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ABSTRACT 

Crossing relations for helicity amplitudes for particles of 

arbitrary spin are formulated without recourse to the introduction of 

scalar amplitudes. The basic assumption is that the amplitudes are 

simply related by analytic continuation; the path of continuation is 

carefully specified. The relations are given a simple geometrical 

interpretation. The relation between nN ~ nN an~ n~ ~ NN obtained 

in this way agrees with that obtained by direct elimination of 

scalar amplitudes. 
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1. Introduction 

. · The most common applications of crossing-relations involve 

particles of spin 0 or at most ' • The customary Dirac fo~lism 

allows one to express the reaction amplitude in tenns Qf so-called 

scalar amplitudes ("A" and "B" in the case of n-N scattering) and 

the crossing-relation then simply states that analytic continuation 

of a scalar amplitude from the physical region of a channel to that 

of a "crossed" ?hannel yields the corresponding scalar amplitude in 

the crossed channel. The introduction of scalar amplitudes is not 

a simple matter in the general case, so that it would be technically 
1 

advantageous to formulate the crossing-relations in terms of some 

other amplitudes, which are more easily generalized, for example 

helicity amplitudes.(!,g) 

A crossing relation for helicity amplitudes for a simple 

case, such as fiN scattering versus NN annihilation into two pions, 

can, of course, be obtained indirectly by elimination of the scalar 

amplitudes A and B from the equations connecting A and B ~o the 

helicity amplitudes F~ and G~ for the two crossed-reactions. 

the relation obtained is not very transparent at first sight. 

can it be generalized? 

But 

How 

Recently we arrived at a very simple geometrical interpre-

tation of these relations, which suggests an obvious generalization. 

Essentially the same interpretation has been arrived at independently 

and apparently somewhat earlier by M. S. Marinov and v. I. Roginskii (l) 

and by Ja. A. Smorodinsky. (~) The results of these authors, however, 
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are o.nly similar to but not identical tvi th ours. In particular, the 

formulae derived by these authors do not seem to agree with those 

obtained by the elementacy "indirect" method for nN-scattering, and 

must therefore be incorrect. We believe that this is due to certain 

complications arising from analytic continuation, complications which 

are not discussed in either of the above-mentioned papers. We hope, 

therefore, that the following .remarks will contribute to the fUrther 

elucidation of this problem. 

2. An Example: nN Scattering 

Let us first briefly recall the results of the calculation 

via the scalar amplitudes. The nN scattering amplitude is given by 

The notation is standard, (~) except that the usual B is replaced 

by B/~. The helicity amplitudes G++ and G+-' say, are then obtained 

by an appropriate choice of the Dirac spinors u(p1) and u(p2) . The: 

formulae of this section are· based on the phase conventions of 

reference 1. Note that according to Eq. (13) of(~), there is a 
s -A. 

(1) 

2 2 factor.(-1) in the definition of the helicity state for "particle 

2". In the following equations the pion in both the initial and finai 
" 
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state is taken as "particle. 2", so that the factor is avoided. One 

has, ignoring an irrelevant overall phase-factor, 

. 2 l 
G++ = cos{e /2) fA + k +€w B r 

s l lllJ.l -' ' 

= sin(e /2) _r1! A + ~ B 1 
s ... m J..1. ) ' 

2 2. 1 

•..rhere k and 8·' are c .m. momentum and scattering angle, € = {m +k ):2" 
s 

2 2 1 

and w = (J..I. +k )2 are c.m. energies of nucleon and meson respectively. 

For the relation of these variables to the Mandelstam variables s, 

t, u (or s) and related notations we refer the reader to the papers 

of W. R. Frazer a.nd J.. R. Fulco. (_§) With the abb:reviat.:l.on 

we have· 

k2 s2
/4s 

1 

= sin(e /2) = ( -stf£ /S 
6 

cos(e /2) (S2+st)~ /S 
2 2 2 1. 

= = [ (m -J..I. ) -su) 2 /S s 

2 2 1 2 2 1 

€ = (s+rn -J..I. )/(4s)2 w = (s-m +J..I. )/(4s)2 

These formulae are to be used in the physical region for the 

(2) 

( 3) 

( 4) 

( 5) 

( 6) 
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s-channel (nN scattering). In this region the square roots in (4)-(6) 

are all positive by definition. In the t-channel (nn - NN) the 

helicity amplitudes are given (§) by 

= -(p/m)A + (q/~)cose· B 

(7) 

F+- = (Eq/~)cose B 

where: 

J cose = (s-u)/4pq, {8) 

and the functions A(s,t), B{s,t) in the t-channel region are analytic 

continuations of the corresponding functions in the s-channel region. 

In these equations, the nucleon in the final state is taken as 

"particle 2". If A and B have the kind of singularities that are 

postulated'in the Mandelstam representation, the analytic continuation 

lla.B l:.o go frum a ·voint says= si+i~, t.= ti-1e:, vhere e:is infinite­

simal and positive, si > (m+~) 2 , ti < 0, siui < (m2-~2) 2 to a point 

s = sf-i€, t = tf+i€ where sf< 0 and sfuf > (m2~~2)~. In these 
,... 2 

equations the variable u is, of course, u = 2(m~~ )-s-t. If we 

assume, for the sake of simplicity, that u stays real along the tra-

jectory, then in order to reverse the sign of the imaginary parts 

of s and t, the trajectory must go through a point of the real s,t-plane. 
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If th.is is the only real point of the trajectory, and if the real 

point lies within the triangle defined by·the inequalities: 

. 2 
s < (m~) , 

2 
u < (m~) , 

2 
t < 4"" ' 

then we 1-rill have insured that the endpoint is still on the "first 

sheet" where A and B are given by the Mandelstam fo~ulae and have 

the correct values for the t-channel. 

The coerficients of A and B in.Eq. (2) have certain singula-

rities (branch-singularities), namely, as can be seen from Eqs. (3)-

2 2 2 2 (6) at s = o, s = (m±IJ.) , t = 0 and su = (m -J.L ) • The trajectory 

should, of course, avoid these singularities. We may assume that the 

imaginary part of s(-t) remains small throughout so that the tra-

jectory may be specified for our purposes by drawing a line in the 

s,t-plane, indicating by a cross the point where the trajectory 

crosses the real s,t plane. The lines su = (m2-J.L2)
2

, s =,(m-J.L) 2 

and t = 0 divide the triangle (9) into five pieces, see Fig. 1, and 

depending on where the crossing-point lies, one will get different 

dete~inations of the coefficients in Eq. (2) at the final point in 

the t-channel. Since an overall change in sign of G++ and G+- is 

unimportant, we have to distinguish only two cases: if the crossing 

point lies within the hyperbolic segme~t delimited by t = 0 and 
. 2 2 2 . 1 

su = (m -J.L ) , then the final value.s of cos(e
6
/2) and _s~sin(es/2) 

are pure imaginary and of the same sign. In all other cases, they 

(9) 
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are pure imaginary and of opposite sign. Thus if we adopt the first 

alternative, ve have. 

cos(e /2) = -2ipq sine/s , s 

1 

1 
s:2sin(e /2) = 2iE/S s ' 

(10) 

·..rhere 2E = t2 is the total energy in the c .m. system. The minus sign 

in the expression for cos(e /2) is explained in the Appendix. After 
s 

introducing these values into Eq. (2), •re may eliminate A and B 

from (2) and (7), obtaining 

G++ = (2i/S) [mq sine F++ + E(p-qcoset ~+-] 

·..rhere, as pointed out before, it is irrelevant ·,.;hich of the two 

determinations for the square root of (3) is used, provided it is 
2 

the same in ·the two equations. 

It is easy to verify the identity 

so that, apart from the uninteresting factor i, the transformation 

matrix bet~o1een the t"'..JO sets of helicity amplitudes is an orthogonal 

matrix. But the meaning of this transformation is not immediately 

apparent. 

(11) 

(12) 
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. · O'h'ing to the orthogonal nature of the transformation we are, 

however, tempted to write Eq. (10), disregarding the factor i, in 

the form 

where X is determined by 

mq sinG 
tanX = E(p-q cosG) 

In order to interpret this formula, we must reexamine carefully the 

process of analytic continuation. 

3· Geometrical Interpretation 

In the customary presentation of the crossing relations one 

rewrites the conservation law for nN scattering 

= 

in the form 

= -p + p 1 2 

and reinterprets -~ and -p1 as initial four-momentum of a pion and 

(11 1
). 

(13) 

(14) 

(15) 

·: 
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final-four-momentum of an antinucleon respectively. It is clear that 

in this interpretation the values of the four-momenta are ~ the ~ 

in Eqs. (14) and (15), since~ and p1 are positive timelike in Eq. 

(14) and negative timelike in Eq. (15) • In fact, the values of Eq. {14) 

correspond to the initial point of the trajector,y of Fig. 1, those of 

{15) to the final point. MOreover one sees that also the values of 

q1 and p2 have to var,y along the trajectory since 

(16) 

cannot remain constant. However, this variation of q1 .and p2 is often 

disregarded, since in the end the two four-vectors revert to the 

real positive timelike mass-shell. In fact, if the initial point 

of the trajectory of Fig. 1 lies in the u < 0 part of the physical 

region, we may indeed assume that the final values of q1 and p2 are 

identical with the initial ones. Henceforward we shall make this 

assumption for simplicity. 

Thus in the latter case indicating by primes the values of 

q1, ••• etc. at the end of the trajectory, we may write 

q I = 
1 ~· = -~, -P ' .l 

where q1~ are the pion momenta in the initial state, and p2P1 are 

the nucleon and antinucleon momenta in the final state of the 

reaction in the t-channel. It should be noted that P1 and ~ must 

(17) 
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be different from p1 and ~ in Eq. (14) • In this respect the usual 

notation is apt to lead to confusion. 

l-Ie may clearly assume that at every stage of the analytic 

continuation the vectors ~1, ~2 , ~1 , ~ {whether real or complex) 

lie in the xz plane, since this gives us sufficient freedom to vary 

s and t at will. This assumption avoids phase-factors connected 
3 

with the azimuthal variaQle ~, and furthermore it means that the y 

axis is not affected in any of the Lorentz transformations we shall 

encounter in the following dj.scussion. 

Let us now introduce, in addition to the customary helicity 

amplitudes GW..(s,t~ so far employed, the notion of "generalized" 

helicity amplitudes·GW.,(p2~;p1q1) by which we mean matrix elements 

of the scattering matrix T between helicity states satisfying 

condition (14) but not subject to the c.m. condition: ~l + ~l = o. 

The phases of the nucleon helicity states are defined by Eq. (6) 

of (l), with~= 0 and e unrestricted. The discontinuity at the 

"south pole" causes no trouble since the state obtained with e = 1t 

is simply c-1fstimes the state with e = -n, independent of the 

helicity. Let~ be the velocity of the center of mass -

. 2 ·-: 2)~ 
where £1 = (m +~ . , 

2 . 2 1 -1 
~ = (J.L +~ )2 1 and denote by .tf3 the 

Lorentz transformation (in the xz-plane) which transforms the c.m. 

(18) 
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state satisfying the c.m. condition. TI1en according to the trans-
4 

formation law of helicity states 

where U is a spin-rotation matrix corresponding to a rotation about 

the y-axis. The rotation angle is indicated in the diagram in velo-

city space, see Fig. 2. Besides the velocity-points corresponding to 

p
1 

and q
1

, the diagram has a point representing the velocity of the 

(19) 

c .m. (a cross) and a point 0 representing the velocity of the arbitrary 

system, in which the momenta are p1 and q1 . From Eq. (19) and the 

Lorentz invariance of the T-matrix one easily derives the connection 

\-, 
\ = i 

L_· 

~'11.' 

A similar formula holds for an arbitrary Lorentz transformation J,, 

(20) 

P.xce:pt that in thio co.ae we would h1;1ve on the le1't-hand side again a 

-1 generalized amplitude for the values£ p2, ••• etc. of the four-momenta. 

We may perform the analytic continuations of G~(s,t) by 

continuing each of the three factors on the right hand side of Eq. 

(20). Let us assume, for the sake of simplicity, that the values (17) 

at the end of the trajectory satisfy the c.m. condition for the 

crossed reaction 
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It then turns out that the end-value of the generalized helicity 

amplitude G~'A.'(p2~;p1q1) coincides up to a phase factor (see Bq, •. 

(31)) with a helicity amplitude F for the crossed reaction. Such 

a relationship has in fact been conjectured by other authors, (']j , (1) 

(21) 

with the difference that here contrary to their results, the helicity 

does not change sign in the crossing process. Finally, the spin-

rotation matrices U, or rather their analytic continuation, give 

rise to the orthogonal transformation Eq. (11), as has also been 

pointed out by Ya. Smorodinsky (~) and by Marinov and Roginskii. (]) 

Let us first examine the behavior of the generalized amplitude· 

G~ (p2~;p1 q1). We can do this in two ways·. •ro begin with, we may 

say that G is given by Eq. (1) when the spinors are chosen to be 

"helicity-spinors~ u~(p2) and ~(p1). This means that, for example, 

u(p1) must satisfy; in addition· to the Dirac equation (irp1-tm)u.(p1) = 0 
5 

also a helicity condition 

(22) 

where A. = ± i 
Since we have made the customary assumption that there is 

.. 
no problem in continuing the matrix T, Eq. (1) along a path such as 

that of Fig. 1, the whole question reduces to the behavior of the 
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helic.ity spinors. Since p2 reverts to the positive real ( i.e. 

p2 real) mass shell in the end, it is not hard to see that the 

helic.ity ~remains unc.hanged in the process. The case of p1 requires 

more care. At the end of the process, u >rill, of c.ourse, become a 

negative energy spinor, v(P1) satisfying a Dirac. equation 

(iyP1-m)v(P1) = 0. If we assume, moreover, that along the trajectory 

2 !:l never becomes zero, then since Eq. (22) is always satisfied by 

analytic continuation, it follows that the final v(P1) must satisfy 

(22 1
) 

where the sign of the square-root on the right hand side is determined 

unambiguously by continuity along the path. As we shall see 

presently, the sign of the square-root is determined to be positive, 

whereupon it follows that the antinucleon state described by vA has 

helicity +A, as one can see immediately by examining the charge­

conjugate spinor cv·(or by the more elementary hole-theory argument: 

a missing particle of spin -A in ~e ~-direction, corresponds to 

an antipartic.le of spin +A in the same direction). Thus the helicity 

does not change sign in the analytic continuation. 

The crux of the argument, it will be seen, is the behavior 

2 
of the square-root of ~l • This is not trivial, since the vector 

~l becomes complex along the path. Let, however, e1 be the time­

c.omponent of p1 at any point of the trajectory so that <:12)~ is the 
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end va,lue of 

2 2 1. 
( E -m ) 2 

1 

The ;.,rhole question hinges on the path of the representative point 

for El in the complex E1-plane, Fig. 3· Now assume for simplicity 

that q1 and p2 are exactly real at the endpoint. For the initial 

value of p1 

. "'1 = ( 1'lo' 2) 

we write instead p1+i11 where p1 and 11 are real, and 

2 2 is infinitesimal. Thus p = m and p •n = 0. Calcul-1 1 ., 

ating in the c.m. system for p1+q1 , i.e. assuming ~l = -~1, the 

condition for s = (p1+i,+q1) 2 to have a positive imaginary part is 

This implies 11
0 

> O, i.e. the· initial value of El is E1+i,
0

; it 

has a small positive imag~nary part. 

2 Similarly the condition that t = (p1-p2) has a small 

pnsi.tive imaginary part at the endpoint of the tri:I.JE:!ctory implies 

that the end-value of El has a negative imaginary part. Thus the 

endpoints are as indicated in Fig. 3, and the remaining question 

is whether the €
1

-tra,jectory cuts the real axis between -m and -+m 

(asindicated in the figure) or not. If it does, the end-value of 

(23) is positive, as we.have assumed. Now this can certainly be 

arranged, if we assume that the time components of the four-vectors 

(23) 
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p1 and ~ are eve~Nhere complex along ·the trajectory except at 

the crossing point. Since the latter is inside the triangle (9) 

,.,e may assume that at this point the four-vectors p1 , ••• , ~ are 

all "Euclidean" (i.e. have a real time. component and a pure 

imaginary space component) • In this case the nucleon time components 

€, and the meson time-components m satisfY the inequalities 

-m < € < m , -~ < w < +J.L ' 

so that all the energy trajectories satisfY the requirements (for 

mesons this would.be of interest· if they also had a spin). 

In conclusion, the discussion above shows that owing to 

(24) 

the large number of variables, when analytic continuation in the four-
6 

momenta is involved, the answer is by no means unique, but if one 

chooses the convention which can be stated in general in the most 

simple and natural way, then the result is the one we have indicated. 

If one wishes to extend this conclusion to gene7.al spins 

a . .nd masses) one can resort to the seoond method we mentioned, nwnely 

one generalizes (20) to an arbitrary Lorentz transformation t: 

(if all four particles have spins, there will be two more indices 

to G, and two more U matrices in the product) • One then keeps t fixed, 

(25) 
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and continues analytically to the values (17). ~is requires 

analytic continuation of U~ 1 (p1 ;t) to U~,(-P1 ;t) .. Let us write 

(26) 

where ~f' = ~(s) is the representation of the rotation group 

pertaining to the spin s of the particle. We have to write explicitly 

the components of the Lorentz transformations h(p) and h(p') as 

-1 functions of the four components of p and p' = £ p, where h(p) is 

defined according to the helicity convention 

h(p) = r 9 e -~ Z(p) 
' ' 

(27) 

where 8,9 are the polar angles of .Ei i.e. h(p) is an ordinary Lorentz 

transformation of velocity I2V-bo in the z-direction foilowed by 

rotations through Euler angles -~, e, ~ . One then performs the analytic 

continuation. In order to determine the transformation properties 

of the continuation of G~, it is sufficient to consider small l in 

Eq. (25) • · In particular, we assume that p10 and, since t is small, 
(: 

also (tp1)
0 

cross the real axis between +m and-mas indicated in 

Fig. 3. With this assumption, it is straightforward to show that 

The appearance of the complex conjugate is to be expected. since the 

(28) 
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particle changes side of the reactions. 

Equation (25) now becomes, for the end-values (~7), 

(29) 

This transformation law is to be compared with that for the generalized 

helicity amplitude F~(p2P1 ;q1~). In order that this. coincides with 

F~(s,t) as defined in (7) 'ivheu g1 + ~ = 0, the helicity state 

IP2 ,~ > must be defined with the additional factor (-l)i-~. The 

transformation law is then 

I 

where the factor (-1)~ -~ results from defining the nucleon helicity 
1 

state with the factor (-1)2-~. Thus, if there is a direct connection 

between F and G,· it must be (apart from an overall phase factor) 

(Note that if the ant1nuc1eon had been taken as "particle 2" there 

(30) 

(31) 
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'llOuld be no factor ( .;..1) 1-1-A. in Eq. ( 31) . ) Notice also that no reversal 

- of the sign of the helicity occurs; this circumstance is again strictly 

connected with a path such as indicated in Fig. 3. If we now specialize 

to a c.m. system ~l + ~ = 0, the right hand side becomes (-1)1-l-~~(s,t). 

We now come to the final step, the analytic continuation of 

the U-factors in Eq. (20), which is different from the preceding case, 

because the Lorentz transformation t~ also varies along the path. 

notice in fact that, along the path, tp becomes a complex Lorentz 

transformation and at the end it becomes £~,, where the velocity 

~· = 

may be greater than unity (i.e. than the velocity of light) so that 

t~, may also be complex. In particular, when the transformation is 

from an annihilation c.m. to an elastic scattering c.m., ~· is 

We 

infinite. Since the vectors are assumed to remain in the y-z plane, 

U(p1 ;t~) and U(t~-1 ;p2) can each be expressed in terms of a single. 

angle, x1 and x2, respectively. For the continuation process, we 

choose as the arbitrary point 0 of Fig. 2 the velocity point of the 

center of mass of p2, P1 or q1 , ~ reached at the end of the contin­

uation. Let C denote the velocity point of the center of mass of 

(32) 

p1, q1 or p2,~. The angles may be determined from the casein theorem 

(g) applied to the triangles oep1 and OCp2 respectively, see Fig. 4a. 
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cosh Pel cosh p01 - cosh Poe 

sinh Pel sinh p01 

cosh Pc2 cosh p02 - cosh Poe 

stnh Pc2 sinh p02 

( 33) 

where tanh Pel is the absolute velocity of p1 with respect to C, etc. 

For an arbitrary point on the path of continuation and using different 

masses for p1 and p2, q1 and ~ for the sake of generality 

= 

= ' 

evaluated in the rest system of 0. 

etc. At the end of the specified path, one obtains the positive 
2 2 l 

determinations of Si and (p10 -mi )'2. Thus there are no new problems 

in the continuation of cos Xi •. We must next determine how sin Xi 

continues. Consider the initial configuration when 0 and C are 

connected by a real Lorentz transformation. Let e denote the angle 

from-~1 to _g.1 in o. Further, define 0'1. to be the angle from _p1 +_g.i 

to ~l in o. (In order to dete~ne signs correctly, it is essential 

to pay attention to the directions of the angles. For example, e 

is positive if a positive rotation about the y-axis takes ~l parallel 

to _g.
1

• ). These t'•o angles are related by 

(34) 
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sin~ = ( 35) 

where the positive detennination of the square roots must be taken. 

-
The sine theorem (~) applied to triangle 0Cp1, Fig. 4a, yields the 

relation 

sin~ ' 
(36) 

and again the positive determination of the square roots is to be 

taken. Consequently, 

= sinG· ; (37) 

2 2 .!. 
since the continuations of s1 and (q10 -~ ) 2 have already been specified, 

Eq. (37) allows us to express the continuation of sinX1 unambiguously 

in terms of sinG. Clearly, sinX2 can be continued in the same way·. 

This completes the cont~nuation of Eq. (20) and provides the relation 

between G~(s,t) and f~(R 1 t). 

Let us first apply these results to the 'J'(N problem. At the 

end of. the continuation we have 

= 

2 2 .!. 
(s-+m -~ )(t(4) 2 

. 2 
S(t/4-m )2 

2mq sinG 
s 
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Eq. (20) is then 

or 

= ' 

1vhich agrees with Eq. (ll). 

The formulae are readily generalized to the case where all 

four particles have spin. For notational convenience, we continue 

to write the formulae as if a baryon of mass ~ and spin s1 is 

crossed with a meson of mass ~2 and spin a2 . These are easily trans­

lated to other cases. The relation between the helicity amplitude 

is (baryon indices ~, ~, meson indices a,~): 

where 

( 39) 

(40) 
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cos "'1 = 

and 

sin xl = ~q sin9/S1 ' 
sin x2 = ~q. sme/s2 ' 
sin v1 = 2~1p sin9/S1 ' 
sin t 2 = 2~2p sin9/S2 ' \ 

with 

p = [t2-2t(ml2~2)+(UJ.2_~2)2]'~/21t ' 

[t2-2t(~l2+f.l22)+{~2-~2)2]'~/21t q, = 

' 

' 

' 

The quantity '1'1 depends on 1vhich particles are defined as "particle 2" 

(42) 

(43) 

in G and F. (See the discussion following Eqs. (2) and (31).) Suppose 
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that in G the mesons are taken to be "particle 2". The value of 11 

for the various possible choices in the definition of F are tabulated 

below: 

"particle 211 .!1 

p2, Q2 A-J.L + a - f3 

p2, ql A-J.L. 

pl' ql 0' 

pl' Q2 a-f3 

Perhaps the ea.sies.t convention to remember i!:> that 1"1 = 0 if an 

uncrossed particle is "particle 1" in both G and F while a crossed 

pl;l.rticle changes from "particle 1• to "particle 2" and vice versa. 
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APPENDIX 

G 
A short explanation of the express~on for cos( 2s), Eq. {10), _, 

is given. First note that from (5) and (8) 

e 
cos( 2s) = ±2ipq sine/s 

' 
(A.l) 

or 

1 
sine

8 
= ±4ipq(~st)2 sin8/S , (A.2) 

for an arbitrary point on the path of continuation. Consider the 

invariant quantity 

ql() qlx qlz 

~ = Plo pl" Plz (~.3) 

P2o P2x P2z 

We evaluate ~ in the initial configuration in the center of mass of 

p1,q1 , continue the expression to the final configuration and evaluate 

in the center of mass of P1,p2 • Initially, 

~ = IS (p ~ -p p ) = - s2 sine /418 ,· 
1~2z 2z lz , s 

(A.4) 



finally 

or 
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sine = BE pq. IS sine/s2 
s 

l 2 = -4ipq(-st)2 sin8/S 
' 

and hence one must take the minus sign in (A.l) • Note that this 

relation is independent of which way the path of c"ontinuation circles 

2 2 2 us = (m -~ ) ; in fact, the path of Fig. 1 and the· condition tha:t 

sine. > 0 initially require ·sine·.::· 0 in the final configuration. 
s . 

(A.5) 

(A.6) 
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FOOTNOTES 

1. We are i:1debted to Prof. N. Goldberger for repeatedly 

drawing our attention to this question. 

2. The opposite sign for S in the two equations corresponds, 

however, to the alternative choice of the crossing point! 

3. See, for example, reference 1. 

4. See, for example, reference 2, especially the Appendix. 

5. Equation (22) does not, of course, determine the phase and 

normalization of u~(p1). We assume that the latter are 

chosen according to the convention explained above ivhen 

p1 is real. They are then.determined for the other values 

by analytic continuation. 

6. We are indebted to Prof. R. Cutkosky for a remark in this 

connection. 
/ 
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FIGURE CAPTIONS 

The s,t plane for nN ~ nN and nn ~ NN (drawn form= 4~). 

Velocity space diagram. The ends of the segments p
1 

and q
1 

represent the velocity points of p1 and q
1

; X represents the 

velocity point of the c.m. of p1 and q1 ; 0 is an arbitrary 

point. The arrows indicate the directions in which the spin 

components are measured. 

F~g 3 The complex €i-plane. 

Fig. 4a The velocity space diagram for an arbitrary point along the 

path of continuation. C represents the c.m. of p1 and q1 

at this point; 0 represents the c.m. of P1 and p2 in the 

final configuration. 

Fig. 4b The velocity space diagram for the final configuration. 
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