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Statistical Theory of Neutron Nuclear Reactions

P. A. Moldauer
Argonne National Laboratory, Argonne, 111. 60439, U.S.A.

ABSTRACT

The statistical theory of average neutron nucleus
reaction cross sections is reviewed with emphasis on the
justification of the Hauser Feshbach formula and its
modifications for situations including isolated compound
nucleus resonances, overlapping and interfering resonances,
the competition of compound and direct reactions, and
continuous treatment of residual nuclear states.



1. STATISTICAL THEORY AND THE OPTICAL MODEL

The fundamental description of a quantum mechanical system, such
as the atomic nucleus is provided by the wave function ty which is ob-
tained from the solution of the Schrodinger equation (H-E)^=O, where
H is t!ie Hamiltonian energy operator, which includes all kinetic and
interaction energies of the system, and E is the energy of the system.
Even in a relatively light nucleus, the many interaction terms between
the nuclear constituents give rise to strong and rapid variations of £
when the energy is varied at excitations of several MeV or higher,
where neutron induced reactions car. take place. The details of these
variations are often difficult to ascertain theoretically and they are
often irrelevant to nuclear power applications because they are washed
out by Doppler broadening and by effective flux averaging. It is
therefore useful to treat these variations statistically, that is to
say, by discussing energy averages of relevant quantities, such as
cross sections.

For the discussion of scattering and reactions we are interested
only in the asymptotic wave function which is specified by the S-matri«
whose typical component S . is the coefficient of the outgoing wave in
channel d when a unit flux plane wave is incident only in channel c.
The S-matrix is required to be symmetric and unitary because of time-
reversal invarience and flux conservation, and its elements completely
determine all observable cross-sections. For example the differential
cross section for scattering from a neutron channel c to the same or
any other channel d has the form

fLcc'dd' Re [(6cc'- Scc'J (6dd'



and where S. and s are the orbital angular momentum and channel spin
in channel c and the Z-coefficients are products of one Clebsch-Gordon
coefficient and one Racah coefficient W. The angle integrated cross
section is

and the total cross section is

o*0 t = 2irX»O - ReScc) (3)

In order to treat the energy variations of these cross sections
statistically, we must give a statistical description of the energy
variations of the S-matrix elements S .. The simplest and most impor-
tant statistical property of S is its energy average ?. Energy aver-
aging does not affect the symmetry property, but it does des*-oy
unitarity, and thereby flux conservation. Averaging cannot crea*:e new
flux, it can only "absorb" flux into the "compound nucleus" so thst
the re-emission of this absorbed flux is not described by ?. There-
fore 3" must be "less than unitary", which means that the transmission
coefficients

Tc = i-£!scdP (4)
d

must satisfy

0 ^ T c *- 1 (5)

where the lower limit implies unitarity of 5, and therefore en energy
independent S, and the upper limit implies complete absorption of all
incoming fux into the compound system. The transmission coefficient
T represents the compound nucleus "absorption" cross section in units
Of TTXJ.

The cross sections obtained by substituting S" in place of S in
Eqs. (l)-(3} are referred to as "direct' cross sections and the direct
elastic scattering cross section is called the "shape elastic" cross
section. To obtain the complete average cross section 5" ., the direct

cross section must be complemented with the average compound nucleus
facross section ac^ (also called the fluctuation cross section) which

arises from the re-emission into channel d of the absorbed flux T .• c



The calculation of this average compound nucleus cross section is the
principal object of the statistical theory th3t is of interest to
nuclear power applications.

The ave. .;<je S-matrix S is obtained from the optical model by solv-
ing the Schrodinger equation with a complex potential interaction be-
tween the neutron or other scattered particle and the residual nucleus
{1. The real part of this potsntial produces shape elastic scattering
and the imaginary part is responsible for the compound nucleus absorp-
tion. If the optical model Hamiltonian contains also interaction
potentials between particles in different reaction channels, then we
have a coupled channels optical model with non-vanishing off-diagonal
elements of S" and with nonvanishing direct reaction cross sections
between these channels {2). Optical and coupled channels models are
discussed in greater detail in paper R?5. Asitong recent developments in
the statistical theory is the discussion of the effects of such direct
reaction cross sections upon competing compound nucleus cross sections
{3,4.5].

The compound nucleus or fluctuation cross section arises from the
fluctuating part of the S-matrix

sf?- = s - y (6)

in the following -way

where the superposed bar denotes an energy average. The differential
fluctuation cross section is

The simplest assumption leading to expressions for the fluctua-
tion cross section considers that "the average compound nucleus" be-
haves like a single state of the nuclsar system which emits particles
into the various reaction channels in the sarae proportions as it
absorbs thsn. This assumption inroediately leads to the well-known
Hauser-Feshbach formula for the compound nucleus cross section (6,?}.



where the sum in the denominator is taken over all open channels. Add-
ing the assumption that the average of products of different S-matrix
elements vanishes, we obtain the differential Hauser-Feshbach formula
for the compound nucleus cross section from Eq. (8) and

JcdVd'
L

In the usual Optical Model with spin-orbit coupling the channel
transmission coefficients T depend upon the channel orbital angular
momentum ?. and the total projectile angular momentum j =t +s (vector
addition), where s is the projectile spin (*j in the case of nccleons).
With this dependence, Goldman and Lubitz have derived the following
formula for the differential compound nucleus cross section for spin h
particles [8J.

W(JJCJJC; IcL)M(JJdJJd;IdL)

where the summation is over all J,jC*J£>
Sr''*d' anri a^ even ̂

whsre I and I, are the target and residual nucleus spin:, in channels
c and d.

The angle integrated cross section averaged over all initial
angular quantum numbers and summed over all final angular quantum
numbers is then

0H.F. _ . 2V>2W V d

where the summation extends also over all j ,£ ,Jd>£., consistent with
total angular momentum J. In both Eqs. (9a) and (10a) the channels e
must have total angular momentum J and the same parity as channels c
and d. We will hencefjrth omit the averaging and summation over angu-
lar momenta and discuss the individual channel cross sections as in
Eq. (9).



The following three sections review the nnin features of statis-
tical theories and how their predictions of the fluctuation cross
section agree or differ from the Hauser-Feshbach formula. The final
section deals with situations in which the residual nuclear states
have a continuous spectrum or are treated as such.

2. ISOLATED RESONANCES

At low neutron energies, the energy dependences of neutron cross
sections are well known to arise from sequences of well isolated
Breit-Wigner resonances f9]. This behavior is described by an S-matrix
which has the form [10J.

S = e~j^c + ̂ Is j y V ' ^ . 1 (11)

where the total widths r are related to the partial widths r and
v yc

the real width amplitudes f by

and where all widths F a)e small compared to the spacings between
resonance energies Et .

Averaging Eq. {11} over energy, we obtain the optical model S-
matrix elements

S^-e^V^^-^f^)^) (13)

whe> •» V is the mean spacing of the E and the bracket ( > refers to
an average with respect to the resonance index u, taken over all
resonances within the averaging interval. We see imnediately that
ir the absence of direct reactions when S_ . vanishes for cfi,
(f f .) must also vanish, and vice versa. We shall assume here
that Sf is diagonal ar^ return to the case of direct reactions in
Section 4. Thpn we have

which leads to



where we will ignore the second term in the limit of small (r C)/D>
that is in the limit of small transmission coefficients.

In this same limit the fluctuation cross section is easily cal-
culated from the S-matrix (11) with the assumption that ST is diagonal,
and one obtains

fl _ 2TT2*2 V

which, on omitting the second term in Eq. (15) becomes [11-14]

where

-/WlidV /<rpC>t,<Fcd= ^

2tT

9
In this integral evaluation of the width fluctuation correction F . to
the Hauser Feshbach formula, it is assumed that the distribution of
values of the partial widths r for each channel c are given by the
chi-squared distribution law with v degrees of freedom, which is de-
fined for any positive real v by the frequency function

,V ,v X £

Fv(x) = x^7"
 u e ' 2 / (2*r(£)) (18)

Tepel et al. [15] found a formula which yields a very good ap-
proximation to the width fluctuation r . rected Hauser Feshbach formula
of Eqs. (17) in most instances, but does not require the integration
of Eq. (17b). According to these authors

(19a)

where
T

Y. = c



Clearly, in the case of isolated resonances with no direct re-
actions, the only information which we need in order to evaluate the
fluctuation cross sections is the optical model transmission coeffic-
ients and the partial width distribution laws for all open channels.
There is considerable theoretical as well as experimental evidence
that in this isolated resonance limit the f of Eq. (11) are normally
distributed with zero means. It follows fron this that the V are
distributed according to the chi-squared distribution with one degree
of freedom (the Porter-Thomas distribution) for any "channel" c which
is specified by a single complete set of quantum numbers describing
the channel angular momenta and the state of the residual nucleus
[16-17]. This is the case for neutron and proton partial widths in
channels having a specified orbital and total angular momentum and a
specified residual nuclear level. Any "channel" that is specified by
n independent quantum channels P 11 having the same average partial
width, is distributed according to a chi-squared distribution with n
degrees of freedom. Thus "capture1' generally encompasses a large num-
ber of independent gamma ray transitions to various low lying levels
of the compound nucleus, and therefore the capture width has a very
narrcw distribution corresponding to a large degree of freedom (see
paper RP3). Fission, which often proceeds by one of several independ-
ent processes, gives rise to fission widths which have generally be-
tween two and three degrees of freedom,, depending on isotope and energy.
Fission will be discussed in paper RP7.

The effect of the width fluctuation correction is to increase the
compound elastic fluctuation crt, s section and to decrease non-elastic
cross sections correspondingly. Th. effect of this corrtction is
particularly pronounced for the inelastic scattering to the first ex-
cited state of an even A nucleus, which can be reduced by almost a
factor of h compared to Hauser-Feshbach. Correspondingly the compound
elastic cross-section is enhanced by almost 50% compared to Hauser-
Feshbach. When many channels are open, the effect on each inelastic
cross section becomes less pronounced, but the compound elastic effect
increases to a possible maximum enhancement by a factor of 3. Some
typical magnitudes of the width fluctuation orrection are shown in the



graphs of Fig. ",' and a typical example of the effect upon inelastic

scattering to the first excited state in even A nuclei is shown in

Fig. 2.

There are, of course, other interesting statistical properties

that affect the details of the energy variations of the cross sections-,

such as the behavior of the level densities and the distribution of

level spac'incjs. The level densities will be reviewed in paper PP4.

Level spacing distribution laws have been very intensively studied by a

number of authors [14,17]. But this subject is of very limited in-

terest to nuclear power applications.

In computing elastic and non-elastic neutron scattering cross

sections, it is important, particularly at low energies, to include the

contribution T = 2v.v /D of the capture channels to the transmission
Y Y

factor sum in the Hauser-Feshbach cross section in Eq. (17), as is done
in the computer program NEARREX [18]. The effect of the capture chan-

nels on the width fluctuation correction (17) can be taken into account

by an additional factor of exp [-tT / ] £ T 1 in the integral [13]. This

treatment assumes that the capture widths do not fluctuate. Computer

programs for the calculation of average cross sections by the width-

fluctuation corrected Hauser-Feshbach formula include f.'EARREX [18],

ALTE [19], and STAX 2 [20].

3. INTERFERING RESONANCES

As we have seen in Eq.(15), the results of the previous section

break down as soon as T for some channel is no longer very small, as

will happen for low angular momentum neutron channels at quite moder-

ate energies of typically some tens of kilovolts. Then (r ) /D is no

longer very small and consequently at some energies more than one term

in the resonance sum of Eq.(ll) will contribute significantly to S.

At such energies the expression (11) is not unitary and it can be shown

that it is in fact impossible to make Eq.(ll) unitary at all such

energies with real parameters f .

In order to retain unitarity, Eq.(11) must be modified to read

[10,21,22]

bcd Scd 1 *-< E-E +-31 r Kd0)

V
;i U V



where the S . and the gi are complex parameters that, are only slowly

energy dependent, ^nd that satisfy complicated and not yet fully under-

stood relations in place of Eq. (12).

Two known relations that the parameters of Fq. (20) inû t satisfy

in the case of diagonal Fare, first of all [23]

or

where D is the mean spacing of the E in (20). Secondly we havt the

requirement that [24,25]

Scc = e"*<vV
D . <r > = E<ruc)u (22a)

c
or

and it follows from (21) and (22) that

-rrl <g 2 ) |/D = sinh(-(r ) /D) (23)

which shows that the mean partial width becomes "logarithmically infinite

as T approaches unity, and that the absolute mean square amplitudes g

grow exponentially compared to the mean partial widths.

We can again calculate the optical model S-matrix and the fluctua-

tion cross section and obtain [21]

ĉd * Scd " "< V W u / D <24>

which implies quite generally, that in order for S" to have off-diagonal

elements, either S or(g xg ) or both must have off-diagonal elements.

The possibility that the two terms cancel is effectively excluded. The

fluctuation cross section ^or diagonal !T is [21,25]



n

(25)

where

(26)

The first term in Eq. (25) looks like Hauser-Feshbach but is difficult

to evaluate because we know nothing about the |g j 2 except that they

are proportional to the V independent of channel index [10,21].

Wruc *\-' (27)

This fact permits us to define the quantities [21]

from which

and

7 - <0 > -YM A (30)
c ^ p d

The evaluation of the first term of Eq. (29) is complicated by the fact

that it can be shown that there exist correlations between tne 0 for

different channels [26] even in the absence of direct reactions, and

these correlations make the evaluation much more difficult than in the

case of Eq. (16) where the r . were not correlated for different chan-

nels. Also the evaluation of the second term in Eq. (26) depends on a
knowledge of poF^ible resonance-resonance correlations of the g [27],

It has been shown that in a certain class of cases, the effect of

the channel-channel correlations of the 0 r just cancels the contribu-

tion of M [26]. Assuming this M-cance71ation to be generally valid one

arrives at a formula for the fluctuation cross section that is identical

to the width fluctuation corrected Hauser-Feshbach formula (17). The

only difference is that now we do not know the values of the fluctuation

indices v for the various channels as we did in the case of isolated

resonances. Frcn general theoretical considerations one deduces that
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for each independent channel the value of v rises from I towards "•
limiting value of 2 as {r)/P increases. From certain numerical
studies Tepel et al. [15] have deduced an empirical expression for
v as a function of T

v, = 1 + lj (31)

Other more complicated functional relationships have been proposed
elsewhere [43. However almost certainly the value of v does not
only depend on T but also on the transmission coefficients of all
competing channels. If channels with large transmission coefficients
compete with a channel c having a small T , the value of v will be
larger than indicated by Eq. (31) [26]. More work is required in this
area.

It is important to note that the M-cancellation principle re-
places an earlier attempt to take into account the second term in
Eq. (30) by modifying the definition of T c, using parameter Qc [18,21,
25].

There exist two other methods for treating the fluctuation cross
section which are so far applicable only to the limit of very large
(r)/D. They may therefore not be usable in many situations of interest
to nuclear power applications. The first of these is the treatment of
Kawai, Kerman and McVoy which is based upon a representation of the
S-matrix that looks very much like Eq. (20), but whose parameters are
chosen in such a way that S is not unitary at all energies [3]. The
resulting fluctuation cross section formula, which does not involve
the difficult expression M in Eq. (24) yields virtually identical re-
sults to those obtained from the M-cancellation procedure in the limit
of large r /D if ell channel fluctuation indices are chosen to have

the value v = 2. We shall return to this formula in the next section,c
There is also a new and entirely different method due to Agassi

and Weidenmilller which is based upon the doorway state description of
the nuclear reaction mechanism (see paper RP6), and which yields cor-
rection terms to the Hauser-Feshbach formula in the limit of large
<r>/D [28].

4. DIREGT REACTION EFFECTS

As we saw in Eq. (13), one obvious effect of direct reactions is
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that they can produce correlations between the partial widths of dif-
ferent channels. (Actually, Eq. (11) must be modified to permit also
nonresonant off-diagonal terms if direct reactions are present.) Cor-
relations in partial widths of different channels nust be expected to
produce enhanced fluctuation cross sections between these channels.
The reason for this is the same as the reason for the width-fluctua-
tion enhancement of the elastic fluctuation cross section, Eq.(17),
which arises from the complete correlation of entrance and exit channel
widths in the elastic case, where the two are identical. Thus the
effect of direct reactions upon average compound nucleus cross sections
is basically an aspect of the width fluctuation correction. In the
case of isolated resonances the direct effect can be calculated in this
way [29,30]. However the most general and useful method is the use of
the Er.gelbrecht-Weidenmuller transformation [31] which is a linear
transformation of the reaction channels that results in a transformed
unitary S-matrix with a diagonal average.

This transformation is specified by the unitary matrix U that
diagonalizes the Hermitean penetration matrix P of Setchler [32]

P = 1 - S"S* (32)

P'= UPU"1 is diagonal, (33)

where U"1 = U+ .
It follows then that

S1 = Usfa (34)

is unitary, where ft is the transpose of 'J, and

S"1 = USD is diagonal (35)

Arguments have also been given that S1 has the same statistical proper-
ties as e physical S-matrix with diagonal average [4], For the case of
only two directly coupled channels, the transformation U is easily
written down explicitly [5]. Writing

/fle
5°i f3e

i03\
S= (f 3e

i 0 3 f.e1'02]

/cosg -sinj3Ue1a °
and U= |sin3 cosello e-^1 ^



we find that

tan 2B = ?gcos(023-0)-^cos(023-o)

where © 1 3 = ^ - ©3 > 923 = e 2 "
 03 '

For three or more coupled channels the direct effect will in general
not be very significant as we shall see. In such cases numerical
diagonalization of P is required.

With the help of the Engelbrecht-Weidenmuller transformation the
fluctuation cross section can be expressed entirely in terms of the
elements of the transformation matrix U, and certain averages of the
transformed S-matrix S'. Two types of such averages occur. The first
is of the form |S' . |2, which is just the fluctuation cross section
(7) in the transformed channel space and can be evaluated by the width
fluctuation corrected Hauser-Feshbach formula as described in Sections
II or III. For this one requires the transmission coefficients in the
transformed channel space, which are just the diagonal values of the
transformed penetration matrix P1. One also requires the fluctuation
parameters v' (Eq. 31) for each of the transformed channels in order to
compute the width fluctuation correction factors F' .. Then

(39)

In addition there also occur averages of another type, which can be
estimated by means of the M-cancellation procedure as follows

,f£* =
2"vd

Using Eqs. (35), (39), (40) one obtains for the fluctuation cross
section in the presence of direct reactions [5]
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V
Z-vl 2-v' * *

+ UfcUed>

f

\7jT ec ed fc fdj ef

A very similar formula that yields almost entirely equivalent
results, but is a little more complicated to evaluate, has been given
by Hofmann et al. [4]. The formula of Kawai, Kerman and McVoy [3]
yields results equivalent to Eq. (41) only in the limit of large
(r)/D when all v1 are equal to 2. Then this formula reads

acd = XccXdd + XcdXdc> < r> > > D (42>

Pcd " S ^XcdXee + XceXed> («)
e

Here Eq. (43) must first be solved for X by numerical iteration and
then substituted into Eq. (42).

Qualitatively we see from Eq. (41) that the enhancement of the
fluctuation cross section due to direct reactions is at most equal to
the width-fluctuation enhancement of the transformed elastic fluctua-
tinn cross section a' . This enhancement amounts at most to a factoree
of 1 + 2/vr and will in practice almost always be less than a factor
of 2. The maximum enhancement is achieved when only two channels are
directly coupled to one another and det P = 0. In that case the
transmission coefficients for one of the two transformed channels
vanishes, and therefore there is only one independently fluctuating
transformed channel. As a result, the fluctuations in the two coupled
physical channels are completely correlated, just as in the case of
compound elastic scattering. The case det P = 0 is called the causality
limit because causality considerations are violated when det P is nega-
tive [5}. Eq. (41) predicts that enhancements due to direct reactions
are appreciable only quite close to the causality limit when that Tin.it
is not identical to the unitarity limit trP=0. Ordinarily large en-
hancements will occur only when the rank of P is no greater than 2.
Fig. 3 shows the enhancement due to direct reactions as computed by



means of Eq. (40) for two types of S matrices. In one of these (upper
right) the causality limit coincides with the unitarity limit, and there
is no appreciable enhancement. In the other case the causality limit is
not equal to the unitarity limit and enhancements close to a factor of 2
occur.

The validity of the results of Eq. (41) have been confirmed by com-
puter averaging of computer generated statistical model cross sections
[5]. Such calculations have also been used to confirm the M-cancellation
principle for a wide variety of S" matrices [26].

5. CONTINUOUS CHANNELS

With increasing neutron energy the number of open exit channels in-
creases rapidly until it is either impossible or undesirable to enumer-
ate all such channels and discuss their cross sections in detail. It
then becomes necessary to discuss the differential cross section for
transitions to channels of a given type (e.g., neutron or protons, etc.)
leaving the residual nucleus with an excitation energy within a differ-
ential interval at E,.

-<#(discr.) Pd(Ed) (44)
a

where a .(discr.) is the cross section for excitation cf a discrete
channel with residual nuclear excitation E., and PJ(EJ) is the level
density at excitation E. of the residual nucleus in channel d for states
having spin and parity specified by the channel index d. We refer again
to paper RP4 for a detailed discussion of level densities.

If the dependence of p. upon the relevant residual spins I. is given
by the factor (21 .+1), then it can be shown that the fluctuation cross
section (44) summed over I . is isotropic. Though this spin dependence of
p. is not corrects the anisotropies of fluctuation cross sections at such
high energies are expected to be small and can often be ignored.

Also, in the presence of large numbers of competing channel;;;, the
width fluctuation correction and direct effect upon non-elastic fluctua-
tion cross sections becomes negligible. On the other hand for (r)»D we
expect an elastic width fluctuation correction factor of 2, so that in
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the present domain we expect that

acd(discr.) 2? (] + &cd)a^' , (45)

where again, the channel indices c and d carry all relevant energy and
angular momentum quantun numbers.

The transmission factor sum V T which occurs in the denominator
H F e

of a j ', Eq. (9), must also be evaluated statistically
rEo(max)

E Te = E J
6 Te(Ee)pe(Ee)dEe (46)e E Jo Te(Ee)pe(Ee)dEe

which involves the level densities for the residual nuclei in all com-
peting channels. Again, if Pe depends on the residual nucleus spin
through a factor (21+1), then the transmission sum (46) is given by
[33]

£ T = (2J+l)G/ir (46a)
e

where J is the total angular monentum and G depends only upon excita-
tion energy of the compound nucleus.

Another empirical method for determining the transmission factor
sum makes use of the relation [34]

£ T * 27rrCOrr/p (47)

e
where r c o r r is the correlation width and p is the compound nucleus
level density for states of the same total angular momentum and parity
as the channels e that are sumned over. The correlation width can
under some circumstances be estimated from fluctuation experiments
[35]. The validity of the relation (47) was recently confinned by
numerical studies [26]. Comparison of Eqs. (22b) and (47) shows that
the correlation width of Eq. (47) is not the same as the average of
the widths <T ) of Eq. (20).

Difficulties remain in the reliable treatment of compound nucleus
cross sections at high energies. These are caused by a number of
different circumstances. First, there is the uncertainty regarding
the effects of gamma ray transitions between highly excited compound
nuclear states in softening the spectrum of emitted neutrons and pro-
tens- Secondly, there sre empirical results which disagree with the
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shapes of the particle spectra predicted by the above statistical
picture. This effect has beer treated with considerable success by
means of the pre-equilibrium models which will be discussed in paper
RP6 [36].

finally, at neutron energies exceeding 10 to 20 MeV, residual
nuclear levels become unstable and emit secor.aary particles which fur-
ther add to the particle flux generated by the reaction. From a
theoretical viewpoint, such physically continuous channels pose a three-
or more body problem in the channel portion of configuration space, not
just in the compound nucleus. While theoretical methods exist now for
treating three-body problems [37], they are complicated and time-consum-
ing and have not yet been applied to neutron induced reactions in heavy
nuclei. It is therefore generally essumed that above the threshold for
three body breakup, the breakup proceeds sequentially. That is, in
addition to the particle spectrum produced according to Eq. (44), there
are additional particles produced by the breaks of the residual nuclei
in each channel d which is given by

Ed(max)

J
where the channels d1 are decay channels of the residual nucleus of
channel d, considered as a new compound system, etc.

When level densities are computed from the model of the nucleus
which pictures it as a gas of fermions, characterized by a temperature
parameter, the particle spectra produced according to Eqs. (44), (48),
etc., are called evaporation spectra. Probably in most instances, the
doorway state models involving precompound or pre-equilibrium decay
(see paper RP6) give a better account of these spectra.
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FIGURE CAPTIONS

Fig. 1. Some non-eltistic width fluctuation correction factors for
two channels (x and y) having \>=1 (Porter-Thomas) and one
channel (Z) having v=» (exponential,equivalent to large
numbers of competing channels ).

Fig. 2. A typical example of the effect of the width fluctuation cor-
rection on the excitation cross section of the first 2 + state
in an even target nucleus. Shown are the Hauser-Feshbach
prediction and the width fluctuation corrected predictions
for v=l and v=2 for the 845 keV level in iron. Optical
potential and data points are from Ref. [38]. (Neutron time-
of-flight spectroscopy.) The data curve is from Ref. [39]
(gamma ray spectroscopy.)

Fig. 3. Predicted enhancements of compound non-elastic cross sections
due to competition with direct reactions for two classes of
coupled channel JT-matrices (From Ref. [5])
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