

UNCLASSIFIED

(CLASSIFICATION)

DOCUMENT NO.

HW-79354

HANFORD ATOMIC PRODUCTS OPERATION - RICHLAND, WASHINGTON

DATE

COPY NO.

10-28-63

ISSUING FILE

TITLE

REDUCTION OF PLUTONIUM(VI) TO PLUTONIUM(III) AND (IV)
BY SODIUM NITRITE.

AUTHOR

C. A. Colvin

REFERENCE COPY

BEST AVAILABLE COPY

RECEIVED 300 AREA
NOV 4 1963

DISTRIBUTION

TECHNICAL INFORMATION FILES

NAME	BUILDING	AREA	NAME	BUILDING	AREA
GJ Alkire	222-U	200-W	RJ Sloat	2704-Z	200-W
OF Beaulieu	222-S	200-W	AE Smith	2704-Z	200-W
JS Buckingham	222-S	200-W	RJ Sorenson	234-5	200-W
LL Burger	325	300	RE Tomlinson	2704-W	200-W
RE Burns	222-S	200-W	AJ Waligura	202-A	200-E
MH Campbell	222-S	200-W	MT Walling	325	300
EW Christopherson	325	300	EJ Wheelwright	325	300
CA Colvin	222-S	200-W	RA Yoder	202-S	200-W
JJ Courtney	234-5	200-W	300 Files	3760	300
OD Erlandson	202-S	200-W	Records Center	3760	300
WS Frank	2704-E	200-E	Extra (10)		
WJ Gartin	2704-Z	200-W			
KM Harmon	325	300			
MK Harmon	202-S	200-W			
OF Hill	326	300			
HH Hopkins, Jr.	234-5	200-W			
ER Irish	329	300			
RE Isaacson	202-S	200-W			
JW Jordan	222-S	200-W			
BF Judson	202-A	200-E			
RJ Kofod	2704-W	200-W			
LM Knights	234-5	200-W			
TR McKenzie	222-S	200-W			
RL Moore	325	300			
JR Morrey	325	300			
CW Pollock	222-S	200-W			
HC Rathvon	2704-W	200-W			
WH Reas	326	300			
JL Ryan	325	300			
RA Schneider	329	300			
FA Scott	325	300			

Reviewed and Approved for
Public Release by the NSAT

JDC/Watrous PNNL ADD

12/13/2000 Date

ROUTE TO	PAYROLL NO.	LOCATION	FILES ROUTE DATE	SIGNATURE AND DATE
300 Files				
J. E. Hayman	53011	713	NOV 27 '63	
L. W. Jensen	12926	1904H	DEC 9 '63	

54-3000-030 (1 -61)

AEC-GE RICHLAND, WASH.

UNCLASSIFIED

(CLASSIFICATION)

UNCLASSIFIED

HW-79354

REDUCTION OF PLUTONIUM(VI) TO PLUTONIUM(III)
AND (IV) BY SODIUM NITRITE

by

C. A. Colvin

Separations Chemistry Laboratory
Research and Engineering
Chemical Processing Department

October 28, 1963

HANFORD ATOMIC PRODUCTS OPERATION
RICHLAND, WASHINGTON

Operated for the Atomic Energy Commission by
the General Electric Company under Contract #AT(45-1)-1350

REDUCTION OF PLUTONIUM(VI) TO PLUTONIUM(III)
AND (IV) BY SODIUM NITRITEINTRODUCTION

The application of anion exchange for final plutonium purification⁽¹⁾ in the Redox facility requires the adjustment of plutonium(VI) to plutonium(IV). Two methods of reduction were investigated: The first method was reduction by ferrous sulfamate; the second method was the use of nitrite for reduction.

The use of ferrous sulfamate was adopted due to the rapid rate of reduction and simplicity of the process. It was recommended that 2.5 moles of ferrous sulfamate per mole of plutonium be added to the process solution. The resulting Pu(IV) - Pu(III) mixture is continuously fed to a boiling concentrator which is 7M in HNO_3 . Any excess ferrous is oxidized, sulfamate ion is oxidized to sulfate, plutonium(III) is oxidized to plutonium(IV), and thus the resulting feed solution contains the required plutonium(IV) nitrate complex in 7M HNO_3 . The main objection to this method is the increase in iron content in backcycle streams.

Efficient reduction by nitrite is limited to solutions below 1.4M HNO_3 with elevated temperatures (above 50 C). Rates of reduction are such that time is also a determining factor. The information gained during the investigation of reduction by nitrite is presented in this paper in hope that it may be of value in future investigations and processes.

SUMMARY AND CONCLUSIONS

The reduction of Pu(VI) by nitrite is dependent on nitrite concentration, temperature, acidity, ferric ion concentration, and time. It is interesting to note that greater than 90% reduction to plutonium(III) by sodium nitrite may be accomplished by controlling the above conditions. Three oxidation states were apparent in most of the solutions and were quantitatively determined by use of a recording spectrophotometer.

EXPERIMENTALAnalysis

Oxidation state analyses were performed spectrophotometrically⁽²⁾, using a Beckman Model DK-2 ratio-recording spectrophotometer with 1 cm rectangular silica cells.

- (1) J. L. Ryan and E. J. Wheelwright, The Recovery, Purification, and Concentration of Plutonium by Anion Exchange in Nitric Acid, HW-55893. January 2, 1959. (Confidential)
- (2) C. A. Colvin and D. A. Dodd, Quantitative Determination of Plutonium Oxidation States In Variable Nitric Acid Solutions - Spectrophotometric, HW-79195, October 14, 1963.

Effect of NaNO₂ Concentration

Solution:

Pu(VI) 0.0111M
 HNO₃ 0.55M
 Fe(III) 5 x 10⁻⁵M
 NaNO₂ Variable
 Temperature 60 C

<u>NaNO₂ conc.</u>	<u>Time (Min.)</u>	<u>% Pu(VI)</u>	<u>% Pu(IV)</u>	<u>% Pu(III)</u>
<u>0.012M</u>	10	63	21	16
	20	47	30	23
	30	37	37	26
	40	25	46	29
	50	20	50	30
	60	17	52	31
	70	14	55	31
<u>0.024M</u>	10	53	21	26
	20	30	33	37
	30	15	40	45
	40	5	47	48
	50	2	49	49
	60	1	50	49
	70	1	51	48

UNCLASSIFIED

-4-

HW-79354

<u>NaNO₂ conc.</u>	<u>Time(Min.)</u>	<u>% Pu(VI)</u>	<u>% Pu(IV)</u>	<u>% Pu(III)</u>
0.049 <u>M</u>	10	39	23	38
	20	14	34	52
	30	3	37	60
	40	1	39	60
	50	<1	40	60
	60	<1	41	59
	70	<1	41	59
0.098 <u>M</u>	10	18	22	60
	20	2	27	71
	30	<1	28	72
	40	<1	28	72
	50	0	29	71
	60	0	30	70

Effect of HNO₃ Concentration

Solution:

Pu(VI)	0.0111 <u>M</u>
HNO ₃	Variable
Fe(III)	5 x 10 ⁻⁵ <u>M</u>
NaNO ₂	0.049 <u>M</u>
Temperature	70 C

UNCLASSIFIED

-5-

HW-79354

<u>HNO₃ Conc.</u>	<u>Time (min.)</u>	<u>% Pu(VI)</u>	<u>% Pu(IV)</u>	<u>% Pu(III)</u>
<u>0.55M</u>	10	16	30	54
	20	2	35	63
	30	1	36	63
	40	1	37	62
	50	1	38	61
	60	1	40	59
<u>1.00M</u>	10	23	58	19
	20	4	75	21
	30	2	78	20
	40	1	79	20
	50	1	80	19
	60	2	81	17
	70	2	82	16
<u>1.25M</u>	10	28	60	12
	20	5	85	10
	30	2	91	7
	40	1	93	6
	50	1	94	5
	60	1	94	5
<u>1.40M</u>	10	31	65	4
	20	7	89	4
	30	3	94	3
	40	2	96	2
	50	2	97	1
	60	1	98	1
	70	1	98	1

UNCLASSIFIED

-6-

HW-79354

Effect of Ferric Ion Concentrations

The rate of reaction is dependent upon the ferric ion concentration.

Solution:				
	Pu(VI)	0.0111M		
	HNO ₃	0.55M		
	Fe(III)	Variable		
	NaNO ₂	0.049M		
	Temperature	70 C		
<u>Fe(III)</u>	<u>Time (min.)</u>	<u>% Pu(VI)</u>	<u>% Pu(IV)</u>	<u>% Pu(III)</u>
$5 \times 10^{-5}M$	10	16	30	54
	20	2	35	63
	30	1	36	63
	40	1	37	62
	50	1	38	61
	60	1	40	59
0.01M	10	2	33	65
	20	<1	35	65
	30	<1	36	64
	40	<1	37	63
	50	1	38	61
	60	2	39	59

Effect of Temperature

Reaction was not readily detectable at 25 C.

Solution:

Pu(VI)	0.0111M
HNO ₃	0.55M
Fe(III)	$5 \times 10^{-5}M$
NaNO ₂	0.049M
Temperature	Variable

UNCLASSIFIED

-7-

HW-79354

<u>Temperature</u>	<u>Time (min.)</u>	<u>% Pu(VI)</u>	<u>% Pu(IV)</u>	<u>% Pu(III)</u>
48 C	10	28	3	69
	20	17	5	78
	30	12	6	82
	40	9	7	84
	50	6	8	86
	60	3	8	89
	70	1	8	91
70 C	10	16	30	54
	20	2	35	63
	30	1	36	63
	40	1	37	62
	50	1	38	61
	60	1	40	59

Gaseous NO₂

Use of gaseous NO₂ in 0.5M HNO₃ solutions at temperatures above 50 C yielded results comparable to those obtained with NaNO₂. Attempts to reduce Pu(VI) to Pu(IV) in 7M HNO₃ with gaseous NO₂ indicated that the reaction rate was too low to be of practical use. Also the nitrogen oxides dissolved in the 7M HNO₃ solution after NO₂ sparging would require considerable air sparging for removal before a suitable feed to the anion exchange unit was available.