MODEL FOR THE 2%Ra-PROTRACTION EFFECT

Peter G. Groer and John H. Marshall

It was pointed out by Spiess and Mays (1) that for a fixed total dose
the observed incidence of bone sarcomas in German children and adults ex-
posed to 224Ra was higher the lower the dose rate. Two mathematical models
that exhibit a protraction effect are presented in this report. Both models re-
place cells killed by o radiation with normal endosteal cells. This regenera-
tion of cells increases the total number of cells at risk and leads thus to the
production of more tumor cells during the longer time periods corresponding to
the lower dose rates.

The model for the induction of bone sarcomas by 226Ra presented in the

previous paper should also describe the induction of sarcomas by 224Ra

(1) We felt that a re-

and should, therefore, explain the "protraction effect."”
placement of killed endosteal cells might provide an explanation for this effect.
We described the replacement process in two different ways:

1. Delayed Replacement

Any endosteal cell killed by radiation from internally deposited 224Ra
226

or Ra will not be replaced' instantaneously. On the average, a time 7 will
elapse after which the killed cell will be repléced. If M0 (t) denotes the num-
ber of normal endosteal cells at risk, the following differential equation will
describe this process:

Mo(t)= KFMO(t—T) —KFMO(t) , (1)

where « is the probability per rad that a cell will be killed and F is the dose

rate function (rads/unit time). Equations of the form (1) are differential equa-

tions with a retarded argument. (2—4)

(5)

In radiation biology an equation of this type was considered by Sievert

who also pointed out the great variety of solutions for such equations. (5) A

(4)

solution of (1) can be found by the "method of continuation" if an initial
function is given over a certain time interval. This "initial function" replaces
the initial value used for ordinary differential equations. Assuming for sim-
plicity a constant dose rate F, one obtains a solution of (1) in the following

manner. In the interval (0, T) the solution of (1) is
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M, (t) = M, (0) exp (-« Ft). . | 2)
No.replacement takes plé‘ce. For the next interval (T,27) the term K‘FMO t-7) '
can be calculated from Eq: (2) and so on for all subsequent intervals. Proceed-
ing in this fashion one obtains

—kFt—1)

M, (t) = KP(MO(Qie - M, (®))
(r = tSZT)
-k Ft . kK Ft

{1+«Ft—T)e "} ,

Mo(t) = Mo(o)?,. ;
and by induction the general expression

Mg (t) = M, (0) exp (-« Ft){ 1 + « F(t —7) exp (x Ft)
. 2 ‘
+ ep)? L2 o i) + .. | 3)

~1 t—@-17)° "1

(n —1)!

+ (KF)n exp((n—-1)xF7) }

for n—1)r <t <n-.

| The asymptotic form of Eq. (3) for t — © has so far not been found.
The expression (3) for MO (t), if used to express M2 (t) (see Eq. (10)—(13) of
the previous paper for a definition of the Mi's) ., shows a protraction effect
" since more Mz cells will be present the longer the radiati_on acts (the smaller
F), because more and more terms of the series in Eq. (3) will be used the
longer the irradiafion period. To illustrate this fact, consider thélfollowing
example. The total dose D shall be delivered over periods of T and 27. In

the first case we find for the total number of M, cells produced by D,

A 2
2_2
Mz(‘r) = MO(O)O N exp (—kD)/2 .

In the second case we find for the total number of M2 cells generated by D

over a period of 2T: ,
C 22 2 3 .
MZ(ZT) = MO(O) 0"D" exp (~«k D)/2 + MO(O) 0”“ k D" exp (kD/2)/3 .

's have been produced

Since the second term on the right is positive, more M2
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by D over the longer time period.

2. Restoring Replacement

In this model the delay time until a killed cell is replaced is neglected.
Instead an average rate of replacement, p, is introduced and the replacement
rate depends on the deviation from the equilibrium value. The differential

equation for M _ (t) describing this form of replacement is

0
. 2
M, () = p(M, (0) _120 M,(t) ) ~ kFM, = OFM, . @
All Mi's except M0 can be neglected because of their smallness. This yields
Mo(t) = p(MO () — Mo(t))— KFMO - GFMO . - (4a)

Integrating Eq. (4a) for F = const gives the following expression for M0 (t):

MO-(_t) = M0 (0) exp (—(p + xF + OF)t )
+ MO(O)p{ (1—-exp(~(p +«F +0F)t)/(p + xF + OF)} . (5)

Using expression.(5), an expression for M2 (t) can be derived, solvipg the dif-
ferential equations (10)—(13) given in the previous paper. The resulting M2 (t)
is quite complex and will not be given here in its explicit form since the
derivation is straightforward. |

A computer evaluation of M2 (t) using different values of F (dose rate)
showed a protraction effect (see Table 1).

(1)

We will attempt to fit the observed protraction effect using either

model for replacement of cells in conjunction with the other differential equa-
tions given earlier. It will prob-
ably not be possible to differentiate

(a)

f 11
TABLE 1. Protr.acted Production of Tumor Cells between the two models using the

' e : 224 .
F, rad/day T, days M, (t)/M,(0) existing data for Ra in man.
0.1 10* 9.0 x 107°
3 -5
10 5.0 x 10
10 10% 9.1x 1070
(a)p =0.01 day_]'; g= 10"8 rad'l_; A=3X 1075 day'li
k=0,01rad” ’
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