Conbvsi227- -/

Statistical Theory of Neutron Nuclear Reactions

By

P. A. Moldauer

Prepared For Presentation at .
IAEA Consultants Meeting
on the Use of Nuclear Theory in
Neutron Nuclear Data Evaluation Trieste

December 8-12, 1975

NOTICE

This teport was prepased as ap gaounl of wark
spanmired by the lated States Government Newhee
the [U'nrted States 201 the United States Lretpy
Rescarch and Development Adnunistration, not any of
thenr emgloyees, nod any of thrir contractorr,
subcontractors, o thetr  eeployees, mskes  amy
warranly, express of iphed, or swumes any fenal
bubthity ot responabiity for the accaracy, comoletenesy
or usefutnen of any w.forMa win, 2pparafus, product or
procest ducfused. o 1epreients that it uee woald pot
infange prvasely cwued ngts

WASTR

DISTRIBUTICN OF Tiis = CUMENT IS UNLIMITED

v'
ARGONNE NATIONAL LABORATCRY, ARGONNE, ILLINOIé'

UdiC-2UA-USERDA

operated under contract W-31-109-Eng-38 for the
U. S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION



Review paper RP2 prepared for presentation at the IAEA Consultants Meeting
on the Use of Nuclear Theory in Neutrcn Nuclear Data Evaluation Trieste,

December 8-12, 1975.

*
Statistical Theory of Neutron Nuclear Reacticns

P. A. Moldauer
Argonne National Laboratory, Argonne, 111. 60439, U.S.A.

ABSTRACT

The statistical theory of average neutron nucleus
reaction cross sections is reviewed with emphasis on the
justification of the Hauser Feshbach formula and its
modifications for situations inciuding isolated compound
nucleus resonances, overlapping and interfering resonances,
the competition of compound and direct reactions, and
continuous treatment of residual nuclear states.



1.  STATISTICAL THEGRY AND THE OPTICAL MODEL

The fundamental description of a quantum mechanical system, such
as the atomic nucleus is provided by the wave function ¢ which is ob-
tained from the solution of the Schrodinger equation (H-E)y=0, where
H is the Hamiltonian energy operator, which includes all kinetic and
interaction energies of the system, and E is the energy of the system.
Even in a relatively light nucleus, the many interaction terms between
the nuclear constituents give rise to strong and rapid variations of ¢
when the energy is varied at excitations of several MeV or higher,
where neutron induced reactions can take place. The details of these
variations are often difficult to ascertain theoretically and they are
often irrelevant to nuclear power applications because they are washed
out by Doppler broadening and by effective flux averaging. 1t is
therefore useful to treat these variations statistically, that is to
say, by discussing energy averages of relevant quantities, such as
cross sections.

For the discussion of scattering and reactions we are interested
only in the asymptotic wave function which is specified by the S-matri.
whose typical component Scd is the coefficient of the outgoing wave in
channel d when a unit flux plane wave is incident only in channel c.
The S-matrix is required to be symmetric and unitary because of time-
reversal invarience and flux conservation, and its elements completely
determine all observable cross-sections. For example the differential
cross section for scattering from a neutron channel c to the same or

any other channel d has the form
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and where ic and s are the orbita! angular mementun and channel spin
in channel ¢ and the Z-cgefficients are products of one (lebsch-Gordon
coefficient and cne Racak coefficient Y. The angle integrated cross

section is
P | 2
Teg = ™ fscd' Scdl (2)
and the total cross section is
tot _ 2 _
ac " = 2ux*(1 - ReS_ ) {3}

In order to treat the energy variations of these cross sections
statistically, we must give a statistical description of the energy
variations of the S-matrix elements Scd' The simplest and wost impor-
tant statistical property of S is its energy average S. Energy aver-
aging does not affect the symmetry property, but it does dest-ay
unitarity, and thereby flux conservation. Averazging carnot create new
flux, it can only “absorb” flux into the “"compound nucleus” so thit
the re-emission of this absorbed flux is not described by €. There-
fore § must be "less than unitary”, which means that the transmissicn

coefficients

- 'y 12
To=1 -}a:;scd; {4)

must satisfy
ofrcfw (s)

where the Tower limit implies unitarity of S, and therefore an energy
independent S. and the upper limit implies complele absorption of all
incoming f ux into the compound system. The transmission ceefficient
TC represents the compound nucleus “absorption™ cross sectior in units
of 7x°.

The cross sections obtained by substituting § in place of S in
Eqs. (1)-(3) are referred to as “direct" cross sections and the direct
elastic scattering cross section is called the “shape elastic” cross
section. To obtain the complete average cross section Eéd’ the direct
cross section must be complemented with the average compound nucleus
cross section czg (also called the fluctuaticn cross section) which
arises fro? the re-emission into channel d of the absorbed flux TC.



The calculation of this average compound naucleus cross section is the
principal cbject of the statistical theory that is of interest to
nuclear power apylications.

The aveiage S-matrix S is obtained fram the optical model by solv-
ing the Schrddinger equation with a complex potential interaction he-
tween the neutron or other scattered particie and the residuval nucleus
{1, The real part of this potential produces shape elastic scattering
and the imaginary part s responsible for the compound nucleus absorp-
tion. If the optical model Hamiltonian contains alse interaction
potentials between particles in different reaction channels, then we
have a coupied channels aptical model with non-vanishing off-diagonal
elements of § and with nonvanishing direct reaction cross sections
between these channels [2). Optical and coupled channels models are
discussed in greater detail in paper RPS. JAmong recent developments in
the statistical theory is the discussion of the effects of such direct
reaction cross sections upon corpeting compound nucleus cross sections
{3,4,5].

The cempound nucleus or fluctreation cross section arises from the
fluctuating part of the S-matrix

sfh-s.% (6)
in the following way

f2 -~ "dif"Eﬁt - :-‘ 7}513«
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vwhere the superposcd bar denotes an energy average. The differential

fluctuation cross section is

f2
du_(2) SO

cd'? . AR
—gr— ¢ L Pleose) By g RES L Syg (8)
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The simplest assumption leading to expressions for the fluctua-
tion cross section considers that "the average compound nucleus® be-
haves like a single state of the nuclear system which emits particles
intg the various reaction channels in the same proportions as it
abscrbs them. This assumption immediately leads to the well-known
Hauser-Feshbach formuia for the compound nucleus cross section [6,7].

HE. o
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vihere the sum in the denominator is taken over all open channeis, Add-
ing the assumption that the average of products of different S-matrix
elements vanishes, we obtain the differentizl Hauser-Feshbach formula
for the compound nuclieus cross section from Eq. (B) and

“eszi' jgf N {écdéc'd'+ (]'5cc') fcd‘éc'd] TcTc'/EP‘Te (10)

In the usual QOptical tlodel with spin-orbit coupling the channel
transmission coefficients Tc depend upon the channel orkital angular
mnmentum zc and the total projectile angular momentum 5c=3c+§c (vector
addition), where Se is the projectile spin (% in the case of nucleons).
With this dependence, Goldman and Lubitz have derived the following
formula for the differential compound nucleus cross section for spin %
particles [8].
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where the summation is over all J,jc,jd,ac,ad, and 211 even L, and
whare lc and Id are the target and residual nucleus spins in channels
c and d.

The angle integrated cross section averaged over ali initial
angular quantum numbers and summed over 21! final engular quantum
numbers is then

Tch

H.F. s 2J+1
o = qR? : {g92)
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where the summation extends also over all jc'ﬁc’jd’ﬁd‘ consistent with
total angular mementum J. In both Eqs. {%a) and (10a) the chamnels e
must have votal anquiar momentum J and the same parity as channels ¢
and d. We will hencefarth omit the averaging and summation over angu-
lar momenta and discuss the individual channel cross sections as in

Eq. (9).

(4]



The following three sections review the main features of statis-
tical theories and how their predictions of the fluctuation cross
section agree or differ from the Hauser-Feshbach formula. The final
section deals with situations in which the residual nuclear states

have a continuous spectrum or are treated as such.

2. ISOLATED RESONANCES

At low neutron energies, the energy dependences of neutron cross
sections are well known to arise from szquences of well isolated
Breit-Wigner resonances [9]. This behavior is described by an S-matrix

which has the form [10].
. f f
_oo=ilp. + 3, . x~ jC ud
Seg =€ ¢ d (‘Scd - ‘%-‘E’L"-fu%"“wru) an

whzre the total widths Tu are related to the partial widths ruc and
the real width amplitudes fuc by

Poe = foc s T, = )c: M e (12)
and where all widths ru are smail compared to the spacings Letween
resonance energies Eu'

Averaging Eq. {11} over energy, we obtain the optical model S-
matrix elements

S = e 0t ) (o - (50 /9) (13)
whev? U is the mean spacing of the Eu and the bracket ( )p refers to
2w average with respect to the resonance index u, taken over all
rasonances within the averaging interval. MWe see immediately that
ir the absence of direct reacticns when §;d varnishes for ci#d,
(fucfgg>11 must also vanish, and vice versa. We shall assume here
that S is diagonal ar. return to the case of direct reactions in
Section 4. Then we have

Seq = 8cget % (1 - im (1, ) /0) (14)

which leads to

_ 2n (T > a%(T c>2
T.=1- |5 1% = Dt - > (15)



where we will ignore the second term in the limit of small (ruc)/D,
that is in the Timit of small transmission coefficients.

In this same limit the fluctuation cross section is easily cal-
culated from the S-matrix (11) with the assumption that S is diagonal,

and one obtains

Ofl = 2'12{2 <ruc |J> (]6)

which, on omitting the second term in Eq. (15) becomes [11-14]

= 2 oMFep (17a)

where

<uc ud> /< uc>1x< ud)u
cd
U/U
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In this integral evaluation of the u1dth fluctuation correction ch to
the Hauser Feshbach furmula, it is assumed that the distribution of
values of the partial widths ruc for each channel c dre given by the
chi-squared distribution law with Ve degrees of freedom, which is de-
fined for any positive real v by the fraquency function

~(+6, +6. )
fc “fd (17b)

v
F ) = xZ 7 Ve 24 (2 (18)

Tepel et al. [15} found a formula which yields a very good ap-
proximation to the width fluctuation ¢ . rected Hauser Feshbach formula
of Eqs. (17) in most instances, but does not require the integration
of Eq. {(17b). According to these authors

f2
Ted Y nxz (v ¥q 1254 d/vd)/z Y (192)
where
Tc
Y = ————— .
c .]i . (19b)
Ve T



Clearly, in the case of isolated resonances with no direct re-
actions, the only information which we need in order to evaluate the
fluctuation cross sections is the optical model transmission coeffic-
jents and the partial width distribution laws for all open channels.
There is considerable theoretical as well as experimental avidence
that in this isolated resonance limit the f“c of Egq. (11) are normally
distributed with zero means. It follows from this that the r"c are
distributed according to the chi-squared distribution with one degree
of freedom (the Porter-Thomas distribution) for any “channel® c¢ which
is specified by a single complete set of quantum numbers describing
the channel angular momenta and the state of the residual nucleus
[16-17]. This is the case for neutron and proton partial widths in
channels having a specified orbital and total angular momentum and a
specified residual nuclear level. Any "channel” that is specified by
n independent quantum channels 211 having the same average partial
width, is distributed according to a chi-squared distribution with n
degrees of frecedom. Thus "capture” generally encompasses a large num-
ber of independent gamma ray transitions to various low lying levels
of the compound nucleus, and therefore the capture width has a very
narrcw distribution corresponding to a2 large degree of freedom (see
paper RP3). Fission, which cften jroceeds by one of several independ-
ent processes, gives rise to fission widths which have generally be-
tween two and three degrees of freedom, depending on isotope and energy.
Fission will be discussed in paper RP7.

The effect of the width fluctuation correction is to increase the
compound elastic fluctuation cre s section and to decrease non-elastic
cross sections correspondingly. Th. effect of this correction is
particularly pronounced for the inelastic scattering tu the first ex-
cited state of an even A nucleus, which can be reduced by almost a
factor of % compared to Hauser-Feshbach. Cosrespendingly the compound
elastic cross-section is enhanced by almost 50% compared to Hauser-
Fashbach. When many channeis are open, the effect on each inelastic
cross section becomes less pronounced, but the compound elastic effect
increases to a possible maximum erhancesent oy a fa.tor of 3. Some
typical magnitudes of the width fluctuation cirrection are shown in the



graphs of Fig. | and a typical example of the effect upon inelastic
scattering to the first excited state in even A nuclei is shown 1in
Fig. 2.

There are, of course, cther interesting statistical preperties
that affect the details of the energy variations of the cross sections,
such as the behavior of the level densities and the distribution of
Tevel spacings. The level densities will be reviewed in paper PP4.
Level spacing distribution Taws have been very intensively studied by a
number of authors [14,17]). But this subject is of very limited in-
terest to nuclear power applications.

In computing elastic and non-elastic neutron scattering cross
sections, it is important, pnarticularly at low energies, to include the
contribution TY= 2er/D of the capture channels to the transmission
factor sum in the Hauser-Feshbach cross section in Eq. (17), as is done
in the computer program NEARREX [18]. The effect of the capture chan-
nels on the width fluctuation correction {i7) can be taken into account
by an additicunal factor of exp [~tTY/§: Tq] in the integral [13]. This
treatment assumes that the capture widghs.do not fluctuate. Computer
programs for the calculaticn of average cross sections by the width-
fluctuation corrected Hauser-Feshbach formula include NEARREX {[18],

ALTE [19], and STAX 2 [z0].
3. INTERFERING RESOMANCES

As we have seen in Eq.(15), the resuits of the previous section
break down as saon as TC for some channel is no longer very smeall, as
will happen for low angular momentum neutron channels at quite moder-
ate energies of typically some tens of kilovolts. Then <ru>u/D is no
longer very small and consequently at some energies more than one term
in the resonance sum of Eq.(11) will contribute significantly to S.

At such energies the expression {11) is not unitary and it can be shown
that it is in fact impossible to make Ec.(11) unitary at all such
energies with real parameters fuc'

In order to reiain unitarity, Eq.(11) must be modified to read

[10,21,22)

120)




where the Sgd and the 9. are complex pdaraweters that are only slowly
energy dependent, und that satisfy complicated and not yet fully under-

stood relations in place of Eq. (12).
Two known relations that the parameters of Fq. {20) must satisfs

in the case of diagonal S are, first of all [23]

*-1

21(g, %y, /D=5 -3 (21a)

or

t

|2n (g, *y, /017 = 7.7/70 - T0) (21b)

where D is the mean spacing of the Eu in (20). Secondly we have the

requirement that [24,25]

5. - e TTuen/D (), ° ;«UC)U (22a)

or

T &2 )0 (z2b)

and it follows from (21) and (22) that
2 - : - ] P
Trl(guc >ul/D = s1nh(“(ruc)ﬁ/0) {23)

which shows that the mean partial width becomes itogarithmically infinite
as Tc approaches unity, and that the absolute mean square amplitudes 9.c
grow exponentially compared to the mean partial widths.

We can again calculate the optical model S-matrix and the fluctua-
tion cross section and obtain [21]

S =8> - n(g g /D (24)

cd cd uc ud/y

which ;mplies quite aenerally, that in order for S to have off-diagonal
elements, either Sb or-(guxgu)u or both must have off-diagonal elements.
The possibility that the two terms cancel is effectively exciuded. The
fluctuation cross section for diagonal S is [21,25]

10
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The first term in Eq. (25) looks like Hauser-Feshbach but is difficult
to evaluate because we know nothing about the !gurl2 except that they
are proportionzi to tke F“C independent of channel index [10,71}.

2 = N »
'!gpc! / 1C r’;; ] (27)
This fact permits us to define the quantities [21]

G ® (2n/0)ﬂu~rUC 0T Zconc (28)

from which

2 a o \ 1

Ocd ~ R KrJnC“;:d/ql:/ f'Cd) (29)
and

i = {00, -%rﬁcd (30)

The evaluation of the first temm of Eq. (29) is complicated by the fact
that it can be shown that there exist correlations between tne OUC for
different channels [26] even in the absence of direct reactions, and
these correlations make the evaluation much more difficult than in the
case of Eq. {16) where the Tuc were not correlated for different chan-
nels. Also the evaluation of the second term in Eq. (26) depends on a
knowledge of poscible resonance-resonance correlations of the guc [27].
It has been shown that in a certain class of cases, the effect of
the channel-channel correlations of the Ouc Jjust cancels the contribu-
tion of M [26]. Assuming this M-cancellation to be generally valid one
arrives at a formula for the fluctuation cross section that is identical
to the width fluctuation corrected Hauser-Feshbach formula (17). The
only difference is that now we do not know the values of the fluctuation
indices Ve for the various channels as we did in the case of isolated

resonances. From general theoretical considerations orne deduces tkat
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for- each independent channel the value of Ve rises from { towards -
Timiting value of 2 as {I)/D increases. From certain numerical
studies Tepel et al. {157 have deduced an empirical expression for

Ve as a function of TC
vo=1+ Tf (31)

Other more complicated functional relationships have been proposed
elsewhere [4]. However almost certainly the value of Ve does not
only depend on TC but also on the transmission coefficients of all
competing channels. If chanrels with large transmission coefficients
compete with a channel ¢ having a small Tc’ the value of Ve will ke
larger than indicated by Eq. (31) [26]. More work is required in this
area.

It is important to note that the M-cancellation principle re-
places an earlier attempt to take into account the second term in
Eq. (30) by modifying the definition of T.» using parameter Q_ [18,21,
25].

There exist two other methods for treating the fluctuation cros:
section which are so far applicable only to the Timit of very large
{T)/D. They may therefore nut be usable in many situations of interest
to nuclear power applications. The first of these is the treatment of
Kawai, Kerman and McVoy which is based upon a representation of the
S-matrix that looks very much Tike Eq. (20}, but whose parameters are
chosen in such a way that S is not unitary at all energies [3}. The
resulting fluctuation cross section formula, which does not involve
the difficult expression M in Eq. (24) yields virtually identical re-
sults to those obtained from the M-cancellation procedure in the limit
of large T /D if 811 channel fluctuation indices are chosen to have
the value Ve = 2. We shall return to this formula in the next section.

There is also a new and entirely different method due to Agassi
and Weidenmll1ler which is based upon the doorway state description of
the nuclear reaction mechanism (see paper RP6), and which yields cor-
rection terms to the Hauser-Feshbach formula in the 1limit of large

{T)/D [28].
4. DIREGT REACTION EFFECTS

As we saw in Eq. (13), one obvious effect of direct reactions is



that they can produce correlations between the partial widths of dif-
ferent channels. (Actually, Eq. {11) must be medified to permit also
nonresonant off-diagenal terms if direct reactions are present.) Cor-
relations in partial widths of different channels nust be expected to
produce enhanced fluctuation cross sections between these channels.
The reason for this is the same as the reason for the width-fluctus-
tion enhancement of the elastic fluctuation cross section, Eq.{17),
which arises from the complete correlation of entrance and exit channel
widths in the elastic case, where the two are identical. Thus the
effect of direct reactions upon average coipound nucleus cross sections
is basically an aspect of the width fluctuation correction. In the
case of isolated resonances the direct effect can be calculated in this
way [29,301. However the most general and useful method is the use of
the Ergelbrecht-Weidenmiiller transformation [31] which is a linear
transformation of the reaction channels that results in a transformed
unitary S-matrix with a diagonal average.

This transformation is specified by the unitary matrix U that
diagonalizes the Hermitean penetration matrix P of Satcnler [32]

P=1-55* (32)

P'= UPU! is diagenal, (33)
where U1 = uf |
It follows then that

s' = USU (34)
is unitary, where U is the transpose of U, and

S = U§a is diagonal (35)

Arguments have also been given that S' has the same statistical proper-
ties as & physical S-matrix with diagonal average [4]. For the case of
only two directly coupled channels, the transformation U is easily
written down explicitly [5]. Writing

f]_efel fge-iea
f39.103 fze'lez (36)
{cosB —sins)(eia 0 .)
and U = sing  cosgfl0 e”'® (37)
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we find that

fzsin923—f]sinel3

n

tan 2a
fzcos@23+f]cosel3

2f.,
3

fzcos(@23-a)-f]cos(oz3-a) (38)

tan 28 =

WheY‘E 013 = OI - 63 S 023 = 02 - 03 .

For threes or more coupled channels the direct effect will in general
not be very significant as we shall see. In such cases numerical
diagonalization of P is required.

With the help of the Engelbrecht-Weidenmiller transformation the
fluctuation cross section can be expressed entirely in terms of the
elements of the transformation matrix U, and certain averages of the
transformed S-matrix S'. Two types of such averages occur. The first
is of the form ISESZIZ, which is just the fluctuation cross section
(7) in the transformed channel space and can be evaluated by the width
fluctuation corrected Hauser-Feshbach formula as described in Sections
IT or 1I1. For this one requires the transmission coefficients in the
ti-ansformed channel space, which are just the diagonal values of the
transformed penetration matrix P'. One also requires the fluctuation
parameters Vé (Eg. 31) for each of the transformed channels in order to
compute the width fluctuation correciion factors Féd‘ Then

|f2 — 2 _;Tl 2
Ocd ~ Trxc lScd |
2 (39)
P [ ] 1 [} 1
= wic (PCCPdd/trP VF cd

In addition there also occur averages of another type, which can be
estimated by means of the M-cancellation procedure as fnllows

B .

2-ve 279§ 2

oo f0¥
2 t Lot = .
e Scc Sad - _TQ:— '725— cd (40)

Using Egs. (35), (39), (40) one obtains for the fluctuation cross
section in the presence of direct reactions [5]

14
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fR, 2 2 ,fJZ,
Ocd E:Iuec ]Uedl

* 2;‘ [ ec fd(Uchfd Uched) (41)
2-v! 2-vyg
e f o' T2
¥ vé v% Uchedechd] ef

A very similar formula that yields almost entirely equivalent
results, but is a 1ittle more complicated to evaluate, has bean given
by Hofmann et al. [4]. The fonnula of Kawai, Kerman and McVoy [3]
yields results equivalent to Eq. (41) only in the 1imit of large
(F)/D when all vé are equal to 2. Then this formula reads

fo _ 7
Oed = Xeckdd ¥ *edde (1)>>0 (42)
Ped z; Ked¥ee * Xed) (43)

Here Eq. (43) must first be solved for X by numerical iteration and
then substituted into Eq. (42).

Qualitatively we see frem Eq. (41) that the enhancement of the
fluctuation cross section due to direct reactions is at most egual to
the width-fluctuation enhancement of the transformed elastic fluctua-
tion cross section cézl. This enhancement amounts at most to a factor
of T+ 2/vé and will in practice almost always be less than a factor
of 2. The maximum enharcement is achieved when only two channels are
directly coupled to one another and det P = Q. In that case the
transmission coefficients for one of the two transformed channels
vanishes, and therefore there is only one independently fluctuating
transformed channel. As a result, the fluctuations in the two coupled
physical channels are completely correlated, just as in the case of
compound elastic scattering. The case det P = 0 is called the causality
1imit because causality considerations are violated when det P is nega-
tive [5]. Eq. (41) predicts that enhancements due to direct reactions
are appreciable only quite close to the causality limit when that linit
is rot identical to the unitarity limit trP=0. Ordinarily large en-
hancements will occur only when the rank of P is no greater than 2.

Fig. 3 shows the enhancement due to direct reactions as computed by
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means of Eq. (40) for two types of S matrices. In one of these (upper
right) the causality 1imit coincides with the unitarity 1limit, and there
is no appreciable enhancement. In the other case the causality limit is
not equal to the unitarity limit and enhancements close to a factor of 2
occur,

The validity of the results of Eq. (41) have been confirmed by com-
puter averaging of computer generated statistical model cross sections
[5). Such calculations have also been used to confirm the M-cancellation

principle for a wide variety of S matrices [26].
5. CONTINUQUS CHANNELS

With increasing neutron energy the number of open exit channels in-
creases rapidly until it is either impossible or undesirable to enumer-
ate all such channels and discuss their cross sections in detsil. It
then becomes necessary to discuss the differential cross section for
transitions to channels of a given type (e.a., neutron or protons, etc.)
Teaving the residual nucleus with an excitation energy within a differ-

encial interval at Ed.

fe

i?fid’é-:ﬂt—'-)— = ol 5(discr.) pyEy) (44)
where &z%(discr.) is the cross section for excitation cf a discrete
channel with residual nuclear excitation Ed’ and pd(Ed) is the level
density at excitaiion Ed of the residual nucleus in channel d for states
having spin and parity specified by the channel index d. HWe refer again
to paper RP4 for a detailed discussion of level densities.

If the dependence of pq upoN the relevant residual spins Id is given
by the factor (21d+1), then it can be shown that the fluctuation cross
section (44) summed over Id is isotropic. Though this spin dependence of
Pq is not correct, the anisotropies of fluctuation cross sections at such
high energies are expected to be small and can often be ignored.

Also, in the presence of large numbers of competing channels, the
width fluctuation correction and direct effect upon non-elastic fluctua-
tion cross sections beccmes negligible. On the other hand for {r)>>D we
expect an elastic width fluctuation correction factor of 2, so that in



the present domain we expect that

ne

(1+ 6.9, (45)

ccd(discr.) d

where again, the channel indices ¢ and d carry all relevant enersy and
angular momentum quantum numbers.

The transmission factor sum E;Je which occurs in the dencminater
of ogaF‘, Eq. (9), must also be evaluated statistically

- Ee(max)
%‘ Te = %3 Io Te(Eg)og(EQ)dE, (46)
which involves the level densities for the residual nuclei in all com-
peting channels. Again, if Pe depends cn the residual nucleus spin

through a factor (ZIe+]), then the transmission sum (46) is given by

[33]

%; Te = (2J+1)G/7 (46a)
where J is the total angular morentum and G depends only upon excita-

tion energy of the compound nucleus.
Another empirical method for determining the transmission factor

sum makes use of the relation [34]
ST, ¥ e (a7)
e

where I'®"" is the correlation width and p is the compound nucleus
level density for states of the same total angular momentum and parity
as the channels e that are summed over. The correlaticu width can
under some circumstances be estimated from fluctuation experiments
[35]. The validity of the relation (47) was recently confirmed by
numerical studies [26]. Comparison of Eqs. (22b) and {47) shows that
the correlation width of Eq. (47) is not the same as the average of
the widths (I‘“)u of Eq. (20}.

Difficulties remain in the reliable treatment of compound nucleus
cross sectiont at high energies. These are caused by a number of
different circumstances. Ffirst, there is the uncertainty regarding
the effects of gamma ray transitions between highly excited compound
nuclear states in softening the spectrum of emitted neutrons and pro-
tons. Secondly, there are empirical results which disagree with the



shapes of the particle spectra predicted by the above statistical
picture. This effect has beer treated with considerable success by
means of the pre-equilibrium models which will be discussed in paper
RP6 [36].

Finally, at neutron energies exceeding 10 to 20 MoV, residual
nuclear levels become unstable and emit seconoary particles which fur-
ther add to the particle flux generated by the reaction. From a
theoretical viewpoint, such physically cortinuous channels pose a three-
or more body problem in the channel portion of configuration space, not
just in the compound nucieus. While theoretical methods exist now for
treating three-body problems {37], they are complicated and time-consum-
ing and have not yet been applied to neutron induced reactions in heavy
nuclei. It is therefore generally essumed that above the threshold for
three body breakup, the breakup proceeds sequentially. That is, in
addition to the particle spectrum produced accding to Eq. (44), there
are additional particles produced by the breaku, of the residual nuclei
in each channel d which is given by

Ed(max)

s . )
o dEdUcd(dTSCY‘.)pd(Ed) lepdl(Edl)/ ;Tel (48)

where the channels d' are decay channels of the residual nucleus of
chaninel d, considered as a new compound system, etc.

When level densities are computed from the model of the nucleus
which pictures it as a gas of fermions, characterized by a temperature
parameter, the particle spectra produced according to Eqs. (44), {(48),
etc., are called evaporation spectra. Probably in most instances, the
doorway state models involving precompound or pre-equilibrium decay
{see paper RP6) give a better account of these spectra.
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Fig. 1.

Fig. 2.

Fig. 3.

FIGURE CAPTIONS

Some non-elastic width fluctuation correction faclors for

two channels (x and y) having v=1 (Porter-Thomas) and one
channel (Z) having v== (exponential, equivalent to large
numbers of competing channels }.

A typical example of the effect of the width fluctuation cor-
rection on the excitation cross section of the first 2t state
in an even target nucleus. Shown are the Hauser-Feshbach
prediction and the width fluctuation corrected predictions
for v=1 and v=2 for the 845 keV level in iron. Optical
potential and data points are from Ref. {38]. (Neutron time-
of-71ight spectroscopy.) The data curve is from Ref. [39]
{gamma ray spectroscopy.)

Predicted enhancements of compound non-elastic cross sections
due to competition with direct reactions for two classes of
roupled channel S-matrices (From Ref. [5])
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