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ABSTRACT

A dynamical theory of ix witiparticle amplitudes, based on a
functional integral representation embodying collective long-range corre-
lations, is a.pplied to the calculation of Regge intercepts and residues.
Poles arising in cbnventional multii:eripheral models will characteristi-
cally be modified in three ways: promotion, renormalization, and a
proliferation of dynamical secondary trajectories, reminiscent of dual

madels.



We have proposed a theory in Im of high energy multiple pro-
duction phencemena formulated as a stochastic field theory modification
of multiperipheral dynamics. In this paper we study the characteristic
new features expected for Regge intercepts, compared to conventional
multiperipheral models. The intercepts are calculated from a generating
functional, as in A-T. (2)

We consider production amplitudes for n secondary hadrons
with rapidities yj. impact-parameters l:;;, and internal quantem-numbers
vj; the reaction is

a+bh-~~a"+ o'+ h, + ...h .
! n

We will simplify the kinematic description as is coaventionally done in
simple discussions of multiperipheral models, by considering all
secondaries to be in the central region; this restriction could be removed
at the expense of complex notation.

The A-T '"Multi-Eikonal" Ansatz(z) for this production amnplitude

with a generzlization to include guantum numbers, is:

An(rl.,.rn; vi'“ vn lR,; va, v_o; ra, R vb.) = AO(R; Va' vb; va, ' vb,)
'TTBG(? V‘ﬁ..'v oo v 1)
je1 Oy VIR vy
e, = %, | :
e K(l'j. T Vj. Vk|R, vty (n

where T =(y, B) and R=(Y, B Y =1In Sab’ and B is the relative impact

parameter betwean incident particles a and b.

As in AT, we define a generating functional which can be usad to

express overlap functions and inclusives;
1 h
F[g]sZ—, > fa 3. . 20, 12
n nl vl.. . vn d Ty-e .d £ E(r 1,vl). . .§(rn,vn) An{(‘rj,vj)} ‘AJ (2)

Suppressing notation of dependences on K and (va. ..V, ), we can write

F as:



n
F (€] =Zn: ;l:- VZJJ'E <i3r'j E(r 'y ,G(r .V)I Kh [V('r'j.?k;vj.vka

where we have defined V by

exp (V) = 1K |
The limits of y integrations in the above expressions are y = xY/2; the
Bintegrals are cut off by iGi 2. Following I, we will assume V can be

divided into VL - VS' where VS is short range in rapidity, and VL is

small in magnitude compared to unity, but long range in rapidity (dom-
inated by Regge cuts) and of anly one sign (presumably positive). Then

we can express F as a functional integral over Fs, the short-range-only

ensemble generating functional, defined as is F but with no VL:

.n - . - 2 I
F [g] ..% :‘ {VZ} J'—' d3rj§(rj) VJ) iG(rJ7 Vj)! Tl:rexp[vs(rjl rk) vjl 'k)]

We can represent FS at high energies as a sum over the leading sin-
gularities in the Laplace-transfdz_rm with respect to Y. We may define
corresponding functionals a [€land @ m (27 by:

el - i€ V.exp |
F e 2 Pl e Yo (@]

where the summation runs over the léz_ading poles (at a given E), with

ordering uo)u )0 oo

The one- dxmensmnal para.metnzatmn. long-range in rapidity, adopted
in [ for VL can be generalized to include b. If we assume an exponential

decrease in rl:’» Iy

1 ik r.
V_(T)= &k e ‘
L (2.“)3[ )‘l-o'klo- v 2 £

where ¥ = (kl,ﬁz) is Fourier conjugate to P (y,?ﬁ). We assume here that

VL (rl, rZ) depends only on ¥ = ?l - ?2, and also does not depend apon the

internal quanturmn numbers vy 28 appropriate for é‘v.vleading-singularity

(4)

(5)

(6)

(7N



" . 1),
(pomeron) induced cut correction. A cutoff at large k is assumed( )m (7).
Using the approximation(l) that short range correlation lengths are
much smaller than the characteristic range of VL, we obtain the A-T
2)

generating functiona.l( in the form:

Y/2 (m)
Flg ,...5 7= zf WTP\fi-de(i Bl £, En’(y)])}

! Crey/2 (8)
f "% ex tf dy £ Eém]l
‘! Y/2 ]
where, if we ignore the ultraviolet cuteif in VL for the moment,
1 -0 _o/2=2 L 222 -2 2, .2
af.o Y =ﬁ1/2 N e sz @+ 1/2 A ‘V-!;a’ 1d% (9)
where we will take ¢ =1/2 as in I[; and
(m) ( @ PN ®1 N L 2
il [qs.-f i ge ,...gNe 1-1/YIB (Ee ... g 1y d% (10)

From the formal expression (8) all observables can be calculated, following
A& T. The multiplicity generating function, &nrd the Regge-trajectery
intercepts, are obtained by specializing to constant Ev = Zv {v=1,...N).

We wish to investigate here the relation between the intercepts and
residues of the short-range-only ensemble, defined by (5), and the final
output intercepts and residues calculated from (8).

For this purpose it is sufficient to ignore the irnpact parameter var-
iables and consider a one-dimensional system. Then we seek to evaluate
the behavior, as Y -, of the multiplicity generating function given by (8)
withi as in (9) without the (f b¢)2 term, andd as in (10) with (Z ..., Z,)
replacmg (§ s E ) We drop the subscript on )\1 henceforth. The
high-lying output mtercepts will be determined in general( ) by saddle
points of the functional integrals in the numerator of (8). We consider

each m separately. The saddle-point functions 6 will satisfy 79 1’ ‘£° +£1)

which gives the set of coupled nenlinear (formally chfferenﬁal) equatwns

ob st Lt e A ot bTat aet o 1p 5 et s e eedemt e e e e e e




)‘-o'vu‘q& ly. - a¢( N .(m‘(z e¢l(y) z eqq(Y))
y §Y - EY Ty 1 TUUUPON
with j=1,...,N; m=0,1,2,...
Here )
() = 4 r 1 ]
pj (zl,....zN)— .zj BZJ lam(zl,..,zN) + Y In ﬁm(zl,...zN)
For each solution é‘m) of ii., th: ¢ -rr:no-ding saddle-point approxi-

mation for an associated ourdur iLieY ISPt Ao fesidue 18:

The leading output intercept /3t this .evel of approximation) will be the
largest value of 8 when 2l possible (;:s are used in (13). For -large Y,
the term involving |3m in (12, plays n> role in determining p, and we may
drop it during caiculatior. of the ggs The leading 5‘1\, for each m, will
be =2xpected to arise frora a constant :2:, sincz contributions from ’'kinetic"
(derivative) terms are negat.ve in (/3\.
Thus, for the leading intercep:, we expectq";to satisfy (11) without
the derivative terms. Taese form N couplec "Mean-Field" equations
{for each m): R A
2 ) PN
.1.¢‘ =p }(:118 ,...,zNe )
Note the residues of the output poles age
1

by evaluating the short-range 2 at (z.e ~,..., zy e }e

When a is taken from a "hard-core' (Chew-Snider-Dash-

obtained, ‘%.lel this approximation,

3 . . . -
Van der Waals™) short-range model, with short-range correlations arising

only from kinematic (tmin) effects, we obtain from (14) exactly the

Van der Waals mixture theory studied (at griticality) by 'I'homas(4), a very

successful description (with essentia’ly no ‘ree parameters) of high
energy multiplicity distributions.

Corrections to the saddle-polint a's can be computed by expanding
(io +£1 ) in a Taylor series around @ = q’b\, as explained in L. We can

can write the saddle-poirt expressior. for (8), keeping only the dominant

(11)

(12)

(13)

(14}
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(constant) 3 for each m, as:

A
4a]
4 )=D-l{Z,3 (z.e 1,...,2 eQN)
m m 1

Flzp.azy PO
exp{ﬂ'u (zleq, czge ) Ji;—($12+...+$Nz)] }Fm
with ) v . ‘ \g
Fo® )% exp {1_--)’3 , dy ai)z“““'f‘?‘;' )] ),\

We have written U= @ - ¢ for each m; to 4th order in §,

£ (mir Lo g/im 2 22 Y
iupe 1723 7 Do 1/ 2uTe - &y PRI
5 (v)e L AVARR'Y v -1/2 1Jtﬁl(C2 i Y

m Y .m
—’,’3.‘,2 C.v. w.ovy, = 1/4® - U
T Tk YTk / ikt e Dijie 4Y%Y
where the C;n 's are deiined by:
E::m( ) _ ] _ @ 3 & ( o éN)
P zl"“'&:\'] ijk.. . 0&511:12_l 8lanz - & lnzk“' *m zle 'f,'."dNe
j L

The factor D is independent of the short-range dynamics and is given by
the denominator of (8). Since ?{o is only quadratic in¢), we can analy-
tically obtain D if desired, but the expression is not reguired here.

If the output intercepts are aot i.. the vicinity of a critical point,
we may drop terms higher than quadratic in (17); the functional integral
in (16) then becomes a quadratic forra in ¥, and car be expressed in
closed form;

F_ = exp% %jrdk Tr ;n[l-vkc + ;,;.2 - sz] %
' . s
where the trace operation refers io the matrix indices on CZ'

For small )\, the correction to the mean-field result for the inter-
cept from F will be of order A, unless c:,‘ is in the vicinity of criticality,
where u-z nearly cancels C?. We will term (19) the ''quadratic' approxi-
mation to Frn' A cutoff oﬁ the k integral in (19) is implied(l), as in (7).

We discuss the shift in trajectory-intercepts, first according
to (14), then the role of nonconstznt solutions to (11), and finally the

influence of fluctuations as in I.

(15)

(17)

(18)

(19)



We can distingu:sl thrce avw Jharacteristic features preseiit in our
theory, compared to the simple shori-range ensemble.
(1). If the long-range correlations were reduced indefinitely
in magnitude, we would find uz - «: thus, from (14), all
q’é-» 0, and the output inter:epts & would coincide with those
of the short-rangs

2
4 decreases, and the outsut intercepts become larger,

R . i
systerr. aione. AsS W& 1ncrease .VT l,
et

. . A .
as devermine: byc% frcm +14) and 2 from {13). We may

he short-range poles.

[at}

call this a 'promosrion’ o1
{2). For nonzero '\"L we encounter also a2 second phenomenon;

(11) will have nor-constart sclutions which generate

secondary ii. e. nonleading) saddle points & in (13). There

will be usually an infinite nurnber of these, forming a

rich spectru:n of secondar-y poles, not present in the

short-range ensemblie. Ve will call this a proliferation

of the high-lying noles. With ¢ = 2 and small ), this is

seen exolicitly in the simular model calculation of Scalapino

and Sugar. > .

(3). At very large Y, the iong range fiuctuations will become
importaat, and as in critical phenomena, the itrue asymp-
totic beravior associated with the leading intercept will be
corrected, compared to the mean-field approximation (14),
by a substantial amount. It is only at this stage that the
Froissart bound is relevant. We expect generally that this

final correction is negative, a downward shift in 8. This

can be cailed a rerormalization cf the leading intercept.

Thus we expect the effective intercept (2t FNAL-~ISR ener-
gies and below) is above unity, but for Y # = only a singularity
exactly at unity can appear, with logarithmic -orrections.
All three phenomena rely quantitatively on the functional depen-
dence ao(z) of the short-range ersemble. Thus, the amount of promo-

tion, the characteristics of proliferation, and the final renarmalization,




will all depend on the quantum numbers of the short-range poles, through

the ""conventional'' MPM dynamics. These dependences may be seen,
for example, in the prototype 3-20l: MPM, discussed by Pinsky and
Thomas(b) in the context of inclusive phenomenology, which includes
charge symmetry (but not higher symmetries).

The relative magaitudas of the leading-trajectory é's are depen-

dent, to first order in %, on the rnzzwutedes of the short-range den-
sities p. evaluated at 2z ¥ 1. This gives us & systematic way to study
J >
- . = .
the relative shifts in perturcaticon dhzzvy, wheauw <1, provided the

perturbation is not carried out closs t¢ & critical point. Unfortunately,

this is just the case when the Pomesan is considered. However, we

1

can examine the relative signs of shiits, when ('2) is unphysically small;
the poles then remain weli below urity, away from criticality.
Expanding (14) aroundé = 0 we obtain, to lst order in a,
i . 3 I
g—‘i_éij,u-z - (CZ)..J $j =p
where
9p,
BZi
p. and its derivatives are evaluated atz.=...=2z_=1 here. The signs

. N
of the shifts a; are then determinec by the matrix
J

3
Mij = Oij - (CZ)

-2 c o
For u <<1, the matrix M 1s positive definite, sc all shifts are positive.

1
a

It is instructive o examine the intercept shifts and residue shifts
in more detail, and compare our results with those of Chew and Rosen-
zweig(7), and Schmidt and Sorenson(s), using the gquark-number expan-
sion. For this purpose we nced a specific MPM, with quantum number
dependent dynamics; the PT madel(é) would suffice, but an even sim-

pler model iirst reveals some essential qualitative features, as we now

show.

(20}

{21)

(22)



9

Consider first a single-chaanel Chew-Pignotti (CF) modzl, with a(z) = Ga.
Then we can investigatc the dependence of the shift;g upon the value of
G. We find p = CZ2 =G irn this casz; from (20), é is given by:
A G
Thus the shift is an increasiny function 0of G, and increases very rap-

—

idly as the input intercept {5 is inrreased wwz=d .. Inthe o~itiiz] van
L3 o2 1 32 s . o
cder Waals model we find o7 =5 fhus we expect in realistic
-
models the shift 6 will De very sensitive to a{d) for a{0) of order 1/2 or

5]

r

larger. If the sho.t-range pole representing nonegraotem-number-exchange
is slightiy higher than guantem-numrber-exchange poles, the fermer will be
promoted higher than the latter, even if no furtner subtieties are involved.
The CP model for the short-range ensemble is inadequate to
account for criticality, however, wiich requires a degemeracy of
leading singularities after promeoticr It is necessary to include (short
rangej correlations.
A second feature of short-ranze dynamics whicn qualitatively
aifects the promotion appears when we include N internal degrees of

freedom, still within the CP framework;

ngl,...zN} = zlGl —‘r..,-‘.-zNGN (24}
with N-fold internal symmetry, we have G, =G2 Zea. =GN; then we can
write
. G
Z., a2 Y=z 4.4 =—
(1(41 ZN) z zN) N (25)
with normailization chosen such that the leading interceptis a(l,..., 1) =G
to correspond to the simpler case discussed above.
Now
e -5 S X
PN and (cz)ij = 6ijN ; (26)
and, from (20),
A G .
¢,1 = — (i=1,2,..,., N). (27

g
)
o]
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A
As N increases, for fixed p.z, the individual shifts 7§i decrease. We

find the leading intercept becomes

A A 2
¢ N, w Y2 A B A2
Cl.=0.(e lsnocle )-LLZ_',ich1=G+§‘(q,ipi--—2-$i)
2 2 2
=G+ G i -2 I;G 5 (28)
o, Nul-G 2 {Npf.G)
In the imit N> G/u,
2
A~
ATy == (29)
2Np2
Thus, we see the net promotion of the leading pole decreases as
N increases indefinitely. This suggests a reason for limited numbers
of internal degrees of freedom in a bootstrap theory; but we will not
go into that subject here.
iIf we wish to aow to consider (for comparison of shifts) a quantum-
number exchange trajectory, we mist introduce dynamics which depend
on the quanium numbers; this introduces a third feature, indicating
a possibility of a greater shift for vacuum poles than nonvacuum poles.
Consider the relative shifts expected for charge-symmetric vs.
charge-antisymmetric exchanges in PT mcdel(é).
I. Leading antisymmetric p trajectory (eqn. 3. 12 of PT):
(3) _
a "z z_, zo) = zOC + 22 (30)
Associated densities:
P+ = p- = 0; po =C :'
C‘2 coefficients: the only nonzero term is (Cz)oo = C.
iI. Leading symmetric P trajectory (eqn. 3.11 of PT): c
: c 1/2
(1) 1 , [1 . 2 23
o e ,m pa) = Sla At 4 +a Ca) 4|5z At -z C-2) [+az 2 B (31)

(1)

’

-3
Note all three components of ¢ contribute to the upward shirt of a

while only one (¢o) contributes to the shift of a(3). Thus, even without
(3)

. . (1) .
2 detailed estimate, we expecta’ ) will be promoted more thana' .




11

The magnitudes of é)i are determined by

2z+z_132

1/2
1

P é [%(ZGA+ 2 - zoC- 12)}2 + 4z+z-Bz ;
There can be, then, depending on the relative values of A, B; and.C,
a much larger shift upward in the symmetric channel than in the
antisymmetric channel. Thus we see a2 reasonable mechanism exists
for promoting the Pomeron up past unity, while leaving the p trajectory
well below unity.

Exchange-degeneracy between output poles can only be achieved
through the proliferation mechanism. A sscondary pole (f) in the
Pomerorn sector can be degenerate with the leading singularity (p) in
the antisymmetric sector. However, as the promotion mechanism
depends on the same parameters as the proliferation mechanism, such
a "conspiracy' need not ve accidenial.

Further quantitative study of this point will require obtaining
nonconstant solutions to equations {11). In the simplest model (CP)

we are to study the spectrum of:

fgvyaqb(v) + W () = G PV

If this equation has an infinite spectruam of nonconstant solutions, we
can associate them with dynamicaliy generaied secondary poles. The
apparent violations of exchange degeneracy in moderate energy 2-body

collisions will be sfudied in this way.



(1)

(2)

{3)

(1)

(8)

REFERENCES

R. C. Arnold, ANL pnreprint AML-HEP-PR-74-71, December

1975; referred to as I in text.

R. C. Arnold and G. H. Themas, ANL-HEP-75-21 (to be pub-

lished in Phys. Rev.); refer-ed to as AT in text.

R. C. Arrold and G. H. Thomas, Pays. Lett. 478, 371 (1973).

J. Dash, Phys. Rev. _I_)_S_, 2937 {1973). Further discussion is con-
tained in: S. Pinsky and G. H. Thoraas, Phys. Rev. D10,

2237 (1974).

G. H. Thomas, Phys. Rev. I8, 3042 (1973).

D. Scalapino and R. Sugar, Phys. Rav. D8, 2284 (1973).
S. Pinsky and G. H. Thomas, Fhys. Rev. D9, 1350 {1974);
referred to as PT in text.

G. F. Chew and C. Rousenzweig, Burkeley preprint (1975).

C. Schmidt and C. Sorenson, preprint (1975).



