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ABSTRACT

A dynamical theory of ix 'lltiparticle amplitudes, based on a

functional integral representation embodying collective long-range cor re-

lations, is applied to the calculation of Regge intercepts and residues.

Poles arising in conventional multiperipheral models will characteristi-

cally be modified in three ways: promotion, renormalisatioa, and a

proliferation of dynamical secondary trajectories, reminiscent of dual

models.



We have proposed a theory in I of high energy multiple pro-

duction phenomena formulated as a stochastic field theory modification

of multiperipheral dynamics. In this paper we study the characteristic

new features expected for Regge intercepts, compared to conventional

multiperipheral models. The intercepts are calculated from a generating

functional, as in A-T.

We consider production amplitudes for n secondary hadrons

with rapidities y., impact-parameters b. , and internal quantum-numbers

v.; the reaction is

a + b — a' + b! ? h, + . . -h •I n

We will simplify the kinematic description as is conventionally done in

simple discussions of multiperipheral models, by considering all

secondaries to be in the central region; this restriction could be removed

at the expense of complex notation.

The A-T "Multi-Eikonal" Ansatz for this production amplitude

with a generalization to include quantum numbers, is :

A ( r* . , . r * ; v v j if; V „ v. ; i- , , v , ) = A (ST; w , v ; v , , v ,
n l n 1 n [ a o a b o a b a b

" . " , G(rT. v. R; v . . . v , )
j=l j j 1 a b

•TTK(rT. ?T; v., v Ig"; u . . . v ,) (1)
k j k j k ' a b

where r*=(y, &7 and R H ( Y , B); Y = In S . , and Efis the relative impact

parameter between incident particles a and b.

As in AT, we define a generating functional which can be used to

express overlap functions and inclusives;

> n b -n b. Vj.-.-vJ ^ r . . d \ c ( r 1 , v 1 ) . . . | ( V v n

Suppressing notation of dependences on IT and (v . . . v. , ), we can write
a b

F as:

(2)



F r n =^j<- v J - V i d r - ( r-v )

where we have defined V by

exp ( V ) H jK f (4)

The l imits of y in tegra t ions in the above express ions a r e y = ±Y/2; the

t> in tegra ls a re cut off by JG| . Following I, we will a s stun e V can be

divided into V r V , where V is shor t range in rapidi ty, and V is
L S 5 L>

small in magnitude compared to unity, but long range in rapidity (dom-

inated by Regge cuts) and of only one sign (presumably positive). Then

we can esrpress F as a functional integral over F , the short-range-only

ensemble generating functional, defined as is F but with no V :

rci -L ±- .*-. J '. <Tr.£fr..v.) :G(r.,v.)l •,.' exp i v^K*., ru , v ;, »v)]
1 * ' n nl

We can represent F c at high energies as a sum over the leading sin-

gularities in the Laplace-transform with respect to Y. We may define

corresponding functionals a [f] &Qd S [O by:
m m '

where the summation runs over the leading poles (at a given %), with

ordering Q ) O ) O ) . . .

The one-dimensional parametrization, long-range in rapidity, adopted

in I for V can be generalized to include b . If we assume an exponential

decrease in \b \,

(7)
4- it.

where 1c = (k .̂Tc )̂ is Fourier conjugate to r = (y,$\. We assume here that
V L * r r r2* d e P e n d s o n l y on r = ? j - r , and also does not depend upon the

internal quantum numbers v., as appropriate for a leading-singularity



(pomeron) induced cut correction. A cutoff at large k is assumed in (7).

Using the approximation that short range correlation lengths are

much smaller than the characteristic range of V , we obtain the A-T

generating functional in the form:

1 n —-̂ T, :: '+YII *

(m)

r.v-pJ-r
> si J-

where, if we ignore the ultraviolet cutoff in V for the moment,
i

i JYIZ

where we will take <r = 1/2 as in I; and

. "•>_ J J - . • I r̂  lyl . . _ d> » l

From the formal expression (8) all observables can be calculated, following

A&T. The multiplicity generating function, and the Regge-trajectery

intercepts, are obtained by specializing to constant ? = Z (v = 1,.. . N).

We wish to investigate here the relation between the intercepts and

residues of the short-range-only ensemble, defined by (5), and the final

output intercepts and residues calculated from (8).

For this purpose it is sufficient to ignore the impact parameter var-

iables and consider a one-dimensional system- Then we seek to evaluate

tiie behavior, as Y -*00, of the multiplicity generating function given by (8)

with»> as in (9) without the (n,0) term, and}, as in (10) with (Z , . . . , Z,T)
o » b r 1 I N

replacing (f , . . . , % ). We drop the subscript on X henceforth. The
(1)high-lying output intercepts will be determined in general by saddle

points of the functional integrals in the numerator of (8). We consider

each m separately. The saddle-point functions $ will satisfy_Jjz£j_i. = 0,

which gives the set of coupled naniinear (formally differential) equations:

(9)

(10)



J

with j = l , . . . , N; m = 0 , 1, 2, . . .

Here

y y ^ ( y - - - < * ( y = . ^ ^ 2
e • • • • » z

N
e

J

For each solution^ of il . , tn; c c r ; .-pr-.ding saddle-point approxi-

mation for an associated our JUT: ir.ieicept =.:.; resiaue is;

The leading output intercept '-.t this levei of approximation) will be the

largest value of a when all possible £ 's are used in (13). For -large Y,

the term involving j3 in \12", plays n) roLe i:i determining p, and we may

drop it during caiculatior. of -he 0's. The leading a, for each m, will

be expected to arise from a constant cp, since contributions from !|kinetic"

(derivative) terms are negative in a.

Thus, for the leading intercept, we expect 0to satisfy (11) without

the derivative terms. These form >' couplec "Mean-Field" equations

(for each m):

2 A 0 1 9 N
4 0 . = f • . ( - . e , . . . , z e ) (14 \

j j x IN

Note the residues of the output poles aws obtained, *in this approximation.
01 0N

by evaluating the short-range 3 a t (z.. e , . . . , z e * ).
When a is taken from a "hard-core" (Chew-Snider-Dash- .

°3
Van der Waals ) short-range model, with short-range correlations arising

only from kinematic (t . ) effects, we obtain from (14) exactly the
mm

Van der Waals mixture theory studied (at criticality) by Thomas , a very

successful description (with essentially no free parameters) of high

energy multiplicity distributions.

Corrections to the saddle-point Q'S can be computed by expanding

o i ) i n a Taylor series around 0 = 0 , as explained in L We can

can write the saddle-point expression for (8), keeping only the dominant



(constant) 0 for each m, as: f

F ( Z 1

with ; \
r ' Y / 2 - ) , > . - . t i

We have written t = 0 - 0 for each m; to 4th order in t|;.

1 >. J i jk . . . o-In z. a la 2

•where the trace operation refers to the matrix indices on C_.

For small \, the correction to the mean-field result for the inter-

cept from F will be of order \, unless <£ is in the vicinity of criticaiity,

where p. nearly cancels C y We will t e r m (19) the ''quadratic" approxi-

mation to F • A cutoff on the k integral in (19) is implied , as in (7).

We discuss the shift in trajectory-intercepts, first according

to (14), then the role of nonconstc.nt solutions to (11), and finally the

influence of fluctuations as in I.

' - ^ 3 dy£z
rni:j(y)\} (16)

where the Cm ' s are defined by:
p

m i •. . IN

The factor D is independent of the shor t - range dynamics and is given by

the denominator of (8J. Since s1*- is only quadratic in 0 , -we can analy-

tically obtain D if des i red , but the expression is not required here.

If the output intercepts are not L. the vicinity of a critical point,

we may drop t e rms higher than quadratic in (17); the functional integral

in (16) then becomes a quadratic form in <}/, and cac be expressed in

closed form;



We can distinguish tr.:-ue ruw .haracteristic features preseut in our

theory, compared ro the airnple short-range ensemble.

(1). If the long-range correlations were reduced indefinitely

in magnitude, we would find u. ->ca', thus, from (14), ail

0-* 0, and the output intercepts fi would coincide with those

of the short-rar^s system alone. As we increase |VT |,

•j." decreases, and the output intercepts become larger,

as determined by <p frcm '14) and a from (13). We may

call this a "'promotion1' oi the short-range poles.

(2). For nonzero V. we encounter also a second phenomenon;
Li

(11) will have nor.-constant solutions which generate

secondary (i. e. nonleading) saddle points a in (13). There

will be usually an infinite number of these, forming a

rich spectrum of secondary poles, not present in the

short-range ensemble. V'e will call this a proliferation

of the high-Lying ooles. With u - Z and small X, this is

seen explicitly in the similar model calculation of Scalapino

and Sugar. .

(3). At very large Y, the long range fluctuations will become

important, and as in critical phenomena, the true asymp-

totic behavior associated with the leading intercept will be

corrected, compared to the mean-field approximation (14),

by a substantial amount. It is only at this stage that the

Froissait bound is relevant. We expect generally that this

final correction is negative, a downward shift in fi. This

can be cctiled a rei-ormalization of the leading intercept.

Thus we expect the effective intercept (at Fl^AL-ISR ener-

gies and below) is above unity, but for Y -* •» only a singularity

exactly at unity can appear, with logarithmic corrections.

All three phenomena rely quantitatively on the functional depen-

dence a (z) of the short-range ensemble. Thus, the amount of promo-

tion, the characteristics of proliferation, and the final renarmalization,



will all depend on the quantum numbers of the short-range poles, through

the "conventional" MPM dynamics. These dependences maybe seen.

for example, in the prototype J-polj MPM, discussed by Pinsky and

Thomas in the context of inclusive phenomenology, which includes

charge symmetry (but not higher symmetries).

The relative magnitudes of the leading-trajectory (p's are depen-

dent, to first order in $, on the ?r.?^studes of the short-range den-

sities p. evaluated at z ^ .. This. =:.v î us c. systematic way to study

the relative shifts in. perturoa.cio.-i dr-̂ -v.-y. v/hcn g. <sr-l, provided the

perturbation is not carried oat-clos-s to & critical point. Unfortunately,

this is just the case when the Pome ran is considered. However, we

can examine the relative signs of shifts, when 0 is unphysically small;

the poles then remain weii below unity, away from criticality.

Expanding (14) around 0 = 0 ve obtain, to 1st order in $,

L j 6 . . a 2 - ( C , ) . . | J . = p. (20)
j L l j L l j J j l

where

3 p .
(C ) . . = z . KJ ; (21)

9z.

p. and i ts der ivat ives are evaluated at z . - . . . =z =1 he re . The signs
1 i IM

of the shifts 0 . are then determined by the matrix
M.. = ii26 i ; - (C2).. . (22)

-2

For \i « 1 , the matrix M is positive definite, so all shifts are positive.

It is instructive to examine the intercept shifts and residue shifts

in more detail, and compare our results with those of Chew and Rosen-

zweig , and Schmidt and Sorensor. , using the quark-number expan-

sion. For this purpose we need a specific MPM, with quantum number

dependent dynamics; the PT model would suffice, but an even sim-

pler model ilrst reveals some essential qualitative features, as we now

show.



Consider first a single-channel Chew-Pignotti (CF) model, with a(z) - Gz.
A

Then we car. investigate the dependence of the shift 0 upon the value of

G. We find p = C^ = G in this case; from (20), 0 is given by:

A G

0 =— (23)
H2 " G

Thus the shift is an increasing function of G, and increases very rap-
2

idly as the input intercept |Gi is \r. : re ased .i_ •,••.=. -.? •_ . In th° r-itiv i . van

der Waala model J we find - " =— - ~ . Thus we expect in realistic

models the shift 9 will be very sensitive to a(0) for a(0) of order 1/2 or

larger. If the sho,. c-range pole representing aOn•qr.aatein-nuiHber-exchange

is slightly higher than quantum-nurr.ber-exchange poles, the fernier will be

promoted higher than the latter, even if no furtner subtleties are involved.

The CP model for the short-range ensemble is inadequate to

account for criticality, however, wiiich requires a degeaeracy of

leading singularities after promotioi. It is necessary to include (short

range) correlations.

A second feature of short-ran^e dynamics which qualitatively

affects the promotion appears when we include N internal degrees of

freedom, still within the CP framework;

Q(z1 . . . .xN) = = i G 1 + . . . + « N G N (24)

with N-fold internal symmetry, we have G, =G_ =.. . =G. ; then we can

write

fl|2i V = ( V - + V N
 (25)

with normalization chosen such that the leading intercept is Q(1, . . . , 1) = G

to correspond to the simpler case discussed above.

Now

pi = i a n d ( C 2 > i r 5 i j § ; ( 26 )

and, from (20),

0. = ^ ( i = l , 2 f . . . , N ) . (27)
1 Nn~ - G



2 A

As N increases, for fixed \i , the individual shifts i). docrease. We

find the leading intercept becomes

2
A
a = i

- _,,. -G 2 <Nn2-G)2

In the limit N » G/ u ,

(28)

(29)

Thus, we see the net promotion of the leading pole decreases as

N increases indefinitely. This suggests a reason for limited numbers

of internal degrees of freedom in a bootstrap theory; but we will not

go into that subject here.

If we wish to now to consider (for comparison of shifts) a quantum-

number exchange trajectory, v/e mast introduce dynamics which depend

on the quantum numbers; this introduces a third feature, indicating

a possibility of a greater shift for vacuum poles than nonvacuum poles.

Consider the relative shifts expected for charge-symmetric vs.

charge-antisymmetric exchanges in PT model

I. Leading antisymmetric p trajectory (eqn. 3. 12 of PT):

a ( 3 )(Z ± ,__,Z o) = Z Q C + __ (30)

Associated densities:

p + _ p _ _ 0 ; po = C

C coefficients: the only nonzero term is (C_) = C.
2. 2 oo

II. Leading symmetric P trajectory (eqn. 3. 11 of PT):

(1) 1 ffl ' V 2)1/Z

a (z , z ,z ) = -(z A+ I +z C+.£_)+> \~(z A+I •-z C - „_) +4z z B i (31)
+ - o _ o l o c vj-2 o l o 2 J + - J

Note all three components of 0 contribute to the upward shift of a ,

while only one (0 ) contributes to the shift of a1 ' . Thus, even without

a detailed estimate, we expect a' will be promoted more than a .



1 1

The magnitudes ofp, are determined by

2z z B2

There can be, then, depending on the relative values of-A, B̂  and'C,

a much larger shift upward in the symmetric channel than in the

antisymmetric channel. Thus we see a reasonable mechanism exists

for promoting the Pomeron up past unity, while leaving the p trajectory

well below unity.

Exchange-degeneracy between output poles can only be achieved

through the proliferation mechanism. A secondary pole (f) in the

Pomeron sector can be degenerate with the leading singularity (p) in

the antisymmetric sector. However, as the promotion mechanism

depends on the same parameters as the proliferation mechanism, such

a "conspiracy" need not be accidental.

Further quantitative study of this point will require obtaining

nonconstant solutions to equations (11). In the simplefst model (CP)

we are to study the spectrum of:

If this equation has an infinite spectrum of nonconstant solutions, we

can associate them with dynamically generated secondary poles. The

apparent violations of exchange degeneracy in moderate energy 2-body

collisions will be studied in this way.
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