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SUMMARY 

In this  paper steady-state formulas a r e  developed for the 

ra t io  of the resultant electromagnetic field in the screened space 

formed by dual, infinite, homogeneous metal  plates to the incident 

field, and f rom these t ransfer  functions the t ime history of the 

field in the cavity is computed for Gaussian-shaped input fields. 
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THE PROPAGATION OF TRANSIENT ELECTROMAGNETIC FIELDS INTO A 
CAVlTY FORMED BY TWO IMPERFECTLY CONDUCTING SHEETS 

1. Introduction 

The purpose of this paper is t o  investigate the propagation of an electromagnetic pulse through a 

shield consisting of two infinite identical parallel  imperfectly conducting metal  sheets. Specifically, the 

t ime histories of the electric and magnetic fields a r e  calculated within the cavity, and on the far side of 

the dual-plate shield, when the incident electric or  magnetic field is a plane wave with an amplitude 

distribution in the ,shape of a Gaussian pulse. 

A problem of current  interest  is the determination of the fields in the interior of imperfectly con- 

ducting metallic containers which a r e  exposed to  the strong electromagnetic signals emanating from 

nuclear explosions. Such containers always have finite dimensions along which resonant currents may 
. . 

.be excited at certain characterist ic frequencies. ~ k f o r e  a study is made of shielding by such finite con- 

ta iners  i t  is advantageous to  investigate the physically unrealizable but analytically much simpler 

problem of shielding by a cavity formed by two parallel  infinite. metal plates when a plane electromagnetic 

disturbance in the form of a pulse is incident f rom one side. Although the resul ts  obtained with such an 

infinite shield cannot be expected t o  yield quantitative information on the magrdtude of thc  field in a fini.ts 

shield when resonances occur, the general significance nf partial  reflection and transmission on the one 

hand, and of skin effect and attenuation on the other should be the same in infinite and finite shields. . . . .  

The electric-field shielding ratio, under steady-state o r  transient conditions, is defined to  be the 

ra t io  of the peak field at a selected point within the shield t o  the'amplitude of the incident field, that is, 

01 the field that woulrl axjst at  thc  same point with the shield removed. The shielding ra t io  for the mag- 

netic fieid i; defined in the same way. A different shielding ra t io  is obtained if it is defined in t e r m s  of 

the field inside and outside the shield since the field outside the shield is the r'-ksultarit of the incident and 

backscattered fields. 

In the f i rs t  part  of t h e  paper the steady-state t ransfer  functions for use  in a Fourier integral  a r e  

developed in general t e r m s  with no res t r ic t ions  on the frequency other than those implied in the as -  

si~mption that the shielding plates a r e  yuile highly conducting sn that at a l l  relevant frequencies the 

inequality o ,> 2nf$ is satisfied where o is the conductivity of the metal  shields. The thickness bf the 

plates used in  the shiclds and the distance between them is a rb i t ra ry  with respect , to  the wavelength of 
.. . 

the incident radiation. 
\ '  



In the latter part  of the paper the use of the Fourier integral to obtain the t ime histories of the 

electric and magnetic fields at selected points throughout the shield is explained briefly, and an ap- 

propriate form is developed for evaluation by a high-speed digital computer. An estimate is also 

obtained of the decay t ime in the cavity of a delta-function electromagnetic pulse incident on the cavity. 

In conclusion, the numerical resul ts  a r e  presented graphically and discussed. 

2. Fundamentals 

-5, 

Maxwell's equations in f ree  space for a periodically varying source'" a r e  

V x H = j2afe E 

In a homogeneous region of conductivity a >> 2nfc rii~l.ectrio conotant c trlld pei4nleability po, the 

equation corresponding to  (1) is 

V X H  = OE, (3) 

where E and H a re ' the  vector electric and magnetic field phasors, respectively. f is the frcquency 
-1 2 - 7 in cycles /sec ,  eo = 8.85 x 10 farads/m,  and po = 47r x 10 henry/m.  n is m e a ~ u r c d  in mhus /m.  

It should be noted that (2) applies both in f ree  space and i n  the coriductine; medium if it is nonmagnelic. 

-- * j 2 s t ' t  
The assumed tirue dependcnce of the electric vector is Re  wherc E E(x, y, z;f). Since 

E = $ E ~  + $h' + $E,, t . h ~  time dcpcndcnce o l  11112 y-component is 
Y 

F r o m  a solution for the harmonic dependence, a solution may be obtained for a more general t ime 

dependence by means of the Fourier  representation 

j 2 n E t  
y, z;f)e df. 

Note that lower-case le t ters ,  such as e (x, y, z;t), a r e  used for time functionc, and upper-case letters,  
Y 

such a s  E (x, y, z;f), for frequency funclions. The two are ,  of course, Fourier pairs.  
Y 

In the particular shielding problem involving plane waves discussed in th is  paper the following 

notation is used: E (x, y, z;f) = E (x;f), e (x, y, z;t) = e (x;t), HZ(x, y, z;f) = H (x;f), h (x, y, z;t) = h (x;t) 
Y Y Y Y 

For  a plane wave traveling in the positive x-direction the instantaneous electric and magnetic fields a r e  

related by e (x;t) = f h (x;t) where C = a = 12On ohms 
Y 0 Z 



8 .  

If E =' BEv, and the plane-wave field i; propagating in the x-direction, H = :H,. Then (1)-(3) 

become 

The wave equations satisfied by E in f ree  space and in the conducting region a r e  easily obtained 
Y 

from Maxwell's Equations (1)-(3). These a r e  

and 

where X is the wavelength in air ,  anrl i n  (8), 

k 2 d q ( 1  - j) .  

3 .  Derivation of the Steady-State Shielding Transfer  Functions 
lor the Elcctric and Ma.gnetic Fields 

(a) Prel iminary Remarks 

Figure 1 il lustrates a dual-plate shield. The cavity formed by the identical, infinite, imperfectly 

conducting, homogeneous parallel  plates is of width 2b. The total  width of,the shield is 2a. Hence the 

width of each plat6 is d = a - b. Tlie cavity, metal  plates, and outside space a re  designated regions 1, 

2, and 3, rcspectively. . The origin of a Cartesian coordinate system is at the middlc of the cavity. The 

y and z -axes a r e  parallel  to  the plates. The direction of propagation of the incident electromagr~rtic 

field is in the positive x-direction. It is assumed that the electric field has only a y-component and the 

magnetic field a z-component. The radiation impinges on the shield at x = -a, where a standing wave 

is developed, and emerges  from the shield at x = a a s  a, traveling wave. Eo(f) and -ER(f) a r e  the inci- 

dent and reflected electric fields, respectively, and ET(a;f) represents  the field emerging from the 



shield. The notation Ei(-b;f), Ei(O;f), and Ei(b;f) is used to  represent  the electric fields inside the --- 
cavity at the left side, middle, and right side, respectively. The corresponding terminology for  the 

H-field is Ho(f), HR(f), HT(a;f), Hi(-b;f), ' H ~ ( o ; ~ ) ,  and Hi(b;f). The incident field is E (x;f) = 
Y 

E0(f)e-'" ; Hz(x;f) = ~ ~ ( f ) e - ' ' ~  where Ho(f) = ~ , ( f ) / i , .  

The various t ransfer  functions needed t o  solve this shielding problem, of which Ei(-b;f)/Eo(f) and 

Hi(O;f)/Ho(f) a r e  typical, may be found by solving the boundary value problem represented by Figure 1 

directly. In carrying out the work, nine constants must be introduced (one of,which is assumed to  be 

known). An equivalent procedure is t o  employ the method of symmetrical  phase components. In Figure 

2, the problem to  be solved, (c), is split into symmetrical  and antisymmetrical parts, (a) and (b), r e -  

spectively. In this drawing the directions of propagation and polari7.ations of.nl1 c l t c t r i c  P:lolds a r e  

shown. when tliu identical shields (a) and (b) a r e  superimposed, (c)  is obtained. Supcrpositioll cancels 

a l l  fields on the plate a t  x = a except the transmitted field ET(a;f). On the plate a t  x = - a  the resultant 

field is Et(-a;f)  = E (-a;f) + E (-a;f). Note that only five constants (one of which is known) need be R 
introduced to  solve the symmetrical  problem (a), and the samc nur~ibcr Lo solve Lhe antisymmetrical 

problem (b). 

(b) The Shielding Problem for Symmetrical 
Electric Field Excitation 

'l'he problem of shielding for symmetr ical  cxcitatiol~ (with the electric field even and the magnetic 
1 1 

field odd in x) is illustrated in Figure 2a.  he pla,ne wayen 7 ~ ~ ( f ) c " ~  I - E e x  t ravel  from 
2 0 

both s ides  toward the shield. The solutions of wave equations (7) and (8), valid in the regions designated 

by the subscripts 1, 2, and 3, are' 

where (11) s,atisfies (7) and meets the required symmetry cnndi t ion~ ES (x;f) = ES (-x;f), and 
Yl Y 1 

H: (x;f) = -HZ (-x;f). 
1 1. 

The next step is to  impose the boulldary conditions characterist ic of the problem. F o r t h i s  purpose 
1 

coirrider the r ig ion 0 5 x 5 a where the incident field is 3 ~ ~ ( O e j " .  
. , 

Continuity of the eleclric Efeld at x = b and x = a leads t o  the equations 

C, 
+ .-jpb ) = c ejib + c3 - jkb 

2 

C2 ejka + C3e-jka = ~ ~ e ' " '  + c5 e - j H a  a 



1 
where now Cq = - E (f). Continuity of the magnetic field at x .= b and x = a leads to  the following 

2 0 

additional equations: 

fo (C2 e j k b  - c3 e -jkb (1  6 )  

to (C,ejka - c3 e-j**) . c(c,LejSa - (17) 

where 

and 

Note that 

, =& - 120. ohms. ' ' 

. . 
. , , for nonmagnetic conductors. 

Let the ra t io  of the amplitude of the field in the shielded region 1 to the field incident from region 

3 with x > a be denoted by 

C1 2C1 s (f) = - = ------ 
1 C, Eo(f) ' 

This ra t io  i~ found from (14)-(17) t o  be: 

Cco(cos pa + j s in pa) 
S.(f)  = 
1 

(COS pb + j s in pb)cos kd + j 
0 

, F r o m  (21.) and ( l l ) ,  the electric field in the shielded region when symmetrically excited is 
. , 

The associatcd magnetir: 'T:icld is obtained from t he  applicatioll. of (5) to  (23). Thus-  . . .  

It follows that in the middle of the cavity x = 0, H: (0;f) = 0 and E' (0;f) is a maximum. Here the 
1 y1 

superscripts s re fe r  to symmetrical  electric.and antisymmetrical  magnetic field excitation. 



(c )  The Shielding Problem for Antisymmetrical 
Electric Field Excitation 

1 ' ' T  
The problem of shielding for antisymmetrical excitation (with an odd electric and an even magnetic 

1 1 
field) is illustrated in Figure 2b. The plane waves - 3 ~ , ( f ) e . " ~  and - ~ ~ ( f ) e ? "  travel from the two 2 
s ides  toward the shield. The solutions of wave equations (7) and (8) and the associated magnetic field a s  

obtained with (5) are:  

jkx 1 (Clejbx - C,e-.iBx) 
Ea  (X;f) = C2e + ~ ; e - j k x  ; H: = - - 3 ( 2  7) 
Y2 2 KO 

- jPx, 1 Ea (x;f) . ciejsx + c;e , HZ = - - ( ~ ~ e  j@x - 0.). (28) 
y 3 3 C O  

Note that (26) satisfies (7) and meets the required symmetry conditions E~ (x;f) = -E' (-x;f) and 
y1 "1 

Ha (x;f) = HZ (-x;f). The application of the boundary conditions, a s  in the symmetrical  problem, leads 
z1 1 

to  the following equations: 

jkb -jkb - e-Jsb) = c ; ~  + tie (29) 

1 
wharc now Ck - - - E I f ) .  'I'he ra t io  of the amplitude of the electric field in the shielded region 1 to the 

2 0 

incident field f rom region 3 with x > a is 

where the negative sign hefnre Eo(f)12 in (33) lakes account of the fact that the antisymmetrical incident 

electric field from region 3 is reversed in phase from that in the smmetr ica .1  case. 

The value of Al(f) i.s 

rS,(cos pa + j sin fia) 
Al(f) - ...- 

Yro(co6 fib + j sill f i b ) ~ ~ ~  kd + j 

F r o m  (33) and (26) the.antisymmetrica1 electric field in the shielded region 1 is 

E: (x;f) = -jE (f)A (f) sin fix. 
I , O .1 



The associated magnetic field is obtained from (35) with (5).  Thus, 

Evidently with antisymmetrical electric-field excitation the electric field is zero and the magnetic 

field has a maximum at x = 0. 

(d) Total  Electric and Magnetic 
Fields in the Cavity 

- j P x  The complete electric field in the cavity due to  a single incident electric field Eo(f)e , Figure 

2c, is the sum of (23) and (35). Thus 

Ei(x;f) = E' (x;f) + E~ (x;f) = ~ ~ ( f ) [ ~ ~ ( f ) c o s  px - jAl(f)sin 6x1. (37) 
y 1 Y l  

Graphs, of the ra t io  Ei(x;f)/Eo(f) in decibelsf a r e  shown in Figures 3a, b, c for the three points 

x = -b, 0, and b. Note that Ei(O;f)/Eo(f) = Sl(f). The associated magnetic field in the cavity is the 

sum of (24) and (36). It is 

where a s  before, Ho(f) = Eo(f)lCo: The ratio Hi(O;f)/Ho(f) = Al(f) in decibels is shown in Figure 4. 

(e) Fields or1 l h e  Outside Surfaces 
of the Plates 

TO obtain the resultant field E (-a;f) = E (-a;f) + E (-a;f) a t  x = -a  and the field E (a;f) a t .  
t R T 

x = a in t e r m s  of Eo(f), one proceeds a s  before, to  determine and combine the symmetrical  and antisym- 

metr ical  phase components. The sets  of equations (14)-(17) and (29)-(32) st i l l  apply. In the symmetrical  

case  the ratios nf the electric and magnetic fields at the surface x = a to  the amplitude of the incident 

field a r e  denoted by 

2 ~ '  (a;f) ejBa + C5e -jBa . 
y3 s (f) = - I 4 

2E , E,(f) . ' 

(39a) 
c, . 

* 
The quantities given a r e  20 log 10 [ ~ ~ ( x ; f ) / E ; ~ ( f ) ] .  



In the antisymmetrical  case  the corresponding ra t ios  a r e  

By superposition, the electric fields a t  the outside surfaces  x = +a due to  a single incident field 

~ ~ ( f ) e - " ? .  a re :  
t 

The associated magnetic fields are :  ,. . , ,  

where, a s  before, Ho(f) = Eo(f)/bU. '  It i s  readily shown that SqE(f) and AZE(f) a r e  

r ( b  cos Bb cos  kd - 5 sin.Bb s in  kd)(cos Pa + i s in  Ba) 1 
0 

SZE(f) = 2r -..- . - . "..____ 
~ c ~ ( c ~ ~  pb + j s in  0b)cos k d +  j Y co cog ~b + jc2-sin bb ) oin hc~ J 

. ,  (b s in  Dl, cos kd + [ cos 06 sin kd)(coa pa + j s in pa) 
. . (44) 

pb + j s in  pb)cos kd + j(<2 cos  Pb + j[: s in  pb) 

Explicit cxpress ivr~s  for S2,(f) and AZH(f) can be obtained f rom (39b) and(40b) with (43) and (44). 

Graphs of the ratios Et(-a;f)/Eo(f) and ET(a;f)/Eo(f) in decibels a r e  shown, respeclively, in 

Figures  5 and 6. 

. . (f) Limiting F o r m s  of the S(f) and . 

. A(f) Funclions when f = 0 ' ' 

As the frequency approachco zero ,  c u s  /3b + 1, s in  @b -pb, cos  kd - 1, s in  kd +kd, a lso  k / f  = -ju. 

F r o m  (22), (341, (43), and (44) i t  follows that 



Shielding of the incident field is due t o  two effects. One of these is skin effect, the other is the 

reflection that, takes place at the outside surface, of the shield., The more important attenuating mecha- 

nism at low frequencies is reflection. With (45a-f) it follows from (37), (38), (41), and (42) that 

Note that when o - w  for perfectly conducting walls, a l l  ra t ios  vanish except H (-a;O)/H (0) = 2 and 
t 

Hi(x;O)/Ho(0) = 1. Note that in this latter case  the amplitude of the incident field on each side of the 
1 

cavity is ZHo(0). 
. . 

(g) Simplification and Application 
of the General Formulas 

The numerical compul~t ions  reprcscnted in the graphs in Figures  3 t o  6 have been made t o  de- 

termine the shielding properties of a region of thickness 2b = 36  inches = 0.9144 m bounded by two 
- 7 

infinite aluminum plates of conductivity 3.72 x 10 mholm with the three  thicknesses d = 118 inch, 

1 /16 inch, and 1/32 inch o r  d = 3.175 x lo- ) ,  1.588 x and 0.;938 x m. The relevant steady- 
5 

state frequency range is f 5 10 c / s e c  and for  the Gaussian pulses that characterize the transient fields 



1 / 2  
the upper frequency limit is in th is  range.  The skin depth. 6 =. ( 2 / w ~ o )  of aluminum is approximately 

3 -4  5 2.609 x m at f = 10 c / s e c ,  2.609 x m at f = 10 c l s e c ,  and 2.609 x 10 m at f = .10 c l s e c .  

It is t o  be noted that a t  f = 10 c / s e c  the thickness of the thinnest plate is only about 3 hundredths of the 
4 

skin depth, whereas a t  f 2 10 c / s e c  even the thinnest plate' is much thicker than the skin depth. 

7 
The complex propagation constant k = ( 1  - j) /6 = 12.12( 1 - j) for aluminum (with o = 3.72 x 10 

3 5 mholrn) ranges from k = 38.33(1 - j) at f = 10 c / s e c  to  k = 3.833(1 - j) x 10 at f = 10 c / s e c .  Over 
5 

the range 10 5 f 5 10 , 

where /3 = w a  = 2.094 x 1 0 - ~ f .  Note also that the e lect r ica l  distance Pb = 0.9574 x lo-' f satisfies 

the inequality 

over the ent i re  frequency range.  On the other hand, kb extends f rom (1  - j)17.52 at f = 10 c / sec  to 
3 5 

( 1  - j11.752 x 10 at f = 10 c l s e c .  

Since 

i t  follows f rom (47) that 

Over the range of frequencies defined by 

the general  formulas for S,(f), A,(f). S2(f), a n d  A y ( f )  mny be s i l l lp l i f i~d &Iaeatly. N O ~ C  that for lllr 

thinnest plate when f = 10 c l s e c ,  kd = (1 - j)3.043 x and P /k  = x 1 n-' 5 

( 1  - J) , when f = 10 c / s e c ,  

kd = 3.043(1 - J )  and B/k = x 1 0 - I  5 
( 1  - J)  

, s o  that (51) is salisfied in the entire range 10 5 f 5 10 . The 

appropriate specific formulas for the severa l  ra t ios  a r e  

Al(f) ' 1 
r o s  kd - Irb oil1 kd 

- .zg s (f) & . -d-- 
2 E k tan  kd 

kb cos kd + sin kd 
' 

cos  kd - kb sin kd I . 



As before S2H(f) = SZE(f) - 2, A2"(f) = 2 - A2E(f). With these values, (37) and (38) g'ive'the field in the 

cavity to  be . 
+ I  L . . 

kx 
E .(x;f) = 

cos kd - kb sin kd I (56a) 

1 --I p2x 
' Ho(f) [cos  kd - kb s in  kd k sin kd 

It follows that 

and 

- 
cos  kd - kb sin kd ' 

cos  kd 
s in  kd(cos kd - 

cos kd - 2kb s in  kd 
kd(cos kd - 7 b  sin kd) I ' 

Similarly, 

Ho(f) 
H. (0;f) +H.(b; f )  &H.(-b;f)  

cos  kd - kb sin kd 
a 

F r o m  (41), 'the total  field at x = f a  is 

ET(a;f) 
- -jP kb cos  kd + s in  kd . 

cos  kd - kb sin kd 
Et(-a;f)  1 

s o  that with (42) the field on the far  outside is 

1 
s i r ,  *d(cos kd - kb =I. 

,On the near  outside i t  is 
. . 

E (-a;f) 
t cds  2kd - 'kb  s in  2kd ' 

I . :  
. .  . Eo(f) s inkd(cos  hd - kb s in  kd)] 



a n d .  

Ht(-a;f) Et(-a;f) 
- 2 

Ho(f) Eo(f) .. ' (60d) 
. . 

.. . 

A clear  picture of the action of the two plates a s  shields is obtained with the thicker shields at the 

higher frequencies included fn  the range for which (52)-(55) a r e  valid. Specifically, when the additional 
. . , . . .  , 

restriction 1 k 1 d > 1.5 is satisfied, the  approxiniatidn . 

1 jkd , 
sin kd - e - cos kd 2 

is a good one. 

With (61) and I k I b >> 1 the following illuminating formulas for the fields between the plates and 

on their  outside surfaces a r e  obtained: , , 

- j k d  
-= - -- . . .  . . 
Ho(f) . .kb - 1, .. (63) 

I n  the rangc for which these formulas a r e  valid the approximation 1 kb I > >  1 is also valid. These 

formulas a r e  useful in an interpretation of the upper frequency ranges in Figures 3 t o  6. '  Note'that 

f rom (62) 

where the formulas on the right assume that Ikb I>> 1. These formulas a l l  give the same cxponentidl 

decay due t o  the thickness of a single sheet characterist ic of the upper frequency ranges of Figures 3a, b, c .  



The small  difference in magnitude (only a factor of 2) between Ei(-b;f)/Eo(f) and E . ( o ; ~ ) / E  (f) is clear 

in Figures 3a and 3b. The much greater decrease in amplitude due to 'the large extra factor kb in the 

denominator of Ei(b;f)/Eo(f) is evident in Figure 3c. Note that Ei(O;f)'is due entirely to the symmetri-  

cally excited part  of the field which is essentially constant across  the interior of the shield. The anti- 

symmetrical  part  vanishes at the center, effectively adds to  the symmetrically excited part  for -a  < x < 0 

and subtracts from this for 0 < x 5 a.  The part  of the magnetic field due to  the symmetrical  electric field 

excitation is negligible in the upper frequency range whereas the field due t o  antisymmetrical electric 
. . 

field exc i t a t i0n . i~  essentially constant ac ross  the interior of the shield. ' It is exponentially attenuated by 

one plate but has no factors of smal l  magnitude (Plk  or  11kb) a s  does the electric field. In the lower 
I ,  

frequency range where (56)-(60) must be used instead of (62)-(65), the attenuation through the plates is not 

exponential and may be quite small .  It is given by (56b) and shown in Figure 4. 

The ra t io  Et(-a;f)/Eo(f) at the front outer surface of the plates and represented in Figure 5 

involves no exponential attenuation, but is very smal l  owing to  the high conductivity of the aluminum 

which produces a large reflection in nearly opposite phase. The magnetic field, on the other hand, is 

reflected nearly in phase and i t s  amplitude is almost doubled a s  may be seen from (64). 

-j2kcl . 
The rtilio ET(a;f)/Eo(f) o r  HT(a.;f)/Ho2(f) given in (65) is attenuated exponentially by e ; 1. e . ,  

by the two plates, and in addition has the large factor kb in the denokinator.  This agrees  with ~ i g u r e  ti. 

If the conductivity of the plates is made infinite s o  that a -. m, it follows that Ei(x;f) = Hi(x;f) = ET(a;f) = 

HT(a;f) = E (-a;f) = 0, H (-a;f) = 2. 
t t 

4. The Form of the Integrals to  be 
Evaluated by a Computer 

The description of the incident ,electric rield pulse a ~ s u m e d  in thi.s paper is . 

where A is the value of eo(0) in volts/m, t is the time, and t l  is a measure of the pulse width. The 
. . 

spectrum of th is  pulse is, 

In this expression f is the frequency in cycles/sec,  and fl  = 1 /2rr t  

Let G(x;f) = GR(x;f) + j ~ , , ( x ; f )  represent a desired steady-state shielding ratio,  such a s  
. . 

E ~ ( x ; ~ ) / E ~ ( ~ ) .  The time his'tory of the electric field in thc cavity at pojnt x is then , 

. . 



where, to  a good approximation, f = 2.6 f l .  In the last  expression use has been made of the relation 

C7(f) = C(-f). This is the form of the integral  that has been evaluated on the computer. For  compu- 

tations of the electric field the constant A in (69) was taken to  be 1 volt per meter;  for computations of 

the magnetic field, h and H a r e  substituted in (67) t o  (69) in place of e and E and A is set  equal to  1 

ampere  per meter .  

The t ime histories of the electric and magnetic fields in and outside the cavity a r e  exhibited in a 

s e r i e s  of graphs for a particular cavity (of length 36 inches with the three  wall thicknesses 1/32 inch, 

1 / 16 inch, and 1 / 8 inch) when an electromagnetic field with an amplitude distribution in the form of a 

Gaussian pulse is incident f rom one side. A number of pulse lengths from t l  = 6 Hsec to  48 psec a r e  

used. 

In order  t o  understand the variation in t ime of the electric and magnetic fields in the cavity i t  is 

important t o  note that even for the shortest  pulses used in the calculations, ( t l  - 6 psec) the pulse width 

t is very great compared to  the t ime of transit  of the pulse ac ross  the cavity, viz., 
8 t = 0.9144/(3 x 10 ) sec  = 0.00348 psec.  It follows that the field is reflected back and forth in the cavity 

many t imes even during the t ime t l .  The instanta.neous field is the r~  a superposition of these multiply 

reflected components. It is a lso  significant t o  note that for the lower frequencies and the thinnest plates 

the attenuation t l~rough the plates is relatively smal l  and shielding is due primarily t o  reflection. 

In Figures  7a-d, 8a-d, and 9a-d a r e  shown the instantaneous electric fields in the cavity respcc- 

tively a t  the points x = -b, 0, and b. As is t o  be expected from the similarity of their  steady-state 

t ransfer  functions, the t ime  histories of the electric fields a,t x = -b  and at x = 0 a r e  quite ~ i m i l a r .  

The electric field at the cerltar, x = 0, is determined entirely by the stenrly-statc t'ansle~. function of 

the symmt t l~ ica l ly  excited part  of the electric field, that at x = -b is determined from the sum of the 

steady-state ra t io  functions of both the symmetrical  and antisymmetri.cal par ts  of the excltation. Un the 

othcr haild, at x = b, the field is determined from tho difforcnce Iselween the steady-state fur~ctions of 

the symmetr ical  and antisymmetrical  nxcitatioi~ti. Since L.his i~ very s~r la l l ,  the instantaneous electric 
- 3 

field at x = -b  is smal ler  byafactor  near 10 than the fields at x = 0 or x = b; i t  a lso  has a  mi:::':^ l e s s  

significant peak. 

Since the steady-state t ransfer  functlon for thc maguelic field in the cavity is predominantly due to  

the antisymmetrical  part of the excitation, and since fo r  this the magnetic field is essentially constall1 

ac ross  the cavity, i t  follows that the t ime histories of the magnetic'fields at a l l  points in the cavity a r e  

essentially the same. They a re  shown in Figures  IOa-d on an expar~ded time scale for short  t ime inter- 

vals during which the field increases  rapidly and in Fignraa  113-d on a ~ l l u r e  contracted t ime scale for  a 

much longer t ime in which the initial increase  of the field appears very abrupt but the lor~g slow decay is 

apparent. It is t o  be noted that although the ratio Hi(x;f)/Ho(f) i,s very m x h  greater  than ~ ~ ( x ; f ) / E ~ ( f )  

since the magnetic field is nearly doubled a1 each reflection whereas the electric field is almost canceled. 

the decay r a t e s  of electric and m ~ g n e t i o  ficlds r l~usl  nevertheless be the same.  This is considered in 

greater  detail in Section 5. 

The electric and magnetic fields beyond the second metal wall, x 2 a, constitilte an outward travel-  

ing dist1.1rbancc that is 11ut a superposition of incident and reflected components a s  in front of and inside 



the cavity. At every point and instant the ra t io  of electric to  magnetic field is the cbnstant r so  that 
0.' 

the time history of both electric and magnetic fields is the same for x 2 a.  The instantaneous electric 

field at x = a is represented in Figures 12a-d. It is seen to  be extremely small; nevertheless it neces- 

sar i ly  decays a s  slowly a s  the field in the cavity. Note that for the broader pulses with larger  t ,  the 

spectrum contains predominantly frequencies that a r e  sufficiently low to  make the attenuation through 

the plates small. Shielding is primarily due t o  reflection and not significantly due to  skin effect. This 

is shown, for example, by the fact that in Figures 9d and 12d the curves for ei(b;t) and eT(a;t) for the 

fields on the two sides of the second plate differ negligibly for the thinnest plates. 

5. Decay Rates in the Cavity 

The ratio of decay of the electromagnetic fields in the cavity may be estimated by evaluating the 

integral (69) for the simplified shielding ra t ios  (52) and (53) and with Eo(f) = 1, that is, for a delta- 

function pulse. For  the symmetrical  excitation the steady-state shielding ra t io  is Sl(f) a s  given in (52); 

for the antisymmetrical excitation the ra t io  is Al(f) a s  given in (53). 

The instantaneous electric field for the syrnrl~etric case  is 

I P cos Px [ e i ; t S  = j -- k sin kd dP 

since w = PC. The simple poles of this integral  occur at sin kd = 0 or  at 

These a r e  all  in the upper half of the complex plane s o  that the contour may be closed in a great semi-  

circle above the r e a l  axis. By Cauchyls theorem, 

where the K1s a r e  the residues at the p ~ l e s .  The residue Kn may be obtained from the general formula 

Since 1~ = Jw = ,/%, this gives 



It follows that . . 

The.slowest decay is for  the term.with n = 1 for,which the decay t ime is 

. 2 -2.984 x sec  for d = 1/32 inch 
rood 

t = - = 4.736 11.94 x sec  for d = 1/16  inch 
2 

a c 
47.74 x sec  for d = 118 inch 

The numerical values a r e  for aluminum. This is a, measure of the exponential decay of the electric and 

magnetic fields that a r e  exci.ted in the cavity ill the syrnmetrica1,mode of the electric field. . . 

' For  the antisymmetrical mode, 

sin px , j(3c t 
cos kd - 'kb sin kd db. 

. . 

The poles of this integral  occur a t  the roots of 

1 7T - 1. 
tan  kd = - o r  kd = - - tan kb. 

kb 2 (75a) 

Since the slnwest  deoay t ime lur the symmetr ical  excitation has been used a s  an approximation, the 

' s ~ m e  may be done in this case  and only the f i rs t  root determined. Thia must occur approximately whcn 

k'bd = 1 (Y5b) 

2 
or,  with k = -jboro, when 

The residue a t  the associated pole is .. a *  

= eject sin ~k 
1 d -(con krl - k l ~  sin lcd) 

dP B =  2 
LubJ  



s o  that 

It follows that 

+ contributions ,from higher-order poles. 

The slowest decay t ime of the antisymmetrical mode is . 

i boobd 
1.697 x lo-' s ec  for d = 1/32 inch 

t = - = 46.75 bd sec  = 3.394 x lo-' s ec  for d = 1/16 inch 
A . C  

( 6.786 x l oT2  sec  for d.= 118 i k h  

The ra t io  of the two decay t imes is . . 

. . .  
. . tA  - youbd r 2 c  - s 2 b  

s c d .  

. . 

For  the three thicknesses d = 1/32 inch, 1 / 16 inch, and. 1 / 8  inch and the distance b = 18 inches 
, . 

between plates, the ratios are :  

d . h i d  s 2 b / d  . ' 

1/32 inch 32 x 18 5685 

1/16 inch 1 6 x 1 8  ' 2842 

118 inch 8 x 18 1421 

, . 
It is c lear  that the antisymmetrical mode is damped out very much more slowly than the symmetrical  

~i lnde,  s o  thdt when the two a r e  superimposed t o  give the response for a disturbance incident from the one 

side only, the contributidn f rom the symmetrical  part  of the excitation dies out very quickly a d  olily the 

response f rom the antisymmetrical par t  of the excitation pers is ts .  I t  is important t o  note that a s  a conse- 

quence of syinmetry the antisymmetric odd electric field and the symmetric odd magnetic field a r e  

identically zero at the center of the cavity where x = 0. It follows that at th is  point, the total  magnetic 

field decays slowly, the' total  clectric field rapidly. This  difference in ra tes  of decay is seen in Figures  

8a and l l a .  At a l l  other points the decay ra tes  of the total  electric and magnetic fields involve the inde- 

pendent decay of the electric and magnetic components of both symmetries.  Ultimately, the ra te  of decay 

is that of the ant.isyrn~aetric components with odd electric and even magnetic fields. This may be seen 

from a comparison of Figures  10a and l l a  which show the slow decay of the antisymrnetrical par ts  of the 

electric and associated magnetic fields after the rapid decay of the symmetrical  par ts .  The decay ra te  

is easily estimated from Figure l la  where for the thinnest plate the am~?litude.clearly decreases  t o  about 
. . . 3 , .. ., , . , . . . . I .  

l / e  or  11'2.7 of i t s  maximum value' in about 16 milliseconds in.dgreement .with,(.79?. . . .. ... . , . 5 -. 



A complete picture has  been obtained of the shielding provided by a parallel-plate region t o  incident 

pulses of Gaussian shape both in theoretical  and numerical  form. These resul ts  a r e  useful in estimating 

the efficacy a s  shields of metal  containers of finite s ize  only insofar a s  no resonances a r e  excited that 

involve standing waves of current along the metal  walls. At resonant frequencies the large currents  in- 

duced in the walls of the shield a r e  associated with correspondingly large  resonant f i e l d ~ . ~  
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INFINITE 
PLATES 

Figure 1. Dual Plate Shield 

Figure 2. Use of Symmetrical  Phase Components t o  Solve the Dual Plate Shield 
Problem Illustrated by Figure 1 



,; 
Figure  3a. Dual Plate Shield. Steady State F'u;cti,bn  ela at in^ Ei(-b;f) t o  Ed(f) . 



f - cycles/sec 

Figure  3c. Dual Pla te  Shield. Steady State Transfer  Function Relating Ei(b;f) t o  Eo(f) 



Figure  4. Dual Plate Shield. Steady State Transfer  Function Relating I.Ii(O;f) t o  Ho(f) 



f -cycles/sec 

Figure  5. Dual Plate Shield. Steady State Transfer  Function Relating Et(-a;f)  t o  Eo(f) 

Figure  6. Dual Pla te  Shield. Steady State Trans fe r  Function Relating ET(a;f) t o  Eo(f) 



1-milliseconds 

.Figure 7a. Dual Plate Shield. 6 (0) = 1 volt /m, t l  = 6 ps 



1-milliseconds 

Figure  7d. Dual Pla te  Shield. e (0) = 1 volt /m, t = 48 ps 
1 



t- milliseconds 

Figure 8a. Dual Plate Shield. eo(0) = 1 volt /m, t ,  = 6 ps 

. . ., . .. 
' t - milliseconds 

Figure 8b. i Dual Pla te  Shield. eo(0) = 1 volt/m, tl  = 1 2  ps 



Figure 8c. Dual Plate Shield. eo(0) = 1 volt/m, t = 24  ps 

716 -.I2 -.08 -.04 0 . 0 4 .  .08 .I6 .20 .24 
1 - mill iseconds 

Figure 8d. Dual Plate Shiela'. e (0) = 1 volt/m, t = 48 /IS 1 



t -milliseconds . . 

Figure 9b. Dual Plate Shield. e (0) = 1 volt/m, t l  = 1 2  Ps  
0 : 



t - milliseconds 

Figure 9c. Dual Plate Shield. e (0) = 1 volt/m, t l  = 24 P s  

t -  mil l iseconds 

Figure 9d. Dual Plate Shield. eo(0) = 1 volt/m, t = 48 /-is 



1 -milliseconds 

Figure 10a. Dual Plate Shield. ho(0) = 1 amp/m, t = 6 ps 

Figure lob. Dual Pla tc  Shield. ho(0) = 1 amp/m, 1 = 1 2  ps 
1 



Figure 10c. Dual Plate Shield. ho(0) = 1 amp/m,  tl = 24 ps 

Figure 10d. Dual Plate Shield. ho(0) = 1 amp/m,  t l  = 48  ps . . 



1 -milliseconds 

Figure I l a .  Dual Plate Shield. ho(0) = 1 amplm,  t l  = 6 ps 

1-milliseconds 

Figure l'lb. Dual Plate Shield. ho(0) = 1 amplm,  t ,  = 1 2  ps 



. , 1-milliseconds 

, Figure l l c .  Dual Plate Shield. ho(0) = 1 amp/m, t l  = 24  ~s 

1-milliseconds 

'kigure lid.. ~ u i l  Plate Shield. (0) = 3 imp/m,'  i l  = 48  ps 



t-milliseconds 

Figure 12b. Dual Pla te  Shield. eo(0)  = 1 volt /m, t l  = 1 2  ps 



t -milliseconds 

Figure 12c. Dual Pla te  Shield. eo(0) = 1 volt/m, t,, = 24 /.is 

t-mil l iseconds 

Figure 12d. Dual Plate Shield. eo(0) = 1 volt/m, t = 48 /.is 
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