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SUMMARY

In this paper steady-state formulas are developed for the
ratio of the resultant electromagnetic field in the screened space
formed by dual, infinite, homogeneous metal plates to the incident
field, and from these transfer functions the time history of the

field in the cavity is computed for Gaussian-shaped input fields.
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THE PROPAGATION OF TRANSIENT ELECTROMAGNETIC FIELDS INTO A
CAVITY FORMED BY TWO IMPERFECTLY CONDUCTING SHEETS

1. Introduction

The purpose of this paper is to investigate the propagation of an electromagnetic pulse through a
shield consisting of two infinite identical parallel imperfectly conducting metal sheets. Specifically, the
time histories of the electric and magnetic fields are calculated within the cavity, and on the far side of
the dual-plate shield, when the incident electric or magnetic field is a plane wave with an amplitude

distribution in the shape of a Gaussian pulse.

A problem of current interest is the determination of the fields in the interior of imperfeétly con-
ducting metallic containers which are exposed to the strong electromagnetic signals emanating from
nuclear explosions. Such containers always have finite dimensions along which resonant currents may
.be excited at certain characteristic freqﬁéncies. Before a study is 'made of shielding by such finite con-
tainers it is advantageous to investigate the physically unrealizable but analytically much simpler
problerﬁ of shielding by a cavity fbrmed by two parallel infinite.-met'al plates when a plane electrc;magn:etic
disturbance in the form of a pulse is incident from one side. Although the results obtained with such an
infinite shield cannot be expected to yield quantitative information on the magnitude of the field in a finite
shield when resonances occur, the general significance of partial reflection and transmission on the one

hand, and of skin effect and attenuation on the -o'ther should be the same in infinite and finite shields.

The electric-field shielding ratio, under steady-state or transient conditions, is defined to be the
ratio of the peak field at a selected point within the shield to the amplitude of the incident field, that is,
of the field that would exist at the éame point with the shield removed. The shielding ratio for the mag-
netic field is defined in the same way. A different shielding ratio is obtained if it is defined in terms of
the field inside and outside the shield since the field outside the shield is the resultant of the incident and

backscattered fields.

In the first part of the paper the steady- stéte transfer functions for use in a Fourier integral are
developed in general terms with no restrictions on the frequency other than those implied in the as-
sumption that the shielding plates are quite highly conducting 'sn that at a.'ll relevant fréquencies the
inequality o >> 27rfe° is satisfied where o is the conductivity of the m'étal shields. The thickﬁcss of the
plates used in the shiclds and the distance between t_hem is arbitrgry with respect to the wavelength of

the incident radiation.
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In the latter part of the paper the use of the Fourier integral to obtain the time histories of the
electric and magnetic fields at selected points throughout the shield is explained briefly, and an ap-
propriate form is developed for evaluation by a high-speed digital computer. An estimate is also

obtained of the decay time in the cavity of a delta-function electromagnetic pulse incident on the cavity.

In conclusion, the numerical results are presented graphically and discussed.

2. Fundamentals

Maxwell's equations in free space for a periodically varying source” are

VxH = j2rfe E (1

VxE = -j2rfu H. (2)

In a homogeneous region of conductivity ¢ >> 2wf¢_, dielectrio conotant ¢ und permeability u , the

equation corresponding to (1) is

Vx H = oE, (3)

where E and H are the vector electric and magnetic field phasors, respectively. f is the frcquency

12

in cycles/sec, €, = 8.85x10 farads/m, and u, = 47 x 1077 henry/m. o is measurcd in mhos/m.

It should be noted that (2) applies both in free space and in the conducting medium if it is nonmagnelic.

* . i j2mtt .
The assumed time dependcnce of the electric vector is Ee’ wherc E = T{x, y,z;f). Since

E = QEX + {‘rh,y + QEZ, the time dependence of the y-component is

j2TEe j2mEt
e .

E = K (x z;f)e
y y( 2y, 230
From a solution for the harmonic dependence, a solution may be obtained for a more general time
dependence by means of the Fourier representation

.o

j2mEt

e (x,y,z;t) = | E (x,y,2;0)e daf.

-

Note that lower-case letters, such as ey(x, y, z;t), are used for time tunctions, and upper-case letters,

such as Ey(x, ¥, 2;f), for frequency funclions. The two are, of course, Fourier pairs.

In the particular shielding problem involving plane waves discussed in this paper the following
notation is used: E_(x,y,z;f) = E (x;1), e (x,y,2;t) = e (x;t), H (x,y,2z;f) = H (x;f), h (x,y,2;t) = h_(x;t)
y y Yy y z z z . z
For a plane wave traveling in the positive x-direction the instantaneous electric and magnetic fields are

related by ey(x;t) = §°hz(x;t) where §’o = ‘/#oko = 1207 ohms.



If E= QEV, and the plane-wave field is propagating in the x-direction, H = QHZ. Then (1)-(3)
become h
E = zd— 2 _ (4)

H =5l 2 (5)

E = - . ' (6)

The wave equations satisfied by Ey in free space and in the conducting region are easily obtained

from Maxwell's Equations (1)-(3). These are

2

3°E )
—+B°E_= 0 (7
Yy
X
and
3’E ,
-—-2—Y+ K’E = 0. (8)
Yy
0X ;
In (7)),

B = ZM‘.Vuoeo = ?XE )

where A 1is the wavelength in air, and in (8),

k = 7 ol - j). (10)

3. Derivation of the Steady-State Shielding Transfer Functions
for the Elcctric and Magnetic Fields

(a) Preliminary Remarks

Figure 1 illustrates a dual-plate shield. The cavity formed by the identical, infinite, imperfectly
conducting, homogeneous parallel platgs is of width 2b. The total width of the shield is 2a. Hence the
widfh of each platé is d = a = b. The cavity, metal plates, and outside space are designated regions 1,
- 2, and 3, rcepectively. . The origin of a Cartesian coordinate system is at the middlc of the cavity. The
y and z axes are parallel to the plates. The direction of propagation of the incident ele‘ctromaguetic
field is in the positive x-direction. It is assumed that the electric field has only a y-component and the
magnetic fieldAa z-component. The radiation im'pipges on the shield at x = —a, where a standing wave
is developed, and emerges from.the ’shie:'l'd- at x = a as a traveling wave. Eov(f) and »ER(f) are the inci-

dent and reflected electric fields, respecti{fely, and ET(a;f) represents the field emerging from the



shield. The notation E;{-b;f), E;(0;f), and E ;(b;f) is used to represent the electric fields inside the
cavity at the left side, middle, and right side, respectively. The corresponding terminology for the
H-field is Ho(f), Hq(f), HT(a;f), Hi(—b;f), 'Hi(O;f), and Hi(b;f). The incident field is Ev(x;f) =

-iBx g) = -3Bx - ' ‘
E (f)e ; Hy(xf) = H (fe where H(f) = E_()/¢, .

The various transfer functions needed to solve this shielding problem, of which Ei(—b;f)/Eo(f) and
Hi(O;f)/Ho(f) are typical, may be found by solving the boundary value problem represented by Figure 1
directly. In carrying out the work, nine constants must be introduced (one of which is assumed to be
known). An equivalent procedure is to employ the method of symmetrical phase components. In Figure
2, the problem to be solved, (c), is split into symmetrical and antisymmetrical parts, (a) and (b), re-
spectivély. In this drawing the directions of propagation and pola.ri%.ations of all electric Melds are
shown, When the identical shields (a) and (b) are superimposed, (c) is obfa,ined. Supcrposition cancels
all fields on the plate at x = a except the transmitted field ET(a;f). On the plate at x = -a the resultant
field is Et(—a;f) = EO(—a;f) + ER(—a;f). Note that only five constants (one of which is known) need be
introduced to solve the symmetrical problem (a), and the samc numbcer Lo golve the antisymmetrical

problem (b).

(b) The Shielding Problem for Symmetrical
Electric Field Excitation

The problem of shielding for symmetrical cxcitation (with the electric field even and the magnetic
field odd in x) is illustrated in Figure 2a. The plane WAvVeSs % Eo(f)eJﬁx and % Eo(f)e—jﬁx travel from
both sides toward the shield. The solutions of wave equations (7) and (8), valid in the regions designated

by the subscripts 1, 2, and 3, are

c
8 (o) = Bx | -iBxy s . L GRx o -jfx
E) Gaf) = €7 4T 1 Gan = - (e ™) (11)
8 (i) = Jkx -jkx 8 e = 1 jBx -3iBx
Eyz(x,%) = C,e + Cye o Hza(x,f) = - Z’: <C2e - C,e > (12)
s _ iBx . -iBx 8 1 iBx -iBx
Eya(x;f) = Cye +Cge ; Hza(x,f) = - F;(Cue - Cge ), (1)

where (11) satisfies (7) and meets the required symmetry conditions E; (x;f) = E; (-x;f), and

s _ s . 1 1
Hzl(x;f) = —Hz1 (-x;1).

The next step is to impose the bodudary conditions characteristic of the problem. For-this purpose

consider the région 0 < x < a where the incident field is % Eo(f.)emx.
Continuity of the eleciric field at x = b and x = a leads to the equations
C (eI + ¢736P) = ¢ oIkP 4 ¢ TI® : (14)

ek Cuejﬁa + Cse_Jﬁa ’ : " (15)

El



where now C, = %Eo(f). Continuity of the magnetic field at. x = b and x = a leads to the following

additional equations:

(o380 - oiBb) _ JKD _ o o mikD ,
E’C]' <e e ) 9 <C2e Cje > _ (16)
jka _ -jka) _ jBa _ ~- _-jBa : .
§o <C2e C3e > §<Cue Cse > $l7)
where
/wfuo
and
) RO
to = —e—;a: 1207 ohms. (19)
Note that

(k= BE =uwu, k/§= ~jo - : 2 (20)
‘for nonmagnetic conductors.

Let the ratio of the amplitude of the field in the shielded region 1 to the field incident from region
3 with x > a be denoted by

. c, 2C,
' S, = c, E @ (21)
[}
" This ratio is found from (14)-(17) to be:
£¢ (cos Ba + j sin Ba)
Si(»f) = o - - . (22)
f{'o(cos Bb + j sin Bb)cos kd + j(t’: cos Bb + j§2 sin Bb) sin kd
_From (21) and (11), the electric field in the shielded region when symmetrically excited is
s . . - N . .
,Eyi(x’t.ﬂ) = Eo(f)Sl(f)'cos Bx. ' (23)
The associatecd magnetic Tield is obtained from the application of (5) to (23). Thus-
HY (x;0) = —jH (S (f)sin fx R S (29)
1
where .
‘Eé(f)
H (D)= (25)
) ¢

(o]

It follows that in the middle of the cavity x = 0, Hi (0;f) = 0 and Ej, (0;f) is a maximum. Here the
1 1

superscripts s refer to symmetrical electric:and antisymmetrical magnetic field excitation.



(c) The Shielding Problem for Antisymmetrical
Electric Field Excitation
- ) i ) Y
The problem of shielding for antisymmetrical excitation (with an odd electric and an even magnetic
jBx -jBx

field) is illustrated in Figure 2b. The plane waves - % E (fe and % E(fe. travel from the two

sides toward the shield. The solutions of wave equations (7) and (8) and the associated magnetic field as

obtained with (5) are:

. . cr . :
- 1 -
E° (x;f) = C'(eJBK ~-e Jﬁx); H = - ———(ejﬁx +e JBX) (26)
v, 1 z, |98

E? (x;f) = cred** 4 C'e_ka; HY = - —1—<C’e3ﬁx ~ C’e-mx> (27)

Y, 2 3 z, §o 2 3

a o 3Bx , ~iBx a 1 ( jBx , -jﬂx)
Eya(x,f) = Cje + Cle ; H23 =TT Cie - Céc . (28)
Note that (26) satisfies (7) and meets the required symmetry conditions E; (x;) = —E; (-x;f) and
1 1

H: (x;1) = H: (-x;f). The application of the boundary conditions, as in the symmetrical problem, leads
1 L

1
to. the following equations:

cl'(ejﬁb - e ) = g™ w gge (29)
cvz'ejka e o red® v cpeTI | (30)
rcl'(gj’f’b +e ) =g (e - ) (31)
£ (ciejka - c;e'j“a) - g(cl;ejﬁ“ - nb'p'jﬁ‘“), ‘ (32)
where now C; - - %Eo(f). ‘I'he ratio of the amplitude of the eleciric field in the shielded region 1 to the

incident field from region 3 with x> a is

Al(f) = ——= ' (33)

where the negative sign before Eo(f)/2 in (33) tukes account of the fact that the antisymmetrical incident

electric field from region 3 is reversed in phase from that in the symmetrical case.

The value of ./\l(f) is

§'§’°(00s Ba + j sin Ba)

A(f) = — 3 5 . (34)
tjljo(cos Bb + j sin Pb)cos kd + j(t cos Bb + j{_ sin Bb) sin kd-
From (33) and (26) the antisymmetrical electric field in the shielded region 1 is
E; (x;f) = —§E_(DA, () sin Bx. - A (35)
1 . : !
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The associated magnetic field is obtained from (35) with (5). Thus,
H? (x;f) = H_ (DA (f)cos Bx. (36)
CE ol .

Evidently with antisymmetrical electric-field excitation the electric field is zero and the magnetic

field has a maximum at x = 0.

(d) Total Electric and Magnetic
Fields in the Cavity

B

The complete electric field in the cavity due to a single incident electric field Eo(f)e_J * , Figure

2c, is the sum of (23) and (35). Thus

E. (x;f) = E;l(x;f) + E;l(x;f) = E_(O)[S,(fcos Bx - jA (Dsin Bx]. (37)

Graphs of the ratio Ei(x;f)/Eo(f) in decibels* are shown in Figures 3a, b, ¢ for the three points
x = -b, 0, and b. Note that E,(0;f)/E_(f) = S,(f). The associated magnetic field in the cavity is the
sum of (24) and (36). It is

H, (x;0) = H:l(x;f) + Hzl(x;f) = H_([A,(Bcos Bx - jS, (f)sin Px] (38)

where as before, Ho(f) = Eo(f5/§°: The ratio H;(0;f)/H_(f) = A,(f) in decibels is shown in Figure 4.

(e) Fields on the Outside Surfaces
of the Plates

To obtain the resultant field Et(—a;f) = EO(—a;f) + ER(—a;f) at x = —a and the field ET(a;f) at.

X = a in terms of Eo(f), one proceeds as before, to determine and combine the symmetrical and antisym-

-metrical phase components. The sets of equations (14)-(17) and (29)-(32) still apply. In the symmetrical
case the ratios of the electric and magnetic fields at the surface x = a to the amplitude of the incident

field are denoted by

s . . : e
2Ey3(a,f) Cuejﬂa + Cse jBa
S = 7 C, (39a)
(v} .
s . .
2H23(a’f) CueJBa CSe_Jﬂa < jiBa
Son® = T - o - —[Ze - SZE(f):l. (39D)

Thé quantities given are 20 1.og10 [Ei(_x,f)/Eo(f)] .

11



In the antisymmetrical case the corresponding ratios are
a
2E ; iBa -jBa
v, @0 et 4 e
= - = :
2E E (D Ci

B

(40a)

A

a . .
2Hz 3(a,f) CL:eJBa _ C;e-JBa a .
Azn(f) = Ho(f) = c: = 2e - A2E(f)' (40b)

By superposition, the electric fields at the outsid‘e surfaces x = *a due to a single incident field

Eo(f)efjﬁ’.(. are:
S a Eo(f) -
= B, (@), (af) - —5—[S2p(DFA (0]

E (a;f)
T (41)

. y
Et( a;f) 03

The associated magnetic fields are:
H () - o
o]
mSe[8, 1) - A, (D) :
[ B 2 [ yaos 2E S i .
= S [AtD5,,0] - (42)

P
H (-a;f) H (D) .
¢ ‘ ' -%_[4e36a - A, (0 - SéE(f)]

HT(a;f) ) H (D

where, as before, Ho(f) = Eo(f)/ﬁo.‘ ,It is readily shown that S,.(f) and A,.(f) are

(t cos Bb cos kd — ¢ sin'Bb sin kd)(cos Ba + j sin Ba)
° : , S (43)

Spelf) = 2¢ X —
L’EO(COS Bb + j sin Bb)cos kd + j(g’o cos Bb + jt° sin Bb) oin kd

and
(to sin Bb cos kd + ¢ cos Bb sin kd)(cos Ba + j sin Ba)
— - - . (44)

(§2 cos Bb + jCZ sin Bb) sin kd

’AZE(f) = j2¢}--
§’§’°(_cos Bb + j sin Bb)cos kd + j

Explicit cxpressions for Sm(f) and AZH(f) can be obtained from (39b) and{40b) with (43) and (44).
Graphs of the ratios Et(—a;f)/Eo(f) and ET(ajf)/Eo(f) in decibels are shown, respectively, in

Figures 5 and 6.

(f) Limiting Forms of the S(f) and
A(f) Funclions when = 0 ° °

As the frequency approachco zero, vus Bb—+1, sin Bb—+Bb, cos kd—1, sin kd~kd, also k/¢=-jo

From (22), (34), (43), and (44) it follows that

SI(O)-’W' ) L - (45a)
AI(O) -1 (45b)

12



s, (0) 2 o : . (45¢)

28V T T ¢_od
o Ap(0) =0 < T (45d)
2§’°ad
SZH(O) = 5,p(0) = 2+- F?;“_d L ‘ (45€)
Ay(0) = 2 - A, (0) -2, . (459)

Shielding of the incident field is due to two effects. One of these is skin effect, the other is the

reflection that takes place at the outside surface of the shield. The more important - attenuatmg mecha-

nism at low frequenc1es is reflection. With (45a-f) it follows from (37), (38), (41), and (42) that

Ei(x;O) 1
B0 - 9" 1y og (462)
Hi(x;O) ‘
Ty - M0 =1 (46b)
H,(0)
E (-3a;0) o
t 1 1
EL(0) 5[50 + 8, (0] - N - (46¢)
H. (-a;0) 1+ 2¢ od
t 1 o
o - 5[82000) - 5,,00)] = e o - (a6Q)
E _(a;0) .
T 1 ) 1
H, (a;0) "’ 4
T . l‘ o 1 R )
RN a0+, <0)] Fs o e
= 2 and

Note that when o -w for perfectly conducting walls, all ratios vanish except Ht(—a;O)/Ho(O)

H (x 0)/H (0) 1. Note that in this latter case the amplitude of the incident field on each side of the

cav1ty is -H (0)

(g) Simplification.and Application
of the General Formulas

The numerical computations reprcscnted'ifx the graphs in Figures 3 to 6 have been made to de-

termine the sh1e1d1ng properties of a region of th1ckness 2b = 36 inches =0.9144 m bounded by two

infinite aluminum plates of conductivity 3. 72 X. 10 mho/m w1th the three th1cknesses d = 1/8 inch,
1/16 inch, and 1/32 inch or d = 3.175 x 1073 , 1.588:x 1073 s and 0. 7938 X 10 m. The relevant steady-

state frequency range is < 10 c/sec and for the Gaussian pulses that characterize the transient fields

13



: . 1/2
the upper frequency limit is in this range. The skin depth 6 =. (2/wuo) of aluminum is approximately
2.609 x 10 % m at f= 10 c/sec, 2.609x 10 > m at f= 10> ¢/sec, and 2.609 x 10 * m at £= 10° ¢/sec.
It is to be noted that at f = 10 ¢/sec the thickness of the thinnest plate is only about 3 hundredths of the

4 s
skin depth, whereas at f> 10 c/sec even the thinnest plate is much thicker than the skin depth.

7
The complex propagation constant k = (1 — j)/6= 12.12(1 ~ j) /T for aluminum (with o = 3.72 x 10
mho/m) ranges from k = 38.33(1 - j) at f= 10 c/sec to k= 3.833(1 - j) x 10° at £= 10° c/sec. Over
5
the range 10 <f <10,

k| >> B (47)
where B = u,[ﬁoeo = 2.094 x 108, Note also that the electrical distance Bb = 0.9574 x 10" f satisfies
the inequality

Bb << 1 (48)
over the entire frequency range. On the other hand, kb extends from (1 - j)17.52 at f = 10 c¢/sec to

3 5
(1 - 1.752 x 10" at f = 10~ c/sec.
Since
k= BE = wu ' (49)

it follows from (47) that

(50)

Over the range of frequencies defined by

le | _

| )
|tan kd [>> 12— = (51)
tU

B

1y

the general formulas for S (f), A(f), Syf), and A (f) may be siwplilled greatly. Notc that for the
-2 9

thinnest plate when f = 10 c/sec, kd = (1 - j)3.043 x 10°° and B/k = %4_6:;)

kd = 3.043(1 - j) and B/k = (51'4_633) X ]0'-], so that (51) is satisfied in the entire range 10<f < 10°. The

appropriate specific formulas for the several ratios are

x 10" 7; when f = 10’5 c/sec,

: . -iB : : 2
S\ = ik (52)
AR = 1 (5)
1 ros kd — kb sin kd

_—i2B

[ = . 4

S-213‘(1‘.) k tan kd (54)
. j2B [kb cos kd + sin kd ]

AZE(f) =5 (55)

cos kd - kb sin kd

14



As before S, (f) = S,0(f) - 2, A, (f) = 2 - A, (f). With these values, (37) and (38) give the field in the

ar

cavity to be

fos N

‘jE;(If)B 1 kx Co
H . = + . !
E; (D) K [sin kd © Tos kd — kb sin kd] (56a)
2
. o 1 B x
H; Gaf) = H (D) [cos Kd “kb sinkd _ K sin kd:l
H (f)
~ Cos kd ~ kb sin kd (56b)
It follows that
-JE (DB
E 0D = tomka (57)
and
o - —iB cos kd
By bsf) = — Eq(f)[sin kd(cos kd — kb sin kd)] (58a)
) = -jB cos kd - 2kb sin kd ]
Ei( bif) = k Eo(f)[sin kd(cos kd - kb sin kd) J* (58b)
Similarly,
, H_(f)
Hi(O;f) =Hi(b;f) =Hi(_b;f) = Cos kd ~ kb sin kd- (59)
From (41), the total field at x = *a is
E_(a;f) . .
A _ —jB kb cos kd + sin kd -
T Tk Eo(f)[wt kd o5 kd - Kb sin kd:l (60a)
Et(—a;f) :
"so that with (42) the field on the far outside is
E (a;f) H (a:f) ,
T = -k - .'_J_B_[ 1 ] (60b)
En(fs Ho(f) k |sin kd(cos kd — kb sin kd) |° -
‘On the near outside it is
B e i [ cos 2kd — kb sin 2kd ] ‘ (600)
Eo(f) k | sin kd(cos kd ~ kb sin kd), :
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and .

Ht(—a;f) i Et(—a;f)

= 2 ' (60d)
H, (1) EAGE

A clear picture of the action of the two plates as shields is obtained with the thicker shields at the

higher frequencies included in the range for which (52)-(55) are valid. Specifically, when the additional

restriction |k ld > 1.5 is satisfied, the approximaticn

1 jkd

sin kd = 5e = cos kd (61)

is a good one.

With (61) and |k |b>> 1 the following illuminating formulas for the fields between the plates and

on their outside surfaces are obtained:

’

E.(x;0) . —i2B | o kx - jkd (62)
E_(D) K kb-1)°
H_(x;f) -jka
i s 2e . (63)
H () | kb -1
o) ST
B (-a;f) o H.(—ai)
Tel T 2B St ,B) .
—————ee. TR ¢ S - —_— = + =
E (D K ' THD ;(1 Ik (64)
[o] [a) . s
; £ - §oKe
ET(a,f) i T—TT(a,h.)= 4B e 3 kd , 65)
E_() H_(f) k kb-1"°
o’ ol e .
In the range for which these formulas are valid the approximation lkb |>> 1 is also valid. These
formulas are useful in an interpretation of the upper frequency ranges in Figures 3 to 6." Note that
from (62)
E 0D ogfoiy 2 1] ~jed . —j48 ik (66a)
EW T Tk |1 ° Tk "
E (0:f) on i : ! ‘
i _ _ ~j2B -jkd
—Eo(f) Sl(f) %€ (66b)
" B (bsf) . j28 e Jkd L 28 e . . 50
Eolfi k kb-1 kb

where the formulas on the right assume that |kb |>> 1. These formulas all give the same c¥ponential

‘decay due to the thickness of a _'.s'ingl'e, sheet‘ché,ract'e'r"istié .c'),f the upper frequency ranges of Figures 3a,b,¢.
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The small difference in magnitude (only a factor of 2) between Ei(-b;f)/Eo(f) and Ei(O;f)/Eo(f) is clear
in Figures 3a and 3b. The much greater decrease in amplitude due to the large extra factor kb in the
denominator -of Ei(b;f)/Eo(f) is evident in Figure 3c. 'Note that E.l(O;f)' is due entirely to the symmetri—
cally excited part of the field which is essentially constant across the interior of the shield. The anti-
symmetrical part vanishes at the center, effectively adds to the symmetrically excited part for —a <x <0
and subtracts from this for 0 < x < a. The part of the magnetic field due to the symmetrical electric field
excitation is negligible in the upper frequency range whereas the f1e1d due to antisymmetrical electric ‘
field excitation is essentially constant across the interior of the sh1e1d It is exponentially attenuated by
one plate but has no factors of small magnitude (8/k or 1/kb) as does the electric field. In the lower
frequency range where (56)-(60) must be used instead of (62)-(65),. éhe' attenuation through the plates is not

exponential and may be guite small. It is given by (56b) and shown in Figure 4.

The ratio E (—a‘f)/E o) at the front outer surface of the plates and represented in Figure 5
involves no exponentlal attenuatlon but 1s very small owmg to the high conduct1v1ty of the aluminum
which produces a large reflection in nearly oppos1te phase. The magnetic field, on the other hand, is
reflected nearly in phase and its amplitude is almost doubled as may be seen from (64).

The ratio ET(a;f)/Eo(f) or HT(a.;f)/Ho‘(f) given in (65) is attenuated exponentially by e 12K4 ;ice.,
by the two plates, and in addition has the large factor kb in the denorninator. This agre‘es with Figure 6.
If the conductivity of the plates is made infinite so that ¢ — o, it follows that Ei(x;f) = Hi(x;f) = ET(a;f) =
HT(a;f) = Et(—a;f) = 0, Ht(—a;f) =

4. The Form of the Integrals to be
~Evaluated by a Computer

The description of the incident electric [ield pulse assumed in this paper is

: -t72¢°
e (t) = Ae 1 . .. (67

where A is the value of ‘eO(O) in volts/m, t is the time, and t, is a measure of the pulse width. The
spectrum of this pulse is C

-f/?t‘ .
E (D) = At ‘Vazre o ' (68)

In this expression f is the frequency.in cycles/sec, and fl = 1/21Tt .

Let G(x;f) = Gp(x;f) + JG (x;f) represent a desired steady-state sh1e1d1ng ratio, such as
Ei(x;f)/Eo(f). The tlme history ot the electric held in thc cu\u’c‘r at paint x 1s then

e, (x;t) = f GDE_(De? T ar
¢ 2 2 .
- ‘ . S o -E7260 S
= 2At1V21rf [GR(x;f)cos 2wft - GI(x';f)sin 27rft] e 1oar . (89)
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where, to a good approximation, fc = 2.6 fl‘ In the last expression use has been made of the relation
G%(f) = G(~f). This is the form of the integral that has been evaluated on the computer. For compu-

tafions of the electric field the constant A in (69) was taken to be 1 vo}t per meter; for c‘omputations of
the magnetic field, h and H are substituted in (67) to {69) in place of e and E and A is set equal to 1

ampere per meter.

The time histories of the electric and magnetic fields in.ancrl outside the cavity are exhibited in a
series of graphs for a particular cavity (of length 36 inches with the three wall thicknesses 1/32 inch,
1/16 inch, and 1/8 inch) when an electromagnetic field with an amplitude distribution in the form of a
Gaussian pulse is incident from one side. A number of pulse lengths from t1 = 6 usec to 48 usec are

used.

In order to understand the variation in time of the electric and magnetic fields in the cavity it is
important to note that even for the shortest pulses used in the calculations, (’c1 = 6 usec) the pulse width
t, is very great compared to the time of transit of the pulse across the cavity, viz.,
t= 0.9144/(3 x 108) sec = 0.00348 usec. It follows that the field is reflected back and forth in the cavity
many times even during the time t,. The instantaneous field is theu a superposition of these multiply
reflected components, It is also significant to note that for the lower frequencies and the thinnest plates

the attenuation thirough the plates is relatively small and shielding is due primarily to reflection.

In Figures 7a-d, 8a-d, and 9a-d are shown the instantaneous electric fields in the cavity respcc~
tively at the points x = —b, 0, and b. As is to be expected from the similarity of their steady-state
transfer functions, the time histories of the electric fields at x = -b and at x = 0 are quite similar.
The electric field at the center, x = 0, is determined entirely by the steady-state transfer function of
the symmetiically excited part of the electric field, that at x = —b is determined from the sum of the
steady- state ratio functions of both the symmetrical and antisymmetrical parts of the excitation. On the
other hand, at X = b, the field is determined from the differcnce belween the steady-state functions of
the symmetrical and antisymmetrical excitations. Sinae this is very sinall, the instantaneous electric
field at x = ~b is smaller byafactor near 10-3 than the fields at x = 0 or x = b; it also has a much less

significant peak.

Since the steady-state transfer function for the magnelic field in the cavity is predominantly due to
the antisymmetrical part of the excitation, and since for this the magnetic field is essentially constant
across the cavity, it follows that the time histories of the magnetic fields at all points in the cavity are
essentially the same. They are shown in Figures 10a-d on an expanded time scale for short time inter-
vals during which the field increases rapidly and in Figures 1la-d on a wuure contracted time scale for a
much longer time in which the initial increase of the field appears very abrupt but the long slow decay is
apparent. It is to be noted that although the ratio Hi(x;f)/Ho(f) is very much grealer than Ei(x;f)/Eo(f)
since the magnetic field is nearly doubled al each retlection whereas the electric field is almost canceled,
the decay rates of electric and magnetio ficlds 1usl nevertheless be the same. This is considered in

greater detail in Section 5.

The electric and magnetic fields beyond the second metal wall, x> a, constitnte an outward travel-

ing disturbancc that is not a superposition of incident and reflected components as in front of and inside
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the cavity. At every point and instant the ratio of electric to magnetm f1e1d is the constant t SO éhat
the time history of both electric and magnetlc fields is the same for x> a. The instantaneous electrlc
field at x = a is represented in Figures 12a-d. It is seen to be extremely small, nevertheless it neces-
sarily decays as slowly as the field in the cavity. Note that for the broader pulses with larger t; the
spectrum contains predominantly frequencies that are sufficiently low to make the attenuation through
the plates small. Shielding is primarily due to reflection and not significantly due to skin effect. This
is shown, for example, by the fact that in Figures 9d and 12d the curves for e;(b;t) and e(a;t) for the

fields on the two sides of the second plate differ negligibly for the thinnest plates.

5. Decay Rates in the Cavity

The ratio of decay of the electromagnetic fields in the cavity may be estimated by evaluating the
integral (69) for the simplified shielding ratios (52) and (53) and with E (f) = 1, that is, for a delta-
function pulse. For the symmetrical excitation the steady-state shielding ratio'is Sl(f) as given in (52);

for the antisymmetrical excitation the ratio is A, (f) as given in (53).

The instantaneous electric field for the symunetric case is

[t - o [ Bz

since w = Bec. The simple poles of this integral occur at sin kd = 0 or at

k2a? = n?7? or B = J_ , (70b)
2 G§ o

These are all in the upper half of the complex plane so that the contour may be closed in a great semi-

circle above the real axis. By Cauchy's theorem,
\ . = jc LK)
I:ei(x,t)]sym = ( S >27TJ(K +K, + +K )

where the K's are the residues at the poles. The residue K, may be obtained from the general formula

jBet .
K = B__ﬂ ; (71a)
—(k sin kd) o
dB 1g=2 -
d a'('o
Since k = V-juuo = /=B o, this gives
n27r97ct
)
. 2_2 d" ol 2 2
K, =2-0"" S0 e ° cosh{™—). (71b)
do’¢ d ot
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It follows that..

i . s

2  2E cm = ) o[22 2 2 . )
[ei(x;t):l = #2' E (—l)n'ln2 ex _nTﬂ__cE cosh n27r X (72)
. TsYm dieg -\ 4ot d ot '

1

The.slowest decay is for the term'with n'= 1 for'which the decay time is

e od? 2,984 x 10°% sec for d = 1/32 inch

t, = °2 = 4.736 d%sec = { 11.94 x 10"® sec for d = 1/16 inch (73)
‘e

-6
 47.74 x 10 sec for d = 1/8 inch

The numerical values are for aluminum. This is a measure of the exponential decay of the electric and

magnetic fields that are excited in the cavity iu the symmetrical mode of the electric field.

" For the antisymmetrical mode,

x: = Zde . sinfx_ jfer S
[ei( ?t)]antisym 2% Cos kd - kb sin kd © dp. . (74)
The poles of this integral occur at the roots of.
tnkd"——lo kd = = -t —]'kb (75a)
‘a * % °F d =5 an . a

Since the slowest decay time [ur the Symmetrical excitatiorn has been used as an approximation, the

‘same may be done in this case and only the first root determined. This must oceur approximately when
2.
k"bd = 1 : S {78h)
or, with k% = -jBot’o, when
 J— . ’ (76)

The residue at the associated pole is .,

eJect sin Bk

K. =3 (77a)
—(cos kd = kb sin kd) )
up [ S——
‘ foabd
g dBet By S R N
=4a.,. 2. S (77b)
-d_ﬁ-(l—k bd)
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so that

exp [oe
P\t obd .
K1 = 3 de sinh T obd ) - (77¢)
o o
It follows that
s e [ -ct / x" S
;t] = inh (+2— 78
I:ei(x )antisym focbd €xp <§°cbd> st <§°0bd> (78)

+ contributions from higher-order poles.

The slowest decay time of the antisymmetrical mode is

' C ol L iae
¢ obd 1.697 x 10—2 sec for d = 1/32 inch
tA = OC = 46.75 bd sec = { 3.394 x 10 © sec for d = 1/16 inch (79)
6.786 x 10°% sec for d = 1/8 inch
The ratio of the two decay times is
tA §00bd 7Tzc 2b
T T ¢ 374 (80)
S fod - = :

For the three thicknesses d = 1/32 inch, 1/16 inch, and 1/8 inch and the distance b = 18 inches

between plates, the ratios are:

d- - _bhid  w?b/d
1/32 inch 32 x 18 5685
1/16 inch 16 x 18 2842 A (81)

1/8 inch 8x18 1421

It is clear that the antisymmetrical mode is da'mped out very much ‘m-or‘e siowly than the.symmetrical
morde, so that when the two are superlmposed to give the response for a disturbancé incident from the one
side only, the contrlbutlon from the symmetrical part of the excitation dies out very quickly and only the
response from the antisymmetrical part of the excitation persists. It is important to note that as a conse-
eluence of symmetry the antisymmetric odd eleclric field and the symmetric odd magnetic field are
identically zero at the center of the cavity where x = 0. It follows that at this point, the total magnetic
field decays slowly, the total clectric field rapidly-. This difference in rates of decay is seen in Figures
8a and 1la. Atall other points the decay rates of the total electric and magnetic fields involve the inde-
pendent decay of the electric and magnetic components of both symmetries. Ultimately, the rate of decay
is that of the antisynunetric components with odd eleciric and even magnetic fields. This may be seen
from a comparison of Figures 10a and 11a which show the slow decay of the antis&mmetrical parts of the
electric and associated magnetic fields after the rapid decay of the symmetrical parts. The decay rate

is eas11y estlmated from Figure 11a where for the thinnest plate the amphtude clearly decreases to about

l/e or 1/2 7 of its maximum value in about 16 milliseconds in agreement with (79) T e



6. Conclusion

A complete picture has been obtained of the shielding provided by a parallel-plate region to incident
pulses of Gaussian .shape both in theoretical and numerical form. These results are useful in estimating
the efficacy as shields of metal containers of finite size only insofar as no resonances are excited that
involve standing waves of current along the metal walls. At resonant frequencies the large currents in-

duced in the walls of the shield are associated with correspondingly large resonant fields.'
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