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ABSTRACT

Crossing.relations for helicity amplitudes for particles of
arbitrary spin are formulated without recourse to the introduction of
scalar amplitﬁdes. The basic assumption is that the amplitudes are
simply rélated bj analytic continuation; the péth of continuatioﬁ is
carefully specified. The relations ére given a simple geometrical
interpretation. The relation between'nN.* nN and s - NN obtained
in this way agrees with that obtained by direct elimination of

scalar amplitudes.
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1. Introduction

- The most common applications of crossing-relations involve
farticles of spin O or at most % . The customary Dirac formalism
allows one to express the reaction amplitude in éenms of so-called
scalar amplitudes ("A" and "B" in the case of n-N scattering) and
the crossing-relation then simply states that analytic continuétion
of a scalar amplitude from the physical region of & channel to that
of a "crossed" channel ylelds the corresponding scalar amplitude in
the crossed channel. The introduction of scalar amplitudes is not
8 simple matter in the general case, so that it would be technically
advantageousl to formulate the crossing-relations in terms of some
other amplitudes, which are more easily generalized, for example.

helicity amplitudes.(1,2)

A crossing relation for helicity amplitudes for a simple
case, such as sl scattering versus NN annihilation into two pions,
can, of course, be obtained indirectly by elimination of the scalar
amplitudes A and B from the equations connecting A and B to the
helicity amplitudes Fx“ and Gku for the two crossed-reactions. But
the relation obtained is not very transparent at first sight. How
can it be generalized? |

Recently we arrived at a very simple geometrical interpre-
tation of these relations, which suggests an obvious generalization.
Essentially the same interpretation has been arrived at independently

and apparently somewhat earlier by M. S. Merinov and V. I. Roginskii (3)

and by Ja. A. Smorodinsky. (5) The results of these authors, however,

{
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are only similar to but not identiéal with ours. 'In particular, the
formulae derived by these authors do not seem to agree with those
obtained by the elementary "indirect" method for nN-scattering, and
must therefore be incorrect. We believe that this is due to certain
complications arising from analytic continuation, complications which
are not discussed in either of the above-mentioned papers. We hope,
therefore, that the following remarks will contribute to the further

elucidation of this problem.

2. An Example: #«N Scattering

Let us first oriefly recall the results of the calculation

via the scalar amplitudes. The nN scattering amplitude is given by

u(p,) Tu(p,)
(1)

. - 1 =1 .
T = -A+3u" ir-(a,+a)B .

The notation is standard, (2) except that the usual B is replaced
by B/u. The helicit& amplitudes G++ and G+_, say, are then obtained
by an appropriste choice of the Dirac spinérs u(pl) and u(pg). The:
formulae of this section are based on the phase conventions of
reference 1. Note that according to Eq. (13) of (1), there is a

S5 M '

factor (-1) © © in the definition of the helicity state for “particle

2". 1In the following equations the pion in both the initial and final

N
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state is taken as "particle 2", so that the factor is avoided. One

has, ignoring an irrelevant overall phese-factor,

’ 2
= cos(es/e) {A + K tew }

G,, = 2B,
(2)
. fe, o5
G,_ = sin(6_/2) m A+ B I

where k and 9~"s are c.m. momentum and scettering angle, ¢ = (m2+k2.)%
and w = (u2+k2)% are c.m. energies of nucleon and meson respectively.
For the relation of these variables to the Mendelstam variables s,

t, .u (or s) and related notations we refer the x:eadér to the papers

of W. R. Frazer and J. R. Fulco. (&) With the abbreviation

s = [s-(w)®] [s-(m-w)°] : (3)
we have '
¥ = s sin(e f2) = (-st)E/s (1)
cos(e_/2) = (sPHst)P/s = [ (wP-p2) 2-su)? /5 s
¢ = (om0 e (omnPd) (e} (8

These formulae are to be used in the physical region for the
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s-channel (rN scattering). 1In this region the square roots in (4)-(8)
are all positive by definition. In the t-channel (sx - NN) the

helicity amplitudes are given (6) by

F,, = -(p/m)A + (q/u)cosé B
(7)
F,_ = (Ea/mp)cosé B
where:
b= (Gto92 , o= (GtudZ,  cost = (s-u)/pa (8)

and the functions A(s,t), B(s,t) in the t-channel region are anal&tic
continuations of the corresponding functions in the s-channel region.
In these equations, the nucleon in the final state is taken as
"particle 2". If A and B have the kind of singularifies.that are
postﬁlated'in the Mandelstam representation, the analytic continuation
has Lo gu Lrom @ 'point", sEy B = si*ie, t = ti-ie', where € is infinite-
simal and positive, s, > (m+p)2, t; <0, s;u; < (me-pe)2 to & point

s = sf-le, t = tf+ie where sf £

equations the variable u is, of course, u = 2(m‘+p2)-s-t. If we

< 0 and scu, > (merﬁe)?. In these
assume, for the sake of simplicity, that u stays real along the tra-
jectory, then in order to reverse the sign of the imaginary parts

of s and t, the trajectory must go through a point of the real s,t-plane.



If this is the only real point of the trajectory, and if the real

point lies within the triangle defined by the inequalities:
. 2 2 2
s < (mhu) ) u < (mt)” , t<bp, ‘ (9)

then we will have insured that the endpoint is still on the "first
sheet" where A and B are given by the Mandelstam formulae and have
the correct values for the t-channel.

The coefficients of A and B in Eq. (2) héve certain singula-
rities (branch-singularities), namely, as can be seen from Eqs..(3)-
(6) at s = 0, 58 = (mip)g, t = 0 and su.= (me-pe)g. The trajectory
should, of course, avoid these singularities. We may assume that the
imaginary part of s(-t) remains small throughout so ﬁhat the tra-
Jjectory may be specified for our purposes by drawing a line in the
s,t-plane, indicating.by a cross the point where the trajectory
crosses the real é,t plane. The lines su = (me-ug)e, s =\(m-p)2
and t = O divide the triangle (9) into five pieces, see Fig. 1, and
depending on where the crossing-point lies, one will get different
determinations of the coefficients in Eq. (2) at the final point in
the t-channel. Since an overall change in sign of G, and G+_ is
unimportant, we have to distinguish oply two cases: if the crossing
pqint lies within the hyperbolic segment delimited by t =0 and

su = (m?-pe)a, then the final values of cos(es/2) and‘sb%sin(es/Q)

are pure imaginary and of the same sign. In all other cases, they
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are pure imaginary and of opposite sign. Thus if we adopt the first
alternative, we have.

1
cos(es/2) = -2ipq sin6/s , & 2

sin(es/z) = 2iE/s , (10)
i

where 2E = t2 is the total energy in the c.m. system. The minus sign

in the expression for cos(es/E) is explained in the Appendix. After

introducing these values into Eg. (2), we may eliminate A and B

from (2) and (7), obtaining

G,y = (2i/8) [mg sin@ F,* E(p-qcosG).F+_] R
(11)

G,. = (21/s) [ &(p-q cosB)F, - mqsin6 F, ] ,
where, as pointed out before, it is irrelevant which of the two
determinations for the square root of (3) is used, provided it is

2
the same in 'the two equations.
It is easy to verify the identity
(mq sine)2 + E2(p-q cose)e = 82 (12)

so that, apart from the uninteresting factor i, the transformation
matrix vetween the two sets of helicity amplitudes is an orthogonal

matrix. But the meaning oflthis transformation is not immediately

apparent.
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Owing to the orthogonal nature of the transformation we are,
however, tempted to write Eq. (10), disreggrding the factor i, in

the form

G++ = sin X F++ + cos X F+_
(11')
G+_ = cosX F++ - sinX F+_
where X is determined by
tamx = 22 siné ' (13)
=~ E(p-q cosé) _
In order to interpret this formula, we must reexamine carefully the
process of analytic continuation.
3. Geometrical Interpretatioﬁ
In the customary presentation of the crossing relations one
rewrites the conservation law for nN scattering
G4 *tP = Gt A (k) |
in the form '
ql - q2 = -pl + p2 (15)

and reinterprets -qy and -p; as initial four-momentum of a pion and
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Tinal -four-momentum of an antinucleon respectively. It is clear that

in this interpretation the values of the four-momente are not the same

in Bqs. (14) and (15), since q, and P, are positive timelike in Eq.

(14) and negative timelike in Eq. (15). In fact; the values of Eq. (14)
correspond to the initial point of the trajectory of Fig. 1, those of
(15) to the final point. Moreover one sees that also the values of

9 and N have to vary along the trajectory since
2
u = (ql'pe) (16)

cannot remein constent. However, this variation of ql_and Py ié often
disregarded, since in the end the two four-vectors revert to the
real positive timelike mass-sheil. In fact, if_the initial point
of the trajectory of Fig. 1l lies in ﬁhe u < 0 part of the physical
region, we may indeed assume that the final values of’ql and p, are
identical with the initial ones. Henceforward we shall make this
assumption for simplicity. |

Tﬁus in the latter case indicating by primes the values of
Qyseen etc. at the end of the trajectory, we may write
Q' = =P, L'=-%, n'=-F, Q1)
where qu2 are the pion momenta in the initial state, and p2Pl are

the nucleon and antinucleon momenta in the final state 6f the

reaction in the t-channel. It should be noted that Pl and QQ must
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be different from p, and g, in Eq. (14). 1In this respect the usual
notation is apt to lead to confusion.
' We may clearly assume that at every stage of the analytic

continuation the vectors pl, pg, %, L (vhether real or complex)

lie in the xz plane, since this gives us sufficient freedom to vary
s and t at will. This assumption avoids phase-factors connected
with the azimuthal variable 0,3 and furthermore it means that the y
axis is not affected in any of the Lorentz transformations we shail
encounter in the following discussion.

Let us now introduce, in addition to the customary helicit&
amplitudes Gux(s,t) so far employed, the notion of "generalized"
helicity amplitudés-pr(peqz;plql) by which we mean matrix elements
of the scattering matrix T between helicity states satisfying
condition (14) but not subject to the c.m. condition: §1 +'gi = 0.
The phases of the nucleon helicity states are defined by Eq. (6)
of (1), with ¢ = O and 6 unrestricted. The discontinuity at the
"south pole" causes no trouble since the state obtained with 6 = x

5 , o
is simply (-1? times the state with 6 = -5, independent of the

helicity. Let B be the velocity of the center of mass

B = (pyray)/(eg )

i 1 ‘ -
+212)§ , and denote by ‘B 1 the

Lorentz transformation (in the xz-plane) which transforms the c.m.

L, 2. 2 2
where ¢, = (m ) )% s W = (w

(18)
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o] o . o o ., s e
6pl ql = zﬁql , Where pl ql is an initial

state satisfying the c.m. condition. Then according to the trans-

L

formetion law of helicity states

to rest, so that pl =}

oeslpl°>~> = ’\/-'x‘ U)\,}\(plsﬂﬁ)lplk' > - (19)
where U is a spin-rotation matrix corresponding to & rotation about
the y-axis; The rotation angle is indicated in the diagram in velo-
city space, see Fig. 2. Besides the velocity-points corresponding to
Py and ql, the diagram has a point reprgsenting the velocity of the
c.m. (& cross) and a point O representing the velocity of the arbitrary
system, in which the momenta are Py and q - From Eq. (19) and the

Lorentz invariance of the T-matrix one easily derives the connection

- :

C(s,t) = i’_ Uw'("35-1;1’2)%';\'<P2923P1q1)u>\'>\(1’13‘g) (20)
mN! -

A similar formula holds for an arbitrary Lorentz transfbrmation £,

except that in thicAcaae we would huve on the lett-hand side again a

generalized amplitude for the values z-lpe,... etc. of the four-momenta.
We may perform the analytic continuations of Gux(s,t) by

continuing each of the three factors on the right hand side of Egq.

(20). Let us assume, for the sake of simplicity, that the vglues (17)

at the end of the trajectory satisfy the c.m. condition for the

crossed reaction



=1k~
ql + 82 =‘ gl + 22 = 0 (21)

It then turns out that the end-value of the generalized helicity
amplitude GQ,K.(pzqe;plql) coincides up to & phgse factor (see Bqs.
(31)) with a helicity amplitude F for the crossed reaction. Such
a relatignship has in fact been conjectured by other authors,?é),(jj
with the difference that here contrary to their results, thg hélicity.
does not change sign in the crossing process. Finally, the spin-
rotatioq matrices U, or rather their analytic continuation, give
rise to the orthogonal transformetion Eq. (1l), as has also been
pointed out by Ya. Smorodinsky (4) and by Marinov and Roginskii; (3)

| Let us first examine the behavior of the generalized amplitude
‘Guk(pzqg;plql). We can do this in two ways. To:begin with, we may
say that G is given by Eq. (1) when the spinors are chosen to be
"helicity-spinors? uu(pa) and ux(pl). This means that, for example;
u(pl) must satisfy; in addition’ to the Dirac equation (iyplinuXpl) =0

5
also a helicity condition

ap, w(p) = 2,22 u (p) (22)

vhere A = + 4
Since we have made the-customary assumption that there is
no problem iﬁ continuing the matrix T, Eq. (1) along a path such as

that of Fig. 1, the whole question reduces to the behavior of the
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‘helicity spinors. Since Py reverts to the positive real (i.e.

D, real) mass shell in the end, it is not hard to see that the

2
helicity p remains unchanged in the process. The case of pl requires
more care. At the end of the process, u will, of course, become a
negative energy spinor, v(Pl)'satisfying e Dirac equation
(inl-m)v(Pl) = 0. If we assume, moreover, that along the trajectory
pl2 never becomes zero, then since Eq. (22) is always satisfied by

-~

analytic continuation, it follows that the final V(Pl) must satisfy
-g-P.v. (P,) = 2n(P 2)% v, (P.) (22)
gty ~1 A1 .

wvhere the sign of the square~root on‘the right hand side is determined
unambiguously by continuity along the path. As we shall see
presently, the sign of the square-root is determined to be positive,
whereupon it follows that the antinucleon state deséribed by vx has

| helicity +A, as one can see immediately by examining the charge-
conjugate spinor d%ﬂ(orvby the more elementary hole-theory argument:

a missing particle of spin -A in the gl-direction, corresponds to

an antiparticle of spin +\ in the same direction). Thus the heIicity

does not change sign in the analytic_continuation.

The crux of the argument, it will be seen, is the behavior
of the square-root of Ple. This is not trivial, since the vector
gl becomes complex along the path. Let, however, € be the time-

Acomponent of pl at any point of the trajectory so that (Ple)% is the



end value of
2 2.4
(el -m~)?2 . : (23)

The whole queétion hinges on the path of the representative point

for € in the complex €

that 9 and p, are exactly real at the endpoint. For the initial

-plane, Fig. 3. Now assume for simplicity

value of p; we write instead pl+in where Py and 7 are real, and
n o= (qo, n) is infinitesimal. Thus pl2 = m? and PN = 0. Calecul-
ating in the c.m. system for pl+ql, i.e. assuming p = -ql, the

condition for s = (pl+iq+ql)2 to have a positive imaginary part is

0 <ndy = mgm -Gy = nge + Ry = nglete) .

This implies N > 05 i.e. the initial value of € is el+iqo; it

has & small positive imaginary part.
Similarly the condition that t = (pl-p2)2 has a small
positive imaginary psrt at the enépoint of the Lrajectory implies

that the end-value of ¢, has a negative imaginary part. Thus the

1
endpoints are as indicated in Fig. 3, and thg remaining question

is whether the el-trajectory cuts the real axis between -m and +m
(as indicated in the figure) or not. If it does, the end-value of

(23) is positive, as we have assumed. Now this can certainly be

arranged, if we assume that the time components of the four-vectors
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Py ana q, are eQerywhere complex along -the trajectory except at

the crossing point. Since the latter is.inside the triangle (9)

we may assume that at this point the four-vectors pl,...,q2 are

all "Buclidean" (i.e. have a real time component and a pure

imaginary space component). In this case the nucleon time components

€, and the meson time-components w satisfy the inequalities
-m<e<m, u<o<p , (24)

so that all the energy trajectories satisfy the requirements (for
mesons this would be of interest if they also had a spin).
In conclusion, the discussion above shows that owing to
the large number of variables, when analytic continuatéon in the four-
momenta is involved, the answer is by no means unique, but if one
chooses the convention which can be s£ated in general in the most
simple and natural way, then fhe result is the one we have indicated.
If one wishes to extend this conclusion to genewal spins

and masses, one can resort to the second method we mentioned; namely

one generalizes (20) to an arbitrary Lorentz transformation £:

1 1l -1

-1 ,-1 - -
LI A P e

v\
ql)‘ = IK;UP'“(z ;pe)GPX(pQQQ;plql)Uxx'(p13£) (25)
A :
(1f all four particles have spins, there will be two more indices

to G, and two more U matrices in the product). One then keeps £ fixed,
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and continues analytically to the values (17). This requires

analytic continuation of Uhh‘(pl;z) to UKX'(-Pl;L)' .Let us write
0) =4 (L -1 )
U(p;e) =47 (b "(p)s n(z “p)) (26)

where ¢ﬁ9’§ IEY(S) is the representation of the rotation group
pertaining to the spin s of the particle. We have to write explicitly
the components of the Lorentz transformations h(p) and h(p') as
functions of the four components.of p and p' = z-lp,'where h(p) is

defined according to the helicity convention
h(p) = 1y g . 2(P) (27)

where 6,¢ are the polar angles of B; i.e. h(p) is an ordinary Lorentz
transformation of velocity IBVbO in the z-directién followed by
rotations through Euler angles -¢,6,¢. One then'performs the anal&tic
continuation. In order to determine the transformation properties
of the continuatién of Guk’ it is sufficient to consider smell 2 in
Eq. (25).- In particulér, we assume that'plo and, since £ is sma;l,

e

also (I,pl)o cross the real exis between +m and -m as indicated in

Fig. 3. With this essumption, it is straightforward to show that

LMoy (Psp) = Uy, 87HR) =0 T (R) = U, (Bs2) . (28)

The appearance of the complex conjugate is to be expected since the



-19-

particle changes side of the reactions.

Equation (25) now becomes, for the end-values (17),

-1 Al =l el N, AN -1
G int (8 Pyt Qpi-k TPyie Tqy) = (-D)TT U, (8 75p,) X
MA
=150 . .

This trensformation law is to be compared with that for the generalized
helicity amplitude Fuk(pQPl;quQ)' lIn order that this coincides w1§h
Fuk(s’t) as defined in (7) when g + @, = 0, the helicity state

|p2,u > must be defined with the additional factor (-1)%'“. The
transformation law is then

1

- -1, -1 -1 _ \' u'- Y BN |
Pl e e ey = ) DR e (05,8 505,0)

H'X'

-1 a1 : |
X U (8775p)0, 0, (8 75P)) (30)
. .
where the factor (-l)“ H results from defining the nucleon helicity
P
state with the factor (-1)2 M. Thus, if there is & direct connection
between F and G, it must be (apart from an overall phase factor)

=\

(Note that if the antinucleon had been taken as "particle 2" there
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would be no factor (el)“-K in BEq. (31).) Notice also that no reversal

. of the sign of the helicity occurs; this circumstance is again strictly

connected with a path such as indicated in Fig. 3. If we now specialize

to a c.m. system g *+ Qp = O, the right hand side becomes (—l)“-kFux(s,t).
We now come to the final step, the analytic continuation of

the U-factors in Eq. (20), which is different from the preceding case,

because the Lorentz transformation ZB also varies along the péth. We

notice in fact that, along the path, 25 becomes a coﬁplex Lorentz

transformetion and at the end it becomes zB,,‘where the velocity

p' = %l—;;l | (32)
10 "10
may be greater than unity (i.e. than the velocity of light) so that
ZB, may also be complex. lIn particular, when the transformafion is
from an annihilation c.m. to an elastic scattering c.m;, ' is
infinite. Since the vectors are assumed to remain. in thé y-2 plane,
U(pl;zB) and U(za-l;pa) can each be expressed in terms of a single.

angle, X, and X2’ respectively. For the continuation process, we

1
choose as the arbitrary point 0 of Fig. 2 the velocity point'of the
center of mass of 129 Pl or ql, Q2 reached at the end of the contin-
uation. Let C denote the velocity point of the center of mess of

bys Gy OF ﬁa,qe. The angles may be determined from the cosein theorem

(g) applied to the triangles OCpi and OCp, respectively, see Fig. ha.
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cosh pCl cosh pOl - cosh pOC

cos X, = ~ s
1 sinh Po1 sinh Po1
_ (33)
: cosh pC2 cosh 002 - cosh QOC
cos X5 = ~5imn sinh ’
Fee Poe

where tanh o001 is the absoclute velocity of pl with respect to C, etc.
For an arbitrary point on the path of continuation and using different

masses for Dy and Py 9y and QW for the sake of generality

2 2 2
(s¥m) -1y ") Py = 2(pytay o) my

cos X 5 5.k

8 (B - )® S

2 2 - 2 (34)
(s4my -1y )Py - 2(Ppg*aa0)

2 BL
Sy (ppg =My )

cos X

i 2 _ 2 2
_ evaluated in the rest system of O. Here 5, = [s-(ml-ul) ][s-(m1+ul) 1,
etc. At the end of the specified path, one obtains the positive
1
determinations of Si and (pioz-mie)f. Thus there are no new problems

in the continuation of cos X,. We must next determine how sin Xy

i
continues. Consider the initial configufation when O and C are
connected by a real Lorentz transformation. Let 6 denote ﬁhe angle
from-p, to g, in O. Further, define oy to be the angle from Dty
to 2 in 0. (In order to determine signs correctly, it is essential
to pay attention to the directions of the angles. For example, 6

is positive if a positive rotation about the y-axis takes_gl parallel

to gl.) These two angles are related by
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. . 2 2,3 2 3
sin o = 51n6(qlo -uy )'/[(plo+qlo) -s]2 (35)

where the positive determination of the square roots must be teken.
The sine theorem (2) applied to triangle chl, Fig. ba, yields the
relation | |

. ) 1

2m, [( plO+qu) -8]°

sin X, = sin Sl e , (36)

and again the positive determination of the square roots is to be

taken. Consequently,

-

2m (q 2-u 2)
sin X1 = sin@ - ! lg L 5 ' (37)
' 1

R .
since the continuations of S, and (qloe-p.z)2 have already been specified,

1
Eq. (37) allows us to express the continuation of sinxl unambiguously
in terms of sin6. Clearly, sinX, can be continued in the same way.
This completes the continuation of Eq. (20) and provides the relation ..
between Gux(s,t) and F“K(s,t). |

Let us first apply these results to the sN problem. At the

end of the continuation we have

| 2 2 i
cosx, = -aosx, = - (W) (LME _ 2E(p-g cose)
S(t/k-m)2 \
(38)
sinX. = sinX 2mq sinf .

17 % T TTg



Eq. (éo) is then
1 3 - :
GM(S)t) = Z -dulﬁ (ﬂ'xl d;\ }\(X )( l)u )\ 1)\1(5 t); (39)

ul)\l

or

sin Xl F++ + cos X F+_ »

[®]
]

)

cos Xl F++ - sin X F+_

Q
+
1
]
[
)

which agrees with Eq. (11).

The formulae are reédily generalized to the case where all
four particleé have spih. For notational convenience, we continue
to write the formulae as.if a baryon of mass oy and spin ;l is
crossed with a mesonvof mass ué-and spin O These are easily tfans-
lated to other cases. The relation between.the helicity amplitude
is (baryon indices p, A, meson indices a,B): |

'St = Sﬁ (-1)7 (x )dx (X 1) dg f3(wgm l(wl)F et (808

p' K‘)B',a ()-Pl)

l-’vﬁ)

where
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'(s+m12'“12)(t+m1?'m22)'2m12(meg'm12+”12'“2?)

cos X

1 - )
- 2p 7t Sl
cos X, = (s*m22'“22)(t+m22'm12)‘emég(mze‘m12+“12'“22) | (42)
2p /T 5,
2 2,,. 2 | 2 2 2 .2 2 2
cos ¥, = (s "-my ™) (g -y ) =20y ™ (my "oy 4y "oy ) ,
2q /t S1 |
2 . , -
cOS \Ve = ; : .
2a vt 82
and
sin Xl'= 2m1q sine/sl ,
sin X, = 2m2q.81ﬁ9/82 , - : : (43)
sin ¥, = 2u,p sinG/Sl ;.
sin Wa = 2p2p sin9/82 P
with ' | |
| i
o - [t2-2t(m12+m22)+(m12-m22)2]2/2/% ’
2
2 = (£P2t(u P D) ey P D) 2 2

The quantity n depends on which particles eare defined as "particle 2"

in G and F. (See the discussion following Eqs. (2) and (31).) Suppose
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that in G the mesons are taken to be "particle 2". The value of q
for tne various'possible choices in the definition of F are tabulated

below:

"particle 2" ' 1

Py 2 Ap +a-p
Dy Q) A-u

Pl’ ql 0

P, Q a-p .

Perhaps the easlest convention to remember is that n = O if an
uncrossed particle is "particle 1" in hoth G and F while a crossed

particle changes from "particle 1" to "particle 2" and vice versa.
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APPENDIX

A short explanation of the expression for cos(2§), Eq. (10), o

is given. First note that from (5) and (8)

e
cos(iﬁ) = #2ipq sind/s , ' (A.1)

or
] 1
sinf, = thipq(-st)? sin6/s , (A.2)

S

~for an arbitrary point on the path of continuation. Consider the

. invariant quantity

We evaluate @ in the initial configuration in the center of mass of
pl,ql, continue the expression to the final configuration and evaluate

- in the center of mass of P ,p,. Initially,

0 =1s (plxpEZ-pezplz) = - &° s;nes/hJE ; ' (A.g)



-27-
finaliy

o = -t (Q,P

L1z ~ Plelz) = -2Bpq sinb ,

or

8E pq Vs sine/S2

sineé
s

1
~bipg(-st)? sine/s2 r

and hence one must take the minus sign in (A.l). Note that this
relation is independent of which wéy the path of continuation circles
us = m?ape)e; in fact, the path of Fig. 1 and the condition that

sines > 0 initielly require Sine'<'dlin the final configuration.

(A.5)

(A.6)
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FOOTNOTES

We are indebted to Prof. M. Goldbérger for repeatedly
drawing our attention to this question.

The opposite sign for S in the two equations corresponds,
however, to the alternative choice of the crossing point!
See, for example, reference 1. |

See, for example, reference 2, especially the Appendix.
Equation (22) does not, of course, determine the phase and
normalization of uk(pl). We‘assumehﬁhat the latter are
chosen according to the convenﬁion explained above when
pl is real. They are then determined fgr the other values
by analytic continuation.

We are indebted to Prof. R. Cutkosky for a remark in this

connection.
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FIGURE CAPTIONS

The s,t plane for nN - nN and nx = NN (drawn for m = hy).

Avelocity space diagram. The ends of the segments 12 and 9

represent the velocity points of pl and ql; X represents the
velocity point of the c.m. of Py and Q5 0 is an arbitrary
voint. The arrows indicate the directions in which the spin

components are measured.

The complex ei-plane.

The velocity space diagram for an arbitrary point along the
path of continuation. C represents the c.m. of Py and 9

at this point; O represents the c.m. of Pl and Py in the

final configuratioh.

The velocity space diagram for the final configuration.
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