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CONVERGENCE OF TRANSPORT SOLUTIONS
FOR THIN SLLAB CELLS

by

D. Meneghetti

ABSTRACT

Reported(l) DSN (Discrete SN Method(2)) calculations
of reactivity worths of heterogeneities in ZPR-III fast crit-
ical assemblies, due to use of various fuel plate and diluent
thicknesses, have shown the necessity for high-order ap-
proximations to obtain convergence of flux shape andeigen-
value, i.e., N =16 solutions are generallyinadequate for such
cells having regional thicknesses which are fractions ofmean
free paths.

Convergence properties of solutions for a simplified
two-region, one-energy-group, repetitive slab cell having
regional thicknesses and regional cross sections represen-
tative of those encountered in some energy groups of the
previous(l) three-group study are compared for DSN (N =2,
4, 8, 16), single-spherical harmonics, PN (N =1, 3, ...., 11,
13), and double spherical harmonics, DPN (N=1, 2, 3, 4, 5),
solutions for the case of a spatially constant unit source den-
sity in the alternate regions of the cell. Analogous uncol-
lided flux solutions and an integral transport solution for
the uncollided flux showing effects of the contributions of
the sources in neighboring cells upon the solution arealso
obtained.

As the angular width of the anisotropic flux compo-
nent occurs predominantly in the region about y = 0, the
"shape" of the spatial flux is largely determined by at most
a few nearest-neighbor source regions, and the anisotropic
component is largely the anisotropic component of the un-
collided flux. Use of either a discrete ordinate method in
which the quadrature angles and weights are assignedon the
basis of an uncollided angular flux estimate or an integral
transport method in which the angular integrationis accurate-
ly carried out is suggested for more effective convergence.



For such quasi-homogeneous cells a simple hand-
calculational method is presented in which the spatial flux
"shape" is first obtained from an uncollided flux analysis,
using an integral transport treatment requiring at most a
few nearest neighbor regions and arising from "effective"
regional source levels, based upon the constant flux of an
equivalent homogeneous cell, which include the elastic scat-
tering sources as well as the "actual" sources. The "level"
of this uncollided flux "shape" is then adjusted by a constant
flux term soas to satisfy the neutron inventory requirement
of total absorptions equal total "actual" sources. For mul-
tigroup solutionthe energy groups may be analogously treated
independently by employing "effective" and"actual" regional
source levels for each group based upon homogeneous cell
multigroup flux levels.

I. INTRODUCTION

Results(l) of DSN (Discrete SN Method(2)) calculations for reactivity
worths of heterogeneities in various ZPR-III fast assemblies have shown the
necessity of having many angular directions, i.e., high N, in order to obtain
suitable convergence of flux shape and of eigenvalue. It was observed, for
example, that DSN solutions with N = 16 are in general not adequate for such
cells. These cells have regional thicknesses that are a fraction of 2 mean
free path.

The present study was undertaken in order to clarify the reason for
the slow convergence and to suggest possible approaches to the problem
which may be more effective for these thin region cell problems.

II. BOLTZMANN EQUATION AND THIN SLAB CELLS

For isotropic scattering and isotropic sources the monoenergetic
angular flux distribution in slab geometry is(3)

X-X')

X
(X, 1) = l/Zf %&le s dxX' for 4 >0 (la)

and



d(X,u) = 1/2 ——te dX' for u <0 , (2a)

+ o

where X is measured in mean free path units. Further

where ® (X) is the scalar flux, S(X) is the source density per mean free path,
and Zg(X) and Z(X) are the macroscopic scattering and total cross sections,
respectively,

For thin repetitive cells, such that the period of Q(X) is small in
comparison to the mean free path cell thickness, the exponential factors
are slowly decreasing functions of |X - X'| over the distance of one cell
thickness, except for small values of |,ul . The anisotropic region of the
angular flux will thus primarily occur in a small angular region about u=0.

The importance of the angles close to i = 0 in characterizing the de-
viations of the angular flux from an isotropic variation in such thin region
cells indicates that the observed slowness of the convergence with increas-
ing degree of N-approximation in the DSN method is due to the inefficient
distribution of the discrete ordinate positions for such cells. The DSN
distribution of discrete ordinates is an approximately equal spacing in {4,
which would require considerably high approximation in N to insure ade-
quate distribution of ordinates in the small anisotropic region about K= 0.

This suggests use of either a discrete ordinate method in which the
discrete angles and weights of the quadrature are assigned so as to be ef-
fectively distributed, or an integral transport method in which the angular
integration is accurately carried out.

As the angular flux is predominantly isotropic, except for small [,ul,
the spatially constant scalar flux level of an equivalent composition homo-
geneous cell should be an excellent flux guess from which an initial Q(X)
may be obtained. If the cell consists of homogeneous regions and if S(X)
is constant within regions, then the initial Q(X) will be a step-function dis-
tribution constant within regions.



Integration of Eqs. (la) and (1b) with respect to i gives the integral
transport equation for the scalar flux: (3

$(X) = 1/2/ QXNE, (|]X - X'|) ax" ,

where E;(y) is the exponential integral. Insertion of the aforementioned
Q(X) approximation and integration should then provide a reasonable repre-
sentation of the shape of the spatial flux distribution. Furthermore it is
noted, as Q(X) is periodic with period short in comparison with the cell
average mean free path, that, except for neighboring cell regions such that
X' 1is close to X, the integral EI(IX - X'l )may be considered constant for
the variations of X' over any more remote cell. Thus the effective sources,
Q(X'), from neighboring cell regions are largely responsible for the spatial
flux shape and hence also for the anisotropic angular flux component. The
effective sources in more remote cells contribute essentially only to the
isotropic flux component and hence to a spatially constant flux level.

These considerations suggest a simplified integral transport ap-
proximation, amenable to hand calculation, in which the spatial flux "shape"
is obtained from an uncollided flux analysis requiring at most only a few
nearest-neighbor regions and arising from "effective" regional source
levels, based upon the constant flux of the equivalent homogeneous cell,
which include the elastic scattering sources as well as the actual sources.
The "level" of the uncollided flux is then adjusted by a constant flux term
to satisfy the neutron inventory of total absorptions equal total actual
sources (not including elastic scattering sources).

III. COMPARISON OF DSN, PN, AND DPN SOLUTIONS
FOR A BINARY CELL

A simplified two-region, one-energy-group, slab cell having
regional thicknesses and regional cross sections of magnitudes representa-
tive of those encountered in some energy groups of the previous (1) three-
group heterogeneity study was analyzed. DSN(2) (N=2,4,8,16), Single
PN (N =1,3,..., 11, 13), and Double PN (N =1, 2, 3,4, 5) solutions were ob-
tained for the case of a spatially constant unit source density in one region
and zero source in the second region. (These are not source-iterative
solutions as would be necessary for a heterogeneity calculation in anactual
case; however, the main convergence features and comparisons of the
methods are valid.)

The uncollided flux solutions were also obtained for comparison with
the multiply-collided solutions. In addition, the integral transport solution

~J



for the uncollided flux showing the effects of successive neighboring cell
sources upon the overall solution was also calculated.

The single spherical harmonics (PN) solutions were obtained by a
Fortran program(4) using as input the tabulated (5,6) values of the deter-
minantal roots V; and the

| constant functions Gj(v;). The double
SOURCE NOR-SOURCE REG 10N spherical harmonics (D PN)
REaoM solutions were obtained by
means of the Flip(7)program
and the RANCH(8) program.
The uncollided integral trans-
port solution was obtained by
a Fortran program.
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The dimensions of the
half-cell and the macroscopic

regional cross sections are
shown in Fig. 1. In the source
region the full regional thick-
nesses in absorption and total
mean free paths were 0.0768
and 0.128, respectively. In
the nonsource region the regional thicknesses in absorption and total mean
free paths were 0.125 and 0.314, respectively.
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HALF~CELL DIMENS.IONS AND REGIONAL CROSS SECTIONS

The ratios of the average values of the flux in the source region to
the average value of the flux in the nonsource region, ¢g /(—b_ns, are shown
in Fig. 2 for successive approximations by the various methods of solution.
Only the DP-5 solution appeared to be reasonably convergent. The spatial
distribution of the scalar flux by DP-5 is shown in Fig. 3.

The vector fluxes at various positions in the cell as obtained by the
DP-5 solution, which employs the method of discrete ordinates with double
Gaussian quadrature with twelve discrete angles, are shown in Fig. 4. The
vector flux distributions are largely isotropic except for angles close to the
tangential plane of the slabs.

To obtain a set of solutions which are more converged by all these
methods, the regional thicknesses of the cell were increased to ten times the
dimensions shown in Fig. 1. Identical macroscopic cross sections were re-
tained. The values of the advantage factor, ¢g /$ns’ obtained by means of
these calculations are shown in Fig. 5. The DS-16, P-13, and DP-2 gave
essentially converged identical advantage factors. In this case the con-
vergence by the DPN method was from above.
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Analogous calculations of the advantage factors for the uncollided flux
by the various methods and, in addition, by an integral transport solution in
which the effects of successively more remote source regions upon the ad-
vantage factor are observable, are shown in Figs. 6 and 7, respectively, for
the two cell sizes. The uncollided fluxes are the solutions obtained by the
various methods when the regional absorption cross sections are increased
so as to be equal to the regional total cross sections. For the integral trans-
port solutions the n-approximation refers to the number of neighboring
source regions considered in the calculations in the following sense: The
n = 0 refers to the uncollided flux in a source region due to neutrons aris-
ing from the sources in that region; and it refers o the uncollided flux in
a nonsource region due to neutrons originating in the adjacent source re-
gions on both sides of the nonsource region. Similarly, the n = 1 solution
refers to uncollided flux in a source region due to neutrons from sources
arising in that region and in the closest neighboring source regions on
both sides; and it refers to the uncollided flux in a nonsource region due
to neutrons originating in the first and second nearest source regions on
both sides of the nonsource regions.

The uncollided flux advantage factors by DSN, PN, and DPN as func-
tions of solution approximations exhibited analogous convergence shapes
to the preceding multiple collision results, except that the curves were
displaced to lower values of the advantage factor. The results of the un-
collided flux integral transport solutions showed in this case that considera-
tion of sources from about four to five neighboring cells on both sides must
be considered in order to give reasonably convergent uncollided advantage
factors. This is because sufficient neighboring cells must be considered to
account for the fate of the emitted source neutrons, especially those emitted
in closely perpendicular directions (to the planes) which contribute largely
to the overall flux level. Insofar as the flux shape is concerned, the inte-
gral method requires in this case at most one neighboring cell to be
considered. '

The uncollided vector fluxes at various positions by the DP-5 solu-
tion are shown in Fig. 8. Comparison with corresponding results (see
Fig. 4) for the multiple collision case showed that the angular spreads
about # = 0, in which the anisotropic component occurs, were approximate-
ly the same in the two cases. The two sets of angular distributions
differed essentially only by the increased magnitude of the isotropic flux
level in the multiple collision case. This is because in this example the
neutron sources in the two regions, due to scattering, are small relative
to the applied source. Inclusion of the scattering source levels, based upon
the homogeneous cell constant flux level, into the uncollided flux solution
will result in more improved comparison with the anisotropic component
of the multiply collided solution.

11
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IV. DISTRIBUTIONS OF DISCRETE QUADRATURE ANGLES

Comparison of the relative convergence rates of the advantage
factors by the various methods of solution are best made by comparing
the advantage factors for equivalent number of discrete angles. The cor-
respondence follows from the equivalence of single and double Gaussian
discrete quadratures with corresponding single and double spherical har-
monics solutions by series expansions.(g" 11) The equivalence of the approx-
imations in terms of number of discrete angles is given in Table I.

Table I

CORRESPONDENCE OF APPROXIMATIONS
WITH NUMBER OF DISCRETE
QUADRATURE ANGLES

Number of N
Angles
DSN PN DPN
4 4 3 1
6 6 5 2
8 8 7 3
10 10 9 4
12 12 11 5




For intercomparison the approximate values for the discrete angles ]ﬂ;\l
and the quadrature weighting factors R) for the case of eight discrete
angles are listed in Table II for DSN, PN, and DPN quadratures.

Table II

COMPARISON OF QUADRATURE CONSTANTS FOR
CASE OF EIGHT ANGLES

[ ] | Rl

Quadrature

Single(11)
Gaussian | 0.960 | 0.797 | 0.526 | 0.183 |0.101 | 0.222 | 0.314 | 0.363
P-7

Double(ll)
Gaussian 0.931 | 0.670 |0.330 |0.069410.174 | 0.326 | 0.326 |{0.174
DP-3

Ds-8t12) | 0.882 | 0.630 |0.378 | 0.126 10.250 | 0.250 | 0.250 | 0.250

The greater effectivenesses of the DSN relative to the PN and of the
DPN relative to the DSN are due to the increasingly more effective distri-
butions of the smaller discrete directions in the region near lpl = 0. For
the case of the cell having regional thicknesses ten times as large, the con-
vergence rates by PN and DSN were quite similar, indicating that the dif-
ferences of the quadratures are not important enough, i.e., the angular
spread aboutl K |= 0 which contributes to the anisotropic flux component is
relatively large. The DPN results in this case converge from above, which
indicates that the distributions of the discrete directions as demanded by
double Gaussian quadrature are slightly too heavily distributed toward the
l,uI: 0 region.

V. DISCRETE ANGLE QUADRATURES FOR THIN CELLS

Choice of a quadrature for use in a discrete ordinate method of
solution in the case of thin cells may be decided by the angular flux distri-
bution of an a priori uncollided flux solution including the scattering sources.
As the angulgr width of the anisotropic component of the angular fluxvaries
somewhat at different positions within a cell, an approximate estimate of
the angular region of the anisotropic flux will probably suffice. This means
roughly that for cosine of angles | vd p,cl= t/(ZXT), where Aq is the total
mean free path and t/Z is the half thickness of the predominant source region,
that the angular flux will largely deviate from an isotropic one. By

14



predominant source region is meant the region having the largest source
density, including the scattering sources, per regional mean free path.

This criterion is based on the realization that the flux anisotropy
for a thin slab source is large along rays with small Ip!and small along
rays with larger ’u}values. In the latter case the ray has a short path
in the source region before entering adjacent regions. The expression for
lﬂc ! is based on the approximate assumption that at the center of the pre-
dominant source region the angular region of predominant anisotropy
occurs at those angles for which the long rays are greater than one mean
free path.

Care should be taken to insure that among the number of discrete
directionsluxl allotted for a given approximation , 5% [ > [;,zci and
lﬂx [T luc | be included. In this regard a double Gaussian quadrature does
distribute a reasonable portion of the discrete angles in the angular region
of the anisotropic flux; however, it also tends to emphasize the forward and
backward directions by alloting more discrete directions than relatively
necessary in the isotropic flux interval where lul)} '}JC f.

In the example problem,

0.32 cm
{pcl = ——— = 0.064.

5.0cm

Reasonable values of [[J,XI and Ry for a four discrete angle quadrature might
be

I | = 0.064/2 = 0.032,
lu,| = 0.468,
R]_ = 0064, and

R, = 0.936.

i

This gives an advantage factor of 1.082, which may be compared with the
corresponding four-angle DP-1 value of 1.053 and the six-angle DP-2
value of 1.092. Certainly four angles are still not sufficient for this cell;
however, it is clear that by suitable quadrature assignment, considerable
improvement also at higher approximations may be obtained.

15
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VI. SIMPLIFIED INTEGRAL TRANSPORT APPROXIMATION
FOR THIN BINARY SLAB CELLS

An approximate solution is described in which the spatial flux
"shape" is obtained from an uncollided flux solution requiring considera-
tion of sources from at most only a few nearest-neighbor regions. The
uncollided flux is considered to arise from "effective" flat regionalsource
levels, which include the elastic scattering sources as well as applied and
fission sources, based uponthe constant fluxlevel of the equivalenthomogeneous
cell., The "level” of the uncollided flux shape obtained from consideration of
but a few neighboring source regions is then adjusted by a constant fluxterm
to satisfy the neutron inventory requirement that total absorptions equal total
actual sources (not including elastic scattering sources)to obtain an approxima-
tion to the multiply-collided flux distribution. If necessary for moreaccuracy,
a source iteration may be carried out using new effective flat regional
sources based upon regional average flux values obtained.

The uncollided distribution per mean free path in a region A at
position X, and for positive i values due to spatially constant isotropic
sources, Sp and Sp, per unit mean free paths in two repeating regions
A and B of a binary slab array having thicknesses A and B respectively
in mean free path units is given by the expression

Xp-A ol +a )
SA —( “ > e H e H 1
B

0 = ==
¢A+(“:XA) - 2 l-e + A

where XA is measured from the left boundary of region A. Exchange of B
for A, A for B, Xp for Xp, Xp for Xg, S for Sp, and Sp for Sg gives
$%5 (M ,Xp), where Xp is measured from the left boundary of region B.
Corresponding relations for negative y are obtainable by symmetry consid-
erations. The uncollided fluxes at positions XA and Xpg» expressed in centi-
meters, are

) (kA )= 8% 4 (1,X,), where Xp = 2, x
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and

o
¢B+('U"XB) = ¢(})3+(M.,XB) , where XB = ZBXB

If SA = Sp, the expressions reduce to isotropic fluxes constant
throughout. Thus if SpA > Sp,then AS = Sp - SB may replace Sp, and Sy
may be replaced by zero without altering the "shape" of the uncollided an-
gular flux distribution except for an additional constant isotropic term
throughout, which may readily be determined by the neutron inventory re-
quirement that total first collisions be equal to total sources.

For the source AS in region A only, the uncollided angular flux
"shapes" in regions A and B are given by the expressions

/Ii A+B XA tB
A N
0 AS (l—e >— e -e

Pa+(H.Xp) =

A+B
| l-e K ]
and
-X
AS B/'u(l 'A/ﬂ)
% (BXg) = = =
¢+ \Hotp 2 A+B ’
l-e #

respectively.

If the regions are fractions of mean free paths thick, A/,u and
B/# are sufficiently large only for U values close to zero, so that the
relations then reduce to

-X /p
AS [1-6 A } (2)

R

0

R

-X /y
¢%+(M:XB)—Z§—S[€ B (1-6_A/H)} (3)

for these small u values. For i values such that (A+B)/,u is small,
Equations 2 and 3 reduce to isotropic flux distributions.

If A and B are thin but B<< A, then more nearest-neighbor cells
are important in determining the nonisotropic angular flux spread in the
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angular region about g = 0. In terms of the scalar flux distribution the
"shape" requires more nearest-neighbor cells to be considered (as distinct
from flux-level adjustment alone). Suitable quadrature designations may be
estimated from the preceding relationships for use in a discrete ordinate
method of solution.

Consideration of both positive and negative-directed source neutrons
together with integrations over [i-space, rather than proceeding by taking
limits of geometric series, lead to the following expression for the uncol-
lided scalar fluxes in the two regions:

Ba(Xa) = éf{z - Ep(Xp) - Ep(A-Xy)

]
+ z [E,(XA -A+nA+nB) -E,(XaA +nA+nB)
n=1

+E,(-XA +nA+nB) -EZ(A—XA+nA+nB)]} ,

and,
0 AS
¢p(Xp) = Y E;(XB) - E;(A-Xpg) +E;(B-Xp) - E,(A+B-Xpg)
[e]
+Z [Ez(Xp +nB+nA) - E,(A+Xpg+nB+nA)
n=1
+ E,(B-Xp +nB+nA) - EZ(A+B-XB+nB+nA)]} ,
where

1
E, @) = / un'ze"“/“ dp.
0

Because of spatial symmetry, only A/Z T XpS Aand0< Xg < B/Z,
corresponding to half cells, need be evaluated.

The mean values of the uncollided fluxes are

—0 AS
¢A = A A-0.5 + E5(A)

+ Z [E3(-A+nA+nB)-2E3(nA+nB)+E3(A+nA+nB)]}
n=1
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and

?533 = AITS {0.5 -E3(B) - E3(A) + E;(A+B)
[+
Z [E;(nA+nB) - E;(B+nA+nB) - E3(A +nA+nB)+E3(A+B+nA+nB):&

Neglect of the terms in the summations gives the uncollided flux in the
source region A due to neutrons arising from sources in that region and the
uncollided flux in the nonsource region B due to neutrons originating in the
first adjacent source regions on both sides of the nonsource region, etc., as
previously described. It should be noted that, because of this described pair-
ing of the flux solutions in source and nonsource regions, that an apparent
flux discontinuity, ¢H(0) - ¢4 (A), will occur at the region interface for non-
"level"-converged solutions. This discontinuity becomes increasingly
negligible with consideration of sufficient terms so as to satisfy the neutron
inventory requirement of total sources equal to total first collisions. Inso-
far as the flux "shapes" in the separate regions are concerned, the shape
convergence as distinct from the overall level convergence will generally
converge rapidly, so that in many cases even neglect of all but n=0 terms
may be suitable. Correction for the flux discontinuity at the interface may
then be carried out by subtraction of ¢B(0) - pA(A), evaluated for the given
approximation, from the flux or mean flux of region B. Adjustment of the
few-neighbor uncollided flux to the many-neighbor multiply-collided flux is
then made by addition of a constant flux term determined from the inventory
requirement that total absorptions equal total actual sources.

The number of neighboring source regions necessary to obtain a
suitable uncollided flux "shape" may be determined by noting when

-0 _ =0 -0 0 0
AppE -9 - ¢, (0)- ¢ (A)
remains essentially constant with increasing integer n = 0, 1, ..... . The

quantity in the bracket corrects for the interface discontinuity effect pre-
viously referred to.

Adequacy of the uncollided scalar flux shape to approximate the
multiply- collided flux shape may be tested by comparing the1 relatlve mag-
nitudes of the average first-collision source differences, [ Sy - SB , with
the initially assumed AS, where




for region R. Here 5; is the mean uncollided flux in region R after cor-
rection for the flux discontinuity effect and adjustment in level by an over-
all constant uncollided flux term determined by the first collision inventory
requirement that total first collisions equal total actual sources.

For the example cell the uncollided flux shapes by the various
n-approximations for the case of unit intensity per centimeter applied
source in the thinner region are shown in Fig. 9.
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UNCOLLIDED SCALAR FLUX DISTRIBUTIONS SHOWING EFFECTS
OF CORSIDERING INCREASED NUMBER OF NE|GHBOR CELLS

The elastic scattering sources have not been included here. It is seen in
this case that the n = 0 approximation gives an excellent flux shape in both
regions, so that by enforcement of continuity at the interface and addition

of a suitable overall constant flux term the many-neighbor uncollided flux

is well approximated. In addition, because the effect of the elastic scat-
tering sources upon flux shape is small in this case, a further addition

of an overall constant flux term results in good agreement with the multiple-
collision DP-5 distribution shown in Fig. 3. In general, itisnecessary,
however, to determine the flux shape by anuncollided analysis based upon the
effective sources.
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VII. MULTIGROUP FAST CRITICAL HETEROGENEITY CALCULATIONS

Calculation of the fractional change in multiplication constant,
relative to a homogeneous one, due to plate configuration heterogeneities
in quasihomogeneous systems may be carried out analogously. It is sug-
gested that for a multigroup solution the energy groups be treated indepen-
dently. This neglects the effects of the spatial shapes of the group fluxes
insofar as the coupling between groups is concerned; and it assumes that
the spatially integrated group fission and group slowing-down sources over
the cell are identical to the group sources of the equivalent homogeneous
cell. Initially assumed constant sources should be the "effective" sources
including also the sources due to scattering within a given group. In the
previous example the cross sections of the two regions were such that the

contribution to the "effective" regional sources from Z gphomogenized cell
r

could be neglected. The "effective" source per total mean free path for
Group j, Region r, is to be taken as proportional to

i (5. (bhomo ji 5 ¢homo 5 q)homo
Bjlv + : +oa @
geff _ k=1 * = j j=ij
r,j =
total
homo , . .
where ¢k is the k'th group normal mode solution for the equivalent

homogeneous cell. (Details of accounting for the overall neutron leakage
and for the deviations from infinite slab geometry are described in Ref-
erence 1.)

In general, by the uncollided flux shape scheme of solution used is
meant the uncollided flux "shape" based upon the "effective" source levels
as defined above. For "level" adjustment of the uncollided flux "shape",
however, actual sources must be employed, as defined by

j-1

J
actual homo homo
= S + ,
S > By vy x S 2 ;%
k=1 T k=1
where sac.tual is the actual source per centimeter. It is noted that the

3

apparent sources due to group in-scattering are not included.
h .
Application to a three-group analysis for (A keff/kecf)frno) of a binary
slab array consisting of 0.16-cm thick enriched fuel plates separated by
about 3.53 cm of diluent may be compared with the analogous results ob-
tained by a DS-16 calculation.(l) The atomic density (units of 1024/cm3)



composition of a fuel plate region is assumed: NU?* = 0.0394 and
NUS" = 0.00296. Atomic density composition of a diluent region is assumed:

NUZ’35 = 0.0000128, NU238= 0.006407, NTe- 0.02144,and N1 =0.02162. A core
having this composition represents approximately a large U?¥_fueled fast
assembly having a spherical critical mass of about 1,000 kg, assuming a
reflector saving of 20 cm. To allow direct comparisons of group flux ad-
vantage factors with corresponding DS-16 results, (1) the identical regional
cross sections and energy groups are retained. The groups have lower
limits: 1.35 Mev, 9.12 kev, and 1.0 kev.

_ The separately calculated (nonsource iterative) group advantage fac-

tors, Q’ﬁj ij ) , were 1.17, 1.00, and 0.94, respectively. Correspond-
fuel diluent

ing DP-5 factors were 1.17 and 0.92 for Groups 1 and 3, respectively.
Corresponding DS-16 factors (sources and three groups iterative) were 1.13,
1.00, and 0.93.(1) The Group 3 factors do not affect the heterogeneity esti-
mate, because the Group 3 flux is negligible for this composition. For
Group 1l the predominant source region is the thin fuel plate region. The
advantage factors were larger by the simplified integral transport approach
and by DP-5 than by DS-16, in effect, because the latter has its minimum

discrete ordinate at || = 0.0626, which is somewhat large to be encompassed

within the region of predominant angular flux anisotropy for such a thin
source region

The value of [khetero_ xhomo]/khomo obtained was about +0.006,
which may be compared with the DS-16 value (1) of + 0.0043. For a system
of equivalent composition having 0.32-cm thick fuel plates separated by
7.06 cm of diluent the values were +0.011 and +0.0100 (1 respectively.

In the case of Group 3, the predominant "source" region, because
of neutron transfer from Group 2 to Group 3, is the diluent region whose
group thickness is about one total mean free path, and the intervening ab-
sorption region (fuel plate) is a fraction of a mean free path. To obtain
reasonably suitable uncollided flux "shape" convergence requires ann-=1
nearest-neighbor approximation in contrast to an n=0 for the first two
groups; however, in addition, the "shape" of the uncollided flux spatial
distribution is not closely representative of the multiple-collided "shape,"
so that the value 0.94 is larger than the DP-5 converged value of 0.92.

If heterogeneity cases are encountered for which the overall mul-
tiplication constant is too sensitive to the ratio of the average regional
group fluxes for energy groups having such large "effective" sources,
subsequent collision sources must be considered. A division of the large
"source" region into smaller subdivisions to insure that the assumption of
constant regional "effective" sources do not affect the group advantage
factor, to the extent of affecting the cell eigenvalue, may be necessary.

In these instances it would seem more advantageous to use the variational
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method(13) for these groups in conjunction with appropriately chosen
trial functions for the diluent source region.

Thus the simplified integral transport approximation is most ac-
curate and useful for thin cells having very thin predominant effective
source regions. These cells are characteristic of fast reactor critical
assemblies fueled by thin fuel plates; although the method may be use-
ful for calculation of disadvantage factors in cases of thermal reactor
cells having very thin water gaps.
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