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MODEL FOR THE 224Ra-PROTRACTION EFFECT 

Peter G. Groer and John H. Marshall 

It was pointed out by Spiess and Mays (1) that for a fixed total dose 
the observed incidence of bone sarcomas in German children and adults ex­
posed to 224Ra was higher the lower the dose rate. Two mathematical models 
that exhibit a protraction effect are presented in thfs report. Both models re­
place cells killed by a radiation with normal endosteal cells. This regenera­
tion of cells increases the total number of cells at risk and leads thus to the 
production of more tumor cells during the longer time periods corresponding to 
the lower dose rates. 

The model for the induction of bone sarcomas by 
226

Ra presented in the 

previous paper should also describe the induction of sarcomas by 224Ra 

and should, therefore, explain the "protraction effect." (
1
) We felt that a re­

placement of killed endosteal cells might provide an explanation for this effect. 

We described the replacement process in two different ways: 

1. Delayed Replacement 

Any endosteal cell killed by radiation from internally deposited 
224

Ra 

or 
226

Ra will not be replaced instantaneously. On the average, a timeT will 

elapse after which the killed cell will be replaced. If M
0 

(t) denotes the num­

ber of normal endosteal cells at risk, the following differential equation will 

describe this process: 

" M
0 

(t) = K F M
0 

( t - T ) - K F M
0 

(t) , (1) 

where K is the probability per rad that a cell will be killed and F is the dose 

rate function (rads/unit time). Equations of the form (1) are differential equa-

tions with a retarded argument. 
(2-4) ' 

In radiation biology an equation of this type was considered by Sievert (
5

) 

who also pointed out the great variety of solutions for such equations. (5) A 

solution of (1) can be found by the "method of continuation" (
4

) if an initial 

function is given over a certain time interval. This "initial function" replaces 

the initial value used for ordinary dif~erential equations. Assuming for sim­

plicity a constant dose rate F, one obtains a solution of (1) in the following 

manner. In the interval (0, T) the solution of (1) is 
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M
0

(t) = .M
0

(o) exp (- KFt),. (2) 

No. replacement takes p~a~e. For the next interval (T, 2T) the term K FM
0 
(t- T) 

can be calculated from :Eci: (2) and so on for all subsequent intervals. Proceed­

ing in this fashion one obtains 

M
0

(t) = KF(M
0

(q)e-KF(t-T)- M
0

(t) > 

-K Ft . K Ft 
M

0 
(t) = ~0 (O).e. , { 1 + K F(t- T) e } , 

and by induction the general expression 

Mo (t) = Mo (0) exp (-K Ft){ 1 + K F(t- T) exp (K Ft) 

2 
+ (KF) 2 (t.-;~T) exp (2KFT) + 

n-1 
+ (K F)n- 1 (t- (n -1)T) exp ( (n- 1) K FT) } 

(n -1)! 

for (n - 1) T s t s nT. 

(3) 

The asymptotic form of Eq. (3) for t - oo has so far not been found. 

The expression (3) for M
0 

(t), if used to express M
2 

(t) (see Eq. (10) -(13) of 

the previous paper for a definition of the M. 's), shows a protraction effect 
. . 1 

since more M
2 

cells will be present the longer the radiation acts (the smaller 

F), because more and more terms of the series in Eq. (3) will be used the 

longer the irradiation period. To illustrate this fact, consider the following 

example. The total dose D shall be delivered over periods of T and 2T. In 

the first case we find for the total number of M
2 

cells produced by D, 

2 2 
M

2 
(T) = M

0 
(0) a n cxp (- 1c n)/2 • 

In the second case we find for the total number of M
2 

cells generated by D 

over a period of 2 T: 

. '2 2 2 3 . 
M

2 
(2T) = M

0 
(0) a D e~p (- K D)/2 + M

0 
(O) a K D exp (K D/2)/3 . 

,· 

Since the second term on the right is positive, more M
2 

's have been produced 
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by Dover the longer time period. 

2 . Restoring Replacement 

In this model the delay time until a killed cell is replaced is neglected. 

Instead an average rate of replacement, p, is introduced and the replacement 

rate depends on the deviation from the equilibrium value. The differential 

equation for M
0 

(t) describing this form of replacement is 

• 2 
M0 (t) = p(MO (0) - i~O Mi (t) ) - K FMO - oTMO . (4) 

All Mi' s except M
0 

can be neglected because of their smallness. This yields 

(4a) 

Integrating Eq. (4a) for F = const gives the following expression for M
0 

(t): 

M
0

(t) = M
0 

(O) exp (-( p + KF + aF)t) 

+ M
0

(0)p { (1-exp (- (p + KF + aF) t)V(p + KF + aF)}. (5) 

Using expression. (5), an expression for M
2 

(t) can be derived, solvi~g the dif­

ferential equations (10) -(13) g~ven in the previous paper. The resulting M
2 

(t) 

is quite complex and will not be given here in its explicit form since the 

derivation is straightforward. 

A computer evaluation of M
2 

(t) using different values of F (dose rate) 

showed a protraction effect (see Table 1) . 

We will attempt to fit the observed protraction effect (
1

) using either 

model for replacement of cells in conjunction with the other differential e.qua­

tions given earlier. It will prob­

ably not be possible to differentiate 
{a) 

TABLE 1. Protracted Production of Tumor Cells 

F, rad/day T, days M
2 

(t)/MO (0) 

0.1 10
4 9.0 X 10-5 

1 10
3 5.0 X 10-5 

10
2 -6 

10 9.1 X 10 

(a) p = 0. 01 rlr~y - 1: C! = l0-8 rad-1; >.. = 3 X 10-5 day-1; 
K = 0. 01 rad-1 . 
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between the two models using the 

existing data for 
224

Ra in man. 
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