean also be used for non-Delaurray meshes,but that is beyond the scope of this paper.
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entry in the ith row and jth column in the matrix A associated with system of linear equations A = b
approximating the PDE to be solved (and vice versa —the matrix A is symmetric). The entry, call it Ai,j is
non-zero (except when there are degeneracies arisiig from co-circularity) because it is associated with the
length (area in three dimensions and volume in higher dimensions) of the Voronoi face, U,j, separating i and
j. The entry Ai,j is computed by dividing Vi,j by the the length of edge e; however, it is intuitive for the
purposes of understanding quality requirements to ignore the division by the length of e and focus on the
quantity U,j. For an edge in a constrained or conforming triangulation in a planar domain, (which we will
work with horn now on unless otherwise stated) Vi,j can be computed as follows. H e is m titerna edge!
then because T is a triangulation, there are exactly two triangles incident upon e. The length of the segment
formed by connecting the circumventers of these two triangles c1, cz is Vi,j. If e is a boundary edge, then
there is only one triangle incident upon e and the length of the Voronoi edge is infi.uke. Thus, the length
is truncated at the domain boundary by setting Vi,j equal to the length of the line segment connecting the
circumventer of the incident triangle to the midpoint of e. This is illustrated in Figure 1.

Vij

----

, /

/’/

Figure 1: The entry Ai,j in the matrix A corresponding to edge e = (i, j) is associated with the length of
the edge of the Voronoi face, Vi,j, shared by edge (i, j). When (i, j) is a boundary edge (right), this length
is the length of the line segment with endpoints at the bkector of (i, j) and the circumventer of the unique
triangle incident upon (i, j).

2.2 Minimal Quality Requirements for the Control Volume Technique

Although it is well known that the Delaunay Triangulation is optimal with respect to many interesting
criteria~aw77] ~aj94] ~us97], not all Delaunay meshes are appropriate for the purpose of solving PDEs
with this discretization technique~or91]. Indeed, the quality of a triangulation has been a major research
topic in mesh generation, resulting in many de.tlnitions. This diversity stems in part from the variety of
applications, diEering levels of expectations about what can be obtained from a mesh, and requirements of
competing discretization methods and solvers. It is not our intention to attempt the authoritative definition.
However, by restricting our attention to the Control Volume setting, a minimal requirement for a Delaunay
mesh to be suitable for numerical computation can be precisely stated. That is, from the solver’s perspective,
it is required that the matrix A in the associated linear system Az = b be an M–matrix. M-matrices are
square matrices whose off-diagonal elements are either zero or negative and whose diagonal elements are
strictly positive. M-matrices are also non-sing&r and have strictly positive inverses. As it turns out, the
diagonal element Ai,i in the control volume discretization is the sum of the absolute values of the other entries
in row i, causing it to be diagonally dominant, implying (with some minor additional assumptions) the latter
two criteria via standard theorems in numerical analysis. Consequently, we need only focus on obtaining
negative off diagonal entries in the manner explained below. With that, the solution of the resulting system
of linear equations using an iterative technique is possible, snowing a tremendous advantages in accuracy,
stabfity, and running time over direct solverq see [Saa96] for more background on M–matrices and iterative
linear solution tetilques.

The AZ-matrix restriction also avoids physically nonsensical results. To see why, consider a general model
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problem that could be solved using this discretization technique. The equation given by F = –VG, where
F is the flux, governs the diflision of heat if G corresponds to temperature or fluid flow in a porous material
if G corresponds to pressure. Energy (fluid) flows born high to low temperature (pressure) so the equation
has a ruinus sign to account for heat (fluid) tlowiug opposite the gradient. When constructing the geometric
coefficients for the discrete form of the equations, the minus sign is associated with the geometric terms.
The requirement that all the geometric coefficients are negative insures there is no non-physical transport
up gradient.

Figure 2: An obtuse boundary triangle M a Delaunay mesh. The edge (i,j) is a boundary. The circmucenter
ci of the triangle (i, j, k) falls outside the domain. Situations like this lead to geometrically nonsensical. results
and fail to give an M–matrix when using the Control Volume discretization scheme.

To translate the M-matrix requirement of the solver into a geometric restriction for the mesh generator,
we must first point out a subtlety of the discretization technique. Since the non-diagonal elements of an
M-matrix should be zero or negative, the length of the Voronoi segments associated with edges, used in the
matrix entry computation, should be a signed quantity. When computing this signed length, it is necessary
to use the orientation of the triangles incident upon it in the following manner. Suppose that edge e = (i, j)
is incident upon a triangle t = (i,j,k)with circumventer q. Then we compute the signed distance from
ci to the midpoint of e. If C* is on the same side of e as k (the other vertex of the triangle), then this
distance is negative, by convention. Otherwise, it is non-negative. For an external boundary edge, if the
circumventer is outside the domain then the length of the circumventer to the buector must be positive with
this conventio~ an example is shown in Figure 2. However, this violates the M–matrix requirement. For
an internal edge in a Delaunay mesh, the sum of the contributions of the two triangles incident upon it will
always be non-positive, satistjing the M-matrix requirement, even if one of the circumventers falls outside
the domain. Nevertheless, circumventers outside the domain in any case are undesirable. Fortunately, as
a consequence of the following straightforward theorem, to obtain an M–matrix with the Control Volume
discretization we need only focus on triangles incident upon boundary edges.

Theorem 1 In a Delaunay !i%iangulation, if the circumventers of each triangle m“th an edge incident upon
the boundary are contained inside the bounda~, then the circumventer of every tm”anglein the triangulation
is contained inside the boundary.

A proof is given in[CFH93].

We investigate algorithms that satisfy Theorem 1 by adding points to insure that each triangle incident
upon a boundary edge is nonobtuse because a nonobtuse triangle contains its circumventer.

sThere are point sets where the circumventer of every triangle in the Delaunay Trkngulation of these sets falls outside
the boundary. For example, a finite point set sampled from the ‘moment curve” irr the plane parametrized by (t, t2).
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3 Related Work

Recently, quality requirements imposed by the Control Volume method have been discussed in the theoretical
computer science community [MTTW95] (and followed up in [MTT+96] and [MTTW98]). Furthermore, the
work of [BMR94] is motivated in part by the problem of generating quality meshes applicable to the Control
Volume method. Finally, Rivara and Hitschfeld [HR97] recently have addressed a problem very similar to
the one we consider. We review these works below.

3.1 The Radius-Edge Condition

One might ask why we =e focusing upon avoiding a “show stopper” by requiring only that the mesh
yield a discretization resulting in an M-matrix when algorithms have been given to satisfy loftier quality
requirements that not only guarantee convergence but also improve the rate of convergence. Specifically, a
recent result in quality Control Volume meshing [MTTW95] states that the Control Volume method will
converge at a rate depending on the the largest ratio of the circumradius of each triangle to its shortest edge
(abbreviated “radius-edge”). The smaller this ratio, the better. Shewchuk explores in his thesis [She97] how
Ruppert’s Delaunay Refinement algorithm [Rup93] can be used to achieve such a bounded ratio for every
triangle in the triangulation.

To see why this quality measure can be too restrictive for some applications, it is worthwhile to examine
some rather extreme yet real-world, applications that we face. One such application is modeling fluid flow in
geological systems. A rock layer may extend for many kilometers yet may only be a few meters thick. Thus,
high aspect ratios are the norm rather than an occasional nuisance. Another real world situation where
very high aspect ratios arise is in semiconductor modefig when the abtity to model the effect of thin layers
of film placed in the semiconductors is desired. In these situations, more stringent quality triangulation
requirements can produce unsatisfactory results because the number of triangles required to satisfy them
is too large. For example, in two dimensions, the bounded radius-edge ratio quality measure requires that
element size be on the order of the local feature size (see [Rup93] for a definition). However, any algorithm
that outputs elements on the order of the local feature size will generate entirely too many elements in these
high aspect ratio settings because the local feature size is small everywhere.

In contrast, the quality requirements we impose, although far less stringent, require far fewer Steiner points
to satisfy them. Indeed, we can obtain “combinatorial results” — those that show that the number of Steiner
points depends on the combinatorial size of the initial input (i.e., the number of points and line segments),
rather than local feature size, a geometric measure.

3.2 Nonobtuse Triangulation of Polygonal Domains

The work of Bern, Mitchell, and Ruppert [BMR94], which shows how to triangulate a polygonal domain
with nonobtuse triangles using O(n) Steiner points (where n is the number of vertices in the polygon) is
a prime example of a combinatorial result applicable to Control Volume meshing. Nonobtuse triagles are
appropriate for the Control Volume method because they imply that the Voronoi face associated with an
edge e, crosses e. They are also interesting for general interpolation problems because they imply that for
any point inside a triangle, its nearest neighbor in the set of all mesh vertices to that point is one of the
triangle vertices. Meshes with bounded radius-edge ratios, or any triangulation with no small angles, do not
have these properties unless the guarantee says that no angle will be less than 45 degrees or the bounded
edge ratio is s W; guarantees at this level are beyond the curmmt state of the art.

There are some differences in our approaches. As we only require the boundary elements to be nonobtuse,
we can use far fewer Steiner points. Bern, Mitchell, and Ruppert report that in practice, their algorithm
generates roughly 25n Steiner points per instance. In contmst, our algorithms generate the fewest or close
to the fewest number of Steiner points needed for a particular problem instance. In the worst case, this can
be bounded at 3n, for the reasons that one can never pack more than three obtuse angles around a vertex
and that it is possible to place a Steiner point to resolve an obtuse angle without creating a new obtuse
angle in the Delaunay Trkmgulation of the point set. In situations where we are not as concerned about the

4It is also worthwhile to note that these high aspect ratio problems tend to ti-ustrate many mesh generation heuristics as
well.
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quality of interior triangles, or when we wish to have no interioi points at all, our approach can be more
useful.

3.3 Nonobtuse Boundary ‘Eangulatione

Hitschfeld and Rivara[HR97][HR98], have recently addressed a very similar problem. They note that no-
small-angle quality Delaunay triangulation algorithms which guarantee that all angles are larger that 30
degrees, can allow obtuse boundary angles. They present an algorithm to be used as a “post-processing
step” after such a quality triangulation algorithm on a polygonal domain is used to remove the obtuse
boundary triangleq the postprocessing algorithm makes the explicit assumption that all angles in the trian-
gulation not defined by two boundary edges are between 30 and 120 degrees and that the triangulation is
constrained Delaunay. We simpl@ this algorithm so that it places fewer Steiner points and does not make
any asmunptions about the angles in the input triangulation. However, the price of our simp~cation is that
a no-small-angle triangulation is not maintained. We dub this algorithm Project–Flip. Hints of a similar
algorithm can be found in[For91].

PROJECT–FLIP
1 input : A Constrdned or Conforming Delaunay Triangulation of a Polygonal Domain.
2 while there exists an obtuse triangle t = (a, b,c) with boundary edge e = (a, b) opposite the obtuse angle do
3 Let d be the orthogonal projection of c onto e into the triangulatiori.
4 Remove t from the triangulation
5 Create two new triangles (a, c, d) and (b, c, d)
6 Restore Delaunay Triangulation via Flip algorithm~aw77]
7 end-while

Project-Flip has the following propertie=

. It terminates and produces triangles so that the circumventers of each triangle are cent ained in the
boundary.

. The number of points inserted can be bounded by O(n).

. While it is useful for constrained or conforming Delaunay Triangulations of polygons, it cannot be
generalized to arbltrixy PSLGS.

The Project-Flip algorithm is not optimal in the sense that it will not place the minimum number of points
in a particular instance. This will be shown below. Consequently, we wish to explore methods which are
sensitive to the problem instance.

4 Nonobtuse Boundary Triangles with Few Steiner Points

4.1 Nonobtuse Triangles on a Boundary Edge

Let us fist consider the following related problem. Suppose we are given a line segment in the plane
denoted by edge e = [a, 6], a, b, c R’, and a set of points S all contained in a semicircle of the diametrical
circle of e (i. e. the circle with diameter e). We wish to refine e into k + 1 into non-overlapping subintervals
[u, sl),..., [s~_I, sk), [Skjb]j by placing Steiner points Se = {SI,..., sk} along e such that the open diametrical
circle of each submterval is empty in the sense that it contains no point of S in its interior. This would
guarantee that no circumventers in the Delaunay ‘Trkmgulation of the point set S U {a, b} U S. would f~
on the other side of e. Equivalently, all the angles opposite the submtervals in the Delaunay Tr@@ation
would be nonobtuse. Ideally, the number of Steiner points that we doose, k, shouId be the fewest number
of Steiner points needed for a particular inst ante.

One trivial algorithm takes the orthogonal projection of all points inside e’s diametrical circle onto e and uses
these as the Steiner points that induce the subintervals. However, this can add too many points because each
time we add a Steiner point to refine e, the area covered by the diametrical circles on each subsegment of e
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Figure 3: Project-Flip, which in this case has the same output as simple orthogonal projection of all points
inside e’s diametrical circle onto e, can be suboptimal in terms of the number of Steiner points added to
obtain nonobtuse boundary triangles. .

It turns out that a simple greedy strategy, illustrated in Fi&ve 4, gives an optimal solution to this easier
problem.

GREEDY-R.EFINE(e,S)
1 input : An edge e = [a, b] and a set of points S all contained in a semicircle of the diametrical circle of e.

‘ 2 Starting at a iind the largest subsegment of e, e’ = [a, a’) such that the open diametrical disk of e’ contains no point of S
3 ifa’#b then
4 Refine e by placing a Steiner point at a’.
5 Let S’ be the points in the diametrical circle of [a’, b]
6 GREEDY-REFINE ([a’, b],S’);
7 end-if

Theorem 2 The greedy algorithm for an edge generates the fewest number of Steiner points required foT a

particular instance.

Proofi The greedy algorithm’s optixnality can be proven by induction on the minimum number of Steiner
points k needed for a particular interval. That is, suppose we are given an edge e = [a, b] and a set S
such that k Steiner points are required to refine e so that it satisfies the empty diametrical circle criterion.
Obviously, k < n, for as noted, orthogonally projecting each point in S onto e would do the job. The base
case, lc = Ois trivial.
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Figure 4 Execution of the greedy algorithm for a line segment, e. It starts at an endpoint and grabs the
largest empty circle it can get.

Without loss of generality, transform the plane so that the edge (a, b) coincides with the interval [0,1] along
the z-axis. Among all optimal Steiner placements achieving k points, consider the one whose leftmost Steiner
point is as far right as possible (i.e., has the largest z-coordinate). More formally let zo be the supremum
of the set of initial optimal Steiner placements. Let Z9 be the leftmost endpoint of the greedy triangulation.
We claim that Zg = CO. Suppose not. If Zg < ZO, then the closed diametrical circle bounded at Xg is interior
to the circle bounded at Z. and hence would be further expanded by the algorithm, a contradiction. On the
other hand, if Zg > CO,then we can modify the optimum point placement strategy so that it uses the same
number of Steiner points. This is done by shrinking the second optimum disk by moving its leftmost point :
to Zg. The modified second disk is contained in the original second disk and consequently remains empty.
This contradicts the hypothesis on ZO.

4.2 Convex Polygon

We now consider generaliaiig our problem to a slightly more complex situation. Given a convex polygon P,
we wish to decompose each polygonal edge into subsegments that satisfy the point-free diametrical circle
property. This problem cannot be solved by applying the above greedy algorithm for edges to each polygonal
edge individually, using the vertices of the P tilde the diametrical circle as the set of points. This is because
interference can arise. It is possible to deem an edge’s diametrical circle point-free only later to violate the
diametrical circle when adding a Steiner point on another edge. This leads to conflicts and suboptimality,
illustrated in Figure 5.

A simple modiikation to the greedy algorithm places the fewest number of Steiner points. For an edge e
that has a nonempty diametrical circle, we need to be sensitive to the regions on e in which adding a Steiner
point will create problems for other edges. That is, those regions where the diametrical disks of other edges
intersect e. We call these the “forbidden intervals” of e. The idea behind this “sensitive greedy strategy”
is to start at an endpoint and &d the largest segment whose diametrical circle is empty, with the added
constraint that an endpoint is never placed inside a forbidden interval. Speci.6calIy, if the greedy strategy
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Figure 5: In the top fi~e edges (a, b), (b, c) and (c, d) have point-free diametrical circles and edge (a, d) is
in need of refinement. The middle fi~e illustrates that the greedy algorithm for edges is deficient in the
sense that it can add Steiner points that violate previously point-bee diametrical circles. The solution is
to never add a Steiner point that violates a diametrical circle of another edge, regardless of whether that
diametrical circle is empty or not.

places a point inside a forbidden interwd, then place the Steiner point at the start of the forbidden interval.

SENSITIVE-GREEDY-REFINE(P)
1 input : A convex polygon P
2 Let E be the list of edges of P without point-free diametrical circle property w.r.t. the vertices of P

3 while E is not empty do
4 Let e = [a, b] be an edge in E
5 Remove e from E
6 Starting at a find the largest subsegment of e, e’ = [a, a’) such that:

The open diametrical disk of e’ contains no point of S and
a’ is not contained in the open diametrical disk of another edge ~.

7 Refine e by placing a Steiner point at a’.
8 if the diametrical circle of [a’, b] is not point-free then
9 Add subsegment [a’, b] to E
10 end-if
11 end-while

Theorem 3 For a convex polygon, the sensitive greedy strategy places the fewest Steiner pointi to obtain

nonobtme boundary tm”angles.

Before proving this, we need the following two lemm~
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Lemma 1 The diametrical circles of the forbidden regions on an edge are point-flee.

The proof follows immediately horn the convexity of the polygon.

Lemma 2 The forbidden regions on an edge do not overlap.

Proof Sketch: Let ~ and g be two edges on a convex polygon P whose open diametrical circles overlap. We
consider the hme, the overlapping region, of the two open circles. If ~ and g share a unique common vertex,
then one apex of the lune is at this common vertex. We now analyze the location of the other apex and its
relation to e. Let h be the segment connecting the two vertices not common to ~ and g. Notice that due to
convexity, h must either be e or be contained in the halfspace of e containing P. The other apex is on the
orthogonal projection of the common vertex onto the line containing h. Consequently, it is either contained
in the same halfspace of e as P, if it falls onto h or it is outside the domain if the orthogonal projection
does not fall onto h because i and g are boundary edges. In the former case, since we are considering open
diametrical circles, this single point is the gap. In the latter case, it implies by convexity that e cannot
intersect the lune at all. In case ~ and g do not share a common vertex, then it is possible to show that the
hme is contained in halfspaces of the lines containing the two segments connecting e and ~ to form a convex
quadrilateral. Since both of these segments must be contained in a halikpace of e, it implies that e cannot
intersect the Iune at all. ❑

Proof (Of Theorem 3): Let e be an edge which is under refinement. Let f be an edge whose diametrical
circle intersects e. Two cases can arise (1) the diametrical circle of ~ is empty and (2) the diametrical circle
of j is non-empty.

In case (l), placing a point in this forbidden interval will violate ~, since ~’s diametrical circle is empty.
Would one benefit from refining in the forbidden region of ~ with respect to e? The answer is no. Placing
a point in the forbidden region of e with respect to f will necessarily induce a Steiner point on f to cope
with the one we just added. However, we could spend two Steiner points (one from refln.ing e and the one
placed on f to cope with the one placed on e) at least as well, if not better, by just refining e and leaving
f alone. Two Steiner points placed on e are enough to skip over the forbidden region of e with respect to
~ and create an empty diametrical circle on e: place one Steiner point at the beginning of the forbidden
region off and the other as far as possible along e so that it does not violate another forlidden region and
creates a subsegment with an empty diametrical circle. By Lemma 1, we know that the second point will
be beyond the forbidden region off with respect to e and consequently will leave f alone.

Again in case (2), one can never benefit from refining in a forbidden region. This is because if f’s dizunetrical
circle is not empty and intersects e, then one of the endpoints of e is one of the endpoints of the forbidden
region of e with respect of f as well. Since by Lemma 1, the diametrical circle of this forbidden region is
empty, we can simply place a Steiner point at the start of the forbidden region. ❑

4.3 Set of Points

Given a set of points Sin the plane, we wish to refine each edge of the convex hull of S so that the Delaunay
triangulation of S taken with the augmented points has no obtuse angles opposite the boundaries. One
interpretation of this criterion is that the nearest neighbor in S and the augmented points to a point outside
the convex hull should be one of the vertices of the convex hull edge closest to that point. To achieve this,
we divide the convex hull edges into two groups: those that have empty diametrical circles and those that do
not. The strategy is never to violate an empty diametrical circle of another edge when refining an edge, as in
the case of the convex polygon. However, the strategy changes when dealing with a non-empty diametrical
circle of another edge. The answer is to refine only if it greedy strategy gets snagged on a point internal
to the convex hull. If it gets snagged on a boundary point, the strategy is to refine the other violated edge
first. This insures that a Steiner point is never needed to be placed to resolve an obtuse angle around a
previously added Steiner point. We do not have an optimality proof at this time, although we can be sure
that in many situationa, this will place fewer Steiner points than Project-Flip.
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4.4 Non–convex polygonal domains

The above algorithms can be generalized to non-convex polygons, with or without interior points, by chang-
ing the notion of forbidden regions slightly to take into account visiblity. ThE allows us to obtain constrained
Delaunay Triangulations with nonobtuse boundary triangles, but not conforming ones.

5 The Difficulty of More Complicated Domains

5.1 Planar Straight Line Graph

The problem of nonobtuse boundary triangulations is signii3cantly more diflicult on a PSLG, which allows
for much more complicated input geometries with multimaterial interfaces. The problem is to ensure that
for each edge on a given PSLG, its diametrical circle is empty. As a solution to this problem implies the
solution to the problem of conforming Delaunay Trian@ation, the lower bound of S2(n2) Steiner points
given in [ET93] applies. However, it is not even known if the number of Steiner points required to satisfi
the edges of a PSLG can be bounded by a polynomial function of the input size. Work with a similar spirit
can also be found in the study of triangulations that have no large angles[Mit93][Tan96]. The goal in these
studies is to refine a triangulation using a number of Steiner points as close to S2(n2) as possible so that the
largest angle in the triangulation is bound by some constant. Of course, the closer to nonobtuse this angle
is, the better. We suggest relaxing the problem so that the angles opposite boundary edges are the only
ones taken into consideration. However, many of the ditliculties faced in these problems still apply. The
salient problem is that the interference caused by r&ning one edge can have global reprocussions. Mitchell’s
paper[Mit93] contains some very interesting examples of the global problems encountered.

Recently, Rivara and Hitschfeld [*98] have announced that they can solve this problem on constrained
Delaunay triangulated PSLGS if all angles not constrained by two boundary edges are bounded between 30
and 120 degrees. We will refer to these as “quality” PSLGS. However, their technique, which appears very
practical, falls prey to some “worst case” scenarios that invalidate their general claims about its performance.
Specifically, Proposition 3 (p. 18) which states that a such a quality PSLG with k obtuse boundary triangles
needs only O(k) Steiner points to make the PSLG satis~ the nonobtuse boundary property. We present
figure 6 as evidence that this is incorrect. In this counterexample, one bad triangle can induce as many
as Q(n) Steiner po-mts to satisfy the nonobtuse boundary Delaunay property, where n is the total number
of triangles. Furthermore, it is not even clear if their algorithm will terminate on all such quality PSLGS.
This illustrates the insidious nature of the the global interference problem, and the resulting propagation of
Steiner points, which makes this problem so diflicult in general.
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Figure 6: A PSLG satisij6ng all the angle critera assumed by Rivara and Hitschfeld’s method [HR98] that
contradicts their Proposition 3 (p. 18). The leftmost triangle has a 120 degree angle at vertex p and is
the only obtuse triangle in the triangulation of the PSLG, whose edges are highlighted. Refining edge 01 to
remove the obtuse angle will necessarily induce a total of Cl(n) Steiner points, one on each of the highlighted
edges.

5.2 M–Matrices in Three Dimensions

As is the case in the plane, not all three dimensional Delaunay Triangulations will yield a M-matrix under
the Control Volume Method[Let92]. The problem of obttimg an AK-matrix in three dimensions can be
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geometrically formulated most generally as follows: Given a PLC, ensure that the dimnetrical sphere of
each object contains no other vertex. For a line segment in three dimensions, not part of any facet, the
diametrical sphere is simply the sphere whose diameter is the line segment. For a triangular facet, the
diametrical sphere is the minimum-diameter sphere containing that triangular facet. This can be obtained
by computing the circurncircle of the triangular facet and expanding it into a sphere with the same radius.
Using the three-dimensional version of Theorem 1 (also proven in [CFH93]), facets refined to satis& these
conditions will result in an M-matrix using the Control Volume discretization technique in three dimensions.
Unfortunately, this implies a solution to Conforming Delaunay Trhngulation, an “easier” problem for which
a general point placement straterg which terminates correctly for PLCS in dimensions higher than two is
not known to exist.
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Abstract. This commm-cation presents a method for rededning a priori a field of constraints represented
in two &mensions by a set of edges, in three dimensions by a surface triangulation. The a-m is to provide a
resulting constraint, strongly Delaunay-cotiorming, (i.e., that will be built by any Delaunay triangulation
of the convex hull of the associated set of vertices). We show that the two-dimm”onal problem can be
easily solved, and hence, we g“ve a classification of edges leading to a convergent algorithm. Although
the classification extends to faces, an essential property vanishes in three dimw”ons, excluding a simple
extrapolation of the method. Nevertheless, a heuristic algorithm, based on face subdivisions, governed
by a geometric estimate and by means of edge swapping is given in three dimensions. Several examples
emphasize the proposed method in two and three dimensions.

Keywords. Trkmg-ulation, Delaunay triangulation, constr~ed triangulation, surface triangulation.

Introduction

Numerical simulations based on finite element methods for arbitrarily shaped three-dlmensiona.l domains !2, require at
first a mesh Tn (i.e., a polytopal covering-up of Q). Such domains Cl are usually represented through a discretization
(e.g., a triangulation) of the domain boundary Ml, that forms the constraint I’. More precisely, the constraint is
detined as a list of edges and possibly faces which usually includes a boundary-constraint (i. e., a curve or surface
represent ation approached by a polygonal or polytopal covering-up). Additional entities (e.g., interfaces) may also
be supplied, that have to explicitly appear in the triangulation. The set of vertices S contains at least the edge and
face vertices of r.

In unstructured mesh generation, mesh elements provided by a Delaunay-type method have usually nice properties.
However, if the input data is composed of a set of edges and faces 17(i. e., the constraint), of which the vertices forma
subset S(I’) of the set of vertices S, a Delaunay triangulation T of Conv(S) does not necesstiy contain all the faces
of l?. In other words, a Delaunay triangulation algorithm of S does not necessfiy lead to a mesh 7h of conv(~) 1
complying with the constraint I’. The envisaged numerical application is only possible if the resulting trianWlation
TO preserves the integrity of I’ (or, at least, contains a topological and geometric equivalent of it). Therefore, the
need to retrieve the desired missing items lead to consider two diEerent approaches :

1. a posterior recovery of the topological requirements of the constraint, if the constraint integrity is required ;

2. a priori redefinition of the constraint, if a topological and geometrical equivalent is satisfactory, so that it
appears in the Delaunay triangulation. of the convex hull of the set of vertic-.

Related work. The A posterior recovery problems can be considered as settled in two dimensions [Chew-1989],
[Clirie,Renka-1990]. Nevertheless, the extension to three dimensions ia rather tricky, mainly because several properties

3. In three dimensions, it is well known that a posterior recovery maythat are valid in IR2 do no longer hold in R
require addkional internal vertices (the so-called Steiner points) and their determination can be comput ationally very
complex [Ruppert,SeideI-1992]. However, algorithms with reasonable complexity have been proposed [Georg&1997],
[Weatherill,Hassan-1994], still leaving some jammed configurations unresolved. Moreover, the resulting triangulation
is no longer Delaunay, since it haa been obtained through 10CZ3modifications of an initial Delaunay triangulation 2.

las soon2.sfl is not convex.
2This point becomes especially relevant for some Delaunay-based skeleton approximation methods.



The A priori reckhition of the the constraint consists of finding a new constraint, t,opologically and geometrically
equivalent to the intial one, such that it appears into any Delalmay triangulation of the related set of vertices. This
method presents two major advantages : on the one hand, it avoids an initial triangulation; on the other hand,
it ensures that a Delaunay triangulation, preserving the integrity of the new constraint, can be generated. In two
dimensions, the problem can be solved, through edge subdivkions (a solution, valid for simple cases, can be found
in [George,Borouchaki-1997] ). The three-dimensional case, however, remains widely open mainly because a geometric
result in IR2 cannot be extended to IR3. Thus, a simple extension of the two-dimensional method is not possible.

Finally, an a posterioti recovery method, based on boundary redefinition, preserving the Delaunay-conformity as been
proposed [Sapidis,Perrucio-1991]. It can be qualified as hybrid insofar as the recovery stage follows the triangulation
stage, although the constraint integrity is not preserved. Sor far, to our knowledge, this approach has not been
extended to three dimensions.

Considering that, for some problems, a posterior methods are either unsuited (because of non Delaunay-conformity
for example) or sub-optimal or even divergent (e.g., jammed configurations in R3), we decided to investigate an a
priori method, suitable in two and three dimensions. The approach described in this paper is baaed on local constraint
modiilcations. At first j the two-dimensional csse is analyzed for which a solution is proposed. In three dimensions,
having discussed the main obstacles to determine a convergent algorithm, we propose a heuristic algorithm, baaed on
face subdltilons and on edge swapping, governed by a geometric estimate.

Outline. Some preliminary definitions related to Delaunay triangulation, their properties and constrained Delaunay
triangulations are briefly recalled in Section 1. Section 2, the classification of the edges of a two-dimensional topological
constraint I’ is proposed, leading to the strong Delaunay-conformity theorem. This important result allows to decide
whether or not a face belongs to the Delaunay covering-up of the given point set S. An algorithm based on edge
subdivision is proposed and its convergence established. A set of examples illustrates the method. The case of
three-dimensional constraints is discussed in Section 3. An algorithm is proposed to redetine the constraint. Finally,
Section 4, further developments are mentioned.

1 Preliminary definitions

Let consider a iinite set of points Sin Rd, d = 2 or d = 3. We recall that a conforming mesh of a subset fl of IRd is a
d-polytopal covering-up of Q, so that any face of any d-polytope of ‘T is either a face of another element or belongs
to the boundary. In particular, a triangulation ‘T is a conforming mesh, whose elements are d-simplices.

In this section, we shortly recall the notion of Voronoi diagram, dual of the Delaunay triangulation and we introduce
the deihitions related to constrained triangulations.

Vorono~ diagram. The Vorono~ cell of any point Pi G S is defined as :

~s={M6Et3: (V Pj6S)MPi~MPj},

and let call Vorono;points edges and possibly faces of S the intersections of cells of dimensions 1, 2 and 3, respectively.
By definition, any cell Vi&is not empty and is associated to a point Pi c S. Naturally, the Vorono? diagram of S,
refered as V(S), is the set of Voronof points, edges and possibly faces of S. For sake of concision, a k-Vorono?-face
denotes any k-dimensional entity of the VoronoY diagram. Notice that if S does not contain any (d+ 2)-uple of
cospherical points in d dimensions, then the points are said to be in regular position.

Delaunay T’rkngulation. The Delaunay triangulation can be defined as the geometrical dual, in a sense, of the
Voronof diagram. More precisely, if ~ is a k-face of the Voronol diagram of S, such that the only Voronoi cells
containing f are the ones associated to the points of the set ~ c S, then r is said to be a (d —k)-Delaunay-face of
the convex hull of%. If a face is Delaunay-conforming in Et3, so are its three edges. However, the converse is not
true. The set Ds formed with S and all the k-Delaunay-faces detined by V(S) is called the Delaunag covering-up

of S. The following result is usually known as the empty ball property [Delaunay-1934] :

Theorem 1.1 Under the previous assumptions, Ds is a conforming mesh of the wnvez hull Conv(S) of S. A d-
simplex K is an element of DS if and otdy if the closed circumscribed ball Bx of K does not contain any point of S
but the vertices of K.
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Notice that the Delaunay-covering-up DS is a triangulation, the so-called Delaunay triangulation of S, if and only if
the points of S are in regular position. The Delaunay triangulation is not unique, since non-simplicial elements of
the unique covering-up 2)s allows several simplicial decompositions.

Theorem 1.2 (Delaunay’s general lemma) Let T be a triangulation of the convex hull of a jinite point set S.
If the empty ball criterion is satisfied for any configuration of two adjacent elements of ‘T, then it is true for the
whole T.

Constrained triangulation. Let consider a finite point set S and a topological constraint 17 (set of edges and
possibly triangular faces). The vertices of I’ form a subset S(I’) of S. More precisely, a filte set of edges and possibly

triangular faces I’ of FLdis called a field of wnstraints if its vertices belong to S, and its edges (resp. faces) have no
intersection but their endpoints (resp. boundaries). h addition, any point of S shalI not belong to the interior of any
entity of I’. A triangdation T exactly complies with a field of constraints I’ if any component of I’ fully exists in 7.
However, the unique Delaunay-covering-up DS of S does not generally allow to exactly comply with )7, since DS is a
covering-up of the convex hull. Therefore, it is useful to propose a weakened definition for a constrained triangulation,
of a more general usage. A triangulation 7 weakly complies with a field of constraints I’ if any component of I’ exists
exactly or by covering-up in T. In other words, weak compliance of I’ is equivalent to exact compliance of a field of
constraints I“, the edges and possibly faces of which are obtained by local modifications of entities of I’.

2 Two-dimensional field of constraints

Let consider a field of constraints 17, associated with a finite set of distinct points S. The aim of this section is
to establish a condition necessary and sufEcient for the existence of an edge in any Delaunay triangulation of a S
containing its endpoints. The proposed method is based on the a priori redefinition of the constraint so that any
Delaunay-based generator retrieves the new field of constraints, thus ensuring the weak compliance with the initial
one. To thk end, we first propose of the edges of 17,in order to identify which edges will be present in any Delaunay
triangulation of Conv(S).

2.1 Classification

In this paragraph, we introduce the Eh function and we discuss hereafter the treatment applied to non-conforming
edges. For sake of clarity, we call small circle (resp. small disk) of a non degenerated edge the circle (resp. disk)
having th~ edge as diameter. It is clear that the small disk of an edge is the smallest disk containing this edge.
For any couple (Pi, Pj) of dutiict points in S, we denote Cij (resp. Aij) the small circle (resp. small disk) of the

edge [PiPj]. The two open half-planes limited by the line (PiPj) = ?&j are denoted ss ‘HZ- and X;. Provided that
Sij = Aij n S, we propose the following detiltion :

Definition 2.1 Let Pi and Pj distinct in S be the two endpoints of an edgef in I’. The type off, denoted as Eh(f ),
is dejined as :

. If S~j = {Pi, Pj}j then &($) = O (Figure 1).

● If Sij \ {Pif Pj} = E, with E = {Ql, .... Q7} such that E C ‘H~- or & C ‘?-l;, let Q“ be a point of E such as the

radius of the circumscribed disk At of the triangle t = PiPjQ” is maximal;

- if Q“ G Cij or if At n S = {Pi, Pj, Q*}, then @z(f) = 1.0 (F@re 2);

- if At rl S # 0, then %(f) = 1.1;

— if Q*#Cij, Akn S= 0 and (A: nS) \ {Pi, Pjj Q”} = 3# 0, then :

* if Fu {Q*} c ?-i; or if ~U {Q”} c %;, then %(f) = 1.2.0 (Figure 3);

* if (Fu {Q*}) fl %!~ # 0 and (~U {Q*}) n%; # 0, then @z(f) = 1.2.1.

. If Sij n ‘Hij = {Pi,Pj], Sij n?t~ # 0 and Stj n%; # 0, then 9z(f) = 2.



Figure 1: E%?(f) = o

Figure 2: QzI(~) = 1.0 F@re 3: e2(f) = 1.2.0

Discussion. For a given edge f, three different cases can be encountered :

1. ~ G Ds : then j belongs to any Delaunay triangulation of Conv(S);

2. i @ DS : there is no conclusion at this point, since two possibtities have to be discussed :

(a) if ~ is not an edge nor a diagonal of any polygon of 9.s, then ~ is non Delaunay-conforming, irrespective
to the Delaunay triangulation deduced horn ~s;

(b) if ~ is a diagonal of a non-triangular polygon II of Ds, then there exists at least one triangulations of II
containing f and another one not containig f. Thus, f is Delaunay-conforming with respect to at least
one among the triangulations deduced from Ds, but not for all of them.

As a consequence of this remark, it appears that a priori Delaunay-conformity makes no sense, since this conformity
depends on the geometric properties of I’, as well as on the choice of a particular triangulation. For th~ reason, we
introduce a stronger assumption about Delaunay-conformity, for which a necessary and sufficient condition can be
exhibked.

Definition 2.2 If an edge belongs to the Delaunay-wvering-up of Conv(S), then it is said to be strongly Delaunay-
conforming.

This definition is equivalent to say that a strongly Delaunay-conforming edge appears in any Delaunay trian~lation
of Conv(S). Following th~ definition, we give a theorem (the proof can be found in [P6bay-1998b]) based upon
the ~alysis of the Voronol diagram in the different cases. It ensures that a given edge belongs to any Delaunay
triangulation or, on the contrary, is lacking in at least one such triangulation.

Theorem 2.1 An edge f is strongly Delaunay-conforming if and only if Qz(f ) G {O; 1.0; 1.2.0}.

2.2 Redefinition of the constraint

Based on the classiik.ation, we have seen that some edges of the constraint I’ may be non Delaunay-conforming.
Therefore, the proposed method consists in subdividing the entities of I’ so as to obtain a new constraint 17’ that
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is strongly Delaunay-conforming and related to a new set of points S’ containing S. Thus, I“ will be built by any
Delaunay triangulation of the convex hull of I“, i.e. I’ will be weakly satisfied. The following algorithm is based on
projections, according to the following lemma :

Lemma 2.1 Let Pi, P. and Pj be three points such as P; # Pj and p. C]PiPj[ . The smaU circles of [PiP~] and
[PnPj] are inwardly tangent to the small circle of [PiPj].

Corollary 2.1 Let [PiPj] be a non degenerated edge of I’, with a small disk Aij containing at least one point P~ ~
S \ {Pi, Pj}. Denoting as M, A and A’ respectively the orthogonal projection of P. on [PiPj] and the small disks of
[P~M] and [MPj], then :

Card(A n S) + Cani(A’ n S) < Cad(Aij n S)

Figure 4 Insertion of a point onto an edgq related small disks.

Ah~

/
/

I
\ Pi
\

\

F@re 5: Insertion of two vertices onto the edges of an acute anglq related small disks.

General scheme. Based on this result, we define, for any edge ~ = [R~j], the Small disk of which contains a
point P. G S, the projection(Pi, Pj, P.) function (Figure 4), that dhides ~ in [PiM] and [MPj], where M is the
orthogonal projection of P. onto ~. However, the discussion prior to the proof of the convergence makes clear that
when two adjacent edges form an scute angle, then splitting the one may affect the other [P6bay-1998b]. More
precisely, two such edges having intersecting small disks, one can imagine a progression of alternate subditilons,
thus leadiig to a divergence problem. For any vertex Pi at which at least two edges form acute angle, we denote as
di the smallest distance between Pi and we detine the split(Pi, Pj, d) function (F@ue 5), for any d < PiPj, which
splits any [PiPj] edge in two new edges [Pi~] and, [~pj], SUCh ss pi~ = ~. Applying this ~~lon to anY mute
angle makes the algorithm convergent, but may result in unnecessaryvertex creations, since this sufhcient condition is
much too strong. Therefore, we introduced the notion of acute node (a vertex at which a cyclic progression of acute
angles meet) and showed that using split is required only if the constraint contains at least one such acute node. An
important consequence is that any manifold constraint can be treated with projection alone.



Algorithm 2.1 (Edges subdivision)

1. Initializations :

(a) Test strong Delaunay-conformity of the edges of r and form the heap 7(17) of the non-conforming,
by decreasing number of points of S located inside their small disks.

ordered

(b) Detect acute nodes in r.

2. While (7(1’) # 0) do :

● if T(r) contains an edge f = [P~Pj] such as at least one its edges P. is the center of an acute node, do :

(a) build the acute node N related to P*;

(b) d. = min MP. , MGSn ~A4~{P.);
.$Ehf

(c) set O < d < d.;

(d) for any ~ = [P.M] G N, split(P., M, d).

. else, for the edge f = [PiPj] from the top of ‘T(I’), do :

(a) pick Pn c Sij \ {Pi, Pj};

(b) projection(Pi, Pj, P~).

● setup S, I’ and 7_(I’).

2.3 Examples of constraint redefinition

The convergence of the Algorithm 2.1 has yet been established theoretically, only a few pathological cases are supplied
here (see [P6bay-1998b] for more examples).

Figure 6.(i) shows an example of a non strongly Delaunay-conforming field of constraints. b this case, edges [P2P3]
and [P5PG] in I’ are missing in the Delaunay triangulation of the convex hull of S. This is a typical problem of
two-dimensional constraints, with acute angles and interfering vertices.

k1 7

3

(i)

1

R 3

(ii)

1

\

7

36

(iii)

2

1

3

(iv)

F@re 6: (i) and (ii) : the original wnstmint and the Delaunay triangulation of its set of vertices. (iii) and (iv) :
the strongly Delaunay-conforming redefined wnstraint and the Delaunay triangulation of the new set of vertices.

Figure 6.@i) presents the a priori redefinition of I’ by Algorithm 2.1, which provides a new field of constraints I“,
related to an augmented set of points. The newly created points (P8 and Pg) ensure weak compliance of 17, since its
missing edges (in the sense of strong compliance) are represented by their subdivisions.

Three other examples are given figures 7, 8 and 9. The fist one hsa academic motivations, since it bears several
problematic pathologies : non-manifold constraint with, in addkion, many small acute angles. The second one is
a boundary-constraint, which is a frequently occuring requirement in practical meshing applications. Finally, the
speciiic problems of acute nodes is emphasized by the thud exiample.



(i) (ii) (iii)

F@re 7: Example of an a priori redefinition. (i) and (ii) : the original constraint is not strongly Delaunay conforming.
(iii) The redefined wnstraint is built by the Delaunay triangulation of the new set of vertices.

3 Three-dimensional field of constraints

The aim of this section is to introduce a classification and and algorithm suitable to redeiine a field of constraints
based on the same idesa as in two dimensions. Notice that all the faces are supposed to be triangular and for sake of
concision, they will simply be called faces.

3.1 Classification

The previous claasiiication can be extended to deal with a three-dimensional field of constraints I’ related to a set
of points S. As mentioned previously, if a face is strongly Delaunay-conformi.ng, so are its three edges, when the
converse is not true. Therefore, we aim at class@ing the faces of I’.

Naturally, we introduce the es function, giving the type of a face of r. For aIIYtriple (Pi, Pj} Pk) of distinct Points
in S, we call small sphere, denoted ~~ijk (resp. small ball,denoted ~ijk) of the face [piP’Ph] the sphere (resP. ball),
whose big circle 3 ia the circumscribed circle of the face. It is clear that the small sphere is the smallest sphere which
passes through the three vertices of a face. The two open half-spaces lirded by the pkme (Pipjpk) = %jk are

denoted as ?i.~h and ?-l~k. Assuming that Sijk = %jk n S, we d~e :

Definition 3.1 Let Pi, Pj and Pk distinct in S be the three vertices of a face f in I’. The typeoff, denoted as
es(f), is defined as :

● If Sijk = {Pi, Pj, Pk}, then es(f) = O.

. If Sijk \ {pi, Pj, Pk} = {Ql, ....@3 = & such as & c ?L~k or E c %~k,letQ*bea Point of& such m the

radius of the circumscribed ball Bt of the tetmhedron t = P@jPkQ” is m~”mali

- if Q“ C 6’Bijk or if B* fls = {Pi, Pj, Ph, Q”}$ then%(f) = 1.0;

– if& nS # 0, then es(f) = W

if Q“ $ ~~ijk and 1% I_ls = 0 and (& ns) \ {pi,pj>pkyQ*} = ~$ a, then :

* if F u {Q*} c %!~k or if 7 U {Q”} C ?&, then %(f) = 1.2.0;

* if (7 u {Q”}) n ?L~.k# 0 et (fi u {Q*}) n %;k # 0, then e~(f) = 1.2.1.

● If Sijlc n ‘l%jlc = {Pi, Pj, Pk}, Sijk n %!~k # 0 and &jk n fi~k # a, th~ es(f) = 2.

. If (Sijh n %!ijh) \ {?’i, Pj, Pk} # 0, then %(f) = 3.

‘That is, any circle with the same radk and center than the sphere.
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(i)

(ii)

(iii)

F@re 8: Example of an a priori redejinitwn of a
boundary-wnstm~nt. (i) : &e wnstra;nt, (ii) ~nd
(iii) : Delaunay triangulations of the initial ‘and the
redejined set of vertices.

(i)

(ii)

(iii)

Figure 9: Example of an a priori redefinitwn of a
wnstraint with two acute nodes. (i) : the wnstraint,
(ii) and (iii) : Delaunay triangulations of the initial
and the redefined set of vertices.

Discussion. As in two dimensions, a given edge f may belong to either all or not all but at least one or even none
of the Delaunay triangulations of the convex hull of S. For the same reason, the Definition 2.2 is extended to three
dimensions. Provided this detiltion, the following result holds [P6bay-1998a] :

Theorem 3.1 A face f is strongly Delaunay-conforming if and only if Qs(f ) c {O; 1.0; 1.2.0}.

3.2 Redefinition of the constraint

Unfortunately, the Lemma 2.1 does not extend to faces in three dimensions. To the contrary, the small balls of the
two faces subdividing any face ~ are not contained inside the small ball of ~ [P6bay-1998a]. Therefore, it is not even
guaranteed that a convergent algorithm based on simple subdivisions can be found.

In other respects, we like to determine an algorithm using computationally simple operations (thus impacting favorably
the speed), as well as restricting the number of newly created faces. For these reasons, a simple algorithm based
on face splitting (of the non-conforming ones), using the midpoint of an edge appeared to be a reasonable method
(cf. Figure 10). Accordingly, three ditferent frames are possible for any face split, having diEerent consequences for
its neighbors. Moreover, divergent examples can be exhibked for instance if the frame is either randomly chosen
or pre-determined. Hence, the subditilons have to be governed, this task being devoted to a heuristic geometric
estimate. In addition, we allow edge swapping on coplanar adjacent faces, in order to avoid face creation when the
problem is limited to two-dimensional strong Delaunay-conformity.

Governing the subdivisions. The Delaunay-conformity being a global property, any subdivision of a face may
aEect the Delaunay-conformity of other faces. Therefore, it is necessary to design an algorithm that divides one face
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at a time, ardyzes the resulting configuration and then proceeds on to the next non-conforming face. Hence, if least
two faces are not strongly Delaunay-conforming, the problem of choosing the face to be split arises.

In our approach, we consider the small ball containing the most points of S and we treat first its associated face,
in order to reduce this number. Actually, if it is equal to zero, then any face is O-type, which is (c}. Theorem 3.1)
sufficient, but not necessary to strong Delaunay-conformity. Accordingly, the algorithm may stop even before thk
number vanishes. Nevertheless, focusing on the maximum number of vertices in the small balls allows a global control.
Fkom the algorithmic point of view, the procedure uses a heap T(l?) composed of the faces of I’, sorted by decreasing
number of vertices tilde the associated small balls. At each iteration, the face on top of T(I’) is split, and then T(I’)
is updated.

After a candidate f has been determined, the problem is to choose which one of its edges has to be split (i.e.
which midpoint will be added to S). Moreover, the simple mesh conformity of I’, necess~ to its strong Delaunay-
conformity, requires that any face sharing the split edge must be divided too. Therefore, the effect of the three
potential configurations on the adjacent faces have to be taken into account. At th~ time, we have ordy studied the
case of manifold constraints, whkh leads to only three subdim”sionframes for a face subdlvk+on. The related function
divide(f, i), for i = 1,2 @r 3, subdhides the t%ce f by inserting the midpoint of edge i, as well as the adjacent face

~ to ensure mesh conformity (cJ Figure 10). The newly created faces are denoted as fl, f,, f~, and ~~.

f3

P3

Figure 10: Example of a face with two neighbors : the three related subdim”sionframes.

On the one hand, the choice of the frame is the key point of the convergence because, as we already mentioned it,
an unsuitable way of choosing can lead to divergence. On the other hand, the existence of a theoretical result is
not proved, although th~ issue is still under investigation. Therefore, several heuristics have been tested, leading to
unsatisfactory results or not results at all except for one approach [P6bay-1998a]. The geometric estimate introduced
here uses the fact that any Delaunay triangulation maximizes the minimal angle of the triangles, among all the
possible triangulations of the convex hull [Rajan-1994]. Accordingly, it appeared relevant to choose the frame, the
minimal angle of which ia maximal. Thus, this approach is called m-min estimate.

Remark 3.1 This heuristic does not claim to wnvergence in general. More specifically, the case of local two-
dimensional sub-problems may lend to recursive subdivisions, until creating degenerated faces, uith respect to numerical
precision. Therefore, we propose a specific treatment for this kind of non-wnfomnity.

Edge swapping. A local configuration formed by two coplanar faces is the analogous of the case of two triangles
in two dimensions. Now, any convex triangulation in R2 can be transformed in a Delaunay triangulation by means

329



.SL23CL.- -.

.
of edge swapping [George,Borouchaki-1997]. Therefore, if two coplanar faces ~ and ~’ share an edge e, and if the
Delaunay-covering-up of Conv(j u ~’) is composed of two sdjacent faces ~“ and ~’”, none of them sharing the edge
e, then ~ and ~’ can be replaced by ~“ and ~’” (ct. F@re 11). When, for any given ~ in I’, there exists another face
~’ for which th~ operation is possible, we refer it as j <> ~’, and we define the swap(~, ~’) function, which replaces
~ and ~’ by ~“ and ~’” in l?.

F@re 11: Example of coplanar faces : edge swapping.

It is obvious that this local operator can not ensure the strong-conformity of each face. However, being a necessary
condition, it will be applied recursively as many as possible.

Algorithm 3.1 (Faces subdivision)

1. Initialization: Test strong Delaunay-wnformity of the faces of r and form the heap 7(17) of the non-conforming,

ordered by decreasing number of points of S located inside their small balls.

2. W%ile (r(I’) # 0) do :

(a) For the face f located on the top of 7(1’) do:

i. find the subdivision jiume i ma.ximising the minimal angle;
ii. divide( f, i);

iii. L = {fl, f2, f;, f:}
iv. while ((3@c .C) (34 c l_’)4<> *) do :

A. add ~ to L;

B. swap(@, ~);
C. update L

(b) Update T(17).

3.3 Examples of constraint redethition

Table 1 summarizes the results provided by Algorithm 3.1 applied to a representative set of examples. The set of
points S is iritially composed of the NP vertices of the Nf faces of I’, a triangular covering-up of the object boundary.

Quality calculations are obtained using the following formula [George,Borouchaki-1997] :

where pf, lzf et a respectively denote the radius of the circumscribed circle of f, its maximal edge len@h and a
constant chosen such as the quality of an equilateral face is 1. Hence, the quality of a face belongs to the interval
[1; +CCI]; the best, worst and average qualities are respectively denoted as Q+, Q- et ~.

N;, N;, Q’+, Q’_ et ~ are the corresponding quantities for the newly generated set of points and field of constraints.

The ratio r = N~/Nf represents the so-called the field of wnstraints size growth coefficient.

CPU time requirements on a HP-PA 8000 workstation did not exceed 20 seconds in the worst case. Notice that
the resulting quality values are globally improved as compared to the initial ones. Regarding the number of newly
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N, Nf Q+ Q. G? N; N; G?’+ f2’- 42’
A 30 56 1.12 2.11 1.61 44 84 1.04 2.96 1.55 1:0
B 220 436 1.03 6.63 2.07 516 1,028 1.03 6.63 1.73 2.36
c 658 1,312 1.01 7.37 2.19 2,033 4,062 1.00 13.1 1.75 3.10
D 2,506 5,008 1.01 14.3 1.58 2,779 5,554 1.01 14.3 1.63 1.11
E 3,503 7,018 1.00 10.0 1.35 3,763 7,538 1.00 10.0 1.36 1.07
F 2,649 5,290 1.00 12.1 1.89. 5,630 11,252 1.00 20.0 1.67 2.13
G 3,605 7,302 1.00 11.4 1.72 5,786 11,664 1.00 9.41 1.69 1.60
H 5,157 10,354 1.00 6.58 1.26 5,289 10,618 1.00 6.46 1.26 1.03
I 10,714 21,476 1.00 5.14 1.17 10,884 21,816 1.00 5.14 1.17 1.02
J 13,183 26,406 1.00 6.63 1.21 13,291 26,622 1.00 6.63 1.21 1.01

Table 1: Statistics related to bounda~ constraint subdivision.

created faces, no relevant conclusion can really be supplied. Actually, it depends on the iritial number N, of strongly
Delaunay-conforming faces in I’.

Initial and final fields of constraints related to the objects C and I are presented in Figures 12 and 13.

3.4 Application to volumetric meshing

In the context of a constrained Delaunay mesh generation software 4, the Algorithm 3.1 allows to redefie the
boundary constraint a priori, such that the Delaunay triangulation weakly satisfies the initial constraint. No a
posterior enforcement operation is necessary and the resulting mesh is Delaunay-conforming.

In Table 2, the number of faces of the iritial object is denoted as Nf, among which N~ are missing in the Delaunay tri-
angulation, before being retrieved by local moditkations, so that the resulting mesh is no longer Delaunay-conforming.

The N, tetrahedrons generated by the mesher have for best and worst qualities respectively Q+ et Q-, the quality
of an element K being given by the formula :

where px, hK et @ respectively denote the radius of the circumscribed ball of K, its maximal edge length and a
constant chosen such as the qurdity of a regular tetrahedron is 1.

After the a priori redefinition of the boundary constraint by Algorithm 3.1, the same objects are meshed and the
corresponding results are shown in Table 2.

Nf N. N. 42+ Q- N; N~ N: c!’+ G?’-
A 56 16 62 1.31 4.31 84 0 92 1.24 3.10
B 436 130 628 1.10 9.15 1,028 0 2,354 1.07 9.15
c 1.312 436 2.291 1.15 21.1 4.062 0 19.622 1.03 18.0-,-——
D

,
5,008 74 18:217 1.05 24.9 5;554 0 20;785 1.03 19.3

E 7,018 98 28,135 1.02 11.4 7,538 0 30,347 1.03 15.8
F 5,290 1083 8,469 1.06 17.3 11,252 0 26,386 1.04 16.4
G 7,302 720 9,620 1.03 18.3 11,664 0 23,064 1.05 12.6
H 10,354 52 36,754 1.04 12.2 10,618 0 38,342 1.03 10.7
1 21,476 97 111,556 1.02 5.83 21,816 0 113,492 1.02 5.14
J 26.406 30 131,803 1.03 5.29 26,622 0 133,190 1.03 5.75

Table 2: Statistics related to meshed objects, before and after redefinition.

As expected, no face is missing after meshing of the a priori redetined constraints, when a variable number of faces
have to be retrieved in the Wltial boundaries. Similarly as for the boundaries, the quality values are globally improved
(the histogram is skewed toward the left).

I

4GHS3D, GAMMA Project, INRIA Rocquencourt.
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Figure 12: Example of boundary redefinition : a dam (object C). Left : om”ginalfedure, m“ght: strongly Delaunay-
conforming boundary tm”angulation.

4 Conclusion and future work

In this communication, we have shortly recalled some essential properties of the Delaunay triangulations in two and
three dimensions. For a given field of constraints (i.e. a list of edges and possibly triangular faces) I’ related to a finite
set of points S in R2 or IR3, we have introduced a geometric classification function allowing to determine a priori (i.e.
prior to the construction of a triangulation) whether or not a face will appear in any Delaunay triangulation of the
convex hull of S. We have proposed a convergent algorithm for a prior-i redefinition of a two-dimensional constraint,
based on a specitic property of circles. Because of specitic obstacles in three dimensions, we have proposed a heuristic
algorithm, convergent for most of the manifold constraints we have tested.

Among the future developments expected, we shall mention, in no specific order :

● the extension to non-manifold three-dimensional cas~

● the proof of a convergent three-dimensional algorithm;

. the medkd-axis and mid-surface approximation;

● the potential application to quadrilateral and hexahedral mesh generation.
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Mesh graph structure for longest-edge refinement algorithms
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Abstract. In W paperwe introduceand discuss a graphstructureassociatedwith longest-edgealgorithms
(algorithmbasedon thebisectionof trianglesby thelongest-edge)whichcanbe usedto reformulateIongest%dge
algorithmsto developnewalgorithmsandto designefficientdatastructuresfor theretlnementlderetinementof 2D
and3D triangulations.

Keywords. Longest-edge refinemen~ bisection, data structures, improvement

1. Introduction

Modem finite element applications make extensive use of adaptive techniques to optimize the number of
unknowns with respect to the accuracy of the numerical solutions. For this purpose, the underlying
discretization mesh must be locally refined in regions where improved accuracy is needed. Moreover,
multigrid or multilevel methods have shown to be of optimal or nearly optimal complexity for the solution
of discrete systems arising from a wide range of partial differential equations. Since these methods are
based on discretization hierarchies obtained from successivelyrefined meshes, they are very appropriate to be
embedded in the adaptive framework.

The management of adaptively refined gtids and the implementation of adaptive solvers require of
specialized refinement and/or derefinement techniques. In particular, the local refinement and/or
derefinement of the mesh should not involve a complete reconstruction of the data structures but only the
local reconstruction of the ~tid is implied in the process. In adition, the local reconstruction work should
remain proportional to the number of modified elements. To reach these goals, data structures which fit the
structure of the problem as well as the refinement scheme are needed.

In the adaptive refinement/derefinement context longest-edge algorithms for triangulations have been
extensively studied in the last 15 years (Rivara [12-17], Ferragut [4], Plaza et al. [1l]). In particular Rivara “
has studied two algorithms based on longest-edge bisection of triangles have been discussed the pure
longest-edge algorithm (which only performs longest-edge bisection of the current tri~gles); and the 4-
Triangles algorithm where for each target triangle, a longest-edge bisection is firstly performed and the
newly vertex is used to subdivide the initial triangles in four. Rivara and Levin have generalized the pure
longest-edge agorithm to 3 dimensions [12], while Plaza and Carey [10] developed a new refinement
~gofi~ for @@~@aI grids bmti on the skeleton the set compressed by the faces of the tetrahedral.Their

algorithm can be extended to a general dimension N. This algorithm has the advantaje of establishing a
finite number of son-elements in the refinement process, and can be seen as the generalization to three
dimensions of the 4-T twodlmensional refinement algorithm of Rivara. Other refinement algorithms based
on bisection, developed in the last years for three dimensions can be found in [8],[9],[10].

The great amount of information to be managed in 3D case and the obvious complexity to deal with these
meshes makes necessary to develop efficient and good algorithms and related data structures in terms of low
storage and low computational COSLThis fact has encouraged us to first, deal with the hvodlmesional case
to find out good data structures that improve the existing algorithms and secondly, apply these concepts and
results to the three-dimensional case and maybe to a higher dimension as Plaza and Carey stated in [10].

The idea in [10] from Plaza and Carey to represent a mesh as an oriented graph have been taken in this
paper as a good way to make easy the process of longest side bisection of Rivam. Besides, this idea
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considerably reduces the amount of data to be stored, as it will be shown in this paper. On the other hand, a
data structure based on trees is introduced. Trees make it possible to represent the nestedness of the mesh in
a hierarchical way, which benefits the multigrid methods and the refinement or derefinement of the mesh.
Leinen in [6] made use of aces in a similar way for the two dimensional case and considered the possibility
of extending to the threedlmensional case. Bey in [3] also relied on this structure and presented an
algorithm for grid refinement which was implemented in the AGM3D software.

In this paper, we present some data structures based on graphs and trees that fit the longest side bisection
algorithms of Rivara. In addition, we consider some properties that let us prove the goodness of these data
structures and the finiteness for that class of algorithms.

2. Longest edge refinement algorithms.
Definitions:
The longest edge bisection of a triangle t is the partition of the triangle by the midpoint of its longest edge
and the opposite vertex. The neighbor of t is the neighboring triangle t* which shares with t the longest
edge oft. We say that a mesh is conforming if any adjacent element (triangle in 2D or tetrahedron in 3D)
share an entire face (3D) or an edge (2D) or a common vertex.

2.1 Forward Longest Edge Bisection
In order to make a grid conforming, the local refinement of a given triangle involves refinement of the
triangle itself and refinement of some of its neighbors. The algorithms bisect a triangle t (thin line in Fig.1)
and its neighbors or the boundary of the domain is reached and so on iteratively until the last two triangles
share the same longest edge. Although may be obvius that the refinement propagation stops, we prove later
the finiteness of the process. The same idea has to be applied in order to conform the set of non-conforming
points generated, (dashed line in Fig. 1) in the inverse of the order in which they were created.

4!&@j?&&4$j&

Fig. 1.ForwardLongest Edge Bisection

We shall call this version of the algorithm the Forward Longest Edge Bisection (FLEB).

2.2 Backward Longest Edge Bisection
In [16] Rivara has introduced an improved version of the algorithm called Backward Longest Edge
Bisection (BLEB).

Longest-Edge Propagation Path (LEPk) defined by Rivara in [17] is art ordered list of all the triangles

{GA,...,G} such that ti is the neighboor triangle of 4.1by the longest edge of ~.l.

Given a triangle, that last version runs the LEPP and it only bisects one or two of the last triangles of the
path. The process is repeated as many times as needed until the original triangle is also bisected.
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(a) 0) (c) (d)

(e)

~fj. 2. Backwad Longest-Edge Bisection of triangle tO

In Fig. 2 the Backward Longest-Edge Bisection has been applied to the original triangulation (Fig. 2a). In
the figure are represented the intermediate meshes while bisection is applied. As an explanation see also the
LEPP of G in each step of the algorithm in the following table.

LEPP(to) Trianglesto be bisected Figure
{W1M3} {t’3} 2.(a)

{b,tl,tz,t~,} {tz,tq,} 2.(b)

{b,tl,t~l} {t,,t~,) 2.(c)

{b,tll ) {Ml } 2.(d)

At tids point, the following remarks are in orde~
Remarks:

1. Both algorithms are equiwdent in the sense that they produce the same refined mesh in the end.
2. In both algorithms, the concept of the Longest-Edge Propagation Path (LEPP) introduced

above has been repeatedly used. In the first one it is used implicitly and in the second one
explicitly.

3. In the first algorithm, FLEB, the assurance of conformity is carried out in each step, however,
in the second one, BLEB, notling must be done because this version guarantees conformity.

4. For both algorithms, a suitable data structure that explicity manages the neighbor-triangle
relation should be used.

5. It is expected that both algorithms stop whatever mesh you use. For this purpose, it is sufficient
to prove that the LEPP is finite in each step and has no loops.

3. Triangle edges classification and the oriented graph.
The algorithms based on the longest-edge of a triangle discussed above have the advantage that the different
possibilities for refining a triangle depend only on determining the longest edge. In general, we can say that
these algorithms classify the edges of each triangle in two types, the longest one, type 1, and the remaining
two edges, type 2. Therefore, it is supposed that this classification can be done so that the algorithms
perform the right job.



. .

Based on this idea, Plaza and Carey in [10] proposed to represent this classification as an oriented graph in
which a vertex of the .gaph represents an edge of the triangle and an edge of the graph between nodes a and
b represents the relation “length of edge x in the triangle is less than length of edge y“. See Fig. 3. In [7],
this classification was used to explain the number of different possible configurations obtained by the 3-
dimensional refinement algorithm proposed in that paper.

4a c

b
El

edge type

a 2

b 2

c 1
>

a

c

Fig.3.TriangIe, edges qpes and associated gmph

This idea can be generalized as follows to the whole mesh.

Definition:
Letrbe any mesh huving a finite number of triangles. For each triangle t in z, we sort the edges

oft as above and then build the on”entedgraph G(V,E) associated to the whole mesh, where:
● V = {V6VI,...,VJ so that vi E V is the vertex on the graph representing an edge of the triangle

in the mesh.
. E = {e~el,...e~} so that ej E E is the edge on the graph representing the relation R between

two vertices belonging to v so that R is “length less than”. That is, e R f if and only $
i) e and f belong to the same tn.angle
ii) length(e) c length@

Fig. 4

Note hovewer tha~ when regular elements appea in the mesh, and since for such elements the longest-edge
is not unique, the associated graph can include undesirable loops. A critical situation is illustrated in Fig. 5
where all the triangles are regulm and as a consequence the classification of the edges in each triangle can
not be carried out.

7’

3

. . . “ . ..



In order to avoid the ambiguousnesscaused by non-unique longest-edges in the pratical implementation of
the Ionges-edge algorithms the following additional convection is used whenever the LEPP(t) is not unique
(due to the existence of elements having non-unique longest-edges) the shortest possible path is selected.

Remark. Let0 be any boundary 2-dimensional domain, with poligonal boundary C and let z be any
unstmctured and conforming tn”angulation of 0 having regular tn”angles.Then, the following conditions
have to be taken into account in building the associated graph of c

1. If a regular triangle t E z is the jirst to be considered in a LEPP of the graph, we convey any
possible relation among the edges.

2. Let ti and tiwlbe two neighbor triangles = z to be considered in a LEPP of the graph, if ti+lis
regular, we make the edges of tifl to point to the shared edge in the associated graph.

(D
a d

tick]

b“ e xa c

e

Fig. 6

Proposition 1.- The previous remark allows us to deal with regular triangles without ambiguity.
Proposition 2.- Let G(~E) be the associated graph of an unstructured and conforming triangulation z
then G does not hold loops.
Prooj5
There are two situations in which loops can occur. The first one arises in meshes like those referred in Prop.
1, Fig. 5. In this case, the way in which the ~gaph is built assures the non-existence of loops (see Prop. 1).
The second situation is as follows:

@a.

Fig. ‘7.Triangulationandsimplifiedassociatedgraphin which a possible loop carI occur.

In which:

I. X={XO,xl, x2, x3,x.} are the commonedges shared by the neighbor triangles c LEPP of G (tI
is the triangle defined by edges c and XO)

II. Length(xl.l)cL.ength(xJ, for i=l ton
In that situation we must prove that x. does not point to c, otherwise there is a loop. It can be obvious in
Flg.7 that Length(c) is less than both Length(x~ and Length(xWI) and so it is impossible that x. or XNI
points to c.
Anyway, let us suppose that there is a loop from x, to c and then we will yield an absurd caused by the

wrong supposition.
If SO,

III. Length(c) > Length(xJ
But we know that

IV. Length(xO) > Length(c)
Then, ffom III and IV we have:

V. Length(xJ > Length(xJ
However, V is not possible because we supposed II. This is due to the supposition in III. Consequently, it
must be:

Length(c) < Length(x~
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and then there are not loops because:
● c and x~+lpoint to x. (if x. is of type 1) Fig. 8.a or
● c and x. point to X.+l(if X,+lis of type 1) Fig. 8.b

(a) @)
Fig. 8

4. A graph data structure
In what follows a data structure based on the graph representation of the mesh is proposed.

Remark. In essence, the goal is to design a data structure that provides the best balance between storage
and computational cost without increasing significantly the code complexity.

Although that data structure could make the bisection process easy and have good features related with the
implementation, we also need another data structure that let us preserve mesh nestedness, in other words,
mesh genealogy. This last requirement benefits refinement or derefinement processes as well as muhigrid
methods, as we pointed out in the introduction. Moreover, we must to have the last remark in mind. Several
solutions have been proposed for that purpose but trees seem suit best, as many authors think Carey et al.
in [4], Leinen in [6] or Bey in [3].

4.1 Modified Adjacency List
A standard data structure to model an oriented graph is the Adjacency List, especially adequate to the case
when few links among the vertices are managed [1], [5]. In such a list, the entire set of vertices in the graph
are arranged as a linked list (see column linked list in Fig. 9.c). It can be noted that instead of using a
linked list for all edges in the mesh, an array can also be used. This benefits the direct access to a given
item, which is not achieved by means of a linked list. However, an additional and fixed cost of storage is
incurred on choosing the array structure. Furthermore, the advantage of a dynamic structure based on links
and pointers is lost. In this paper we choose the first structure (linked list) but it is an open decision, which
depends on the particular implementation.

For each node in the list, a new linked list is associated (see row linked lists in Fig. 9.c). It represents the
vertices adjacent to the fist one. That last adjaceny list is based on triangle edges; and so, we call it Edge
Adjacency List.

~~F

(a) (b) (c)

~lg. 9. (a) An arbitrary wiangle.(b) Graph associated. (c) Adjacency List

Up to now our data structure as well as the graph are based on edges. However, it is desirable to deal with
triangles as implicitly Rhra’s algorithms do. Therefore, we introduce a new list but based on triangles. The
column linked list holdlng the vertices in the graph is preserved. For each vertex in the graph having two
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incident edges, we link a new node, in a row linked Iistj representing the triangle defined by them (see F&.
10). We call this new list Triangle Adjacency List.

~
a

dtc
Fig 10. Tbenew tist basedon triangles.SeeFig.9

It really represents a triangle related with its longest edge, except for the case described in Remarx 2. By
means of that new list for each vertex, we are able to access not only the edges in the triangles but the
triangles in the mesh in a quick and easy way.

Combining now the two lists in only one yield the ModifiedAdjacency List.

Definition:
Let T be an unstructured and conforming triangulation. Let G(KE) be the associated graph
representing a classification based on the tn”angle longest edge except for the case of regular
elements. We introduce the Modified Adjacency List, a data structure that make it possible to
access both edges and tn”anglesas Rivara ’s algorithms need.

Graphically:

w

+

&@-’q
I

4
...

I
I

Izldl
I 4 I 4

Triangles Adjacency Luts Edges Adjacency L*

Fig. 11. MoWied Adjawncy List

Remark:
1. The maximum number of nodes in each of the Edge Adjacency Lists is 2.
2. The maximum number of nodes in each of the Triangle Adjacency Lists is 2.
3. Given an arbitrary edge, the maximum number of nodes in its Edge Adjacency List plus its

Triangle Adjacency List is 2.

Proposition 3.-Let n be the number of edges in a triangulation z then the storage cost needed to store the
Modified Adjacency List is at most 3n.

Proposition 4.- The minimum maintenance cost of Modified Adjacency List holds BLSB and affects only to
five edges (if two triangles are bisected) or three (if one triangle is bisected) in each refinement step.

Remark 5.-The previous proposition ensures the locality of the Modified Adjacency List data structure.
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Proposition S.- Letzbe an unstmctured and conforming triangulation z let ei be one of the three edges of
an arbirrary rriangle $ of -rand ler N be the number of triangles in -z then Rivara’s Ll?PP(tJ can be
obrainedfrom the depth run of rheModijiedAdjacencyLisrfrom ei,with a maximumcost of (Ni-1).

Proposition 6.- Rivara’s algorithms stop in a finite number of sreps.
Proofi
As mentioned in Remark 1.2, Rhmra’s algorithms deal with LEPP in order to make triangles bisections.
Provided that LEPP was always finite, we will ensure the finiteness of algorithms. In fact, LEPP is finite
because G(V,E) does not hold loops (see Proposition 2). An upper bound of items in LEPP is N, where N
is the number of triangles in the mesh.

4.2 Trees to store mesh genealogy.
As pointed out above in section 4, trees appear to be a suitable data structure for representing nestedness in
the mesh. The typical order relation on trees is not assumed, but another one that stands for nestedness.
Therefore, if a triangle tl is subdivided in two, denoted by tlland t12,we can describe that relation as:

level i

Alevel i+l t,, t,

~g. 12. A tree representing a triangle subdivision.

We now study how trees can be adapted for using them in Rivara’s algorithms and generally in algorithms
based on bisection. One desirable restriction to be satisfied by trees is that nodes of a given level have to
represent conforming triangles and only just the subtriangles created in a given level of the refinement.

Look at Fig. 1 related to FLEB and notice that in each level of refinemen~ one given rriangle can be
subdivided in three adlttional triangles. However, if we consider BLEB in Fig. 2, two only subtriangles
appear in each step of the refinement. This let us to think of one data structure based on a ternary tree for
FLEB and a Mary tree for BLEB. Binary trees are well known and have been studied by several authors
[1].

We concentrate on Rivara BLEB’s because it presents the simplest case. The division process of BLEB can ‘
be modelled as a binruy tree like in Fig. 12.

Definitions:
A node on the tree represents one triangle in the mesh and a top down arrow represents a relationship
father-son. A node is said a farher from other one named son if the last is obtainded by the bisection of the
father node. A node is named root if it is the first on the tree. A level on the tree represents just a refinement
level, and it is enumerated like in Fig. 12.

Remark
1.

2.

3.

4.

Leaf nodes on the tree represent non-bisected tiiangles available in the mesh and nonleaf nodes
stand for subdivided triangles.
To model the entire mesh we have to consider as many trees as triangles in the original mesh,
each one having a given root standing for the triangles.
Storing the mesh in this hierarchical way makes it possible to check the refinement level. In this
sense, a well balanced tree means a uniform refined-region.
Provided that triangle sizes in the mesh are similar, trees also offer a way to control mesh
smoothness.
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5. The neighbors of one triangle can be obtained accessing at most 3 different subtrees, which, as
pointed out in Remark 5 for the Modified Adjacency List, also ensures the locr@ of that data

structure.

5. Conclusions

We have reviewed longest-edge algorithms for local refinement of triangular computational meshes and we
have proposed an associated graph structure to provide an efficient framework for implementation of these
~gorit~.

We have focused on Rivara’s algorithms in 2D, Forward and Backward Longest Edge Bisection. Although
a great number of jobs related to algorithms in 2D are known, the data structures involved, which really set
up the kernel of algorithms, have received far less attention.

We think that whatever effort made in that dwection will help building software related to tlis gruelling
field of numerical treatment of partial differential equations, representation of regions or computer graphics.
Moreover, we think that most of ideas shown herein 2D are aplicable to higher dimension.

The idea pointed out by Plaza and Carey in [10] related to a graph representing the edge classification in a
triangle is taken here in order to desiam a new data structure which let us, in an efficient and easy way, run
LEPP in both Forward and Backard Longest Edge Bisection of Rhwa. Furthermore, we consider some
properties that let us prove the goodness of these data structures and the finiteness of that class of
algorithms.

Finally, we briefly describe another data strcuture based on trees which make it possible to store the “
hierarchical way in which the grid is refined or derefined.

Special thanks to Maria Cecilia Rivara for her helpjid suggestions
and kind support in the preparation of this paper.
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Abstract

This work presentsa new approach for automatichexahedralmeshing, based on the embeddedVoronoigraph.
TheembeddedVoronoigraphcontainsthe fullsymbolicinformationof the Voronoidiagramand the medialaxis
of the objec~and a geometric approximationto the real geometry. The embeddedVoronoigraph is used for
decomposingthe objecLwith the guiding principlethat resultingsub-volumesare sweepable.Sub-volumesare
meshedindependently,and the resultingmeshesarecombmedandsmoothedto yieldtie finatmesh.

The approachpresented here is general and automatic. It handles any volume,even if its medirdaxis is
degenerate. The embedded Voronoigraph providescompleteinformationregardingproximityand adjacency
relationshipsbetsveenthe entities of the volume. Hence,decompositionfaces are determinedunambiguously,
withoutany furthergeometriccomputations.The sub-volumescomputedby the rdgorithmare guaranteedto be
well-definedand d~joint. The size of the decompositionis relativelysmall since everysub-volumecontainsa
differentVoronoiface. Meshqualityseemshigh sincethe decompositionavoidsgenerationof sharpangles,and
sweepand otherbasicmethodsare used to meshthesub-volumes.

1 Introduction

Automatic generation of 3-D finite element meshes is essential for the automation of the analysis process. Re-
search and development effort on new meshing algorithms has resulted in several automatic algorithms for 3-D
meshing (see [7] for a recent review). Most of the research has focused on the generation of unstructured tetra-
hedral elements. This has resulted in several successful automatic mesh generation algorithms, which can be
categorized according to the main approaches used Delaunay triangulation [10, 28], octree-based methods [23,2]
and advancing front algorithms [8].

In many situations, hexahedd meshing is more attractive than tetrahedral meshing. The additional require-
ments of hexahedral meshing make the problem more demanding. Numerous approaches have been proposed

and investigated feature-based [13], medkd surface subdivision [17, 18], plastering [3], ~gid-based [19, 24, 26],
whisker weaving [27], etc. As with many difficult problems, each of the proposed solutions possesses both positive
and negative attributes associated with the technique employed.

Several successful approaches were developed for different types of geometries of varying complexity. These
include mappable and sub-mappable volumes [29], volumes meshable by midpoint subdhision [14], swept vol-
umes and uni-axird combinations of swept volumes [4]. The relative success of these methods indicates that a
promising approach towards the general problem is to decompose the volume into parta meshable by existing, well
established techniques. This is the approach taken in [17, 18, 13, 12].

In [17, 18], the decomposition is guided by the medkd axis of the object. The proposed algorithm gives a
template based decomposition, building a template subdhision around each entity of the medial axis (its faces,
edges and vertices). Thk results in an initial hexahedral mesh of the model, which can then be refined to the
desired density.

The use of the medkd surface for the decomposition provides a systematic and generic approach for all possible
geometries. In addition, the decomposition process is directed by the medhl surface, thus avoiding the computation
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of decomposing surfaces and surface intersections. However, the described technique has several drawbacks.
First, because the technique builds a template subdivision around each entity of the medial axis, it results in a
fine subdivision of the model, even for simple cases. For example, for a brick (containing no medial surface
degeneracies) the initial mesh contains 72 elements. Second, the algorithm used for computing the medial axis
[20] is difficult to implement and not provenly correct. Third, for degenerate vertices and edges the suggested use
of midpoint subdivision is likely to lead to poorly shaped elements.

In [13], a feature based decomposition of the object is generated. Features are recognized based on combi-
nations of convex and concave edge loops. An attractive property of this approach is that it follows the intuition
of manual subdivision. The approach is based on the model’s generic shape and is independent of the geometric
parameters. Decomposition is in some sense minimal, because the process stops once the parts are convex or can
be meshed by sweeping. However, the method possesses several drawbacks. Features with interacting geometry
pose a difficult recognition problem. In many cases there are ambiguities when it is not clear which decomposition
the algorithm should choose, and decomposition surfaces can cut each other. The result depends upon the order
of performing the decompositions. The method requires computations of surface-surface intersections. Fhdly,
convex shapes are not decomposed at all, even when both sweep or midpoint are not suitable.

Contribution. This work presents a new approach for automatic hexahedral meshing, based on the embedded
Voronoi graph. The embedded Voronoi graph contains the full symbolic information of the Voronoi diagram and
the medial axis of the object, and a geometric approximation to the real geometry. The embedded Voronoi graph
is used for decomposing the object, with the guiding principle that resulting sub-volumes are sweepable. Sub-
volumes are meshed independently, and the resulting meshes are combined and smoothed to yield the finrd mesh.

The presented approach possesses several advantages: (1) the algorithm for computing the embedded Voronoi
graph is provenly correct, stable and easy to implement (2) the approach is well defined and valid on shapes of any
geometry, including shapes whose medial axis is degenerate and complex convex shapes; (3) the decomposition
is order independent and prevents intersections between decomposition surfaces; (4) the number of sub-volumes
generated is not large; (5) since the dkections and entities involved in each decomposition are defined by the medial
axis, there are no intersection computations; and (6) since a decomposition is used, as opposed to template, there
is only a minimal need for medkd axis geometry.

The main drawback of following the medial axis for the decomposition is that it sometimes can result in over-
decompostion of the volume and often is not intuitive.

The paper is organized as follows. In Section 2 we briefly discuss the definition of the embedded Voronoi
graph. Section 3 gives an overview of our approach. The main step, shape decomposition using the Voronoi graph,
is detailed in Section 4. Generation of the mesh itself is described in Section 5. The application of the algorithm is

demonstrated on several examples in Section 6. Section 7 discusses the advantages and drawbacks of the algorithm
and suggests topics for future work.

2 The EmbeddedVoronoiGraph

In this section we briefly describe the embedded Voronoi graph, which is an approximation of the Voronoi diagram

and the medhd axis of the object. It is used here for decomposing the volume into simple parts. Full details on its
definition and construction are given in [6].

Let Q be a volume. The entities of Q are the vertices, edges and faces of Q. An entity a is incident on an entity
b iff one of the following is true: (1) a is an end vertex of the edge b, (2) a is a vertex of the face b, or (3) a is a

bounding edge of the face b. Two entities a and b are adjacent if they are not incident one on the other, and there is
another entity incident on both of them. For example a face and an edge that share a vertex. A Voronoi region Ra

is the locus of points that are closer to entity a than to any other entity of Q. The boundaries of the Voronoi regions
comprise the Vomnoi diagram of Q, VD(Q). VD(Q) is comprised of Voronoifaces, Voronoi edges, and Voronoi

vertices. The governors of a Voronoi element are its nearest entities. In the non-degenerate diagram, a Voronoi face
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has two governors, a Voronoi edge has three governors, and a Voronoi vertex has four governors. In a degenerate
diagram, edges and vertices can possess more governors. When the faces of the volume are linear, its medial axis

can be easily obtained from the Voronoi diagram by deleting Voronoi faces and edges leading to concave vertices
and edges of the volume. Constructing the medial axis from the Voronoi diagram is more problematic when the

faces of the volume are not linear, since in this case the medial axis might contain elements governed by a single

entity. Such elements do not belong to the Voronoi diagram.

The Voronoi diagram of a volume is attractive as a computational tool for geometric applications [1, 16, 25].
The Voronoi diagram is useful due to several reasons. First, its shape is closely related to the shape of the object,
thus it can serve as a shape analysis tool. Second, it is of lower dimensionality than the object, thus is easier to
deal with. Finally, it explicitly canies proximity information. However, the combination of a complex connectivity

structure and the high algebraic degree of its geometric elements makes the construction of the Voronoi diagram

of a volume a difficult problem.

Etzion et al [6] defined a set of Voronoi skeletons that approximate the Voronoi diagram of a polyhedron, and
provided a simple algorithm to construct them. These skeletons provide information regarding both the symbolic

structure of the Voronoi.dragram and the geometric location of the diagram’s elements. The symbolic structure
of the Voronoi diagram contains the complete connectivity structure of the Voronoi dlagrrun together with the
governing entities of each Voronoi element. This paper uses the embedded Voronoi graph, which is defined below.

1. Voronoi Graph. The Voronoi graph contains all the symbolic information present in the Voronoi diagram,

without containing any geometry. The Voronoi graph is a graph whose nodes correspond to elements of the
Voronoi diagram. Each node corresponds either to a Voronoi vertex, or to a Voronoi edge, or to a Voronoi
face. The label of a node is the set of governors of the corresponding element in the Voronoi diagram.

An arc exists between two nodes of the graph if and only if there is an incidence relationship between the
corresponding elements in the Voronoi diagram.

2. Approximate Voronoi Graph. An approximate Voronoi graph approximates the Voronoi .-ph of Q to a

tolerance of e in the sense that a connected subgraph of the Voronoi graph that lies in a region of space of
size smaller than t is replaced by a singlegraph node. For example, a Voronoi edge whose length is smaller
than c might be represented together with its two vertices by a single graph node. The label of t.lds node
contains the governors of the edge, together with the governors of its vertices.

3. Embedded Voronoi Graph. The embedded Voronoi graph is a Voronoi graph that also provides geometric.
approximation of specific elements of VD(Q). The embedded Voronoi graph of Q with a parameter J is a
Voronoi graph (or approximate Voronoi graph) of Q s.t. some of the nodes of the Voronoi graph carry also a
geometric approximation (of the appropriate type) to the correspondhg element in VD(Q), to an accuracy

of J. For example, a graph node that corresponds to a Voronoi edge, contains a polyline that approximates
the Voronoi edge to an accuracy of 6.

An algorithm for constructing the embedded Voronoi graph of a polyhedron is given in [6]. Initially, a space
subdivision whose cells are labeled according to their proximity to polyhedron entities is constructed. Subse-
quently, information regarding the symbolic structure of VD(Q) is extracted from the subdivision. This informat-
ion includes the Voronoi elements of VD(Q), their governors, and their adjacency relationships. If it is known
that VD(Q) is not degenerate, then the Voronoi graph is constructed. Otherwise a tolerance parameter e is deter-
mined, and the approximate Voronoi graph is constructed. In the final step, a geometric approximation of Voronoi
elements of interest is extracted. Because the algorithm is based on space subdivision, a geometric approximation
of a specific Voronoi element can be computed locally. The most complex geometric operation performed by the
algorithm is intersecting two conic curves. The algorithm is easy to implement and robust. Its convergence and
comectness are proven in [6].

We use the embedded Voronoi graph for decomposing the volume into easily meshable parts. Voronoi faces are
used to identify pairs of volume faces that enclose a sweepable volume. Thus, the exact geometry of the Voronoi



faces is not important, only their existence. The Voronoi graph is sufficient for identifying such faces. The volume

is actually decomposed by surfaces created by projecting Voronoi vertices and edges on their governors. In order
to decide whether a Voronoi element should be projected, only symbolic information is needed, and therefore the
Voronoi graph (or the approximate Voronoi graph) is used. This decision is based on the types of the governors

of the Voronoi element, and on the adjacency relationships between the governors. If a specific Voronoi element
has to be projected, then the geometric location of the element is approximated by the embedded Voronoi graph.
The exact location of the Voronoi element is of little importance, since the projection surfaces are not part of the
final mesh; their only role is to decompose the polyhedron into simple parts. Thus, the embedded Voronoi graph is
suitable for our purposes, and there is no need to compute the exact Voronoi diagraxw which is much more difficult.

3 AlgorithmOverview

In this section a general overview of the meshing algorithm is presented. The algorithm consists of three main
stages: (1) constmction of the embedded Voronoi graph of the object, (2) decomposition of the object into simple

parts, and (3) actual meshing.

Embedded Voronoi Graph. In the first stage of the algorithm, an embedded Voronoi graph of the input volume
is computed (Figure 1(a)). The embedded Voronoi graph displayed in this figure is not symmetric since it gives an
approximation to the location of the Voronoi elements. This approximation is sufficent for the meshing algorithm.
However a finer approximation can be computed if needed. The algorithm for constructing the embedded Voronoi

graph operates on linear polyhedra. Therefore, if the input object is not Iinem, its faces and edges must first be
linearly approximated. During this approximation, for each approximation entity its originating entity is stored.
After an embedded Voronoi graph is computed, the Voronoi entities whose governors are approximation entities
originating from the same model entity are united.

(a) (b) (c) (d)

Figure 1: The stages of the meshing algorithm applied on an ‘C shaped volume: (a) the embedded Voronoi graph;

(b) the decomposition faces, generated by the projection of Voronoi edges and vertices; (c) the decomposition of
the volume into three sub-volumes, showing the decomposition faces after they were merged; (d) the resulting
volume mesh (before smoothing).

Object decomposition. This is the major step of the algorithm. The main observation on which this stage is based
is as follows. Consider a Voronoi face ~ governed by two faces a and b of V, where a and b are not adjacent.
Consider the volume Vab defined by a, b, and the projection of .f to a and b. The volume V& possesses the
following attractive properties:

● V=bis wholly governed by a and b [6], and therefore does not intersect any other entity of the object nor any

other element of its Voronoi diagram
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. Vabdoes not intersect any other volume defined similarly by two faces of the object. Therefore Vabcan be
meshed independently of other sub-volumes.

● Vabis a sweep from a to b, hence can be meshed by a standard method to mesh sweep volumes.

Denote by ~, a Voronoi face governed by two unconnected faces (the ‘s’ subscript stands for ‘sweep’), and by
V. a sub-volume containing a Voronoi face of type ~, . Unfortunately, the union of all volumes of type Vi does

not cover the whole object V. Denote by V. a connected volume with no such face (it is a connected component
of v \ UVJ.

The embedded Voronoi graph of a volume V thus provides a natural decomposition of the volume into simple

pare. V is decomposed into sub-volumes of two types, Vs and V,. The decomposition is achieved by projecting
Voronoi edges that bound faces of type ~, on their respective governors, and creating decomposition faces between

the edges and their projections. These faces are then merged to create the faces separating between the sub-

volumes. Figure l(b) shows the decomposition faces resulting from the projections, and Figure 1(c) shows the

decomposition faces after they were merged.
In Section 4 the decomposition will be defined such that the following requirements are satisfied:

1.

2.

3.

The faces decompose the volume into disjoint sub-volumes, i.e., it is a valid decomposition. This requires
the decomposition to be defined at the Voronoi vertices, so that the decompositions induced by the edges
that meet at the vertex will be connected correctly.

The parts after the decomposition can be meshed by basic algorithms (sweep, mapping or mid-point subdi-
vision): thk includes verifying that the decomposition faces are quadrilaterals, and that the angles between
adjacent decomposition faces and between the decomposition faces and the original volume faces are not
too sharp.

The number of resulting sub-volumes is not large.

The decomposition is performed using virtual topology operators, avoiding the complex computations required
for actual geometric decomposition and allowing the easy removal of the decomposition surfaces later at the
smoothing stage. Virtual topology operators are briefly reviewed in the next section.

Meshing. Finally the volume mesh is constructed by meshing the set of sub-volumes produced by the decomposi-
tion. After the sub-volumes are meshed, the decomposition boundaries are removed and partial meshes are united”
and reassigned to the original volume (13gure l(d)). A smoothing procedure is then applied on the volume mesh
as a whole. The global smoothing relaxes the constraints imposed on the mesh by the geometric positioning of the “
decomposition faces.

The result of the algorithm is a hexahedral mesh of the volume. The decomposition procedure and the mesh
generation that follows are described in detail in the following sections.

4 Volume Decomposition

After the embedded Voronoi graph of the volume is constructed, the volume is decomposed into a set of meshable
sub-volumes, by projecting Voronoi edges that bound faces of type ~S on their respective governors and creating
decomposition faces between the edges and their projections. Below we discuss which edges and vertices of
the Voronoi diagram are of interest for the decomposition and how they should be projected on their respective
governors.

The section is organized as follows. In 4.1 a brief overview is given of the virtwd topology operators used to
perform the editing operations required by the decomposition. Sections 4.2 and 4.3 describe how the projection
of the Voronoi edges and vertices is performed, and demonstrate it on all the combinations of Voronoi edge and

vertex governors that cart occur for non-degenerate Voronoi entities. Section 4.4 explains how the actual volume
decomposition is done using virtual topology operators.
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4.1 Vhtual Topology Operators

To perform the volume decomposition, multiple editing operations are required (projection of Voronoi edges, con-
struction of decomposition faces, splitting of the original model edges, faces and volume, etc.). The geometric
computations required by those operations might add a significant overhead to the meshing procedure. This over-
head is avoided by using the virtual topology tools reviewed here.

The virtual topology enhancement of the standard boundary representation (B-Rep) was introduced in [22]. It
allows a large set of editing operations on the model topology, without changing the actual geometry.

In the standard B-Rep, there is a one-to-one correspondence between topological and geometrical objects,
such that any adjustment of the topology requires changing the geometry as well in order to preserve the unique
correspondence of topology and geometry.

The virtual topology enhances the B-Rep by uncoupling the topology from the geomeuy. In order to do this
in addition to standard real entities, which contain as the description the exact, mathematical definition of the

entity’s geometry, another type of virtual entity is added. The virtual topological entities have no exact geometric
definition of their own; they rely on other topological entities from which the entity geometric description is to be
derived. The structure of this reliance varies depending on the editing operations applied, and the nature of the
topology being edited. The virtual topology operators are particulady suitable for model editing performed for
mesh generation [21].

4.2 Edge Projection

In order to create the volumes, Voronoi edges are projected on their governing entities in V. For each edge the
decision of whether to project it on a specific governor and how to do this projection depends on the type of the
governor entity and on the relations between the governors. As observed above, edges that are of interest for the
decomposition are those that bound Voronoi faces of type f.. These are exactly the edges having at least two
unconnected face governors. Based on the decomposition goal of creating sub-volumes with one face ~S or none,
the decomposition should separate the region governed by ~. from the rest of the volume.

Applying this concept on all types of non-degenerate Voronoi edges (edges governed by three entities in V), we

obtain a finite set of cases described below. This classification is an extension of the one given in [17] for Voronoi
~ges governed o~y by faces. Types [()], [1] and [4 ~e defined as in [17], and include Voronoi edges whose

governors are all faces. Types [Oe]and [le] are defined for Voronoi edges which have vertex or edge governors as
well. The dMferent types of Voronoi edges are defined as follows, and the projection performed for each case is

shown in Figure 2.

[0] An edge with three face governors s.t. no pair of governors shares an edge.

[1] An edge with three face governors s.t. a single pair of governors shares an edge. Here a distinction is made
between the case [1] where the angle along the shared edge is not sharp, and the case [1s] where the angle is
sharp. The distinction between ‘sharp’ and ‘not sharp’ depends on the desired mesh quality.

[2] An edge with three face governors s.t. two pairs of governors share edges.

[le] An edge with two face governors and an edge governor that is incident on one of the face governors.

[Oe] An edge with two face governors and either a vertex governor or an edge governor that is not incident on any
of the face governors. Note that this type contains the cases where a face governor is adjacent to the edge
governor, but does not contain it.

Other Voronoi edges are of no interest for the decomposition, since they are not incident on Voronoi faces
governed by two faces of the volume. An example of such an edge is the edge directly below the concave edge of
the ‘E shape in Figure l(a). This edge is governed by the concave edge and the bottom and right faces of the ‘U.
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Figure 2: Projection of the different types of Voronoi edges. The entities of the volume are

shown in bold lines, and the decomposition faces added are shown in dashed lines.

In order to separate the region governed by a pair of unconnected face governors horn the rest of the model, the
decomposition faces should be added as shown in Figure 2. The intuition behind thk projection is the following.
The simplest approach would be to project the Voronoi edge on all its governing faces (as done for types [0]
and [Oe]), but since we want to reduce the number of decompositions and create simpler volumes, the number
of decomposition faces can often be reduced. Type [2] is the most common type of a volume bound~ region.
For example, in Figure 3(a) all the displayed Voronoi edges are of tiis type. Projection of Voronoi edges of
this types will result in a redundant decomposition. Therefore no projection of these edges is done, and as a
result, the sub-volumes adjacent to these edges are extended towards the boundruy of the volume. In thk case
additional decomposition faces are sometimes added at the vertices of these edges, to guarantee valid sub-volumes
(Section 4.3).

(a) (b) (c) (d)

Figure 3: The stages of the meshing algorithm applied on a tapered brick (used in [17]): (a) the embedded Voronoi
graph of the volum% (b) the decomposition faces as generated by the edges and vertices projection. In this example
the displayed edges are of type [2] and hence the decomposition is performed only at the central vertex, which is
of type [2,2,2,2]; (c) the merged decomposition faces and the two resulting sub-volumes; (d) the final mesh before
smoothing.

For a Voronoi edge of type [1] to separate the two Voronoi faces of interest (e.g. the Voronoi face governed by

the bottom and right faces and the Voronoi face governed by the bottom and left faces), it is sufficient to project the
edge on the bottom face and on the common edge of the two upper faces. However, in case of a Voronoi edge of
type [1s], this will cause the generation of a low quality mesh and hence the decomposition is performed as shown
in Figure 2[1s].

Projection on governors that are not faces does not separate any regions of interest and hence is unnecessary.
However, in the case of a Voronoi edge of type [le], the projection is done on the governing edge and not on the
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governor face containing that edge, to simplify the shape of the region governed by the edge and the second face.
For example, in Figure l(a) the type [le] edges are the one below and the one on the right of the concave edge of
the ‘E shape. The projection can be seen in Figure l(b). The projections on the bounding edges of the face (cases
[1], [le]) are viewed as the projections to the relevant governor face.

The same strategy is extended to degenerate edges (i.e. edges with more than three governor entities) as well.

Clearly in such cases no finite set of governor combinations exists and the edge projection is determined for each
governor face based on its relationship with other governors and their types. The application of the strategy to a
degenerate Voronoi edge is shown in F@re 4. The Voronoi edge has four governors: the two vertical (lOWer)faCt!S

and the two edges on top of them. Thus, it is a kind of a [le] edge, and it is projected on the two governing edges.

Figure ~ Decompositionat&generarevoronoielements.Zh dark line shows the degen-

erate Voronoi edge. The two balls at the endpoints of the edge are the vertices of the edge.

This edge appears at the top of the rod of Figure 7. It hasfour governors: the two vertical
(lower) faces, and the two edges on top of them.

There are two additional types of Voronoi edges that should be considered, although they are not incident on
Voronoi faces of type j..

[3] An edge with three face governors s.t. three pairs of governors share edges.

[C] An edge whose governors share a common vertex. Such edges are not displayed in the figures showing the -
embedded Voronoi graph, in order to make the figures less cluttered.

These Voronoi edges are added as special cases to simplify the treatment of Voronoi vertices shared by them and

some of the edges addressed above, which are quite common. A Voronoi edge of type [3] indicates a sub-volume
that can be meshed by a sweep along the edge. However, in order to simplify the decomposition scheme at the
vertices, such edges are treated as edges of type [0], i.e. they are projected on their face governors. A Voronoi edge
of type [C] is not projected, but it affects the projection performed at its end vertices as described below.

Clearly, the projection of an edge involves the projection of its end vertices onto the same model entity. In
order to decompose the volume using the decomposition along the Voronoi edges, the decomposition has to be
extended at the edge end vertices, either by continuing it towards the volume envelope or by combining it with the

decompositions defined by other Voronoi edges that shwe this vertex. The way this is done is explained in the next
section.

4.3 Handling of Vertices

In order to decompose the volume along Voronoi edges of interest as described above, the decomposition needs to
be defined at the end vertices of the edges.

354



The vertex treatment includes projecting the vertex on its governor entities, based on the desired projection of

the vertex edges on the appropriate governor. Sometimes additional decomposition faces need to be constructed at

a vertex to close gaps in the decomposition defined by the edges.
To prevent creation of triangular faces and volumes and avoid unnecessary decompositions, a vertex is projected

only on a single location on each governor face. For many edge combinations the projections of the edges match
at the vertex with no extra intervention. In the other cases, this involves changing the positions of the end vertex

projections as defined by the edges, and sometimes changing the edge projection as well.
When one of the Voronoi edges emanating horn the vertex was not projected onto the volume, the decom-

position defined by the other edges often needs to be extended towards the volume envelope in order to close
gaps.

Below we explain how these operations are applied to the different types of Voronoi vertices. The Voronoi

vertices considered are vertices that are incident on Voronoi edges of the types enumerated in Section 4.2. Other
vertices are of no interest for the decomposition. The Voronoi vertices are classified according to the Voronoi edges
they are incident on. In the non-degenerate case, every Voronoi vertex is incident on four Voronoi edges.

Consider fist Voronoi vertices all of whose governors are faces. The edges emanating from these vertices
are of one of the following types: [0], [1] ([1s]), [2], [3] or [C]. In this case only a limited number of edge

combinations at a vertex exists [17]; the vertex treatment for each of those is shown in Figure 5. The figure shows
the decomposition faces at each vertex, including the faces created along each Voronoi edge emanating at the
vertex, and the addhional faces, added at the vertex, when necessary. Note that the figure is only for visualization
of the cases; all the geometry shown is schematic and does not have any relationship to the final mesh.

If all the Voronoi edges emanating from the vertex are of types [0], [3] or [1s], then the projection of the vertex
on each governor, as defined by the edge projections, is the same, and no extra adjustments are required. For vertex
with edges of type [1], the projection to governor faces needs to be moved to the common edges shared by the
governors, to avoid the duplicate projection.

If some of the edges are of type [0] (or [3]), and some are of type [1], then a decision should be taken whether
to project the Voronoi vertex according to the [0] (or [3]) edges, or according to the [1] edge. That is, whether to
project the vertex on the face (like in [1s] case), or on the edge of the face (like’in [1] case). In each specific case
(Figure 5) a decision was done as to which option to take s.t. (1) no triangular sub-volumes are created, and (2) no
redundant decompositions are done. If the projection at the vertex has to be handled as a [1s] case, then the edge
projection will also be performed as [1s].

If the set of edges emanating from a Voronoi vertex includes edges of type [2] and [C], then additional decom-

position faces should sometimes be created.
While a Voronoi edge of type [2] is incident on one face of type ~s, an end vertex of such an edge may be

incident on other fs faces, hence addltionrd decomposition at the vertex might.be required to separate the regions
governed by those faces. If such faces exist (the vertex includes [0],[1], or [3] edges, or four [2] edges), then the
decomposition is done as follows. Suppose that an edge of type [2] is governed by faces a, b, c s.t. b is adjacent
to a and c. Then, in order to separate the region of the Voronoi face governed by a and c from the rest of the
volume, additional decomposition faces are generated between a and b, and between c and b. A decomposition
face between a and b is the rectangle v, r=(v), ~ab(?J),~b(~) where v is the Voronoi vertex, and ab is the edge
between faces a and b. The Voronoi diagram of the tapered brick in Figure 3 includes a vertex (the central one) of
type [2222]. Therefore, to separate the regions governed by the two f. faces containing it, closing rectangles are
generated between the four governors of the vertex.

Voronoi edges of type [C] may also require special treatment at their end vertices. Let a, b, c be the faces
governing an edge of type [C]. Since the [C] edge is not projected to its governors, if an edge governed by a and b

(which is attached to the same vertex) is projected to a there will be a gap between the decomposition face added
and the face c. Such gaps can be handled either by moving the projection points to the shared edge ac, or by

creating additional decomposition faces between the vertex and pairs of governors (a and b, a and c, and b and
c). Moving is preferable, since it generates fewer decomposition faces. The decision of which approach to take
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Figm-e 5: Vefiex ~ea~ent for nOn-&genera@Verticeswithface governors. The decomposition faces are shaded.

The Voronoi edges are shown in black. The Voronoi vertex is at the meeting point of the edges. The governor faces

boundaries are dark-green. Note: this is only a schematic visualization of the vertices, with no correspondence to
the actual sizes of the entities involved.
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depends on the type of other edges at the vertex and is shown for each combination in Figure 5.

The treatment of Voronoi vertices with edge or vertex governors is based on the same considerations. We

will not detail all types of Voronoi vertices in this case, but rather demonstrate the vertex treatment on a specific
example. Consider Figure l(a) and (b). The internal part of the Voronoi diagram of the volume contains ten Voronoi
vertices. Four of them (at the four volume comers) are of type [22CC] and hence no projection or decomposition

is performed at them. Two vertices (below the concave edge) are not incident on faces of type .f. and hence no

decomposition is performed at them. The remaining four are symmetric and are governed each by three faces and
an edge. Consider the vertex v governed by the back-right face (a), the front face (b), the concave edge (d) and
the vertical face containing it (c). The Voronoi edge governed by abc is of type [2], the Voronoi edge governed by
acd is of type [le], the Voronoi edge governed by bcd is of type [C], and the edge governed by abd is not incident

on a face of type f~, and hence is not projected anywhere. Based on the edge acd the vertex is projected on a
and d. As described for a vertex containing a [2] type edge (abc), an additional projection is performed on b and
decomposition faces between a and b and b and c are created (the projection on d is viewed as the projection on c
as described above). For the edge bcd to prevent the gaps in projections on b and c/da rectangle between b and c

should be created, but it is already in place.
Voronoi vertices that are degenerate, i.e. vertices with more than four governors, are treated using a similar

strategy. An example is shown in Figure 4. The Voronoi edge has four governors: the two vertical faces and the
two edges between the vertical and the horizontal faces. Each of its vertices is governed also by the front/back
faces of the rod. Therefore each Voronoi vertex has four emanating edges: a degenerate edge projected on the two

governing edges, and edges of type [2] and [C]. Therefore rectangles are added between the governing edges and
the front/back face.

4.4 The Actual Decomposition

After the set of decomposition faces is generated at the edges and vertices of the embedded Voronoi graph, the

original volume needs to be split into a set of volumes using those faces. This part of the decomposition procedure
is demonstrated in the examples in F@res 3 and 1 (b) and (c). This is achieved using the following sequence of
operations:

● An automatic merging procedure is applied on the set of the decomposition faces, uniting sets of faces that

can be united topologically and have no sharp angles between them. An extra constraint that can be added
to simplify the meshing is that faces are not merged if the resulting face is not quadrilateral. For example, in
Figure 3 (b) and (c) for the [2222] type vertex this results in merging the four faces created at the vertex into
a single face.

After the faces are merged, the face edges are merged as well using a similar procedure.

● A connect operation is now applied on the edges of the new faces and the original model, to connect together
coincident edges. For example, in Figure 1(b) and (c) after the generation of the decomposition faces and the
merges, there are two edges (from two decomposition faces) coincident to the concave edge of the model.

Often this procedure includes also t-vertex connection as edges might coincide only partially.

. After all edges are connected, the decomposition faces need to be incorporated into the volume topology,
by splitting the volume edges by decomposition faces vertices lying on them, and then splitting the volume
faces by the appropriate edges.

● Afler all the topological structures are well connected, the volume is split into sub-volumes by the set of
faces.

Note that in Figure l(a) the approximated location of the Voronoi edges and vertices as given by the embedded
Voronoi graph is quite far from their actual location. Therefore three of the decomposition faces are very small



(almost collapse into an edge). However the quality of the decomposition, and as a result, the quality of the mesh,
are not impaired.

Both the construction of the decomposition faces at the Voronoi edges and vertices and all the operations above
me implemented using the appropriate virtual topology operators. ‘J.%isway all the operations are performed only

on the model topology and complex geomernc computations are avoided. Another advantage is that since the
original model geometry remains unchanged, after the set of sub-volumes is meshed the decomposition faces can
be removed, and a smoothing procedure can be applied on the whole volume, without the constraints imposed by
the geometry of the decomposition faces. The whole procedure can be fullY automated.

5 Generationof the Mesh

The mesh of the volume is built by meshing the sub-volumes resulting from the decomposition, and then reassign-
ing the mesh to the origin~ volume and smoothing it. The two stages are described below.

5.1 Meshing the Parts

After the decomposition procedure, two types of sub-volumes are created volumes of type V,, i.e., containing a
single Voronoi face governed by two unconnected faces (~i and .fj ) of the original volume, and volumes of type
V., i.e., containing no such surface.

Volumes of type V. can be meshed by a sweep mesh between ti and fj, since all the side faces between the
two are quadrilateral:

● The faces generated by the decomposition are always quadrilateral.

● Based on the definition of the decomposition procedure, the only faces (partial faces) of the original volume
that can take part in such a volume (besides fi and fj) arefaces sharing a [2] type edge with fi and fj. The
treatment of Voronoi vertices incident on a [2] type edge as described above guarantees that those faces are
also quadrilateral.

The V, type volumes can be classified into two types:

1. Volumes resulting from extending the decomposition surfaces at the Voronoi vertices towards the volume

faces. Such volumes are always hexaAedral, as demonstrated above (Figure 5).

2. Volumes resulting from decomposition along one or more Voronoi edges. From our experience so far such
volumes can be meshed by sweep in the direction of the Voronoi edges. However, a formal study of the
nature of such volumes must still be done.

In the tapered brick example (Figure 3(d)) the two sub-volumes are meshed by sweeping between the governors

of the Voronoi faces present in each. The sub-volume on the left is meshed by sweeping between the front and
back faces, and the volume on the right by sweeping between top and bottom faces.

In the L-shape example (Figure 1(d)) there are two V, type sub-volumes in the two ends of the shape, and a V.

volume at the L-shape comer. The two end sub-volumes axemeshed by sweeping between the governor faces, and
the comer volume is meshed by sweeping in the dwection of the decomposition edges along it.

When meshing the sub-volumes, mesh conformity has to be maintained between the adjacent sub-volumes.
This can be achieved by using an interval assignment algorithm on the set of the sub-volume faces [15].

5.2 Smoothing

After the sub-volumes are meshed, the basic problem of generating a hexahedral mesh of the volume is solved.
However, the restrictions imposed on the mesh by the geometry of the decomposition faces may affect the mesh
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quality. The fact that the computation of the Voronoi diagram geometry is only approximate, also comes into

account, resulting sometimes in non-intuitive positioning of the decomposition, and often in non-symmetric de-

composition of symmetric volumes (F@re 7(d)). Since the constraints imposed on the mesh by the decomposition
are artificial from the user point of view, it would be beneficial to the mesh quality to remove them.

Again, this can be done using virtual operators. The original topology is restored by merging all the entities

split by the decomposition: first the sub-volumes are merged into a single volume, then volume faces split by the

edges of the decomposition faces are merged back, and finally the volume edges split earlier are merged back.
Throughout this procedure the mesh is presemd and is reassigned to the new, merged, entities.

After the original topology is restored, a smoothing procedure can be applied on the mesh of the volume as a

whole, thus improving the mesh quality without the decomposition constraints. There is a variety of techniques for

performing the smoothing including several ‘classic’ ones as reviewedin[11], and more recent ones such as [5].

6 Results

Most of the algorithm has been implemented. The embedded Voronoi graph part is a stand-alone application run-

ning under Unix. The volume decomposition part is implemented using the commercial mesh generator GAMBIT

[9], used for sweeping and mapped meshing of the sub-parts. The implementation of virtual topology in GAM-
BIT was used for the multiple editing and decomposition operations required. The run time of the algorithm is

comparable to other mesh methods.
The full implementation of the algorithm is still underway. Currently it lacks the preproccesing and postproc-

cesing stages. The preproccesing stage includes linearization of non-polyhedral volumes. The postprocessing
stage includes smoothing the volume mesh.

The algorithm is demonstrated on two complex real life examples. The example models include many of the
possible decomposition types described above. The Voronoi diagrams of the models include multiple degenerate
edges and vertices, which the algorithm has no difficulty to handle, since the decomposition approach is generic,
and is not limited to non-degenerate entities.

The first example is shown in Figure 6. The volume is decomposed into eighteen swept volumes: The six
triangular protrusions, the six main faces, and six volumes connecting the main faces. Each of the six triangular
protrusions, and the six main faces, contain a single Voronoi face of type ~,, and therefore a sweep is done between
the faces of the volumes governing the Voronoi face. The six volumes connecting the main faces are swept along
their Voronoi edges. The final mesh is shown in Figure 6(d).

In Figure 7, the volume can not be meshed by sweep or uni-axial combination of sweeps, but requires the
use of either decomposition or generic meshing algorithms. The Voronoi diagram of the volume contains many
degenerate edges and vertices. The degenerate edge at the top of the part is shown in Figure 4. The volume is
decomposed into swept volumes (the six parts of the bottom wheel, and the side parts on the top) and mappable
volumes (F@re 7(c)). The final mesh is shown in Figure 7(d). As can be observed, even without the final
smoothing the mesh quality is very high.

This example shows a drawback of the use of the medial axis for mesh generation: its sensitivity to scaling.
The decomposition faces inside the wheel are redundan~ since the wheel as a whole is a sweepable volume. These
decomposition faces would have been avoided if the wheel had been narrower. In that case, there would have been
a single Voronoi face in the wheel, a face governed by the two sides of the wheel (as occuring in the two sides at

the top of the volume). In this case the whole wheel would have been a single sub-volume in the decomposition.

7 Discussion

In this paper we presented a hexahedral mesh generation algorithm. The algorithm uses the embedded Voronoi
graph of the volume to decompose the volume into simple parts that can be meshed using basic meshing methods.
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The approach presented here is general and automatic. It handles any volume, even if its medial axis is degener-

ate. The embedded Voronoi graph provides complete information regarding proximity and adjacency relationships

between the entities of the volume. Hence, decomposition faces are determined unambiguously, without any fur-

ther geometric computations. The sub-volumes computed by the algorithm are guammteed to be well-defined and

disjoint. The size of the decomposition is relatively small since every sub-volume contains a different Voronoi

face. Mesh quality seems high since the decomposition avoids generation of sharp angles, and sweep and other

basic methods are used to mesh the sub-volumes. The decomposition directions depend on the object and not on
an arbitrary external coordinate system, as in octree-based methods.

Hexahedml 3-D mesh generation using the medial axis has been presented in [17, 18]. The present work builds
upon that work, and uses a classification of Voronoi elements similar to that defined in [17]. The advantages of the
present algorithm over the one of [17, 18] are the following.

I.

2.

3.

The number of pieces created by the present algorithm is much smaller, because the decomposition here is
performed only in order to separate regions governed by faces of type .f. horn regions governed by other
Voronoi diagram faces. For example, a rectangular volume will not be decomposed at all (since it either
contains a single f. face, or in the degenerate case of a cube no faces at all), as opposed to a subdivision into
72 hex sub-volumes given by [17].

The algorithm uses the embedded Voronoi graph instead of the medial axis (or Voronoi dlagrarn) of the
volume. Computing the exact medal axis of a linear polyhedron requires solving systems of tri-variate
quadratic equations, resulting in algorithms that are not robust, difficult to implement, and difficult to prove
correct. The most complex geometric operation performed by the algorithm to construct the embedded
Voronoi graph is intersection of two conic curves. The algorithm is simple to implement, and proven correct.

The information given by the embedded Voronoi graph is sufficient for the present algorithm. The embedded
Voronoi graph gives correct symbolic information; there is no need for exact geometric information, since
the projection faces emanating from Voronoi elements are not part of the final mesh. Their only role is to
decompose the volume into simple parts that are later meshed using basic meshing methods. A smoothing
procedure is then applied to the volume mesh as a whole, making the exact location of the decomposi-
tion faces even less important. This stands in contrast to [17, 18], where exact information of the Voronoi
elements locations and radii is used to define the mesh.

The algorithm handles volumes with a degenerate medial axis. The same strategy is applied to degenerate

and nondegenerate volumes. The determination of decomposition faces is identical, and thus also the de-
composition into sweepable sub-volumes. In [17, 18], in the non-degenerate case each primitive obtained is
one of the 13 types defined, and an appropriate mesh procedure can be applied according to the type of the
primitive. In the degenerate case the method creates primitives that are not part of the existing set. Therefore
a midpoint subdivision is applied to these primitives. However, in the degenerate case there might be many
elements meeting at the primitive center, resulting in poorly shaped elements.

The approach presented in this paper has some drawbacks, whose removal should be investigated in the future.

The most conspicuous drawback is that the medial axis is sensitive to scaling, a fact which can result in over-
decomposition of the volume. For example, in Figure 7 there are two locations where the decomposition faces
obtained are redundant the wheel (which is a sweepable volume i~ a whole), and the two comers at the top. In both
cases a scaling of the volume would eliminate the redundant decomposition faces (perhaps creating new redundant
faces in other places.) Another direction which should be investigated in order to minimize over-decomposition is

a post-processing stage that merges adjacent sub-volumes into larger sweepable volumes.
The algorithm presented in this paper decomposes the volume into sub-volumes that are later meshed by ba-

sic meshing methods. We have shown that most of the sub-volumes are sweepable or hexahedml (Section 5.1).
However, there is one set of sub-volumes that has not been proven to be either sweepable or hexahedral. These are
the sub-volumes of type V, that result from decomposition along one or more Voronoi edges (Section 5.1, item 2).
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From our experience so far, such volumes can be meshed by sweep in the direction of the Voronoi edges. However,
further study should take place to either prove this conjecture or to define further decomposition of such volumes

to ensure that the volumes obtained can be meshed by available basic algorithms.
An important extension to the algorithm presented in thk paper is handling of non-polyhedral volumes. If the

medial axis of the non-polyhedral volume does not include points that have multiple projection points on a single

volume entity, then it probably suffices to implement the procedure described in Section 3 (part 1). This includes

approximating the entities of the volume by linear entities, computing the embedded Voronoi graph of the linear
approximation, and then uniting Voronoi elements that are governed by the same original entities. In order to tackle

the complete domain of non-polyhedral volumes, volumes with Voronoi elements with multiple projection points

on an entity should be handled as well.
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(a)

(c)

(b)

(d)

Figure 6: A meshing example: (a) the initial volume; (b) the embedded Voronoi graph of the model; (c) the
decomposition faces generated based on the embedded Voronoi graph; (d) the final mesh before smoothing.



(a) (b)

(c) (d)

Figure 7: An ad~ltional example (a)the initialvolume; (b) the embecIcied Voronoi graph of the volume; (c) the

decomposition faces generated based on the embedded Voronoi graph; (d) the final mesh before smoothing.
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Reliable Whisker Weaving via Curve Contraction

Nathan T. Folwell and Scott A. Mitchell*

Abstract. WhiskerWeavingis an advancingfront algorithmfor all-hexahedralmeshgeneration.It usesglobal
informationderivedjlom groupingthe meshdual intosurJaces,the STC, to constructthe connectivityof the mesh,
thenpositionsthe nodes ajlerwards. Currentlywe are able to reliably generate he.mhedral meshesfor complicated
geometries and suface meshes. However, the sutface mesh mustbe modijied locally. Ako, in large, highly-
unstructuredmeshes, there are usuallyisolated regions where hex quality ispoor. Reliability has been achieved by
using new, provable curve-contraction algon.thmsto sequence the advancingfront process. We have ako
demonstratedthat sheet moving can remove certain’~pes of invalidconnectivity.

keywords. hexahedra, mesh generation, advancing front, topology, curve contraction

1. Introduction

The finite element method (FEM) is effective for studying a wide variety of physics. Before a FEM analysis can be
performed, however, a mesh of the model must be generated. Of particular interest to Srmdia National Laboratories is
structural mechanics simulations, often coupled with electromagnetism and radiation. For these problems, it is
important that the mesh be conformal, be composed of hexahedra, and have high quality near the boundary. At Sandia,
simulations are often performed on models that are different from typical industrial models; these models often have
hundreds of interlocking parts, surrounded by a potting material whose geometry is the complement of the union of
the other parts. The parts often have simple geometries, but the potting itself has a complex geometry that structured
and semi-structured meshing algorithms have little hope of addressing. Decomposing the potting geometry into simple
pieces is helpful but tedious since automatic decomposition tools are not yet mature. Obtaining a confoxmal mesh is
difficult. Even with careful manual decomposition it is difficult to keep the sweep dwections of 2.5-dimensional
algorithms from colliding. Meshing complex models would be much easier if we had an algorithm for generating
unstructured hexahedral meshes from a fixed bounding surface mesh. We envision that most parts would be meshed
with a (semi-) structured algorithm, and the general meshing tool would address parts where sweep directions collide,
and parts such as the potting that are geometrically complex and have lower qua.hty requirements. Plastering[13] and
Whisker Weaving[23] are two general meshing tools that are being developed by the CUBIT project at Sandia to meet
these requirements.

Both Plastering and Whisker Weaving are based on the advancing front approach, which is motivated by the need to
conform to a fixed surface mesh and for Klghqualhy near the boundruy. Whbout both of these simultaneous
requirements, alternatives abound. In [1][16][17], the medial axis is used to subdhide volumes into simpler subregions
which are then meshed with a structured approach. Mesh qualhy is good, but the mesh doesn’t necessarily conform to
a fixed surface mesh. The octree or grid based approaches used in [18], [19] and [20] start with a regular mesh and
then adapt the outer elements to the boundruy of the volume. A new approach is to recursively insert a layer of hexes
separating the volume into two smaller sub-volumes[3]. Another approach in [14] uses the dual to transform the .~ph
of the surface mesh by placing layers of hexes hugging the boundary. The layer is removed ffom the problem, leaving
a surface mesh with one less dual cycle. Eventually the surface mesh of a single hexahedron is obtained. The
approaches [3], [14], and the current form of Whkker Weaving all concentrate on building the mesh one layer at a
time. The method in [22] relies on pattern recognition, local mesh refinement and coarsening, and variational mesh
smoothing techniques. Plastering advances the front based on geometric trots; for complicated geometry, however, it
has trouble closing the connectivity on the interior of the mesh. Recent results on stopping with a well-shaped left-over
region (void) followed by filling the void with tetrahedral appear promising.[12] [13] [26] In contrast to Plastering,
Whisker Weaving advances the front based on connectivity information inherent to a global grouping of the dual.
Geometric criteria near the boundary are of secondary importance. In thk interim report, we describe how Whisker
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National Laboratories,operatedfor the U.S. DOE undercontractNo. DE-AL04-94AL8500. Sandia is a multiprogram
laboratory operatedby Sandia Corporation,a Lockheed MartinCompany, for theU.S. DOE.
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Weaving is able to reliably generate an all-hexahedral mesh for large and complex geometries. Currently, we must
modi~ the surface mesh. Except for ensuring that the surface mesh has an even number of quadrilaterals, this is non-
fundamental; we have an algorithm on paper for fixed surface meshes, but have not yet implemented it. This algorithm
will probably produce some degenerate hexes called knives. Another drawback is that, despite better algorithms for
removing degenerate connectivity (described here) and improving smoothing [8], the quality of the hexes are often
unacceptable. For example, often isolated hexes have negative Jacobkms. We plan to develop a hex mesh improvement
algorithm based on a set of local connectivity-swapping operations and smoothing, as is commonly done for
triangular[2], tetrahedral[6] and quadrilateral meshes. [7][21]

Given a surface mesh satisfying mild conditions, the existence of a hexahedral mesh conforming to it has been
proven. [5][10][25] We developed our algorithm loosely based on the constructive steps of Mitchell’s proof.[10] The
proof is based on the Spatial Twist Continuum (STC) [15] which is the observation that the dual of a quadrilateral mesh
can be grouped into an arrangement of curves, and the dual of a hexahedral mesh can be grouped into an arrangement
of surfaces; see Figure 1. Conversely, given certain condhions on the arrangements, a curve arrangement dualizes into
a quad mesh and a surface arrangement dualizes into a hex mesh. The problem of extending a quad mesh into a hex
mesh then becomes the problem of extendhqg the arrangement of dual curves into an ammgement of surfaces, and then
fixing the arrangement to ensure that the surfaces dualize to a hex mesh.

Mitchell’s proof [10] states that there exists away to extend dual curves to dual surfaces by simultaneously
maniptdating the topologicrd properties of the curves and extendhg the surfaces into the volume. These topological
operations on the curves reduce the number of intersections among the curves. A curve shrinks to a point and
disappears fkomthe problem when it no longer intersects any other curve. For tiis reason, we refer to the algorithm as
the curve contraction algorithm. This paper describes a new, provably-correct algorithm for camying out this
extension, and our robus~ effective implementation. Cumently we have implemented the curve-contraction algorithm
for simple (not self-intersecting) curves and a local pre-processing algorithm that perturbs the surface quad mesh so
that the dual curves are simple. Mitchell’s proof also describes how to incrementally add surfaces to an arbitmy
arrangement so that it dualizes to a hex mesh. This paper describes our implemented algorithm for these fix-ups that
produces better quality and fewer hexes than the straightforward translation of the proof.

The remainder of the paper is organized according to the flow of the algorithm. In section 2, we recall the STC. In
section 3, we describe how to perturb the surface mesh to remove dual-curve self-intersections. In section 4, we present
the main result of this paper, our new algorithm for creating a surface arrangement by contracting curves. In section .
5, we describe fi-ups for converting thk arrangement to a reasonable mesh. Section 6 gives examples of goodquahty
meshes of small geometies, and badquality meshes of large geomernes. Section 7 describes our plan for overcoming
Whisker Weaving’s current limitations. Conclusions follow in section 8.

2. STC Definitions

Whisker Weaving is based on the SpatiaJ Twist Continuum, STC, the dual of a hex mesh grouped into surfaces or
sheets in general position.[15] Each sheet is dual to a layer of hexes. The intersection of two sheets is a chord, the dual
to a column of hexes. Wtile the mesh is being formed, the dangling end of a chord is a whisker and is dual to a
quadrilateral face on the meshing front. The intersection of three sheets is a verrex, the dual of a hex. See Figure 1. A
quadrilateral surface mesh also has an STC, an arrangement of curves or loops in general position. A loop is defined
by recursively passing from one mesh edge of a quad to the edge opposite i~ until encountering the first edge or the
boundary of the surface mesh. For our purposes, the surface mesh has no gaps and completely encloses the volume,
so all loops will be closed. The intersection of two loops is a point dual to a quadrilateral.

Note that the primal and dual contain the same information, but grouping the dual into the curves and surfaces of the
STC illuminates global information about how a surface mesh constrains the possible interior volume meshes. We
have also found that the STC is a more flexible datastructure than the primal; the STC can generically describe certain
configurations that don’t dualized to a welldefined hex mesh. These configurations are useful as intermediate results,
as they can be fixed later.
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Figure 1.Three hexesand their STC.

3. Modifying the Surface Mesh to Remove Self-Intersections

We now describe how to locally modify the surface mesh so that its loops (dual curves) are simple. This condition is
required by the current implementation of our curve contraction algorithm, section 4, but will be removed soon. The
secondary goals of surface modification are to maintain good qurdity quadrilaterals and to change the surface mesh as
little as possible.

The fact that a loop has a self-intersection is a global property that one usually wouldn’t notice by looking in a small
neighborhood of the self-intersection. self-intersections Mse because of uns~ctured sufiace meshes ~d non-
rectilinear geometry, and are quite common.

The basic operation is collapsing a quadrilateral of self-intersection into two edges; see Figure 2. A pillow (ring of
quaddaterals) is occasionally inserted to improve the edge-valence of nodes or to meet geometric constraints; see
Figure 3. Note that neither of these operations affect the topology of any other loop, so each loop maybe handled in
turn. The algorithm is a greedy heuristic, collapsing the most favorable face of self-intersection in the most favorable
way and recursing on the resultant loop or loops. The algorithm always succeeds in removing self-intersections, but in
models with thin features the surface mesh quality is sometimes poor. We suspect that minimizing the number of
collapses and similar problems are NP-Complete. Another basic operation that maybe useful is opening a face, but we
have not explored this.

‘>.2, . . . .. AI”
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-%
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Figure 2. Twochoicesfor collapsing:The edge-valencemaydiffer,and the loopeither remainsone or splits into two.
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3.1 Basic face-collapsing operation

Consider collapsing a quad into two edges by merging nodes A and C into E as in Figure 2. Let V(X) denote the edge-
valence of ~, the number of edges containing X. The edge-valence of B and D decreases by one, and V(E) = V(A)+
V(C) -2. If the valence of node X becomes 2, then we insert a pillow around each of the nodes that are face-opposite
Z see “Pillowing Doublets...” [11] and Figure 4 center. Similarly, regardless of edge-valence, we pillow if the interior
angle between edges is ne~ly obtuse; see Figure 3 right. AIso, if both A and C lie on curves or vertices and not a

surface, then we must place a pillow around the face before collapsing i~ see Figure 4.

/\

Figure 3. If an angle is nearly obtuse, we pillow all quads attachedto the node opposite the large angle. The angle might be
large due to poor s-moothing or geometricconstraints.

Figure 4. If both merging nodes of a collapsing face don’t lie on a geometric surface, e.g. each lies on a curve, the face must
be pillowed (left) before collapsing (center). Finally,the nodesoppositethe resulting2-valentnodesare pillowed(right).

3.2 Choosing which faces to collapse

Note that each face of self-intersection can be collapsed in two different ways. One way splits the loop L into two, L.l

and”~, and the other way retains one loop; see Figure 2. If the loops splits into two, then points where L1 and ~

intersect are no longer self-intersections and need not be collapsed. Because of thk we typically only have to collapse
a small number of faces, which seems to grow as the cube root of the total number of self-intersections.

We favor collapsing faces such that no pillowing is required among faces that all need or all don’t need pillowing, we
favor collapsing a face if the resultant nodes have edge-valence closer to A see [2]. Also, since collapsing a face such
that the loop splits into two avoids having to collapse certain other faces, we favor a face if collapsing those other faces
would have resulted in edge-valence far from 4. We conclude this section with a dMicult example, F@re 5.

4. Creating Surface Arrangements by Contracting Simple Curves

Whisker Weaving is based on constructing an arrangement of sheets (STC surfaces) dual to layers of hexes, by
iteratively performing basic weaving operations which are local. Previously, Whkker Weaving relied on a slate lisl
[23] similar to a first-in first-out queue to determine the order in which weaving operations should be tried. Herein we
describe an alternative approach that has proven to be more reliable for larger problems. It is based on the observation
that contracting a curve to a point on a shrinking sphere sweeps out a surface behind it inside the ball.[10] For Whisker
Weaving, the initial curves are loops of the surface-mesh STC, and the swept out surfaces are the sheets of the hex-
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Figure 5. The unfolded surface mesh of a cube with imprintedcircles.Left is the initirdsurfacemesh,and right is after col-
lapsingloopself-intemectionsand pillowing.In the initialsurfacemeshtheream a total of six surfaceloops.Two of .rhesesix
loopspassthroughevery quad, which is typicalof unstructuredmeshes.The thii regionsaroundrhecirclesmakethis is a dif-
ficultexamplefor our algorithm.Of the 272initialquads,90 are self-intersections.Collapsingjust 16quadsremovedall self-
intersections,and pillowingadded 108quads.

mesh STC. A shrinking curve is dual to the advancing fron~ as a curve is shrunk, or passed over by another shrinking
curve, hex-duals are created the as front is advanced. Here we are only interested in the topological description of a
shee~ namely the chords and vertices of intersection with other sheets, and not its geometric embedding.

Whisker Weaving chooses a curve to shrink and decides whether to shrink it to the left or right then stinks it
completely. This is repeated until all curves are shrunk. Shrinking a curve is accomplished by collapsing cells on its
boundary until no cell remains. Collapsing a cell means moving the curve so that no point of the cell is inside (to the
right of) the curve any longer. Each cell is collapsed by a combkation of three weaving operations. Both the state list
and the curve contraction implementation rely on local connectivity rules not only to determine if a desired weaving
operation will result in a reasonable mesh, but to automatically seam together parts of the front (the join operation
below) and to resolve certain other degeneracies. In Figure 6, we have provided a simple example illustrating the flavor
of the algorithm. A cross passes a curve over an intersection poirm A join removes the empty overlap between two
curves. Cross andjoin are defined more folly in section 4.1.

4.1 Curve Contraction Algorithm

Weaving Operations. We use three basic weaving operations in our curve shrinking algoriti, see Figure 7. In the
following description we use the terminology introduced in [23] and outlined in section 2. The first operation, used for
collapsing a cell of size two, is ajoin. In the STC, it corresponds to joining the whiskers (dangling ends) of two chords
together to make one chord. In the primal, it corresponds to seaming two faces of neighboring hexes together into one
face. The second operation, used for collapsing a cell of size three, is a cross. In the STC, it corresponds to extending
a sheet so that it crosses the chord of intersection of two other sheets. In the primal, across corresponds to adding a
hex containing three faces of the meshing front which pairwise share edges. The third operation, used for collapsing
cells of size four or more, is a blind chordformation. In the STC it corresponds to extending a sheet so that it crosses
a locally parallel sheet along a third sheet intersecting the previous two. The chord of intersection between these sheets
does not start at a surface mesh face and is completely interior to the volume so it is called blind. In the primal, it simply
corresponds to addhg a hex that contains only two faces of the meshing front that share an edge.

Cell Collapsing. Given an oriented curve segment horn point a to point b, we can use the basic operations to deform
the segment in such a way that one of the cells neighboring the segment is collapsed.The convention we shall use is
that of always collapsing to the right of the oriented segment. Recall that collapsing a cell means moving the curve so
that no point of the cell is still to the right of the curve. Repeated cell collapsing will shrink a curve. Define a cell to
be the segments of the points a, b and 1,...,k as in Figure 8 left. Collapsing the cell with points a, b, 1,..., k is
accomplished by k -1 blind chord formations followed by across operation as in Figure 8 right. The running time of
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Figure 6. A simple example illustratingthecurve collapsing algorirhm.The grey curve is orientedclockwise.

Figure 7. The threebasic weaving operationsused in curve contraction: join, cross and blind chord formation.

collapsing is linear in the size of the cell; each weaving operation is constant time, and collapsing takes k operations
for a k+2 sided cell and 1 operation for a 2 sided cell. (1 sided cells do not arise with simple curves.)

a cell of size k+2 Step I: 1st MM Step 2: 2nd blind Step k-1:before .--after cross.
before collapsing chord fomlation chord formation cross... Cell collapsed.

Figure 8. An example of collapsing a k+2 sided cell. Startingon the left of the figureandworkingto the right, we performk-
1blindchord formationsand finishwith a crossoperation.

Shrinking a curve. An oriented curve can be shrunk by a sequence of cell collapses. Shrinking a curve will succeed
reg~~ess of the order in which cells me collapsed.However,inpractice,bettermeshesresultif we shrink the smaller

cells first. Our approach is to begin by first traversing once about the curve to find a cell C with the fewest number of
sides S. We then collapse C. We back-up one cell, then continue traversing forward. Whenever we encounter a cell of
size S or smaller we collapse it. If we traverse all of the way around the curve without collapsing a cell, then S is
increased. Eventually all cells are collapsed and the curve shrinks to a point that does not intersect any other curve.
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Recall Figure 6 provides a simple example. The reason that we back-up is that collapsing a cell reduces the size of the
cells to either side; see Figure 9.

cell collapse

size3

Figure 9. Cotiapsing a cell reduces the size of the neighboring cells by one.

To avoid forming self-intersections, we will not collapse a cell if the shrinking curve forms two or more of its sides;
see Figure 10 for a simple example.

Figure 10. An exampleof a cell where the shrinkingcurve forms two sides.Collapsingthe cell with points Ab,l,2 would
causea self-intersectionas shownon the ngh~ and doesnot leadto progress.Hence,we do not shrink such cells.

The curve shrinking algorithm provably eliminates a curve from the front. (The local rules may prevent our
implementation horn achieving this, however. Section 4.2 describes how we overcome this.) Collapsing a cell of size
k yields one of two forms of progress. First, if k is 3 or greater, then collapsing the cell reduces the number of
intersection points inside the curve by k-2. Second, if k is 2, then collapsing the cell performs a join which reduces the
number of points on the curve by 2.

As implemented, the running time of shrinking a single curve is O(n Smm)where n is the number of intersection points

OnOrtOthe right Ofthe CUIVe>and ~max iS tie maxiIINJm cell size; for each cell size, we maY have to traverse once
about the curve, which is always O(n). Also, each point to the right of the curve is moved to the left of the curve by a
weaving operation in constant time. In practice S- is small, usually less than 20. A single curve could consist of all

the points on the front, so n could be large, but by amortizing over all curves this is not a problem. If we shrunk cells
as they were encountered regardless of size, then the algorithm would take time O(n). Ehher way, the number of hexes
created is equal to the number of points to the right of the curve, up to modification by the local rules.

Choosing which curve to collapse. Repeatedly applying the curve shrinking algorithm to each curve on the front
creates a complete STC. On paper, the algorithm will succeed regardless of the order in which curves are shrunk. In
practice, the best order is by increasing weight (defined below). The weights of all curves is computed, then the curves
are $mmk in that order. The running time of the curve shrinking algorithm as implemented is O(NSmm + en), where

c is the number of curves, n is the number of points on the front, and N = O(cn) is the number of hexes generated.

Each oriented curve has two weights, conesponding to shrinking it to the leji (from the equator towards the north pole)
or right (from the equator towards the south pole). Let nw denote the number of points to the right of the curve, nlPthe

number of points to the left of the curve and nPCthe number of points on the curve. The left-weight is defined as Wl=

nlp+ npcand the right-weight as w- nw +npC.We currently know no better way to compute these weights than the
straightforward method which takes O(cn) steps, where c is the number of curves and n is the number of points on the
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front. Note that for a rectangular parallelepipedswith a regular surface mesh, shrinking in order of our weights produces
a regular hexahedral mesh. In practice, our shrinking order produces a small mesh compared to other shrinking orders.

4.2 Blending Curve Shrinking with Local Rules

The curve shrinking algorithm forms a weave without directly considering the geometry or connectivity of the hexes
formed. Within Whisker Weaving there is a set of local rules[24] that prevent hexes from being formed that violate
certain geomernc and connectivity constraints, and also automatically perform basic weaving operations to fix certain
configurations. For example, before forming a hex next to the boundary of the model, one local rule requires that there
must be a certain angle between the corresponding two or three faces. We have blended these local rules into the
decision structure of the curve shrinking algorithm to increase mesh quality.

In the blended algorithm, curve shrinking chooses a weaving operation, and passes it to the local rules. If the operation
is consistent with the local rules, it is performed. Otherwise, it is kicked back to the curve shrinking algorithm, the
current cell being collapsed is returned to its initial state and curve shrinking moves on to another cell. Also, local rules
automatically remove degenerate hexes such as two hexes sharing two edges, and join chords; this can cause .radical
changes in the curve being shrunk. This turns the provable algorithm into a reliable heuristic that produces abetter
arrangement of surfaces than the pure algorithm.

There are two sets of local rules. The first set is geometry rules, which only applies to hexes being formed on the
geometric boundary of the model. The second set is connectivity rules, which applies universally, and prevents two
hexes from sharing three faces and the like. We first attempt to weave with both sets of rules on. If we get stuck, we
turn the geometry rules off, remove the partially completed weave, and start weaving over. If we still get stuck, we
turn the connectivity rules off and restart. It is usually necessary to turn the geometry rules off in order to complete the
weave, but rarely necessmy to turn the comectivity rules off.

A suuctured mesh has eight hexes attached to each node. In a Whisker Weaving mesh, one cause of poor mesh quality
is high valence nodes - nodes with high numbers of hexes attached. We treat high valence nodes much the same way
as we meat local degeneracies, by a type of Iocal ruIe that attempts to avoid forming them. While choosing which cell
to collapse, we check the size of the cell and the size of the polyhedra behind the cell. This corresponds to taking a
node on the front and checking the number of attached faces on the front and the number of attached hexes behind the
front. If the sum of these two values is above a certain threshold, we collapse that cell next. This buries the node behind
the front, preventing the number of hexes attached from increasing.

5. Converting a Surface Arrangement to a Well-Defined Hex Mesh.

5.1 Removing Degeneracies by Pillowing

Mitchell’s [10] existence proof enumerates the possible degeneracies that would keep an arrangement of surfaces from
dualizing to a welldefined hexahedral mesh. There are three types of degeneracies possible. The f~st is through-cells:
the arrangement does not resolve distinct portions of the surface mesh. For example, normally a 3-cell contains at most
one 2-cell of the surface mesh. [fit contains one, then the dual node of that 3-cell is actually the surface mesh node of
that 2-cell. If it contains more than one, it is dual to all of those nodes. One interpretation is that in order to realize the
mesh, we must first collapse the surface mesh nodes; see F@re 11 for a twodimensional example.

The second degeneracy is non-simplicial meets: the intersection of two cells is non-simplicial. That is, the two cells
share hvo or more maximal sub-cells. E.g. two 3-cells sharing two distinct 2-cells is dual to two nodes being connected
by two distinct edges.

The third degeneracy is non-distinct sup-cells: the cells containing a cell are not distinct. A vertex should be in eight
distinct 3-cells, twelve distinct 2-cells, and six distinct l-cells (STC-edges). Similarly for STC-edges and 2-cells. E.g.
if a vertex lies in only seven 3-ceils, then the dual hex has only 7 distinct nodes.
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Figure 11.LefLan STCwith through-cellsdualizesto a meshthatconformsto a collapsedversionof the boundingmesh:the
2-cellC2is dual to bothnodesx and y, and l-cell c1is dual to bothedgese aodjt Right,addingpillow-sheetsremovesthis,but
adds manyelements.

Mitchell [10] also gives a provable construction for removing these degeneracies. However, the straight-forward
implementation of that would lead to many more hexes than is necessary, and poorer quality. Our algorithm is as
follows. F@ we remove through-cells. We remove through-2-cells and any adjoining through-3-cells and through-
I-cells by sheet moving; see section 5.2. Rarely we have a through-3-cell that is not part of any through-2-cell. These
are removed by inserting apillow-stiet, a new surface that surrounds all non-surface vertices of the through-3-cell, as
in Figure 11 right.

Second, geometric checks are done on the STC-vertices connected to the surface mesh. If any vertex is durd to a hex
with two or more surface-mesh quads that make a large dihedral angle, we insert a pillow-sheet that puts a boundary
layer around the surface mesh. This pillowing is almost always needed if the geometry rules were turned off during
weaving. We have experimented with adding a pillow-sheet surrounding just a neighborhood of the vertex, but in
practice these sheets are nearly as large as the complete boundary layer and have poorer quality.

Third, we remove non-simplicial meets by pillowing the non-simplicial intersection. For each vertex, we traverse the
attached l-cells, checking that each pair has only the vertex in common. If a pair has two common vertices, we add
each vertex to a list of vertices to pillow. Each vertex must be in separate pillows, since a pillow around both vertices
will not remove the degeneracy. Similarly, we traverse the attached 2-cells. If any 2-cell pair has more than an edge in
common, then we collect the vertices of intersection for later pillowing. We collect maximal components that are edge-
connected by edges shared by both 2-cells; each components must be in a separate pillow. If any attached 3-cells have
more than a 2-cell in common, we gather their intersection for later pillowing. After aIl these checks for the vertex, we
pillow maximal sets of vertices that need not be kept separate, then proceed to the next vertex. Occasionally thk fails,
and we fall back on the provable algorithm of pillowing non-simplicial meets one-by-one as they are encountered.

Fourth, we remove non-distinct sup-cells. This is rarely necessary, usually just in cases where we had to pillow non-
simplicial meets one by one. For each vertex, we gather its 3-cells. We pillow vertices appeaxing more than once in a
single 3-cell.

5.2 Sheet moving for through-cells

A through-2-cell can be removed by inserting a pillow sheet surrounding all of its non-surface vertices. However, when
there is a boundary-fhrouglz-3-cell, moving the 2-cell so that it is cut by other sheets removes the degeneracy and
produces fewer hexes and a better quality mesh; see Figure 12.

e-cord-mov
Figure 12.A two-dimensionalexampleof sheet-moving(chord-moving)to removethrough-cells bc2is a boundary-through-
2-ceil.Wemovec1so that it goes aroundthe verticesof Cz,whereC2is thenon-boundarythrough-2-celladjacentto cl.
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Consider the 3-cells on either side of the through-2-ceil. Typically, one of these cells is a boundaV-through-3-celL all
of its vertices are either on the surface mesh or on the through-2-cell. If not, then we must resort to pillowing.
Otherwise, we move the sheet containing the through-2-cell so that it surrounds the vertices of the other, non-boundary
through-3-cell. In practice, there is usually a series of through-2-cells on a sheet, and we move all of these
simultaneously. Occasionally a through-2-cell will pass over another. We can detect which is farther from the surface
mesh, and move that one first.

6. Examples

The following small examples are good-quality, totally automatic Whkker Weaving meshes of real-world parts. While
small, these parts exhibit true 3D characteq to mesh these parts with a sweeping-type algorithm would require
decomposing the geometry by hand, which is quite dit%cult in some cases.

Fbzure 13.Left Twoviewsof the bent-~iueexample.It has 130hexesand the scaledjacobianrangesfrom0.54to 0.93.In the
onyginalmodel, the ftat faces of the pipe-are next to sweepable parts. Right Two views of a complicated nugget in a large
model, courtesy of Clay Fulcher. It has499 elements. The scaledjacobkmrangesfrom0.12 to 0.99.

Figure 14. LefC Two views of the macaroni. It has 320 elements and the scaled jacobian runs from 0.26 to 0.95. RighL Two
views of a single component of a metal grain. It has 173 elements. The scaled jacobkm runs from 0.18 to 0.8.

.

Figure 15.LefEtwoviewsof a non-sweepablegeome~. It has 1320elementsand thescaledjacobianrunsfrom0.18 to 0.98.
Right Twoviewsof the bathtubcourtesyof Ford. It has 1041elementsand the scaledjacobiarrruns from0.001to 0.99.



The following are Whisker Weaving meshes of large, complex surface meshes and geometries. Typically 2% to 5%
of the hexes have negative jacobians at nodes, making them unusable for most F’EMs.Despite this, we feel these
examples demonstrate proof-of-concept

Figure 16.A viewof a blowergeometrycomplementsof RickGarcia.It has 105,999elementsand 575 negativejacobians.

Figure 17. A singleviewof anothercomponentof a metalgrain.It has 240,724 elementsand 33 negativejacobians.



Figure 18.A view of a throw arm for a crank shafL courtesy of Ford. It has 622,209 hexes and 15,652 negative jacobians.

7. Extensions: Contracting Self-intersecting Curves, Non-ball Geometry.

We have algorithms for handling the self-intersection case using basic weaving operations. These are currently only

worked out on paper, but appear to require not much more effort to implement than the simple curve shrinking
~gon~m. pro~ess is measured by reducing tie number of self-intersections. After all self-intersections are removed,

the simple curve contraction algorithm takes over. Note that the problem of simpli~ing self-intersecting polygonal

curves has been considered in a computational setting. [9][27] However, these approaches concentrate on the geometry

of the shrinking. In our case, we are interested in the topological events of the shrinking, e.g. keeping the number of

events to a minimum, and, except for the initial surface-mesh loop, we have no geometry for the sheets.

We also have various algorithms on paper for reducing non-ball geometries to a small collection of meshable ball-type

geometries. These algorithms have various degrees of efficiency, sophistication and provable properties. Some are

geometric and some are purely topological. The common theme is to cut the handles of the geometry until only balls

remain.
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We are dso focused on overcoming the quality problem. We wish to post-process the mesh by optimizing the position
of nodes in tandem with improving connectivity regularity, as is commonly done in triangular, tetrahedral, and
quacldateralmeshing. This requires research in mesh positioning, namely weighted and boundary-term smoothing.
This also requires research on hex mesh connectivity swapping. Currently, poor quality concentrates around nodes
with too many or too few hexes attached, where we want to swap hexes between nodes. Few swapping operations are
known for hexahedral meshes, unlike for tetrahedral meshes. We plan to develop swap operations using the global
information provided by the STC. The key difficulties are finding swapping operations that are local and do not affect
the surface mesh, and finding a complete set of operations. We have had some preliminary success by moving dual
surfaces for a special case which occurs near the bounding surface mesh; see section 5.2.

8. Conclusions

We have presented algorithms for contracting curves. These guide Whisker Weaving’s basic operations and provide
provable hexahedral mesh generation on paper. We have implemented a local pre-processing algorithm that perturbs
the surface quad mesh so that the dual curves are simple. We have implemented the simple-curve version of curve-
contraction, blended it with local geometry and connectivity rules, and implemented heuristics to improve the STC
surface arrangement so that it dudlzes to a hexahedral mesh. The result is that, given the freedom to perturb the surface
mesh, we can reliably generate a hexahedral mesh conforming to the surface mesh. The hex meshes often have
unacceptable quality in isolated regions, and our current research is focussed on overcoming this problem.

We are also currently extending our implementation to weave from a fixed surface mesh whose dual curves maybe
non-simple. The extension appears straight-forward. Unfortunately, surface-mesh quads where dual loops self-
intersect are closely related to the formation of degenerate hexes called knives inside the volume. Knifes appear to be
acceptable FEM elements, [4] but it would be better to avoid them. On paper tilves are avoidable if the surface mesh
has an even number of quads, but it is unclear if there are practical ways to avoid or remove all knives.
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Hexahedral Mesh Generation by Successive Dual Cycle Elimination

Matthias Muller–Hannemann*

Technische Universitat Berlin

Abstract

We propose a new method for constructing all-hexahedral finke element meshw. The core of our
method is to build up a compatible combinatorial cell complex of hexahedra for a solid body which is
topologically a ball and for which a quadrilateral surface mesh of a certain structure is prescribed. The
step-wise creation of the hex complex is guided by the cycle structure of the combinatorial dual of the
surface mesh. Our method transforms the graph of the surface mesh iteratively by changing the dual
cycle structure until we get the surface mesh of a single hexahedron. Starting with a single hexahedron
and reversing the order of the graph transformations, each transformation step can be interpreted as
adding one or more hexahedra to the so far created hex complex.

Given an arbitrary solid. body, we first decompose it into simpler subdomains equivalent to topological
balls by adding virtual 2-manifolds. Second, we determine a compatible quadrilateral surface mesh for
all created subdomains. Then, in the main part we can use the core routine to build up a hex complex
for each subdomain independently. The embedding and smoothing of the combinatorial mesh(es) finishes
the mesh generation process.

First results obtained for complex geometries are encouraging.

Keywords. Hexahedral mesh generation, quadrilateral surface meshing, combinatorial dual, hex com-
plex, planar graphs, cycle elimination

1 Introduction

Global competition has led to an increasing demand to reduce the development time for new products. One
step in this direction would be a more efficient computer simulation of the technical properties of prototypes
for such products.. The filte element method has been successfully applied by engineers for many years in
simulations. But such a method needs a tool as a prerequisite which converts a CAD model into a finite
element mesh model suitable for a numerical analysis.

Therefore, various algorithms for the generation of meshes have been developed, mostly decomposing
surfaces into triangles and solid bodies into tetrahedral, for surveys see [BE95, BP97]. In many applications,
however, quadrilateral and hexahedral meshes have numerical advantages. The potential savings gained from
an all-hexahedral meshing tool compared to an analysis based on tetrahedral meshing may be enormous
(with estimations in the range of 75% time and cost reductions [TC97]). On the other hand, the generation
of hexahedral meshes turns out to be much more complex than for tetrahedral meshes. Recent years showed
many research efforts and brought up several approaches, but up to now, hexahedral mesh generation for an
arbitrary 3D solid is still a challenge.

“Technieche Universitiit Berlin, Fa.chbereich Mathematik, Sekr. MA 6-1, StraOe des 17. Juni 136, D 10623 Berlin, Germany,
e-mail: mhannema@math.tu-berlin .de; UB,L: http: //www.math.tu-berlin.de/ ‘mhannema.
The author was partially supported by the special program “Efficient Algorithms for Discrete Problems and Their Applications”
of the Deutsche Forschungsgemeinschaft (DFG) under grant Mo 446/2-3.



In this paper, we propose a new method for all-hexahedral mesh generation which mainly exploits com-
binatorial properties of such a mesh.

Geometric vs. combinatorial meshes. We distinguish between geometric and combinatorial meshes.
A geometric mesh is a partition of some given domain into subdomains, in our context into hexahedra,
i. e. regions combinatorially equivalent to cubes. In contrast, a combinatorial hexahedral mesh, is only a
decomposition of the given domain into an abstract (cell) complex of combinatorial cubes but without an
explicit embedding into space.

Thurston [Thu93] and Mitchell [Mit96] independently characterized the quadrilateral surface meshes which
can be extended to hexahedral meshes. They showed that for a volume which is topologically a ball and which
is equipped with an all-quadrilateral surface mesh, there exists a combinatorial hexahedral mesh without fur-
ther boundary subdivision if and only if the number of quachilaterals is even. Furthermore, Eppstein [EPP96]
used this existence result and proved that a linear number of hexahedra (in the number of quachilaterals) are
su.fEcient in such cases. Unfortunately, all these results axe non-constructive and it remains unclear whether
they can be extended to constru~tive methods for geometric meshes. There are quite simple solids with nat-
ural looking quadrilateral surface meshes, for example the quadratic pyramid problem of Schneider [Sch95],
where only rather complicated combinatorial meshes are known, but no geometric mesh with am acceptable
quaWy is available.

Previous work. We briefly review approaches to hexahedral mesh generation. For a more complete survey,
online information and data bases on meshmg literature see [Sch] and [Owe].

Most commercial systems rely on a mapping approach where the domain must be divided into simple
shapes which are meshed separately. For example, isopararnetric mapping [C082] is a method for generating
hexahedral meshes which is robust for block-type geometries, but does not work well for more complicated
general volumes. Various techniques based on object feature recognition have been developed to automize the
subdiv~lon of an object into simpler pm-ts. Virtual decomposition [WMBS95] separates the volume into map-
pable subvolumes by the creation of virtual surfaces (2-mzmifolds) inside the volume. Another method uses
the medial axis of a surface and mid~oint subdivision ~AS95, P.A97]. Compatibility between adjacent subre-
gions and mesh density is then modelled within an integer progr amming formulation [LMA95]. Unfortunately,
solving such integer programming problems is NP-hard, even for quadrilateral surface meshes [MMW97], and
such models often rely on a very restricted set of meshmg primitives, so-called templates.

Grid-based [Sch96] and octree-based [SRW96] methods start with a perfect grid which is then adapted to
the object’s boundary by an isomorphism technique. The adaption step is difficult and often leads to badly
shaped hexahedra near the boundary.

Meshing from the bounding surface inward is preferred for three reasons. First, for many analysis purposes,
it is essential to have the same surface mesh on the common boundary of adjacent solids. Second, good mesh
quahty is often more important near the boundmy of a solid than deep inside a volume. Thud, dividing the
domain into many smaller regions aJlows parallel mesh generation whkh may be crucial for some large-scale
applications.

Plastering [Can92, BM93] is an advancing front based method which starts from a quadrilateral surface
mesh. It maintains throughout the algorithm the meshing front, that is a set of quadrilateral faces which
represent the boundary of the region(s) yet to be meshed. The plasterer selects iteratively one or more
quadrilaterals from the front, attaches a new hexdedron to them, and updates the front until the volume is
completely meshed.

Whisker weaving [TBM96, TM95] also meshes from a quadrilateral surface mesh inward. But in contrast to
plastering it first builds the combinatorial dual of a mesh and constructs the primal mesh and its embedding
only afterwards. This method is based on the so-called spatial twist continuum (STC). The STC is an
interpretation of the geometric dual of a hexahedral mesh as an arrangement of surfaces, the sheets. More
precisely, the mesh dual is the cell complex induced by the intersection of the sheets. A fundamental data
structure for an STC is a sheet diagram which represents the crossings of one sheet with other sheets. Whisker
weaving starts with incomplete sheet diagrams based on the surface mesh. It seeks to complete the sheet
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diagrams by a set of rules which determine the local connectivity of the mesh. The creation of invalid mesh
connectivity has been observed in the plastering and whisker weaving algorithms. Heuristic strategies have
been developed to resolve such invalkiities [TM95].

We finally mention that some methods relax the meshmg problem by allowing mixed elements, that is
they try to mesh with mostly hexahedra, but include tetrahedral [TC97], or pyramids and wedges [Min97],
as well.

A new approach. Wesupposethat a solidbody is describedby polygonalsurfacepatches. For the reasons
given above,the new approachpresentedin this paper usesan all-quatillateral surfacemeshas a starting
point. But beforedoingthe surfacemeshing,wefirst decomposea complexgeometryinto simplersubregions
by adding internal 2-manifolds. Our method only requiresthat these subregionsare topologicalballs (to
avoiddMcultieswith holesand voids). It is not necessary,althoughdesirable,that theseregionsare ‘(almost
convex.” Askingfor a subdivisioninto convexregionsin the usualmathematical sensewouldbe too strict, as
otherwisetherewouldbe no subdivisioninto finitelymanyregionsforconcavesurfaces.So,roughlyspeaking,
we mean by almost convtm that a region should not deviate tiom a convex region by too much.

The insertion of additional internal 2-manifolds creates branching, i. e. edges which belong to more than
two polygonal patches. All-quadrilateral surface meshing in the presence of branching can be achieved by
fist solving a system of linear equations over GF(2), and then using a network flows ~H97] or an advancing

front based method like paving [BS91].
Because of the dficulties indicated by the pyramid example, our approach does not attempt to extend

any quadrilateral surface mesh to a hexahedral volume mesh. It seems that self-intersecting cycles in the dual
of the surface mesh are the main source for these dii%culties. It is a disadvantage of advancing front based
methods that they usually generate many such cycles. In contrast, our network flow based mesher [MH97]

tends to produce very regular meshes with only few se~-intersecting cycles. To get rid of the remaining
self-intersecting cycles we use two strategies. First, we use additional heuristics to avoid them in the surface
meshing. Second, we introduce a little trick to modify a mesh such that such cycles do not disappear, but
can be coped with. This trick will be explained in Section 4. The important feature of this trick is that one
can still use any quadrilateral surface mesher (provided it can handle branching consistently and mesh the
virtual internal surfaces without an explicit geometric embedding).

After this preparation, the core of our method is to build up a compatible combinatorial cell complex
of hexahedra for a solid body which is topologically a ball and for which a quadrilateral surface mesh is
prescribed.

The step-wise creation of the hex complex is guided by the cycle structure of the combinatorial dual of
the surface mesh. Our method transforms the graph of the surface mesh iteratively by changing the dual
cycle structure until we get the surface mesh of a single hexahedron. Starting with a single hexahedron and
reversing the order of the graph transformations, each transformation step can be interpreted as adding one
or more hexahedra to the so far created hex complex. The embedding and smoothing of the combinatorial
mesh(es) finishes the mesh generation process.

Overview. We fist introduce some basic terminology in Section 2. In the main part of this paper, in
Section 3, we present our new approach for the meshing of topological balls. The general case will be dealt
with in Section 4. In Section 5 we summarize the main features of our approach and give directions for future
work.

2 Basic Terminology

We need some basic graph theory [NC88]. Drawing a graph in a given space means representing nodes as
points and edges as curves. A graph can be embedded into some space if it can be drawn such that no
two edges intersect except at a common node. A graph is planar if it has an embedding in the plane, or
equivalently, an embedding on a sphere in three-dimensional space. The curves representing the edges of a
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F@.n-e 1: Hexahedron with curved quachilateral facets (left), a planar surface graph embedding and its
combinatorial dual (right).

planar, embedded graph partition the plane or the sphere, respectively, into connected components, called
faces. For a planar graph G, the (geomettic) dual G’ is constructed as follows. A node v; is placed in each
face Fi of G; corresponding to each (primal) edge e of G we draw a dual edge e’ whkh crosses e but no other
edge of G and joins the nodes v; whkh lie in the faces Fi adjoining e.

Let G be a graph, not necessarily simple, that is, it can have loops and parallel edges. Such a graph
is connected if there is a path between any two distinct nodes of G. A graph G with at least 4 edges is
3-connected if it is simple and cannot be disconnected by removing 1 or 2 nodes from G. The reason for this
version of the definitions (here, we follow Ziegler [Zle98]) is that it is invariant under planar duaMy. That is,
if we have a planar embedding of a graph G and construct its dual graph G*, then G is 3-connected if and
only if G= is 3-connected.

A (convez) polyhedron is the intersection of finitely many halfspaces in some @, and it is a polytope if it
is bounded. The famous theorem of Steinitz relates planar graphs and polytopes.

Theorem 2.1 (Steinitz’ theorem) G is the graph of a 3-dimensional polytope if and only if it is simple,
planar and 3-connected.

Hex complex. The bodies we want to mesh have more general, curved surfaces. Therefore we use the term
(geometric) cell to mean a bounded region in 3-dimensional space, bounded by a finite number of 2-manifolds.
In the following, cells of difFerent dimension will appear: O-dimensional cells, i. e. single points, called vertices
l-dimensional cells, i. e. segments of curves between two vertices, the edges, and 2-dimensional cells in the
form of quadrilateral facets, i. e. smooth 2-manifolds bounded by a cycle of four dkkinct edges. A hexahedron
is a 3-dmensional cell which is a combinatorial cube. It is bounded by 6 distinct quadrilateral facets, 12
distinct edges, and 8 distinct vertices. The quaddatera.ls pairwise share edges as depicted in Fig. 1.

Ideally, hexahedra are polyhedra, but in this abstract setting we do not require that the edges are straight
line segments and that the quadrilateral facets are planar.

,A geometric cell complex of hexahedra, called ha complex for short, is a finite, non-empty collection C
of distinct (openly disjoint) hexahedra and all their lower dimensional cells such that the intersection of any
two members of C is a cell of each or the empty set.

A hex complex is compatible with the quadrilateral surface mesh of a body if thk surface mesh is the union
of all quacMlateral facets which belong to exactly one hexahedron of the complex. A surface compatible hex
complex is a non-degenerated geometric mesh if all of its hexahedra have a positive volume and the dihedral
angle between any two adjacent quadrilaterals of a hemhedron is strictly smaller than 180 degrees.

Two hexahedra are neighbored if they share a quadrilateral. By definition, a hexahedron of a geometric

cell complex has at most one neighbored hexahedron for each quatillateral face (unique neighbor property).
If cells of a hex complex are not embedded but abstract entities, we regard a cell as composed by its lower-

dimensional cells. For an abstract cell C, we define the cell lattice as the the set of all lower-dimensional cells
including the cell C itself and the empty cell, partially ordered by inclusion. Abstract cells are combinatorially
equivalent if their cell lattices, are isomorphic.

For a hex complex given by abstract cells, an abstract hez complez, we have to demand explicitly the unique
neighbor property (which is no longer implied by definition) to avoid degeneracies. Hence, an abstract hex
complex is non-degenerated if it has the unique neighbor property. An abstract hex complex yields a surface
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Figure 2: Local graph transformations (a) - (f) (left side) and examples of their application (right side).

compatible combinatorial mesh if each quadrilateral is contained in exactly one hexahedmn, if it belongs to
the surface, and in exactly two hexahedra, otherwise.

3 Meshing Topological Balls

Throughout this section we restrict our discussion to the case that we are given a solid body which is topolog-
ically a ball, implying that the surface is topologically a sphere. We further assume that an all-quadrilateral
surface mesh has been determined for this body. Even more, we assume that the surface mesh is a simple,
planar and 3-connected graph (which is reasonable in view of Steinitz’ theorem). Hence, although the geom-
etry of the surfaces we consider is usually more general than that of a polytope, the combinatorial structure
is not.The key idea of our approach is to keep these properties invariant.

Shelling and graph transformations. Suppose that a hex complex is already known for some body.
Then we could try to shell this complex, that is to decompose the complex.by taking away a hexahedron one
after another. Shellability of cell complexes has been widely studied in a more general, but slightly different
way [Zie98]. What we are looking for is a topology preserving shelling of a hex complex. By that we mean
that the remaining hex complex is still topologically a ball after the deletion of a hexahedron. More precisely,
such a shelling maintains the invariant that the surface mesh is a simple, planar ~d 3-connected graph.

Consider the six “local” operations (a) - (f) shown in Fig. 2 on subgraphs of the surface graph. They
represent the transformation of the surface graph for aJl possible ways to take away a single hexahedron from

a hex complex without changing the topology. (To be applicable, a subgraph must have at least the edges
shown in Fig. 2 to ensure that each node has minimum degree 3 after the transformation.) Observe that
each operation can be reversed and then interpreted as adding a hexahedron to a hex complex.

The basic properties of these transformations are summarized in the next lemma.

Lemma 3.1 Let G be a simple, planar and 3-connected graph whose faces are all quadrilaterals. Then any
application of one of the six operations in Fig. 2 preserves the followkg invariant for the resulting graph
G’: G’ remains simple, planar, 3-connected, all its faces are quadrilaterals, and the parity of the number of
quadrilaterals leaves unchanged.

In other words, topology preserving shelling of a hex complex can be seen as applying a series of graph
operations on a planar graph. At first glance, this does not help too much as we usually do not know a hex
complex compatible to the surface we want to mesh, and so cannot determine which operation we should
apply and in what order. So we are faced with the problem of “shelling an unknown complex.” This seems to



be intractable for general surface meshes, but we will characterize below important classes of surface meshes
where this concept is useful.

Perfect cycle elimination schemes. Let G be the graph of a quadrilateral mesh and G* its combinatorial
dual. We say that two adjacent dual edges are opposite to each other if and only if they correspond to
opposite sides of a quatillateral, i. e. if they are not neighbored in the cyclic adjacency list of their common
node. Hence, the four adjacent edges to each dual node can be partitioned into two pairs of opposite edges.

The dual graph G* = (V*, E*) can be decomposed in a canonical way into a collection of edge-disjoint
cycles, say into Cl, ..., C’k,by putting a pair of adjacent edges e;, e; into the same cycle if they are opposite
to each other. In other words, for each quadrilateral the edges which are dual to opposite sides are contained
in the same cycle. Observe that by transitivity two edges may belong to the same cycle even if they are
neighbored in the cyclic adjacency list of some node. Hence, these dual cycles can be non-simple or self-
intersecting.

Note that this set of dual cycles is well-defied and unique (in the sense that two cycles are equivalent if
they have the same set of edges) and can be easily determined in linear time. We call this set the canonical
dual cycles of G*, and by a dual cycle we will henceforth always mean a canonical dual cycle.

Let us suppose that the edges of a dual cycle are ordered witbin a cyclic list such that two edges are
consecutive if and only if they are adjacent and opposite to each other with respect to their common node.

The cyclic order of the edge list induces an orientation of the cycle. With respect to such an orientation,
a simple dual cycle separates the dual vertices V*\ V(C” ) into vertices V~,t on the “left hand side” of C and
vertices V& on the “right hand side.”

Given a planar graph G, its dual G*, and a dual cycle C of G*, the elimhation of C transforms G to
G’ and G* to G’* in the following way. The new graph G’ is obtained from G by contracting each primal
edge corresponding to a dual edge contained in C, and removing parallel edges afterwards. The graph G’* is
then defmed as the combinatorial dual of G1. A.xiequivalent way to describe the etilnation of a dual cycle
is to remove all edges of C from G*, and to replace for each node v* of C the two remaining incident edges,
say (u*, v“) and (vJ*,v*), by the new dual edge (u*, w“), and finally remove all vertices of C. In this second
definition, dualization of G’* gives the new primal graph G’. A feasible elimination of a dual cycle C horn
G* requires that

1. C is a simple cycle,

2. at least one of the two subgraphs of G* induced by ?@ and V&, respectively, is connected, and

3. G’* is 3-comected.

Note that 3-connectivity can be checked in linear time [HT73]. So we can test in linear time whether a
cycle can be eliminated in a feasible way or not. The concept of a feasible elimination is motivated by the
following lemma which connects such eliminations to shellhg and graph operations.

Lemma 3.2 Let G be the graph of a quadrilateral mesh and G* be its combinatorial dual. Let C be a dual
cycle which can be eliminated in a feasible way from G*. If V;,e (l&) is connected then there is a sequence
Of exactly lv~,e I (1v;,, 1) graph operations which transforms G to G’.

We only note that this sequence can be found efficiently by a topology preserving shelling of the planar
primal graph induced by the union of the quacbilaterals contained in V&,t.

To get an intuitive idea of the use of cycle eliminations for the meshing we change the viewpoint. Suppose
that G’ is the surface mesh of some hex complex. Then we can reverse the order of the graph transformations
and construct a hex complex for the graph G by adding one hexahedron to each quadrilateral corresponding
to the set V&. So elimination of a cycle amounts to the addition of a complete layer of hexahedra formed
by this set, that is in STC terminology to the addition of a complete sheet. The three conditions for feasible
eliminations are necessary to give the desired result.
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A perfect cycle elimination scheme of a dual graph G* of a quatillateral surface mesh is an order
C1, C2,..., Ck of its k canonical cycles such that the first k – 3 cycles with respect to this order can be
eliminated one after another in a feasible way, and such that the remaining 3 cycles form the dual surface
graph of a single hexahedron. In particular, this means that the last 3 cycles are simple and cross pairwise
exactly twice (two cycles cross if they share a common node).

The core algorithm. Wheneverwe knowa perfect cycleeliminationschemefor somegraph G*, we can
iterativelyapply Lemma3.2 in reversedeliminationorder to givean explicitconstructionof a hex complex
compatibleto the prescribedsurfacemesh. This yieldsan algorithmfor combinatorialmeshesof topological
ballswhichruns in twophases: In the fist phasewedeterminea cycle eliiation scheme, and in the second
phase we build up a hex complex by adding sheets in reversed order of the elimination. Three interesting

questions arise:

1. Which surface meshes have a perfect elimination scheme?

2. WMch elimination order should be preferred?

3. What can be done if one gets stuck at some point, that is, no (further) cycle can be eliminated?

We give (partial) answers to these questions in the following. By definition, existence of a perfect cycle
elimination scheme requires that all dual cycles are simple. Simplicity of a dual cycle implies even length,
and all cycles being simple implies w even number of quadrilaterals. The latter is sufficient for the existence
of a combinatorial mesh, but not for the existence of a perfect elimination scheme in general. To see a small
counter-example, consider a 3-connected planar dual graph consisting of three canonical cycles which cross
each other pairwise exactly four times.

On the positive side, there are important classes which always have a perfect elimination scheme. Zono-
topes are special polytopes which can be defined in many equivalent ways [21e98], for example as the image
of a higher-dimensional cube under an afEne projection, or as the Mmkowski sum of a set of line segments.
Zonotopes where all surface facets are quadrilaterals constitute a class of polytopes for which every cycle order
leads to a perfect elimination scheme (the “zones” of a zonotope correspond to the dual cycles). Certainly,
it is sufficient that the surface graph of some mesh is combinatorially equivalent to that of a zonotope. The
important combinatorial property of such graphs is that the cycles cross each other pairwise exactly twice.

This can be used in the following extension. We say that a cycle C’l is a parallel neighbor of another cycle
C2 in the graph G* if their node sets axe disjoint but for each node v* of Cl there is a node W* of C2 such
that the edge (v*, w*) belongs to G*. A helpful observation is that we can feasibly elininate a cycle if it has

two parallel neighbor cycles. If the dual cycles are partitioned into equivalence classes of parallel neighbors,
then a graph has a perfect elimination scheme if representing cycles of these equivalence classes cross each
other pairwise exactly twice.

Cycle selection. Now we sketch our answer to the second question. In principle, every perfect cycle
elimination scheme allows us to build up a valid combinatorial mesh. In general, different elimination orders,
however, lead to meshes of a different structure and size. Also observe that two different geometric meshes
can have the same combinatorial mesh, see Fig. 3. Hence, it is important to choose the order of the cycles in
the elimination scheme carefully. To guide the elimination we use additional information about the geometry
of the surface mesh. For that purpose, we determine for each dual edge the dihedral angle between the two
quatillateral faces which correspond to its endpoints. This, in turn, gives us a an initial classification for each
primal edge as “sharp” or “plane” edges. A primal edge of the surface graph is a sharp edge if the dihedral
angle is significantly smaller than 180 degrees. For a simple dual cycle C, we use the term neighboring pn”mal
cycles to mean the two connected primal cycles induced by the union of all primal edges of the quadrilaterals
corresponding to nodes of C which do not cross C. We assign a side elimination weight to each dual cycle
accordhg to the number of sharp edges of the neighboring primal cycles, normdlzed by the cycle length
(number of edges). The weights can be used to define a preference order for dual cycles. A j%st rule is that



Figure 3: Examples of two solids with “obvious” decompositions into five and three hexahedra. Note that
the surface meshes are combinatorially equivalent. Therefore, additional geometric information is necessary
to yield the appropriate decompositions. For the left instance, a double cycle elimination is appropriate.

a cycle should be preferred in the selection if it has a higher weight, i. e. if it has a higher quotient of sharp
edges to the total number of cycle edges than some other cycle. We also keep track of the side for which the
elimination weight has more sharp edges, as this side will be used as the enclosed set of quadrilaterals on
which the construction phase adds hexahedra.

Moreover, we use a weight counting the number of sharp primal edges corresponding to edges of the dual
cycle. A second rule says that one should eliminate a cycle only if this second weight is positive. The intuition
behind this rule is that one should not eliminate a cycle which lies in plane, as this may lead to a bad quality
of the geometric mesh.

After each cycle elimination we update this classification for all primal edges which are afFected by the
elimination. To be precise, if two primal edges become identified by contraction of a quadrilateral, the result-
ing edge is classified as a sharp edge if at least one of the edges was sharp before the identification. Hence,
the weights of a dual cycle will change after eliminations.

Double cycle elimination. Suppose that some dual cycle Cm has two parallel neighbors, one on the right
and one on the left side. Then it can certainly be eliminated in a feasible way. If, in addition, all edges of
the corresponding left and right primal neighboring cycles are classified as sharp edges, the cycle Cm has a
high preference to be selected for elimination. However, in such a situation it seems to be better to eliminate
both the left and right neighboring parallel cycles simultaneously. Such a double elimination corresponds to
a series of graph transformations from Fig. 2. In this case, the set of enclosed quadrilaterals is just the dual
cycle C’m in the middle. The elimination can be interpreted as removing a torus of hexahedra, see the left
example of Fig. 3.

Addhg new cycles. We now sketch a strategy to resolve the case that no perfect cycle elimination exists
but all cycles are simple. The case of self-intersecting cycles will be discussed in the next section. Recall
that all graph transformations of Fig. 2 can be reversed. Hence, through a series of such transformations
we cannot only eliminate a dual cycle but also insert a new one. This insight is helpful in those cases
where the elimination process gets stuck. If no cycle can be eliminated in a feasible way, the idea is to

add one or more new cycles in such a way to the current graph that at least one of the old cycles can be
feasibly eliminated afterwards. To ensure that this strategy finally leads to a perfect elimination scheme, a
new cycle is inserted such that it crosses each old cycle exactly twice. We omit the details of such an insertion.

Embeddiig and smoothing. Up to this point we have only discussed how to find a combinatorial mesh.
Embedding of a combinatorkd hex complex into the prescribed surface such that all hexahedra are well-shaped
is a non-trivial task. It is not even clear which conditions are sui%cient for a “nice” embedding. However,
we have been quite successful with a strikingly simple strategy. Namely, to find an hitial layout we consider
a hex complex as a graph, fix the surface nodes according to the surface mesh, and for all other nodes the
node position is determined as a convex combination (the barycenter) of the position of its neighbors. Mesh
smoothing can be used afterwards to improve the node positions.
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Figure 4: The “doublefold” example. The hex complex consists of 17 hexahedra.

~~ r \

Figure 5: The primal and dual graph of the surface mesh of the “double fold” example, dual nodes are drawn
as solid circles (left); the first dual cycle of a perfect elimination scheme is dashed, it encloses 9 dual nodes
(right).

Example: the “double fold” problem revisited. We use the example of the so-called “double fold”
problem to illustrate how our algorithm works. The same example has been used to study the whisker
weaving algorithm [TBM96]. The geometry of this example is simply a cube, but the surface mesh is quite
irregular (several nodes of degree five and three), see Fig. 4. The Figs. 5 to 8 show the successive elimination
of dual cycles from the original surface mesh to the mesh corresponding to a single hexahedron, and the
construction phase. The first cycle to be eliminated encloses 9 dual nodes, the second 3, the third 2, and the
fifth and sixth only one node. Hence, in the reversed order, the series of hexahedra to add to the first one is
1,1,2,3,9.

4 A meshing scheme for arbitrary domains

Self-intersections of dual cycles are a major source of difficulties within the mesh generation process. As
announced earlier, we use a little trick to circumvent these problems. After decomposing the domain of our
solid body into topological balls, we use the quadrilateral surface mesher with only half the required mesh
density. Then we subdivide each quachilaterzd into four new ones (by halving all edges) to meet the required
density. This replacement duplicates all dual cycles. In particular, all quachilaterals where self-intersections
occur appear in pairs, see the left part of Fig. 9. Even more, all self-intersections appear not only in pairs
but the pairs are also locally close together in a well-defied relative position. So it is possible to change the
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Figure 6: The dual graph after the first and second elimination. The cycle to be eliminated next is again

dashed. The dashed cycle on the left side encloses 3 dual nodes, on the right side 2 dual nodes (on the
unbounded side of this drawing!).

f

-..
----

Figure 7: The dual graph after the third, forth and fifth elimination. The right figure shows final configuration
of the remaining three cycles.

Figure 8: Construction of the hex complex for the “doubiefold” example. The figures show from left to right

the intermediate steps where hexahedra are added in reversed order of the elimination scheme.
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Figure 9: Getting rid of self-intersecting dual cycles: dual cycles are duplicated (left),
locally transformed (middle), and finally the application of two graph operations, first (a) and then (d) of

the surface mesh is

Fig. 2 remove the self-intersection (right). -
. . . .

surface mesh locally at all such @aces, see the middle part of Fig. 9, without changing the structure of other
cycles. This does not resolve the self-intersections immediately, but allows the following. We can mesh a layer
of hexahedra on the complete surface graph (an additional sheet) - the combinatorial structure of the surface

graph remains unchanged - and then use two graph transformations for each pair of self-intersections, first

operation (a) and then (d) of Fig. 2. Thus, self-intersections can always be removed with the same sequence
of graph operations. The extra layer of hexahedra is used to avoid degenerated surface quadrilaterals in the

geometric embedding. Hence, we can directly use the resulting surface graph and avoid an additional layer
and the two graph operations if the surface mesh can be embedded such that the rightmost pattern of Fig. 9
is non-degenerated.

Now we can state our algorithm for arbitrary domains. It involves the following steps:

1.

2.

3.

4.

5.

Decompose the whole domain into subdomains which are topologically balls and “almost convex.”

Quadrangulate the surface m-h with half of the required density.

Replace each quadrangle by four new ones.

Do for each subdomain

(a) Eliminate self-intersecting dual cycles.

(b) Search for a perfect cycle elimination scheme.

(c) Build up a hex complex.

Embed hex complex and perform mesh smoothing.

Example: Model of a shaft. To illustrate first experimental results with our algorithm we use the CAD
model of a shaft with a flange shown in Fig. 10. Several features make this model usefil for testing purposes:
it contains 8 holes, a cylindrical inlet in the lower part (not visible in the hidden surface description of
Fig. 10), and concave surface patches. The input model is axis-symmetric, and so is our output – although
our algorithm has no tools incorporated to detect and to exploit symmetry. The complex input model has
fist been decomposed into topological balls, see the left part of Fig. 10. Then our quadrilateral meshing

algorithm [MH97] has been run according to some specified uniform mesh density. The resulting surface
mesh has the nice property to be free of self-intersecting dual cycles for all subregions. For all subregions, our

algorithm was successful to find a perfect cycle elirnkation scheme. Even more, the embedding of the hex
complexes has led also to geometric meshes of a very good quality. Figs. 11, 12, 13 and 14 show the resulting
meshes for different parts of the model. In total, the hexahedral mesh for the complete model, depicted in

the right part of Fig. 10, consists of 7488 hexahedra.
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FQ-ure 10: The model of a shaft with a flange which has been decomposed into simpler subdomains where
different colors correspond to the subdomains (left), and the hexahedral mesh constructed by our algorithm
(right).

Figure 11: Hexahedral mesh for a part of the model in Fig. 10.

Figure 12: HexahedraI mesh for a cylinder (part of the model in Fig. 10). The cycle elimination scheme first

selects parallel cycles corresponding to eight layers, and uses than a double elimination to remove the 16
hexahedra forming a torus on the last layer.
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F@ure 13: Hexahedral mesh for a truncated circular cone (also part of the model in Fig. 10). The meshing

is non-trivial because the base cycles of the cone have different surface meshes.

Figure 14: Hexahedrid mesh for another part of the model in Fig. 10.

5 Conclusions

We summarize the main features of our approach.

The mesh generation process is separated into a combinatorial part where an abstract complex of
hexahedra is”constructed from a surface mesh and a geometric embedding part where the exact positions
of the mesh nodes are determined.

Hexahedral mesh quahty benefits from our surface mesh generator whkh yields very regular meshes (in
contrast to paving or advancing iiwnt based methods).

Successive elimination of dual cycles corresponds to the meshing of complete layers of hexahedra (sheets)
in each step. Cycle selection can use global geometric information to find good elimination orders. Our
strategy avoids all kind of combinatorial degeneracies rigorously. Problems with knives or wedges as
known from the whisker weaving or plastering algorithms do not occur.

Only the first part of our meshing procedure needs global access to the data. Precisely, this includes
preprocessing of the input data, the decomposition into simpler subdomains, and solving a single system
of linear equations over GF(2) to ensure the parity conditions for the surface meshing. The very core
of our algorithm, and thus the computational most expensive part, can be performed in parallel for

each subdomain.
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Currently, we have only implemented a first prototype for our algorithm and our experiences are still
Iiited. First results are encouraging, but more testing has to be done to refine several parameters of our

algorithm, for example the cycle selection rules. We would also like to improve our strate~es for cycle

insertion for those cases where no perfect elimination scheme exist.
To guarantee that we can resolve all self-intersections we used the somewhat dirty trick to duplicate all

dual cycles. We think that self-intersections should be avoided in the preprocessing part as far as possible
and future work should concentrate on how to minimize the number of self-intersections of dual cycles in
surface meshing algorithms in combination with rules for the subdivision into topological balls.

Acknowledgment. The author wishes to thank Karsten Weihe for many fruitful discussions and G. Krause
for providing us with the filte element preprocessor ISAGEN (which we used for our illustrations) and
instances horn the automobile industry.
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Abstract. In this paper,a setofmeshgenerationmethodsoverplaneandcurvedsurfacesis presented.The
surfacescan be plane,just definedby their boundary(as cylindersor cones), quadrics,stices of
revolutionor a combinationof theseby meansof a multiblockdefinition.The basic methodfor plane
surfacesand those defined by their boundary is based on a advancing front/ algebraic combined technique
for two dimensions. Quadrics and surfaces of revolution are transformed from the real space into a
parametric plane, in which the previous basic method can be applied and, later, the inverse transformation
is done to obtain the final mesh.

Keywords. Surface mesh generation, Advancing fion~ Transfiite interpolation, Multiblock methods, Structured
and unstructured meshes, Ruled, quadric and revolution surfaces

Introduction

The mesh generation is a main part of the fiite element analysis, and the solution obtained with the finite element
method depends strongly on the quality of the mesh. A good meshmg method must generate a correct mesh, i.e.,
boundary conforming, without holes, without free edges and without intersecting elements, and containing as few
badly shaped elements as possible.

There are a large variety of meshing methods in two and three dimensions. III a timple c~lfication we can refer
advancing front [1-3], Delaunay-Voronoi [4-7], and quadtreehctree [8,9] methods, which are able to generate
unstructured meshes of arbltmry geometries. Structured meshes can be obtained by means of transfixdte mapping
methods [10,11] or solving a partial differential equation system [12]. A descriptive review of these methods can be
found in [13]. Concerning the surface mesh generation, a general method for surface patches can be found in [14],
and more specific methods in [15].

The aim of this paper is the description of a basicmethodfor rneshiigplme SUrfZNXSor those defin~ by ~eir
boundary, and two methods for quadrics and surfaces of revolution, respectively, which use the method for plane
surtlmes to generate a mesh in a parametric plane an~ later, transform it in the final mesh. Although the set of
methods for plane or curved surfaces presented is of wide application, we will use examples of domains
corresponding to electromagnetic problems in closed boundaries, concretely in transmission lines (2D) and
electromagnetic cavities (3D).

Concerning the type of mesh, these methods can generate triangular or quadrilateral elemen~ and therefore, it is
possibletogeneratetriangularmeshesandquadrilateralhriangularhybridmeshes.Triangular meshes are created as a
result of the breakdown of quadrilateral elements in two triangles. Two criteria can be applied for thk splitting tie
shortest diagonal or the biggest angle criterion. Better results are obtained with the last one and consequently, it has
been implemented here.



Plane Surfaces

The mesh generation method for plane surfaces is based on an advancing front/ algebraic combined technique and
is the base for the meshing methods for more complex surfaces as quadrics or surfaces of revolution. In its basic
fo~ it is able to mesh quadrilateral domains, i.e., areas defined by four ~mes. Nevertheless, a mdlfication of the
method has been developed in order to allow the meshing of triangular areas. In that case, the triangle is transformed
in a quadrilateral by “cutting” a comer of the triangle, that is, generating an edge and a triangular element in one
comer, and obtainiig the mesh of the rest of the domain by means of the method for quadrilateral areas.

Fig. 1 shows the evolution of the basic method for a simple example. Starting from one side of the quadrilateral,the
mesh progresses until the domain is completely discretized. In each step of the methd if the new quadrilateral can
be meshed with an algebraic method, i.e., the number of divisions or edges in its opposite sides is the same, a
transfinite mapping, method [10] is used. If it is impossible, a set of inner nodes and edges joining these nodes are
generated in order to split the quadrilateral in two smallti quadrilaterals, one of them with, at least, one side with
just one division. Flg.2 shows an example of this splitting. The flont advances in the direction where the two
opposite sides have a bigger difference in number of divisions. In order to assure the convergence in the number of
divisions of the two lateral opposite sides of the quadrilated along the algorithm evolution, the excess of dhisions
in a lateral side must be distributed between the two new quadrilaterals (cl and c2). The method applies recursive]y
with each one of these quadrilaterals. Each branch of the recursive algorithm Ilnishes when the quadrilatml has two
opposite sides with one division (in that case, only edges and elements me generated, as Fig. 3 shows), or when the
quadrilateral can not be broken down in two quadrilaterals. This last situation occurs when two sides sharing a
vertex have just one division. These quadrilaterals require a specific management according to the number of
divisions in their hvo other sides. The mesh quality becomes worse when the number of divisions of these si&s
increases. Fortunately, it is very unusual to reach situations with a great difference in the number of divisions. Fig. 4
shows the meshmg patterns for this type of quadrilatemls.

a) b) c)

Figure 1. Mesh generation method for quadrilateral areas

The number of inner nodes generated at each step is a weighted average of the number of nodes in each side in the
direction of the front. This weighting depends on the distance ~m number of lateral divisions) horn the front to the
upper and bottom side.

In order to transfer the irregularity of the boundary to the mesh and obtain boundary conforming meshes of curved
quadrilateral domains, the inner nodes are created by means of a linear interpolator based on a translinite mapping
[10]. As we have commented before, this method requires the same number of divisions in the opposite sides of the
quadrilateral. Fig. 1 describes how to achieve this condition in a single case. It is necessary to perform a temporary
discretization of the two opposite sides by modifying their number of divisions in order to have the same number of
nodes on them. These temporary nodes are generated by means of an uniform interpolation along both sides. Fig. l.b
shows the inner nodes and the mesh progress at that step.
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Figure 2. Splitting of a generic quadrilateral
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Figure 3. Meshing patterns for quadrilaterals with hvo opposite sides with one division
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Figure 4. Meshing patterns for quadrilateral

Nextj the framework of the algorithm is described
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1.

2.
3.

4.

5.

6.
7.
8.
9.

Triangular or quadrilateralarea?
Triangulararea~ go to Step 2.

Quadrilateral area + go to step 3.
Generate a triangular element in a comer of the area The remaining area is considered as a quadrilateral area.
Has the quadrilateral the same number of edges in opposite sides?
Yes + apply the algebraic mesh generator. End.
Not + continue.
Has the quadrilateral two opposite sides with one division?
Yes + generate edges and elements using the meshing patterns of figure 3. End of this branch.
Not + continue.
Has the quadrilateral two consecutive sides with one division?
Yes + generate the mesh using the meshing patterns of figure 4. End of this branch.
Not + continue.
Generate the front line.
Calculate the number of nodes over the front line
Generate the nodes and edges over the front line.
Go to step 3 for cmadrilaterrd 1

10. Go to step 3 for quadrilateral 2

With the mesh generators for quadrilateral and triangular areas and a muhiblock approach [16] it is possible to mesh
arbhiry domains. Fig. 5 shows an example of the definition of complex domains starting from quadrilateral areas,
and the resulting mesh. The figure represents a pair of cables enclosed in a hollow metallic cylinda.

rm

(+3

M

Figme 5. Muhiblock mesh generation of complex domains

Surfaces Defined by their Boundary

We consider a surface defined by their boundary if the surface is not plane, and the unique information given when
we create the surface is the boundary, not a equation. Although different surfaces could fit to that boundary lines, in
order to mesh these surfaces, we look for one that adjust to the boundary lines, following the shape given by the
boundary.

The mesh of this kind of surfaces can be obtained using the same method which has been described previously for
plane surf%ces,that uses the interpolator to create the innex nodes. When the lines are curved the interpolator follows
the curvature of the lines. If two lines of the boundary are straight lines then the discretization is the ruled surface
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that fits to the other lines. Among these surfaces we can mention well known geometric shapes like cones, cylinders
or other ruled surfaces. Figure 6 shows the mesh for a surface of this last type.

Figure 6. Meshing of a ruled surtkce

Note that when we talk about the lines of the boun(kuy, we are thiiking in boundaries of only three or four lines. In
the cases of more sides some of them must be linked and considered liie only one lime Fig. 7 shows an example of
compound line.

L1

L2

Figure 7. Quadrilateral area with single and compound lines

Quadric Surfaces

The number of coefficients of the general equation for quadrics can be reduced for those surfhces with some
symmetries. Also the equation can be expressed in a simplified way if the surface is placed in the origin of co-
ordinates and he axis of the surface is located over one of the co-ordinate axis. We are going to use these properties
to simpli~ the creation of the surface with the program.

Among the reduced quadrics we choose for our study those that could be usefld in electromagnetic problems. They
are the eUlpsoid, the parabolic form, the hyperbolic form and the sphere Iiie a special case of ellipsoi~ but very
important. Immediately afterwards the equations for these surfaces, centred and oriented, are shown.

Sphere: X2+ y2 + Z* = R*



Ellipsoid : ~+.$+~= 1
a c

Parabolic form: ~+;= C.z
a

Hyperbolic form: ~ .~. ~. I
a ~2 ~2

One of the objectives of the method is to have a total control over the discretization, in the sense that we want to be
able to do the mesh with a higher density in some zones, but lower in others. The method is focused to define in the
tirst step the lines, which can be discretized independently ones from others. These lines are taken as the base to
build the surfaces using them to create the boundary of the mentioned surfaces. If no more specifications are
indicated, we have a surface defined by boundary, but when the lines are curves that fit to a quadric, and we really
want that quadric, the information must be completed with the necessary data in each case. For the sphere it is
necessary only the centre, and for the others quadrics, besides the centre, we need the axis and the points in the axis
that cut the quadric (a, b, c). With all these data the surface is completely defined in-the space.

Because of the complexity of meshing directly the surface with variation in three dimensions, and in order to profit
the method developed for plane surfaces, we look for a solution passing through the transformation of the problem
in three dimensions to another in two dimensions.

The tirst step in thk transformation is to move the surt%ceto the oligin of co-ordinates and rotate it to orient the axis
of the surface over the axis of co-ordinates, because the surface could be in any point of the space.

The next step is to transform the surface horn the real space into a parametric plane whose co-ordinates are angular
in such a way that the surface defined with three c-artesian co-ordinates, now is defined with two angular co-
ordinates. The tmnsformations used are detailed immediately afterwards.

R= X2-!-Y2+Z2

u =aco WI

Sphere
<‘=aco{;.in(u)~

x = R“sin(u)-cos(v)

y = R. sin(u). sin(v)

z = R ‘COS(u)

Ellipsoid

u=aco {Y)

‘=aco{~.in(ulj

x = a. sin(u) -cos(v)

1 4/)v=aco ‘a-u
Parabolic form

x=a. u.cos(v)

1y= b”u. sin(v)

Z=U2

I
u=acos {Y)

Hyperbolic form ‘=acos~~-sinh(u))

x= a. sinh(u). cos(v)

y = b. sin(u). sin(v)

I

y = b -sinh(u) -sin(v)

z =c -Cos(u) .2=C.cosh(u)

The transformation pr- begins with the lines of the boundary that have been discretized previously, and more
exactly with the nodes created over the lines, given in Cartesian co-ordinates. As result of the information about the
surface, the co-ordinates of the nodes can be (rrmsformed to angular co-ordinates. After that the surface is placed in
a parametric plane with two c~ordinates (u, v).
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Over the surface reduced to the parametric planethemethod for plane surfaces described before can be applied. The
new nodes, edges and faces of the mesh over the parametric plane are obtained by means of the method for plane
surfaces. In Fig. 8.a we can see the mesh in the plane. Although the faces seem irregukw, we must notice that co-
ordinates are angles and, for example, the longest edge in the top triangle is the same point in the space. Because of
the division of the surface in angles we are going to get a more suitable result thanks to the properties of surfaces,
where the angle follows better the shape of the surface than the rectangular co-ordinates.

The following step will be obviously to invert the transformation and get the cartesian co-ordinates ~om the angular
co-ordinates using the equations shown before. As result we have the surface in three dimensions (Fig. 8.b).

a) b)

Figure 8. a) Angular mesh in parametric plane (ellipsoid), b) Red mesh (ellipsoid)

‘Ihe last step would be, if it is necessary, to undo the first movement and rotation applied to the surface and replace
the surface in the point of the space where it had been defined before the meshing.

Better results (more uniform meshes) are obtained meshmg in angular co-ordinates than meshing, for example, the
projection of the surface over a plane in a direct way. Although this last method is the simplest and would be usefid
for surfaces nearly parallel to a plane, usually the results are poor (see Fig. 9)

a) b)

Figure 9. Sphere mesh a) With parametric plane, b) With projection plane



Surfaces of Revolution

Ano@er kind of surface that deserves our attention are the surfaces of revolution. These surfaces are formed when a
limeis rotated a certain angle taken an axis as reference. An example of revolution surface is a circular cylinder, that
is, the revolution of a stmight line. We have treated in a special way this kind of surfaces to facilitate their &finition
and improve their meshing.

In the mesh generation the proceeding method is similar to that used in quadric surfaces, that is, the transformation
of co-ordinates. But in this case we are not going to look for the mmsformation of the surface from three co-
ordinates to hvo co-ordinates. Instead of tha~ we are going to do the transformation to a paramelxic surface although
this one is not contained in a plane. The objective is to get a parametric surface where we can apply the method for
surfaces defined by their boundary with suitable results.

First of all we have the base line, that we consider placed in angle zero. There is another line with the same shape
that the tirst one and parallel to ib but placed in a defined angle alpha. The transformation consists on creating the
pammetric surface using the following variables: the angle of rotation, the radius, that is, the distance between the
line and the axis of rotation, and the projection of the line over the axis of rotation.

The first step is to place the initial line horn an arbitrary situation in the space in a plane that must have one of the
co-ordinates equal to zero (to use that co-ordinate as angle). We get this condition with a movement plus a rotation if
it is necessary, in order to placed the line over the plane z=O, y=O,or z=O, and the rotation axis over a co-ordinate
axis.

The lines of the real surfiwe in different angles are always parallel. If the initial and final lines are joined by lines
with the same radius and the same projection over the axis for all the angles those lines are obviously straight. We
have seen before that this kind of surface formed by two straight lines and two curved lines could be meshed like a
surface defined by their boundary. So we mesh this parametric surface dividing the angle of rotation in a uniform
way. Thus, the final discretization will be uniform.

In order to undo the transformation, the tirst operation is to invert the movement and the rotation only in the
variables radius and projection, and, finally, to apply to each node a spin in Cartesian co-ordinates of the
corresponding angle. An example of this type of meshing is shown in Fig. 10.

a) b)

Figure 10. Meshing of surface of revolution: a) In the parametric surface, b) In the real space

Multiblock Definition

More complex surfaces, composed of the basic four types commented above, can be meshed with a multiblock
definition of the surface. As an example of this mesh generation, a microwave cavity composed of one circular
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cylindrical surface, two circular conical surfaces and two plane covers has been discretized. The resulting mesh is
shown in figure 11.

Figure 11. Mesh of a cylindrical-conical microwave cavity

Computatioml Cost

In order to evaluate the computational cost of the previous meshing methods, a set of mesh generations for plane
surfaces (or defined by their boundary), quadrics and surfaces of revolution was realised in an HP-700 workstation.
For plane surfaces, a square area was us@ and a spherical cap for quadrics and surfaces of revolution. ‘Ihe mesh
type for all cases was friangukir (i.e., only triangular faces). The results are presented in Fig. 12. It can be observed a
quasi-linear performance in fhe case of plane surfaces. For quadrics and surfaces of revolution the computational
cost is bigger.

B

/

x

x

Nmb3roffaces X104

Figure 12. Meshiig fime for different mefhods: A) Plane surface, B) QuadriG C) Revolution
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For the regression curve t = AnB, where t is the CPU time and n is the number of faces in the mesh, we obtained
Method for plane surt%x A=2.75e-5, B=l.16, AI.966
Method for quadric surfacex A=7.96e-5, B=l.32, -1.18
Method for surfaces of revolution: A=6.2e-5, B=l.32, d.998
where r is the correlation coefficient.

Conclusions

A basic mesh generation methcd based on an advancing front/algebraic technique for generalized quadrilateral and
triangular domains over plane surfaces has been presented. More complex domains can be discretized by means of a
breakdown in areas topologically similar to triangles or quadrilaterals. Due to the use of transtinite interpolation, it is
possible to use this method to discretize surfaces just defined by their boundary. For surfaces defined by their
boundary and their equation it is necessary a more complex method. Here we have presented two methods for
quadrics and surfaces of revolution based on the previous basic method. These methods transform the real surface in
a plane surl%ce(for quadrics) or in a surface defined just by their boundary (for surfaces of revolution), generate the
mesh over that surfaces by means of the basic method, and invert the first transformation in order to obtain the iinal
mesh over the real surface. Besides, a multiblock definition can be used for meshing combination of the four
surfaces studied here.

To sum up, the geneml algorithm can be described as follows

1. Identify the kind of surface.
2.1. If plane surface or defined by boundary

2.1.1. Apply the method for plane surfaces.
2.1.2. End.

2.2. If quadric surface
2.2.1. Translate the surface to the origin and their axes over the co-ordinate axes.
2.2.2. Apply a transformation over tbe surface boundary to place it in a plane.
2.2.3. Mesh the surface in that plane using the method for plane surfaces.
2.2.4. Undo the transformation, translation and rotation.
2.2.5. End.

2.3. If revolution surface
2.3.1. Translate the surface to the origin and its axis over one of the co-ordinate axes.
2.3.2. Transform the surface boundary in a boundary with two straight lines.
2.2.3. Apply the method for plane surfaces.
2.2.4. Undo the transformation, translation and rotation.
2.2.5. End.

The tests realised for several types of plane, ruled, quadric and revolution surfaces show a high quality in the final
mesh, ~btaining little improvements with a posten.orirefinement techniques as node reposition.

The method for plane sqrfaces does not need an element overlapping control, while classical advancing front
methods spend time in this control or in the choice of the suitable node. Due to it its computational cost is reduced,
with a quasi-linear performance. The methods for quadrics and surfaces of revolution have higher computational
costs due to the mnsformations from real to parametric surface and the inverse transformation.
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Abstract

Quad-morphing is a new tec~lque used for generating quadrilaterals from an existing triangle mesh.
Beginning with an initial triangulation, triangles are systematically transformed and combined. An
advancing front method is used to determine the order of transformations. An allquadrilateral mesh
containing elements aligned with the area boundaries with few irregular internal nodes can be generated.

KEY WORDS: mesh generation, quadrilateral, advancing fronb surface meshing, Q-Morph, Paving

1. Introduction

Previous methods for unstructured quadrilateral meshing have included both d~ect and indwect methods.
Indwect methods (L0,1989; Johnston,1991; Lee,199~ Borouchaki,1998) include procedures that require an
initial triangle mesh. Adjacent triangles are combined systematically, in most cases resulting in an all-
quadrilateral mesh. While these qethods can be fast, they can sometimes leave a large number of irregular
nodes. An irregular node on the interior of a quadrilateral mesh is one that has more or less than four
adjacent elements. Direct methods, on the other hand, do not involve an initial triangle mesh.
Quadrilaterals are instead placed directly onto the surface. Quadrilaterals may be placed after first
decomposing the surface into simpler regions (Baehmann,1987; TaibertJ991; Ta@991; Joe,1995) or by
using an advancing front approach (Zhu, 1991; L0,1985; Blacker,1991). In most cases, direct methods .
provide higher quality elements with fewer irregukw nodes.

Of the direct, quadrilateral methods, the paving algorithm (Blacker,1991) provides several desirable
characteristics. Blacker describes these as “(a) Boundary Sensitive. Mesh contours should closely follow
the contours of the bound~. This characteristic is of particular importance since well-shaped elements are
usually desirable near the boundary, (b) OrienrarionInsensitive. Rotating or translating a given geometry
should not change the resulting mesh topology. A mesh generated in a transformed geometry should be
equivrdent to the original mesh transformed, and”(c) Few irregular nodes. This is a critical mesh topology
feature because the number of elements sharing a node controls the final shape of the elements, even after
smoothing. Thus a mesh with few irregular nodes, especially nem the boundary where element shape is
critical, is often prefemed.”. The paving algorithm is currently in wide use. Since its initial development, it
has been enhanced to incorporate three-dimensional surfaces (Cass,1996), as well as other improvements
(White,1997).



In spite of the beneficial characteristics of paving, some quality and performance issues must be addressed.
The advancing front method used by the paving technique requires many expensive intersection calculations
as each row is placed in order to avoid overlapping elements. Figure 1(a) shows a simple case where
intersection checks must be made. F@re l(b) shows another case otltenencountered during paving where
colliding fronts must merge. If element sizes differ greatly, poor element quality can often result.

(a) 0)

Figure 1. (a) First row of elements placed using pi~vhg algorithm illustrating interference
of opposing elements. (b) Large element size differences between opposing fronts often

encountered in paving leading to poor meshes.

This paper proposes an alternative to the traditional paving algorithm. The proposed Quad-morphing (Q-
Morph) algorithm maintains the desirable features of paving while addressing some of its weaknesses. Q-
Morph can be categorized as an unstructured, indirect method that utilizes an advancing front algorithm to
form an allquad mesh. As an indirect method it is able to take advantage of local topology information
from the initial triangulation. Unlike other indirect methods it is able to generate boundary sensitive rows
of elements, with few irre=wlar nodes.

2. Outline of Quad-Morphing Algorithm

Quad-morphing is briefly outlined in the following steps:

1. Initial Triangle Mesh. The surface is first triangulated. This maybe done using any surface
triangulation method. Any sizing (Owen,1997) or adaptivity information should be built into the initial
triangulation. The local sizing for the final quadrilateral mesh will roughly follow that of the triangle
mesh.

2.

3.

Front Definition. The initial front is defined from the initial triangle mesh. Any edge in the
triangulation that is adjacent to only one triangle becomes part of the initial front.

Front Edge Chissification. Each edge in the front is initially sorted according to its state. The state of
a front edge defines how the edge will eventually be used in forming a quadrilateral. Angles between
adjacent front edges determine the state of an individual front. Front edges will be updated and
reshuffled as the algorithm proceeds. Figure 2 shows the four possible states of a front, where the front
edge is indicated by the bold line.
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slateo-o state1-0 State O-1 State l-l

Figure 2. States of a front edge

4. Front Edge Processing. Each tlont edge is individually processed to create a new quadrilateral from
the triangles in the initial mesh. Figure 3(a) shows front NA-N~in the triangulation ready to be
processed. Front edges are handled differently according to their current state classification. As
quadrilaterals are formed, the front is redefined and adjacent llont edge states are updated. The current
front always defines the interface between quadrilateral elements in the final mesh and triangle
elements in the initial triangle mesh. This process can be further subdivided into the following sub-
steps:

m$%!i!f
(a) AMtial front

mN &“ge&d :K
NA NB NA NB N. NB

(c) Top edge recovery (d) Quadrilateral formation (e) Locat smooth

Figure 3. Steps demonstrating process of generating a quadrilateral from Front NA-NB.

. Check for Special Cases. Before proceeding to construct a quadrilateral from the current
tlont, several special case scenarios are checked. These include situations where large
transitions or small angles exist local to the front. In these cases a seam, or transition seam
operation is performed.

. Side Edge Definition. Using the front edge as the initial base edge of the quadrilateral, side
edges are defined. Side edges may be defined by using an existing edge in the initial triangle
mesh, by swapping the diagonal of adjacent triangles, or by splitting triangles to create anew
edge. In Fi=~re 3(b), side edge NB-NCshows the use of an existing edge, while the side edge
NA-NDwas formed from a local swap operation.

. Top Edge Recovery. The final edge on the quadrilateral is created by an edge recovery
process. During this process, the local triangulation is modified by using local edge swaps to

411



enforce an edge between the two nodes at the ends of the two side edges. Edge NC-NDin
Figure 3(c) was formed from a single swap operation. Any number of swaps maybe required
to form the top edge.

● Quadrilateral Formation. Merging any triangles bounded by the front edge and the newly
created side edges and top edge as shown in Figure 3(d) forms the final quadrilateral.

. Local Smoothing. The mesh is smoothed locally to improve both quadrilateral and triangle
element qua.hty as shown in Figure 3(e).

● Local Front Reclassification. The ilont is advanced by removing edges from the front that
have two quadrilateral adjacencies and adding edges to the front that have one triangle and
one quadrilateral adjacency. New front edges are classified by state. Existing fronts that may
have been adjusted in the smoothing process are reclassified.

Front edge processing continues until all edges on the tlont have been depleted, in which case an all-
quadrilaterrd mesh will remain, assuming an even number of initial front edges. When an odd number
of boundary intervals is provided, a single triangle must be generated, usually towards the interior of
the mesh.

5. Topological Clean-up. Element quality is improved by performing local quadrilateral transformations
in an attempt to improve the individual edge valences at the nodes of the mesh.

6. Smoothing. A final smoothing pass is performed further improving the element qualities.

3. Implementation

3.1 Front Dejiniiion and Ctisijicatwn

The initial set of front edges is defined from the initial triangulation. All edges in the triangulation adjacent
to a single triangle are used as the front. The state of a front edge is determined by computing the angle at
the nodes on either end of the edge with each of its adjacent tlont edges. Practically, the state of a ffont
edge is defin~ by two bits, the first representingtheSEWat the lefi node and the second, the state at the

right node. If the angle at either node is less than a specified tolerance (37r/4),the node bit is set (l);
otherwise it is unset (0).

~glesatthenO&Sonthefrontcanbeapproximatedby summing tile angles at adjacent triangles. In dwect

advancing front methods (Cass, 1996), angles must be computed by first evaluating the surface normal and
projecting edge vectors to a tangent plane. By approximating the angle at the front from the adjacent
triangles, expensive geometric evaluations can be eliminated.

Edges are placedononeof four state li~ts as shown in Figure 2. classifying front edges according to SMES

serves hvo purposes. First, it defines which edges must be defined before a complete quadrilateral can be
formed. Side edges must be defined only at the side of the front where the state bit has not been set.
Second, it prioritizes which fronts will be processed first. Front edges in state 1-1 are given first priority
followed by edges in states O-1and 1-O,followed by edges in state O-O.

412

. . .. -



3.2 Front Edge Processing

Front edges are processed one at a time to form quadrilaterals from the initial hiangulation. A front edge is
popped from one of the four state lists, drawing from the higher states first. Priority is also given to the
lowest level edge on the list. Edges in level zero are those on the initial fron~ level one are those on the
front after the first row of quadrilaterals has been placed level two after the second row; and so on. This
ensures that an entire row of quadrilaterals will be placed before starting anew row.

Where large transitions are required, experience has shown that placing smaller quads first generally
produces abetter graded mesh. In order to do so, it is sometimes necessary to select short, higher level
fronts before selecting longer lower level fronts. The criteria used for selecting the next front to be
processed is, therefore, based not only on the current state and level of the front but also on its size.

3.2.1 Side Edge Dejinitian

The current state of a front edge d@xmines how the edge is processed. Front edges in states O-O,1-0 and O-
1 must fist define either one or two side edges. A side edge maybe formed in one of three way~ (1) an
existing edge in the initial triangle mesh maybe used, (2) the diagonal between two adjacent triangles may
be swapped, or (3) an edge maybe created by splitting a pair of triangles.

Figure 4. Side edge selection

Figure 4 shows a situation in which ~ existing edge is used. A new side edge is to be defined at node N~,

which is anode on the front between edges EFIand Em. The ideal vector V~for the new side edge is
defined by bisecting the vectors formed by EF] and En. Angles Q are computed between Vk ad ~1 edges,
~, of triangles sharing node N~. The edge with the smallest angle 0 is selected as the candidate side edge.
The edge is selected, provided 0 is less than a constant E(Td6). Edge Ez in Figure 4 is selected as the side
edge in this situation.

When there is no angle Oiless than e, one of two options maybe used. The opposite edge, (EOin Figure 5)
may either be swapped or split. The swap option is used if the angle ~ between V~and V~ is less thans.
The split option is performed if ~ > &or the resulting length of E~from a swap is excessively long compared
to EFI and E=. In this latter case, a new node N. is defined, splitting edge E. at the intersection of vector vk
and edge Eo. Edges Ekand Emare also added to the triangle mesh, splitting the hvo triangles adjacent to
edge E.. Edge Ek is then used as the side edge of the prototype quad. The following shows a summary of
the criteria for selection or creation of edge E~,to be used as a side edge in the new quadrilateral:



Isplits N~N.

+
(a)swap

Vm

(b)split

otherwise

[1]

Figure 5. Side edge creation

3.2.2 Top Edge Recovery

Once the base and the two sides of the quadrilateral have been formed, the next step is to define the top
edge. This is done by recoven”ngthe edge between the end nodes of the two sides. The edge recovery
technique, which was presented independently in the literature by Jones (1990), Sloan (1993), and George
(1991), is used commonly in boundrwyconstrained Delaunay triangle meshing. Edge recovery involves
systematically swapping edges between adjacent triangles until an edge is achieved between the desired
nodes. An example of an edge recovery process is shown in F@tre 6. The triangulation before recovery is
shown at the top lell with the successive swaps numbered. In this example a total of four local swaps was
required to recover the edge NC-NDfrom the triangulation. Algorithm 1 details the transformations
necessary to accomplish the recovery.
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(a) Initial Iriaogulation

N)

(c) Swap 3

N>

(b) Swap 1,2

N)

(d) Swap 4
Edge Recovered

Figure 6. Edge Recovery Process

1. LETS be the line segment from Nc to ND
2. LET A(S) be a list of edges Ei that are intersected by S (see algorithm 2)

3. FOR EACH Q c A(S)
4. LET T(Ej) be the set of 2 triangles adjacent ~
5. LET T1@) be the set of 2 triangles where the diagonal edge E has been swapped.
6. IF area of both triangles in T_’(Ei)>0 THEN
7. Form T@J
8. Delete Ei from A(S)
9. LET Ej be the edge common to both triangles in T](EJ
10. IF Ej intersects S add Ej Imt on A(S),
11. ELSE,

Place ~ I%t on A(S)
12. NEXT Ei on A(S)

Algorithm 1. Edge recovery process

The edge recovery process requires that an initial set of edges, A(S), through which the recovered edge will
pass, be first compiled. Algorithm 2 and Figure 7 detail how this maybe accomplished.

3.2.3 3D Edge Recovery

Current literature assumes that the edge recovery process will be performed on a planar domain. Since this
condition cannot be guaranteed in this application, an extension of the edge recovery process to include
threedlmensionrd surfaces was necessary. Specifically, the dot product calculations of steps 5 and 16 in
Algorithm 2 must be performed on vectors in a plane that is tangent to the surface. The tangent plane can
be approximated from the neighboring triangles. For example, the tangent plane normal Pi at edge Ei can be
estimated from the average normal vector of triangles Ti(EJ and Ti+l(EJ. The dot product calculation in
step 16 can then be replaced as:



-.

((P, xv,)xP,)-((Pi xvi)xPi)<o [2]

Step 5 canbe modified in a similar manner. An approximated tangent plane normal, Pc, at Nc, can be
defined as the average normal vector of the triangles in T(NC). The dot product calculation can then be
replaced as:

((PC xV~)x Pc). ((Pc XV,) XPC)>O and ((PC XV~)XPc). ((Pc XV,+, )X PC)>O

1. LET T(NC) be the ordered set of ccw triangles and quads adjacent Nc, TL(NC) c T(Nc)
2. LET E(Nc) be the ordered set of ccw edges adjacent Nc; Ek(Nc)c E(NC), where Ek(Nc)

and Ek+l(Nc) are on Tk(Nc)
3. LET Vkbe the vector from Nc in direction of Ek(Nc)
4. LET V~be the vector from Nc to ND
5. FOR EACH Tk(Nc) c T(Nc)

IF V~ . V~>0 and V~. V~+l<0, LET Ti(EJ = Tk(Nc)

6. LET G be the edge opposite Nc on Tk(Nc)
7. IF Ei is not on front THEN, Add Ei to A(S), ELSE jail
8. WHILE not done
9. LET Ti+l(EJ be the triangle adjacent ~ where Ti+l(EJ # Ti(EJ
10. IF NDis on Ti+l(EJ, THEN done
11. Ti(EJ = Ti+l(EJ
12. LET Ni be the node opposite Ei on Ti(EJ
13. LET Vi be the vector from Nc to Ni
14. LET En be the next ccw edge on Ti(FQ from ~
15. LET E.+l be the next CWedge on Ti(EJ from Ei
16. IF V~. V,< O,THEN Ei=En, ELSE Ei=E+l

17. IF Q is not on front THEN, Add Ei to A(S), ELSEJail
18. CONTINUE

Algorithm 2. Formation of A(S)

F,V,
\ \

Figure 7. Formation of A(S)
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3.3 QuadrilateralFormatwn

The quadrilateral is formed from the edge on the fion~ two side edges, and recovered top edge. Before
forming the quadrilateral, the triangles contained within the four edges must first be deleted. This can be
done with a procedure that starts with the triangle adjacent to the tlont edge and recursively advancing to
adjacent triangles, deleting them as it proceeds. Unused nodes and edges are also removed. The recursion
continues until the top or side edges of the prototype quadrilateral are encountered.

3.4 Local Smoothing

Smoothing is an important part of the Q-Morph algorithm. Node locations local to the new quadrilateral are
readjusted to improve element shape. This includes nodes both behind and in front of the current front.
Local smoothing accomplished before processing the next front, as smoothing angles between adjacent
fronts will affect the front states and hence the final topology of the quadrilateral mesh. In practice, any
node on the new quadrilateral and any node connected by an edge are smoothed. Nodes on the front must
be handled differently than those behind or ahead of the front.

For nodes not located on the current front, a simple Laplacian smooth (Field,1988) is adequate, or
alternatively, a modified length weighted Laplacian smooth as suggested by Blacker (1991). Since it is at
the front where the new quadrilateral elements are formed, it is more critical at these nodes that the
smoothing produce well proportioned quadrilaterals. A modified form of the smoothing process suggested
by Blacker is used for the row nodes defined in that reference. These are nodes comected to exactly two
adjacent quadrilaterals at the front. The smoothing process presented by Blacker involves an isoparametric
smooth (Hermann, 1976) followed by corrections for squareness and angle smoothness. For cases where
Imge ~~sitions my be involved, it is usefil to tie advmwge of sizing information provided by the

triangles ahead of the front. As a resul~ an improved transition can be achieved.

Figure 8. Definition of edge length /0 at node on front N,

Let )Dbe the length of the edge NrNj where Nkis the node on the front to be smoothed as shown in Figure
8. Where a very large transition in element size is required, 1~can be defined as the average length of all
edges connected to Nk. For smaller transitions, fewer irregular nodes will be created if equation 4 is used.
Let n be the number of nodes ahead of the ffont connected to Nk, then 1~can be defined as an average of
edge lengths on adjacent quadrilaterals and edges ahead of the fkont as follows:
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N ~., –N,_, + Nj_, –N, + Nk+l –N,+, + N@, -Nj +xNk– Nti

lD =
iel

4+n
[4]

The method used for computing lL)is decided purely on heuristics. For the current implementation, if the
ratio of largest to smallest edge length, t,, on the boundmy is less than 2.5, then the smoothing method
proposed by Blacker (1991) is used unmodified. This method is prefemed since it tends to produce the
fewest number of irregulm nodes. As?, increases, it is necessary to introduce irregular nodes so that a
smooth transition may be afforded. Equation 4 is used for 1~when G.is greater than 2.5, and the average
length of adjacent edges to N~is used when r, is greater than 20.

When smoothing nodes at the front, as a result of improving the quadrilaterals, it is possible that the
triangles immediately ahead of the front become inverted. While the Q-Morph algorithm does not require
triangles to be near equilateral, it does rely on the fact that all triangles are uninvested throughout the
meshing process. To ensure that this does not occur, triangles and quadrilaterals neighboring the smoothed
node must be checked for consistent normals. In the case of an inverted element, an adjustment must be
made to the new node location. The node location can be adjusted incrementally on a vector from the old
location to the new location until all neighboring elements are no longer inverted.

3.5 Local Updateand Reclassificationof Fronts

Once a new quadrilateral has been formed, it becomes necessary to update the current list of fronts. Fronts
are redefined so that edges now adjacent to both a triangle and a quadrilateral are placed on one of the four
state lists and edges no longer adjacent to a triangle are removed from the state lists. In addition, other
nearby edges on the front may need to be updated. By smoothing nodes on the fkon~ angles between
adjacent fronts may have been changed; thus necessitating moving fronts to an alternate state list.

Figure 9. Selection of side edge forming Figure 10. Splitting of side edge to
of new front loop maintain even loop

3.6 Closing the Front

When defining a new side edge, the opposite node, N~, as shown in Figure 9, may lie on an opposing front.
Edge E~ may have been selected from the existing triangles as in Figure 4, or horn a swap OpeHitiOIIas h
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Figure 5. In either case, E~ can only be used if the number of edges on each resulting front loop is even. A
front loop may be defined as all edges on a front comprising a continuous unbroken ring. Any number of
loops may be active at a given time in the process of meshing. In order to ensure an allquadrilateral mesh,
it is required that any indhidual loop be comprised of an even number of edges. Selecting an edge to be
used as anew side edge may result in the formation of a loop with art odd number of tkont edges. To avoid
this occurrence, the potential number of front edges on the new loop about to be formed is first determined.
If the number of edges is even, then the selection is made and a new loop is defined. If the number of edges
on the new loop is odd, no connection is made. Instead the edge, Ek, is split creating a new node, Nn, as
shown in Figure 10. This permits a subsequent side selection operation to define an even number of front
edges on adjacent loops.

If the side edge is to be created from a swap or split operation, as in Figure 5, the edge E. should first be
checked to see if it is part of the opposing front. Since swapping or splitting E. would destroy the
continuity of the front, the operation should not be performed. For this reason, it is advantageous, when N~
is on art opposing front, to allow for a larger value of e. This increases the chances of selecting m existing
edge and closing the front.

3.7 Seams

When the angle, et, between two adjacent edges on the front is small, then a seaming operation is
performed. Although paving (Blacker,1991) incorporates a seaming operation, it must also be defined
within the context of the Q-Morph algorithm, in order to account for triangles ahead of the front. In
addition to angle u, the criteria for seaming is also based on the number of quadrilateral elements, nQ>

adjacent to the node to be seamed. Blacker proposes the following criteria for seaming:

{

a <.51forn~ 25

}
where q < G

& c ~ otherwise
[5]

(a) Front to be searned (b) Seam closed

Figure 11. Seaming operation

To accomplish the seam, nodes Nk.l and N~+l,shown in Figure 11, must be merged. Let Nkbe the node on
the fiOnt whose angle, et, Satisfies equation 5. The temporary edge, E., connecting Nk-land Nk+I,if not
already part of the initial triangle mesh, is first recovered using Algorithm 1 above. Knowing EO,its



adjacent triangle comprising nodes NM,N~+l,N~, can be determined. With this information, all triangles and
nodes bounded by the quadrilateral composed of nodes NM,Nk,Nk+l,N~can be deleted. Finally nodes Nk-1
and Nk+lcan be merged at a location midway between their initial positions. Local smoothing is then
performed, followed by an update of the states of any adjacent fronts that may have changed. In rare cases,
the new location of node N~+lmay result in one or more inverted elements. In this case, an optimization
based smoothing algorithm (Canann,1998) is employed which adjusts the node location with the objective
of improving a local shape metric for neighboring elements.

Another operation described by Blacker (1991) is the transition seam. This is required when there is a large
difference in size between adjacent fronts. In Figure 12(a), 13~1and Em are the edges on the front adjacent
to Nk. If the ratio of lengths behveen EF1and Em is greater than 2.5, then a transition seam operation is
performed. The longer of the two edges, EFI and Em, is first split at its midpoint adding node Nk-inor
Nk+ln. In Figure 12(b), EF1is split, dhiding its adjacent triangle and quadrilateral as shown. Edges EF,Em,
and Em can then be defined as front edges. With this new configuration, edge EF can be processed as a
front in state 1-1, requiring only the recovery of the top edge between N~.in and N~+las in Figure 12(c).
Finally, the transition seam is completed after local smoothing and updating of the iiont as shown in Figure
12(d),

(a) Split larger of En and Em (b)Defme & as front in skate 1-1

(c) Form new transition quad (d) Smooth and reclassify froms

Figure 12. Transition seam operation
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3.8 TransitionSplit

An operation useful for improving transitions is shown in Figure 13. Although similar to the transition
seam operation shown in Figure 12, it is applicable when a > &lor ct > .sZ(see equation 5). The transition
split operation is performed when the ratio of lengths between EF1and Em is greater than 2.5. Let Q1be the
quadrilateral adjacent to the longer of EF1or Em. Q] is split into two quadrilaterals and a single triangle, as
shown in Figure 13(a). Front EF1in Figure 13(a) is split at its midpoint, which causes its adjacent triangle
to be split. An additional node is then inserted at the centroid of Q]. As a result, new front edges, EF,Em
and Em, can be defined as shown in Fiawre 13(b). Similar to the transition seam, EF can now be defined as
a front in state 1-1 and processed to create anew quadrilateral. Figure 13(c) shows the configuration after
smoothing and reclassification of fronts.

I
I

(a) Split Q, (b) Defiie EFas front in state 1-1 (c) Formtransition quad and smooth

Figure 13. Transition split operation

3.9 TopologicalCleanupand Smoothing

Once all of the front edges have been processed and an rtllquadrilateral mesh is generated, it is often
beneficial to perform local topological cleanup operations to decrease the number of irregular nodes.
Although Q-Morph attempts to minimize the number of irregular nodes, they may, as a necessity, be
introduced as a result of non-orthogonal boundaries or from element size transitions. Irregular nodes may
also be introduced when the local nodal density and connectivity provided by the initial triangle mesh is
insufficient to generate equilateral quadrilaterals. Many of these irregular nodes can be eliminated through
local topological cleanup. Topological cleanup modifies the connectivity of the quadrilaterals through a
series of single-step operations including edge swaps, face opens, face closes, and two-edge node
removals/insertions (Staten,1997; Canann,1994, Kimey,1997). In addition, these single operation
modifications can be combined into multi-step modifications to further decrease the number of irregular
nodes. By reducing irregular nodes through topological cleanup, the mesh contours can more closely
follow the contours of the boundary.

The final smootiing step involves a limited number of iterations of a constrained Laplacirm smoothing
algorithm. Each node is moved to the centroid of its neighbors only if an improvement in element shape
metric (Lee, 1994) would result. In situations where Laplacian smoothing produces poor results, an
optimization based smoothing (Canann, 1998) operation maybe performed.



.

4. Example Problems

Four example problems shown in Figure 14 to Figure 18 demonstrate various features of the Q-Morph
algon~. The first ex~ple,showninFigure14,&rnOnStrateStheprogression of the Q-Morph algorithm

on a simple planar domain with two holes. Figure 14(a) shows the initial triangle mesh before Q-Morph
begins. In thk case an advancing front triangle mesher (Canann,1997) was used to create the triangles. The
method used for triangulation is unimportant, inasmuch as the appropriate nodal density is provided. Figure
14(b)-(g) show the progression of the algorithm as each successive layer of elements is completed. F@re
14(c) shows an additional layer of small elements meshed on the internal circle loop before meshing the
linger elements of the outer IooP. To improve element transitions, provision is made in Q-Morph to mesh

loo~s with smaller elements be~ore those-with larger elemems. ‘l%; mesh is completed in Figure 14(h) after
a final pass of cleanup and smooth@.

(a) Initial (b) 1 Layer (c) 2 Layers (d) 3 Layers

(e) 4 Layers (O 5 Layers (g) 6 Layers (h) Cleanup and smooth

Figure 14. Progression of Q-Morph

Figure 15 ad F@re 16 ComparesQ-Morph ag~nst Lee’s (1994) quad meshing rdgoriti, which uses an

indwect method, coupled with an advancing front scheme to combine triangles into quadrilaterals. The
toroidal surface of Fi=~re 15 is composed of four surface patches represented as rational B-Splines. Q-
Morph utilizes projection and geometric evaluation routines as part of the local and final smoothing
procedures to maintain nodal locations on the threedlmensional surface. Both Figure 15(a) and (b) were
generated using the same initial triangle mesh as well as the same cleanup and smooth@ procedures.
Despite using an advancing front scheme, Lee’s algorithm shown in Figure 15(b), has dh?ficultymaintaining
well-al@ed rows of elements introducing many irregul~ internal nodes. Figure 16 further illustrates the
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ability of the Q-Morph algorithm to generate well-aligned rows of elements parallel to a complex domain
boundary, while still maintaining the required element size transitions.

(a) Q-Morph (b) Lee’s Algorithm

Figure 15. Results of Q-Morph compared with Lee’s (1994) advancing front indirect
method on toroidal surface

(a) Q-Morph (b) Lee’s Algorithm

Figure 16. Comparison of Q-Morph with Lee’s Algorithm illustrating element boundary
alignment
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Figure 17 demOn~@ates the use of Q.Morph with a plmarStiace requitinga highdegree of transition.
~lgure 17(a) shows the partially completed quad mesh wifi IWO layers of quadsplaCe&Figure 17(b) shows

the same area after fhd cleanup and smoothing. In order to maintain a specified nodal density near the top
of the area, a sizing function (Owen, 1997) was used during the triangle meshhg process. The algorithm’s
ability to maintain the desired mesh density while still enforcing well-aliged rows of elements transitioning
quickly to larger size elements is demonstrated in this example.

(a) Partially completed quad mesh

(b) Mesh after cleanup and smoothing

Figure 17. Large transition me:;h for CFD application

The final example in F@re 18 is an industrial application of the Q-Morph algorithm. For this example, the
model consisting of 104 separate areas was first constructed using a commercial CAD software application.
Surfaces are once again represented by rational B-splines. In practice, the Q-Morph algorithm is used as
part of a set of meshing tools which alsoinclude mapping methods. In this example, the narrow fillet
regions are better represented with a mapped meshing technique, which can more appropriately create
elements of high aspect ratio. Q-Morph is better suited to generating near-equilateral, isotropic
quadrilaterals. Selection of the appropriate quad meshing method can be done automatically based on the
number of lines comprising the area and its aspect ratio. After assigning line divisions, each area is first
meshed with triangles and then transformed into quadrilaterals. Note that where an odd number of divisions
is assigned to an mea, Q-Morph forms a single triangle in the mesh, generally towards the interior of the
area.
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Figure 18. Industrial application of Q-Morph combined with mapped meshing

5. Performance

Both speed and element quaWy of the resulting elements from Q-Morph was evaluated as part of this study.
Table 1 shows performance results from two of the example problems above. For the models in Figure 15
and Figure 17, various element densities were specified and their results noted.

5.1 Speed

Table 1 shows CPU times for both the quad-conversion and the clean-up and smoothing portions of the Q-
Morph algorithm. Tests were performed on a 195 MHz SGI UNIX workstation. For the toroidal surface in
Figure 15, times are necessarily affected by the number of geometzic evaluations required. Times range
from 141 to 242 quads converted per CPU second. This is in contrast to the flat surface of Figure 17, where
times ranged from 313 to 369 quads converted per CPU second. Clean-up and smoothing times were
however slower for Figure 17 than for Figure 15 as the transition in element size defined by the quad
conversion required additional iterations to converge. A wide variety of factors can affect the overall speed
of the algorithm. Table 1 illustrates two cases where geometry and element transition is critical.



5.2 Element Quality

Element quality was measured by shape memic, ~ similar to that described by Lo (1989) and Canann
(1998). For this implementation, /?is defined as the minimum triangle shape metric, @ defined by any of
the four possible triangles formed by the vertices of the quadrilateral. A ~ value of 1.0 represents a perfect
square, while a value of 0.0 represents a quadrilateral with a single comer angle of n. Concave or inverted
quadrilaterals may be represented by negative values of ~.

Both minimum and average metrics immdlately following quad conversion and after clean-up and
smoothing are shown in Table 1. In some cases, inverted or poorly shaped quadrilaterals can be created
during the quad conversion as indicated by the negative or zero metrics. Average metrics are however very
~gh. In ~1 cases tested, clean-upandsrnoo~ingimproved the poorly shaped quads to well within usable
limits. Table 1 also shows cases where a single triangle is created in the mesh. This occurs automatically in
order to resolve situations where an odd number of boundmy intervals are specified.

5.3 Robustness

A diversity of surfaces has been meshed using the Q-Morph algorithm and is currently part of a commercial
FEA software release (Ansys,1998). As such, it has been successfully ported to a wide variety of platforms,
includlng Windows, NT and UNIX environments. In general, the Q-Morph algorithm is most beneficial on
surfaces where the geometric feature sizes are larger than the specified element size. In addition, high
quality quadrilaterals can be expected, provided the background triangle mesh captures the details of the
surface and the background triangles are of reasonable quality (ie. a> O.1). Inmost cases where these
conditions are not met, Q-Morph will be successful, however element quality may suffer.

Triangle to Quad Conversion Clean-up and Smoothing

Model Num. Nurn. Min. Avg. CPU Nurn. Num. Min. Avg. CPU
Quads Tris Mernc Metric Time Quads Tris Metric Metric Time

(s) (s)

Figure 15 351 0 0.371 0.893 1.45 350 0 0.515 0.905 0.44

1208 0 0.391 0.905 5.31 1206 0 0.529 0.925 1.89

4870 0 0.170 0.936 25.4 4845 0 0.376 0.948 10.9

19209 0 -0.155 0.940 136 19070 0 0.359 0.949 34.2

~@re 17 727 1 0.00 0.740 2.32 696 1 0.255 0.802 2.23

1892 0 0.00 0.790 5.19 1785 0 0.344 0.859 4.36

4472 1 0.00 0.811 12.1 4288 1 0.370 0.889 15.7

10581 0 -0.155 0.817 33.4 10231 0 0.382 0.889 31.4

Table 1. Performance results from Q-Morph
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6. Future Work

The Q-morph algorithm has been implemented and is currently part of a recent commercial release of
ANSYS (1998). Although significant improvements have been made to the quad meshing capabilities of
the ANSYS meshing tools through the addition of Q-morph, the main research objective was to define a
prototype for the more difficult problem of hexahedral meshing. Work is currently underway to extend the
principles introduced by Q-morph, to a general-purpose hexdominant (H-morph) mesher.

7. Conclusion

The Q-Morph algorithm is an indwect quadrilateral meshing algorithm that utilizes an advancing front ‘
approach to transform triangles into quadrilaterals. It generates an all-quadrilateral mesh, provided the
number of intervals on the boundary is even. The resulting mesh has few irregukw internal nodes and
produces elements whose contours, in general, follow the boundary of the domain. Overall element quality
is excellent. The Q-Morph algorithm borrows many of its techniques horn the paving method
(Blacker,1991; Cass,1996) but adapts them for use as an indirect method, operating on an existing set of
triangles. In so doing, it is able to improve upon the paving technique by resolving some of its inherent
difficulties. The intersection problem, common to most dmect methods of advancing front meshing, is
eliminated by relying on the topology of the initial triangle mesh to close opposing tlonts. Improvements
also include facility for handling individual element placement through the use of states for classifying front
edges. Facility for handling transition in element sizes has also been addressed through the use of sizing
information provided by the initial triangle mesh and the definition of specific transformations that enable
improved mesh transitions. Additionally, the initial triangle mesh provides information that reduces the cost
of direct evaluations on three dimensional surface geometry.
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Abstract

A method is presented for meshing 3D CAD surfaces in parametric space using an advancing front
approach and a metric map to govern the size and shape of the triangles in the parametricspace.The
creationof themetricmapwillbediscussed. The advancing front mesher generates triangles based on the
metric map, stretching them in order to capture the change in parameterization of the surface. The
benefits of this algorithm include better quality elements without having to do costly real space
calculations.

Keywords: Triangulation, tiee surface meshing, Riemannian metric, CAE, finite elements

1. Introduction

1.1 Importance of work

The finite element method is a powerful tool for today’s engineering community. One of the barriers to
automating finite element analysis is robust automatic mesh generation on CAD surfaces. There ate many
manual, semi-automatic, and automatic methods available today, and all have their own advantages and
drawback$. Current commercial codes tend to use either advancing front or Delauna~ triangulation to
generate surface meshes. These merhods, while very robust in two dwensions, are not as effective on 3-
dimensional parametric surfaces, common in CAD models produced in industry. D~ect three-dmensional
extensions of Delauna~ and advancing fiont4 techniques have been proposa but tend to be slower and
less robust. For this reason, two dimensional methods are prefem@ utilizing a parametric surface
mapping where appropriate. However, standard two-dmensional methods cannot be used duectly since
the mapping from parametric space to real space can produce distorted elements. A method is needed to
place anisotropic triangles in two dimensions that will map back to isotropic triangles in three
dnensions. A merric map based on the f~st fundamental form of the surface can be used. While a
significant amount of research has gone into meshing surfaces using a metric map with Delaunay
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triangulation, little work has been done in the area of advancing fiont6’7. This paper proposes an
expanded use of the metric map for use in advancing front mesh generation.

1.2 Previous work

Previous work in this area has been done by George et al at INRIA5’8and ot4ers9’10who have investigated
the use of tbe metric and metric map quite extensively with tie use of a Delaunay kernel. Moller and
Hansbo investigated using a metric to define the shape of triangles in parametric space but did not propose
an algorithm to produce the meshG. Cuili?xe7 has also explored the use of a metric in meshing parametric
surfaces using advancing front. He explored the notion of an orthogonal vector in Riemannian space (see
section 3.4.3.3, equation 14) quite thoroughly.

1.3 Overview of paper

The blend of advancing ffont and a metric map is new since previous work with the advancing front
method has been in parametric space (either d~ectly meshing the parametric spacellor modi~ng the
space12)or directly on the 3D surface4.

This paper describes the details of generating a finite element mesh in the parametric space of a CAD
surface using a Riemannian me~ic map. Section 2 presents the overall algorithm. Section 3 gives the
details of the algorithm. Section 4 presents some results and comparison to other methods. Section 5
draws conclusions and discusses a few areas where work is still needed.

2. Overall Algorithm

As with any advancing front method, the algorithm begins with a set of boundary loop segments, defined
as the initial “front”. Triangles are constructed from the front segments and grow towards the interior of
the domain, “advancing the front as it proceeds”. More specifically, the proposed algorithm involves the
following step.x

. Discretize the boundary (section 3.2)

. Compute background mesh (section 3.3)
● Orient the front segments (section 3.4.1)
● Initialize tie fronts (section 3.4.2)
● Process the fronts (section 3.4.3)
For each front

. Check merric of nodes on front to determine appropriate method for distance
calculation (section 3.4.3.1)

. Check to see if the angle between adjacent IYontsis below a threshold angle. If it is,
see if the formation of a &iangle is possible (section 3.4.3.2)

. Determine the best location for a candidate node based on interpolation of the
background mesh. (section 3.4.3.3)

● Find all neaby nodes on the current front (section 3.4.3.4)
● See if any of the nearby nodes form an acceptable triangle (section 3.4.3.5)
. If all of the above methods fail, use a brute force metlmd to go through all the

remaining nodes on the front and form the best triangle (section 3.4.3.6)
. Check boundary node normals (section 3.4.3.7)
. Form triangle
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● Update the front.

The proposed algorithm can be used for both flat and curved surfaces. While curved surfaces require the

use of a metric map, flat surfaces can use the identity mawix for the metric, provided an initial

transformation of the three dnensional boundary nodes to the x-y plane is first accomplished.

3. Details of the Algorithm

Thissectionwilldefinethemetricandit’suses.It willalsodescribethecreationofthebackgroundmesh
andthesurfacemeshthatutilizethemetric.

3.1 Definition of the metric

For 3D surfaces with a parameterization denoted by~ there is a metric of the tangent plane at every point

P defined N

where

[1]

[2]

[3]

where d; (u, v) and 5; (u, v) are the gradient vectors at the point P on the surface. -

The 3D distance between two points along the surface, A and B, as measured from point A can be
computed using rheir coordinates in parametric space and the metric at A

p311MA=JE~(u~ -u~)z +2F~(u~ -zf~)(v~ –VA)+ G~(v~ – V~)2 [4]

This function only gives the distance with respect to the metric at A. The distance as computed horn both
A and B is needed during tie meshing process. For a well behaved surface the distance can be computed
as the average of tie distance measured from A and the distance measured from B:

[5]pq= ll*nJfA+IPIIM,
2
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Well behaved implies a minimal deviation of the suface derivatives over the surface. The behavior of the
surface is determined during the creation of the background mesh (section 3.3). When the surface is not
well behaved, numerical integration must be done using a finite number of integration points, N (typically
5), along the line segment between A and B.

[6]

3.2 Discretization of the Boundary

The boundary loops of the surface must be discretized in such a way that well shaped elements can be
created. A method such as smart sizing13 carI be used where the boundary is discretized and then refined
based on the proximity and curvature of the lines in the model. This allows the mesher to capture the
curvature of the surface by putting more element divisions on highly curved boundaries.

3.3 Construction of metric & size map

The metric stated above is used to compute 3D distances in a 2D, parametric domain. Since 3D sizes are

stored on the 2D domain, the metic allows for the creation of distortion free triangles while performing
all of the meshing in 2D parametric space. This is accomplished by using the metric to distort the
triangles in the parametric space so they are distortion free when mapped”back to real space.

For the sake of efficiency, a background mesh is defined to control element sizing and metric values. The
background mesh consists of selected points in the parametric domain where both size and metric are
Imown exactly. The mesher can utilize this information to interpolate local size and metric data as a
function of the parametric U,Vcoordinates. For example

size = f(u,v)

[ML= f(u,v)
[7]

one of the benefits of computing tie metric map and size map using the same background mesh is that all
sizing information and metric information is stored in one place. A second benefit is that the metric of a
point in parametric space can be determined by a simple interpolation ratier than a costly evaluation of
the surface followed by the computation of the metric. An additional benefit is the ability to refine the
background mesh based on size and metric values at the same time on the same mesh. This, as described
by 0wen14, is a fast and convenient way to compute essentially two different maps on one mesh.

The initial background mesh is a Delaunay tessellation of a subset of the domain’s boundary nodes in
parametric space. Boundary nodes are inserted into tle background mesh only if their resulting
contribution to the size map would affect it significantly.
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The parametric space does not need to be well behaved in order for this method to work well. As a matter
of fac~ one of the strengths of this method is its ability to handle surfaces that do not have a well behaved
parametric space.

Once the background mesh is generated, the 3D sizes and merrics are stored at the nodes of the 2D
background mesh for later reference.

If the element size must change on the interior of the mesh due to surface curvature or due to the metric
changes caused by variations in the mapping between parametric space and global space, internal nodes
must be inserted into the background mesh so that an accurate representation of the size and metric can be
produced.

The internal nodes in the background mesh are placed by using a quadtfee decomposition of the
parametric space. The quadtree is initialized by evaluating the tangent vectors at each of the points in an
NxN grid. A reasonable value for N is 10. New nodes are inserted as needed at the cenkoid of each
quadtree leaf. The quadtree leaves are refined based on the ratio the deviation of the mapping of the
surface from parametric space to real space. This ratio is defined as the maximum magnitude to the
minimum magnitude of the tangent vectors at the four comers of the leaf. If this ratio exceeds the
maximum slope ratio (1.5 seems to work well for most surfaces) the leaf is refined. If the leaves need to be
refined, tie surface is not considered to be locally well behaved. The level of refinement is limited to a
maximum number of iterations as well as by the real world lengtl of the diagonal of the smallest quadtree
leaf. If the diagonal length in real space is less than twice the minimum size then refinement of the
background mesh is stopped. In addition to behg inserted to filly capture transitions in the parametric
mapping, nodes are also inserted to capture size transitions and surface curvature (as in 0wen*4).

Any inte~olation method can be used to create and evaluate the background mesh, but 0wen14 illustrates
that natural neighbor interpolation is an attractive method to use since it is C1 continuous at the nodes of
the background-mesh. Thi~ is important in representing the metric, since is undesirable to have
discontinuities in the metric map. The method also reduces the amount of “banding” i.e., bands of
unnecessarily small elements.
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3.4 Advancing front algorithm using the metric map

After the background mesh has been created, the meshing process can begin. While the basic algorithm
was outlined in Section 2, the details will be presented here.

3.4.1 Orient front segments

A set of closed boundary loops (closed set of singly connected edges) made up of the initial tlont serves as
input to the advancing front mesher. Boundary loops are oriented such that the exterior loops follow a
counter-clockwise d~ection and the interior loops follow a clockwise direction.

3.4.2 Initialize the fronts

The fwst step after tie boundary has been discretized and the size/metric map has been computed is the
initialization of the front

. Sizes and metrics are interpolated from the background mesh and stored with the boundary nodes.
The 3D front length is computed and stored in the front data structure using the distance calculations
from Section 3.1.

● For each edge on the fron~ the equation of the line using the U,Vcoordinates of the edge’s nodes is
computed for intersection calculations to be performed later.

● Experience has shown that meshing smaller fronts fwst can be advantageous. To accomplish this, the
fronts are hashed according to their 3D size. The fronts are stored in a collection of bins; each one
holding a specified range of sizes. Bin sizes are defined logarithmically, where the front size range
for a bin containing small fronts is narrower tlan for larger tionts. During the meshing process,
fronts are first processed horn the bin containing the smallest fronts. It was found that sorting based
on 3D size is better than 2D size because of problems found with mapping the mesh back to 3D space
where the parametric space is highly distorted. Sorting based on 3D dMances also helps to better
capture size transitions in the mesh.

● The final step in tlont initialization is to check for intersecting boundary segments. This step is
performed in order to check for erroneous or poor input. Each front segment is checked against any
non-adjacent front. If any of the boundary fronts intersec~ the mesher returns an error code.

3.4.3 Process the fronts

The fronts are now processed from the smallest 3D sized ffont to the larges~ as described in the following
sections.

3.4.3.1 Check metric of nodes on the front

Since distance measurement in Riemannian space varies horn one location to another throughout the
parametric space, special care must be taken where large size transitions occur, or where the parametric
space is locally not well behaved.
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For each fion~ the mesher must ensure that the metrics at its end nodes do not exceed the maximum slope
ratio defined during the creation of the background mesh. If the ratio is exceeded, distance calculations
must be integrated to better approximate the true 3D distance. (Note that in further discussions of distance
calculations the ratio of tie metrics must be checked in order to determine which distance calculation
should be used, i.e. averaging (equation 5) or integrating (equation 6)).

3.4.3.2 Check if the angle between adjacent fronts is below threshold angle

The fwst step in processing a front is checking the 3D angle it makes between its two adjacent fronts.
Using the 3D Iengrhs of the three sides, the law of cosines is used to compute the angle at the desired node
as in the following:

6A = COS-I

[

]lc/q13D’+Ipq,:-pq,:

211C’%D [l~13D 1

[8]

If the angle is below the threshold angle of 75 degrees as shown in Figure 2, the triangle formed from A,
B and C becomes a candidate triangle. Before forming triangle ABC, segment BC must first be checked to
ensure it does not intersect any other fronts. This can be done as outlined in section 3.4.3.5.

‘=NSCSP’C’
A current B

front

Figure 2 Small angle triangle creation

To ensure that high aspect ratio triangles are not created, an additional check is made before the triangle
is created. If the aspect ratio of edge length to front length is more than twice the user controllable growth
ratio, g,, (usually 2.0) the adjacent edge will be split.
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c
Newpoint after edge is split

D

Figure 3 Splitting of triangle because of aspect ratio

For example, in Figure 3, edge AB is the current front and edge AC is an adjacent front with an angle less
than 75°. Since edge AC exeeeds the maximum transition ratio, the adjacent front AC is split.

]lc~l
3D >

IIABI]3D -“
[9]

Edge AC is split at location CWli~,forming anew node, where the length of the new edge ACqMis defined
ax

[10]

where V*, and yc, are the desired sizes at A and C.

The AC is Splitatcwli~inorder to create a division that best matches the d~ired sizes at A ~d C.

The new triangles CDCwlitand DACw~~are then formed from triangle ACD. The triangle ABCwlilis tlen
created and the front is updated.

3.4.3.3 Determining the best location for a new node

If a triangle cannot be created using tie adjacent fronts, as deseribed above, the location of a candidate
node, NC,that would form an ideal triangle is determined. All of the nodes on the current fron~ Nfi, that
are within a specified 3D distance from N. are found and sorted by their distance to N. (see section 3.4.3.4
for details). The closest node that forms a valid triangle with the current front is selected. The following
describes his process in more detail.

To find the ideal size, ~~~ of the new triangle, T., from front AB tie following may be used

y3D = min

(

VA+VB ~II II g)2 ‘ 3D.
, ,gr>l
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where VA YBare the 3D element sizes interpolated from the background mesh at A andl.? respectively and
g, is a user defined maximum growth ratio.

For flaq non-parametric surfaces, the location of N. can be constructed by forming an isosceles triangle

with front AB, where edge length llANCll~~= llBNCll~~= V3D, and the heighq h3~ of Tn is defined ax

[12]

Since most parametric mappings are not uniform, llAN=ll,~* llBN=112~,even though llAN=113~= llBNc113~.

However, N. can be located by computing au equivalent h2~ and normal vector, fiz~ to front AB, as

shown in Figure 4. For example Iec

& +&*
mm =

2

“2D=k}=[-f:-2”)h
where ~ADis a unit vector pointing from A to B and fim is the midpoint of AB.

Finally, to locate NCin parametric space, N.2B the following carI be used

ivc2D= iilm + IT’D.~D

where

N.

L\., fi2~ 900 in real space(3D)
hzD

A mAB B

current Iiont

Figure 4 Locating ideal node location

[13]

[14]

[15]

[16]
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3.4.3.4 Find nearby nodes

It is not always necessary to create anew node at N.. In many cases, there will be an existing node, NF,
that is close enough to fulfill the local size requirements. A search radius, r~~defined as:

r,.=fin~c,v,.)-sf,o<y<l [17]

where ~Cis the interpolated element size at NC,and sf is a shrink factor limiting the radius of acceptable
nodes, thereby limiting the size transition in the mesh and reducing the number of distance calculations.
A typical range for sf is between .8 and .4.

Since the search radius is a 3D distance, an ellipse based on the metric at N. must be used in parametric
space to calculate a bounding box to reduce the number of distance calculations. The major radius of this
ellipse is used as the width of the bounding box.

‘3Drz~ = [18]
E~cu~C2+ 2F~cu~=v~=+ G~cv~c2

Equation 18 is in the same form as an ellipse in polar coordinates centered about the origin. It can then be
transformed into the general form of W ellipse in Cartesian coordinates.

Ax2+By2+C~+F=0 [19]

where

A = E~e, B = GN=,C = 2F~=,F = r~~2,x = r2~2u~=,y = rz~2v~= [20]

By rotating the ellipse to align with the Cartesian coordinate axis, equation 19 maybe reduced and the
major radius defined as:

“=&
where

(Awl = Acos28+Bsin2 f?+
}

Csin 20 .1

2

(
B~, = BCOS2O+ Asin2 ff–

)

Csin20 .1

2

where

cOte=~
c

The major radius can now be used as the parametric space bounding box width

[21]

[22]



A bounding box with width 2a centered at NCcan be used to quickly filter nodes, Nfi, on tie front rhat do
not fall within the ellipse. The distance equations mentioned in section 3.1 can be used to determine if
they are actually within tie search radius while not violating the maximum growth ratio ,g,.

3.4.3.5 Validity checks for candidate Triangles

There are three tests that a triangle must pass to be accepted zero area tes~ internal node tes~ and front
intersection test.

The fwst triangle validity check determines if the triangle has zero area in parametric space. Zero area
triangles cannot be created.

If T, passes the zero area tes~ it mustbecheckedfornodesinteriortoit ornodestoocloseto theboundary
edgesofnearbytriangles.Thenodescloseto the trianglearecheckedwiththissametes~referredtoas
rheinteriornodetest.

The area (barycentic) coordinates of a node on the frong Nm which lies within the bounding box of the
current front are computed with respect to TU(Figure 5). If any of these coordinates are less than a
specified empirical tolerance, Ncmust be tested again using the approximate 3D area coordinates. The 3D
area of a tri~gle,7sD, can be defined from Heron’s formula as.

Y3D ‘~s(s-]]M]]3D)(s -]lB~]3D)(s-l]cAl]3D)

where

-A
p?/ \T

/ \“
/ \

Nfi \
/—-—- -— A

A B

Figure 5 Test for node inside triangle

If any of these area coordinates are algebraically less than an empirical tolerance (currently set to -
0.0154321012) then the triangle passes the interior node test.

[23]

[24]

If the triangle passes the interior node tes~ the triangle then goes through the front intersection test. This
test checks that the triangle does not intersect any of the current fronts. This intersection testis performed
in parametric space.

439



3.4.3.6 Brute force method

If any of the candidate nodes (nearby nodes plus the ideal node NC),NCi,fail to create a valid triangle, then
the brute force method presented in this section is used to create a triangle. The brute force method
consists of looping through all of tie nodes on the front and finding the best shaped triangle. A distortion
metric15, CLis used to determine the quality of the triangle. For flat non-parametric surfaces, a is defined
as

——
The dwections vectors NCA and NCB are not known on the parametric surface, so the area square~ ‘f3D2,

must be computed using equation 23 above. Using this, the distortion metric in Riemannian space, a3~
can be defined as:

SY3D2
a

‘D= 2$llivc~13D2 +IIAB]ISD2 ‘11BNC113D2
[26]

The distortion metric alone is not always the best method to create the new triangle because size criterion
may be violated even though one triangle maybe of better quality than anotier. It was found that the best
tiangle is created by penalizing the distortion metric of the triangle based on a function of the ratio of
desired triangle size and longest triangle edge length. This function is illustrated below

{

~e(l-x) -0.4sinmx 0< x <1
penalty = o.~(x(l-’) –Ax + 10~lsx<w

9

where

where YAand VBare the desired sizes at A and B.

penalty

1

0.8

0.6

0.4

0.2
lb

Interp size

~ edgle.
1 2 3 4

Figure 6 Penalty function for distortion metric

The new alpha then becomes:
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(xW = a~~. penalty [29]

3.4.3.7 Checking boundary normals

There are some cases where degenerate surfaces such as cones have highly distorted parametric space. In
such cases it is necessary to check the angle spanned by a triangle connected to boundary nodes to prevent
the element from “flattening” out (Figure 7).

Figure 7 Flattened out cone tip

This check is done only when two or three of the triangle’s nodes lie on mutually exclusive boun~ “
curves. The angle spanned by the edge that cuts across the domain tlom one boundary to another is
checked by computing the angle between the surface normals of the boundary nodes. If the computed
angle is below the user controllable maximum spanning angle (usually between 5 and 60 degrees), the
triangle is then split at its midpoint along the edge that cuts across the domain.

For example, Let nodes A and B of triangle ABC (Figure 8) lie on different boundary curves. Let fhe

surface normals at nodes A and B be fi~ and fi~ ; If the dot product of fi~ and fi~ exceeds the
maximum spanning angle then triangle ABC will be split at it’s 3D midpoint P along edge AB.

degeneracy

lvB

B

Figure 8 Splitting of flat cone tip in parametric space



4. Results and Comparisons

In this section, the results of the Riemannian space advancing front mesher are compared against the
warped parametric space and direct 3D meshers available in the ANSYS program. The warped
parametric space mesherlz is a mesher in the ANSYS program that meshes parametric surfaces in a
different manner. This method reparametrizes the surface selectively evaluating surface derivatives (Aq
Av) over the domain and adjusting local U,Vvalues to hold the magnitude of Au, Av roughly constant.

Times presented in this section incorporate the total meshing time after boundary discretization. This
includes, projecting the 3D boundary nodes to 2D parametric space, background mesh creation, advancing

front meshing, cleanup and smoothing, mapping to 3D, and storage of elements to the ANSYS database.

Figures 9(~b,c) and Table 1 illustrate the advantages of meshing p~aInetiC SurfaCeSUSinga Riemannian
surface definition ratler than changing the parametric space. The poorly parametrized surface has surface
derivatives that are not orthogonal. This phenomena yields poorly shaped, stretched triangles when
meshed with tie warped parametric space mesher. However, when the surface is meshed using tie
Riemannian space mesher the r%ulting triangles are well shaped.

Figure 9a Poorly parameterized surface

Figure 9b With warped parametric space Figure 9C With Riemannian space mesher

Table 1 Distortion metrics of surface mesh

Mesher Triangles min Q avg. a

Riemannian sDace 64 0.778 0.961—

warped parametric space 50 0.320 0.743

Figure 10 and Table 2 illustrate the drastic speed improvements that the Riemannian space mesher has
over the direct 3D mesher with both meshers yielding meshes of equivalent quality.
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Figure 10 Spring

Table 2 Spring statistics
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Mesher Triangles min a Avg. a time elements/see

Riemannian space 3336 0.489 0.923 9.93 335.95

warped parametric space 4356 0.307 0.922 21.89 198.99

direct 3D 3506 0.481 0.927 64.38 54.45

Figures 1l(~b,c) and Table 3 illustrate the overall quality and speed improvements over the warped
parametric space and direct 3D meshers for a general CAD surface. The stretched triangles in the warped
parametric space mesh are caused by non-orthogonal surface derivatives. The Riemannian space mesher
resolves those problems. It also resolves the problems of costly real space calculations done by the direct
3D mesher.



Figure lla CAD Surface Figure llb With Riemannian space mesher

Figure llc With warped parametric space Figure lld With direct 3D mesher

Table 3 CAD surface statistics

Mesher Triangles min o.! Avg. a time elementskec

Riemannian space 121 0.650 0.910 0.36 336.11

warped parametric space 115 0.409 0.821 0.29 396.55

direct 3D . 125 0.459 0.907 0.74 168.91

5. Conclusion

A method for meshing 3D parametric surfaces using the advancing front method with a Riemannian
surface definition was presented. The detaiis of the creation of the metric map used to determine the
amount of distortion of the elements in parametric space were given along with the details of an
advancing front algorithm that utilizes the metric map.



Meshing surfaces using an advancing front with a Riemannian surface definition proves to be a valuable
technique for meshing surfaces common in CAE. This method overcomes anomalies found in the warped
parametric space and direct 3D methods currently used in tie ANSYS program. Well shaped triangles
are produced by this method. Any of three of the methods compared robust and capable of creating high
quality meshes for most geometries. However, having all three meshers available in the ANSYS program
greatly increases the likelihood of successfully meshing any arbitrary collection of surfaces and hence fully
automated constrained tetrahedral meshing. Future areas of work may include the combination of a
warped parametric space and Riemannian space mesher in order to create better mappings for high aspect
ratio surfaces.
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Abstract. The WhAow equations from structured elliptic grid generation are adapted to
smoothing of tw~dlmensional unstructured meshes using a finite differenceapproach. W]nslow
smoothing on unstructured quadrilateral meshes results in mesh folding less frequently than with
traditional Laplacian smoothing.

Key words. unstructured grid generation, quadrilateral meshing, elliptic smoothing, winslow
equations .
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1. Introduction

The Winslow elliptic smoother has been used for many years in two-dimensional
structured mesh generation because of its connection to harmonic maps between man-
ifolds for which a one-to-one guarantee is proven. The smoother is based on solving
the well-known partial differential equations

(1) 922x& – 2912xcq +911 Xm = 0,

(2) 922Y.$c– 2912 Y&l+ 911Ym = o

as a boundary-value problem [11], [10]. The equations are obtained by requiring the
logical variables < and q to be harmonic functions and by interchanging the dependent
and independent variables in the correspondhg Laplace equations.

The purpose of this ,paper is not to compare Winslow and Laplacian smooth-
ing but rather to present a logical extension of Winslow smoothing to unstructured
meshes. Many comparisons between WhMlow smoothing and Laplacian smoothing on
structured meshes have been performed and there is a widely held concensus that the
former is the smoother of choice, mainly due to its resistance to grid folding. Despite
the effectiveness of this mesh generator in structured meshing, few attempts have
been made to extend its applicability to the reahn of unstructured meshes. Instead,
Laplacian smoothing predominates on unstructured meshes due to its generaWy and
to its ease of implementation. It is the author’s belief that the additional work of
implementing WhISlow smoothing is worth the effort to achieve robustness against
mesh folding.

In Laplacian smoothmg, node positions are the average of positions of the M
neighboring nodes:

(3)
1

M–1
&.-

M x Xm
rn=o

* SANDIA IS A MULTIPROGRAM LABORATORY OPERATED BY SANDIA
CORPORATION, A LOCKHEED MARTIN COMPANY, FOR THE UNITED STATES
DEPARTMENT OF ENERGY UNDER CONTRACT DEAC0494AL85000.



Laplacian smoothing on structured meshes can be
following pair of partial diilerential equations [6]:

(4) x({ + Xqq = o,

(5) Yc<+Yvl = 0.

shown to arise from solving the

Although Laplacian smoothing is easy to implement, it’s usefulness is limited by the
fact that it sometimes results in mesh folding/spillover. No guarantee against folding

can be constructed for equations (4) and (5). The fact that Laplacian smoothing on
structured meshes can be extended to unstructured meshes strongly suggests that it
should be possible to extend WhMlow smoothing to unstructured meshes as well.

In his original paper [11], Winslow solved equations (1) and (2) on a structured
triangular mesh having six-valent nodes. Others soon extended the procedure to
structured quadrilateral meshes having four-valent nodes [10]. To extend Whalow to
unstructured meshes clearly requires letting go of the idea of a global mapping. This
point was grasped by mesh researchers such as Tlpton [9], Allievi [1], and Hagemeier
[4]. In spite of their insight, Winslow remains largely unused by the unstructured
meshing community although some ad-hoc attempts at extending Winslow have been
made [5].

Wkslow smoothing on unstructured quadrilateral meshes is emphasized due to
the author’s present association with Sandia’s CUBIT project. However, an extension
to smoothing of unstructured triangular meshes is briefly outliied.

In section 2 of this paper, equations are derived that give the local discrete ap-
proximation of the WhAow equations on an unstructured mesh. Section 3 presents
implementation issues, demonstrates results on several CUBIT test problems, and
discusses the extension to triangular meshes. Conclusions are given in section 4.

2. Winslow local discretization on an unstructured quadrilateral mesh.

The natural approach to solving (1) and (2) on unstructured meshes is to apply
the finiteelement method (FEM). Tipton does this for 3D Winslow in a proprietary
DOE paper [9]. An alternative approach outlined in this paper is to use finite differ-
ences, expanding derivatives about each mesh node in a Taylor Series and solving the
resulting non-linear coupled system of equations. This is not meant to suggest that
the finite difference approach given here is superior to a FEM approach. The choice
merely reflects the fact that the author is more familiar with the former method.

For unstructured meshes, the most commonly used smoother is Laplacian Smooth-
ing. For a given mesh node X. a discrete operator D. from R3 ~ R3 can be formulated

M–1

(6)

where the sum is over the M

Dnx = MXn – T Xmu
m=l)

neighboring nodes. To smooth the mesh, one iterates
on the set of equations D~x = O until some tolerance is satisfied. A similar oper-
ator is sought such that in the limit of small mesh size, (1) and (2) will be locally
approximated at each node of the mesh.

To derive a discrete operator for (1) and (2) using finite differences, the two first
derivatives and the three second derivatives at each node Xn with valency Al z 3 must
be approximated. F~st consider only the “edge” nodes, i.e., the nodes x~ adjacent
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to x~. Let a local, discrete, uniform logical space (/&, qjJ be given by

(7) & = cosom

(8) - % = sin em

where

(9)

with m = O,1,. ...M – 1. The following well-known formula involving non-negative
integral powers of the roots of unity is applied:

(lo)
M–l

~ (e~pio”’)k=
{

Wfk = O, M, 2M, ...
0 elsern=o

Explicit results for thk formula are given for k = 1,2,3, and 4 in Appendix I.
Assume that there exists a smooth, Cm finction ~((, q) on the local logical space

and that one can approximate .f(fm, ~m) about f(o, 0) bytheTaylorSeriesMa~io~

(11)

for some O <7 s 1.
To arrive at expressions for the first and second derivatives of ~ at (O,O), multiply

the Taylor Series expansion above by various combinations of cos 6m and sin L9~,sum
from m= Oto7n=lV– 1, and use the identities in Appendm I. Consider only
k <4 in order to neglect higher-order terms involving third and higher derivatives.

For M 25 the resulting approximations are:

For M = 3 and 4 there is not enough information in the “edge” nodes to uniquely
determine some of the required derivatives. For example, when M = 4, ~cv cannot be
approximated by the “edge” nodes and so the ‘(diagonal)’ nodes ( those four nodes %
lying on the opposite corners of the four quadrilaterals) are included, increasing the



valence to eight. To construct a logical space for the diag~nal nodes assum~ that the
logical quadrilaterals form rhombli. Then <m = Lkf cos tlm, qm = LM sin @m, where
L~ = 2(1 + cos 27r/M) and

(17)
27T(7n+ +)

6.= ~

The motivation for this construction is, of course, to get the usual second-order accu-
rate centered-difference approximation to ~fn when M = 4. The result for M = 4 is
then

M–1
(18) fc = ; ~ (Ll – fo) Cosem

m.o

(19) ~~ = ~ ‘~l(~m – .fo) sin 8*
m.O

(20) f~f = + ‘jhm – fo) COS2em
77Z.(1
M–1

(21) ftn = ~ ~ (.fm – ?0) cos~m sin jm
m.o

(22) fn~ = ~ ~~l(fm – fO) sin2 em
m+

where the “hat” notation refers to evaluations on the diagonal nodes.
For M = 3, it is impossible to get the derivatives fg~ and ~~n if only the “edge”

nodes are used. For this case, use the diagonal nodes of the three adjacent quadri-
laterals to augment the nodes to a set of six nodes. Then equations (12)-(16) can be
applied but with M = 6. The result is exactly the set of formulas used by Winslow
[11]. In summary, the first and second derivatives of f may be approximated on an
unstructured, quadrilateral mesh. Ikw-valent nodes with M = 3 and M = 4 require
use of the “diagonal” nodes, while higher valent nodes can be approximated without
using the “diagonal” nodes.

The discrete Winslow operator can now be constructed. Let

(23) DnX = G22 D~~X. – 2 G12DCqxn + Gll D7vx.

with

(24) Gll = D(x. . DC&

(25) G12 = D~x. . D,,xrz

(26) G22 = Dvxn . D,lxn

and

(27) DCX. = : 5(X. -G) Cosom
na=cl

(28) Dnxn = : ‘~l(xm - Xn) sintlm
m=o
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The second derivatives are constructed similarly, but depend on whether or not M =4.

3. Implementation and Applications.

The method outlined in the previous section was implemented in C++ within
the CUBIT code [2]. Because CUBIT uses solid model geometry, the equations were
solved using vectors in R3 and the nodes moved to the ‘towning” surfaces. One thus
solves

(29) 922%< – 2912% + 911 XTlrl = o

where x ~ R3.
In order to correctly apply the formula of the previous section one must ensure

that the adjacent nodes are consistently ordered (either clockwke or counterclockwise)
with respect to the owning surface. A special routine within CUBIT was written to
do this. To make this approach compatible with CUBIT’s paving/cleanup algorithm
[3], two-valent nodes were specially handled by doing Laplacian smoothing.

Figure 1 shows the results of Winslow smoothing on an annular surface in which
the upper left-hand side has been meshed with a structured mesh and the lower
right-hand side meshed using paving. The large cell aspect-ratios on the smoothed
structured mesh may strike some readers as not particularly good. Recall, however,
that mesh quality is physics-dependent, as well as geometry-dependent, i.e., the ap-
plication determines whether or not the mesh is acceptable. If small aspect-ratios
are wanted, then the Winslow-smoothed paved mesh on the lower right of F&ure 1
is more appropriate. Readers famtlar with Winslow smoothmg on structured meshes
will consider the result in the upper left to be a good mesh compared to that produced
by Laplacian smoothing - the latter is well-known to produce badly folded meshes if
a structured mesh is used on a sufficiently stretched version of the geometry [7]. A
paved mesh on a toroidal surface was Whx40w-smoothed in Figure 2. These examples
alone do not demonstrate the robustness of Winslow smoothing against folding, but
a year’s experience with this smoother in CUBIT has demonstrated that the prop
erty exhibited on structured meshes has been successfully carried over to unstructured
quadrilateral meshes. If mesh density is too coarse, truncation error can lead to
Winslow producing folded meshes despite the existence of a guarantee for the contin-
uum global mapping [7]. The author haa observed this on very coarse paved meshes
and also at the center of CUBIT’s Circle primitive. Whslow smoothhg on structured
meshes is derived by solving an elliptic boundary value problem. As a result, the
Winslow guarantee does not extend to the mesh at the boundary and folded cells on
the boundary are not precluded. In the present implementation, boundary nodes are
not smoothed.

Although the author has not yet implemented Winslow for unstructured trian-
gular meshes, the method in section 2 can be modified for this case. The formulas
(12)-(16) in that section will apply provided any node in the triangular mesh has a
valence of 5 or greater (this includes Whslow’s six-valent case of a regular triangular
mesh). If a node in the triangular mesh is S or 4valent, valence can be increased by
using nodes opposite the edges of the triangles that are opposite the smooth node.
The only case for which th~ cannot be done is if the node is near the boundary; then
the opposite nodes may not exist. For certain degenerate cases, such as that of a
3-valent node adjacent to the corner of the domain, one may not be able to sufficiently
increase the valence by grabbing adjacent nodes. Laplacian smoothing can be applied
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FIG. 1. Winslow Smoothing on Structured and Unstructured Mesh

to those particular nodes.

4. Summary and Conclusions.
Winslow smoothing from structured meshing has been extended to two-dimensional
unstructured meshes. Experience with this extension of Whslow within the CUBIT
code strongly suggests that resistance to mesh folding has been carried over to the
unstructured case. Furthermore, although the computations outlined here are more
expensive than those needed for Laplacian smoothing, we have found that the overall
CPU time involved with Wkslow is slightly less than with Laplacian smoothing. This
has been observed in smoothhlg of structured meshes as well and suggests that the
rate of convergence of the iterative smoothing method is larger for Whslow. It is not
clear that one can extend the finite difference approach outlined in this paper to three-
dimensions. An extension to three-dimensional unstructured meshes using FEM has
already been done in [9]. Unfortunately, experience suggests that resistance to mesh
folding is not as strong in three-dimensional Winslow smoothing. The author has
successfully extended two-dimensional Winslow smoothing to a weighted smoothing
scheme for anisotropic smoothing [8].
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FIG.2. Winslow Smoothing on Unstructured Mesh on a Torus
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Appendix I: Expansions of Formula (10)

k=l, M~3:

M-1

(30) x Cosem = o
?n=o
M–1

(31) x sin em =0
771.Q

M-1
(32) E

M
COS2em = —

2mzo
M–1

(33) E cos 13msin em = O
rn.o

(34)

(35)

k=3, M=3:

(36)

M–1

x
A/l

sin2 On = —
2m.O

M-1

E
iv

COS3em = —
4m=Q

M–1
(37) x COS213msin (3m = O

m.o

(38)
M–1

x

M
cos 19msin2 @m = ——

4m.o
M– 1

(39) x sin3 Om = O
m=o

If k = 3 and Ill >4, then the four sums (36)-(39) are all zero.

k=4, i’v123, it4#4:

M=l
(40) x

3M
COS4em = —

8nl.o
M=l

(41) E cos3 19msin Om = O
rn.o

(42)
M=l

E
A’!!

COS2em sin2 em =
TTn.cl

M=l
(43) x cos Omsin3 Om = O

m=O
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(44)

k=4, M=4:

(45)

(46)

(47)

(48)

(49)

M=l

z

3M
sin4 Om = —

8rn=l)

M=]

77Z.O

M=l

x COS2Omsin2 em
rn=ll

M=l

x cos Omsin3 em
m.i)

M=l

x sin4 Om
m= o
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Abstract, The goal of this paper is to help evaluate the tetrahedral mesh generation, aakptation and optimization
algorithms. To achieve this goal, benchmarks are proposed consisting of simple and complete geometn”es. In order to
evaluate the quality of the meshes, the concept of tetrahedron shape measure is clarijied and used.
Finally as an example, these benchmarks are used to evaluate meshes optimized by ADP3D, a 3D mesh optimizex In
doing so, a conception of mesh optimization isformulated.

Keywords: mesh optimization, benchmmk, unstructured, tetrahedral, tetrahedron shape measure.

1 Introduction

Publications in the domain of three-dimensional unstructured tetrahedral mesh generation, adaptation and optimization
abound. However, they tend to show results only for complex industrial test cases, for which comparisons are most
often impossible and results are not reproducible. Sometimes, only images of the optimized meshes are shown, so
that it is impossible to tell whether the generation, adaptation or optimization process has converged or not. Different
statistics on the quality of the mesh are used, and tetrahedron shape measures maybe unusual.

According to the scientific method, one should be able to test a published optimization strategy, reproduce results
published elsewhere and compare these results to the ones obtained with other strategies. This is seldom the case in
the field of mesh optimization, largely because of the lack of standardization of published test cases. It is thus felt that
the definition of a series of benchmarks that would help to establish a basis of comparison constitutes a significant
contribution to the field of mesh optimization.

In this paper, a first series of benchmark test cases is proposed that should help compare three-dimensional, optimiza-
tion meshing techniques on tetrahedral. For each case, the inputs of the benchmarks are clearly defined ($ 2), as well
as the measures relating to the optimization process (~ 3) and the ones pertaining to the quality of the results ($ 4).
These benchmarks are designed to test the generation and optimization of unstructured tetrahedral meshes. They are
not universal or suitable for all meshing problems.

The second part of the paper presents the authors own optimization strategy, implemented in the ADP3D pack-
age ($ 5). The benchmarking process is initialized by evaluating the results of ADP3D.($ 6) followed by an analysis
of the results ($ 7).

Finally, we conclude that using the benchmarks helps to evaluate the results of tetrahedral mesh optimization algo-
rithms. We feel that the Meshing Roundtable is a good forum to discuss this benchmarks proposal and that it will
encourage its use.

2 Description of the Benchmarks

The goal sought in designing these benchmarks is to measure 3D unstructured tetrahedral mesh optimizers. The
objectives are first stated and described. The description of the benchmarks themselves will proceed as follows. First,
the characteristics of a generic benchmark satisfying the goals will be described, together with the list of the various
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measures that are planed to be used. Second, seven benchmarks satisfying the generic characteristics and goals will
be proposed.

2.1 Design Objectives of the Benchmarks

To measure the 3D unstructured tetrahedral mesh optimizer, we standardize the inputs, apply the optimizer, and
measure the outputs. We assume that the quality of the optimizer will be related to the quality of the outputs. Therefore,
the two design objectives of the benchmark areas follow. For the input, the geometry and size specification map are
standardized. For the output, the measures used to evaluate the quality of the optimized mesh are standardized.

The size specification map returns information about what should be the size of the mesh at any location in space.
It is used in the following way. Let PI = (Z1, yl, ZI)T and P2 = (32,92, Z2)T be the endpoints of an edge ~. The

z lj2 TO compute the length ofEuclidean length of this edge is l~(-y) = ((z2 – ZI)2 + (Y2– yl)2 + (Z2– Zl) ) .
the edge in a metric defined with the target edge length, we refer to [4,7, 8, 10, 11, 14, 13, 16, 17, 18,21,37, 35]
among many others, the first reference being [55], and the most complete being [31] and [32]. In brief, if this edge is
parameterized as -y(t) = PI + t(P2 – PI ) with t G [0, 1], its metric length YM(~) is given by

&f(~) = j-d~’(t)TM(~(t))-y’(t)dt
o

(1)

where ~’(t)= P2 – P1 = (Z2 – Z1, y2 – yl, 22 – Z1)* and lvl(-y(t)) is the metric. defined by the target edge length
which is a 3 x 3 symmetric positive definite matrix. Note that if kl(~(t)) is the identity matrix, the length of an edge
in this metric, 1~ (-y), is simply the Euclidean length 1E(7). Multiplying the identity matrix by a constant will stretch
or contract space in a uniform way.

The benchmarks proposed here standardize the measures of the quality of a mesh. This is not to say that other
important aspects of the optimization process such as generality or efficiency should not be taken into account. Speed
and memory are definite issues that are worthy of concern in the benchmark process. But they are very difficult
to measure considering the constantly changing heterogeneous environment in which mesh optimization are done.
Generality is also hard to assess quantitatively and might be very desirable in one type of application while being
hardly significant in another. Quality of the mesh is therefore the only basis of comparison between optimization
techniques.

Even within the limited scope of tetrahedral mesh quality measuremen~ measures abound and are not all equivalent.
This is why a rather broad approach to qualhy measurement has been favored, which involves many standard measures.
Once a mesh has been optimized, computing a complete set of measures on that mesh is a rather straightforward task
that does not need to be integrated in the optimization process itself, but can be treated as a post-processing phase for
the sole purpose of benchmarking.

This approach to quali~ assessment leads the way to broad distribution of both the benchmark results and the bench-
marking tools used to measure them. In turn, wide distribution of results and tools should allow for the achievement

of the second fundamental goal of this benchmarking process: verifiability and repeatability of published results. It
is in fact only by making optimized meshes and benchmark results directly available to the widest audience that the
establishment of a sound comparison basis will be possible.

A proposed approach to the distribution of benchmarking results is the constitution of a dedicated web site for sharing
either links to available results or the results themselves.

2.2 Characteristics of Valid Benchmarking Test Cases

Benchmark test cases must be simple, complete, CAD-free, non-proprietary, inexpensive and available.

This is to allow for greater reproducibility of the cases, independent of the particular computing environments or soft-
ware used. Most importantly, a good test case has to contain all the necessary information to allow anyone attempting
to reproduce the results to do so without further research. Reaserchers are too often confronted to descriptions of test

460



cases for which essential data remains unavailable. To facilitate porting test cases from one environment to another,
geometric data concerning the cases should be made available in a CAD-independent format, or even better, in a CAD-
fiee analytical way. Geometric data should be public domain and as simple as possible. Finally, test cases should not
consume too much computing resources. The final size of the results should be compact enough. Making them widely
available should not incur an inordinate amount of disk space for storage or bandwidth for transmission.

2.3 Proposed Test Cases

The proposed test cases are very simple. So simple in fact, that a 3D unstructured tetrahedral mesh optimizer might
seem an overkill. For example, in the test case of the cube, one can easily get a very regular mesh using a structured
hexahedral grid divided into tetrahedral. However, as the 3D unstructured tetrahedral meshers are generic, results
obtained on simple test cases should be an indicator of meshes that could be obtained for generic geometries.

2.3.1 Unit Tetrahedron Test case. The domainis a unitequilateraltetrahedron.Generally,the necessityfor a
unstructuredtetrahedralmesherto respectcomplex geometriesyieldsbad elementson the boundaries.A regular
tetrahedral domain imposes the least constraints on the mesh. This is the most suitable domain to test the ability of the
mesh optimizer to converge. Two unstructured tetrahedral meshes are proposed for this unit equilateral tetrahedron,
one with a target edge length of 1/5 and one with a target edge length of 1/10.

2.3.2 Unit Cube Test Cases. The domain is a unit cube. Whh a cubic domain, the boundaries will restrain the
possibilities of regular unstructured tetrahedral meshes. This test case will measure the ability of the optimizer to
deal with simple boundaries. As the mesh gets finer, the boundaries have less impact on the optimization process and
results should improve. Two unstructured tetrahedral meshes are proposed for this unit cube, one with a target edge
length of 1/5 and one with a target edge length of 1/10.

2.3.3 Unit Sphere Test case. The domain is a unit sphere. Whh this domain, the target edge lengths are not a
natural size of the sphere. This test case will measure the ability of the optimizer to target the prescribed lengths. This
test case can also be used to validate the ability of the optimizer to impose the geometry. Two unstructured tetrahedral
meshes are proposed for this unit sphere, one with a target edge length of 1/2.5 and one with a target edge length
of 1/5.

2.3.4 Unit Cube Test Case with Non-UniformTarget Length. One of the most commoncause of distorted
mesheswhichneedsoptimizationis a transitionin size. This test case is definedwiti a non-uniformtarget edge
length.Thedomainis a unitcube[0,1] x [0,1] x [0,1] with a target edge length of 0.05 at z = O,a target edge length
of 0.20 at z = 1 and varies linearly between these two planes. So, the target edge length at a given point (z, y, Z)T.is
defined as 0.05+ 0.152.

As the target edge length is non-uniform, the definition of the length of th~;dge in a metric (1) is used. In this test
case, Af(v(t)) = dlag(a, a, a) where a = (0.05+ 0.15(21 + t(z2 – Zl))) . Performing the integral (l), the length
of the edge in the metric is given by

{

f?E(7)

0.05 + 0.15%
ifzl =22 =Z,

eM(T) =
~E(~)

log
(

0.05 + o.lsz2

o.ls(z2 – 21) 0.05 + 0.1521)
if 21 # 22.

(2)

Using Eq. (2), if an edge has a unitary metric length, then the edge length fits exactly the target edge length. If the
edge has a metric length lower (respectively greater) than the unity, the edge is too short (respectively tall) accordingly
to the target edge length.

3 Relevant Measures to Qualify the Mesh

Relevant measures to qualifi a 3D unstructured tetrahedral mesh is still an open problem. A few common and basic
measures are proposed in a standard forma4 which should be sufficient to characterize the quality of a mesh.
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3.1 Statistics on the Mesh

The first output is the size of the mesh which consists in the number of vertices Nv, edges NE, faces NF and
tetrahedralNT. Remember that the Euler-Poincar6 relation for domains of these benchmarks is IVV –NE+NF –NT =
1.

Major outputs are statistical measures about the meshes, as in [7, 8, 12, 19, 23,24,25,26,27,30, 33, 38,43,46,
52,53, 56] among others. These statistics should be non-normalized and normalized where the normalized statistics
are on the non-normalized data divided by the average. The statistical outputs are the minimum, the average p, the
maximum, the standard deviation ~, the normalized minimum, (the normalized average is the unity), the normalized
maximum and the normalized standard deviation. These measures me 1) the length of the edges, 2) the volume of
the tet.rahedra, 3) the shape measures of the tetrahedral (see next section for definition of different tetrahedron shape
measures).

Statistics on the edge lengths of the mesh evaluate the ability of the mesher/optimizer to track the target length.
Statistics on the shape measures of the tetrahedral of the meshes quantify the ability of the mesher/optimizer to create
regular meshes.

3.2 H~tograms

In order to get an overview of the distribution of the different measures of the mesh, several histograms are proposed.
For edge lengths and tetrahedral volumes, we suggest histograms of the percentage of the edge lengths or tetrahedral
volumes as a function of normalized data in 0.05 class width. For tetrahedron shape measures, we suggest histograms
of the percentage of the tetrahedral as a function of shape measure between Oand 1 in 0.025 class width.

3.3 Pictures

Finally, some pictures showing nice meshes can be provided but these outputs are similar to color fluid dynamics plots,
in the sense that it is always possible to provide nice color pictures of meshes that hide bad tetrahedral...

4 Tetrahedron Shape Measures

We refer to the papers of Liu and Joe [39, 41, 42], and especially [40] for the definitions, discussions and equations
of different tetrahedron shape measures. Other reviews of tetrahedron shape measures appear in George [31, 32] and
Parthasarathy et al. [50]. There are so many tetrahedron shape measures in the literature that we suggest the following
global definition, derived from [40]:

DEFINITION 1: A tetrahedron shape measure is a continuousfinction that evaluates the quality of a tetrahedron. It
must be invariant under translation, rotation, rejection and uniform scaling of the tetrahedron. It must be maximum
for the regular tetrahedron and it must be minimum for a degenerate tetrahedron. l%ere is no local maximum other
than the global maximum for a regular tetrahedron and there is no local minimum other than the global minimum for
a degenerate tetrahedron. For the ease of comparkon, it should be scaled to the interval [0, 1], and be 1for the regular
tetrahedron and Ofor a degenerate tetrahedron.

We refer to [31, 32, 40, 50] for the definition and classification of degenerate tetrahedral. In sho~ a degenerate
tetrahedron is a tetrahedron whose volume vanishes. The case where, by uniform scaling to zero, the volume and
the edges of the tetrahedron vanish, is not considered to be a degenerate tetrahedron. But the case where the volume
of the tetrahedron vanishes and some of the edges of the tetrahedron do not vanish, is considered to be a degenerate
tetrahedron.

When the volume of the tetrahedron is negative, the tetrahedron is more than degenerate, it is inverted. In this case,
some tetrahedron shape measures return a negative number, some others return a positive number because, for example,
they depend on the square of the volume. We will assume that all the tetrahedron shape measures return a positive

462



number and so they are not used to determine the sign of the volume. If a mesh contains negative tetrahedral, the
mesh optimizer should try to remove them by optimizing the volume of the tetrahedral, by minimizing the sum of the
absolute value of the volume of the tetrahedral like in Coupez [20] for example, the tetrahedral shape measure being
useless at this stage.

A review of tetrahedron shape measures is.done in the following sections. Two of them do not satisfy the Def. 1 of a

tetrahedron shape measure. Notations are those of [40]. T’(to, tl, t2, t3) stands for a non-degenerate tetrahedron T with
vertices to, tl, t2and t3; v denotes the volume of T, so = area(At1t2t3), S1 = area(AtOtzts), 52 = area(AtOtlts),
S3 = area(Atot1t2); and lij = Iltj – till, Os i < j <3, denotes the length of the six edges ~ of T.

4.1 The Radius Ratio

The radius ratio p of a tetrahedron T is defined to be p = IVpi./pOUt where pin and pOut are the inradius and
circumradius of T, respectively, and IV is the dimension of the space. In [40], an easy way to compute this tetrahedron
shape measure in 3D is given:

3

Pin = I
3V ~si, (3)

i=o

~(a+b+c)(a+ b–c)(a+c–b)(b+c–a)
Pout =

24v
(4)

s Pin 216v2
P—= =

Pout
(5)

J(U+b+C)(a+ b–c)(a+c–b)(b+ c–a)~~=osi’

where a, b and c are the products of the lengths of opposite edges of T.

4.2 The Mean Ratio

This definition of the mean ratio q of a tetrahedron T is taken from [40]. Let R(ro, T1,r2, r3) be an equilateral
tetrahedron having the same volume as T; Let M be the matrix involved in an affine transformation from R to T,
i.e., t~ = MrPfj) + b, O ~ i ~ 3, where @(0), p(l), p(2), p(3)) is a permutation of (O,1,2, 3) and b is a translation
vector. Then the mean ratio q of a tetrahedron T is the ratio of the geometric mean over the algebraic mean of the
eigenvalues Al, A2 and A3 of the matrix lvfT14. Remember tha~ for positive numbers, the geometric mean is less
or equal to the algebraic mean. In [39], a simple expression, involving only the volume and the edge length, is
demonstrated to substitute this complex definition of the mean ratio:

4.3 The Solid Angle

A mesh is a Delaunay mesh if the circumsphere of each element does not contain any other vertex of the mesh. In
2D, the Delaunay property is equivalent to maximize the minimum of the angles of the triangles of the mesh, called
the max–min angle criterion. In 3D, Delaunay meshes do not generally satisfy the max-min angle criterion (see [51]
for properties of Delaunay triangulations). In fac~ Delaunay mesh generators often produce badly shaped tetrahedral
like the sliver of Fig. 2. To optimize the mesh, the temptation to use a tetrahedron shape measure based on tetrahedron
angles is great. Tetrahedron shape measures based on the minimum of the solid angle dmi. and the minimum of the
dihedral angle Pmin can be used. They are more complex to evaluate and more costly because of inverse trigonometric
functions.

Again, following the notation of [40], the solid angle 13iat the vertex tiof the tetrahedron T(to, tl, tz, t3) is defined to
be the surface area formed by projecting each point of the face not containing tito theunit sphere centered at ti. The
area of a unit sphere is 47r, the maximum solid angle for a positive tetrahedron is 27r in the case of a flat tetrahedron



where a vertex sees half of the space. The solid angle at the comer. of a rectangular tetrahedron is 7r/2. It is shown

in [281 that O S ~~=o fl S 27r. Therefore, a large solid angle near 27rfor T implies that T has small solid angles.
That is the reason the tetrahedron shape measure based on the solid angles is function of the minimum of the solid
angles. Llu and Joe [40] give a simpler formula to computes solid angles:

emin = a n#n3 Oi,
——

(( )
–1/2

Sin(8i/2) = 12V ~ (f?~~+ li~)’ - 1~~)
j,k#i

0~j<k~3

(7)

(8)

where a ‘1 = 6 arcsin (fi/3) — m = 0.5512856 is the value of the four solid angles of the regular tetrahedron.

Equation (8) can be used to measure solid angles less or equaI to T. In fact, the result of Oi = 2 arcsin(...) is in
the interval [0, z]. So the maximum solid angle of a tetrahedron can be badly evaluated using Eq. (8). However, the
minimum solid angle is not affected. Let 00 ~ 01 ~_ 02 ~ 193.Since O ~ ~~=o Oi ~ 27r, only .93may be larger

than m. The computation with Eq. (8) of 63 returns 63 = 2m – 03. Substituting 03 by 27r – ~3 in ~~=o Oi ~ 27r

gives 60+ @l+ 82 ~ ;3. So, 80 which is lower or equal to 61 and 02 is also lower or equal to ~3. The conclusion is that
even if the Eq. (8) does not return the correct value for a solid angle greater than z, it does not affect the tetrahedron
shape measure (7) based on the minimum of the solid angles.

Since the right hand side of Eq. (8) has no trigonometric functions, from a computational point of view, a cheaper
shape tetrahedron measure is

(9)

where ~i = sin(Oi/2). ~–1 = Sin(CZ-l /2) = fi/9 = 0.2721655 is the value of ~i for the four solid angles of the

regular tetrahedron.

4.4 The Dihedral Angle

Each of the six edges of a tetrahedron is surrounded by two triangular faces. At a given edge, the dihedral angle
between the two faces is the angle between the intersection of these faces and a plane perpendicular to the edge. For a
positive tetrahedron, the dihedral angle is bounded by zero and n-.It is equal to T minus the angle between the normals
of the faces. The minimum dihedral angle is a tetrahedron shape measure.

(lo)

where nijl and nij2 are the two triangular faces adjacent to the edge ij and CY-l= T – arccos(-1/3) = 1.230959 is
the value of the six dihedral angles of the regular tetrahedron.

,Z
t~

A

Y

---- ---- ---- ----

to

Figure 1: When h tends to infinity, or equivalently when edges totl,t1t2and ~ tend to zero, the tetrahedronT’(to,tl,t2,t3)
—.

becomes a thorn with regular dihedral angles.

According to De$ 1 of a tetrahedron shape measure, the minimum of the dihedral angles pmin is a not a tetrahedron
shape measure. The underlying problem with tetrahedron shape measures based on the dihedral angles is that they fail
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to detect some degenerated tetrahedral as the thorn. Refernng to Fig. 1, let vertices to, tl and t2 forma regular triangle
in the zz-plane. Let the vertex t3 be offset by a height h to the barycenter of the triangle Atotltz. When the height h—— —
is large, or equivalently, when the three edges totl, t1t2and t#o are scaled down at the same rate, the dihedral angles——
along edges totl,t1t2and ~ will be close to 90 degrees and dihedral angles along edges tot3, t1t3and t2t3will be

—— —

close to 60 degrees.

4.5 The Edge Ratio

The edge ratio r of a tetrahedron T is defined to be the ratio between the smallest edge over the largest edge of the
tetrahedron, i.e.,

T = min l~j

I

max l~j.
0<i<j<3 0<i<j<3

(11)

According to Defi 1 of a tetrahedron shape measure, the edge ratio T is not a tetrahedron shape measure. It fails to
detect some degenerated tetrahedral as the sliver. Referring to Fig. 2, suppose that the vertices to,tlan t2 are in the
xy-plane and the vertex t3 if offset by a distance h of the xy-plane. When h tends to zero, the four vertices tend to be
coplanar, the volume of the tetrahedron tends to zero but the edge ratio T does not vanish.

.Z
4

t~
Y

to
---- __

x“

Figure 2: Whenh tends to zero, the tetrahedronT’(to,tl, tz,t3)becomes a sliver with null volume but with non-null edge ratio t-.

4.6 The Aspect Ratio

Tetrahedron shape measures that are the ratio of two characteristic sizes of the tetrahedron can loosely be called aspect
ratio. They are usually some quantity vanishing with the volume normalized by something that does not vanish when
the volume vanishes. So, the aspect ratio may be proportional to the volume of the tetrahedron, the radius, the area or
the volume of the insphere, or the minimum of the four solid angles. It can not be a function of the circumsphere, of the
smallest edge and of the minimum dihedral angle because degenerate tetrahedron may have non-null circumsphere,
smallest edge or dihedral angle. The aspect ratio may be normalized by the longest edge, the average of the edges,
the sum of the edges (the perimeter), the sum of the area of the faces, the radius, the area or the volume of the
circumsphere, etc. The possibilities are endless.

Among all of them, we arbitrarily select the tetrahedron aspect ratio ~ inspired from GAMMA project (G6n6ration
Automatique de Maillages et M6thodes d’Adaptation) at INRIA (Institut National de Recherche en Informatique et en
Automatique), France, because it is frequently used [15, 26,27,30,31, 32]:

(12)

4.7 Equivalence of Tetrahedron Shape Measures

One of the deepest analysis of tetrahedron shape measures available is surely from Liu and Joe [40]. They define the
notion of tetrahedron shape measure equivalence:



DEFINITION 2 (FROM [40]): Let p and v be two dij$ererzt tetrahedron shape measures with values c [0, 1]. p and v
are equivalent if thereexistpositive constants~, cl, e. and el such that QjLeO < v < c1pel.

Liu and Joe [40] proved the equivalence of the tetrahedron shape measures p, q and CSmin(Eqs. (5), (6) and Eq. (9)
respectively). It implies that if one of these tetrahedron shape measures approaches zero, which indicates a poorly-
shaped tetrahedron, then so do the others. Conversely, if one of these tetrahedron shape measures approaches unity,
then so do the others. But the rate at which they approach zero or unity may differ as, for example, do p and v = p2.

Liu and Joe [40] made a conjecture about how should be tetrahedron shape measures to be equivalent. We propose the
following conjecture:

CONJECTURE: All tetrahedron shape measures that satifi De$nition 1 are equivalent in the sense of Definition 2.

This conjecture states that any shape measures that satisfy Def. 1 can be used by the mesh optimizer. Remember that,
by definition, they will all measure all tetrahedron degeneracies. They will all be sensitive to badly shaped tetrahedral.

More surprisingly, the more a mesh is optimized with a given tetrahedron shape measure, the closer to the optimal
mesh it is for any other tetrahedron shape measure. At the limit, if it were possible to mesh a domain with only
equilateral tetrahedral, as it is in 2D, W mesh optimizer should converge to that mesh, whichever shape measure is
used in the mesh optimizer. The problem is that the optimal mesh does not exist in 3D. It is impossible to fill the space
with regular tetrahedral. So, the converged state is unknown and depend slightly of the tetrahedron shape measure

used.

5 ADP3D and Mesh Optimization

5.1 ADP3D

ADP3D (Adaptive Discretization Package in 3D), is a object oriented C++ library for the generation, adaptation and
optimization of structured and unstructured, isotropic and anisotropic, monozone and multizone, hexahedral, prismatic
and tetrahedral meshes. A full description of ADP3D is out of the scope of this paper but here is a brief description
of the unstructured tetrahedral mesh optimization.

In ADP3D, the mesh is optimized in an iterative process that combines mesh refinemen~ mesh coarsening, node
smoothing and edge swapping. If the length of an edge is greater than the target length times a threshold value, then
a node is added in the middle of the edge. This will divide the n tetrahedral around the edge in 2n tetrahedral. If the
length of an edge is lower than the target length times a threshold value, then the two nodes of the edges are collapsed
in one node. The edge and then tetrahedral xound the edge are destroyed. Each edge is checked to see if swapping the -
edge could increase the minimum of the shape measure of the involved tetrahedral (see [20, 24,29,31,32,33,38, 43]
among others). The tetrahedron shape measure used is the mean ratio q (Eq. (6)). Finally, nodes are moved one
by one iteratively with a kind of spring analogy (see [4,5,9, 10, 11, 19,21,22,24,36,44,45, 47,48,49,54, 57]
among others). After refinement with node addition, and after coarsening with node removal, the mesh is topologically
regularized with edge swapping, and geometrically regularized with node movement.

There is rerdly notling new in these algorithms to locally modify the mesh in order to reach the target length, almost
everythhg is described in [31, 32]. In fact, ADP3D is an ongoing project, and is now relatively crude. Our main
concern is not yet efficiency, memory and speed, but only convergence. It is not an easy problem to combine all
the local modifications to the mesh such that they work together to optimize the mesh [24, 56]. For example, mesh
refinement may undo what mesh coarsening did, or diagonal swapping may swap edges whose nodes were optimized
with node movement. The results shown in Sec. 6 are not optimal and if someone gets better meshes, to the benefit
of the science, they are welcome to publish how the meshes were obtained. This is the main goal of this benchmarks
proposal.
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5.2 Mesh Optimization

In many papers on unstructured tetrahedral meshes, authors use different words like enhancement, regularization,
improvement, smoothing and optimization, but it is not clear that they speak about the same thing. Let us explain what
we consider to be mesh optimization.

According to the Webster’s Collegiate Dictionary, optimization is the process or methodology of making something
(as a design, system, or decision) asjidly perject, jimctional, or effective as possible and specifically, optimization is
the mathematical procedures (as$nding the maximum of afinction) involved in this.

The goal of a mesh optimizer is not to get a better mesh than a given one, but it is to get a mesh that fits as well as
possible a given specification map. Optimization techniques can be used for mesh generation and for mesh adaptation.
In mesh generation, the specification map is a user defined size while in mesh adaptation, it is deduced from an error
estimator. For the mesh generation phase, optimization does not have to be converged because a high quality initial
mesh is usually not so important and will be adapted later on. For the mesh adaptation phase, optimization is usually
more converged in order to get a mesh to compute a better solution.

A mesh optimizer is like a finite element solver. For a FE solver, time stepping, residual smoothing, upwinding, artifi-
cial viscosity, non-linear GMRES, preconditioning, multigrid, under-relaxation, variables segregation, etc, are many
elements that are combined together to get a robust and fast solver that converges to the solution. For a mesh optimizer,
edge swapping, face swapping, tetrahedron shape measures, node smoothing, spring analogy, under-relaxation, edge
splitting, face splitting, element splitting, node removal, edge removal, etc, are many elements that can be combined
to get a robust and fast mesh optimizer that converges to the optimal mesh. The goal of the ongoing research on mesh
optimization is to build a mesh solver that will converge in a robust and fast way towards the optimal mesh.

When mesh optimization will be cumently used, it will usually not be converged within the machine accuracy. But for
these benchmarks, in the process of designing the mesh optimizer, it is crucial to know if it is convergent to evaluate
the optimization efficiency. Using again the analogy with a FE solver, solution may converge up to a residual of 10-4
or 10–5 because it is considerably accurate enough, but the FE solver must be capable to get down the residual to
machine accuracy. The same applies for the mesh optimizer: you may converge the mesh a little for mesh generation
purposes, and you may want to converge more when doing mesh adaptation, but in all cases, the mesh optimizer should
be able to converge to machine accuracy towards the optimal mesh.

As a good iterative FE solver is not sensitive to the initial guess, a good mesh optimizer should be rather independent
from the initial mesh. That is the reason why the benchmarks do not provide initial meshes. In fact, the initial meshes
used for the results of Sec. 6 are coarse handmade meshes with five to nine vertices.

6 Results

Results computed in thk section were obtained by using the benchmarks to evaluate meshes optimized by ADP3D.

6.1 Benchmarks on the Unit Tetrahedron

The optimized three-dimensional unstructured tetrahedral mesh for the unit tetrahedron with a target edge length
of 1/5 has 56 vertices, 230 edges, 300 faces and 125 elements. See Fig. 3(a). The statistical data corresponding to this
three-dimensional unstructured tetrahedral mesh are given in Table 1. The histograms corresponding to these data are
in Fig. 4.

The optimized three-dimensional unstmctured tetrahedral mesh for the unit tetrahedron with a target edge length
of 1/10 has 309 vertices, 1606 edges, 2395 faces and 1097 elements. See Fig. 3(b). The statistical data corresponding
to this three-dimensional unstructured tetrahedral mesh are given in Table 2. The histograms corresponding to these
data are in Fig. 5.
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(a) 1/5 (b) 1/10
Figure 3: Optimized three-dimensional unst~ctured tetrahedral mesh for the unit tetrahedron with a target edge length of 1/5

and 1/10.

Table 1: Statistical data corresponding to the optimized three-dimensional unstructured tetrahedral mesh for the unit tetrahedron
with a targetedgelengthof 1/5.

I Non-normalized I Normalized

Edge Length
Tetrahedral Volume
Radius ratio p
Mean ratio q
Solid angle Omin
Dihedral angle ~min
Edge ratio r
Aspect ratio ~

min P max fs min P max C7

0.1766 0.2060 0.2650 0.0195 0.8573 1.0 1.2864 0.0945
8.269(-4) 9.428(-4) 1.084(-3) 6.410(-5) 0.8771 1.0 1.1494 0.0680
0.8227 0.9135 0.9992 0.0550 0.9006 1.0 1.0939 0.0602
0.8551 “ 0.9292 0.9994 0.0442 0.9203 1.0 1.0755 0.0476
0.5653 0.7418 0.9797 0.1039 0.7621 1.0 1.3207 0.1400
0.6680 0.8018 0.9808 0.0796 0.8331 1.0 1.2232 0.0993
0.6701 0.7668 0.9648 0.0782 0.8739 1.0 1.2583 0.1020
0.6732 0.7987 0.9814 0.0949 0.8429 1.0 1.2286 0.1188

6.2 Benchmarks on the Unit Cube

The optimized three-dimensional unstructured tetrahedral mesh for the unit cube with a tamet edge len~th of 1/5 has
313 vertices, 1709 edges, 2612 faces and 1215 elements.
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Figure 4 Distribution of normalized edge lengths and tetrahedral volumes and of the six tetrahedral shape measures for the
optimized three-dimensional unstructured tetrahedral mesh for the unit tetrahedron with a target edge length of 1/5.
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Table 2 Statisticaldata corresponding to the optimized three-dimensionalunstructuredtetrrshedrrdmesh for the unit tetrahedron
with a targetedge length of 1/10.

I Non-normalized I Normalized
min P max o min P max “U

Edge Length 0.0725 0.1007 0.1504 0.0118 0.7199 1.0 1.4933 0.1175
Tetrahedral Volume 6.230(-5) 1.074(-4) 1.691(-4) 1.779(-5) 0.5799 1.0 1.5738 0.1656
Radius ratio p 0.5115 0.8932 0.9997 0.0805 0.5727 1.0 1.1192 0.0901
Mean ratio q 0.7138 0.9166 0.9997 0.0523 0.7787 1.0 1.0907 0.0571
Solid angle dmin 0.4018 0.7102 0.9673 0.1109 0.5658 1.0 1.3621 0.1562
Dihedral angle Vmin 0.5237 0.7690 0.9895 0.0806 0.6810 1.0 1.2867 0.1048
Edge ratio r 0.5278 0.7387 0.9780 0.0701 0.7146 1.0 1.3240 0.0949
Aspect ratio ~ “ 0.5535 0.7965 0.9872 0.0782 0.6949 1.0 1.2394 0.0982
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Figure 5: Distribution of normahzed edge lengths and tetrahedral volumes and of the six tetrahedrrd shape measures for the
optimized three-dimensionrd unstructured tetrahedral mesh for the unit tetrahedron with a target edge length of 1/10.

three-dimensional unstructured tetrahedral mesh are given in Table 3. The histograms corresponding to these data are
in Fig. 7.

I

I
(a) 1/5 (b)1/10

Figure 6 Optimized three-dimensional unstructured tetrahedral mesh for the unit cube with a target edge length of 1/5 and 1/10.

The optimized three-dimensional unstructured tetrahedral mesh for the unit cube with a target edge length of 1/10 has
1997 vertices, 12158 edges, 19598 faces and 9436 elements. See Fig. 6(b). The statistical data corresponding to this
three-dimensional unstructured tetrahedral mesh are given in Table 4. The histograms corresponding to these data are
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Table 3: Statistical data corresponding to the optimized three-dimensional unstructured tetrahedrrd mesh for the unit cube with a
target edge length of 1/5.

II Non-normalized
tin P max r

Edge Length 0.1440 0.1998 0.2566 0.0250

Tetrahedral Volume 3.982(-4) 8.230(-4) 1.419(-3) 1.327(-4)

Radius ratio p
Mean ratio q
Solid angle tlmin
Dihedral angle Pmin
Edge ratio T
Aspect ratio ~

Diatr. of Edges Length& Tet. Volume

0.394i - 0.8947 - 0.9974 - 0.0679 -
0.6208 0.9125 0.9978 0.0506
0.3502 0.6919 0.9374 0.1064
0.3959 0.7504 0.9746 0.0866
0.5764 0.7236 0.9399 0.0651
0.4630 0.7914 0.9634 0.0731
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Normalized

min D max 0

0.7206 1.0 1.2843 0.1250

0.4838 1.0 1.7235 0.1612
0.4405 1.0 1.1148 0.0759

0.6803 1.0 1.0934 0.0554
0.5061 1.0 1.3548 0.1538

0.5277 1.0 1.2988 0.1154

0.7966 1.0 1.2990 0.0899

0.5851 1.0 1.2173 0.0924
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Figure 7: Dkribution of normalized edge lengths and tetrahedral volumes and of the six tetrahedral shape measures for the
optimized three-dimensional unstt-uctured~etrah&iral mesh for the unit cube with a target edge length of 115:

in Fig. 8.

Table 4 Statisticaldata corresponding to the optimized three-dimensionalunstructuredtetrahedralmesh for the unit cube with a
target edge length of 1/10.

Edge Length

Tetrahedral Volume

Radius ratio p

Mean ratio q“
Solid angle Omin
Dihedral angle ~min
EdgeratioT
Aspeet ratio T

Non-normalized
min u max o

0.0721 0.1004 0.1305 0.0117

5.748(-5) 1.060[-4) 1.817(-4) 1.581(-5)

0.515i ‘ 0.9067 ‘ 0.9978 ‘ 0.0602 “
0.6559 0.9222 0.9979 0.0468
0.2962 0.7115 0.9697 0.0996
0.4207 0.7657 0.9768 0.0852
0.5696 0.7375 0.9504 0.0641
0.4862 0.8058 0.9741 0.0709

Normalized
tin u max u

0.7182 1.0 1.2993 0.1169
0.5424 1.0 1.7145 0.1492
0.5681 1.0 1.1004 0.0664
0.7112 1.0 1.0821 0.0508
0.4162 1.0 1.3629 0.1340
0.5494 1.0 1.2756 0.1113
0.7724 1.0 1.2887 0.0869
0.6034 1.0 1.20883 0.0880

470



Dlsfr. of Edges Lengfh&Tel.Volume Oishibution of Mean ad Radius f?affos Distribution of Solid and Dihedral Angles OktnWtien of Aspest and Edge Rafbe

30
Mean Rafio —

Raciirq Ratio ---;---
2s

Ir
20 I -.

:

15

10 - I-i
F

5
j ‘-

1;
0
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Langfh and Volume Tetrahedral Shape Measure

(a) Lengths and Volumes (b)Mean and Radius Ratios

30
SolidAngle —

, Oihedraf,hgle -------
25

20 I ~.
15

I

I

10
..-.

5
M w--; I

JJJ;J-. I ~-

0
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tetrahedral Shape Maaaure

30 -
AspectReffo —

Edg; Ratio ---:---
25

I

20
~

15 I

,/ fl~ “

..;
,. ..

10
: -,

,.. :.. t

5
,.: ... 1{:.,

n .
‘0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tekaherhf ShapeMeasure

(c) Solid and Dihedrat Angles (d) Edge and Aspect Ratios

Figure 8: Distribution of normalized edge lengths and tetrahedralvolumes and of the six tetrahedral shape measures for the
optimized three-dimensional unstructured tetrahedral mesh for the unit cube with a target edge length of 1/10.

6.3 Benchmarks on the Unit Sphere

For these two test cases, a bug prevented the optimizer to fully converge. The optimized three-dimensional unstruc-
tured tetrahedral mesh for the unit sphere with a target edge length of 1/2.5 has 156 vertices, 828 edges, 1253 faces
and 580 elements. See Fig. 9(a). The statistical data corresponding to this three-dimensional unstructured tetrahedral
mesh are given in Table 5. The histograms corresponding to these data are in Fig. 10.

(a) 1/2.5 (b)1/5
Figure 9: Optimized three-dimensionalunstructuredtetrahedralmesh for theunit spherewith a targetedge lengthof 1/2.5 and 1/5.

The optimized three-dimensional unstructured tetrahedral mesh for the unit sphere with a target edge length of 1/5
has 1044 vertices, 6323 edges, 10185 faces and 4905 elements. See Fig. 9(b). The statistical data corresponding to
this three-dimensional unstructured tetrahedral mesh are given in Table 6. The histograms corresponding to these data
are in Fig. 11.

6.4, Benchmarks on the Unit Cube with Non-Uniform Target Edge Length

The optimized three-dimensional unstructured tetrahedral mesh for the unit cube with a non-uniform target edge
length of 0.05+ 0.152 has 2368 vertices, 14219 edges, 22751 faces and 10899 elements. See Fig. 12. The statistical
data corresponding to this three-dimensional unstructured tetrahedral mesh are given in Table 7. The histograms
corresponding to these data are in Fig. 13.
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Table 5: Statisticaldatacorresponding to the optimized three-dimensionalunstructuredtetrahedralmesh for the unit sphere with a
target edge length of 1/2.5.

Non-normalized Normalized
min P max o min P max U

Edge Length 0.2911 0.4024 0.5247 0.0490 0.7234 1.0 1.3040 0.1219
Tetrahedral Volume 4.270(-3) 6.799(-3) 1.073(-2) 1.083(-3) 0.6280 1.0 1.5777 0.1592
Radius ratio p 0.7039 0.8942 0.9953 0.0601 0.7871 1.0 1.1130 0.0672
Mean ratio q 0.7479 0.9117 0.9960 0.0494 0.8203 1.0 1.0925 0.0541
Solid angle Omin 0.4202 0.6849 0.9291 0.0966 0.6135 1.0 1.3566 0.1411
Dihedral angle ~min 0.5137 0.7463 0.9603 0.0880 0.6883 1.0 1.2866 0.1179
Edge ratio T 0.5716 0.7183 0.9221 0.0628 0.7958 1.0 1.2837 0.0874
Asttect ratio T 0.5826 0.7900 0.9619 0.0738 0.7375 1.0 1.2176 0.0934
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Figure 10: Distribution of norrndlzed edge lengths and tetrahedral volumes and of the six tetrahedral shape measures for the
optimized three-dmeasional unstructured tetrah&iral mesh for the unit sphere with a target edge length of 1/2.5.

7 Analysis of the Results

This paper is the first contribution to the benchmarks. It can be used by others for the purpose of evaluating 3D
unstructured tetrahedral mesh optimization. However, the results give us an opportunity to evaluate the benchmarking

Table6 Statisticaldata correspondingto the optimizedthree-dimensionalunstructuredtetrahedral mesh for the unit sphere with a
target edge length of 1/5.

Non-normalized Normalized
tin P max is ruin P max u

Edge Length 0.0998 0.2022 0.3391 0.0284 0.4935 1.0 1.6772 0.1406
. Tetrahedral Volume 3.272(-4) 8.41 1(-4) 1.738(-3) 1.627(-4) 0.3890 1.0 2.0669 0.1934

Radius ratio p 0.3244 0.8727 0.9963 0.0941 0.3717 1.0 1.1416 0.1079
Mean ratio q- 0.5008 0.8975 0.9969 0.0695 0.5580 1.0 1.1108 0.0774
Solid angle Omin 0.1778 0.6647 0.9632 0.1289 0.2675 1.0 1.4491 0.1940
Dihedral angle ~min 0.2508 0.7351 0.9707 0.1027 0.3411 1.0 1.3204 0.1397
Edge ratio r 0.3887 0.7049 0.9344 0.0833 0.5515 1.0 1.3256 0.1182
Aspect ratio -y 0.3166 0.7721 0.9684 0.0961 0.4101 1.0 1.2543 0.1245
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Figure 11: Dkibution of normalized edge lengths and tetrahedral volumes and of the six tetrahedral shape measures for the
optimized three-dimensional unstructured tetrahedral meshfor the unitsphere with a targetedge lengthof 1/5.

Figure 12 ‘IVOdifferent views of the optimized three-dimensional unstructured tetrahedral mesh for the unit cube with a target
edge length of 0.05+ 0.15z.

process itself and to study the behavior of the requested mesh measures.

Table’1 Statisticaldata corresponding to the optimized three-dimensionalunstructuredtetrahedralmesh for the unit cube with a
targetedge length of 0.05+ 0.152.

Non-normalized Normalized

Edge Length
Tetrahedral Volume
Radius ratio p
Mean ratio q
Solid angle Omin
Dihedral angle Pmin
Edge ratio r
Asuect ratio w

min P max (7 min P ma.x o-

0.0368 0.0818 0.2514 0.0358 0.4499 ~ 1.0 3.0726 0.4380
9.046(-6) 9.175(-5) 1.393(-3) 1.465(-4) 0.0986 1.0 15.181 1.5962
0.4387 0.8916 0.9981 0.0671 0.4920 1.0 1.1194 0.0752
0.5715 0.9107 0.9983 0.0502 0.6275 1.0 1.0961 0.0551
0.3215 0.6812 0.9676 0.1076 0.4719 1.0 1.4203 0.1579
0.3698 0.7480 0.9814 0.0867 0.4943 1.0 1.3120 0.1159
0.5224 0.7170 0.9476 0.0684 0.7286 1.0 1.3216 0.0954
0.4172 0.7896 0.9792 0.0741 I 0.5284 1.0 1.2402 0.0938
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7.1 General Observations

The average of the edge lengths is close to the target length for all the optimized meshes. The maximum error is 3%
for the unit tetrahedron with a target length of 1/5, the average error being l%.

Some test cases are too coarse to yield meaningful distributions for plotting in histograms, especially the unit tetra-
hedron with a target length of 1/5 and the unit sphere with a target length of 1/2.5. Finer optimized meshes give
smoother and more significant distributions.

The distributions of edge lengths and tetrahedral volumes show nearly Gaussian distribution. For such distributions,
the average and the standard deviation are good measures that can be used to quantify distributions. The minimum
of the solid angles 19minand the edge ratio r also have nearly Gaussian distributions behavior. The minimum of the
dihedral angles pmin and the aspect ratio A show slightly skewed distributions. Finally, the distributions for the mean
ratio q and for the rrdus ratio p are the most skewed.

7.2 Ordering of Tetrahedron Shape Measures

Generally speaking, for each mesh, the average of the tetrahedron shape measures is ordered as following:

q>p>~>pmin> r’> emin. (13)

Llu and Joe [40] had already noticed that tetrahedral have usually the q > p > Omin tetrahedron shape measures
ordering. For example, this means that the mean ratio q is usu,allyhigher than the minimum of the solid angles 13min
for the same tetrahedron. You can change this behavior by using the square or the cube of q and the square root or the
cubic root of 8min. This also means that a mesh with an 13minaverage of 0.8 is probably more optimized that a mesh
with an q average of 0.9. Unfortunately, this also means that it is impossible to evaluate the quality of a mesh if the
only available measure is an unusual tetrahe&on shape measure.

7.3. Average of Tetrahedron Shape Measures

Even though the standard deviation is less significant for skewed distributions, the average is always meaningful.
Considering the average of the tetrahedron shape measures one by one, the order of the results are always the same
with few permutations. For example, the mesh of the unit tetrahedron test case with 1/5 gets the highest average for
five tetrahedron shape measures over six, while the mesh of the unit sphere with 1/5 gets the lowest average for all
six tetmhedron shape measures. So, a mesh optimized for one tetrahedron shape measure is also optimal or close to
optimal for the other tetrahedron shape measures. A bad mesh for one tetrahedron shape measure is also a bad mesh
for the other tetrahedron shape measures. These observations corroborate the conjuncture of $4.
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If the meshes are ordered according to the average of the tetrahedron shape measure averages, one can get the following
order between the meshes: (unit tetrahedron with 1/5) > (unit cube with 1/10) > (unit tetrahedron with 1/10) > (unit
cube with 1/5) > (unit sphere with 1/2.5) > (unit sphere with 1/5) (respectively 0.8253 > 0.8082 > 0.8040 >
0.7940>0.7909> 0.7745).

7.4 Standard Deviation of Edge Length

If the meshes are ordered according to the normalized standard deviation of the edge lengths, one can get the following
order between the meshes: (unit tetrahedron with 1/5) < (unit cube with 1/10)< (unit tetrahedron with 1/10)< (unit
sphere with 1/2.5) < (unit cube with 1/5) < (unit sphere with 1/5) (respectively 0.0945 < 0.1169 < 0.1175 <
0.1219<0.1250< 0.1406). TMs order is the same as the previous one with only one permutation. So, there is a
kind of relation between the quality of the tetrahedral and the quality of the distribution of the edge lengths. This is not
surprising, since tetrahedral that are close to regular have edges that are close to the same length.

The conclusion is that the average of any tetrahedron shape measure or the normalized standard deviation of the edge
lengths are reasonable choice to characterized a mesh optimized with a valid tetrahedron shape measure.

7.5 Minimum of a Tetrahedron Shape Measures

Another measure used to characterize a mesh is the minimum of the tetrahedron shape measures. As the tetrahedron
shape measures behave more or less as a Gaussian distribution, the best parameters to characterize the tetrahedron
shape measure of all the tetrahedral of the mesh is clearly the average and the standard deviation. The minimum is
less important and the maximum is close to useless because it is always one. From a statistical point of view, it is
bad to characterize a whole mesh composed of millions of tetrahedral with only one of them. Especially, in complex
geometries, the worst tetrahedral are often on the boundaries and maybe imposed by a sharp feature or a comer. In
this case, if it is just the minimum shape measure that matters, it is impossible to improve the mesh or speci~ the
difference between two meshes.

Even though the strength of a chain is equal to the strength of the weakest link, this is not hue in 2D or 3D. Just
imagine a very regular mesh with only one very bad triangle or tetrahedron. The solution computed on this mesh may
be better than the solution computed on an overall bad mesh without a very bad triangle or tetrahedron. Also, the
very bad triangle or tetrahedron maybe at a location were the solution is perfectly smooth and being totally harmless.
On the other hand, a regular triangle or tetrahedron ten times bigger than the prescribed size and located exactly at
the wrong place, can be very harmful for the solver. Thk emphasizes the fact that tetrahedron shape measures are
dimensionless. So, our opinion is tha~ using principally the minimum shape measure to characterize the mesh is not a
good choice.

7.6 Standard Deviationof the Edge Length in the Metric

For the unit cube with a non-uniform target length, the statistics (Table 7) and the histogr~s (Fig. 13.(a)) about edge
lengths and tetrahedral volumes are more or less meaningless. As explained in $2.3.4, the length of each edge may
be evaluated in the metric deduced from the non-uniform target length with Eq. (2). Statistics on the metric lengths
are more meaningful [8, 12, 31, 32,35, 34]. The minimum is 0.7262, the average is 1.0344, the maximum is 1.3789
and the standard deviation is 0.1280. These results are close to those obtained on the same geomehy but with constant
target lengths (1/5 and 1/10). The histogram for the normalized edge lengths for these two test cases and the histogram
for the metric lengths of the edges for the test case with non-uniform target length are shown in Fig. 14.

The statistics and histograms on edge lengths for the three test cases on the unit cube show that the meshes had reached
approximatively the same level of optimization. It is more difficult to study statistics on tetrahedral volumes because
volume in a generic metric can only be evaluated with a quadrature. The difficulty is the same for evaluating in a
generic metric the shape measure of the tetrahedral because it usually used the volume. For this problem, the approach
of Berzins [6] maybe considered. Remember that there is a relation between the shape measure of the tetrahedral and
the normalized standard deviation of the distribution of the edge lengths. So, the statistics on the metric edge lengths
is the an easy way to quantify the quality of a mesh when the target edge length is a generic non-uniform anisotropic
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length. As the average is usually close to one, the key value to characterize the mesh is the normalized standard
deviation and it is set to be the residual in the ADP3D mesh optimizer.

8 Conclusion

This paper introduced a series of benchmark test cases ($ 2), for the evaluation of 3D unstructured tetrahedral mesh
optimization methods. In doing so, many dlfticulties were met. Mesh optimization is not already a well define sub-~
ject and a definitions were given in ~ 5. Standardization of the measure used to quantify the quality of the meshes
was proposed ($ 3). These measures include tetrahedron shape measures ($ 4). A review of published tetrahedron
shape measures was made which led to a definition that characterized valid shape measures and the relationship that
exists between them. The systematic use of the ADP3D mesh optimizer ($ 5) on these benchmarks ($ 6) provided an
opportunity to deduce many interesting facts ($ 7). The most important conclusion is that the problem of mesh opti-
mization is less a problem of tetrahedron shape measures than a problem of combining local modification techniques
in a converging process.

While being very simple, the proposed test cases attempt to encompass difficulties met in real world. We empha-
size the importance of the contribution to this benchmarking process from other researchers. For ease of com-
parison, the meshes for the benchmarks and the data, as well as simple programs that compute all the tetra-
hedron shape measures and that compute the histograms for plotting with gnuplot, are available on the web
site http: / /www. cerca. umontreal. ca\adp3d.
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Abstract. Automaticfiniteelementmeshgenerationtechniqueshavebecomecommonlyusedtoolsfor the
analysisof complex, real-world models.All of these methodscan, however, create distortedand even
unusableelements.Fortunately,severaltechniquesexist whichcan takean existingmesh and improveits
quality.Smoothing(also referred to as mesh relaxation) is one such methd which repositionsnodal
locations, so as to minimize elementdistortion. In this paper, an overall mesh smoothingscheme is
presented for meshes consisting of triangular, quadrilateral, or mixed triangular and quadrilateral
elements.This paper describesan efficientand robustcombinationof constrainedLaplacian smoothing
together with an optimization-basedsmoothing algorithm. The smoothing algorithms have been
implementedin ANSYS@ andperformancetimesare presentedalongwithseveralexamplemodels.

Keywords. Smoothing, Laplacian smoothing, optimization-based’ smoothing, triangular, qua~ateral, quad-
dominrmt

1. Introduction

1.1 Importance of work

As mesh generation becomes more automated and as mesh sizes increase, the need to create meshes completely
free of unusable or geometrically distorted elements increases. That is, for isotropic solutions, geometrically
distorted elements give poor solutions and/or ill-conditioned matrices. For large meshes, visually checking the
quality of a mesh can be difficult at besg not to mention error-prone. In order to minimize the user time required to
validate that the mesh is acceptable, a priori distortion metrics and automatic correction procedures are needed.

Geometrically distorted elements can be caused by many things, including:

. Model size -- coarse meshes, by their very nature, can result in geometrically distorted elements;

● Tough topological and geometrical configurations common in real-world CAD geometies, including
sliver areas, sharp comers, small areas, small holes, thin sections, and areas of high curvature and

. Algorithmic flaws in the meshing algorithm.

A variety of mesh improvement techniques has been developed to improve the quality of meshes created by
automatic techniques. Some of the existing techniques for improving the quality of an existing surface mesh
include

. Topological and qurWy-based operators – including:

● Node insertion or local refinement techniques [4,38,46,56,57,70];

● Edge/face swaps [2,15,16,17,22,26,37,38,44 ,70,73]; and

● Node removal or element deletion [9-11,15-17,44,70,73].
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● Smoothing – modi@ing node placement so as to improve the elements shape without modifying the
mesh connectivity. This can be done for:

● Comer nodes [l,5,7,l4,2l,23,25,27,29,3O,32,34,35,394l,55,72]; or

. Midnodes [62-65] – where the comer nodes of quadratic elements are held fixed and the mid-
nodes are repositiontxl so as to improve the element’s quality.

While ANSYS uses a combination of tie techniques listed above to improve the quality of a mesh, this paper will
only cover the implementation of the smoothing portion of the overall mesh improvement process.

Since smoothing is independent of the mesh generation technique used to create a mesh, the ideas discussed in this
paper can be used to compliment any mesh generation technique.

In addition to behg used as an improvement step after creating a mesh, smoothing can also be used to

. Smooth local collections of elements between steps in an advancing front meshing approach [9-11,52];

. Locally improve elements after each quality-based mesh cleanup operation [2,9-11,26,37,70,73], such
as node insertions, deletions and diagonal swaps;

. Improve a mesh after local mesh refinement [4,38,70]; and

. Aid in shape optimization [42].

1.2 Previous work

A significant amount of work has been done in the area of mesh smoothing. This section will present an overview
of some of that work including in the areas of Laplacian smoothing, optimization-based smoothing, and physics-
based smoothing. In addition to the overview of smoothing given here, another overview can be found in George
[31,32].

1.2.1 Laplacian Smoothq

Laplacian smoothing is by far the most common smoothing technique. Laplacian smoothing, in its simplest form,
consists of recursively placing each node at the average of the nodes connected to it. This technique generally
works quite well for meshes in convex regions. However, it can result in dktorted or even inverted elements near
concavities in the model. Many researchers have used and extended the capabfities of Laplacian smoothing
[9,10,11,13,18,23,30,32,34,35,39,40]

Some variations on the basic Laplacian technique, include

. Weighting the contribution of each neighboring node in the averaging function [9,10,11,32,40] by
edge length, element area, or other similar criteri~

● Constraining the node movemen~ so as to avoid the creation of inverted elements [18,23];
. Developing methods to extend it to anisotropic (stretched) meshes [13,34]; and
. Generating a means of combining it with the similar isoparametric smoothing technique [35].

1.2.2 Optimization-based Smoothing

A newer form of smoothing, that is receiving more attention lately, is optimization-based smoothing. Instead of
moving nodes based on a heuristic algorithm, as is done in I-aplacian smoothing, the nodes are moved so as to
minimize a given distortion metric. Some of the developments in this area include [1,5,7,14,21,25,27-29,36,54,55].
While optimization-based smoothing is more expensive than Laplacian smoothing, it gives better results –
especially near concave regions in the geometry. Several authors [21,27] (including this paper) have implemented
schemes that use Laplacian smcmthing when possible and only use optimization-based smoothing when necessary.

One of the first optimization-based smoothing algorithms was developed by de Cougny [21]. His technique was
designed to improve the distorted tetrahedral elements that can be created near the boundary of a tet mesh
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generatedusing an octree technique [66]. An element distortion metric is presented that is basically the scaled ratio
of an element’s volume to it’s face areas, for which he proves several properties, which indicate that the metric
may be well-suited for optimization-based smoothing. He then finds the ideal location for the node to minimize the
maximum distortion metric and does a search along the line fkom the current location to the potentially optimal
location.

Parthasarathy [54] developed an optimization-based technique for triangular and tetrahedral meshes -- again
created to repair elements created by quadtree and octree mesh generators. He solves a nonlinear, constrained,
global optimization problem, using the element’s aspect ratio as tbe objective function to be minimized. He also
adds inequality constraints to ensure that none of the elements’ surface area (or volume in 3D) drops below a
certain threshold. He uses a modified version of the feasible d~ections algorithm to drive the optimization. Due to
the fact that a global optimization was done, Parthasarathy found that as much time was spent in the smoothing
process as was spent in the mesh creation phase. Encouraging results were obtained from the smoother.

Canann [14] developed a global optimization method that uses Oddy’s distortion metric [51]. Although it was
developed mainly for hex meshes, it can be easily extended to any other element type. This methd like that
developed by Parthasarathy, is impractical for large meshes, because it uses global optimization. Recursive local
optimization has proven to be more feasible. In addition, it was later determined that Oddy’s metric was too lenient
for angle distortion and too restrictive on aspect ratio distortion.

An approach developed by Freitag [7,25,27-29] works to maximize tie minimum angle in triangular or tetrahedral
meshes. Since this is a non-continuous function (i.e., the function does not have continuous derivatives defined
everywhere), a nonsmooth optimization (IWO) is done, using an analogue of the steepest descent method for
smooth functions. This approach has been shown to be parallelizable [25], gives good results, and is reasonably
efficient. Freitag has also experimented with combining the approach with Laplacian smoothing in [27].

Amenta [1] presents theoretical results showing how some local triangle and tetrahedral shape optimization can
be solved in linear time using generalized linear programming. For the mesh smoothing problems that don’t fit
into that class of problems, other efficient algorithms are presented. Many distortion metxics are discussed and
various optimization techniques are compared.

Other optimization-based methods include ones developed by Riccius [55], Bank [5], and Jacquotte [36]. An
optimization-based smoothing algorithm, specifically designed for adaptively improving finite element
triangulations by making use of a posteriori error estimates is presented by Bank [5]. Jacquotte [361 developed a
distortion metric and optimization-based smoothing approach suitable for 2D & 3D structured grids.

In order to develop a robust optimization-based smoothing algorithm, much thought must go into selecting a good
distortion metric. bong the many a priori distortion metrics that have been develo~ a representative set can be
found in [3,6,8,20,23,36,43,44,45,47-51,54,58-65,74].

1.2.3 Physics-based smoothing

Since a well-graded mesh can be similar to objects found in nature, several authors have developed techniques for
smoothing that are based on solving simple physics problems. Lohner et al. [50] developed a smoothing algorithm
that views the mesh as a system of springs between nodes, where the force behveen nodes is a ratio between the
actual and desired grid sizes, His technique produces stretched elements based on density gradients. Shimada [67-
69] and Bossen [12] developed mesh generation techniques that created the mesh, smoothed i~ and cleaned it up,
all as a part of a physics-based approach. Shimada viewed the nodes as beiig the center of bubbles, with each
bubble interacting with each of the others. Bossen developed what he called a pliant methd which like Shimada’s
approach uses attraction and repulsion between nodes to determine nodal locations. Neither of these approaches is
a true smoothing technique though, because both require node insertions or deletions when the mesh is not graded
smoothly enough. Each of these physic-based techniques is capable of retaining stretched elements in an
anisotropic mesh.
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1.3 Paper Overview

In this work a complete scheme is presented for smoothing 2D and 3D surface meshes. Some of the advantages
include

. Robustness – improves the mesh and never inverts elemenw,
● Efficiency – combmes constrained Laplacian with selective optimization-based smoothing;
. Ability to repair inverted elements and
. Ability to smooth 2D and 3D meshes comprised ofi

. triangles only [12,18,20,30-32,48,67-69];

. quadrilaterals only [9-11,19,53,73];

. mixed triangles and quadrilaterals [18,30,44,49,52];

Section 2 lists the requirements for the smoother. Section 3 lays out the overall mesh smoothing algorithm. Section
4 discusses the details of the constrained Laplacian smoothing implementation. Section 5 describes the basic
optimization-based smoothing algorithm. Section 6 presents the distortion melrics used for both the constrained
Laplacian smoothing and the optimization-based smoothing. Section 7 shows some speed and quality results,
including a few sample meshes using the presented smoothing scheme. A conclusion is then given in Section 8.

2. Smoothing Requirements

The smoothing algorithms described in this paper were designed for use in the ANSYS@ sotbvare package. Some
of the algorithmic requirements for the smoother include that ib

. Work for tiangular, quadrilateral, and quad-dominant meshes, created by any of several mesh
generation and refiement techniques;

. Handle severely distorted elemen~,

. That it be efficient and robus~ and

. Be tested on a wide range of models and across several types of physics.

ANSYS creates biangular, all-quadrilateral, and quad-dominant meshes and thesmoothermustbe able to

successfullysmooththesemeshes, without giving undue preference to one element shape over another. Smoothing
must also be developed independently from any mesh creation technique, so that is can be used by ANSYS’ various
triangular mesh generators [18,44,71,75], quad-dominant mesh generators [18,51,75], and mesh refinement
capabilities [70,76].

Cases arise where it is necessary to improve severely distorted or even mildly inverted elements with the smoother.
This distortion may have been caused by the meshing algorithm, mesh refinemen~ or a mesh cleanup operation.
An example of a case where this type of distortion can be routinely created is when performing an element open (a
node insertion) in a quadrilateral mesh as a part of a topological cleanup process [15,16,70]. Sometimes the
insertion of such an element can create a very geometrically distorted quad, as shown in Figure 1, which the
smoother must then fix.

Figure la. Before element open Figure lb. After element open Figure lc. After smooth
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3. Overall SmoothingAlgorithm

In this section, the overall smoothing scheme is presented. Algorithmic details for each of the major steps in this
scheme will be presented later in the paper.

. Compute initial distortion metrics for all elements.

. If mesh is a layer mesh (see section 4.3), mark the nodes associated with tie layer boundary

. Based on model size, compute distance, 5, for numerical gradient computation in optimization based smoothing
(see section 5.1)

● Set number of iterations (niter) to 1
● REPEAT (MAIN SMOOTHING LOOP):

● FOR EACH NODE V DO:

1. If node v is not movable or has been deactivated from the smooth, then:
. Break from loop --goon to the next node in the list

2. If node v wasn’t moved by optimization-based smoothing in a previous iteration, then do
Constrained Laplacian Smootbin&

a) If node v is on layer boundary (see section 4.3):
. Move node v using Laplacian smoothing
. Project to layer boundary

Else
. Perform a constrained Laplacian smooth - see section 4.1 and 4.2

b) If distance moved is less than the move tolerance
. Keep the old position for the node
. Remove node v from the list of active smoothable nodes

Else allow the move
. Put the node’s neighbors back in the list of smoothable nodes., if they aren’t

already there
. Compare to the largest distance moved by a node and keep track of the largest
. Update the adjacent elements’ distortion metric values

3. Ifniter22, then invoke Optimization-based smoothmg. That is, let the Laplacian smoothing
have 2 iterations to improve the mesh, before invoking the more expensive optimization-based
smoothing):

a) Find the minimum dk.tortion metric from all facets connected to the node
b) If the minimum metric<= a given tolerance (e.g., 0.1)

. Attempt optimization-based smoothing – See section 5 for details
c) If optimization-based smoothing moved the node, then:

● Put the node’s neighbors back into the smootbable lis~ if not already there
. Compare to the largest distance moved by a node and keep track of the largest
. Update the adjacent elements’ distortion metric values

. END DO (end of loop through nodes)

. niter = niter + 1

● UNTIL there are no more nodes that have moved enough to warrant another iteration. That is, if NO nodes
have moved OR if the maximum distance moved is less than (1.75* move tolerance). (END OF MAIN
SMOOTHING LOOP)



.

4. Laplacian Smoothing

Basic LapIacian smoothing iteratively repositions each node to be at the average of each of the nodes connected to
it. This works extremely well for convex regions. However, it can invert elements near concavities. In order to
avoid this, constraints can be placed on the smoother, so that it doesn’t do more damage than good. In this section
a description of a constrained Laplacian smoothing implementation is given.

4.1 Constrained Laplacian Smoothing Algorithm

The algorithm used for each node entails:

. Computing the location where Laplacian smoothing would place the node &projected new nodal
location to its corresponding curve or area

. I-00p (repeat up to the arbitrarily selected value of 20 times):
● Compute distortion metric for neighboring elements
● If the new location is “acceptable” (see Section 4.2 below), then breakout of the loop
. If the new location is not “acceptable”, then cut the proposed move distance in half and set this as

the new location

4.2 Acceptance Criteria for Constrained Laplacian Node Movement

Before determining if a new location is acceptable, the following quantities are computed for each element
connected to the node

. w (i.e., (xor ~) – Distortion metrics for the elements connected to the node before and after the proposed
node movement. (Note that for efficiency, the elements’ distortion metrics from the before the move can
be stored with each element).

. N+ – Number of elements whose metric improves

. N-– Number of elements whose metric gets worse
● AP = Z{Ap. i} \N – Average metric change computed as the sum of distortion metrics changes at the

connected elements divided by the number of connected elements
. N’?- Number of elements whose metric improves significantly

. Metric goes from negative to positive

. Metric becomes less negative

. Metric moves from below acceptable to acceptable quality (a value of ~ = 0.05 is reasonable for
the minimal acceptable quality limit).

● N$ – Number of elements whose metric worsens significantly
. Metric goes from positive to negative
. Metric becomes more negative
. Metric drops below acceptable levels (even if it stays positive).

. N$$ – Number of inverted elements created. This is the same as N$ for triangles. However, a quad can
go negative without becoming inverted. That is, the metric at a comer node goes negative as a comer
angle goes past 180 degrees, but inversion only occurs when a comer angle drops below Odegrees.

● e – The largest angle spanned between any two nodes in the element.

Node movement is ruled out if any of the following are true

. (N-= N) – All of the elements get wors~ or
● (N-1..L> O)– Any of the elements go invert@ or
. (N$ > ~ – More elements get significantly worse than get significantly bettm,
. (Ap c -W - The average change in the metric is poor; or
● (e> ed – The element spans too great of an angle (em= = maximum angle any element can span).
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If node movement is not ruled out by the checks abou~ then the node movement is considered to be acceptable if
any of the following are true

. (N+= N) - All of the elements have improvd, or
● (N?’> O)& (NJ = O)- No elements get significantly worse and some get significantly better or

. (N?’2 N$) & (Ap > -~) – More elements get significantly better than get significantly worse and
the average improvement is reasonable.

4.3 Boundary Layer Smoothing

ANSYS provides the ability to create 2D he meshes where the user can request a specified number of rows of very
small elements next to a geometric edge and then transition quickly to a much larger element size [53, 75]. This
type of mesh is particularly useful for CFD boundary layers or EMAG skin effect studies. See Figure 2 below.

Figure 2. Layer mesh, with four rows of equally sized elements in the boundary layer.

In order to keep the smoother from stretching the elements in the boundary layer out into the rest of the mesh
(thereby causing the transition to start at the boundary); several modifications must be added to the smoothing
process. Before the smoothing iterations begin, the nodes in the boundary layer that are fhrt.best from the geometric
edge are marked. During the smoothing process, these nodes are constrained to remain the same constant boundary
layer distance from the edge. This is done by allowing each outside layer node to be smoothed by the Laplacian
smoother, projecting it to the geometric edge, and then moving it perpendicularly away from the geometic edge a
distance equal to the boundary layer thiclmess.

5. Optimization-basedSmoothing

In some cases – especially near concavities in the model – the constrained Laplacian smoother is unable to improve
severely distorted elements. It is often critical that an adequate smoother be invoked to repair these elements,
because they will often occur near to the boundary of the mesh – where element shape is typically the most critical.

Optimization-based smoothing directly attacks the element distortion problem. Instead of applying a heuristic-
based movement to each node as is done in Laplacian smoothing, optimization-based smoothing seeks to minimize
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the distortion of the elements connected to each node. Existing optimization-based smootling techniques
[1,5,7,14,21,25,27-29,36,54,55] are relatively new and vary based on:

. The type of mesh lxing smoothed (structured or unstructured);

. The element shape (triangle, quadrilateral, etc.);

. The optimization and search technique chosen; and
● The distortion metric selected (see Section 6 below).

5.1 Optimization-based Smoothing Algorithm

In this section, the algorithmic details of a new optimization-based smoothing technique are presented. While only
2D elements (triangles and quadrilaterals) are covered in this paper, the techniques described here can be (and
have been successfully) extended to 3D volume elements. The approach presented here is similar to the Freitag’s
approach [25], but adds two advantages over her approach. The lirst advantage that this approach has over
Freitag’s is that it can repair meshes with elements that are severely distorted or even inverted. Freitag’s approach
requires that none of the elements be severely distorted or inverted. In other words, the dktortion metrics used are
continuous through element distortion and inversion. The other advantage to this approach over Freitag’s approach
is that her method has only been implemented for simplicial elements (triangles and tetrahedron). The approach
presented here works for triangular, quadrilateral, and mixed-meshes.

Let u bea distortion metric, with values generally varying between-1 and 1. For example, u could be the triangle
metric, a, or the quadrilateral metric, ~ presented in Section 6 below. A value of 1 for p. corresponds to a perfectly
shaped elemen~ while a value of Ocorresponds to a element that is basically unusablel. Negative values correspond
to extremely distorted elements, including negatively oriented or inverted elements.

Let x be a node in the mesh, connected to elements El, Ez,. ..,l?n, with (positive) metric values f-b,I.b,..., j.t.,
respectively. In an optimization-based smoothing procedure, the goal is to move x so that ~ = rnin(pl,pz,.. .,pJ
is increased as much as possible, i.e., the quality of the elements incident on x is optimized. If x lies on a boundary
edge (possibly curved), then the movement of x is constrained to lie on that edge. Since optimization-based
smoothing is more time-consuming than Laplacian smoothing, it will typically only be invoked for nodes whose
value of ~ is sufficiently small.

A steepest descent iterative approach is used to move x in gradient directions so as to increase ~ as much as
possible. Usually, the improvement in ~ decreases with each iteration, so two iterations are usually sufficient in
practice. The following is done in an iteration of the steepest descent method

1. Estimate the gradient vector gi = (g,i, g;, g;) for each element Ei, 1 S i <n, as follow~
● Perturb the x-coordinate of x by & The size of 6 can be based on the size of vertex coordinates, e.g.,

10-5times the maximum model dmension.
. Compute the perturbed metric value j.ti+for Ei.
. Set gXi=@+ - ~/& (gYiand g; can be computed similarly.)

2. The gradient direction is taken to be g = g., where m is an index such that ~ = ~. If g = O, then let g =

g .+, where m+ is aII index, such that v.+. ~+, where h+ is tie next smmest element metic to h.
Vertex x is to be moved to x+= x + W, where the scalar y is determined as follows

. If ~ is considered to be a function of x, then the Taylor series expansion yieldx

~(x’1 ‘k(x+’@=~(x)+yg - gi [1]

1For example, tiis could be a zero area triangle or a quad with a 180 degree comer angle.
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If g . ~ 20, then ~ increases for a sufficiently small y. That is, the chosen gradient direction will
most likely improve the quality for Ei and we probably won’t have to worry about ~+ being less
than ~+.

● On theotherhand, if g. ~ c O, then K decreases for a sufficiently small y in the chosen gradient
direetion. In this case, the value of yneeds to be restricted, so that pti+ 2 ~+ -- or:

Therefore, yis limited to be

b )
{}““nGH%, over theindices,i, for which g. ~ <0

[2]

[3]

3. Once the value for y is obtained and it is sufficiently large, then a move of x to x+ = x + lg is attempted as
follows:

● Using the new x+, the new metric values ~+ are computed for each Ei.

. The new minimum metric value, ~+, is computed ax

● The move of x to x+ is accepted and ~ is set to ~+ for each i, k

[4]

[5]

Where “tol” is a tolerance, e.g., 10-5.

. Since approximations are us@ it is possible that the original y is too large, so if the move is not

accept@ then a smaller movement ean be tried.The value y is decreased by a factor of 2, and the
above is repeated for the new x+. At most a fixed number, say 4, of y decreases is auempted before
giving upon moving x.

6. Distortion Metrics

As explained in the previous sections, distortion metrics can be used to do more than just determine the tinal
quality of a mesh. They ean also be used to guide smoothing operations by constraining the movement during
eonstrained Laplaeian smoothing and to drive the optirniition-based smoothing. The selection of a suitable metric
is eritieal. Some of the criteria by which a metric can h judged includti

● Efficiency – it will be called many times
● Suitability for use by an optimization-based smoothing algorithm, i.e.:

. Continuous, since derivatives are needed to determine the direction which minimizes the metric.
● Precise in its description of what element distortion is. Nothing can find a flaw in a metric faster

than optimization-based smoothing.
. Preferably, it will remain defined through inversion of the elemen~ so that mildly inverted

elements ean be repaired.
. Application to mixed meshes. It is advantageous for the metric to be defined and normalized in such a

way that the metrics for each element type can be used together. That is, the quad and tri distortion
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metrics should be compatible, so that smoothing of quad-dominant meshes does not over-emphasize
tie quality of one element shape over another at a given node.

The following sections will describe the distortion metrics that have been developed for quantifying triangle and
quadrilateral element distortion.

6.1 Triangular Distortion Metric

The distortion metric used for triangle elements is an extension of the one presented by Lee and Lo in [44]:

IICAX CBII
cx(ABC)= (I)2fi

[llcAl~+llABl~+llBcl~]

where: [6]

{

l,(CAXCB)” NX >0
I=

–l,(CAXCB)” N, <O}

Where N is the surface normal evaluated at the center of the triangl~ and AB, CB, and CA are the edge lengths
between those nodes. Note that the metric is signed (with “I”) to capture inversion of the element. This distortion
metric is basically the area of the triangle dhided by the sums of the squares of the lengths of the sides. The 243
term is a normalizing factor so that equilateral triangles will have a maximum et value of 1.

The only change between this metric and Lee’s metric, is tie inclusion of the “Z” term, which assigns a negative
distortion value to inverted elements. This is important for helping to determine if the proposed Laplacian
smoothing node movement will indeed improve the quality of the local mesh. Optilzation-based smoothing also
gains form a distortion metric that continuously quantifies element distortion as an element goes inverted. This
modification makes it possible for the smoother to repair mildly inverted elements.

6.2 Quadrilateral DistortionMetric

The metric used for the quadrilaterals is also based on the metric presented by Lee and Lo in [44], again with a few
modifications. The distortion metric, ~, is computed by dividing the quadrilateral into triangles along each of its
diagonals. The distortion metric, CG(described above) is computed for each of the four resulting triangles and is
then sorted in descending order of magnitude. That ix

Q1>~2>Q3>~4

Lee [44] uses the following as his metric

[)

pbe = ~3%
ap2

[7]

[8]

Instead of Lee’s metric, he distortion metric used here is:

Where negval = 1 if any of the angles comer angles of the quad are less than 6 degrees, any two of the nodes are
coincident within a tolerance, or two of the triangles are inverted (i.e., their m’s are negative). In addition negval is
set to 2 or 3, if 3 or 4 a’s are negative, respectively. This constant allows for a subjective qualification of whether a
node movement really improves the quality of the mesh. The use of negval here is certainly heuristic, but it has
been developed over several years of experiences in smoothing thousands of area meshes.
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While tlis is not a continuous function, it has proven to be effective for both types of smoothing. For optimization-
based smoothing,g is correc~but thecorrectvalueforymayrequireadditionaliterations,whenpm c O.

Thismetricis used,insteadofequation8 above,becausenegativemetricvaluesarenowallowedandif twoor four
a’s arenegative(inverted),thenthe ~ valuewillbe incorrectlysigned.Thenewmetricalsoemphasizesimproving
minimummetricvaluesoveraveragemetricvaluesandanalysesaremoreaffectedbyminimummetricsthanby
lowaveragemetricvalues.In addition,Lee’smetricdoesnotdetectaspectratioproblems.Hismetricwillgive
perfectdistortionmetricvaluestolong,stretchedrectangles.
7. Resultsand Examples

7.1 Smoothingimprovementstatistics

Themeshsmoothingscheme presented in this paper has been exhaustively tested and has proven to be sufficiently
robust and eftkient for use in a commercial product. The following distortion metric improvement statistics are
based on meshing 23 models at several different sizes, such that the smoother was called a total 124 times. The set
is comprised of triangle, quadrilateral, and mixed meshes.

Table 1. Improvements to distortion metric values from smoothing

Average value before Average value after Average increase
smoothing smoothing

Average Metric 0.82 0.86 0.04
Minimum Metric 0.58 0.70 0.12
When minimum metric was <0.1 -0.55 0.48

In Table 1, the rows are listed in increasing order of importance. The minimum metric is the most important
number to improve-especially when it drops below 0.1 (our arbitrary minimum quality allowed). One of the tests
started with a minimum metric as low as -0.49, but ended up with a minimum metric of 0.12.

Of the 124 times that the smoother was tail@ the smoother was called the minimum metric got slightly worse 8
times (by a maximum of 0.06). There is no cause for alarm in these cases, however, because the worst minimum
metric that any of these was only 0.42 (nowhere near the poor quality cutoff of 0.1) and the maximum that any got
worse was 0.06. The reason for these minor variations in minimum metric are due to the way in which the
acceptance criteria for the Laplacian smooths are setup.

7.2 Speed

The averageamountof timespentin the smootheris less30% of the totalmeshingtime. Over 160 modelswere
selectedandmeshedat severalmesh sizes,resultingin over 850 calls to the smoother,so as to extract the
followingtimingstatistics.

Table2. Timing statistics

1. Percent of total meshing time spent in the smoother 29
2. Percent of smoothing time spent computing distortion metrics 38
3. Percent of smoothing time performing Laplacian constraint 55
4. Percent of nodes requiring optimization-based smoothing <1.0

Note that in Table 2, the time spent on performing the Laplacian constraint is largely a superset of the time spent
computing the distortion metrics. Therefore, the actual Laplacian constraint checks take less than 20% of the total
smoothing time.

Since the vast majority of nodes do not require optimization-based smoothing, nearly all of the expense incurred
for optimization-based smoothing is in checking to see ifit is required. For most models, less than 1% of the nodes
end up requiring optimization-based smoothing. Moreover, since the same metric is used for lmth types of
smoothing, it does not have to be recomputed for the optimization-based smoothing checks.

489

,.—, .. . ,-:- ,:,.’-:;:,,..:,,,?, ,: ,V..!i.?;;.;r * 1...,.,~...y,,,,,.,, ‘=-7??-,,,.:;, ;“~j::;-j.$w;’!:,:.,.:,., ,.. .+, .:;jj,”:f}.!;,.,:$., :: ..-.+<-..@ —......——-./.<.i:’.e;~>’>.,, , , ..-..–. ,, ,. ..’.:. .. , f!..%,,. .,:”



. . . —

7.3 Examples

Figures 3a and 3b below show a triangular mesh on a doubly curved surface both before and after smoothing. Note
how the curvature is nicely maintained.

Figure 3a. Tri mesh before sm~thing Figure 3b. Tri mesh after smoothing

Figures 4a and 4b below show another triangular mesh with and without smoothing. This tri mesh will be used as
to create the quad mesh in Figure 5.

Figure 4a. Tri mesh before smoothing Figure 4b. Tri mesh after smoothing
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Figures 5a and 5b show a quad mesh before and after smoothing. Note how severely distorted some of the quads
are that must be handled by the smoother.

Figure 5a. Quad mesh before smoothing Figure 5b. Quad mesh after smoothing

Figures 6a and 6b show a simple quad mesh before and after smoothing.

8.
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Figure 6a. Quad mesh before smoothing Figure 6b. Quad mesh after smoothing

Conclusion

An efficient and robust mesh smoothing scheme for 2D and 3D surface meshes is presented which works for tri,
quad, and mixed meshes. This technique includes the combination of both constrained Laplacian and optimization-
based smoothing. A distortion metric is presented that is well suited to both types of smoothing. The technique has
been tested extensively and is in production use in ANSYS. The technique can (and has) been extended to 3D
elements.
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Abstract
The purpose of this paper is to investigate the use of a genetic algorithm (GA) to perform the finite element analysis
mesh smoothing process. It is the goal of this paper to take a simple quadrilateral mesh and smooth it using a GA
into a useful model that will provide a correct solution. The GA smooth@ technique is demonstrated on two simple
quadrilateral mesh examples. Only one node is moved at a time in the examples.

A distortion metric is used to quanti~ the “goodness” of a quadrilateral element and serves as the fitness function for
the GA. Other implementation details such as convergence criteria, population size, cross-over probability and
mutation rate are discussed in the paper. Early results from the two simple check problems are presented. Finally,
planned future work is outlined and possible GA smoothing applications are discussed.

Keywords: Genetic Algorit@ Artificial Intelligence, FEA Mesh Smoothing, Mesh Optimization

1. Introduction

The goal of most finite element analyses (FEA) is to veri~ the suitability of an engineering design. The challenge is
to build a sufficiently accurate model in the available time. One of the most time-consuming tasks in building a
finite element model is generating and optimizing the finite element mesh.

Many algorithms have been developed to create the elements of the model, a process called meshing, but the meshes
are often constructed of poorly shaped and thus error prone elements. Smooth@, a technique of correcting the
poorly shaped elements, is an emerging science with several useful methods available. No one smoothing technique
works all of the time.

It is the purpose of this paper to explore the use of a simple genetic algorithm (GA), an artificial intelligence (AI)
method, to control the execution of the smoothing process. GAs will take longer to run than most conventional
methods such as Laplacian smoothhg but may prove useful for smoothing difficult meshes (non-convex meshes for
example). This paper describes application of a GA to smooth a poorly formed simple convex quadrilateral mesh.
Future work includes application of a GA to solve a non-convex mesh and other more complex meshes. The final
goal of this project is to apply GAs to smooth non-convex 3D surfaces. It is hoped that GA smoothing may
ultimately be able to smooth hexahedral meshes.

Quadrilateral Elements Quadrilateralelementsare moreaccurate,ingeneral,thantriangularelementsfor 2D
stressanalysis.For thesamereasons, hexahedralelementsare moreaccuratethantetrahedralelementsfor 3D stress
analysis,especiallywhen working with materials with a high Poisson’s ratio such as rubber (Key, 1997). Quad and
hex meshes are harder to generate than comparable triangle and tet meshes.
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Smoothing Smoothing or mesh adjusting is an operation where nodes are repositioned to produce elements more
closely resembling the theoretical element (for example, a square for quadrilateral elements). In addition to
repositioning nodes, nodes can be added and deleted and elements can be added and deleted. The most common
smoothing algorithm is Laplacian smoothing (Hansbo, 1995; Field, 1988; Frey, 1991; Bossen, 1996). Other
smoothing methods include the spring method (Hansbo, 1995), mesh relaxation (Field, 1995), pliant method
(Bossen, 1996) and the genetic algorithm used in this paper (Holland, 1975; Goldberg, 1989, Smith, 1994).

Laldacian Smoothing In the Laplacian smoothing technique, nodes are moved in the areas of poorly conditioned
elements. The Laplacian algorithm locates an offendhg node and moves it to the centroid of the surrounding nodes
thus helping to improve the shape of the elements in most cases (Bossen, 1996). On some non-convex domains,
nodes are pulled outside the boundary.

A more sophisticated vmiation is the Laplace-Delaunay smoothing (Bossen, 1996), which performs edge swaps and
Laplacian smoothing in a loop, adjusting the topology and geometry of the mesh at the same time. This method does
not have the ability to add or subtract nodes.

2. Artificial Intelligence (AI)

htificial intelligence is the study of the computations that make it possible to perceive, reason and act (Winston,
1992). This paper briefly describes three forms of AI previously used to smooth meshes. Smoothing meshes with
artificial intelligence is not currently the best way to smooth meshes. It is a different approach to mesh smoothing
that has not been presented at the previous meshing conferences. Given enough time on a fast machine (measured in
terms of hours) one of these AI methods may prove capable of solving the arbitrary 3-D hex meshing problem.
Perhaps some clever person can figure out away to reduce the solution to minutes instead of hours.

ExDert SVstemsAnexpertsystemis a knowledge-basedsystemprogrammedto makedecisionsanexpert would
make. An expert system typically includes a sizable database, consisting of facts about the domain and rules for
applying those facts (Mishkoff, 1985). It is a large list of do’s and don’ts containing as many rules as required to
solve the problem in question. For example, the expert system maybe programmed to partition a region into
subregions. There would be rules about thin sections, fillets, holes, boundary conditions, etc., to partition the region
just as the engineer would do it.

Genetic Al~orithms A Genetic algorithm (GA) is a procedure for improving results of some operation by
repeatedly trying several possible solutions and reproducing and mixing the components of the better solutions. The
process is inspired by, and crudely similar to, the process of evolution in the biological world, where the fittest
survive to reproduce (Evolver, 1995). According to Goldberg (Goldberg, 1989), genetic algorithms are search
algorithms bxed on the mechanics of natural selection and natural genetics. According to Pal (Pal, 1996), GAs are
adaptive and robust computational procedures modeled on the mechanics of natural genetic systems. GAs have been
successfully used to optimize or smooth 2D FEA meshes populated with triangles (Guests, 1994). Unfortunately, we
were unable to communicate dkectly with Guesta or his staff to dkcuss the details of his paper.

GAs act as a biological metaphor and try to emulate some of the processes observed in natural evolution. They are
viewed as randomized, yet structured, search and optimization techniques. They express their ability by efficiently
exploiting the historical information (remembering good results) to speculate on new offspring (producing new
generations of solutions) with higher fitness (expected improved performance). GAs are executed iteratively on a
set of coded solutions, called a population, with three basic operators: selection or reproduction, crossover, and
mutation.

In order to find out the optimum solution of a problem, a GA starts from a set of chromosomes (assumed solutions)
and evolves different but better sets of chromosomes (sets of solutions) over a sequence of iterations. In each
generation (iteration) the fimess measuring criterion (objective function) determines the suitability of each
chromosome and, based on these values, some of them are selected for reproduction. The number of copies
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reproduced by an individual parentis expected to be dwectly proportional to its fitness value, thereby embodying the
natural selection procedure, to some extent. The procedure thus selects more fit solutions; less fit solutions me
eliminated.

GAs were developed by John Holland at the University of Michigan in the mid 70s and are the subject of much
. research today. GAs are robust and, although they may not find a perfect solution, they come close enough for most

engineering work for a wide verity of problems. Multimodal and Klghly discontinuous problems are taken in shide
by GAs. There are numerous variations on GAs including different types of crossover algorithms, hybrids combining
GAs with fuzzy logic, simulated annealing and neural networks.

Neural Networks. GAs and neural networks (NN) are both considered artificial intelligence technologies, and are

often lumped together because both were inspired by biological systems in nature; the GA mimics Darwinism
evolution, and the NN mimics the brain.

In a GA problem, we usually want to find the inputs to pump through a given model that will produce the optimal
output. In a NN problem, we usually have many sets of inputs and their related outputs, but we are looking for the
model that ties them together. The NN is trying to make sense of your inputs and outputs by building an internal
black box model of its own. This makes NN good for pattern recognition and prediction applications, where you
have just raw data, and you ‘arelooking for a model to make sense of the data.

NNs must first be trained and tested before they are used. Once built, we take a subset of the inputs and related
outputs and feed it through the NN. This training data allows the NN to try and create a model that accurately relates
those inputs to their output. ANN is only as good as its training data.

GAs and NNs can be joined together. A GA can help turn a NN inside out, crunching through thousands of
possibilities to find the best set of inputs to feed the network to achieve a desired output result. NNs can be trained
to do optimization problems like the traveling salesman’s problem, desiag optimization, cost optimization, job-shop
scheduling and FEA mesh generation (Dyck, 1992).

Of the three AI methods described above and previously used by others to smooth meshes, genetic algorithms was
considered by the authors to be the most promising. The following sections describe initial implementation efforts of
a GA for smoothing quadrilateral meshes.

3. Implementation of GA for Mesh Optimization

Each node of the 2D mesh is represented by an x and a y coordinate. In the simple GA used for this project, the
chromosome is a binary representation of one x-y nodal location in the 2D region. The value of each chromosome is
compared with a fitness function. The more fit solutions reproduce and the less fit solutions die off.

In our chromosome representation, 30 binary characters or bits represent the nodal location, fifteen binary locations
for the x coordinate and fifteen for they coordinate. Fifteen binary locations make 32767 equal steps between the
maximum and minimum coordinates determined for each search region.

Other decisions in the GA are the size of the initial population, the type of selection, crossover possibility, and the
beginningadendingmu~tionprobabilities.Figure1isaflOW Chm of a simple GA and the solution method taken
in this approach to the smoottdng process.

A random number generator creates the initial population. Each number represents a x-y nodal location inside the
search region. The initial population is a balancing ac~ too many may result in a loss of efficiency and too few may
result in a loss of accuracy.

Pairs of individuals are selected using a tournament selection. The population is broken down into random
tournaments of size k (k = 2 is most commonly used). A copy of the best individual in each tournament is assigned
to the mating pool. The process is repeated k times. Using this method, the best individual always receives k copies
in the mating pool. One other method is roulette wheel selection, but it produces less than desirable results.



Crossover or recombination comes in a variety of choices. Single, uniform and multi-point crossovers are a few of
the types. In this paper single-point crossover is used. Here crossover is used on two mates, producing two children.
An integer k is selected at random between one and the string length minus one (1 and 14 in our case). Two new
strings are created by swapping all characters (bits) between positions k + 1 and 14.
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Figure 1. Flow chart of solutionprocedure.

Mutation adds diversity to the GA. It is a random walk in the search space. Two mutation rates are used in this GA
wrhlen by the University of Alabama (Smith, 1994). The first is a higher rate with a probability of 0.533 and ending
at 0.0333. Higher mutation in the beginning of the GA and less near the end for less dkruption as the GA converges.

J
Do Single Point
Crossover using
Random Number

Generator

The core of this quad optimization problem is the fitness function. Here a distortion metric developed by Carleton
University in Ottawa, Ontario, Canada was selected (Oddy, 1988). What was desired for this problem, was a single
number that represents the overall goodness of a quad element. This metric is a function of the element Jacobtan
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(averaged for the four Gauss points for each element). Green’s strain is examined, deviatoric strains are considered
with a resulting function in terms of the Jacobian to the fourth power. The dktortion metric grows rapidly as the
distortion increases. We are experimenting with GAs in this paper, not goodness criteria, with details of Oddy’s
metric given in his paper (Oddy, 1988).

The distortion metric for each element in the overall model is computed and the worst element is selected. The
program next examines the distortion of each of the surrounding elements with the algorithm selecting one of the
four nodes of the worst element as a working node. The elements common to this node constitute the working
region. The max/min coordhates are determined for the region and the GA then proceeds to “move” the working
node to minimize the distortion of the elements in the working region. Once an optimum is achieved for the region
(either a minimum distortion metric is reached or an error value is achieved) the distortion mernc is then recalculated
for the entire model and the process repeated until a global minimum is achieved.

Unlike Laplacian smoothing, the working region can be non-convex since the GA is looking at the individual
element goodness and is not necessarily looking for a centroid of a region to position a node. A non-convex region
using Laplacian smoothing could possibly place the node outside of the region.

4. Implementation of a GA for Mesh Smoothing

Check Problems. The first check problem used in this project was a simple four quad rectangle with one movable
node in the interior of the region (Figure 2). The solution is trivial, but it provided an important opportunity to check
out how the GA behaved. Depending on the error cutoff value (0.00 error being four perfect rectangles and 0.01 for
an acceptable approximation), the GA typically stumbled into a solution quickly. The lower the error cutoff, the
longer it took to run.

An exact solution would be x = 5.0 and y = 5.0 for node 5 since the overall size of the model is 10 X 10. The GA
quickly found a solution of x = 4.6001 and y = 5.0255 with the worst distortion metric going from 0.4754 to
0.009065 with an error cutoff of 0.01. This occurred in the ls[generation with a population of 100. At an error
cutoff at 0.1, the GA found a solution in the initial population.

7 8

3

4

4

1 2 3

Figure 2. Exampie initial mesh H.

Figure 3 is a 32 element convex geome~ example. This example checked out the basic search aIgorithm and the
GA. Here again the solution is obvious which makes a good test example.



Convergence Tolerance. The biggest problem in solving the 32 element problem is dealing with the error function
or convergence criteria. Since only one node is moving at a time and adjacent elements are poorly shaped, a fixed
error function set at a low number, i.e., 0.01, won’t converge since the location of other nodes prevents a well shaped
element.

The error fimction needs to be set sufficiently high, 0.5 for example (the worst error metric in the above model is
0.98892) and reduced as the GA optimizes the particular working region. Once this region is improved as much as
possible, the GA moves on to the next worst region. This process of moving to the worst area of the model
continues until a global model minimum has been reached. In this model, a global minimum of 0.01 was set and
finally reached. Here a global minimum considers the distortion metrics for all elements in the model. More work
needs to be done in fine tuning the GA’s parameters and the convergence criteria since all of the input parameters
influence the convergence of the GA.

Figure 3. Example initial mesh #2.

Population Size. Population size is an example of a parameter affecting the algorithm’s convergence. The larger,
more diverse population takes longer to converge on a solution, but is more likely to find a solution because of its
dherse gene pool. For these check problems, a population of 100 (100 trial points in the region of the working
node) works well. Smaller populations typically d:dn’t converge as quickly as larger populations. In some instances
the smaller populations did not converge at all. Here time is measured in more than an hour using a 486-50 PC.

Crossover Probability. Crossover probability usually ranges tlom 0.01 to 1.0. Crossover reflects the likelihood
that future population of nodes will contain a mix of information from the previous generation of nodes. A rate of
0.5 means that a child node will contain about 50% of ita location from one parent node and the rest ffom the second
parent node. A rate of 1.0 means that no crossover will occur, or only clones of the parents will be evaluated. We
are using a crossover probability of 0.75 at thk time.

Mutation Rate. The mutation rate can vary from 0.0 to 1.0. The GA software engine we’re using allows a variable
mutation rate. The suggested initial rate (Smith, 1994) is a fimction of the overall chromosome length.

((IJ2) + I)L = (30/2 + 1)/30 = 0.533 for a chromosome length of L = 30.

The suggested end mutation rate is

l/L = 1/30= 0.0333.

The higher the mutation rate, the more likely future nodal chromosomes will contain some random values. Since
mutation occurs after crossover, a mutation rate that is too high will prevent crossover from having much if any
effect.

502



Fitness Function. The fitness function in this paper is the distortion metric generated from the four comer Jacobian
values for each quadrilateral element. The convergence criteria that checks the individual fitness functions is
perhaps the biggest challenge in setting up a good GA. The first method used in this paper was to simply define a
relatively small error value, i.e. 0.01, and subtract the fitness value the GA calculated from 0.0 (a perfect quad) and
compare it with this error value of 0.01. If it is less that the preset value, we have a solution. This works great for a
mesh that will ultimately converge to a square, but what about geometry that doesn’t or can’t because of poorly
shaped adjacent elements?

In this last case, the GA will eventually converge to an usable nodal value, but not necessarily a preset value like
0.01. Here we need to check the convergence process. We can select the best answer after a predetermined number
of generations or we cm select the value that the GA seem to be converging to ad move on to the next “working

region.”

The convergence process may be a good application for fuzzy logic. We are not so lucky as to have a simple “go”
or “no go” situation. We have a “maybe” or “maybe not” which is a natural for fuzzy logic. The way the GA works,
a gradual relaxation of the convergence is required.

We can also create penalty functions to force the GA toward convergence. If the GA creates a value with an
acceptably low dktortion metric, the value passes it on as is (and say, “Good GA!”). If the GA creates a error value
that is not acceptably low, you could take the square or cube of the error times a penalty coefficient and added it to
the error value (and say, “Bad GA!”).

The penalty coefficient allows the operator to tweak the penalty function for optimum performance. A penalty
coefficient might vary from 0.1 to 1,000,000 or more dependhg on the results. Thk penalty function takes an
unacceptable nodal value and makes it very unacceptable forcing the GA in the direction of convergence.

5. Conclusions and Future Work

Laplace smoothing moves the “working node” to the centroid of a group of “working elements.” In a non-convex
geometry situation, the working node may end up outside of the region. This won’t happen with the GA smoothing
method provided the element selection algorithm is properly written. Future work for thk project will demonstrate
this advantage.

Other future work will focus on taking advantage of the inherent flexibility and robusmess of GAs as problem
solvers. One idea is to have the GA simultaneously adjust multiple nodes for multiple elements. The chromosomes’
can be expanded to include the coordinates for multiple nodes, and the objective function crmbe modified to
measure the distortion over several elements. Also, an “outer-loop” GA could be used to adjust the mesh density.
This would allow for a higher density mesh in regions with distorted elements due to irregular geometry.

The goal of this project is to use the GA to smooth 3D non-convex surfaces. The next logical step after 3D surfaces
is for someone to tackle the 3D solid geometry problem of hexahedrals. The most interesting feature of the GA is
that is almost guarantees a workable solution for the elements present. Perhaps elements can be added or subtracted
in the future for an even better solution.

The GA adjusts and readjusts all movable nodal locations (as opposed to fixed nodes, i.e. comer nodes and load
points) continually checking and optimizing the fimess fimctions of the elements present. There is no apparent
reason why this method can’t be expanded to the 3D hexahedral problem.

503



List of References

Bossen, F. J., Heckbert, P. S., 1996, “A Pliant Method for Anisotropic Mesh Generation,” 5th International
Meshing Roundtable, Pittsburgh, PA, pp. 63-74.

Dyck, D. N., et al., March 1992, “Determining an Approximate Finite Element Mesh Density Using Neural
Network Techniques,” IEEE Transactions on Magnetics, Vol. 28, No. 2.

Evolver, 1995, The Genetic Alaorithm Problem Solver, Version 3.1, Axcelis, Seattle, Washington.

Field, D. A., 1995, “The Legacy of Automatic Mesh Generation From Solid Modeling,” Compute Aided
Geometric Design, Vol. 12 pp. 651-673.

Field, D., 1988, “Laplacian Smoothing and Delaunay Triangulation,” Communications in Applied Numerical
Methods, Vol. 4, pp. 709-712.

Frey, W. H., Field, D. A., 1991, “Mesh Relaxation: A New Technique for Improving Triangulations,”
International Journal for Numerical Methods in Engineering, Vol. 31, pp. 1121-1133.

Goldberg, D. E., 1989, Genetic Al~orithms in Search, Optimization and Machine Learning, Addison-Wesley,
Reading, MA.

Guesta, P., et al., 1994, “Mesh Generation Using Genetic Algorithms,” Advances in Structural Optimization,
Civil-Comp Ltd., Edinburgh, Scotland, pp. 225-231.

Hansbo, Peter, 1995, “Generalized Laplacian Smoothing of Unstructured Grids,: Communications in Numerical
Methods in Engineering, Vol. 11, pp. 455-464.

Holland, J. H., 1994 (1975), Adarmition in Natural and Artificial Svstems, 3rd printing, MIT Press, Cambridge,
MA.

Key, Samuel, Sandia National Laboratory, April 1997: Personal Correspondence.

Mishkoff, H. C., 1985, Understanding Artificial Intelligence, Howard Sams, Indianapolis.

Oddy, A., et al., 1988, “A Distortion Metric for Isoparametric Finite Elements: DepartmentofMechanicalancl .
AeronauticalEngineering,CarletonUniversity,Ottawa,Canada.

Pal, S. K., and Wang, P. P., 1996, Genetic Algorithms for Pattern Recognition, CRC Press, Boca Raton, FL.

Smith, R. E., 1994, The Clearinghouse for Genetic Algorithms, University of Alabama, Tuscaloosa, AL 35487.

Winston, P. H., 1992, Artificial Intelligence, 3d ed. Assison Wesley, New York.

504



NEXT-GENERATION SWEEP TOOL:
A METHOD FOR GENERATING ALL-HEX MESHES

ON TWO-AND-ONE-HALF DIMENSIONAL GEOMTRIES
PATRICK M. KNUPP

PARALLEL COMPUTING SCIENCES DEPARTMENT
SANDIA NATIONAL LABORATORIES*

M/S 0441, P.O. BOX 5800
ALBUQUERQUE, NM 87185-0441

PKNUPP@SANDIA.GOV

Abstract. Placement of interior node points is a crucial step in the generation of quality meshes
in sweeping algorithms. Two new algorithms were devised for node point placement and implemented
in Sweep Tool, the first baaed on the use of linear transformations between bounding node loops and
the second based on smoothing. Examples are given that demonstrate the effectiveness of these
algorithms.

1. Introduction

It has been demonstrated that geometries that are two-and-on~half dimensional
(e.g., generalized cylinders) can be meshed with all-hexahedral finite elements [1],
[4]. Because all-hexahedral mesh generation on general three-dimensional geometries
remains an elusive goal, algorithms to mesh two-and-on~half dimensional geometries,
generally referred to as “sweeping” or “projecting” methods, continue to be important.
Although mesh sweeping is simple in concept, the fist-generation algorithms lacked
robustness and often produced poor mesh quality.

There are several approaches to mesh generation via sweeping but common to all
is the idea of identifying surfaces on a volume to serve as “sources” or “caps” and
a complementary set to serve as “linking sides.” Source surfaces may be arbitrarily
meshed with quadrilaterals via paving or multi-block structured meshing and then
“swept” along the linking sides towards a “target” surface which may or may not be
pre-meshed. TKIS is feasible provided the linking side surfaces are meshed with a type
of multi-block, structured mesh known as” submap” [5]. Identification of these source
and linking surfaces has been automated in the CUBIT code [6].

Interior mesh connectivity is entirely determined once these surfaces have been
identified and meshed. Placement of the interior nodes in space is then a crucial step
in generating a quality mesh. For geometries that are sweepable via source mesh
translation or rotation, the spatial location of the interior nodes is unambiguous.
For more general geometries, however, there is no uniquely correct location for the
nodes. The guiding principle in the general case is that nodes are placed so that
hexahredral elements of a swept mesh are of good quality. As a minimal requirement,
the “Jacobian” at the eight corners of all hexahedrons should be positive [2]. Another
reasonable requirement is that qualities of the source surface mesh such as biasing
or the relative areas of quadrilateralsshould be transferred, in so far as possible,to
the interior layer meshesand to the target. Even with these requirements,flexibility
remains in the placementof the interior nodes in sweepinggeneralgeometries. This
paper reports on a robust methodfor uniquelyspecifing the interior node positions
in a waythat directly addressesthe meshquality issue.

* SANDIA IS A MULTIPROGRAM LABORATORY OPERATED BY SANDIA
CORPORATION, A LOCKHEED MARTIN COMPANY, FOR THE UNITED STATES
DEPARTMENT OF ENERGY UNDER CONTRACT DEAC0494AL85000.

1

505



The outline of this paper is as follows: section 2 describes how point placement
was done in the first-generation Project Tool [4] in order to illustrate the challenge
posed by general two-and-one-half dimensional geometries. Section 3 treats the point
placement algorithm based on linear transformations that is used in Sweep Tool while
Section 4 describes results of layer smoothing as a point placement method, both in
Sweep and Project Tools. Of course, interior point placement is not the only issue
that arises in designing a good sweeping algorithm, so Section 5 briefly covers some
additional topics of importance. In section 6 we offer our conclusions.

2. Interior Point Placement in the Project Scheme

Interior points are located in the Project scheme by an advancing front mechanism
that builds a layer of hexahedrons on the front from the previous layer, begining with
the source surface meshes. An individual hexahedron on the front is built using the
four nodes Xo, xl, X2, and X3 on the previous layer plus three other nodes X4, X5,

and xG belonging to the hexahedron under construction. The latter are known from
the boundary data on the linking surface and from preexisting nodes on the layer
containing the advancing front. In the original algorithm, the final node X7 of the
hexahedron was computed by averaging the three vectors X4 – Zo, X5 – xl, and xG – X2
that approximately point in the dhection in which the front advances:

(1) ~ {(Z4 ‘~o) + (Z5 ‘~,) + (Z6 ‘~2)} .z7=z3+-

Thki approach gives the desired nodal position under a translation: if Zd+k = Xk +C for
some constant vector c G R3 and k = O, 1,2,it immediately follows that X7 = X3 + c.
However, not all meshes on sweepable geometries can be translated so equation (1)
is inadequate for many important cases. Foremost among these are rotatable geome-
tries; rotations are not preserved under (1) and very poor meshes result. An im-
proved” planar-intersection” algorithm was suggested in [4] in which the point Z7 was
determined by the intersection of the three planes containing the points (x4,x5,X6),
(ZII, z3, z4), and (z2, z3, ~G), respectively. While this alternate algorithm improved
the quality of the projected meshes, it still did not work effectively on rotatable ge-
ometries.

Two approaches to solve this difficulty were suggested in [4]. In the first approach,
a separate program module (known as scheme Rotate) was developed for geometries
whose source meshes can be rotated. The planar-intersection algorithm was discarded

in favor of one that works only in the rotational case. The result was a highly efficient
module that consistently achieved good quality meshes on a limited set of geometries.
A minor disadvantage of adding Rotate to the suite of tools was that there were
then two modules to maintain when only one is actually needed. More importantly,
however, is that other commonly encountered geometries such as a frustum needed

development of additional special modules because the heuristically-based planar-
intersection algorithm failed to give quality meshes on them as well.

To overcome this piecemeal approach, the authors of Project tried mesh smooth-

ing. In some respects this was premature because, as is demonstrated in the next
section, the planar-intersection algorithm can be replaced with a uni~lng technique
involving linear transformations that handles all geometries which require translation,
rotation, and scaling of layer meshes.
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3. Interior Point Placement via Linear Transformations

Given a layer mesh of points pj c R3 with bounding loop L consisting of the points

{z~}, k=l,2,..., K with K >3, and given a second loop ~ consisting of K points
{Zk} in R3, we seek a vector b c R3 and a 3 x 3 non-singular linear transformation 7
between loops such that

(2) ~k=TZk+b

for all k. Then, for any point pj belonging to the layer bounded by loop L, we

determine the point @j in the layer bounded by loop ~ by @j = Tpj + b.
The vector b can be readily determined from the loop data. Define loop center

points

(3)

(4)

1
c x‘Zkzk’

1
15=— xK ~ ‘k”

It is not necessary that these center points lie “inside” the loops. If we sum (2) over
all k, we find:

(5) b= E–Tc;

thus (2) becomes

For Convenience, let uk = xk – c and@ = Zk – ~-SOthat ~k = Tuk.
Define K matrices Uk = [Uk,Uk+l, ~k+z] and uk = [Zk, fik+l, fik+z].1 The former

matrices will be non-singular provided the three column vectors are linearly indepen-
dent, i.e., each portion of the loop must be non-planar. If Uk is non-singular, then we
can uniquely define K linear tranSfOrmatiOIM Tk = fik U;l which SatiSfy ~k = ~k Uk.
In general, however, there may not be a single linear transformation T between the
loops. If T exists, then rk = T for all k.

Since, in general, such a transformation between arbitrary loops does not exist, we
perform a least-squares fit to the bounding loop data by tilmizing the non-negative
function

(7)

Clearly, if T in (2) exists, then it mimimizes F’. To find T, set ~F/8~j = O to get
three uncoupled linear systems that can be written as

(8) TM=F

with

(9) M = ~(uk @uk) ,

(lo) x = ~(uk @fik) ,

k

1 Since the 100ps are closed we can achieve periodicity by letting Xk+K = Xk and ~k+K = ~k.
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where B is the vector outer product. T is determined provided M is non-singular
but, unfortunately, M is singular for the important case of planar loops.

Definition: a loop L is planar if there exists n c R3 such that n. u~ = O for all k.
Suppose that n exists for loop L. Then Mn = ~(uk. n)uk = O. Hence the null-space
of M is non-trivial and so M is singular.

To circumvent the problem of planar loops, redefine the set of vectors u~, ii~ by

(11) ?.Lk= zk–(2c– E),

(12) iik = Zk—c.

It is easy to show that ~ uk = ~fik = ~(~– c). Note that u~ = (Zk – c) + (~- c),
giving a clear geometric interpretation. Note that for the sweep problem there will
not be a vector n that is normal to all the uk unless the geometry is pathologic. We
wish to apply the least-squares fit above to find a relation of the form

(13) iik = ~Uk .

Summing this relation over k we find that ~ (Z– c) = E– c. Putting (11-12) into (13),
we find that

(14) ik–Z=T(~k—c).

We have thus arrived at relationship (6), which in turn implies (2), as desired. Note
that if T is the identity matrix, then one gets loop translation. Note also that if .F is
not zero at the minimum, then T does not necessarily send {Zk} to {Zk}.

A new linear transformation is calculated in Sweep Tool for each layer of the
advancing front based on consecutive boundary loops from the linking surfaces.

4. Layer Smoothhg

The algorithm outlined in the previous section was implemented in Sweep Tool
and was found effective on a wide variety of problems, including rotatable geometries
(see Figure 1).

Despite the effectiveness of linear transformations, another algorithm is needed to
sweep general two-and-one-half dimensional geometries. To handle general geometries,
we resort to layer smoothing techniques in which each layer of quadrilaterals on the
advancing front is smoothed independently of connections to nodes on the previous
layer. Although ftdly three-dimensional smoothing is appropriate for the hexahedral
meshes generated in sweep, it would be very inefficient to incorporate such a procedure
into the advancing front method. An-alternative is layer smoothing whkh provides a
relatively efficient, if somewhat less robust, approach. A variety of layer smoothing
methods, includlng Laplacian and isoparametric, were tried in Project with mixed
success. Although Project smoothing was generally an improvement over the Project
point placement algorithm described in section 2, two difficulties adversely impact
mesh quality.

The first difficulty is illustrated by the example of sweeping a half-torus with the
source surface meshed with a radially-biased circle primitive (Figure 2). Because the
Project algorithms of section 2 produce meshes with negative Jacobian elements on
rotatable geometries, layer smoothing is necessary. Laplace layer smoothing eliminates
the negative Jacobians but the biasing on the source mesh is lost. More importantly,
distorted hexahedral elements are created on the first layer of the advancing hont
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F!G. 1. Sweep Tool on Rotatable Geometry via Linear Thnsforrnation Approach

because there is not a smooth transition between the source and target meshes. In
th~ example, the need for the original biasing of the source mesh to be preserved by
the layer smoothing is obvious.

The second difficulty occurs on volumes having non-convex or non-simply con-
nected source surfaces. Layer smoothmg is absolutely necessary on the example in
Figure 3 because no linear transformation between the source and target loops exists.
Project with Laplacian layer smoothing produces a bad target mesh in this example
(note the compression of the quadrilaterals next to the inner boundary). The second
difficulty arises in many other important sweepable geometries.

Both difficulties are overcome by devising a robust smoother for Sweep Tool that
takes mesh biasing into account and performs mesh copying/morphmg2. For exam-
ple, the mesh in Figure 1 can be obtained with Sweep Tool, with or without layer
smoothing. Sweep Tool smoothing also solves the dtiulty illustrated in Figure 2. Fig-

2 Space limitations prevent d~cussion of the smoothing algorithm here. See [3] for a detailed
presentation
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FIG. 2. Project Took Loss of Mesh Biasing due to Smoothing (Target on Right)

ure 4 shows the result of sweeping with Sweep Tool layer smoothing on the example
in Figure 3. Experience with a series of realistic problems has shown it is possible
to sweep a wide variety of general two-and-one-half dimensional geometries with this
smoother.

If the curvature of a source surface is significantly different than the target surface,
poor mesh quality may result even with layer smoothing. Curvature is somewhat
preserved by layer smoothkg if the bounding loop reflects the surface curvature but,
in general, this is not the case. Research on methods to achieve good mesh quality
for curved source and target surfaces is presently being pursued. The approach takes
into account both source and target meshes.

Sections 3 and 4 give two alternative approaches to placement of the interior
nodes, one involving linear transformations and the other layer smoothing. Although
linear transformations are less general than layer smoothhg, they remain useful be-
cause, when they exist, it is computationally much faster to generate them than to
perform layer smoothing. Fortunately, (7) gives a direct measure of whether or not
such a transformation exists: if. F = O, then the linear transformation exists and
smoothing need not be used because good quality is guaranteed, as shown in the fol-
lowing result.

Proposition. Assume that a layer mesh has positive Jacobian at all mesh nodes.
Let T be a linear transformation with positive determinant. Then T applied to this
layer in the manner of (14) will result in another layer mesh which also has positive
Jacobians at all of its nodes.
Proof. For each quadrilateral of the mesh-let U be the matrix [Zl – Zo, Z2 – Zo, n]
for some unit normal. We have TU = U with the determinant of U positive by
assumption. Then the determinant of fi is positive because it is the product of the
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FIG. 3. Project Tool: Poor Quality Target Mesh (right) Resulting from Laplacian Layer Smooth-
ing

determinant of two matrices which each have positive determinants. $

There are thus two criteria to determine whether or not smoothing is needed. If
(i) F < e where c ia some tolerance criterion and (ii) the Iiiear transformation has
positive determinant, then smoothing is not needed.

Occasionally, layer smoothing will fail to produce adequate mesh quality even
with the new smoother because, although the geometry and topology are two-and-
om.+half dimensional, the mesh is fully thre~dimensional. When layer smoothing
fails, the situation can sometimes be salvaged by invoking the fully three-d~ensional
smoother as a post-processing procedure.

5. Additional Topics

We briefly discuss in thu section some Sweep topics not directly related to that
of interior node placement.

Poor quality meshes on the linking surfaces generally result in poor quality hex-
adrons generated by sweeping. It is therefore crucial to generate good meshes on the
source and Iinklng surfaces. Because surface meshbg is outside the control of Sweep
Tool, Sweep Tool checks the Jacobians of all the quadrilaterals on the linking surfaces
before sweeping. If any Jacobians are negative, then sweep aborts because negative
hexahedron Jacobians will surely result. Even when there are no bad quadrilaterals
on the linkkg surfaces, one can still sweep out bad hexahedra due to problems with
the linking surface meshes. Highly skewed meshes on the linking surface is a common
cause of this problem.

Sweep Tool contains a topology-based mesh-matching algorithm because in some
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FIG. 4. Sweep Tool:
Algorithm

Good Quality Target Mesh (right) Resulting from new Layer Smoothing

instances it is advantageous to have the target surface meshed prior to sweeping. If
the target mesh topology is incompatible with the source mesh topology, the sweep

is aborted, otherwise each quadrilateral on the last layer of the advancing front is

matched with the appropriate quadrilateral of the target mesh.
Multiple source surfaces are allowed in sweep, but multiple targets are not presently

allowed.
Mesh generation rates of up to 3000 hexahedrons per second have been generated

with Sweep Tool on a 300 MHz workstation, compared to 1800 hexahdrons per second
for Project Tool. It is possible to achieve thki through careful memory-speed tradeoffs
to eliminate quadratic-time calculations.

6. Summary and Conclusions.

Sweep Tool provides a relatively fast and semi-automatic means of generating
volume meshes on general two-and-one-half dimensional geometries. Interior point
placement is crucial to the success of the algorithm.

.

Two approaches for the placement of interior node points have been suggested that
are robust and highly effective. The linear transformation approach is fast and gives
high quality meshes on translatable, rotatable, and scalable geometries. The layer
smoothing approach is slower but can give high quallity on more general geometries.
Two criteria are given which form the basis for an automatic method for determining
if smoothing is needed.

Some geometries are border-line sweepable, i.e., even though the geometry is
two-and-onehalf dimensional, meshes on the liiking surfaces conspire to make layer
smoothing inadequate. Full 3D smoothing applied as a post-processing step may give
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the desired mesh quality.
Further development of Sweep Tool technology is underway to improve mesh

quality in the case of highly curved source and target surfaces. Research on improved
algorithms for sweeping to multiple targets is also in progress. Of course, not all
geometries are two-and-one-half dimensional so research must continue on meshing
the general problem.
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The Geode Algorithm:

Combining Hex/Tet Plastering, Dicing and ‘Jlansition Elements
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Abstrack A new all-hexahedral meshing algorithm, referred to as “Geode”, is descn”bed.This algorithm is the
combination of he#tet plastering, dicing, and a new 26-hex transition element template.Thealgon”thmis described
in detail, and examples are given ofproblems meshed with this algon-thm.

keywords. Geode; hexahedral mesh generation; transition template.

1. Introduction

Finite element analysis is used to model physical phenomena in a wide variety of disciplines, including structural
mechanics and dynamics, heat transfer, and computational fluid dynamics (CFD). To perform these analyses, the
problem domain must first be discretized into one-, two-or three-dimensionrd elements. WMle the finite element
method allows many types of elements, tetrahedral and hexahedra are typically used, furthermore, hexahedra are
considered more accurate for a given cost for some types of analyses, particularly in the non-linear regime. However,
generating all-hexahedral meshes for typical problems has proven quite difficult.

To date, no automatic all-hexahedral meshing algorithm has been found which delivers both complete automation and
high-quality meshes, both of which are critical to acceptance of such an algorithm in the FEA field. There have been
many research efforts to find a suitable algorithm. Whisker weaving[l] operates in the mesh dual to find the topology
of an all-hex mesh, then smooths to locate nodes in physical space. While this algorithm has shown promise, it has not
yet achieved the required robustness for typical problems. Other algorithms investigated by Schneider et. al[2] and
by researchers at Cray Research[3] have proven robust, but have generated meshes which tend to be large and which
have poorest quality near region boundaries. Recent efforts at Sandia National Laboratories have shown that hex
meshes can be obtained by slicing automatically-generated tetrahedral meshes into hexahedra, and that these meshes
may be suitable for some analyses, but these meshes have yet to be tested for a wide variety of non-linear analyses[4].

This paper describes the Geode algorithm, which generates all-hexahedral meshes automatically for arbitrary
geometries. The algorithm is based on hex-tet plastering, an advancing-front, hex-dominant meshing algorithm which
generates hex elements from the boundary inward followed by tetrahedral on the interior[5]. Geode inserts a “necklace”
layer of hex elements between the hexes and tets, then dices the ensemble to produce an all-hex mesh. A special
transition element is used to dice the necklace layer of hexes [13]. The algorithm is in the early stages of development,
and some issues remain regarding the quality of the elements generated in the transition layer in realistic problems.
These are being diligently researched, and our feeling is that the algorithm shows much promise.

The remainder of this paper is organized as follows. Section 2 describes the hex-tet plastering algorithm and the dicing
techniques in more detail. Section 3 describes the combination of these algorithms and the necessary additions for the

1 Parallel Computing Sciences Dept., Mail Stop 0441, Sandia National Laboratories, Albuquerque, NM 87185. The
authors were supported by the Mathematical, Information and Computational Sciences Division of the U.S. Department
of Energy, Office of Energy Research, and work at Sandia National Laboratories, operated for the U.S. DOE under con-
tract No. DE-AL04-94AL8500. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Mar-
tin Company, for the U.S. DOE.
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Geode algorithm. Section 4 gives examples of the Geode algorithm, and Section 5 gives conclusions and future
directions.

2. Key Meshing Technology

The Geode algorithm can be thought of as combining two key meshing algorithms, hex/tet plastering and hex and tet
dicing, with a special transition element layer. In this section, we describe each of these pieces.

2.1 Hex-Tet Plastering

In the past, Sandia has researched two very different all-hex meshing algorithms, plastering[6] and Whisker
Weaving[ 1]. After comparing the relative merits of the two, we decided to discontinue research on plastering and
devote our efforts to Whisker Weaving. While there has been substantial progress on the Whisker Weaving algorithm
since then[7], we still do not have a fully robust and general algorithm. In recognition of this, Sandia recently began
pursuing a shorter-term goal of developing an algorithm which would give hex-dominant meshes while retaining the
characteristics of suitable (but not optimal) mesh quality and complete automation. This effort resulted in the hex-tet
plastering algorithm[5]. The hex-tet plastering algorithm consists of three steps, which are described below.

A. Plastering

The plastering algorithm can be considered a volume analogy to the paving algorithm[8]. Starting with a closed
boundary of quadrilateral elements, each element is projected into the volume to form a hexahedron. Elements are
projected layer by layer to maintain an advancing-front mesh, which has the desirable characteristic of placing highest
quality elements near volume boundaries. As the meshing front proceeds inward, special merging operations are done
to stitch the front(s) together (see [6] for more details of this process.)

At some point in this process, the plastering algorithm is unable to proceed further without producing intersections
with another part of the front or forming hexes whose quality is below a prescribed minimum. At this point, the
plastering algorithm exits and the hex-tet plastering algorithm proceeds to the next stage.

B. Hex-Tet Transition

Thereareseveralpossiblemethodsto transitionbetweena hex andtetmesh; thesemethodscan be classifiedby

whethertheyareconformalor non-conforma12.We haveimplementedoneconforrnaltransitionmethodandtwo non-
conforrnal methods; the choice of which method to use can be made at runtime in our implementation.

A non-conforming interface between hexes and tets can be obtained simply by converting each quadrilateral bounding .
the void to several triangles; we have implemented both a two- and four-triangle transition. These transitions differ in
their robustness and in the number of tetrahedralultimately generated [5], but leave a triangle-bounded void on which
to start the tet mesher.

TOtransition between hex and tet meshes in a conformal manner, additional element types are necessary. The two most
common elements used in this case are triangular prisms and pyramids. We choose to use only pyramids for the
transition in Hex-Tet Plastering (the Geode algorithm uses a different transition method described later), since they are
simpler to use in this context. In particular, we have implemented the method proposed by Canann et. al [9]. In this
method, tetrahedral meshing is performed from a two-triangle non-conforming interface; afterwards the tetrahedral
next to the interface are converted to pyramids using a combination of transition primitives and tetrahedral
recombination.

2 A conformat mesh is one where elements sharing more than one node also share all the edges and faces comprised by
the shared nodes. Such meshes are also said to be contiguous. A non-conformat mesh is one where these conditions do
not hold.
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C. Tetrahedralmeshing
Following the transition region generation, the remaining region is meshed with tetrahedral, using the tetrahedral
meshing engine in CUBIT[1O].

Studies have shown the hex-tet plastering algorithm to be quite robust while generating hex and tet elements of high
quality[5].

2.2 Hex and Tet Dicing

The hex dicing algorithm was implemented in CUBIT to allow the generation of large (multi-million element)
meshes[ 11]. TMs algorithm simply divides each hexahedral element in a mesh into smaller elements, optionally
projecting the newly generated nodes onto the geometric boundary where appropriate. If the coarse mesh is conformal
and all-hexahedral, the fine mesh will have the same characteristics.

Tetrahedral meshes can be subdivided into hexahedra as well by using a simple primitive. Each triangle is subdivided
into three quadrilaterals, a node is inserted in the interior of the tetrahedron, and edges are made which connect that
node to the four mid-face nodes (see Figure 1). This splits the tetrahedron into four hexahedra. If the initial mesh is
all-tetrahedral and fully conformal, the fine mesh will be conformal as well, but will consist only of hexahedral
elements.

Figure 1.Tetrahedral dicing or subdivision.

It is interesting to note that tet dicing could be considered as an alternative method for generating all-hexahedral
meshes (when combined with an automatic tetrahedral meshing algorithm). Conventional wisdom has in the past held
that these meshes would have insufficient quality for finite element analysis however, recent studies have shown
otherwise for selected analysis types[4].

2.3 Transition Layer

Hex-tet plastering has been shown to yield hex-dominant meshes of sufficient quality, and we described earlier how
hex and tet elements can each be split into finer, all-hexahedral elements. A natural question is, then, can these methods
be combined to yield an automatic, all-hexahedral meshing algorithm that generates fully conformal meshes? We
emphasize that this method would generate high-quality, well fitted hexes along the boundary, a very desirable
property that has eluded previous attempts to produce an automatic hex meshing algorithm.

If a hex-tet plastered mesh which uses a two-triangle transition is diced using the methods described above, the result
is a non-conformal interface. Dicing a hex-tet plastered mesh which uses pyramids to get a conformal interface gets
us closer to the goal, yielding diced hex and tet regions separated by pyramids whose faces are diced into
quadrilaterals. We initially thought this would lead to the desired algorithm; the only missing piece was a transition
element corresponding to this quad-bounded pyramid. Unfortunately, obtaining an all-hexahedral mesh for thk
geometry and topology has proven problematic. Currently, the minimal all-hexahedral mesh for this arrangement
consists of approximately 128 hex elements. In fact, this has been posed as an “open problem” to the meshing
community for some time[12], and has not been solved to date.



We therefore developed an alternative approach to using pyramids on the hex-tet interface. We use a “necklace” layer
of hexes consisting of a single hex for each quadrilateral on the initial void boundary. Each necklace has one face on
the original hex boundary, and the opposite face on the new, tet-facing boundary. The remaining four faces are shared
by other necklace hexes only. The transition problem then becomes one of transitioning between the diced hpx-facing
quad and the two-triangle-then-diced tet-facing quad (see Figure 2, left). The sohstion to this problem is described in
another paper[ 13], however, the result is the transition element shown in Figure 2, center, right.

Figure 2. Constraints on transition element (left); proposed transition element meeting those constraints (center, right); from [13].

3. The Geode Algorithm

Using the algorithms described earlier, we can now construct the Geode algorithm. The required steps, as implemented
in CUBIT, are:

1. Plaster

2. Generatenecklace layer of hexes

3. Conveti void-bounding quads to two triangles

4. Tet mesh remaining void

5. Dice hexes and tets

6. Insert transition template into each necklace hex and smooth locally

The sequencing of these steps can be modified; for example, we experimented with generating the necklace layer either
before or after the generation of tets. In addition, we have explored the generation of the necklace by pulling faces back
from the void instead of projecting the faces into the void. We have found that the procedure described above, using
projection-based necklace generation, works best with the plastering algorithm available in CUBIT[14].

4. Examples and Applications

Examples of meshes generated by the Geode algorithm are shown in Figure 3 and Figure 4. These are early results
meant to characterize the sort of geometries we can presently mesh automatically and with reasonable quality using
the Geode algorithm. The current limitation is that we have difficulty ensuring that all elements in the transition layer
have positive Jacobians. We are working on advanced smoothing algorithms to remedy this situation. Since the
underlying components of the Geode algorithm are already capable of automatically meshhg substantially more
complex geometries than those shown, we are optimistic that, with improved smoothing, the Geode algorithm will
have practical impact on difilcult meshing problems.

It has been shown by Meyers et. al[5] that hex-tet plastering generates an increasing volume fraction of hexes as initial
bounding mesh size is decreased, as expected; this chmacteristic also benefits the Geode algorithm, by minimizing the
number of transition elements and concentrating them in region interiors, away from principal loads and/or wall
effects.
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There are many potential applications of the Geode algorithm which we intend to explore. The most obvious is as an
automatic, all-hexahedral meshing algorithm for arbitrary geometries. This algorithm would be appropriate for
generating hex meshes for optimization loops or for parallel meshing. Previously only tet-based hex meshes could be
used in these settings because of the level of automation required.

There is another application of Geode which is not as obvious, but which we feel is perhaps more significant, and this
is as another tool in the hex-meshing toolbox. Since Geode generates hex meshes which have suitable but not optimal
quality, it should be used only when necessary. Given the availability of simpler algorithms which generate meshes of
higher quality, e.g. mapping and sweeping, along with techniques and tools for decomposing geometry into sub-
regions, Geode could be used only on the difficult sub-regions, leaving other regions to be meshed with simpler
algorithms. We believe that this combination of algorithms will substantially reduce the amount of geometry
decomposition (and hence time) required to mesh complex assemblies, while maintaining the high overall mesh
quality which motivates the need for hex meshes in the first place. We note that a hex meshing algorithm based on tet-
dicing could not be used in this type of application.

A key capability for this application is that of generating an all-hexahedral mesh starting from a fixed, all-quadrilateral
boundary. In this context, volumes meshed with Geode would need to be meshed first, or a method to de-refine a
quadrilateral mesh would be necessary, since Geode dices the initial quadrilaterals bounding the void.

Figure 3. Two views of a conicat geometry automatically hex meshed by the Geode algorithm.

Figure 3 demonstrates application of the Geode algorithm to a conical geometry; two views of the same geometry are
shown. Axial sweeping is possible but not desirable here because the high aspect ratio between the source and target
surfaces would result in elements of inappropriate size on one of these surfaces. AAmuthal sweeping is also possible
but leads to wedge shaped elements also considered undesirable for the intended analysis. The Geode algorithm was
able to generate a valid all-hex mesh with fairly uniform size starting from a Paved surface mesh. In this instance no
Plastering was used, so the surface mesh displays one face from each of the elements in the transition layer. When
Plastering was employed, the surface to which the transition layer is attached becomes less regular, and construction
of valid transition elements becomes more difficult, resulting in the generation of small fraction with negative
Jacobians.

On the left in Figure 4 a three dimensional duct geometry is shown. This could, after minimal decomposition, be
meshed with traditional sweeping, so this is merely a demonstration problem. The Geode algorithm was able to
generate an all-hex mesh of about 24k elements for this geometry. Two of these elements had negative Jacobians in
the case where no plastering was used, and four did when Plastering was used. In the latter case, the worst Jacobian
was 10e-3, and 16 elements had Jacobians less than 10e-2.

On the right in Figure 4, we show a cube geometry with circular imprints. The imprints prevent straight-forward
sweeping and make this a difficult problem requiring substantial decomposition with the standard approach. The
Geode algorithm was able to automatically generate a valid, all-hex mesh with no negative Jacobians for this geometry.



Figure 4. Examples of all-hex meshes generated automaticrdly be the Geode algorithm.

Here again it was necessary to turn off Plastering to generate a fully valid mesh. With Plastering, one of the 11.5k hex
elements generated had a negative Jacobian.

5. Conclusions and Future Work

The hex-tet plastering algorithm has been shown to be robust and to generate mixed-element meshes of suitable quality
for a variety of example geometries. Combining this tool with a cliced-hex to diced-tet transition template results in an
automatic all-hexahedral meshing algorithm. After investigating a number of transition template options, including
pyramids and necklace layers of hexes, we have used a transition template based on a necklace layer of hex elements.
The resulting Geode algorithm has been implemented in CUBIT, and preliminary results are encouraging. We believe
that with additional work on associated smoothing techniques, the Geode algorithm will be capable of automatically
generating all-hex meshes of quality suitable for FEM analysis for a meaningful class of geometries.

The Geode algorithm can be used where automatic hex-meshing is required, for example in optimization loops and for
parallel mesh generation. Another powerful application is in combination with geometry decomposition and other
well-known meshing algorithms; this toolbox approach shows potential in substantially reducing the time to mesh for
complicated assemblies.

Going forward, we intend to refine the combination of algorithms in Geode in order to increase the quality of the
resulting meshes. In particular, the methods used to generate the necklace transition layer need further investigation.
We also intend to use Geode meshes for typical analysis problems at Sandia in order to explore their suitability for
engineering analyses of various types. Finally, we will also explore the criteria used to determine when to use Geode
versus performing further geometry decomposition to get more mappable and sweepable sub-regions.
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Advances in automatic mesh generation have made the generation of finite element
meshes easily available. Commercial mesh generators can create two dimensional meshes
composed of triangles and quadrilaterals on simple planar polygons or complex three di-
mensional meshes of tetrahedral and hexahedra. However, they do not always work properly
or guarantee adequate element quality. Due to the inability of a commercial preprocessed
to correctly develop a mesh, this paper relates a revisit to triangular meshes on simple pla-
nar polygons. This return to basics led to new measures and visualizations of the quality
of meshes and to the use of mesh relaxation, a method of improving initial two dimensional
triangulations. Ultimately more than one hundred thousand elements were created in less
than two minutes.

1. Introduction

A serious problem in analyzing the conjugate heat transfer inside an automotive engine
compartment occurred when a commercial software package could not produce a mesh
without crashing a powerful graphics workstation. Dfing a 24 ~OLU atteqt at generating .

approximately 120,000 triangles the software generated anomalies which were removed and
handled individually thereby enabling the software to generate approximately 99.8% of the
mesh.

An impressive 99.8% success rate does not give much incentive for a supplier to remedy
the problem. This familiar scenario of generally very satisfactory software and of little effort
to correct a bug reIated to a specific user (as opposed to a bug encountered by a large
number of users) gives incentive for users to have local backup mesh generators available.
Fortunately the availability of such mesh generation software enabled us to resolve our
difficulties.

This paper relates our experiences with our own industrial strength mesh generator.
Without divulging specific details that would identify the commercial software, this paper
discusses execution times of generating meshes, visualizing the quality of meshes, numerical
measures for the shape of triangles and quadrilaterals, and the use of mesh relaxation as
a method for improving initial planar triangulations.



2. Simple Domains and Initial Meshes

In the automobile inclustw the Cofigura,tions of a,UtOrnOt& components under the

hood of cars and trucks represent complicated geometries. Mathematical models that

simulate the distribution and flows of heat and air in these engine compartments must

first represent the geometry of the surfaces of each automotive component under the hood
“aswell as the walls of the compartment. The model under consideration here represented
each relevant surface as the union of relatively large planar triangles and quadrilaterals
whose four edges did not have to be coplanar. Call these triangles and quadrilaterals macro
triangles, macro quadrilaterals and macro polygons.

Each macro polygon underwent tither decomposition into smaller triangles. The
decomposition started by a partition of each edge of the macro polygons into segments of
equal length determined by dividing the edge by a nomimd length and rounding to the
nearest integer number of segments. The vertices along each edge of the macro polygons
served as the input to the commercial generator of triangular meshes. In addition to the
aforementioned failure mode, this commercial mesh generator also generated some triangles
with no area. We have ascertained that the mesh generator uses an advancing ikont in
the three dimensions in which the macro polygons lie. For some macro polygons, typically
macro triangles, the code continues to create triangles until it exceeds storage limits.

Since the heat transfer and finite element analysis codes in use prefer equilateral
triangles and since planar Delaunay triangulations avoid extremely acute angles, our own
planar triangulations used the Delaunay based selective mesh refinement technique [2].
At the heart of this tetilque lies a spacing function which measures at each vertex the
average length of edges connected to it. As its first step this method creates a Delaunay
triangulation of a polygon using only the vertices on its boundary. Tkiangles that have
poor shapes as measured by the normalized shape ratio (twice its inradius divided by its
circumradius) become candidates for inserting a new vertex into its interior. Evaluating
the spacing function at each vertex of the triangle then determines whether to insert a
new node and whether to create an equilateral triangle if the triangle has an edge on the
boundary of the macro polygon. The selective mesh refinement technique also imposes
an upper bound on the number of vertices inside the macro polygon as well as linearly
or nonlinearly scaling the distribution of vertices away ikom the boundary of the macro
polygon. The location of a new vertex inside a triangle involves the spacing function, the
in.radius and the circumradius of a triangle. After inserting the final vertex into the macro
polygon the selective mesh refinement technique performs a Laplacia.n smoothing of the
triangulation. Figures 1 and 2 illustrate the use of linear and quadratic spacing functions
on a macro triangle and a macro quadrilateral.

The four edges of a macro quaddateral often do not lie in the same plane. Con-
sequently we first map the quadrilateral onto a central plane determined by the cross
product of the two diagonals and the centroid of the macro quadrilateral The mapping of
the macro quadrilateral onto the plane proceeds as follows. Since a bllinea.r finite element
mapping originally defines the macro quadrilateral, every vertex on its boundary has an
easily calculated parametric coordinate. At each vertex calculate the normal to the macro
quadrilateral directly from the bilinear mapping and along this normal project the vertex
onto this central plane. The polygonal image of the macro quadrilateral then serves as the
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input to the selective mesh refinement algorithm. The inverse mapping of the triangulation
onto the macro quadrilateral uses a Newton-Rhapson iteration to locate interior vertices.
The location of the boundary vertices are already known.

When the discretized boundary of a macro quadrilateral has the same number of
nodes on each edge, an extremely quick alternative triangulation method exists. Use this
number to subdivide the unit square into a ‘grid of squares whose diagonals completes a
triangulation of the unit square. The bilinear finite element mapping which defined the
macro quachilateral then maps the triangulation onto the macro quadrilateral. Since the
bilinear mapping can grossly distort a good triangulation of its domain, this alternative
was not considered. The macro quadrilateral can also be too warped, i. e. deviate too much
from planarity even for the mapping that uses 10cA normals. This possibility prompted
the defiltion of warpage presented in the next section.

3. Qu#lty of results

The bane of triangulating thousands of macro polygons is that invoking a single
method such a Laplacian smoothing to improve the Delaunay triangulations may not
suffice for every one of the thousands of macro polygons. MaRy opportunities for the

improvement of the Delaunay triangulation exist at the end of the selective refinement

method. Having codes for Laplacian smoothing [7], Laplace-Delaunay smoothing [1] and

mesh relaxation [3] gave us many options. Whereas for special meshes choosing one or
combinations of options usually becomes a matter of visual observations and subjective
approval, one choice for thousands of meshes cannot wait on treating special cases however
few they may be percentage wise. How to improve initial triangulations and when to stop
improving them are major decisions to be made.

To help decide on a course of action for improving initiaJ meshes it helps to study
representative examples and use visual displays. Keeping geometries simple, as done in
this paper, emphasizes the algorithms and separates them from geometric anomalies. Since
the macro polygons in our application also had this simplicity we used them. Our scheme
for improving initial meshes used mesh relaxation as its last step.

Except for Laplace-Delaunay smoothing and mesh relaxation a literature search does
not reveal much insight beyond using Laplacian smoothing and its variants [4,5]. Laplacian
smoothing moves vertices to the centroid of the triangles that share it. The fact that
Laplacian smoothing does not change the connections of vertices to one another limits
its effectiveness. This limit motivated the development of Laplace-Delaunay smoothing
which still moves a vertex to the centroid of the triangles that share it but alters the
connections if the location does not guarantee a Delaunay triangulation. The Delaunay
part of the smoothing creates equilateral triangles whenever possible and carries over into
three dimensions. More importantly for three dimensions, this type of smoothing allows
incremental Delaunay triangulations algorithms to continue inserting additional vertices.

Mesh relaxation carries the idea of establishing new connections to the extreme by
acting on the observation that vertices inside a triangulation having only equilateral tri-
angles connect to six other vertices. Mesh relaxation tries to give every vertex inside a
triangulation a connection with exactly six other vertices whenever possible. F@we 3 and
the following formulas summarizes the methodology.
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Let dl and dz denote the degrees of the endpoints of the ~th edge and let d3 =d 4 be

the degrees of the vertices opposite & ~thedge in the two triangles sharing the ~th. edge.

The formula,
Bj =dl~dz–ds–d~ , (1)

defines the relaxation index, Ej) of the jt~ edge. Swapping the jt~ edge as shown in Figure
3, changes the degrees of its endpoints so that its new new relaxation index, E/, is given
by

(2)d’ d’ (d~+l)+(dq +l)–(dl–l)–(drl) .l?~=d;+d;– ~– z=1

In a triangulation of equilateral triagles, the relaxation index of each interior edge

equals O. It can be shown that the process of swapping an edge whenever its index equals

or ezceeds a threshold of 3 guarantees that the process of swapping edges ends. In [3] it
was demonstrated that using a threshold of 2 can further improve a mesh but no longer
guarantees convergence.

Mesh relaxation clearly swaps only interior edges. However, if an endpoint of an edge
lies on the boundary of the macro polygon then its index as defined in (1) must reflect that
no triangles exist outside the polygon. Mesh relaxation resets the degree of the boundary
node by adding to the degree the largest number of possible equilateral triangles that could
share the node and lie outside the macro polygon.

Since swapping edges takes no consideration of the local geometry, in order to re-
produce a valid triangulation after terminating the swapping of edges, mesh relaxation
relocates vertices via Laplacian smoothing. Furthermore, if three endpoints of the swap-
pable edges lie on the the boundary of the macro polygon a swap can produce a triangle
with no area or even a triangle outside the macro polygon; see Figure 4 which uses a
threshold of 2. Special precaution: must be taken to avoid this possibility.

Figures 5 and 6 show examples of applying mesh relaxation applied after selective
mesh refinements from strictly linear to strictly quadratic spacings. Figures 7 and 8 show
surfaces which plot for each vertex an average shape of the triangles that share the vertex.
The expression

8~3A3

(abc)z ‘
(3)

where A denotes the area to the triangle and a, b and c denote the lengths of its edges,
determines the numerical measure of shape. Geometrically this measures divides the area
of a triangle by the area of the equilateral triangle that shares the same circumcircle. This
measure satisfies the properties of a fair measure. It yields a value of zero for all degenerate
triangles, it is scale invariant, it is bounded and it is normalized to 1 for the equilateral
triangle. For visufllzation however the Figures invert the surfaces so that the highest peaks
correspond to the worst triangles.

Since the four edges of macro quadrilaterals may not lie in the same plane, the devia-
tion horn planarity can be extreme. An extremely warped macro quadrilateral manifests
itself when its mapping into its midplane produces a self intersecting planar polygon. TrF
angulation algorithms fail on such polygons. Measure this deviation from planarity, called
warpage, by the larger of the two dihedral angles between the pair of triangles formed by
each diagonal of the macro quadrilateral. These are also the angles between the normals
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to the triangles as shown in Figure 9. Note that this warpage differs from Robinson’s [6]
definition which applies to hexahedral finite elements. As far as we know, our definition
of warpage is new. Some macro quadrilaterals have so much warpage that their presence
compromises the integrity of any numerical simulation based on the model. In these cases
the creator of the geometry must correct the geometry.

As measured by the commercial code, subtracting the fair measure in (3) from one
defines skewness. Table 1 gives statistics on the skewness for a sample set of substructures
such as an oil filter, solenoid etc.. These substructures consist of a set of macro polygons
that describe the exterior geometry of an automotive component.

3. Conclusions

Our algorithm decreased the wall clock time for generating approximately 120,000
triangles from almost 24 hours to less tha one and a half minutes. We anticipate that
some even more complicated problems may take up to 5 minutes.
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FIGURES

b
Figure 1 Six convex combinations of the linear and quadratic spacing func-

tions for a macro triangle. Starting from strictly linear at the top
left to strictly quadratic at the lower right, the corresponding
number of triangles are 485, 329, 273, 235, 197 and 183.

530



Figure 2 Six convex combinations of the linear and quadratic spacing fimc-
tions for a macro quadrilateral. starting from strictly linear at the
top left to strictly quadratic at the lower right, the corresponding
number of triangles are 225, 153, 123, 107, 93 and 85.
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before swap

Figure3 Swapping thej~~-edge.

Figure 4

after swap

An illegal swap using a threshold equal to two. The three vertices
on the boundary, shown with their pseudo edges to indicate their
degree, form a triangle with no area after the swap.
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Figure 5 Mesh relaxation set at a threshold of 3 applied to the meshes in
Figure 1.
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Figure 6 Mesh relaxation set at a threshold of 3 applied to the meshes in
Figure 2.
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Figure7 Stiacerepresentations of theaverage shape of thettimglesin
themeshes in Figure5. “
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Figure8 Sufiace repr=entations of theaverage shape of thetrimglesin
the meshes in Figure 6.

Figure 9 The maximum angle between the vectors determines the warpage
of the macro quadrilateral.
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1 Values of Skewness 1

component minimum average mazimum no. tn”angles

1 0.00037 0.14365 0.58624 1370

2 0.00059 0.18148 0.49137 464

3 0.00039 0.18084 0.70366 424

4 0.00005 0.13742 0.66515 776

5 0.00000 0.11219 0.60481 1921

6 0.00027 0.12176 0.46121 912

7 0.00005 0.10144 0.55485 1157

8 0.00067 0.13638 0.43044 875

9 0.07223 0.23888 0.53271 72

10 0.00002 0.06295 0.53217 4538

11 0.00017 0.12032 0.54666 472

12 0.00014 0.16449 0.69480 324

13 0.06348 0.21831 0.24316 88

14 0.00807 0.06673 0.23164 28

15 0.00009 0.11715 0.35934 280

16 0.00010 0.11355 0.56067 1241

17 0.00259 0.13071 0.39600 282

18 0.00116 0.09888 0.56517 640

19 0.00028 0.14951 0.62304 426

20 0.00115 0.16466 0.52079 15

21 0.00024 0.11256 0.30759 406

22 0.00045 0.16846 0.62780 693

23 0.00123 0.25564 0.60610 819

24 0.00031 0.23000 0.65333 1857

25 0.00035 0.15548 0.76621 1113

26 0.00000 0.12691 0.62588 2371

27 0.00004 0.20021 0.60771 642

28 0.00001 0.08590 0.44569 2528

29 0.00000 0.07407 0.51914 2696

30 0.00010 0.05732 0.43333 729

31 0.00010 0.11120 0.90035 1430

Table 1
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FEA users have experienced their share of horror stories when performing analysis on

problem Cm models. Hidden errors in these files represent a major obstacle for the

Finite Element Analysis process. Informal studies reveal that analysis users are wasting

up to 70% of their time re-working CAD files before analysis can even begin. The bad

news is that with the growing use and complexi~ of these models the situation will only

get worse. The good news is that a solution now exists to solve these problems.

Today 3D CAD models aredriving many downstream product development processes.

Finite ElementAnalysis, Rapid Prototyping, NC programming, dataexchange, and other

downstream applications rely to a growing extent on the directuse of CAD models to

streamlineprocesses. This delivers significant savings in time andmoney while boosting

quality. Unfortunatelymany of these models contain hidden errorsor anomalies. The

resultsof bad CAD files can be unprecedentedlevels of inefficiency, days of lost time

and productivity, loss of design intent, and ultimately inferior product quality. Fortunately

there is a solution.

Regardless of cost or the vendor who developed it, every CAD system in use today is

susceptible to producing invalid files when creating complex 3D surfaces and solids. At

the same time, even the most experienced designer can occasionally create CAD models

containing hidden errors or anomalies. Often these problems do not surface until well

downstream of design presentingmore thanjust minor inconveniences for those who

receive them. CAD model problems can bring product development processes to a

grinding haltas the corrupt model is shipped back to the designerto be fixed. A more
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common scenario, however, might have the downstreamuser forced to make corrections

or even reconstructthe model entirely. Obviously thispractice can have a detrimental

impact on alteringdesign intentalong with the obvious ramifications associated with lost

time and cost over-run.

Milford, Ohio’s International TechneGroup Incorporated (ITI) met recently with

manufacturers throughout industry to determine the impact of model quality problems on

the product development process. It was found that up to 70% of the man-hours spent

during Finite Element Analysis and Simulation, for example, were wasted correcting

geometry problems. In addition, Rapid Prototyping, Numerical Control tool path

generation, and Product Data Exchange functions were likewise spending 50%, 20%, and

20% of their time respectively reworking geometry problems. With this in mind it is easy

to see why CAD model quality issues have been identified as the biggest hurdle facing

industry today.

Common Types of Model Quality Problems

As computer-aided design, engineering, and manufacturing tools continue to expand in

terms of usage and complexity, downstream waste attributed to poor model quality will

become an even larger problem. Such model quality problems can be generally

categorized into three areas: Structure, Accuracy, and Realism.

Structure

Structuralproblems include loop orientationinconsistencies, missing geometry and self-

intersecting geometry among others.Structuralerrorsviolate the solid modeling

application’s own rules for whatconstitutesa correct model.

Structural errorscan also cause modeling programs to crash without warning. Often this

can occur some time after the actual error has been made. Structural errors can cause

programs for finite element mesh generation, numerically controlled toolpath generation,

and intersystem translation software to behave unpredictably.
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An example of a structural error is a face with an edge that isn’t shared by another face. In

a manifold solid volume, such edges shouldn’t exist because they cannot physically be

manufactured. They occur because some solid modeling programs allow non-manifold

topology as a midpoint to creating complete volumes. If these errors are not fixed,

manufacturing and analysis programs will reject the models.

AccuracV

Accuracy requirements place limits on gaps between geometric entities such as vertices,

edges, and faces that are adjacent. They can also limit the minimum sizes of trimmed

entities such as edges, faces, and regions.

Non-trivial gaps occur because intersections of curves between non-planar surfaces are

approximated in most solid modelers. Approximations are used when the precise

intersection between two geometric entities (faces, curves of intersection, vertices where

intersection curves meet) is too complex to compute exactly. Solid modelers use

different tolerances to compute the maximum deviation allowed between topological

entities.

If the deviations between entitiesaretoo large, toolpath andfinite element mesh

generation programs can fail. They can uncover gaps in geometry that are too small to be

seen in shaded or hidden line images of a model. The translation between programs can

also fail if the maximum allowable tolerances between surfaces and edges in the

exporting program are larger than those of the importing program.

All CAD modeling systems must balance the accuracy (precision) of models with the

amount of geometric information required to define them. Extremely precise models

require complex and large data structures to define them. In general, the smaller the gaps,

the smaller edges and faces may become in complex models.

Realism
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Realism errorsrender a part“unmanufacturable” due to physical limitations. Realism

errorsinclude transitioncracks and sliver faces. Transitioncracks in solid models, like

physical cracks in engineeringmaterials, are nearlyinvisible gaps between featuresof a

model. Like physical cracks, they may not extend completely throughthe object. Slivers

are small, elongated faces thatare generated by the system to patch between larger

surfaces in a model.

Additional restrictions on the realism of model features are added by many concun-ent

engineering applications such as FEM, NC toolpath generation, and rapid prototyping.

For example, these tools are very sensitive to umealistic features such as sliver faces,

minute edges, and very acute angles between edges at a vertex.

The Causes of CAD Model Problems

Obviously not every model has problems, but as you see, those models thatdo contain

errorscan cause significant delay and additional effort. Model qualityproblems are

rooted in a variety of contributingfactors thatrangefrom bugs in the CAD modeling

system to datatranslationsoftware emors. Additionally, modeling techniques thatdo not

anticipatethe needs of downstream shape-based applicationscan create anomalies. These

human-errortypes of problems arisewhen CAD designers don’t fully understandthe

geometric requirementsof downstream applications or have no efficient way to validate

“CADmodels againstthose requirementsto identify potentialproblems.

CAD model problems or anomalies are caused by a series of three factors:

● User technique

● CAD application algorithms

● Part design and manufacturing requirements

User technique can be the order in which you add a feature or create geometry. There are

some commercial products that attempt to address this. In general, each company and

type of product requires a unique set of rules. For example, a rule could be that the
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distance between parallel features for machined parts must be greater than 0.001 inches.

This is great for machined bulkheads on airplanes, but not for microcircuits. So each

company and each product has to have unique rules. This same approach has been tried

with electronic drawing checkers over the last 10-15 years. None of these products were

very successful due to the expense of customization. Also, even when all rules are

satisfied the anomalies can still occur. Additionally, the user can unintentionally

introduce problems as a result of schedule constraints combined with last minute design

changes. The errors can easily go undetected or are allowed to be released in the model

rather than run the risk of missing the release schedule.

A second factor contributing to these anomalies is the algorithms within the CAD

applications themselves. This is especially true when users approach the limits of the

mathematics behind the CAD system. For example, it’s easy to understand how around

off error can cause a gap between two lines that are supposed to intersect 10,000” out in

space. One line might say the end point is 10,000.00001” and the second line might say

the end point is 9,999.99999”. The result is a gap of 0.00002”. For an airplane or a

skyscraper this is probably acceptable - for a microcircuit, it is not.

The third factor that contributes to these anomalies is the product design and

manufacturing requirements. Sometimes a justifiable anomaly exists that prevents the

use of a downstream application. This anomaly is necessary to support the intent of the

design. An example could be a very small face to transition between two other features.

In this case, the anomaly must exist in the design and may need to be removed in a

seconda@reference model to support the downstream process. However, the removal or

modification of geometry needs to be the product team’s decision and not the decision of

a single person in the process.

What’s the Answer?

Regardless of the reasons why they exist, the fact remains that if model quality problems

aren’t effectively resolved, downstream process simply can’t work. The solution is to



implement a Model Qualityprogram. Through such a program designers can better

identify and resolve the source of theseproblems througha combination of improved

modeling techniques, bettersoftware bug reports, and “real world” user requirementsfor

currentresearchin this field.

Likewise the downstreamsoftware user should implement Model Quality as well. This

will enable the recipient of the file to quickly analyzemodel and locate problem areas

before production begins. The file can now be returnedto the designer with errors

highlightedfor quick turnaround. The downstream user may choose to make the

modifications depending on the severityof the errors.

Model Quality Results

Implementing a model quality testingprogram can yield breakthroughlevels of

improvement. Validating CAD files prior to release significantly reduces model rework

time. ITI estimatesthatmodel rework time can be cut by 50?Z0in downstreamFinite

Element, Product DataExchange, andNumerical Control applications. That number

jumps to savings of up to 809Zofor Rapid Prototyping functions.

As CAD models continue to take on a more broad and significant role in the development

of new products, it is naturallyimperative thatthese files flow smoothly into downstream

applications. Today technology exists to ensure the integrity,reliability and

interoperabilityof CAD models throughoutthe product development process. By

implementing a Model Qualityprogram organizations can begin to reap the benefits of a

tangible concurrentengineeringenvironment.

Model Quality Tools

Off the shelf software now exists making CAD model quality a reality. This technology

analyzes CAD models detecting problems thatmay prohibit a smooth flow into

downstream applications. The software also allows users to present theirCAD system

provider with detailed reportspertainingto bugs in theirsoftware. Once identified many
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of theseproblems can be resolved by the designer in the earlystages of development

where changescan be incorporated quickly and at less cost with the full knowledge of the

design intentof the part. Other problems, such as softwarebugs or translationerrors,will

requirelonger term efforts by CAD/CAM/CAE vendors andresearchers. However,

whereasin thepast, these bugs or errorswere communicated throughuser phone calls and

hotline reports,a comprehensive model quality control programcan provide more

detailedandvaluable insight into identifyingthese problems.

It is important that these tools do more than just check models against “rules”. They

should provide the CAD user with the power and flexibility to analyze the model for

conformance to a wide variety of applications and specific CAD/CAM/CAE system

requirements. This allows the designer to anticipatesystemrestrictionsand ensurethat

models createdwill flow seamlessly into all downstream applications. In short, this

allows unrestrictedinteroperabilityto be designed into themodel.

A Big Payoff for Finite Element Analysis

While a solution for model quality is of obvious benefit to the designer and in fact holds

value for all CAD/CAM/CAE software users throughouttheproduct development

process, those involved in analysis specifically standto benefit from such technology. It

is not uncommon for FEA software usersto spend an inordinateamount of theirtime

cleaning up or recreatingproblem CAD files – up to 70% of theirtime in some instances.

Implementingmodel quality checks allows FEA software usersto efficiently locate

problems before analysis significantly reducing model rework. By pinpointing problem

areastheusercan provide precise detailedinformation back to the designer to expedite

changes. Additionally, if the user chooses he/she may make the necessary corrections at a

fraction of the time usually required. This provides the user a method to thenrecheck the

model to ensurethatthe problem was corrected and thatno new problems were

inadvertentlyintroduced into the design. Those employing theprocess today also find
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thatsuch a program provides a means to better gauge the amount of time requiredfor

downstreamfunctions allowing them to quote jobs more accurately.

Now, for the fust time, downstreamsoftware users can utilize CAD models with greater

confidence and be assuredof spending less time cleaning up bad CAD files. Proven

model qualitysoftware provides a practical solution for CAD/CAM/CAE softwareusers

throughoutindustryand bridges the interoperabilitygap enabling CAD models to

continue to take on an expanded role throughouttheproduct development process.
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Abstract. Automatic finite element mesh generation of CAD generated data has been a goal of finite

element meshing codes for years. However, the lack of accuracy and the amount of detail in this data have
made this a daunting task. In essence, the CAD data needs to be defeatured to overcome accuracy
deficiencies and to remove excessive detail. In this paper, an object-orientedapproachto automatic
geometrydefeaturingk presented.Thegeometricandfiniteelementdataabstractionsare given,alongwith
the basic algorithmsused. These algorithmsdeal with near tangencies,coincidentedge precision
discrepancies,poorintersectioncurve accuracy, and small geometrical features. Along with this discussion,
examples of these types of defeaturing are given.

Keywords. Defeaturing, dirty geometry, object-oriented FEM, CAD import, meshing

1. Introduction

1.1 Importance of work

Though computer aided design (CAD) and computer aided engineering (CAE) can trace their origins to the advent
of digital computing, their evolution since have taken them on quite different paths. CAD was originally created to
automate the laborious job of 2-D drafting and it remained in the 2-D realm for quite some time. In the CAE
world, the finite element analysis (EEA) technique became one of the most popular methods, in which the model
was idealized by breaking it down into simple triangular and quadrilateral shapes (know as elements). However, it
was realized early that 2-D physical phenomena idealizations were of limited use at best. Applying the same
techniques to the tetrahedral and hexahedral shaped elements, fill 3-D elements were constructed. The
construction of these idealization models, especially in 3-D, becomes te&ous and error prone. Specialized software
was written to facilitate the construction of these types of models, but the only geometric definition was the nodal
locations and element connectivity.

With the development of better solid, parametric, and feature-based modeling techniques, the creation of complex
3-D solid mcdels dominated the next stage of CAD development. The FEA packages had also grown in their
sophistication, but they had been created with a bhs for creating models that could easily create finite element
models. Moreover, modeling was not as high a priority for FEA packages, as was the development of more
complex idealization techniques. The solid modeling in these packages lagged behind the more focused CAD
packages.

While the creation of solid geometry fio,m both FEA and CAD sound very similar, in fact the created models are
quite different. The CAD packages are more interested in creating visually acceptable models that can display a
model in its “computer” environment with all the details of the finished product. In addition, CAD models are
loaded with details that bring no value to the FEA idealization. Most of the time, these details inhibit the creation
of an iderd FEA model by introducing areas that require high element size transitions. Usually, this occurs away
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horn the FEA operator’s area of interest in the model. The FEA package does a great deal of work for little or no
gain in the idealization’s accuracy. In addition, FEA programs want “clean” geometry and topology in which FEA
meshes can easily be generated. Since no real standard form of geometric representation is used by any of the
major CAD packages, the transfer of the geometry and topology from one package to another is difficult, if not
impossible. The job of reading CAD models into FEA packages is difficult and error prone. Some CAD packages
made forays into the analysis realm by creating meshing capabilities inside their modelers. This bypassed the
translation problems but generated new ones. Often, CAD packages create FEA idealizations that me too large to
be solved by the current technology, that create invalid FEA elements, or that make assumptions that make FEA
solvers fail.

However, engineering management sees the creation of two models (one for CAD and one for FEA) as a
duplicitous effort and is constantly looking for solutions to this fundamental problem. In addition, since F’EAis the
end user of the CAD geometry, the inability to transfer the models and operate on them was perceived to be an
FEA problem. This paper examines some of the techniques that can be used to handle CAD data in the FEA
process.

1.2 Background and previous work

In the August 1997 issue of Engineering Automation Report [5], the readers’ survey identified the ability to
exchange geometric data between the different vendors’ software packages as the most important current issue in
the CAD/CAM/CAE community.

Marc Halpem from DH Brown Associates [7] presents the findings of an extensive study that shows that the
medkm time to complete full analyses, including convergence studies, has been reduced 48% from 1991 to 1996.
This speedup is credited to advances in mesh generation techniques, the impact of adaptivity, and improvements in
CAD-FEA integration. Although this progress has been impressive, Halpem states that the state-of-the-art has still
not yet gotten to the point where it can satisfy the requirements of the early design practice. As proof, his study
shows that the medh time to perform a finite element analysis to verify a design is 4 days and the average time is
7 days. Designers make changes to their designs at a faster pace than that. Therefore, significant advances are still
required.

Although dealing with CAD solid models in FEA products is a fairly recent phenomenon, an impressive amount of
work has already been done. In this section, a brief synopsis is given for many of the articles and products that
include such capabilities, emphasizing those that address one or more of the following:

● Geomernc validlty checking and repair – especially for geometry import
● Dimensional reduction
● Model idealization or simplification, i.e., defeaturing

Many FEA packages, including ANSYS [8], Fwmin and Walsh [6], provide a limited set of manual, bottom-up
repair and rebuilding geometry tools. This type of geometry repair involves deleting the volumes, surfaces, and
curves near the problem, creating new geometry, and then creating new volumes horn the newly modMed curves
and surfaces.

Dey [3] developed a method that searches for small edges that create small angles, and then collapses all of the
small edges that won’t invalidate the mesh or reduce the dlmensionality of the model. He also presents techniques
for collapsing triangular faces or tetrahedral elements that have extremely large dlhedd angles. He combines
edge and face swaps with these two operators, to increase the method’s success rate.
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Armstrong [1], Price [10], Jones [9], and Donaghy [4], et al, use the medial object* transform of the geometry as a
tool to

. Aid in thedecompositionofgeneralsolidsintosubregionsformappedmeshing,
● Identi@ slender regions for dimensional reduction, and
. Recognize small features for suppression.

Butlin [2] uses geometric type feature suppression to eliminate small features.

The bulk of this work is at the geometry/topology level. As such it is similar to the feature suppression found in
Section 3. However, the authors have found that geometry level feature suppression is not sufficient to guarantee
meshing success. This paper extends this work to mesh level suppression that is presented in Section 5. Although
this mesh level suppression has some similarities to the dimension reduction methods found above, it does provide
a unique tool for the meshing solution.

1.3 Paper overview

This paper presents an object-oriented approach to performing automatic validation, repair, and small feature
suppression at the CAD and FEA model level.

In section 2, a brief overview of the class structures is presented for the CAD topological and geometric entities
used for the boundary representation. Section 3 presents geometry-based defeaturing, which performs small feature
recognition and suppression for specified topological and geometric entities. Section 4 describes the object-oriented
C++ classes used to represent the FEA model. Section 5 presents FE model-based defeaturing, where.feature
suppression is done using the representation of the FEA model described in section 4. Section 6 shows some
results, including example meshes using the presented defeaturing scheme. Conclusions are then given in Section
7.

2. Base Classes for CAD Topology and Geometry Representation

2.1 Overview

Although many packages share the same underlying solid modeling kernel, almost every CAD package has it own
internal topological and geometric representation. This adds to the complexity of maintaining connections tlom
CAD to FEA. Since, as stated previously, FEA is an end user of CAD models, so a superset of the possible
topological data structures has to be chosen for the FEA topological representation. If the FEA topological
structure chosen does not support all of the CAD’s topological representations, then data morMcation of the CAD
model has to also be performed in addition to the data transfer. These modifications cart further decrease the
reliability of the CAD to FEA model connection.

A topology data structure is an ideal candidate for the data abstractions that object oriented languages such as C-t-t
provide. A well-chosen abstraction is essential since all geometric and topological information must be able to be
represented. The model itself can be abstracted as a boundary representation, Brep. In addition, each entity
(vertex, edge, face, or body) has been abstracted into a base class that was given the name Cell. The Cell class
contains four different types of data (each of which will be discussed in detail in the subsequent sections):

1. Attributes
2. Topological Traversal

1The medial object is a medial axis in 2D and a medial surface in 3D. In 2D, it can be thoughtof as the collection of the
centers of the largest circles thatcan be placed entirely inside the model, without crossing the boundary curves. In 3D, instead
of circles, spheres are used.
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. .

3. Geometric Query
4. Geometric Data

This scheme matches the paradigm that is used by most CAD systems. In particular, the authors have worked with
ACIS, Parasolid (UG), ProEngineer, and Computervision.

2.2 Attributes

Attributes contain information such as the dlmensionality and type of the entity and a topological identification
number (topoid). The topoiduniquely identifies the entity in the model. The BRep contains a global function that
when given a topoid can return a pointer to the Cell for that entity. Conversely, each Cell has a member function
that will return its topoid. Data base support such as saving and resuming the entity are also categorized as an
attribute of the Cell.

2.3 Topological Traversal

The ability to move up or down the topological tree in the model is accomplished by another class called CellUse.
Cell has a “has a“ relationship to the CellUseclass. A “has a“ relationship describes the situation where one class
contains the other, thus the CelI class “has a“ CellUseclass as oneof its data members.Upwardtraversalis
accomplishedbycallingthe Cell memberfunctionuse and usingthe memberfunctionbound(seeFigure 1) allows
fordownwardtraversalin the structure.

I----@--+ “’’”’”)I

Icell (Edge)l

I

Figure 1.
Upward and downwardtraversal chart

2.4 Geometric Query

Two types of geometric functions are needed for meshing. The first is computational in nature. This includes the
ability to query a geomernc entity or evaluate a point on it, such as projecting a point onto the entity, evaluating the
normal and tangent information, or finding the geometric and parametric bounds for the entity. GeomQuery was
the name given to the abstract base class that was developed to abstract these functions. The Cell has a “has a“
relationship to the GeomQuery class. These Geometric Query objects can use internal functions for the above data

or link back to the CAD package for these evaluations.
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2.5 Geometric Data

The meshing algorithms are written to the GeomQuery interface described above. In early implementations, no
local curve or surface data was kept. Instead, the CAD packages’ functions were used directly to evaluate data.
However, it was quickly learned that the CAD package’s calculation overhead was prohibitive. The interfaces
exposed by the CAD packages are not optimized for cases where many evaluations are repeatedly performed for
each geometric entity. The performance for meshing was found to be unacceptable for even the most benign curve
and surface types. Therefore, local surface and curve classes have been added and objects ftom these classes are
then cached in memory and optimized specifically for meshing tasks. The virtual base class that was exposed from
the boundary representation was called the GeomData class. The Cell has a “has a“ relationship with the
GeomData class.

3. CAD-Based Feature Suppression

3.1 Overview

Since CAD models are feature rich, an ability to determine which features to include in the FEA idealization
without having to go back to the CAD model is beneficial. This type of model defeaturing is found in Butlin [2]
and Jones [9]. With this ability to recognize and suppress features, the chances of successfully meshing a CAD
model increases. In addition, the resulting meshes usually contain far fewer elements. Another similar approach is
presented here.

3.2 Feature Recognition

Listed below are the checks that are made to eliminate features. In order to quanti@ “smallness”, a tolerance, T, is
specified

. Cl - Cylindrical faces bounded by two circular external edges. The height of the cylinder is smaller than T.
(This would represent a boss feature.)

. C2 - Conic faces that are bounded by two external circular edges. The height of the cone is smaller than T.
(This would represent a chamfer feature.)

. C3 -- Toroidal faces that are bounded by three or four circular arcs. The minor radius of the torus is smaller
than T. (This would represent fillet features.)

. C4 -- Spherical faces bounded by two, three, or four arcs. The radius of the sphere is smaller than T. (This
would represent a fillet feature.)

. C5 - Faces that are bounded by two circular edges. The distance between the edges is smaller than T. (This
represents small holes and conic hole features.)

The elimination of these features tlom the model is done by simply merging one of the edges into another and
removing the face from the topological traversal list of entities for the part. There is also a need to check if the
operation can take place at all. For instance, a thin disc might be detected as a small height cylinder. Its removal
would collapse the entire model on itself and prevent the analysis model from being performed.

The choice of which edge to keep and which edge to remove can be made by setting up a precedence order for each
of the defeaturing operands. Either topological checks andlor geometric checks can be used to determine which
edge is to be retained and which is to be discarded.

For each case given above, an algorithm can be created to remove the feature horn the model.
For cases Clrmd C2:

Given: Global defeaturing tolerance, T



Angle tolerance, A

A cylintilcal/conic face, F, with a height, H, bounded by two circular edges, El and E2.

If H <= T,

Let F1 be the neighboring face attached to El and F2 be the neighboring face attached to E2.

Geometric Check:

First, veri~ that the collapsing of the cylinder would be a valid geometric option. This prevents the collapsing of a
face that could degenerate the model as described previously.

1. Evaluate a set of points, Pl, along El and evaluate normals of points on F1 to create normal set N1.
2. Project points P1 onto E2 to create new set of points P2.
3. Evaluate normals of P2 on F2 to create N2.
4. For each normal pair in N1 and N2, find angle between normals.
5. If angles are within the angle tolerance A, go to Topological Checks. Otherwise, perform no action.

Topological Check:

The topological checks are to determine which edge is to be retained in the model and which edge is to be
removed. The checks are implemented such that material is added to the solid model.

1. If El is on an interior loop of Fl, substitute El for E2 in F2 topological structure (i.e. El becomes the outer
loop for F2).

2. If E2 is on an interior loop of F2, substitute E2 for El in F1 topological structure (i,e. E2 becomes the outer
loop for Fl).

3. Eliminate F from topological structure.

3.3 Small Edge Detection and Removal

Cases C3 to C5 remove edges that are below the tolerance, T, as edges are removed the small faces are also
compressed out as a by-product.

Another topological operation that can be used to simpli~ a CAD model is the removal of edges whose lengths are
smaller than the tolerance T. As edges are removed horn the model, the attached faces are updated. During
updating, face topologies can disappear from the CAD model entirely. Since this is not a closed form procedure
like the previously discussed operations, a more comprehensive method for determining the precedence of each
edge and face is required. Small edges may also be prevented from being compressed out of the model if theydo
not pass certain criteria. As previously mentioned, compressing out edges in certain cases can invalidate the model.
Take, for example, a thin rectangular plate. If the thickness of the plate is less than the defeaturing tolerance, the
compression of the model would make the 3D model degenerate. Using a similar geometry check, this condition
can be trapped by using normal comparisons as were discussed in the previous section.

For the cases where the compression of a small length edge can compress an entire face from the model, the
following procedure can be used to determine if the face should be compressed -- and if so, which edge should be
retained:
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Figure 2.
Suppression of small length edge E and sliver face F.

Given: Global defeaturing tolerance T
A face, F, bounded by three edges E, El, and E2

If E <= T,

Assume that it is determined that edge E qualifies to be compressed out of the model. Let F1 be the “
neighboring face attached to El and F2 be the neighboring face attached to E2 (see F@re 2).

Geometric Checks:

Verify that the collapse can happen. If so, then determine the edge precedence order. That is, determine which
edge (El or E2) should be retained and which should be removed.

Validity check:
1. Evaluate a set of points P1 along El and evaluate normals of points on F1 to create normal set N1.
2. .Project points PI onto E2 to create new set of points P2.
3. Check the distances between points pairs in PI and P2. If any distance is greater than tolerance T, do not

compress E. .

Precedence check:

1.

2.

3.

4.
5.

6.

7.
8.
9.

Evaluate normals of P2 on F2 to create normal set N2. At this point, we want to see if one of the faces F1 or F2
is above the other in order to attempt to add material to the model in the defeaturing process.
Create a set of local Crwtesian coordinate systems Cl at each point in P1 using the normals in N1 as its local z
direction.
Create a set of local Cartesian coordinate systems C2 at each point in P2 using the normals in N2 as its local z
direction.
Transform the points in P2 into Cl to create!?2andpoints in P1 into C2 to createEL
If the local z coordinate for each member in B is negative and the local z coordinate for each member of H is
positive, retain edge El.
If the local z coordinate for each member in U is negative and the local z coordinate for each member of B is
positive, retain edge E2.
Else,
If El’s length> E2’s length retain El.
[f E2’s length > El’s length retain E2.



10. Else, retain El.

At this point, F is removed from the model and if El is retained, the edge list for F2 is updated. If E2 is retained
the edge list for F1 is updated.

4. FMte Element Data Abstraction

4.1 Overview

As with the CAD boundary representation, finite element data naturally lends itself to object oriented data
abstraction. The classical way of representing a finite element is to break the representation into two entities. The
first entity is the node that has the global 3D location. The node represents the geometry of the finite element
representation. The next entity, which represents the topology of a finite element, is the element. An element
contains a list of nodes that make up its shape. A quadratic triangular element will have a list of six nodes: one
node for each comer and one node for the midpoint of each side. The design used in this paper is a mix of the
classical finite element topological entity in conjunction with the CAD boundary data. Instead of viewing the finite
element as a list of nodes, the element is a collection of topological entities that the classical finite elements can be
derived from. The topological entities relate the node back to its defining geometry. This was felt to be a more
generic and natural representation for the problem. The implementation in this paper uses tri/tet elements;
however, the concepts could be extended to quad/hex elements.

4.2 Geometric Representation

The class that was created to represent all geometric information in the finite element structure is Mesh Boundary
Point (MBPoint). The MBPoint contains more than just the 3D location in space of the node. It is also a container

for all of the geometric information that is known about that point. Another class called Geompt was created to

store information that is specific to one CAD entity. The MBPoint has a “has a“ relationship with a link list of

Geompt objects. The Geompt contains the topoid of the CAD entity, the node’s parametric location for that entity,
and other attributes. Some of these attributes are the flags that tell if @e node actually lies on the entity within a
tolerance, whether the entity’s parametric representation is current, and whether this entity is the prime entity
representation for this MBPoint. For instance, if a node lies on a vertex of a block, it would have one Geompt of
the vertex (which would be marked as it’s prime entity), six Geompt objects from the three edges and three faces
that are attached to the vertex.

The member functions of the MBPoint class associate the operands of the CAD’s Brep GeomQuery class to the
finite element node. The operations of evaluating, getting normal and tangent information, and projecting on a “
specific entity are all member functions of the MBPoint class. Other functions such a moving a point from one
location to another me encapsulated in the MBPoint class. This function takes care of managing the Geompt list
and, if needed, updating the parametric locations.

4.3 Topological Representation

With the geometric information removed from the finite elements, the problem of representing this in a class
hierarchy becomes much easier. If we ask the question, ‘What are the topological entities that represent the finite
element class?”, a very natural representation falls out. Fkst, the nodes that represent the vertices of the finite
element are abstracted into a topological class, which we called MBEO (Mesh Boundary Elements O-dimension).
The edges of the finite element abstract into a class MBE1, the faces into MBE2, and the volume elements into
MBE3. The MBEO has a “has a“ relationship with the MBPoint class. Most geometric operations are accessed
through the interface of the MBEO into the MBPoint class. Since our finite element specification called for
quadratic elements, the MBE1 class also has a “has a“ relationship with the MBPoint class. The coordinate
retrieved from this MBPoint represents the mid side node in the quadratic finite element.
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The MBE1 class also contains pointers to the two MBEOS that bound it. The MBE2 class contains pointers to the
MBEOS and MBEIs that bound it and the MBE3 class contains pointers to the MBEO and MBE2 objects that
bound it.

There are also upward and downward traversal methods for each class. These traversals are not limited to one level
up or down, but have been implemented, for instance, to allow the traversal of all MBE3s attached to a specific
MBEO object.

5. FE Model-Based Defeaturing

5.1 Overview

As previously discussed, defeaturing of the CAD model can significantly reduce the number of elements, increase
the robustness of meshing, and decrease the time necessary to mesh the model. However, the techniques discussed
in Section 3 do not cover all CAD topological and geometric problems. Recognition and suppression of features
that could cause meshing problems becomes difficult at the BRep levelbeyondthose discussed in Section 3.
However, it became apparent that to achieve a high level of meshing success, more forms of defeaturing were
needed.

After doing analysis on CAD models that failed to mesh, several causes were identified for meshing failures. Most
of the meshing failures occurred while meshing the faces of the CAD models. The faces that failed had one of
several attributes that seem to cause the meshing problems. These included extremely small length edges as
compared to the entire face, tangencies between two edges at a shared vertex, and edges that were coincident
(within a tolerance). Though some of these can be identified at the BRep level, there are no easy topological
changes that can be made to mod@ the model.

5.2 MBE Level Defeaturing

Instead of working at the BRep level, MBE level defeaturing procedures work with the data generated during the
meshing process. This process first meshes the edges of the model. This is followed by meshing the faces and then
for volume meshes, the meshing of the interior. After the first stage is complete and MBEO and MBE1 objects
have been created on the edges and vertices, the following algorithm was implemented to scan these objects and
collapse near coincident or tangent edges into one another. The basic algorithm looks for nodes that are close to
~ges that do not con~n he node. This will happen when the mtiel has a slight rise from one face to another, as

shown in Figure 11. It can also happen when a model has a face with edges that are nearly coincident or tangent,
as shown in Figure 13.

Given: Global defeaturing tolerance, T
Length ratio toler~ce, R

Angle tolerance, A
Average length of edges, L
Face normal tolerance, FN
Merging tolerance, MT

1. Let Nodel belong to the set of MBEO objects. Let ikfBNl be a set of MBEls, such that E belongs to MBNl if
the distance(Nodel,E) < L. Let SA4BNI be a subset of MBNI, where E belongs to SA4BN1if E contains Nodel
. Figure 3 presentsSuchacasewhereNodelhasfour edges that are close to it. TWO of the edges are in

SMNBI and the other two are not.
2. Find an edge, Edgel, in MBNI such that Edgel does not contain Nodel and Edgel shares a common face with

Nodel. If there are none, get another Nodel horn the set of MBEO objects and start with Step 1.
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SMNBI

Nodel MNBI

SMNB

MNBI

Figure 3.
Nodel is in the proximity of edges in the set MNB1.

3. First check for a node that is close to other edges. This indicates a rise or coincident edge condition. Let Node2
be the projection of Ncdel onto Edgel, and let D=dkance(Nodel,Node2) - see F@re 4. –

Figure 4.
Node2 is the projection of Nodel on Edgel. FN1 and FN2 are the face normal sets.

4. LetSL = maximum (length of edges belonging to SWHW).
Let AL= maximum (SL, Length of Edgel).
If D < T, or the ratio of D /AL > R, then continue with step 7.

5. Check for a tangency condition. If EN has a MBEO that is shared by Edgel, let Al=angle(Edgel,EN). See
Figure 5.

6. If the angle Al <A, then continue with step 7. Else, go to step 2- see Figure 5.
7. Now Nodel is a candidate to be merged out of the model along, with it’s connected edges. Create another

candidate at Node2. F~st check that Node2 is not close to one of the endpoints of Edgel. Let EP1 and EP2 be
the endpoints for Edgel. If distance(EPl ,Node2) < MT, then set Node2=EP1. Else if distance (EP2,Node2) <
MT, then set Node2=EP2. Else split Edgel at Node2 and create a new MBEO at thk point.

8. Edgel was chosen such that it and Nodel have a face in common. Look at the faces that are not in common. If
these normals are in the same direction, then the node can be merged out. If one has a tangent edge, a nearly
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9.

10.

11,

coincident edge, or a slight rise horn one face to another, this is exactly the case. However if one has a small
cut feature in the model, this is not the case.

Nodel

EN

Node2

Figure 5.
Edge EN contains node Nodel and shares a node with Edgel.

Al is the angle between edges EN and Edgel

LetFNl be the face normals from Nodel and FN2 be the face normals from Node2. If angle(FNl,FN2) > FN,
another candidate node is retrieved and the procedure starts again at step 1. (This results in a split of Edgel,
which will result in better element quality, but no merging is possible.) See F@re 6.

/

Figure 6.
This situation shows an example where Nodel and Node2 cannot be merged.

Nodel and Node2 can now be merged. It must now k determined which of the MBEO objects is to be retained
in the model and which one is to be deleted. This done be assigning an order of precedence to each MBEO, the
MBEO with the highest order of precedence is retained and the other MBEO removed. The order of
precedence is determined by first checking the BRep’s topological entities that attach to each MBEO. If one
MBEO is attached to an entity of a lower dimensional@, then it will be retained. If both MBEOS BRep’s
lowest dimension entity are the same go to step 11.
The next operation in determining the order of precedence is to create a set of planes at Nodel, PL1, from the
Nodel’s location and the face normals, FN1. Then Node2’s location is then compared against these planes,
PL1, to determine if Node2 is above or below each of the planes. The procedure is then repeated for Node2. If
either MBEO lies below each of the planes, this it is chosen to be merged out of the model. This is consistent
with the goal to add material when defeaturing the model. If neither MBEO fulfills these criteria, then go to
step 12. See Figure 7.



.

& FN2

Figure 7
Face normal sets FN1 and FN2 when coupled with nodal positions of Nodel and Node2 will define a set of

12.

13.

- planes PL1 and PL2.

The next test in the order or precedence is to see which MBEO would move the least distance if merged.
Nodel’s location is projected onto all of Node2’s faces and the maximum distance that NodeI’s location is
from any of Node2’s faces is found. Then the procedure is done for Node2. The node whose maximum

distance is smallest is retained and the other one is removed.
Merge the node with the lowest order of precedence into the other node. Using the situation portrayed in
Figure 4, it can be shown that Node2 would have a higher order of precedence than Nodel (using the

procedure in step 11 and shown in Figure 7). After merging Nodel into Node2, material would be “added” to
the model. See Figure 8.

/

Figure 8
After merging Nodel into Node2 the resulting boundary would appear like this figure. Further defeaturing

couId take place because of the tangencies andh the small edges surrounding Node2.
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6.

6.1

Results and Examples

Example of topological defeaturing of the CAD model.

A parametric model was constructed of a disk, shown below in F&ure 9. The four holes in the disk, the fillet, and
the recess where defined with parameters. The parameters were changed such that these features became small
compared to the size of the model and highlighted. This model was then analyzed by fixing the inner cylinder and
applying a moment to the outer cylinder. Two analyses were performed, the first without defeaturing and second
with the highlighted features suppressed. The meshing time and the number of elements for each model are
presented in Table 1. The meshes for each analysis are shown in Figure 10. It can be seen that the suppression of
the small features dramatically reduces the number of elements and time to mesh. This model is contrived to
illustrate this point and is not meant to claim that the use of engineering judgement should not be used on whether
feature suppression is important to the analysis.

.,--” .“ -“’’---. --%

/“ j

“’”d’ ~
Figure 9.

Parametric disk model. On the Ieft is the original model. The figure on the right shows the model after
parametric changes have produced small features to be removed from the topological model.

Model Without Defeaturing
Mtiel With Defeaturing

Number Of Elements
14,743
1,038

TabIe 1.

CPU Time (Sec.)
60
11



Figure 10.
Finite element model with (model on the left) and without (model on the right) defeaturing.

6.2 Finite element defeaturing

Two examples are given showing faces that have degenerate exterior loops. In the first model, the attachment of
the upper block is off by a small dktance and creates a degenerate edge along the top. (See Figure 11, notice what
appears to be a single line across the top of the block, but is, in reality, a coincident edge). Figure 12 shows the
finite element mesh along that top section after MBE1 defeaturing has been applied.

Flgurell.
H@lighting of a face with a degenerate edge.
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Figure 12.

Zoom of finite element mesh showing the area of the coincident edges.

Another model of a hack saw shows a highlighted face that has a degenerate face loop (see Figure13) and a close-
up of the elements where the MBE 1 defeaturing has taken place (see Figure 14).

Figure 13.
Hack saw model showing degenerate face loops.
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Figure 14.
Zoom of finite eIement mesh.

7. Conclusion

This paper presents a framework for automatically meshing real world 3D CAD models with tetrahedral. The

emphasis is on dealing with the problems inherent in meshing CAD models. Processes are descrilxd which can
recognize undesirable features in CAD models that can make meshing fail, give poorly shaped elements, or give
too many elements. In addition, two general types of defeaturing are presented – geometry-based defeaturing and
FE model-based defeaturing. These forms of defeaturing are shown to reduce mtiel size and increase mesher
robusmess.

This paper also illustrates the advantages of using a well thought out data abstraction design to represent not only
the CAD geometry and topology but the finite element mcdel as well. A good foundation in object-oriented design
allows the programmer of the defeaturing algorithm to focus on the algorithm and not on the data management of

the underlying structures.

While the defeaturing presented in this paper is an automatic procedure, it is a tool to be used by an informed
engineer. Good engineering judgment still needs to be exercised. As with any analysis, the effects of the feature
suppression should be independently verified.
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