

LOCKHEED MARTIN

RECEIVED
NOV 05 1996
OSTI

HEU to LEU Conversion and Blending Facility

Metal Blending Alternative to Produce LEU Oxide for Disposal

Nuclear Materials Disposition Program Office
Y-12 Plant Defense Programs

September 1995

MANAGED BY
LOCKHEED MARTIN ENERGY SYSTEMS, INC.
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

UCN-13675 (6-6-95)

MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Predecisional Draft

**Nuclear Materials Disposition Program Office
Y-12 Plant Defense Programs**

**HEU to LEU Conversion and
Blending Facility**

**Metal Blending Alternative to
Produce LEU Oxide for Disposal**

September 1995

Predecisional Draft

MASTER

**Oak Ridge Y-12 Plant
managed by
Lockheed Martin Energy Systems, Inc.
for the U.S. Department of Energy
under contract DE-AC05-84OR21400**

44

This page intentionally left blank.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

CONTENTS

Preface.....	vii
1. Mission and Assumptions.....	1
1.1 Mission.....	1
1.2 Assumptions.....	1
1.3 Compliance Assumptions.....	2
1.3.1 Rules, Regulations, Codes, and Guidelines.....	2
1.3.2 Safeguards and Security	2
1.3.3 Environmental, Safety, and Health	2
1.3.3.1 Buffer Zones	3
1.3.3.2 Decontamination and Decommissioning	3
1.3.3.3 Toxicological/Radiological Exposure.....	3
1.3.4 Waste Management.....	4
2. Conversion and Blending Facility Descriptions	5
3. Process Descriptions and Requirements.....	7
3.1 Metal Blending Process Descriptions	7
3.1.1 Size Reduction.....	7
3.1.2 Batch Preparation.....	7
3.1.3 Assay Blending	7
3.1.4 LEU Metal Casting	9
3.1.5 LEU Metal Packaging	9
3.1.6 LEU Size Reduction and Oxidation.....	9
3.1.7 LEU Oxide Packaging.....	9
3.2 Feed Streams	9
3.3 Product Streams.....	9
3.4 Utilities Required	10
3.5 Chemicals/Materials Required for the Process.....	10
3.6 Special Requirements	10
3.7 Waste Management.....	11
4. Resource Needs.....	17
4.1 Materials/Resources Consumed During Operation.....	17
4.1.1 Utilities Consumed	17
4.1.2 Chemicals Consumed.....	17
4.1.3 Radiological Materials Handled	17
5. Employment Needs.....	19
5.1 Employment Needs During Operation.....	19
5.1.1 Badged Employees at Risk of Radiological Exposure.....	19
5.1.2 Labor Category Descriptions.....	19

6.	Waste and Emissions from the Plant	23
6.1	Waste and Emissions During Operation.....	23
6.1.1	Airborne Emissions.....	23
6.1.2	Solid and Liquid Waste.....	23
6.1.2.1	Radioactive Waste	23
6.1.2.2	Nonhazardous Waste	23
7.	Hazards Discussion.....	25
7.1	CBF Hazard Considerations	26
7.1.1	Materials at Risk.....	26
7.1.1.1	Radioactive Hazardous Materials.....	26
7.1.1.2	Nonradioactive Hazardous Materials.....	29
7.1.2	Energy Sources	29
7.1.2.1	Fire and Explosion	29
7.1.2.2	Earthquake	31
7.1.2.3	Tornado	31
7.1.2.4	Flood.....	31
7.1.2.5	Nuclear Criticality	31
7.1.2.6	Process Design Related Events	31
7.1.3	Barriers to Release.....	31
7.1.4	Protective Features.....	32
7.2	Accident Scenarios Considered.....	32
7.2.1	Earthquake.....	32
7.2.2	Tornado.....	33
7.2.3	Straight Wind	33
7.2.4	Flood	33
7.2.5	Aircraft Crash.....	33
7.2.6	Truck Crash.....	34
7.2.7	Nuclear Criticality.....	34
7.2.8	Process Related Accidents.....	34
7.3	Selection of Bounding Accident Scenarios.....	34
7.4	Typical Source Terms.....	35
7.4.1	Filter Fire	35
7.4.2	Nuclear Criticality.....	36
7.4.3	Natural Phenomena	36
8.	Intersite Transportation.....	41
9.	Acronyms, Abbreviations, and Initialisms.....	43
	Appendix A: Blending Assumptions and Limitations	A-1
	Distribution.....	D-1

FIGURES

<i>Figure</i>	<i>Title</i>	<i>Page</i>
3.1	Metal blending to produce oxide for disposal	8
3.2	Radioactive liquid waste management block flow diagram.....	13
3.3	Nonradioactive liquid waste management block flow diagram.....	14
3.4	Solid waste management block flow diagram.....	15
A.1	Overall Blending Logic Diagram.....	A-3

TABLES

<i>Table</i>	<i>Title</i>	<i>Page</i>
3.1	Waste stream identification for a Metal Blending Facility to produce oxide for disposal.....	12
4.1	Materials/resources consumed during operation - annual	18
4.2	Chemicals consumed during operation - annual	18
5.1	Employment during surge operation.....	20
6.1	Airborne emissions during operation - annual	24
6.2	Waste volumes during operation - annual.....	24
7.1	Isotopic content of uranium at various enrichments	27
7.2	Materials at risk.....	28
7.3	Potential energy sources.....	30
7.4	Typical atmospheric source terms for criticality	37
8.1	Intersite transportation data - metal blending with oxide waste product	42
A.1	Assumptions for surplus HEU blending	A-2
A.2	Feed streams for various disposition options.....	A-4

This page intentionally left blank.

PREFACE

The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than is the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort.

HEU is uranium (U) with a ^{235}U isotopic content greater than or equal to 20% of total uranium by weight (20% ^{235}U assay). Blending HEU with depleted, natural, or low enriched uranium (LEU) diluent (called blendstock) has been proposed as a disposition option for HEU to permanently reduce its enrichment. The resultant product is LEU, which has a ^{235}U assay less than 20% and is not weapons-usable. Any country or sub-national group would require uranium enrichment capability to re-enrich down-blended HEU. There are existing facilities in the United States that can provide HEU blending capabilities with little capital investment. This option mirrors similar dispositions actions taken by Russia. In addition to providing better resistance to proliferation, HEU blended to 3-5% ^{235}U assay can be sold to the electric power generating industry for use as fuel for their light water reactors (LWR). The sale of this material can recover the cost of converting the HEU into such fuel and can provide additional revenue for the U.S. Treasury. High concentrations of minor uranium isotopes in some HEU inventories prevent the down-blended LEU product from meeting specifications for LWR fuel. Blending to a low assay for waste disposal is a viable approach for these inventories. Therefore, blending HEU to LEU for LWR fuel or waste disposal is an attractive disposition option.

On June 21, 1994 DOE published a Notice of Intent to prepare a Programmatic Environmental Impact Statement (PEIS) for the Long-Term Storage and Disposition of Weapons-Usable Fissile Materials. DOE is amending the scope of the PEIS by removing the disposition of all surplus HEU from the PEIS. Instead DOE will address the disposition of surplus HEU in a separate Environmental Impact Statement (EIS). Five technologies for blending HEU will be assessed: blending as uranium hexafluoride (UF_6) to produce a UF_6 product for commercial use; blending as uranyl nitrate hexahydrate (UNH) solutions to produce a UNH crystal product for commercial use; blending as UNH solutions and then producing an oxide for disposal; blending as oxide to produce an oxide product for commercial use; and blending as molten metal and then producing an oxide for disposal. The surplus HEU inventory is characterized by a variety of physical forms, chemical and isotopic impurities, and ^{235}U assays. Potential blendstock inventories exhibit similar characteristics. Any one of the proposed blending technologies has comparative advantages and disadvantages for blending select batches of HEU and blendstock materials. Inventory variability and the dual nature of the product destiny (LWR fuel or waste) make it unlikely that any one technology will provide for the disposition of all surplus HEU.

This document provides data to be used in the environmental impact analysis for the HEU-LEU disposition option that utilizes metal blending with an oxide waste product. This option will blend 12.4 metric tons (MT) of uranium/aluminum alloy (3.1 MT HEU) with approximately 218 MT of depleted uranium (DU) metal per year. The blended product with 0.9% ^{235}U will be a uranium aluminum alloy. This alloy will be converted to a mixed oxide (approximately 264 MT of oxide per year) that can be stored until an acceptable disposal approach is available. Since HEU exists in a variety of forms and not necessarily in the form to be blended, worst case scenarios for preprocessing prior to blending will be assumed for HEU feed streams.

1. MISSION AND ASSUMPTIONS

1.1 MISSION

The mission of this Conversion and Blending Facility (CBF) alternative will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

1.2 ASSUMPTIONS

As described in Appendix A, the function of this CBF is limited. In summary, the following assumptions apply.

- The assumed bounding case scenario for this CBF alternative will be to blend down 12.4 MT per year of impure uranium-aluminum (U/Al) metal alloy, which contains 3.1 MT of 50% assay HEU, to an impure U/Al oxide containing 0.9% ^{235}U . The diluent feed used in the bounding case scenario will be DU metal.
- Blended LEU product will be 0.9% assay U/Al oxides suitable for storage or disposal.
- Some of the aluminum content in the blended feed (to the furnace) will become part of the slag above the molten metal. However, the aluminum content of the LEU product (up to 4% of the total mass) will not effect the oxidation step or the ability to dispose of the resultant oxide material as waste.
- Surplus HEU feed assumptions include:
 - All surplus HEU feed will be above 20% assay.
 - Surplus HEU feed can be either pure or impure.
 - All surplus HEU feed will be in the forms of metal or metal alloy.

- Diluent uranium feed assumptions include:
 - All diluent uranium feed will be DU in the form of metal.
 - No diluent uranium feed will require chemical purification prior to blending.
- General assumptions relating to the CBF include:
 - All surplus HEU will be supplied from DOE inventories.
 - Adequate supplies of uranium for diluent feed will be supplied by the United States Enrichment Corporation (USEC).
 - Existing domestic facilities will be utilized as the CBF.

1.3 COMPLIANCE ASSUMPTIONS

1.3.1 Rules, Regulations, Codes, and Guidelines

1. New facility design or existing facilities comply with all applicable federal, state, and local laws and regulations. Additional industry consensus codes and standards are applied to the design as appropriate.
2. If new facilities or upgraded existing facilities are needed, structures, systems, and components are designed, fabricated, erected, and tested in accordance with the DOE Order 5700.6 series quality standards. These standards are commensurate with the risks associated with the facility and the significance of each structure, system, and component in mitigating releases of radioactive and other hazardous materials or minimizing risk. As low as reasonably achievable (ALARA) radiological exposure principles are incorporated appropriately throughout the design of the facilities.

1.3.2 Safeguards and Security

1. Programmatic Environmental Impact Statement data do not include facility features to support International Atomic Energy Agency inspections or possible future treaty obligations.
2. Special Nuclear Material (SNM) will be safeguarded through the use of in-process vaults that meet the intent of the requirements for production areas to be considered as nuclear material vault-type areas.

1.3.3 Environmental, Safety, and Health

1.3.3.1 Buffer Zones

1. Existing site conditions may preclude compliance with the "greenfield" requirement for a 1-mile buffer zone between plant operations and the plant boundary. This requirement has been waived for existing facilities. However, public radiological exposure limits will be achieved and every effort will be made to maintain the present buffer zone for any new facilities that need to be constructed as part of the CBF.
2. Distances between any newly constructed modules/facilities are based on technical, safety, and security considerations.

1.3.3.2 Decontamination and Decommissioning

All facilities must consider and incorporate provisions for decontamination and decommissioning.

1.3.3.3 Toxicological/Radiological Exposure

1. Worker exposure to toxic agents will not exceed 80% of the regulatory standard. The ALARA process will be implemented in the design as it affects worker exposure to toxic agents.
2. Worker exposure to radiation will not exceed an annual dose of 1.0 rem effective dose equivalent (EDE). The goal for the CBF for worker radiation exposure is 0.5 rem EDE per year. The ALARA process will be implemented in the design for radiation exposure of workers.
3. Public exposure to radiation at the site boundary from routine operations will not exceed 100 millirem (mrem) EDE per year per DOE 5400.5, Radiological Protection of the Public and Environment and the Radiological Control Manual. The goal for the CBF for public radiation exposure is 1 mrem EDE per year. The ALARA process will be implemented in the design for radiation exposure of the public.
4. The goal is for all facilities to be operated such that operators are not required to wear respiratory protection to meet radiological exposure limits while conducting routine operations.
5. The number of personnel required to work in contaminated areas is minimized and controlled.
6. The use of carcinogens is minimized or eliminated, where possible.

1.3.4 Waste Management

Waste treatment and disposal associated with the CBF will occur on-site or off-site at approved facilities. The following waste management assumptions may apply to the CBF, depending on site requirements:

1. Generation of all wastes is minimized subject to the constraints of ALARA.
2. Mixed low-level waste (mixed LLW) is burned in approved local incinerators or stabilized and stored on-site on a long-term basis as LLW until regulations allow disposal.
3. LLW disposal is in a permitted site.
4. Unclassified hazardous waste is sent to an authorized Resource Conservation and Recovery Act (RCRA) site for treatment and/or disposal.
5. Sanitary wastewater is treated in a permitted facility.
6. Sanitary and industrial solid waste is disposed of in a permitted landfill.

2. CONVERSION AND BLENDING FACILITY DESCRIPTIONS

The Metal Conversion and Blending Facility will probably use existing facilities at a plant location that already has support infrastructure in place. The facility will be a multi-story structure that contains all of the operations needed to convert and blend HEU metal into 0.9% ^{235}U assay U/Al oxides. The facility will be divided into radiological and nonradiological areas. Radiological areas will be divided into areas for processing and storing Category I quantities of SNM and areas for non-SNM. Further division of the areas will be process related. Specifically, storage areas will be separated from processing areas.

The facility must be capable of receiving blending materials. A dock for Safe Secure Trailers (SSTs) is required for receiving HEU. A separate dock is required for receiving blendstock materials and shipping blended product.

Facilities that contain significant amounts of hazardous materials (radioactive materials being a category of hazardous materials) are classified by DOE as Category 1, 2, or 3 hazard facilities. Facilities that contain significant amounts of radioactive materials are classified by DOE as "nuclear facilities." The design criteria for high, moderate, and low hazard classified nuclear facilities are defined in DOE Order 6430.1A, DOE Order 5480.28, and DOE-STD-1020-94. New facility design and construction must meet these criteria. Existing facilities must meet the intent of this criteria. Facilities at non-DOE sites must be licensed by the Nuclear Regulatory Commission (NRC) and must meet equivalent NRC criteria.

This facility will have the following features and capabilities:

1. Redundancy and safety-class systems, as defined in DOE 6430.1A, to maintain building atmospheres during natural phenomena events and credible accident scenarios
2. Three major power systems (uninterruptible power, standby power, and emergency power) to provide safe shutdown and containment (during and after accidents)
3. One or more Material Access Areas (MAAs) for proper safeguards and security of the HEU materials
4. One or more radiation control areas where personnel access and egress will be controlled

5. Heating, ventilation, and air conditioning (HVAC) systems that comply with DOE 6430.1A criteria for containment and filtration
6. Location in protected area (such as the Perimeter Intrusion Detection and Assessment System [PIDAS] at the Y-12 plant) that complies with DOE safeguards and security requirements

3. PROCESS DESCRIPTIONS AND REQUIREMENTS

3.1 METAL BLENDING PROCESS DESCRIPTIONS

Surplus HEU in all forms and at various assay and impurity levels could be converted to uranyl nitrate (UN), purified, converted back to metal and downblended using a melting and casting scheme to achieve a product at 0.9% ^{235}U assay. Processing paths for accomplishing this task are outlined in Figure 3.1. Conversion and purification of metal feed materials for metal blending is not a reasonable scenario. The metal blending process described here is intended only for blending HEU down to waste at 0.9% assay and not producing reactor-grade LEU. The bounding case scenario, blending HEU alloy, is highlighted. It is assumed that ample quantities of depleted uranium would be available or could be purchased for blendstock material. HEU metal and DU metal will be reduced in size, weighed, and placed in appropriate batches into graphite crucibles. Each batch will be melted in vacuum induction furnaces, cast into bars (ingots), and converted in oxide. All casting wastes could be discarded directly as waste. This process is described in the following sections.

3.1.1 Size Reduction

The sizes and shapes of HEU and DU feed materials will vary. Size reduction by breaking in a hydraulic press, shearing, or sawing is required for two principle purposes: to produce roughly uniform size pieces to facilitate process handling and protect process equipment; and to permit accurate preparation of individual furnace batches containing the required mix of HEU and DU blend metal. Propylene glycol is used as a machine coolant during this process. Nitrogen may be used as a blanket (cover) gas.

3.1.2 Batch Preparation

Individual quantities of HEU and DU will be weighed and combined in the proportions necessary to produce the required 0.9% ^{235}U assay in the mix. These metals will be placed in a graphite crucible for melting.

3.1.3 Assay Blending

The HEU and DU batches will be melted in a critically safe vacuum induction furnaces. The vacuum pumps associated with the induction furnaces use pump oil. The HEU and DU materials will be allowed to blend together in the vacuum atmosphere of the furnace until a homogeneous mixture or blend is achieved. During the blending process, argon will be injected into the furnace.

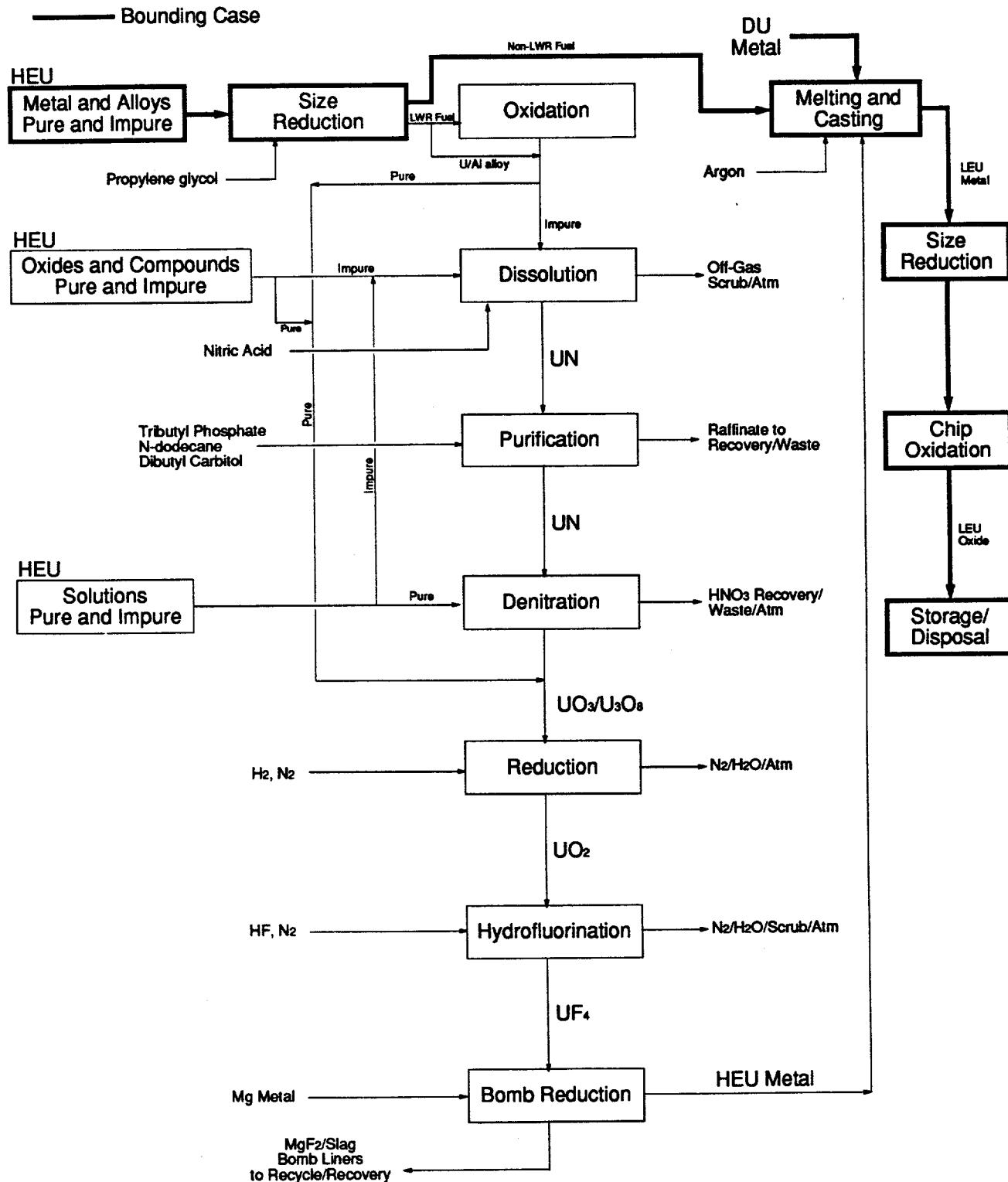


Fig. 3.1 Metal blending to produce oxide for disposal.

3.1.4 LEU Metal Casting

The blended melt will be cast (using a graphite mold lined with yttria) into an ingot in a vacuum atmosphere. After the ingot has solidified and cooled, it will be removed from its casting mold.

3.1.5 LEU Metal Packaging

Each cast ingot will be sampled and packaged in a container for interim storage and transfer to the LEU size reduction operation.

3.1.6 LEU Size Reduction and Oxidation

Each bar or ingot will be cut into chips via rolling, shearing, and cutting on a break press or into turnings on a lathe (whichever is quicker and more economical). The resulting chips and/or turnings will be burned in a controlled environment, with air as the oxidizing agent, to produce mixed U/Al oxides.

3.1.7 LEU Oxide Packaging

The resulting LEU mixed U/Al oxides will be packaged in a container and stored in a dry environment until an acceptable disposal approach is available.

3.2 FEED STREAMS

The metal-blending scenario has two feed streams:

1. Pure and impure HEU metal and U/Al alloy with an average ^{235}U assay of 50% (bounding case is alloy with 75% aluminum and 25% uranium)
2. Pure and impure DU metal with a ^{235}U assay of approximately 0.2% (bounding case)

3.3 PRODUCT STREAMS

The metal blending scenario has two potential product streams as follows:

1. Pure and impure U oxide with a 0.9% ^{235}U assay
2. Pure and impure U/Al oxides with a 0.9% ^{235}U assay and an aluminum content up to 4% (bounding case)

3.4 UTILITIES REQUIRED

The metal blending scenario requires the following utility services:

- Electricity
- Water for fire protection
- Sanitary water
- Tower cooling water
- Chilled water
- Compressed air/breathing air
- Compressed gases
- Telecommunications
- High vacuum systems

3.5 CHEMICALS/MATERIALS REQUIRED FOR THE PROCESS

The bounding case requires the following chemicals/materials:

- Graphite
- Yttria
- Propylene glycol
- Pump oil (for vacuum pumps)
- Argon
- Nitrogen

3.6 SPECIAL REQUIREMENTS

The following special requirements apply to this process:

1. Radiological hazard protection for internal (inhalation/ingestion) exposures to alpha particles from uranium
2. Criticality safety in all phases of material handling, process design, and accident analysis, with safe geometry as the preferred method of criticality control
3. Safeguards and security issues associated with personnel access to and the handling, transportation, and disposal of classified data related to uranium processes and associated with protection of special nuclear material from theft, diversion, or sabotage
4. Consideration of pyrophoric properties of finely divided uranium metal

5. Design of equipment, processes, and storage systems for a rapid and accurate periodic SNM inventory determination
6. Elimination or reduction of the use or generation of hazardous materials to minimize the generation of mixed radiological/hazardous waste streams
7. Attention to maximization of by-product recycle to reduce the opportunity for radiological waste generation
8. Consideration of human factor designs, especially in the handling of large, high-density uranium parts and materials
9. Consideration of the need for classified shape processing
10. Burn protection for handling hot parts
11. Design to reduce material oxidation and provide dust control

3.7 WASTE MANAGEMENT

The primary waste streams generated during the processing of the HEU material are identified in Table 3.1. Each primary waste stream has been assigned in alpha numeric number, listed as the *first* column in the table. The 3-digit alpha portion of each number indicates the waste type (i.e., HAZ for Hazardous, MIX for Mixed, LLW for Low-Level Radioactive, SAN for Sanitary). The numerical portion of each number is a sequential identifier. The waste streams are listed in groups. The *second* column in the table describes each primary waste stream. The *third* column in the table identifies the source of each primary waste stream. The *fourth* column in the table quantifies the volume of each primary waste stream's generation rate, expressing liquid streams in liters per year (L/yr) and solid streams in cubic meters per year (m³/yr). The *fifth* column in the table identifies any treatment provided by the process facility. The *sixth* column in the table identifies secondary treatment that may be required in order to comply with current DOE, State, and Federal requirements.

Figures 3.2, 3.3, and 3.4 depict, in block flow format, the methods expected to be used for waste treatment, storage, and disposal. For the development of these figures, it was assumed that no listed hazardous wastes are present and that the indicated treatment eliminates the hazardous characteristic of the primary waste.

Table 3.1. Waste stream identification for a Metal Blending Facility to produce oxide for disposal

Type	Description	Source	Rate	Treatment Provided	Additional Treatment Required
HAZ-1	Chemical Spillage	chemical receiving	400 L/yr	none	incineration
MIX-1	Sump Wastes	facility cleanup	8,000 L/yr	none	filtration & incineration
MIX-2	Liquid Lab Waste	lab analyses	1,150 L/yr	none	incineration
LLW-1	Decontamination Liquids	decontamination	130,000 L/yr	none	uranium recovery
LLW-2	10% Propylene Glycol, 90% Water	size reduction	150,000 L/yr	none	incineration
LLW-3	Decontamination Solids	decontamination	50 m ³ /yr	none	uranium recovery
LLW-4	Solid Lab Waste	lab analyses	0.25 m ³ /yr	none	immobilization
LLW-5	Yttria Solids	casting	0.03 m ³ /yr	none	immobilization
LLW-6	HEPA Filters	exhaust filtration	50 m ³ /yr	none	volume reduction
LLW-7	Misc. Contaminated Solids	general operations	50 m ³ /yr	none	volume reduction
LLW-8	Air Sampling Filters	emission sampling	0.01 m ³ /yr	none	volume reduction
LLW-9	Oil Filters	machinery maintenance	0.03 m ³ /yr	none	volume reduction
LLW-10	Graphite	casting process	160 m ³ /yr	none	volume reduction
LLW-11	Slag	melting process	140 m ³ /yr	none	none
LLW-12	Brick and Insulation	machinery maintenance	95 m ³ /yr	none	none
SAN-1	Sanitary Sewage	facility operations	11,000,000 L/yr	none	biological treatment
SAN-2	Cooling Tower Blowdown	Recirculating Cooling Water (RCW) system	60,000 L/yr	none	dechlorination
SAN-3	Condensate Blowdown	area heat	600,000 L/yr	none	none
SAN-4	Chemically Contaminated Rainwater	chemical receiving	4,000 L/yr	none	carbon adsorption
SAN-5	Sanitary Solid Waste	facility operations	470 m ³ /yr	none	none

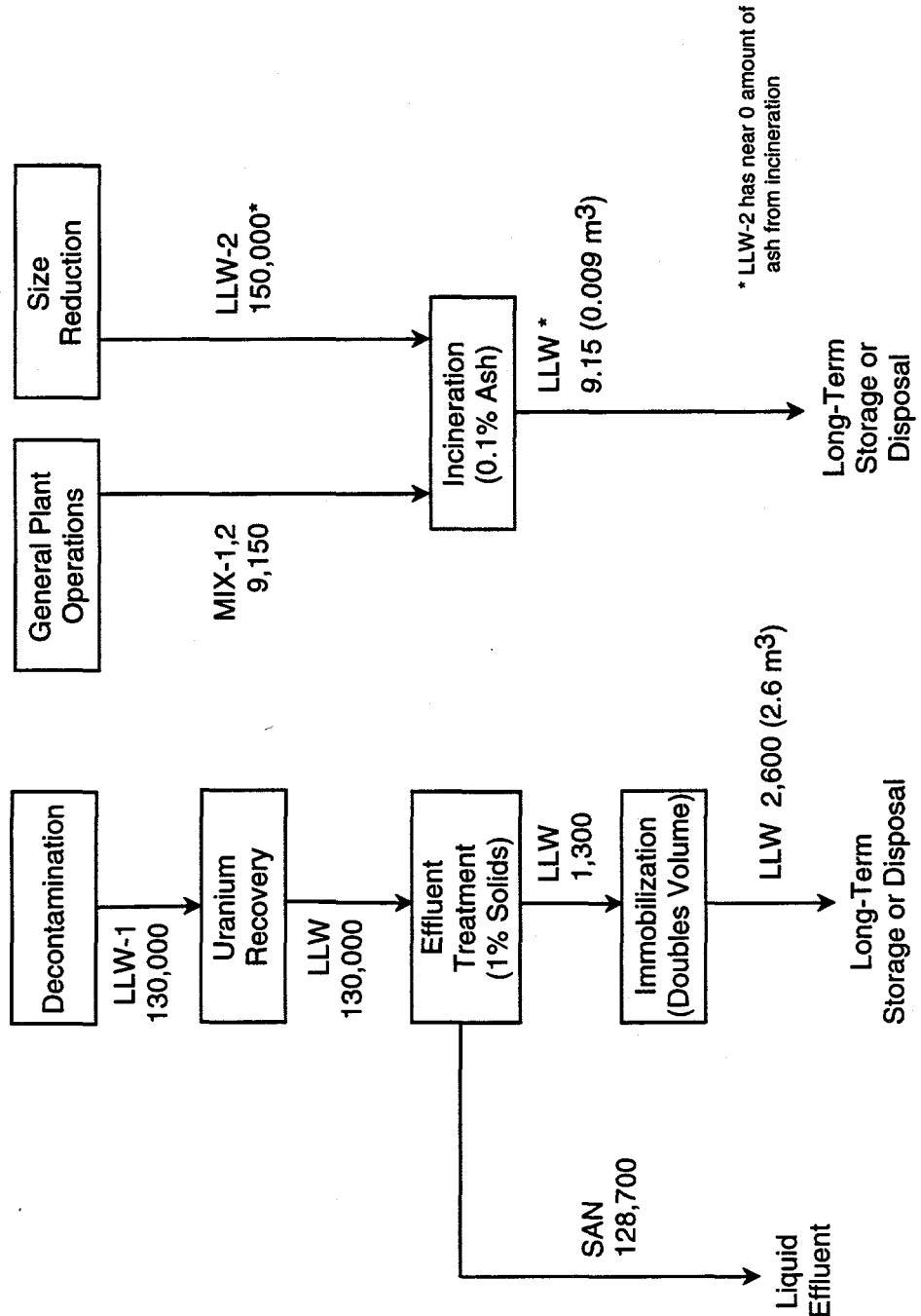


Fig. 3.2. Radioactive liquid waste management block flow diagram.
(Metal blending with oxide waste product)

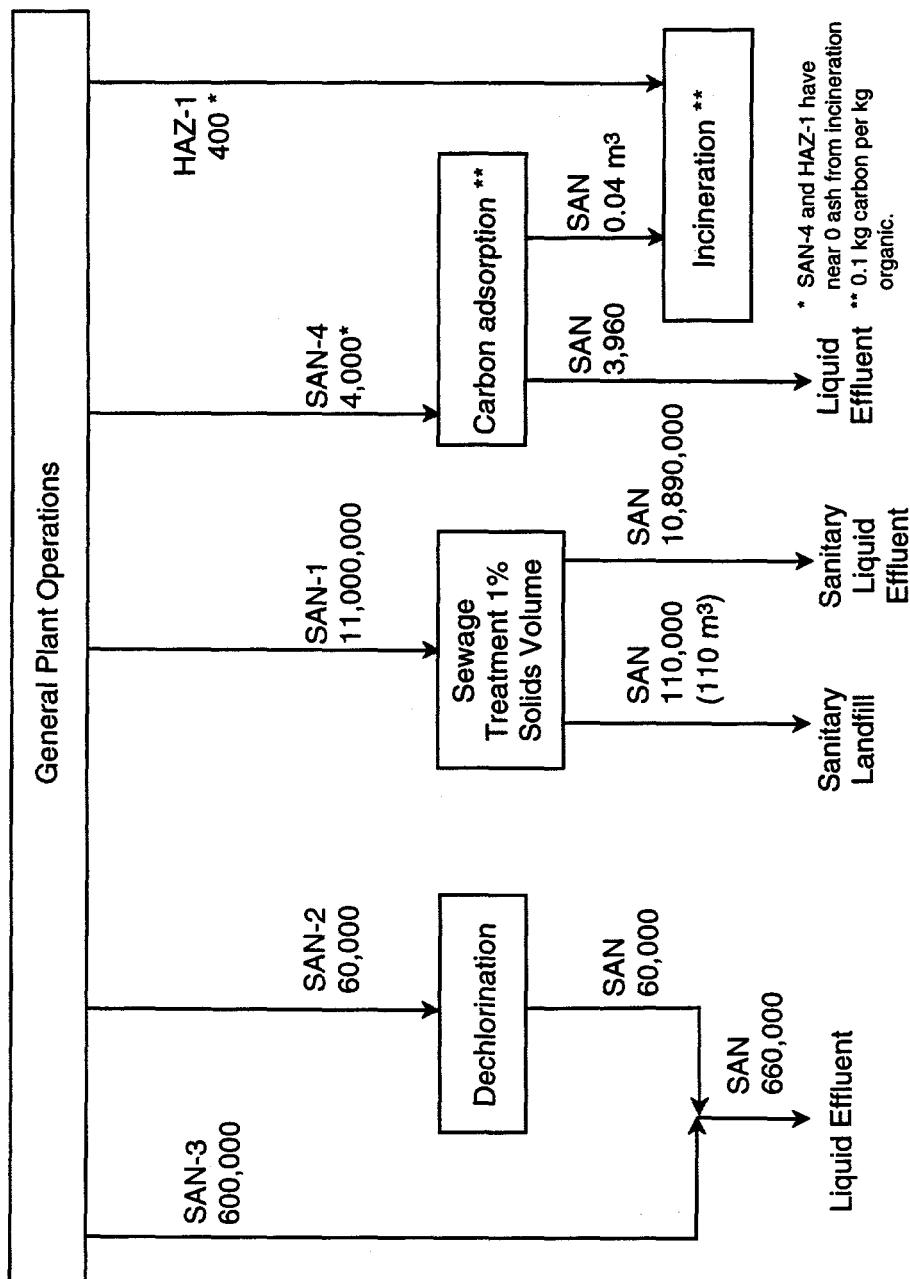
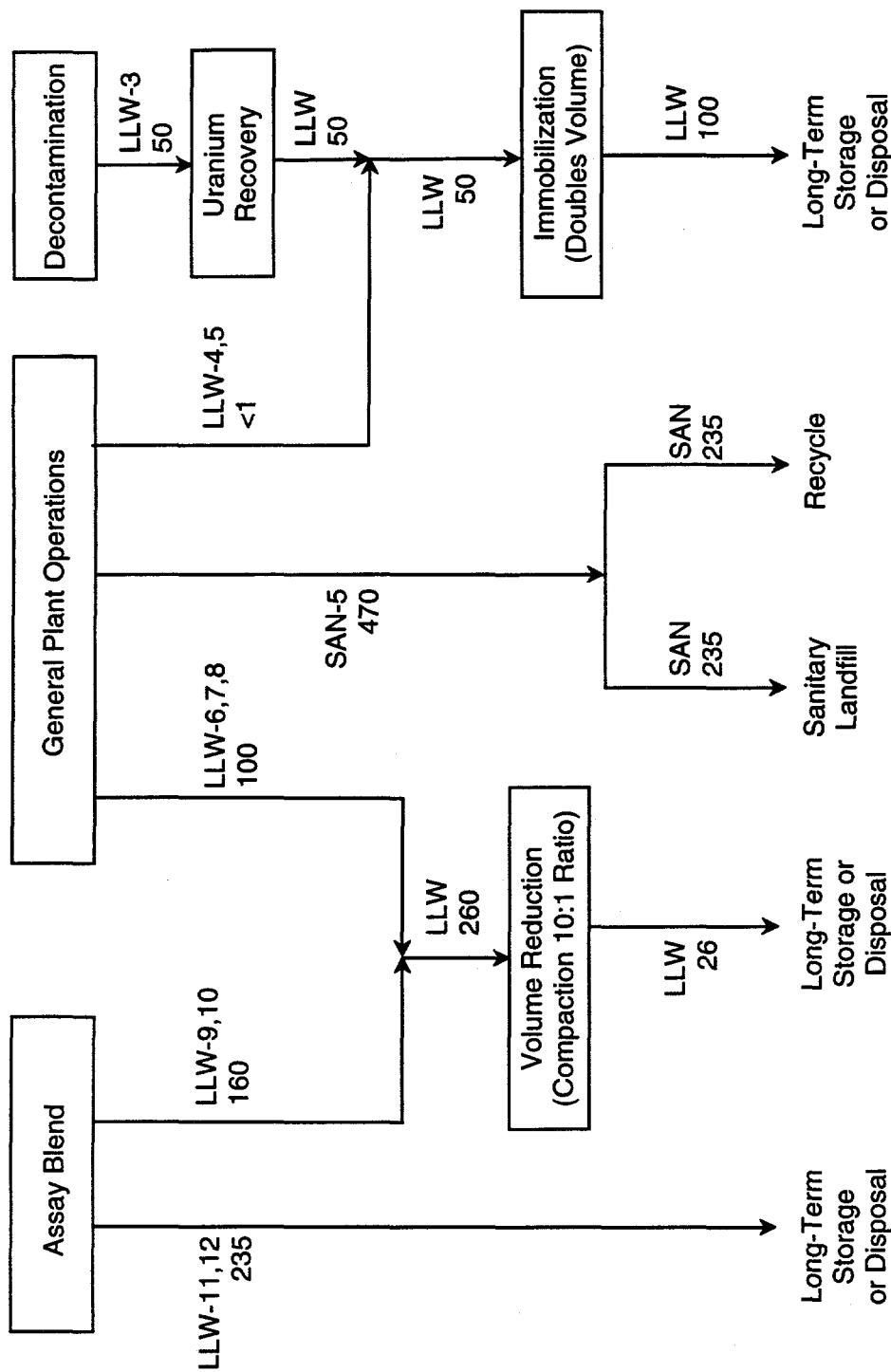



Fig. 3.3. Nonradioactive liquid waste management block flow diagram.
(Metal blending with oxide waste product)

(All volumes are in cubic meters per year except as noted.)

Fig. 3.4. Solid waste management block flow diagram.
(Metal blending with oxide waste product)

This page intentionally left blank.

4. RESOURCE NEEDS

4.1 MATERIALS/RESOURCES CONSUMED DURING OPERATION

4.1.1 Utilities Consumed

Table 4.1 shows the materials/resources consumed annually during operation.

4.1.2 Chemicals Consumed

Solid, liquid, and gaseous chemical requirements are summarized in Table 4.2.

4.1.3 Radiological Materials Handled

Radiological materials handled in the CBF include uranium materials at all assay levels and in a variety of forms (e.g., metal or alloy).

Table 4.1. Materials/resources consumed during operation - annual

Utilities	Consumption	Peak Demand ^a
Electricity (MWh)	3,800	1.0 MW
Diesel fuel (gal)	10,000	
Natural gas ^b (scf)	25,000	
Coal (ton)	140	
Raw water (L)	12×10^6	

^a Peak demand is the maximum rate expected during any hour.

^b Standard cubic feet measured at 14.7 psia and 60°F.

Table 4.2. Chemicals consumed during operation - annual

Chemical	Quantity	Operation
SOLID CHEMICALS		
Graphite	1 MT	Casting
Yttria	50 kg	Melting and casting
LIQUID CHEMICALS		
Pump Oil (for vacuum pumps)	400 kg	Melting and casting
Propylene glycol	16,000 kg	Size reduction
GASEOUS CHEMICALS		
Argon	250,000 scf	Blanket gas
Nitrogen	250,000 scf	Blanket gas

5. EMPLOYMENT NEEDS

5.1 EMPLOYMENT NEEDS DURING OPERATION

The CBF generally operates with three shifts per day, five days per week, except for some utility systems and security functions which operate continuously. The employment during operation is summarized in Table 5.1. The labor categories used in Table 5.1 are Equal Employment Opportunity (EEO) categories.

5.1.1 Badged Employees at Risk of Radiological Exposure

It is estimated that 64 of the badged employees are at risk of radiological exposure. In addition, a small fraction of badged visitors may enter the radiological area, but this is envisioned to be on a nonroutine basis. The maximum annual dose to workers at this facility has been estimated to be 110 mrem.

5.1.2 Labor Category Descriptions

The standard EEO labor categories in Table 5.1 are defined in the following paragraphs.

Officials and Managers. Occupations requiring administrative and managerial personnel who set broad policies, exercise overall responsibility for execution of these policies, and direct individual departments or special phases of a firm's operations. Included in this category are: officials, executives, middle management, plant managers, department managers and superintendents, purchasing agents, and buyers and salaried supervisors who are members of management.

Professionals. Occupations requiring either a college degree or experience of such kind and amount as to provide a comparable background. Included in this category are: accountants and auditors, architects, artists, chemists, designers, editors, engineers, lawyers, librarians, mathematicians, natural scientists, registered professional nurses, personnel and labor relation specialists, physical scientist, physicians, social scientists, and teachers.

Technicians. Occupations requiring a combination of basic scientific knowledge and manual skill which can be obtained through two years of post-high school education, such as is offered in many technical institutes and junior colleges, or through equivalent on-the-job training. Included in these occupations are: computer programmers, drafters, engineering aides, junior engineers, mathematical aides, licensed, practical or vocational nurses, photographers, radio operators, scientific assistants, surveyors, technical illustrators, and technicians (medical, dental, electronic, physical science).

Table 5.1. Employment during surge operation

Labor Category	Number of Employees
Officials and managers	5
Professionals	3
Technicians	4
Office and clerical	2
Craft workers	16
Operatives	36
Laborers	0
Service workers	6
TOTAL EMPLOYEES	72

Office and Clerical. This category includes all clerical work, regardless of level of difficulty, where the activities are predominantly non-manual, although some manual work not directly involved with altering or transporting the products is included. Included in this category are: bookkeepers, collectors (bills and accounts), messengers and office helpers, office machine operators (including computer), shipping and receiving clerks, stenographers, typists and secretaries, telephone operators, and legal assistants.

Craft Workers (skilled). Manual workers of relatively high skill level having thorough and comprehensive knowledge of the processes involved in their work. Exercise considerable independent judgment and usually receive an extensive period of training. Included in this category are: the building trades, hourly paid supervisors and lead operators who are not members of management, mechanics and repairers, skilled machining occupations, compositors and typesetters, electricians, engravers, painters (construction and maintenance), and pattern model makers.

Operatives (semiskilled). Workers who operate machine or processing equipment or perform other factory-type duties of intermediate skill level which can be mastered in a few weeks and require only limited training. Included in this category are: apprentices (auto mechanics, plumbers, bricklayers, carpenters, electricians, machinists, mechanics, building trades, metalworking trades, printing trades, etc.), attendants (auto service and parking), blasters, delivery workers, furnace workers, laundry operatives, milliners, motor operators, oilers and greasers (except auto), painters (manufactured articles), photographic process workers, stationary firefighters, truck drivers, welders and flamecutters, electrical and electronic equipment assemblers, inspectors, testers and graders, and handypackers and packagers.

Laborers (unskilled). Workers in manual occupations which generally require no special training who perform elementary duties that may be learned in a few days and require the application of little or no independent judgment. Included in this category are: garage laborers, car washers and greasers, groundskeepers and gardeners, stevedores, laborers performing lifting, digging, mixing, and loading and pulling operations.

Service Workers. Workers in both protective and non-protective service occupations. Included in this category are: attendants (hospital and other institutions, professional and personal service, including nurses aides and orderlies), cooks, counter and fountain workers, elevator operators, firefighters and fire protection, guards, doorkeepers, stewards, janitors, police officers and detectives, recreation facilities attendants, guides, and public transportation attendants.

This page intentionally left blank.

6. WASTE AND EMISSIONS FROM THE PLANT

6.1 WASTE AND EMISSIONS DURING OPERATION

This section presents the emissions and wastes generated by the CBF and supporting facilities during operation.

6.1.1 Airborne Emissions

The contaminated and potentially contaminated zones within the CBF facilities that handle uranium materials have high-efficiency particulate air (HEPA)-filtered ventilation systems that exhaust to the atmosphere. The annual airborne emissions for the CBF are shown in Table 6.1.

6.1.2 Solid and Liquid Waste

The radioactive waste, hazardous/toxic waste, and non-hazardous sanitary waste are discussed in the subsections below. The annual quantity of solid and liquid waste generated by the CBF is shown in Table 6.2.

6.1.2.1 Radioactive Waste

Small amounts of low-level radioactive waste and mixed waste are produced by the CBF. Radioactive waste consists primarily of compacted miscellaneous solids, casting waste, equipment maintenance waste, scrap equipment, metallic air filters, and HEPA filters. Mixed waste includes liquids to be incinerated.

6.1.2.2 Nonhazardous Waste

Solid nonhazardous waste generated at the CBF consists primarily of solid sanitary waste. Non-recyclable portions of this waste will be sent to the sanitary/industrial landfill. Quantities in Table 6.2 were generated as shown in Figures 3.2, 3.3, and 3.4.

Table 6.1. Airborne emissions during operation - annual

Pollutants	Process Emissions	Steam Plant Emissions
NONRADIOLOGICAL		
Carbon monoxide	1.2 MT	0.06 MT
Nitrogen oxides	0.2 MT	2.4 MT
Ozone*	0.1 MT	0.006 MT
Particulate matter	0.1 MT	0.025 MT
Sulfur dioxide	0	4.7 MT
Ash	0	13 MT
RADIOLOGICAL		
^{235}U	1.1×10^{-5} Ci	0
^{238}U	2.5×10^{-4} Ci	0

* Based on estimated generations of volatile organic chemicals (VOCs)

Table 6.2. Waste volumes during operation - annual

Category	Generated Quantities		Post Treated	
	Solid (m ³)	Liquid (L)	Solid (m ³)	Liquid (L)
Low-level waste	545	280,000	364	0
Mixed low-level waste	0	9,150	0	0
Hazardous waste	0	400	0	0
Nonhazardous (sanitary) waste	235	11,000,000	345	10,900,000
Nonhazardous (other) waste	0	664,000	0	793,000
Recyclable waste	235	0	235	0

7. HAZARDS DISCUSSION

This chapter describes typical hazards associated with a CBF. Much of the data used in this chapter relates to HEU processing operations existing at the Y-12 Plant in Oak Ridge. Since these operations represent the technologies available for conversion and blending, and since the Y-12 Plant HEU processing operations have adequate production capacity, the hazards described herein can be considered applicable to the CBF that will blend down HEU as metal.

Accident scenarios associated with the hazards at each operating CBF site may be different than those presented here. The development of more representative accident scenarios for each CBF site will depend on site specific factors such as:

- Design of blending process systems and process support systems
- Size, type, and proximity of equipment utilized in process and support systems
- Capacities of process and support systems to stage and process uranium and hazardous chemicals
- Engineered and administrative safety controls utilized in process and support systems
- Design, construction, and layout of utilities systems
- Design, construction, and layout of process buildings
- Potential impacts from other processes located inside process buildings and in nearby buildings
- Site and infrastructure layout
- Local natural phenomena hazards and meteorological conditions
- Public access to the site boundary

Currently, there are no facilities at the Y-12 Plant (for handling, storing, or processing HEU) in Hazard Category (HC) 1, as defined in DOE Order 5480.28. The highest level determined for any processing facility at the Y-12 Plant is HC 2. It is therefore reasonable to assume that the CBF located at any potential site will likewise be determined to be no higher than HC 2. However, for conservatism, the hazard information contained in this chapter assumes that the CBF will be HC 1.

7.1 CBF HAZARD CONSIDERATIONS

In assessing the bounding accident scenarios for the CBF, the following parameters were evaluated: 1) material at risk (MAR); 2) energy sources (fires, explosions, earthquakes, and process design-related events); 3) barriers to release; and 4) protective features of the facility. These parameters are discussed in the following sections.

7.1.1 Materials at Risk

The CBF is typically a large multi-story structure devoted, wholly or partially, to melting and blending HEU with DU and then casting the LEU. The MAR consists of uranium metal and compounds at various enrichments from depleted to assays of up to 93% ^{235}U , and various nonradioactive reagents used in the process. The radioactive and nonradioactive hazardous materials used in significant quantities in the CBF processes are discussed below.

7.1.1.1 Radioactive Hazardous Materials

The only radioactive material processed in the CBF is uranium. For the purposes of accident analyses, all uranium is assumed to be highly enriched. The assumed isotopic content for uranium with different enrichments is shown in Table 7.1. From the hazards standpoint, all HEU (50% enrichment) is assumed. The feed material is received in various forms ranging from retired metal parts to contaminated materials. Processing steps include size reduction, blending, and casting. The forms of HEU in these processes consist of:

- Metal and metal-contaminated materials
- Molten metal

Table 7.2 lists the various radioactive materials present in this facility that are at risk of release.

HEU metals are stored and transported in criticality-safe stainless or galvanized steel, cylindrical cans. These cans are stored within reinforced concrete vaults in fixed, safe arrays. Cans are transported in secured boxes mounted on dollies in fixed, safe arrays.

Table 7.1. Isotopic content of uranium at various enrichments

Mass Fraction						
Enrichment	^{232}U	^{234}U	^{235}U	^{236}U	^{238}U	Total
50% ^{235}U	4×10^{-8}	4.25×10^{-3}	5×10^{-1}	2.31×10^{-3}	4.93×10^{-1}	1.000
4% ^{235}U	4×10^{-8}	3.34×10^{-4}	4×10^{-2}	1.54×10^{-4}	9.68×10^{-1}	1.000
0.9% ^{235}U	4×10^{-8}	9.48×10^{-5}	9×10^{-3}	3.25×10^{-5}	9.91×10^{-1}	1.000
0.71% ^{235}U	4×10^{-8}	5.41×10^{-5}	7.11×10^{-3}	0	9.93×10^{-1}	1.000
0.2% ^{235}U	4×10^{-8}	3.56×10^{-5}	2×10^{-3}	0	9.98×10^{-1}	1.000
Specific Activity (Ci/kg)						
	^{232}U	^{234}U	^{235}U	^{236}U	^{238}U	
	2.2×10^4	6.2	2.1×10^{-3}	6.3×10^{-2}	3.3×10^{-4}	
Isotopic Activity (Ci/kg U)						
Enrichment	^{232}U	^{234}U	^{235}U	^{236}U	^{238}U	Total
50% ^{235}U	8.8×10^{-4}	2.64×10^{-2}	1.05×10^{-3}	1.46×10^{-4}	1.63×10^{-4}	2.86×10^{-2}
4% ^{235}U	8.8×10^{-4}	2.07×10^{-3}	8.4×10^{-5}	9.71×10^{-6}	3.17×10^{-4}	3.36×10^{-3}
0.9% ^{235}U	8.8×10^{-4}	5.88×10^{-4}	1.89×10^{-5}	2.05×10^{-6}	3.27×10^{-4}	1.82×10^{-3}
0.71% ^{235}U	8.8×10^{-4}	3.35×10^{-4}	1.49×10^{-5}	0	3.28×10^{-4}	1.56×10^{-3}
0.2% ^{235}U	8.8×10^{-4}	2.2×10^{-4}	4.2×10^{-6}	0	3.29×10^{-4}	1.43×10^{-3}

Table 7.2. Materials at risk ^a

Chemical	Quantity	Operation
SOLIDS		
HEU U/Al metal alloy, 25% U, 75% Al (50% assay)	7 MT	Storage warehouse
HEU U/Al metal alloy, 25% U, 75% Al (50% assay)	80 kg (20 kg U)	HEU size reduction or process feed
Blend stock DU metal	400 kg	Packaging
U/Al ingots (0.9% assay)	400 kg	LEU ingot packaging
Casting slag, as U ₃ O ₈ (0.9% assay)	20 kg	Furnace cleanup
LEU U/Al metal alloy, 96% U, 4% Al (0.9% assay) chips	2,200 kg	LEU size reduction
LEU U/Al metal alloy, 96% U, 4% Al (0.9% assay) chips	2,200 kg	LEU oxidation feed
LEU U/Al metal alloy, 96% U ₃ O ₈ , 4% Al ₂ O ₃ (0.9% assay) powder	11 MT	LEU product packaging
LIQUIDS		
Molten U/Al metal alloy	120 kg	Furnace melting ^b
Propylene glycol	4,000 kg	Size reduction
GASES		
Argon	<100 scf	Blanket gas
Nitrogen	<100 scf	Blanket gas

^a Quantities shown represent the estimated maximum amounts of these materials typically in process.

^b Assumes 6 furnaces in operation.

Although all uranium materials are contained, accidents and natural phenomena that would release the contained materials can be postulated. The extent of release and suspension varies with the accident, container, and material form.

Metals are a special case. Due to security and criticality safety concerns, the uranium metal forms are stored in vaults providing a substantial protection from accidents and natural phenomena. The secured concrete vaults and internal containers provide additional protection from the only (non-criticality) mechanism for suspending uranium metal, a fire which oxidizes the metal and suspends the oxide. Even if the metal was oxidized, the fraction of oxidized metal suspended would be approximately 10^4 to 10^5 . Based on this small release fraction, the uranium metal stored in the secure vaults is not considered to be "at risk" of release. Uranium metal being processed at any time (outside the secure vaults) is assumed to be at risk in fire accidents and may contribute to nuclear criticality accidents.

Other materials not considered to be at risk are contaminated molds, liners, and firebrick. Uranium concentrations and total uranium quantities in these materials are small and credible suspension mechanisms are difficult to postulate. As such, these materials are not analyzed further.

7.1.1.2 Nonradioactive Hazardous Materials

The significant nonradioactive materials in the facility are listed in Table 7.2.

7.1.2 Energy Sources

The HC for the CBF, as defined in DOE Order 5480.28, has not been determined for HEU processing facilities at all potential sites. Facilities at the Y-12 Plant, that are considered as candidate facilities for the CBF, have been determined to be no higher than HC 2. It can therefore be assumed that the CBF located at any potential site will likewise be no higher than HC 2. However, the hazard information is based upon the conservative assumption that the CBF will be HC 1. Therefore, criteria for HC 1 facilities are provided below.

7.1.2.1 Fire and Explosion

The CBF may contain explosive/combustible materials, as well as thermal and electrical energy sources. Table 7.3 presents the potential energy sources in the CBF.

Table 7.3. Potential energy sources

Type	Source	Use
Explosive/combustible	Water/molten uranium	Water-cooled furnace
	Uranium metal fines	Size reduction
Thermal	Molten uranium metal	Casting furnaces
Electrical	2,400 volts	Utility services

7.1.2.2 Earthquake

DOE Order 5480.28 and DOE-STD-1020-94 specify the design basis earthquakes (DBE) and the natural phenomena performance goals for HC 1 facilities at DOE sites. A beyond DBE should be evaluated in the accident analysis.

7.1.2.3 Tornado

DOE Order 5480.28 and DOE-STD-1020-94 specify the design basis tornadoes (DBT) and the natural phenomena performance goals for HC 1 facilities at DOE sites. A beyond DBT should be evaluated in the accident analysis.

7.1.2.4 Flood

DOE Order 5480.28 and DOE-STD-1020-94 specify the design basis flood (DBF) and the natural phenomena performance goals for HC 1 facilities at DOE sites. A beyond DBF should be evaluated in the accident analysis.

7.1.2.5 Nuclear Criticality

The CBF contains multiple critical masses of uranium. Therefore, a criticality event cannot be ruled out, especially associated with a major earthquake or tornado.

7.1.2.6 Process Design Related Events

Process design related events include potential fires and explosions. No other significant process design-related events were identified.

7.1.3 Barriers to Release

The CBF utilizes a multibarrier system to prevent the release of radioactive and toxic materials to the atmosphere. The primary barriers include metal containers, gloveboxes/enclosures, and processing equipment, such as furnaces. The secondary barriers include the building structure and the HVAC system.

Pans, storage cans, crucibles, and other vessels contain the feed and products generated by the various systems. Since these processes may be batch operations, intermediate storage may be required.

Graphite contaminated with low levels of uranium may be placed in 55-gal drums for storage. Casting waste uranium compounds are stored in geometrically favorable cans that are 7 in. in diameter by 14 in. tall.

7.1.4 Protective Features

The CBF uses several protective features for personnel safety and radioactive material confinement during normal and accident operations. Ventilation systems barriers and nuclear criticality safety features are briefly discussed below.

Ventilation Barriers. Ventilation system barriers employed in the CBF range from hoods and enclosures for personnel protection to the processing of exhaust streams through filters and scrubbers to minimize releases. In general, filtration and scrubbing are used for exhausts from processes with a high potential for uranium release. Exhaust stacks are sampled to identify quantities of uranium released.

Criticality Safety. Active and passive design features are employed to prevent nuclear criticality. The principal feature employed is use of safe geometry containers for solid and molten uranium. Enriched uranium metals are secured in metal-framed birdcages or inside concrete vaults to maintain criticality-safe spacing. In addition, radiation detectors and alarms allow rapid evacuation of personnel in the event of a criticality accident.

7.2 ACCIDENT SCENARIOS CONSIDERED

7.2.1 Earthquake

The DBE for the CBF site is assumed to be of sufficient magnitude to cause major damage to of the building. A site-specific evaluation can demonstrate that a beyond design basis earthquake and building collapse are not credible event.

Building damage in the DBE is accompanied by widespread failure of process vessels. Molten metal could be spilled to the floor. Fires can result from electrical faults or molten metal contacting any organic material (paint, plastic, etc.). Storage racks containing HEU cans are damaged by seismic shaking as well as falling debris. This can result in spillage of metal parts. A criticality can occur due to loss of safe spacing.

In the aftermath of such a large earthquake most emergency services, such as firefighting, will be overburdened and may not be available for the CBF. The risk of spills, fires, and criticalities is great enough that this accident scenario can bound process-related accidents and is therefore carried through for further analysis in Section 7.4.

7.2.2 Tornado

It is assumed that the DBT severely damages the exterior walls of the facility. Most damage occurs from missiles, such as pieces of pipe, and debris that the tornado picks up and propels through the air.

7.2.3 Straight Wind

A straight wind should be considered as an external initiating event. This can damage the buildings and some equipment, and possibly injure onsite personnel. The consequences, however, are lower than those caused by a tornado. Thus, the straight wind scenario is not a bounding scenario.

7.2.4 Flood

The DBF is assumed to be of sufficient magnitude to disrupt the perimeter of the CBF and cause water, under force, to contact the process equipment and materials. Process equipment may be damaged casing HEU dispersal into the building environment. Water may mix with HEU in potentially critical configurations.

7.2.5 Aircraft Crash

An aircraft crash is considered a bounding accident initiator because a crash of a large aircraft can: 1) penetrate a building wall or roof, 2) generate flying projectiles and missiles from building debris, building equipment, and aircraft debris, and 3) engulf a portion of the interior of a building in an aircraft fuel-fed fire. Although the local damage can be considerable, structural damage is expected to be much greater in the DBE. The exposed uranium within the building is in diverse locations, so it is unlikely that more uranium will be exposed to an external flame source in the aircraft crash than the DBE.

A crash that penetrates any HEU storage vault area can expose the HEU in the storage arrays to both severe impact, crushing, and fuel fire accident environments. Although a criticality is unlikely, a somewhat larger airborne uranium source term due to the fuel-fed fire burning of uranium metal can occur. On the other hand, the vault is a hardened structure and presents a very small cross section for an aircraft impact.

Because a much more likely DBE probably bounds the consequences of any aircraft strike (except perhaps a direct hit by a large aircraft on the vault, and even in that case, the radiological consequences are not severe), the aircraft crash may be dismissed from further analysis.

7.2.6 Truck Crash

No significant offsite consequences can result from any reasonable truck crash at the CBF.

7.2.7 Nuclear Criticality

Based on reviews of typical operating practices in facilities similar to the CBF and of the criticality safety literature, there is a considerable margin of criticality safety for operations in the CBF. However, multiple critical masses of HEU powder within the building do not allow a criticality (while a low probability event) to be ruled out.

7.2.8 Process Related Accidents

Accidents that are considered as candidates for producing bounding releases of radioactivity from process related accidents are fires, explosions, and nuclear criticality.

Fires involving uranium metal in process, and combustible waste are possible. However, these fires are not significant for the following reasons:

- The quantity of metal available for combustion in process and in wastes is small relative to the total facility inventory.
- The typical airborne release fraction for metal fires is relatively small (10^{-4} to 10^{-5}).
- The relative quantity of combustible waste, that is outside of containers and available to be involved in a fire, should be small.
- An electricity induced fire can damage the furnace, possibly resulting in an unfiltered release. Since HEU loading in the furnace is low and the material is coarse and not readily dispersible, it is concluded that the consequences of this would be low.

7.3 SELECTION OF BOUNDING ACCIDENT SCENARIOS

With the exception of the filter fire, all the accident scenarios that are considered potentially bounding can be initiated by the DBE. Therefore it is concluded that the DBE results in the worst-case atmospheric release of radioactivity and/or hazardous chemicals.

7.4 TYPICAL SOURCE TERMS

The bounding event for release of radioactive and/or hazardous chemicals is the DBE. This single event initiates all of the release scenarios described in the following subsections with the exception of the filter fire.

Specific values for releases are process and site-specific, and are not included here. Rather, the releases are identified. For each scenario described in the following subsections (other than nuclear criticality) all of the radioactivity that becomes airborne inside the building is released directly to atmosphere because of building damage; i.e., the leakpath factor (LPF) is equal to 1.0.

7.4.1 Filter Fire

Accident Description. The major process exhaust from the CBF is filtered through bag filters and HEPA filters before being discharged to the atmosphere. Excess filtered material from the bag filters falls into traps below the filters. In this accident, a fire occurs which releases all the uranium in the bag filters, traps, and the HEPA filters to the atmosphere in a matter of minutes.

Energy Source. The energy sources for this accident are the uranium-containing dust, the wool bag filters, the paper HEPA filters, and the Lucite traps. All of these are combustible. An ignition source is assumed.

Key Assumptions.

1. An ignition source exists.
2. Temperature detectors fail to close the dampers and activate fire extinguishing system.
3. The exhaust fans continue to operate.
4. All of the material in the traps and bags and on the HEPA filters is assumed to become airborne.

Release Location. The release location is at the top of the filter location stack.

Source Term. Some bag filters can contain up to 1 kg HEU each. Any HEU that is released is assumed to be released as triuranium octoxide (U_3O_8) particles.

The direct release (DR) is 1.0 because the accident involves direct release of material from primary confinement. The amount of material that becomes airborne, however, is significantly less than the total amount.

7.4.2 Nuclear Criticality

Accident Description. Storage racks containing multiple critical masses of uranium metal are damaged directly by seismic shaking and indirectly by falling debris. Safe spacing is lost and moderators added as water from the fire system resulting in the possible formation of one or more critical assemblies. Although this accident is not likely due to administrative controls, the limited use of metal storage racks, and the use of geometrically-safe containers, it is also possible to postulate a criticality event due to mishandling of HEU-bearing containers or equipment failure.

Energy Sources. If the event is initiated by the DBE, the energy sources are seismic shaking and falling debris.

Key Assumptions.

1. In an accidental criticality, it is assumed that 1×10^{19} fissions occur prior to reaching a stable, subcritical condition.
2. Although most of the critical arrays that may be formed by the DBE are likely to be dispersed by the initial fission bursts, the occurrence of secondary bursts cannot be entirely ruled out. Further, the total number of criticalities cannot be predicted. Therefore, it is assumed that the total fission yield following DBE-induced criticalities is 1×10^{19} occurring within a 2-h period.

Release Location. The fission products from a nuclear criticality are released at ground level.

Source Term. Typical source terms (shown in Table 7.4) are taken from NRC Regulatory Guide 3.34.

7.4.3 Natural Phenomena

Accident Description. The structural resistance of the CBF to natural phenomena must be evaluated. It is assumed that damage to the building is credible given a DBE, DBT, or DBF. Under this condition, the following impacts on the CBF are considered credible either individually or as a whole:

Table 7.4. Typical atmospheric source terms for criticality

Nuclide	Ci produced	Ci to atmosphere*
Kr-83m	1.6×10^2	1.6×10^2
Kr-85m	1.5×10^2	1.5×10^2
Kr-85	1.6×10^3	1.6×10^3
Kr-87	9.9×10^2	9.9×10^2
Kr-88	6.5×10^2	6.5×10^2
Kr-89	4.2×10^4	4.2×10^4
Xe-131m	8.2	8.2×10^2
Xe-133m	1.8	1.8
Xe-133	27	27
Xe-135m	2.2×10^3	2.2×10^3
Xe-135	3.6×10^2	3.6×10^2
Xe-137	4.9×10^4	4.9×10^4
Xe-138	1.3×10^4	1.3×10^4
I-131	8.7	2.2
I-132	1.1×10^3	2.8×10^2
I-133	1.6×10^2	40
I-134	4.5×10^3	1.1×10^3
I-135	4.7×10^2	1.3×10^2

Release time: 0-2 h

*Building LPF = 1.0; ARF = 0.25 for I, 1.0 for others

- Toppling containers not permanently fixed due to vibratory motion,
- Crushing and rupturing containers due to falling debris,
- Repositioning fissile materials into potentially critical arrays,
- Rupturing building piping and external tanks resulting in the release of water (a neutron moderator), toxic gases, flammable gases, and toxic and reactive liquids,
- Creating multiple fire ignition sources due to damaged electrical equipment and high temperature process vessels, and
- Providing a moderator for fissile materials.

Energy Sources. Most released materials are at ambient temperature. Energy sources include heats of combustion associated with uncontrolled chemical reactions and energy release associated with nuclear criticality.

Key Assumptions. Although specific combinations of effects of the DBE due to specified partial or complete building collapse accidents cannot be listed with any degree of completeness, the overall effects of this event type can be bound. The procedure used was to consider the effects on each MAR individually. The total source term was obtained by summing the individual releases for each material type. The following assumptions were made in this analysis:

1. Uranium Metal in Process - 10% of the total MAR is assumed oxidized (DR=0.1). For oxidation of uranium metal under turbulent conditions, the airborne release fraction (ARF) is 1×10^{-3} and the respirable fraction (RF) is 0.6 .
2. Combustible solids contaminated with uranium are assumed to be completely oxidized. The combustible solids are modeled as cellulosic material assuming the combustible solids are principally contaminated paper. The ARF and DR for this release are 5×10^{-5} and 0.5.

Release Location. All releases are at ground level.

Source Term. Based on the MAR quantities and the assumptions and empirical suspension and respirable size fractions previously discussed, the total quantities of the hazardous materials suspended in the air due to postulated major building damage can be estimated. These estimates will yield the material-specific source terms for the building damage accident. Once suspended, the various uranium

compounds react with oxygen and water vapor at high temperature (due to postulated fires) resulting in a final suspended mixture of compounds. The resulting source term is HEU mostly in the form of U_3O_8 powder. The additional source terms resulting from a postulated nuclear criticality are summarized in Table 7.4.

This page intentionally left blank.

8. INTERSITE TRANSPORTATION

The quantities of material to be shipped are summarized in Table 8.1 for metal blending.

For the shipment of HEU alloy feed stock to the CBF, a drum type contain can be used. For the purposes of this discussion, the drum type container is assumed to be a Department of Transportation (DOT) specification 6M-2R drum classified as Type BF. This drum can contain up to 8 kg of HEU/Al alloy. A single truck shipment will handle 48 drums inside a safe-secure trailer (SST). This equates to 384 kg of alloy per truck shipment. Thus, for 12.4 MT of alloy feed material per year, 33 truck shipments per year will be required.

For the shipment of DU blendstock to the CBF, metal boxes with DOT specification 7A, Type A can be used. A container of this type has been identified as Capital Industries Model S-0510-0823. This container can hold 2200 kg of U metal. For 218 MT of U metal per year, 100 packages per year will be required. With five packages per truck, 20 truck shipments per year will be required.

For the shipment of 0.9% assay LEU oxide to a storage/disposal site, a drum type container can be used. For this application, a DOT Specification 6M-2R designated as Type AF will be suitable. This container can hold 90 kg of oxide and 50 drums can be shipped on a single truck shipment. For 264 MT of oxide per year, 2934 packages will be required and 59 truck shipments will be needed.

Table 8.1 Intersite transportation data - metal blending with oxide waste product

Data	Transported Material		
	Input Materials		Output Material
	Blendstock	HEU Feed	
Type	DU	HEU	LEU
Potential origin	Oak Ridge, TN Aiken, SC Fernald, OH	Oak Ridge, TN	Oak Ridge, TN Aiken, SC
Form	Metal	Metal Alloy	U/Al mixed oxides
Chemical composition	Pure, 0.2% assay	25% HEU (@ 50% assay avg.) 75% Aluminum	96% LEU (@ 0.9% assay) 4% Aluminum
Annual quantity	218 MT	12.4 MT alloy (3.1 MT HEU)	264 MT oxides (247 MT LEU oxide)
Data	Packaging & Shipping		
	Input Materials		Output Material
	Blendstock	HEU Feed	
Type	Metal Box, DOT-7A Type A	Drum, Type BF	Drum, Type AF
Certified by	DOT/DOE	DOE/DOT	DOE/DOT
Identifier	Capital Industries Model S-0510-0823	DOT 6M-2R	DOT 6M-2R
Package weight	680 kg	130 kg	200 kg
Material weight per package	2,200 kg	8 kg Alloy (2 kg HEU)	90 kg oxides
Packages/year	100	1,563	2,934
Packages/truck	5	48*	50
Trucks/year	20	33	59
Potential destination	Oak Ridge, TN Aiken, SC	Oak Ridge, TN Aiken, SC	Permitted storage/disposal site

* Packages per SST, one SST per truck.

9. ACRONYMS, ABBREVIATIONS, AND INITIALISMS

Al ₂ O ₃	Aluminum oxide
ALARA	As low as reasonably achievable
ARF	Airborne release fraction
CBF	Conversion and Blending Facility
Ci	Curies
DBE	Design basis earthquake
DBF	Design basis flood
DBT	Design basis tornado
DOE	Department of Energy
DOT	Department of Transportation
DR	Direct release
DU	Depleted uranium
EDE	Effective dose equivalent
EEO	Equal Employment Opportunity
EIS	Environmental Impact Statement
gal	Gallons
h	hour
HC	Hazard category
HAZ waste	Hazardous waste
HC	Hazard Category
HEPA	High-efficiency particulate air
HEU	Highly enriched uranium
HVAC	Heating, ventilation, and air conditioning
kg	Kilogram
L	Liter
LEU	Low enriched Uranium
LLW	Low-level waste
LPF	Leak path factor
LWR	Light water reactor
m ³	Cubic meters
MAA	Material Access Area
MAR	Material at risk
MIX waste	Mixed waste
mrem	millirem
MT	Metric ton
MW	Megawatt
MWh	Megawatt hour
NRC	Nuclear Regulatory Commission
PEIS	Programmatic Environmental Impact Statement
PIDAS	Perimeter Intrusion Detection and Assessment System
psia	pounds per square inch absolute

RCRA	Resources Conservation and Recovery Act
RF	Respirable fraction
SAN waste	Sanitary waste
scf	Standard cubic feet
SNM	Special nuclear material
SST	Safe secure trailer
U	Uranium
U/Al	Uranium/aluminum
UF ₆	Uranium hexafluoride
UN	Uranyl nitrate
UNH	Uranyl nitrate hexahydrate
U ₃ O ₈	Triuranium octoxide
USEC	United States Enrichment Corporation
VOC	Volatile organic chemical

Appendix A: Blending Assumptions and Limitations

As described in Section 1.1, the primary mission of the CBF is to destroy the weapons capability of surplus HEU by blending with a lower ^{235}U assay uranium material to achieve a level below 20% ^{235}U . In several cases the blending will be carried to a final assay of 4.0% ^{235}U in order to utilize the product as LWR fuel. In cases where the surplus HEU is not suitable for LWR fuel use, because of excessively high concentrations of undesirable minor uranium isotopes (^{234}U and ^{236}U), the HEU will be blended down to 0.9% ^{235}U for long-term storage or disposal as waste. In all cases, the reduction of assay is irreversible.

Five technology options are considered in EIS documents for the disposition of surplus HEU by: (1) U-metal blending with an oxide waste product, (2) UF_6 blending with a UF_6 product suitable for LWR fuel fabrication, (3) UNH blending with a UNH crystal product suitable for LWR fuel fabrication, (4) U-oxide blending with an oxide product suitable for LWR fuel fabrication, and (5) UNH blending with an oxide waste product. This appendix lists, in Table A.1, key assumptions used in the process descriptions for the five blending options. A comprehensive logic block flow diagram showing the decisions involved in processing different HEU feed materials, using all five blending options, is shown in Figure A.1.

Any one of the five options can be utilized for uranium disposition. Metal blending or UNH blending with an oxide waste product, however, will not be considered if the resulting product is intended for LWR fuel. Fuel fabricators generally receive LEU as UF_6 from enrichment plants, and that form would be their preference. Either LWR-fuel grade UNH crystals or LWR-fuel grade U_3O_8 would be probably their second choice. In the EIS documents, the metal blending and UNH blending methods that produce oxide waste apply only to surplus HEU which is determined to be unsuitable for LWR fuel. In these cases, the blended product goes into long-term storage or is disposed of as waste.

On the other hand, UF_6 blending is practical only if the product is intended for LWR fuel rather than a waste product. For UF_6 to be considered for long-term storage or disposal as waste, its conversion to an oxide is required. A potential negative factor with using UF_6 is that none of the surplus HEU is currently in UF_6 form and conversion to UF_6 requires the construction of new facilities.

Oxide blending with a pure oxide product and UNH blending with a pure UNH crystal product are applicable for both LWR fuel production and preparation of material for long-term storage or disposal as waste. It may be possible for the fuel fabricators to accept limited quantities of blended LEU as either UNH crystals or oxide, which they can process through their scrap recovery lines. Table A.2 summarizes the characteristics of both the HEU and the low assay diluent associated with each blending option and intended product.

Surplus HEU may exist in various chemical and physical forms with different chemical and isotopic impurities. Certain technological or economic factors may favor one of the five options for one batch and another option in other cases. No one option may prove to be economically viable for disposition of the entire surplus HEU inventory.

Table A.1. Assumptions for surplus HEU blending

- Chemical and isotopic analysis of discrete batches of surplus HEU should enable advance determination of whether the material can be blended to produce marketable LWR fuel or must be blended for long-term storage/waste disposal.
- Surplus HEU which is determined suitable for LWR fuel use shall be blended to a final product assay of 4.0% ^{235}U .
- Surplus HEU which is determined unsuitable for LWR fuel use shall be blended to a final product assay of 0.9% ^{235}U .
- The 4.0% blended product for LWR fuel use shall be provided in the form of pure UF_6 , UNH crystals, or oxide that comply with material standards.
- Blending as metal will only be considered for surplus HEU metal and alloy that is not suitable for conversion to LWR fuel.
- The 0.9% blended product for long-term storage/waste disposal shall be provided in the form of oxide.
- Blending as UF_6 shall not be considered for any surplus HEU which is determined unsuitable for LWR fuel.
- For each blending option, the annual process capability is defined by the requirement to blend up to 10 MT of surplus HEU at an average assay of 50% to a final product assay of 4.0%. (This same product mass throughput rate shall also apply if the blended product is 0.9%; in this case a lesser HEU consumption would result.)
- Capability for purification of the incoming HEU stream using solvent extraction of UNH solution shall be provided except in the case of metal blending, which is applicable only for long-term storage/waste disposal.
- Adequate supplies of low assay diluent are available in appropriate chemical forms, with the following restrictions: (a) if LEU diluent is used, it is only available as UF_6 ; (b) if NU diluent is used, it is available either as UF_6 or as oxide; (c) if DU diluent is used, it is available as UF_6 , oxide, or metal.
- No purification will be required for the incoming low assay diluent stream.

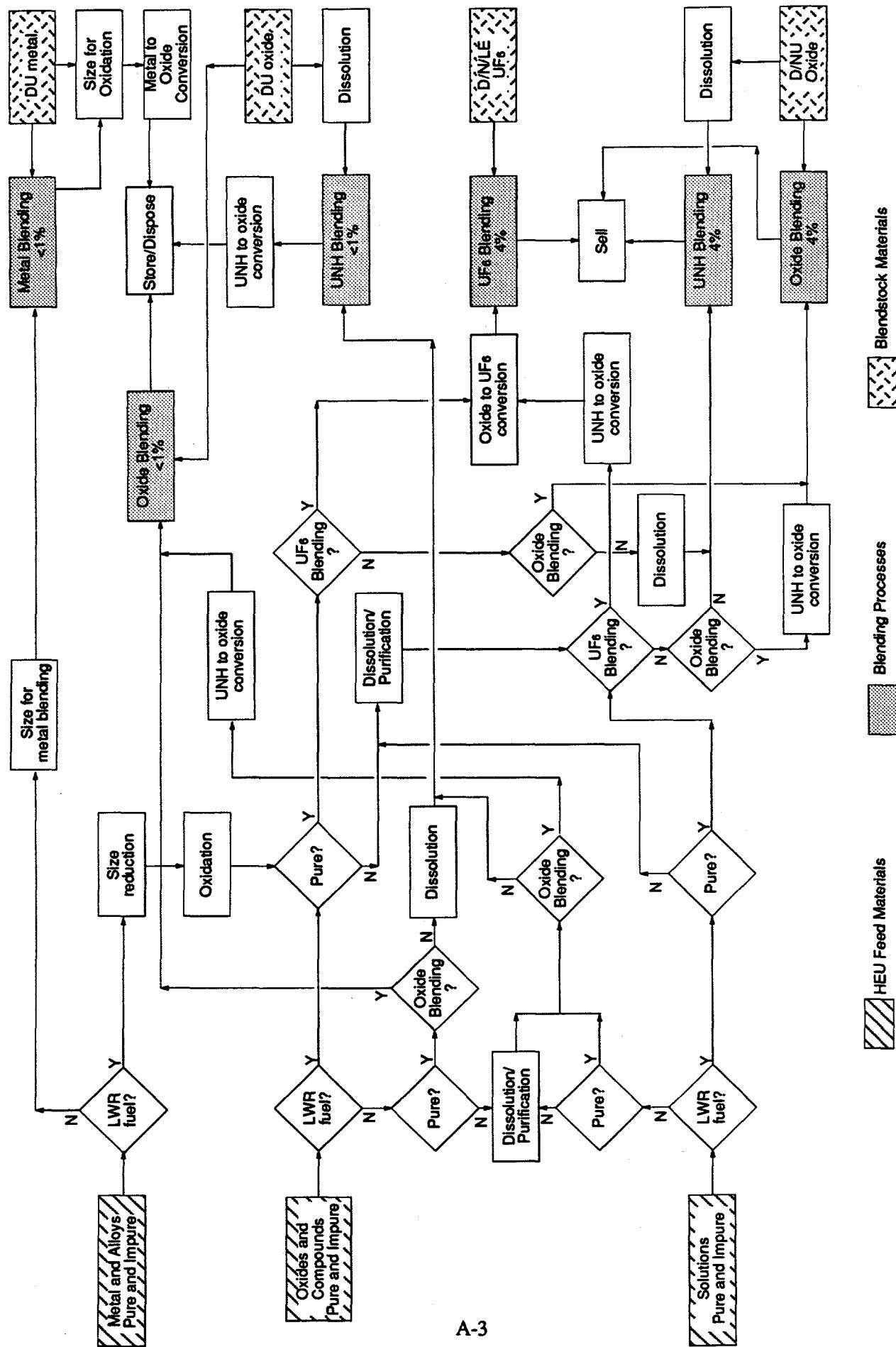


Fig. A.1 Overall blending logic diagram.

Table A.2. Feed streams for various disposition options

Disposition Option	Reasonable Types of Surplus HEU Feed Streams	Reasonable Types of Diluent Uranium Feed Streams
Blending as metal for storage or disposal	<p>Metal</p> <ul style="list-style-type: none"> - all concentrations of ^{234}U or ^{236}U - all HEU assays - alloyed or unalloyed - all levels of chemical impurities 	<p>Metal</p> <ul style="list-style-type: none"> - DU - all concentrations of ^{234}U and ^{236}U - any alloy available - all levels of chemical impurities
Blending as UNH for storage or disposal	<p>Oxide, UNH, & miscellaneous compounds</p> <ul style="list-style-type: none"> - all concentrations of ^{234}U or ^{236}U - all HEU assays - all levels of chemical impurities 	<p>Metal & oxide</p> <ul style="list-style-type: none"> - DU - all concentrations of ^{234}U and ^{236}U - any alloy available - all levels of chemical impurities
Blending as oxide for LWR fuel	<p>Metal & oxide</p> <ul style="list-style-type: none"> - low concentrations of ^{234}U and ^{236}U - all HEU assays - unalloyed metal - all levels of chemical impurities 	<p>Oxide</p> <ul style="list-style-type: none"> - DU or NU - low concentrations of ^{234}U and ^{236}U - low levels of chemical impurities
Blending as UNH for LWR fuel	<p>Metal, oxide, and UNH</p> <ul style="list-style-type: none"> - low concentrations of ^{234}U and ^{236}U - all HEU assays - alloyed or unalloyed metal - all levels of chemical impurities 	<p>Metal & oxide</p> <ul style="list-style-type: none"> - DU or NU - low concentrations of ^{234}U and ^{236}U - unalloyed metal - low levels of chemical impurities
Blending as UF_6 for LWR fuel	<p>Metal, oxide, UNH, & UF_6</p> <ul style="list-style-type: none"> - low concentrations of ^{234}U and ^{236}U - all HEU assays - alloyed or unalloyed metal - all levels of chemical impurities 	<p>UF_6</p> <ul style="list-style-type: none"> - DU, NU, or LEU - low concentrations of ^{234}U and ^{236}U - low levels of chemical impurities

Distribution:

D. H. Andrews, LLNL
H. R. Canter, DOE-MD
G. W. Cagle-RC
S. O. Cox
A. I. Cygleman, DOE-HQ
R. D. Duncan, DOE-HQ
R. A. Edlund, DOE-ORO
C. D. Jaeger, SNL
J. N. Kass, LLNL
A. K. Lee, DOE-OSTI, 9731, MS-8175 (2)
M. A. Livesay, DOE-ORO
D. L. Mangan, SNL
S. D. Morris, DOE-ORO
M. K. Morrow
C. A. Pura, SNL-TI
J. D. Snider
J. D. Stout
J. W. Toevs, LANL
T. H. Wynn, DOE-ORO
Y-12 Central Files, 9711-5, MS 8269